

Delft University of Technology

A security perspective on code review
The case of Chromium
di Biase, Marco; Bruntink, Magiel; Bacchelli, Alberto

DOI
10.1109/SCAM.2016.30
Publication date
2016
Document Version
Accepted author manuscript
Published in
2016 IEEE 16th IEEE International Working Conference on Source Code Analysis and Manipulation
(SACM)

Citation (APA)
di Biase, M., Bruntink, M., & Bacchelli, A. (2016). A security perspective on code review: The case of
Chromium. In L. O' Conner (Ed.), 2016 IEEE 16th IEEE International Working Conference on Source Code
Analysis and Manipulation (SACM) (pp. 21-30). IEEE. https://doi.org/10.1109/SCAM.2016.30

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SCAM.2016.30
https://doi.org/10.1109/SCAM.2016.30

Delft University of Technology
Software Engineering Research Group

Technical Report Series

A security perspective on code review:
The case of Chromium

Marco di Biase, Magiel Bruntink, Alberto Bacchelli

Report TUD-SERG-2016-019

SERG

TUD-SERG-2016-019

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Marco di Biase, Magiel Bruntink, Alberto Bacchelli. A security perspective on code review: The case of
Chromium. In Proceedings of the 16th IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2016, October 2-3, 2016, Raleigh, NC, U.S.A.

Acknowledgments. This project was funded by the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sklodowska-Curie grant agreement No 642954

c© copyright 2016, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

A security perspective on code review:
The case of Chromium

Marco di Biase
Software Improvement Group
Amsterdam, The Netherlands

m.dibiase@sig.eu

Magiel Bruntink
Software Improvement Group
Amsterdam, The Netherlands

m.bruntink@sig.eu

Alberto Bacchelli
Delft University of Technology

Delft, The Netherlands
A.Bacchelli@tudelft.nl

Abstract—Modern Code Review (MCR) is an established
software development process that aims to improve software
quality. Although evidence showed that higher levels of review
coverage relates to less post-release bugs, it remains unknown
the effectiveness of MCR at specifically finding security issues.

We present a work we conduct aiming to fill that gap by
exploring the MCR process in the Chromium open source project.
We manually analyzed large sets of registered (114 cases) and
missed (71 cases) security issues by backtracking in the project’s
issue, review, and code histories. This enabled us to qualify MCR
in Chromium from the security perspective from several angles:
Are security issues being discussed frequently? What categories
of security issues are often missed or found? What characteristics
of code reviews appear relevant to the discovery rate?

Within the cases we analyzed, MCR in Chromium ad-
dresses security issues at a rate of 1% of reviewers’ comments.
Chromium code reviews mostly tend to miss language-specific
issues (e.g., C++ issues and buffer overflows) and domain-specific
ones (e.g., such as Cross-Site Scripting); when code reviews
address issues, mostly they address those that pertain to the
latter type. Initial evidence points to reviews conducted by more
than 2 reviewers being more successful at finding security issues.

I. INTRODUCTION

Code review is a practice of manual source code analysis
with the goal of increasing software quality (e.g., reliability
and maintainability). Code review comes in different flavors,
such as formal code inspections [1], security audits by external
experts [2], and more lightweight, asynchronous assessments
of source code changes by other developers [3]. The latter
form is also known as Modern Code Review (MCR) [4].

Nowadays, MCR is being adopted by many organiza-
tions [5] and its popularity is growing with the advent of the
pull-based development model [6] and the availability of many
tools to support its logistics [7]. Overall, MCR is a process
that is (1) informal (in contrast to inspections), (2) tool-based,
(3) asynchronous, and that (4) occurs regularly in practice.

Previous research provided evidence that MCR is useful in
improving overall software quality level [8], [9], particularly
by addressing issues related to software evolvability [10], [11].
Little is known, however, of the value of MCR in relation to
software security issues. Past research, in fact, mostly focused
on the effectiveness of security audits conducted by external
experts on the entire codebase of software systems [2], [12],
without considering the MCR practices. With the aim of
starting to fill this knowledge gap, we conduct an exploratory
case study on MCR from a security perspective.

In particular, we focus on answering questions that can
provide initial useful information for both researchers and
practitioners. For example: Does MCR find security related
issues? If so, are there issues that are more frequently found or
missed? Which factors could hinder or support finding security
issues in MCR? From these answers, software engineers and
managers can start taking informed decisions on whether and
how to use MCR for security concerns, and researchers can
focus their attention on developing and improving source code
analysis tools that address the most problematic aspects of
MCR when used for security.

As subject of our study, we consider the case of
Chromium [13], an open-source software (OSS) web browser
that forms the base of the most popular web browser, i.e.,
Chrome. Since Chromium uses MCR for each proposed code
change and has the highest number of security bugs reported
in the CVE database [14] for an OSS product, it gives us the
opportunity to investigate the relationship between MCR and
security in a significant, real-world context.

We conduct our investigation by exploring the history of
MCR and security issues in Chromium. In particular, we
(1) manually inspected a total of 1,155 code review comments
to determine the proportion of those related to security;
(2) semi-automatically extracted review comments raising con-
cerns on security issues and manually analyzed and classified
them into known vulnerabilities; (3) and manually analyzed
and classified security issues not found during review.

Based on the results of our exploration, we discuss unex-
pected findings, also providing initial indications to practition-
ers as well as outline promising future investigation directions
for researchers.

This paper is structured as follows: Related work is dis-
cussed in Section II. Section III details the research questions,
as well as the research method used, and enumerates some
threats to construct validity. In Section IV we present our
findings, following which in Section V we discuss the same.
Finally, in Section VI we summarize the work.

II. RELATED WORK

Previous work on code review started with the investigations
by Fagan on formal code inspections [15]. According to
his studies, defects are primarily found during the actual
inspection meeting [15]. Subsequently, Votta recommended

SERG di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium

TUD-SERG-2016-019 1

to involve only the author and one reviewer because of
scheduling difficulties [16]. Porter et al. found that the number
of reviewers and authors were the most relevant factors of
software inspection performance. [17]. Kollanus and Koskinen
did a software inspection survey, addressing the need of more
empirical research to validate the effects of the different
processes in practice. Their work led to better understanding of
the actual impact of inspections on different organizations [3].

Although useful, formal inspections have been gradually
replaced by a more lightweight process by practitioners, for
instance to suit agile-oriented development methods [18], [19].
The effectiveness of the more lightweight process has been
a topic of research, comparing it to other quality-improving
processes such as testing and pair programming [3], [20], [21].
Furthermore, some analysis has been done in understanding
the usefulness of MCR. Thongtanunam et al. found that
developers are often most concerned about documentation and
structure to enhance evolvability and fix functional issues [22].
Beller et al. revealed that most changes of Open-Source
systems in MCR are indeed related to the evolvability and
functionality aspect, with a ratio of 75/25 [11]. The study
by Bacchelli and Bird [5] showed similar MCR outcomes for
industrial projects at Microsoft; Lassenius et al. [10] reported
similar outcomes for other industrial and academic projects.

Even if MCR is now widely adopted in both open source
and industrial projects, the impact of MCR on security is still
unclear. The most relevant work in this field has been done
by Edmundson et al. [12]. Their main focus was to assess
the effectiveness of manual code review in improving software
security. Specifically, they hired 30 developers and tested their
review efficacy on a web application. Their findings suggest
that developers are not able to address every security issue
in the analyzed system. Furthermore, there was no relation
between experience and effectiveness of a developer in finding
security-related problems during code review.

III. METHODOLOGY

We present the research questions, as well as a description
of the research context and the research methodology.

A. Research Questions

Our examination of the literature revealed that our scientific
knowledge of code review and security issues does not cover
the case of MCR. Our study aims to gather insight on the
MCR process with respect to security issues, considering the
Chromium project as a case study.

We know that most comments in MCR regard code im-
provements or clarification questions [5] and most changes
triggered by review pertain to maintainability and evolvability
issues [11]. We currently have less knowledge on what pro-
portion of reviewers’ comments in real-world MCR regards
security concerns. This motivates our first research question:

RQ1. What proportion of comments in code reviews ad-
dress potential security issues?

Vulnerabilities and security flaws come in diverse flavors
and pose different challenges when they are to be manually
or automatically detected [23]. We explore which types of
security threats are more frequently discovered or overlooked
during MCR in Chromium, to get an initial indication of the
suitability and points for improvements of MCR for this task.
This motivates our second and third research questions:

RQ2. What categories of security issues are typically
discovered during code reviews?

RQ3. What categories of security issues are typically
missed during code reviews?

Finally, knowing which factors in the MCR process may
lead to detecting/missing security flaws is important to guide
practice and future research on the topic. To this aim, we
look for initial evidence that can be tested in further empirical
studies. This motivates our last research question:

RQ4. What factors might lead to finding or missing security
issues at review time?

B. Research Setting

Our study is focused on the OSS web-browser Chromium,
the project on which the popular Google Chrome is based.

Subject system. Chromium consists of over 14 million
Source Lines of Code, mainly written in C and C++. The
project uses a public issue repository,1 employs a public MCR
process2 that is strictly enforced (“all code should be reviewed
prior to checkin” [24]), and is the OSS product with the highest
number of security bugs in CVE [14] [25]. These features
make it a valuable case for our exploratory investigation, as
they allow us to consider a real-world, extensive project with
rich data available for analysis.3

Common Vulnerabilities and Exposures (CVE). CVE is a
list of publicly available information about security vulnerabil-
ities for software products. It aims to ease the sharing of data
on different vulnerability capabilities with a common enumera-
tion. With this enumeration, one can access information about
the problem on multiple data sources using the same CVE
Identifiers. The CVE List entries provide information for each
CVE Identifier, such as data on fix information and severity
scores. CVE offers a non-exclusive, royalty-free license for
research and development.

Code review process in Chromium. Chromium uses Ri-
etveld [26] as code review tool, which allows issuing reviews
to the system directly from the code repository. The work
flow to create a new review request starts from the change
that a developer makes in his workspace: After committing

1https://bugs.chromium.org/p/chromium/
2https://codereview.chromium.org/
3Chromium has dependencies that once were part of Chromium itself, such

as V8, Skia, blink, and are developed with the same process and use the same
tools. Hence, we include them in our analysis too.

di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium SERG

2 TUD-SERG-2016-019

the code into a branch, the author must create a change list to
describe the patch content; then, to start the review process,
the author publishes the change list and selects (at least) one
reviewer. It is an author’s responsibility to choose a relevant
reviewer for the specific patch; guidelines in the developers’
contribution page for Chromium suggest to base the choice of
the reviewer on who did the latest changes on the modified
code. The review must also contain an owner, who has the
responsibility of ensuring the highest quality for the subsystem
being touched by the change.
Figure 1 shows the user interface of Rietveld. After the review
process has started, reviewers can (1) browse the textual
differences (aka diff) between the original version of the files
and the proposed patch, as well as (2) insert inline comments
to start a discussion thread. If the reviewer(s) suggests some
changes, developers can upload a newer version of the patch,
thus initiating a feedback cycle. For a patch to be merged, the
owner must give it a ‘LGTM’ (Looks Good to Me) (3).

Issues and vulnerabilities in Chromium. The Chromium
project uses Monorail [27] as issue tracking system. Monorail
offers a public way for users and developers to file issues
as well as publicly open historical issue data. The project
provides detailed information on the life cycle of bugs and
reporting guidelines [28].
The special case of security and vulnerability issues is man-
aged as in the following. Labels are heavily used in this
context,4 and specific use for some of those are strictly
controlled (e.g., the severity level5). Chromium aims to deploy
a patch for a critical vulnerability within 30 days. For high-
severity ones, the aimed time span is 60 days. Access to
security bug data is normally activated within 14 weeks.6 Once
the bug is externally reported, it gets its CVE label assigned.

C. Research Method

Our research method is based on the manual and semi-
automatic analysis of historical data on the development and
review process of Chromium. Our sources of historical data
are: the code review data stored by Rietveld, the issue data
saved through Monorail, and vulnerabilities and exposures data
stored in CVE. In the following, we detail how we use them.

RQ1. Proportions of review comments on security. To
better understand the role of security concerns in code reviews
for Chromium, we start by estimating how frequently these
concerns are raised by reviewers. To do so, we collect sets of
sample review comments from the entire population of com-
ments for Chromium and manually inspect which proportion
pertains to security. We focus on code review taking place
in the year 2014 to make sure the data on the corresponding
vulnerabilities is fully accessible. In fact, choosing 2015 would
have led to data not accessible due to the non-disclosure period
that security issue have before they can be fully accessible.

4https://www.chromium.org/Home/chromium-security/security-labels
5https://www.chromium.org/developers/severity-guidelines
6https://www.chromium.org/Home/chromium-security

We wrote a Python script to automatically retrieve com-
ments via the Rietveld API.7 The resulting population consists
of 132,000 comments belonging to over 155,000 code reviews
for 2014. The lower number of comments relative to reviews
is due to the 14-week non-disclosure policy for security issues
enforced by Chromium. We found several issues that were not
accessible due to other restrictions (e.g., vulnerabilities that
affects third-party products).

From the initial sample, we selected comments written only
by reviewers, as we are interested in reviewers’ behavior
during the process. It is indeed their responsibility to ensure
that code under review has the highest quality. We selected
60,655 comments from the initial dataset. We filter out com-
ments written by non-reviewers by discarding them if their
author was not in the list of reviewers.8 Messages written
by bots are marked as "auto_generated":true and are
automatically discarded as well.

Determining the proportion of comments about security
concerns is hard to do automatically, thus we manually read
the review comments and flagged them as security-related
or not. Being a manual effort, we could not inspect the
entire initial dataset, rather we proceeded selecting statistically
significant sample sets. As we had no prior details about
the distribution of security related comments, we picked
comments using random sampling without replacement (as
opposed to other techniques, e.g., stratified random sampling)
to extract reliable sample sets. We establish the size (n) of
such sets with the following formula [29]:

n =
N · p̂q̂

�
z↵/2

�2

(N � 1) E2 + p̂q̂
�
z↵/2

�2

Since the proportion (p̂) of the comments referring to
security concerns is not known a priori, we consider the worst
case scenario (i.e., p̂ · q̂ = 0.25). We have a population that,
from a statistical point of view, is relatively small, so we
included the finite population correction factor in the formula:
It allows us to take the population size (N) into account (i.e.,
60,655 review comments). We keep the standard confidence
level of 95% and error (E) of 5%, i.e., if security issues
are raised in f% of the sample set comments, we are 95%
confident they will be cited in f% ± 5% of the population
comments. To strengthen this sample set selection, we repeat
this process three times, creating three non-overlapping sets
with size 385 comments each.

Finally, the first author of this paper manually performed the
following steps on each comment: (1) He read the comments’
content, to establish whether it is security-relevant or not;
(2) if relevant, he read the whole code review discussion to
obtain a deeper understanding; (3) if the security concern was
confirmed by further comments on the raised issue (i.e., by
the developer, the reviewer itself or other involved people), he
marked it as a security concern.

7https://github.com/rietveld-codereview/rietveld/wiki/APIs
8This list also contains reviewers added after the code review is started.

SERG di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium

TUD-SERG-2016-019 3

1

3

2

Figure 1. Rietveld Code Review tool in Chromium

RQ2. Types of security flaws discovered by reviews. As
a taxonomy to classify the types of security concerns raised
in reviews, we rely on the one described in: “24 Deadly Sins
of Software Security: Programming Flaws and How to Fix
Them” by Howard, LeBlanc, and Viega [23]. This taxonomy
has the advantage of focusing on the most common design
and coding errors, with examples that can be easily mapped
to the historical data we analyze; moreover, it is an exhaustive,
yet reasonably sized compilation of problems, as opposed to
the Common Weakness Enumeration (CWE) [30], which totals
over one thousand very detailed, but loosely organized entries.

The security-related comments found in RQ1 form a sample
that is not large enough to have even an initial answer to our
RQ2. Extending this set of comments using the same method
(i.e., the analysis of randomly sampled review comments)
would require to extend the initial sample set by an order
of magnitude to have enough initial data for our exploration
(approximately 80 security concerns, due to the number of
possible classes of security issues). This would have been a
time-consuming and, more importantly, error-prone approach.
For this reason, we built our dataset using a different strategy.

We defined a set of security-related keywords that could
have been used by reviewers when commenting security
related concerns. To define this list of keywords, we use
generic terms, such as ‘security’, and terms specific to the
security flaw described in our taxonomy, such as ‘cookie’,
also considering synonyms. We then used these keywords to
retrieve security related review comments. Our keyword list is
made by the following terms: buffer, cast, command, cookie,
crypto, emismatch, exception, exec, form, field, heap, injection,
integer, ondelete, out of memory, overflow, password, printf,
privilege, race, random, sanitize, security, sensitive, sql, URL,
use-after-free, vulnerability, xhttp, xml. We also used regular
expressions and stemming based on the same matching intent
for different words. For instance, to retrieve Input Sanitization
issues belonging to the category Format String problems, we
reduced both sanitization and sanitize to the common prefix
sanitiz. With this approach, we retrieved 9,765 comments
for our dataset. To ensure that the retrieved comments were
pertinent, we proceeded according to the following steps,
per keyword: (1) we selected the comments including the
specific keyword, (2) we manually inspected every comment

di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium SERG

4 TUD-SERG-2016-019

to determine whether it was indeed raising a security concern,
(3) if so, we analyzed the whole review discussion reading
all the comments handling the same issue and analyzed the
code changes to assign the comment to the right category
in the taxonomy, (4) instead, if the review comment did
not raise a security concern, we discarded it. To determine
whether a comment raised an actual security problem, we
verified that the issue did exist and was fixed in the subsequent
proposed patches. We could do it by reading the content of the
review discussion. After filtering from the dataset consisting
of 9,765 items, the resulting dataset of security-related review
comments included 71 elements.

RQ3. Types of security flaws overlooked by reviews. To
retrieve a sample of security issues that reviewers failed to
notice, we took advantage of the information on CVE as a
starting point. Our research method consisted in the following
steps: (1) we select a CVE security issue for Chromium and
go to the matching entry in the Monorail issue repository
(either by taking advantage of the link available in CVE or by
manually searching the CVE ID in the issue tracker), (2) as the
issue is closed (otherwise it would not be public on CVE), we
retrieve the files interested in fixing the issue and we identify
the lines that introduced the security issue in the first place,
(3) after evaluating the patch diff, we position the issue in
the taxonomy, (4) we find the last relevant change9 to these
lines (using git blame), and (5) retrieve the data on the code
review(s) that allow them to be introduced.

To avoid any latent overlap in the data about found vs.
overlooked security problems, we collected data on issues
entered in CVE in 2015. Analyzing all the 187 resulting CVE
entries, we could link the patches for their corresponding 114
bugs, which we traced back to 139 original code reviews. The
difference between the complete set of bugs and the ones
we analyzed was due to the aforementioned non-disclosure
period (in some cases we also found inaccessible data due to
restrictions that applied even after the non-disclosure period)
and that we did not always successfully retrieve the original
code review (the most frequent reason is that Rietveld was not
used by Chromium when the last relevant change was made).

RQ4. Factors (possibly) influencing security reviews. The
manual analysis we conducted to answer RQ2 required us to
carefully inspect many cases in which security issues were
discovered by the participants of the MCR process. In addition
to quantitatively comparing the categories of these issues, we
attempted to obtain initial qualitative insights on factors that
appeared to have an influence on the effectiveness of MCR for
security. To formalize this approach, we annotated our manual
classification for later analysis to discover emergent patterns
or factors.

In detail, this analysis process began with reading comments
in a review such that we could understand what happened
in each of them. Initially, we annotated each review with

9We define as relevant change those that modify functional aspects. For
example, we discarded every refactoring that changed an identifier or the way
a variable was accessed (value, reference or pointer), as well as a library or
API refactoring.

possible patterns; then, we repeated the process on our dataset
iteratively as we found more or repeated patterns. Finally, we
aggregated our findings around different clusters that emerged
with our analysis. We found the number and role of reviewers
to be the most interesting and recurrent factors that showed
an impact during the activity. In particular, multiple reviews
did not comply with the Chromium policies on the suggested
number of reviewers (Section III-B) and the role of a reviewer
was a factor influencing the process.

D. Threats to the validity of the results

The goal of this work is to explore the usefulness of
code reviews for security-related issues. We recognize that
our research method presents some limitations. In particular,
our analysis is limited only to Chromium code reviews. The
cultural and workplace habits have an influence on what
happens during the process that we aim to analyze, i.e.,
having guidelines that are in place for the specific development
process.

The method to answer RQ1 is based on the manual analysis
done by only one researcher. This may pose potential threats,
which we tried to mitigate by trying to gain a deep understand-
ing of an issue and by performing an iterative analysis. The
classification lacks of further validation via known strategies.

The method to answer RQ2 also poses potential threats to
the validity of the results. Since we adopted a keyword-based
approach, we could have missed some relevant comments in
code reviews. An alternative approach could have been to
build our list on results given by RQ1; however, the data
generated to answer RQ1 was insufficient to build a larger
set of issues. The choice of our keywords is strictly related
to the taxonomy that we choose for our study, thus may be
biased towards it. In spite of this, our results did not expose
any obvious bias and we found categories not defined by the
taxonomy. As an alternative, one could use the pre-existing
classification available in CVE. However, this classification
regards the outcome of a vulnerability issue rather than the
cause. For this reason, we decided to go deeper into the source
code and classify the cause. The classification patterns that we
used in our study, finally, lacks some of the specific sets of
patterns that we found in our analysis; we address this problem
by complementing it with the taxonomy offered by CWE.

Our results are limited to the number of issues and code re-
views analyzed, representing a threat to the generalizability of
our conclusions. Furthermore, we retrieved the starting dataset
from a known database of security issues. This, although
represents a reliable source, still has breadth limitations.
Nonetheless, our work focuses on facts affecting the cases
we analyzed. Threats to the results’ validity are hence to be
restricted to the field of inappropriate conceptualization about
the process under analysis.

Our study can make statements only for the aforementioned
process, because it is limited to it. A larger dataset would
allow for both a quantitative and qualitative analysis that could
further improve our study, but this would have gone beyond
the scope of this exploratory study.

SERG di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium

TUD-SERG-2016-019 5

IV. RESULTS

We present the results of our exploratory investigation, fol-
lowing the structure of the aforementioned research questions.

RQ1. What proportion of comments in code reviews address
potential security issues?

Through the manual analysis of our three samples (each
consisting of 385 randomly selected review comments), we
found they contained respectively 4, 2, and 5 security-related
issues. These results give us statistical evidence that approx-
imately 1% of the review comments in Chromium relate to
security.

Result 1: Approximately 1% of the review comments in
Chromium are about potential security flaws.

We manually classified the 11 security-related comments
using the taxonomy of Howard et al.: Two comments address
Race conditions, two Failing to protect network traffic, one
Catching all exceptions, one Format String Problems, and one
C++ Catastrophes. The remaining four belonged to other cat-
egories, and address issues in Credential Management Issues,
Improper Control of a Resource Through its Lifetime, Incorrect
Type Conversion or Cast and Improper Privilege Management.
A likely cause of issues not fitting into Howard’s taxonomy is
the type of software system that Chromium represents, i.e., a
web browser. The taxonomy is geared towards more generic
application-type software systems.

As random sampling led to a very low number of cases, we
deviate from our current approach and use the one presented
in Section III-C to answer our next research question.

RQ2. What categories of security issues are typically discov-
ered during code reviews?

The second column of Table I presents the absolute number
of review comments and the proportion of those (enclosed
by parentheses) that belong to the different categories in
the security flaw taxonomy of Howard et al. [23], as we
found them by manually inspecting our sample comments.
The categories are sorted by decreasing occurrence in code
review comments and the color intensity reflect the relative
amount of items for the specific category.

The most popular category of potential security flaws dis-
covered during MCR in Chrome is client side Cross-Site
Scripting (XSS), followed by C++ Catastrophes and Buffer
Overruns. The first flaw is domain-specific: It enables attackers
to execute client-side scripts in web pages viewed by other
users; it is among the most popular security vulnerabilities
found in web applications [31]. The second and third flaw are
language-specific: The category C++ Catastrophes includes
bugs such as use-after-free and use of uninitialized variables,
and other bugs caused by non-cautious use of pointers, such
as a destructor for a pointer that does not set its content
to null; the category Buffer Overruns comprises of problems
ranging from the copy without checking size of its input

Table I
THE SECURITY FLAWS FOUND AND MISSED IN THE CHROMIUM PROJECT
BY MODERN CODE REVIEW, MANUALLY CLASSIFIED ACCORDING TO THE

TAXONOMY OF HOWARD et al. [23]

Security flaw Found
by code review

Missed
by code review

XSS (client side) 15 (21%) 12 (10%)

C++ catastrophes 8 (11%) 33 (29%)

Buffer overruns 6 (8%) 18 (16%)

Too much privilege 5 (7%) 5 (4%)

Information leakage 5 (7%) 1 (1%)

Race conditions 4 (6%) 5 (4%)

Format String problems 4 (6%) 3 (3%)

Catching all exceptions 3 (4%) 0 (0%)

Failing to protect
network traffic 2 (3%) 4 (3%)

Integer overflows 2 (3%) 3 (3%)

Use of Magic URLs,
predictable cookies 1 (1%) 1 (1%)

Use of weak password-
based systems 1 (1%) 1 (1%)

Command injection 0 (0%) 7 (6%)

XSS (server side) 0 (0%) 1 (1%)

Other 15 (21%) 21 (18%)

to heap-based and stack-based buffer overflows. Interestingly,
Command injection, which has been the most popular security
vulnerability for several years [31] appears neither in this
sample of comments found through keywords (despite also
using keywords specific to this flaw) nor in the sample of
comments we found in RQ1.

The Other category in Table I contains all the cases that did
not fall into the taxonomy by Howard et al. [23]. For these
cases we use an alternative taxonomy based on CWE; Table II
reports the results, represented by absolute values and propor-
tions (in parenthesis) of the total. Language-specific issues are
prominent (CWE-704 is common in C and C++ [32]).10

Result 2: The majority of potential security flaws detected
during MCR relate to domain and language-specific is-
sues. Injections, despite being the most diffused security
flaw, are not detected in our sample of Chromium reviews.

10For the detailed description of the categories, we refer the reader to the
definitions provided by the taxonomies we use (i.e., [23], [32]).

di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium SERG

6 TUD-SERG-2016-019

Table II
THE SECURITY FLAWS, FOUND AND MISSED IN THE CHROMIUM PROJECT

BY MCR, THAT COULD NOT BE CLASSIFIED WITH THE TAXONOMY OF
HOWARD et al. [23] AND WERE CLASSIFIED ACCORDING TO CWE [30]

.

Other security flaw CWE id Found
by code review

Missed
by code review

Incorrect Type
Conversion or Cast CWE-704 6 (40%) 2 (10%)

Improper Control of a
Resource in its Lifetime CWE-664 1 (7%) 2 (10%)

Use of Potentially
Dangerous Function CWE-676 0 (0%) 2 (10%)

Weaknesses that Affect
System Processes (IPC) CWE-634 1 (7%) 1 (5%)

Privilege / Sandbox
Issues CWE-265 2 (13%) 0 (0%)

RQ3. What categories of security issues are typically missed
during code reviews?

Using the same taxonomies employed for RQ2, we man-
ually categorized the 114 security issues that were missed
by code review and that we identified based on our research
method (Section III-C). The third column in Table I reports the
absolute and relative (in parenthesis) results. Since the security
flaws are ordered by found ones, we again used the color
to quantify the frequency with which each flaw was missed
during review (the redder, the higher the frequency).

We found that the most commonly overlooked flaw is C++
Catastrophes, which represents one third of all missed flaws.
With Buffer Overruns and Cross-Site Scripting (XSS) (second
and third, respectively), it covers the majority of the missed
flaws. We did not find any bug in the categories Catching All
Exceptions, Information Leakage, Magic URLs or predictable
cookies and use of weak password-based systems. Similar to
RQ2, the category Others is split using CWE as can be seen
in Table II, column ‘Second sample’.

Contrasting found and missed security flaws, the set in-
cluding the top three is the same in both cases. This is to
be expected as the frequencies are probably partly caused
by differences in base rates of distribution of those flaws.
For example, XSS issues are very prominent in web applica-
tions [31] and accordingly appear in the top-3. Nevertheless,
we notice that C++ Catastrophes is the most common missed
flaw (29% of occurrences), but it is far less frequently found
during review (11% of occurrences), as opposed to XSS.

To have a quantitative overview of how the ranking of
security flaws is related between the two sets, we compute
their Spearman correlation [33], which is non-parametric, and
found it to be 0.56 (excluding the other category). This value
is considered a moderate relationship, thus providing evidence
that the missed and found flaws indeed have a common base,
but not negligible differences exist, too.

Result 3: The majority of overlooked security flaws
by MCR in Chromium relate to language and domain-
specific issues. The ranking in the occurrences of missed
vs. found security flaws presents non-negligible differ-
ences.

RQ4. What factors might lead to finding or missing security
issues at review time?

With this research question we seek to make a preliminary
step to further the understanding the nature of security-issue-
finding reviews. We investigate the set of code reviews that we
built for RQ2 (i.e., reviews finding security flaws) to let emerge
interesting insights and patterns. We found that the reviews
discovering security flaws could be structured meaningfully
according to who raised the security concern and the number
of people involved:
A main reviewer finds the flaw (2 reviewers). Per

Chromium policies (Section III-B), each patch must be
reviewed by the owner of the changed subsystem and
another reviewer, we define them in our analysis as main
reviewers. In this scenario only these two reviewers
participate in the review and one of them raises the
security concern.

A main reviewer finds the flaw (>2 reviewers). Even
if not required by the policy, some reviews see the
participation of more than 2 reviewers. In this scenario,
one of the main reviewers raises the concern, but the
number of participating people is larger than normal (we
found a maximum of eight people involved in a single
review).

An optional reviewer finds the flaw (>2 reviewers). In
this scenario, one of the optional reviewers, which
is either added to the review or joins the process
spontaneously, raises the security-related concern.

A security expert finds the flaw (>2 reviewers). In this
pattern, a security expert is explicitly invoked by one
of the reviewers to join the review and detect security
related problems. It is indeed the expert who finds the
security flaw.

The author of the patch. In this case, the developer submit-
ting the patch raises a security issue about the patch while
discussing the code changes with the reviewers.

Off-line discussion. In this scenario, the issue is detected dur-
ing a face-to-face discussion with an unspecified person
relevant to the submitted change and this is reported in
the review.

Other. The cases not belonging to the previous categories.
In Table III, we split the 71 reviews raising security-

concerns into the aforementioned scenarios. Column ID has
been introduced to give each scenario a unique identifier, later
used in Table IV. The fourth column has absolute and relative
(in parenthesis) values. We see that in majority (55%) of the
cases, the security concern was raised when more than three
people were involved in the review; moreover, main reviewers

SERG di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium

TUD-SERG-2016-019 7

are more likely to raise security concerns when more than
three people are involved (41% vs. 31%).

We further analyze the code reviews finding faults, by
relating these scenarios with the categories of found issues.
Results are reported in Table IV. Data is too sparse to generate
any statistical evidence, but there is no noticeable relation
between the scenario and the type of issue found.

Result 4: Initial evidence suggests that reviews in which
more than 2 reviewers are involved tend to raise more
security concerns.

Table III
THE REVIEWS IN WHICH SECURITY CONCERNS HAVE BEEN RAISED, SPLIT

BY THE PERSON WHO RAISED THE CONCERN AND THE NUMBER OF
PEOPLE INVOLVED IN THE REVIEW. THREE PEOPLE (i.e., AUTHOR, OWNER,

AND SECOND REVIEWER) IS REQUIRED BY CHROMIUM POLICIES.

Person raising the
security concern

Reviewers
involved ID Number of

reviews

Main reviewer = 2 M=2 22 (31%)

Main reviewer > 2 M>2 29 (41%)

Optional reviewer > 2 O>2 7 (10%)

Security expert > 2 S>2 3 (4%)

Patch author Aut 5 (7%)

Off-line discussion Off 2 (3%)

Other 3 (4%)

V. DISCUSSION

This section presents a discussion based on our results,
including some indications to practitioners.

A. Missed language-specific security issues

We found that the majority of missed security flaws relate to
language-specific issues, as witnessed by the high frequency
of C++ catastrophes and Buffer overruns. We found this to
be particularly surprising for especially two reasons: (1) These
kinds of flaws are extremely localized, thus one can quickly
verify their presence by considering only the changed code
and little external code that can be easily retrieved with static
code analysis (e.g., the code that instantiates or destroys a
pointer) [23], as opposed to architectural and design flaws
that require more time to be discovered and a more thorough
knowledge of the entire codebase [34]; (2) Chromium has suf-
fered from many flaws of this type throughout its history [30],
thus we expected developers to be particularly attentive and
employ strict policies to avoid/find them, but, even though
reviewers do find these errors (Table I), many still slip their
attention.

We may hypothesize that the high-incidence of overlooked
language-specific issues may be caused by the inherent intri-
cacies of the main languages of Chromium, i.e., C and C++.

Table IV
THE SCENARIO IN WHICH THE SECURITY FLAW WAS RAISED IN RELATION
TO ITS CATEGORY. SCENARIO’S ID CORRESPOND TO THOSE INTRODUCED

FIRST IN TABLE III.

Security flaw Scenario
M=2 M>2 O>2 S>2 Aut Off

XSS (client side) 4 6 3 0 0 1

C++ catastrophes 1 6 1 0 0 0

Buffer overruns 4 1 1 0 0 0

Too much privilege 1 2 0 1 1 0

Information leakage 2 3 0 0 0 0

Race conditions 1 2 0 1 0 0

Format String problems 0 2 0 0 2 0

Catching all exceptions 1 1 0 1 0 0

Failing to protect
network traffic 1 1 0 0 0 0

Integer overflows 0 0 2 0 0 0

Use of Magic URLs,
predictable cookies 0 0 0 0 0 1

Use of weak password-
based systems 1 0 0 0 0 0

Other 6 5 0 2 0 0

Moreover, language-specific issues belong to a very broad
spectrum and the reviewers’ experience may not cover it fully.

Overall, our results provide evidence that the current MCR
practice, as implemented in Chromium, is not yet able to fully
deal with language-specific security issues.

B. Security issues, found vs. missed by MCR in Chromium

Having used the same taxonomies to classify the results
regarding found and missed security flaws in MCR, we have
the chance to compare the results.

We hypothesize that the moderate positive rank correlation
(0.56) between the frequencies of security flaws that are found
vs. missed is due to the underlying distribution of these issues
in the code. However, if on the one hand it is reasonable to
think that issues that are, by nature, more common in a project
are going to be more frequently found/missed in MCR; on
the other hand, if one is aware that a project is prone to
certain types of issues, (s)he should analyze the code more
thoroughly with that in mind to avoid them. Results seem
to indicate that reviewers may not take into account historical
flaws when conducting reviews, thus the first line of reasoning
better explains the moderate positive rank correlation.

Considering the details of the found vs. missed flaws we see
that domain-specific issues (e.g., XSS) seem to be relatively
less problematic to find for reviewers, than language-specific
problems. Moreover, Command injections are not found en-
tirely by the reviews we analyzed, but they represent the
fourth most common security issue that is missed in Chromium
reviews in 2014; the set of keywords we used for retrieving
the code review finding security issues carefully included a

di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium SERG

8 TUD-SERG-2016-019

number of terms related to injection, which was also inspired
by the review we randomly found answering RQ1, so we
would exclude this as due to our data collection mechanism.

We hypothesize that these results are due to reviewers more
aware of security issues specific to the particular application
they are developing, rather than of generic security concerns
that may appear in different types of applications, e.g., due to
the programming language used.

Overall, our results provide evidence that domain-specific
security flaws in Chromium tend to be found more frequently
at review time, compared to other issues; in particular, the case
of command injections seems to be particularly problematic,
thus calling for further investigation on this topic.

C. Given more eyeballs all security flaws are shallow

The code review practice in Chromium suggests that ideally
the reviewer should be one who is familiar with the area of
the code submitted [24]; anybody can review code as long
as there is at least one owner for each different submodule
the contributor is committing the code to [24]. Studies on the
topic confirm that code review is an activity that is effective
when a reasonably low number of people is involved [16], [35]
Focusing on security, we have initial evidence suggesting that
a number of reviewers higher than 2 is advisable to find the
most security flaws.

Speculating on this result is hard, because of the high vari-
ability of the process. Even if Chromium has rules enforcing
the modality of how the procedure should be run, the overall
idea that we got from manually analyzing the activity in
hundreds of code review is that there is a straightforward way
of running it, but it is often misinterpreted. The standard way
of reviewing code in Chromium still finds a large number of
security issues in our research findings; despite this, our results
suggests that a higher number of eyes reading a Change List
submitted to Chromium has a higher percentage of addressing
a potential future security issue. We did not investigate this
finding further, but studies can be designed and carried out to
determine if and how the number of reviewers has an effect
on the security issues found.

D. Initial indications to practitioners

Practitioners could benefit from initial indications that can
help the review process trying to be more prone in addressing
security flaws. The first suggestion that this work brings to
evidence is that increasing the number of people involved
when dealing with code patches could be useful to mitigate
future security bugs. This could be because of the larger and
different expertise, regarding various part of the codebase,
brought into the process by having more people involved.
Observing patterns that have been defined, the intervention of
an external reviewer relative to the ongoing process revealed
further bugs that otherwise would have been left unnoticed.
Dealing with large projects could be one factor that limits the
scope of our indication.

Investing time and effort in writing more thorough and
effective test cases is one indication that practitioners could

use to prevent issues. Reviewers, in fact, would trust the code
patches submitted by developers more. In some cases, when
analyzing code reviews that did not address a security flaw,
we noticed the complete absence of test cases regarding that
particular functionality or component. We also notice that
after being patched, test cases were explicitly added. This
seems to suggest that both contributors and reviewers may
be overlooking the importance of testing.

VI. CONCLUSION

We conclude by summarizing our study and suggesting
viable paths for future work.

A. Summary
Our study focused on the security perspective of MCR in

the Chromium project. We presented a categorization of issues
that are missed and found in code reviews. From this analysis,
we learned that, on the one hand, code reviews in Chromium
often miss security-related C++ issues, buffer overflows, and
XSS vulnerabilities. On the other hand, if code reviews address
security issues, XSS vulnerabilities are most frequent.

Finally, we tentatively identified review characteristics that
led to the uncovering of security issues. We found that if more
than two reviewers are involved in a review, more security
issues were discovered than if a review was done according to
the two-reviewer policy set by Chromium. This result contrasts
earlier work that found the optimal number of reviewers to be
two [35]. Thus, we suggest practitioners trial security reviews
with an increased number of reviewers involved.

B. Future research directions
In addition to the research directions mentioned in Section

V, we foresee two other alternative paths.
First, we were surprised that MCR practices in Chromium

do not include the use of static code analysis tools to evaluate
the submitted patch. This holds true especially when dealing
with a C++ codebase. The only insight that we were able to
gather is that Valgrind is used to catch memory and threading
issues in test cases [36] [37]. As an example, the lack of use
of static analysis tools is particularly evident when analyzing
results that concern the Buffer Overflow category. Despite
being an historically famous category of issue, with books [38]
and tools [39] written to prevent and address them, it is still
causing its fair share of trouble. As static tools are available
that analyze codebases to address potential vulnerabilities, the
question that one could ask in this situation is: Could any of
them provide evidence of such issues? Studies can be carried
out to understand why this situation happens and whether
the most common security issues in a popular software as
Chromium could be prevented or exposed enough to reviewers,
by using any kind of static source code analysis tools from
industry and academia.

Second, our research focused only on Chromium, without
investigating other software products from different domains,
that also have security issues. Further work can be done in
replicating our study and analyzing if, given different software
products, other insights could be gathered on the topic.

SERG di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium

TUD-SERG-2016-019 9

REFERENCES

[1] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski. Software inspections:
An effective verification process. IEEE Software, 6(3):31–36, 1989.

[2] Matthew Finifter and David Wagner. Exploring the relationship between
web application development tools and security. In USENIX conference
on Web application development, 2011.

[3] Sami Kollanus and Jussi Koskinen. Survey of Software Inspection
Research. The Open Software Engineering Journal, 3(1):15–34, 2009.

[4] Jason Cohen. Modern code review. In Andy Oram and Greg Wilson,
editors, Making Software, chapter 18, pages 329–338. O’Reilly, 2010.

[5] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and chal-
lenges of modern code review. Proceedings - International Conference
on Software Engineering, pages 712–721, 2013.

[6] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work
practices and challenges in pull-based development: The contributor’s
perspective. In Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, pages 285–296, May 2016.

[7] P. Rigby, B. Cleary, F. Painchaud, M.A. Storey, and D. German. Open
source peer review–lessons and recommendations for closed source.
IEEE Software, 2012.

[8] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan.
An empirical study of the impact of modern code review practices on
software quality. Empirical Software Engineering, pages 1–44.

[9] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. Do code review
practices impact design quality? a case study of the Qt, vtk, and itk
projects. In Proceedings of the 22nd International Conference on
Software Analysis, Evolution and Reengineering, SANER 2015, pages
171–180. IEEE, 2015.

[10] Mika V. Mäntylä and Casper Lassenius. What types of defects are
really discovered in code reviews? IEEE Transactions on Software
Engineering, 35(3):430–448, 2009.

[11] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens.
Modern code reviews in open-source projects: which problems do they
fix? Proceedings of the 11th Working Conference on Mining Software
Repositories - MSR 2014, pages 202–211, 2014.

[12] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter,
Adrian Mettler, and David Wagner. An empirical study on the effec-
tiveness of security code review. In Engineering Secure Software and
Systems - 5th International Symposium, ESSoS 2013, Paris, France,
February 27 - March 1, 2013. Proceedings, pages 197–212, 2013.

[13] Google Inc. The Chromium Project. https://www.chromium.org/Home.
[14] CVE - Top 50 Products By Total Number Of ”Distinct” Vulnerabilities

in 2015. http://www.cvedetails.com/top-50-products.php?year=2015.
[Online; accessed 13-06-2016].

[15] ME Fagan. Design and code inspections to reduce errors in program
development, ibm systems journal., vol. 15, 1976.

[16] Lawrence G Votta Jr. Does every inspection need a meeting? ACM
SIGSOFT Software Engineering Notes, 18(5):107–114, 1993.

[17] Adam Porter, Harvey Siy, Audris Mockus, and Lawrence Votta. Un-
derstanding the sources of variation in software inspections. ACM
Transactions on Software Engineering and Methodology (TOSEM),
7(1):41–79, 1998.

[18] Richard A Baker Jr. Code reviews enhance software quality. In Pro-
ceedings of the 19th international conference on Software engineering,
pages 570–571. ACM, 1997.

[19] Bertrand Meyer. Design and code reviews in the age of the internet.
Communications of the ACM, 51(9):66–71, 2008.

[20] Erik Arisholm, Hans Gallis, Tore Dybă, and Dag IK Sjoberg. Evaluating
pair programming with respect to system complexity and programmer
expertise. Software Engineering, IEEE Transactions on, 33(2):65–86,
2007.

[21] Chris F Kemerer and Mark C Paulk. The impact of design and code
reviews on software quality: An empirical study based on psp data.
Software Engineering, IEEE Transactions on, 35(4):534–550, 2009.

[22] P Thongtanunam and S McIntosh. Investigating code review practices
in defective files: an empirical study of the Qt system. Mining Software
Repositories, pages 168–179, 2015.

[23] Michael Howard, David LeBlanc, and John Viega. 24 deadly sins of
software security: Programming flaws and how to fix them. 2009.

[24] Contributing Code to The Chromium Project. https://www.chromium.
org/developers/contributing-code. [Online; accessed 13-06-2016].

[25] Google Chrome - Security Vulnerabilities Published In 2015.
http://www.cvedetails.com/vulnerability-list/vendor id-1224/product
id-15031/year-2015/Google-Chrome.html. [Online; accessed 13-06-
2016].

[26] Google Inc. Rietveld Code Review. https://github.com/
rietveld-codereview/rietveld.

[27] Google Inc. Monorail. https://bugs.chromium.org/hosting/.
[28] Bug Life Cycle and Reporting Guidelines. https://www.chromium.org/

for-testers/bug-reporting-guidelines. [Online; accessed 13-06-2016].
[29] Mario F Triola. Elementary statistics. Pearson/Addison-Wesley Reading,

MA.
[30] CWE - Common Weakness Enumerator. https://cwe.mitre.org/.
[31] The Open Web Application Security Project. OWASP Top 10 - 2013 –

the ten most critical web application security risks. http://owasptop10.
googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf, 2013.

[32] Common Weakness Enumerator. CWE-704: Incorrect type conversion
or cast. https://cwe.mitre.org/data/definitions/704.html.

[33] Charles Spearman. The proof and measurement of association between
two things. The American journal of psychology, 15(1):72–101, 1904.

[34] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim.
How do software engineers understand code changes?: An exploratory
study in industry. In Proceedings of FSE 2012 (20th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering),
FSE ’12, pages 51:1–51:11. ACM, 2012.

[35] Peter C Rigby and Christian Bird. Convergent contemporary software
peer review practices. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 202–212. ACM, 2013.

[36] Life of a Chromium Developer. https://docs.google.com/presentation/
d/1abnqM9j6zFodPHA38JG1061rG2iGj GABxEDgZsdbJg/present?
slide=id.i161. [Online; accessed 13-06-2016].

[37] Using Valgrind - The Chromium Projects. https://www.chromium.org/
developers/how-tos/using-valgrind. [Online; accessed 13-06-2016].

[38] Robert C Seacord. Secure Coding in C and C++. Pearson Education,
2005.

[39] John Viega, Jon-Thomas Bloch, Yoshi Kohno, and Gary McGraw. Its4:
A static vulnerability scanner for c and c++ code. In Computer Security
Applications, 2000. ACSAC’00. 16th Annual Conference, pages 257–
267. IEEE, 2000.

di Biase, Bruntink, and Bacchelli – A security perspective on code review: The case of Chromium SERG

10 TUD-SERG-2016-019

TUD-SERG-2016-019
ISSN 1872-5392 SERG

