
How can large language models and prompt engineering be leveraged in
Computer Science education?

Systematic literature review

Alexandra Ioana Neagu1

Supervisor(s): Fenia Aivaloglou1, Xiaoling Zhang1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 24, 2023

Name of the student: Alexandra Ioana Neagu
Final project course: CSE3000 Research Project
Thesis committee: Fenia Aivaloglou, Xiaoling Zhang, Tom Viering

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Contents

1 Introduction 2

2 Background 3
2.1 Transformers 3
2.2 BERT . 3
2.3 ChatGPT 3

3 Methodology 3
3.1 Search criteria & filtering 4
3.2 Inclusion & exclusion criteria 4
3.3 Analysis . 4

4 Results 5
4.1 RQ1: The prompt engineering techniques

used to support problem solvers to modify the
problem description successfully 5
4.1.1 Prompt engineering 5
4.1.2 Constraints 5
4.1.3 Prompting techniques 5
4.1.4 Heuristic strategies 6

4.2 RQ2: The potential use of NLP techniques in
teaching and learning practices that leverage
LLMs . 6

5 Discussion 7
5.1 The findings and their implications 7
5.2 Responsible research 8

6 Threats to validity 8

7 Conclusions & future work 9
7.1 Conclusions 9
7.2 Future work 9

A Acronyms 9

B Surveyed research 9

C References 9
Abstract

In recent years, significant progress has been made
in the field of natural language processing (NLP)
through the development of large language mod-
els (LLMs) like BERT and ChatGPT. These models
have showcased remarkable abilities across a range
of NLP tasks. However, effectively harnessing their
potential requires meticulous prompt engineering
and a comprehensive understanding of their limi-
tations.
Additionally, LLMs have attracted attention in the
educational domain for their potential to enhance
learning and teaching experiences, particularly in
fostering the development of computational think-
ing skills.
This paper aims to explore the potential of lever-
aging NLP and prompt engineering techniques to
generate successful solutions to coding problems

following initial failures. Furthermore, the research
explores the potential applications of NLP tech-
niques in teaching and learning practices involving
LLMs and their potential drawbacks in this context.

Keywords – Large Language Models (LLMs), Natural
Language Processing (NLP), Prompt engineering, Chat-
GPT, Code generation, Education, BERT

1 Introduction
Large language models (LLMs) have made significant ad-
vancements in the field of natural language processing (NLP)
in recent years [2]. They have demonstrated remarkable capa-
bilities in various NLP tasks, including language generation,
code generation, and automatic program repair. However, ef-
fectively utilizing LLMs requires careful prompt engineering
and an understanding of their limitations.

LLMs, such as BERT and ChatGPT, which we will con-
sider in this paper, differ in their underlying architectures and
training methodologies. These architectural differences im-
pact the capabilities and limitations of the models, making
them more suitable for specific tasks [43].

Prompt engineering is the process of crafting input prompts
to LLMs in order to produce desired responses. It involves
strategies such as providing explicit instructions and lever-
aging implicit context. By carefully designing prompts, re-
searchers and developers can enhance the accuracy, coher-
ence, and contextuality of LLM-generated outputs [21].

On top of the NLP benefits that LLMs have brought forth,
their application in the educational field has also garnered
attention as an intriguing area with a multitude of possibil-
ities. By leveraging these models, there exists the potential
to enrich the learning and teaching experiences of individuals
across various educational levels [16], including the develop-
ment of one’s computational thinking skills.

In this paper, we aim to investigate to what extent we can
leverage NLP and prompt engineering techniques upon the
input of an LLM in order to generate successful solutions to
programming problems, after initial failure. Afterward, we
consider how such strategies can be integrated into the edu-
cational environment in order to help students develop their
computational thinking skills. We will treat the following re-
search topics:

1. RQ1: What prompt engineering techniques are used to
support problem solvers to modify the problem descrip-
tion successfully?

2. RQ2: What is the potential use of NLP techniques in
teaching and learning practices that leverage LLMs?

Section 2 gives background knowledge required to bet-
ter understand the research at hand. Section 3 provides an
overview of the research’s paper selection process, includ-
ing the search criteria and methodology employed. Section
4 presents the findings of the aforementioned two RQs. Sec-
tion 5 explores the implications of the findings and their sig-
nificance within the field, and then delves into the ethical
and responsible considerations that were taken into account

throughout the course of this research. Section 6 treats fac-
tors that pose a threat to the validity of this paper. Lastly,
Section 7 presents a concise overview of the study’s findings,
followed by an exploration of potential opportunities for fu-
ture research. A list of acronyms used frequently in this pa-
per can also be found in Appendix A. Lastly, Appendix B
provides an overview of the research sub-topics and themes
discussed in this paper, including a concise summary of the
pertinent references for each category, as presented in Table
1.

2 Background
In this section, we discuss the NLP techniques used in LLMs
like BERT and ChatGPT. These LLMs are based on the
Transformer architecture, which incorporates self-attention
mechanisms. We discuss the encoder-only architecture of
BERT and the decoder-only architecture of ChatGPT.

2.1 Transformers
LLMs are a class of deep learning models that appeared
in recent years and majorly advanced the NLP field [43;
36]. Popular examples of such LLMs are OpenAI’s Chat-
GPT, a generative pre-trained transformer (GPT) with the
user interface of a chatbot, and Google’s BERT (Bidirectional
Encoder Representations from Transformers) [10]. As the
names suggest, these LLMs are based on the Transformer ar-
chitecture, a concept introduced in 2017 by Vaswani et al.
[38]. The Transformer is a type of neural network, an inno-
vative architecture that uses multiple layers of neural compo-
nents to assign and distribute weight representations to each
knowledge unit [38]. What sets it apart from previous neu-
ral network models, such as the recurrent neural network and
the convolutional neural network, is that it is solely based on
attention mechanisms and does not use recurrent or convo-
lutional techniques. The attention mechanism is the compo-
nent responsible for assigning weights to all the encoded in-
put units and for learning which parts of the input have what
importance in the context of the whole data. Therefore, this
component plays the main role in the Transformer’s ability
to capture long-range dependencies in a sentence [10]. Fur-
thermore, since Transformers do not employ recurrent tech-
niques, this allows them to be parallelizable.

The inclusion of the attention mechanisms has proven to
be advantageous in the NLP field, as this made Transform-
ers outperform traditional convolutional and recurrent neu-
ral networks models on a variety of NLP tasks [31]. Many
attention mechanisms have been developed and integrated
into LLMs [11]. One such mechanism that has been ob-
served to perform well on NLP tasks is the self-attention
mechanism [46], which focuses attention on different parts
of the input sequence and connects them in order to output
a representation of the same sequence. Transformers imple-
ment this strategy by leveraging a mask matrix, which dic-
tates which input tokens are visible between them. Subse-
quently, Transformers also make use of tokenization, an NLP
technique that dictates how a given text input is divided into
smaller units called tokens. Many tokenization methods ex-
ist, and Transformer models use a hybrid between word-level

and character-level tokenization called subword tokenization
[9]. These tokenization techniques go hand-in-hand with the
encoder-decoder architecture, the most commonly used un-
derlying layering in Transformers [1]. In this architecture,
the encoder extracts features from the input sentence (using
the attention mechanism), and the decoder uses the features to
produce an output sentence (translation). Next, this subsec-
tion delves into the specific architectures of BERT and Chat-
GPT.

2.2 BERT
One common approach to training LLMs with extremely
large, readily-available natural language datasets is the
Masked Language Model (MLM). MLM is an unsupervised
training paradigm where a model is fed a text input with
masked words in it, and it must predict these words based on
the surrounding context. BERT is pre-trained using MLM,
which allows it to gain a deeper understanding of the rela-
tionships between tokens and the overall context they form
[43]. As for the architecture BERT is built upon, it uses
a stacked multi-layer bi-directional Transformer, and Word-
Piece [41] as a word segmentation method (tokenization tech-
nique) [6]. The bi-directional property of the model refers to
the fact that an evaluated token has access to both its left and
right contexts in the sentence, providing a bi-directional rep-
resentation. This in turn gives BERT a better context extrac-
tor for reasoning tasks, such as solving mathematical prob-
lems or writing cde [10]. However, the input is encoded bi-
directionally, and masked tokens are predicted independently
from each other, which reduces the generation ability [19].
BERT is also an encoder-only model. Due to its pre-training
that focuses on downstream tasks [31], the (bi-directional)
encoder is trained to generate a fixed-length representation
of the input text, and this representation is used as input to
a downstream task that is responsible for generating text as
output. The BERT model itself does not have a decoder com-
ponent and is not designed to generate text directly.

2.3 ChatGPT
ChatGPT, which is built on top of OpenAI’s GPT-3.5 and
GPT-4 foundational GPT LLMs, uses an autoregressive
stacked left-to-right Transformer for its decoder as a fea-
ture extractor [31; 30]. An autoregressive language model
(LM) predicts the next word in a sequence of words based
on the words that have come before it. It is a uni-directional
pipeline, it can only reach the left context of the evaluated
token, hence the name left-to-right [10]. So ChatGPT is
decoder-only since GPT2 updated its architecture to decoder-
only, as the decoder became equivalent to the encoder. This
property, combined with fine-tuning the model using down-
stream tasks, makes this architecture more appropriate for
text-generation tasks [46].

3 Methodology
This section describes the search criteria and methodology
process [35; 17] used to select the papers for this systematic
literature review.

3.1 Search criteria & filtering
The Google Scholar engine was used to search papers fo-
cused on the previously introduced two sub-topics. Only
studies in English were considered, as this is the language
that the author of this work is most familiar with and it is also
the language that most of the available papers were written in.
The following search queries and corresponding filters were
used:

• (”natural language processing” OR NLP) AND (”large
language models” OR LLM) AND ”program synthesis”

– 276 results were returned

• (”large language models” OR ”large language model”
OR LLM) AND ”program synthesis” AND (”prompt”
OR ”prompts” OR ”prompt optimisation”)

– 144 results were returned

• (”large language models” OR ”large language model”
OR LLM) AND (”education” OR ”teaching” OR ”learn-
ing”) AND ”program synthesis”

– 354 results were returned

In Fig. 1 we present the PRISMA flow chart [28] of the
record selection process done.

Figure 1: Flow chart of included studies. The numbers exclude du-
plicated papers.

All the queries were conducted on 2023.05.11 and had the
”include citations” checkbox ticked and the filtering set to
”Since 2023”. The papers that were examined to determine if
they were suitable or not were only from the first three pages
of the returned results.

3.2 Inclusion & exclusion criteria
The following inclusion criteria were established for the se-
lection of studies in this systematic literature review:

• Topic Relevance: Studies investigating either of the two
sub-questions, or both. Keywords were used to deter-
mine the relevance of the paper, as per the coding and
labeling procedure.

• Language: Studies published in English for comprehen-
sion and accessibility.

• Publication Date: Studies published from 2020 to the
present to focus on recent research.

If a paper did not abide by all of these inclusion criteria, it
was excluded.

After this process, the papers that were gathered were sup-
plemented with other papers found through different means.
Other relevant papers were found using the backward snow-
balling technique [13], by analyzing the References section
of the papers deemed relevant from the search queries and
choosing them based on the aforementioned process. Lastly,
three papers were also recommended by the author’s respon-
sible professor and supervisor.

3.3 Analysis
To select papers relevant to the topics, the titles, abstracts, and
references of the studies were read. If these did not contain
enough information to accurately determine if they were suit-
able or not, the Introduction section was also read, and the pa-
per was scanned in its entirety to see if the needed keywords
were treated in the paper in appropriate contexts. Afterward,
a rigorous analysis process was employed to examine the se-
lected papers:

1. Data Extraction: Relevant information from each in-
cluded study was systematically extracted, including
study characteristics (e.g., authors, publication year,
study design, topic) and key findings.

2. Quality Assessment: The quality and validity of the
included studies were evaluated using established crite-
ria specific to the study design (e.g., sample size, sam-
pling method, data collection methods, data analysis, re-
porting and transparency). This ensured that only high-
quality studies were considered in the analysis.

3. Synthesis of Findings: The extracted data and key find-
ings were synthesized using a thematic approach. The
first sub-question, and namely the most comprehensive
one, was divided into 4 themes: Prompt engineering,
Constraints, Prompting techniques, and Heuristic strate-
gies. Similarities, patterns, and discrepancies among the
studies were identified to gain insights into the research
sub-questions.

4. Interpretation: The synthesized findings were inter-
preted in the context of the research sub-questions. The
strengths, limitations, and implications of the collective
evidence were considered to draw meaningful conclu-
sions.

4 Results
In this section, we present the results of the research on the
two sub-questions.

4.1 RQ1: The prompt engineering techniques used
to support problem solvers to modify the
problem description successfully

Even the most advanced models, fine-tuned for specific pro-
gramming tasks, necessitate an expensive filtering process.
This step involves discarding outputs from LLMs that fail to
compile or pass tests [20]. These discarded outputs often ex-
hibit surface-level similarities to correct solutions [32], de-
spite failing to produce the expected output. This challenge
is commonly referred to as the ”near miss syndrome” or the
”last mile problem” [3; 22].

In this subsection, we explore prompts for problem-solving
and the importance of prompt engineering. We discuss
heuristic strategies, the interpretability of prompts as con-
straints on output generation, and recent insights on prompt
interpretation and difficulty.

4.1.1 Prompt engineering
LLMs have the ability to generate code based on natural lan-
guage descriptions [12]. Transforming such natural language
specifications to code is considered a form of inductive spec-
ification [45]. LLMs, models that take such natural language
specifications as input, have demonstrated remarkable suc-
cess in the field of automatic program repair [7]. To effec-
tively harness the full potential of these LLMs, prompts, the
input text received by the model, need to be carefully crafted
in order to produce desired responses. Therefore, the rise in
popularity of these models has elicited the concept of prompt
engineering. This process is not only beneficial for generating
accurate, coherent, and contextually appropriate responses
but also for understanding the capabilities and limitations of
the model in question [5]. Furthermore, this helps improve
the explainability of the models, a characteristic highly val-
ued in the field of Explainable Artificial Intelligence.

The process of prompt engineering entails various strate-
gies, including explicit instruction, and implicit context [21].
Explicit instruction involves providing explicit guidance or
constraints to the model through instructions, examples, or
specifications. Implicit context leverages the model’s under-
standing of the preceding context to influence its response,
which, as we have seen in the previous section, LLMs excel
at because of their underlying architecture [23].

The effectiveness of prompt engineering lies in striking a
balance between providing sufficient guidance to achieve the
desired output while allowing the model’s training and lan-
guage generation capabilities to flourish. It requires careful
consideration of factors such as the length and complexity of
prompts, the type and structure of questions asked, and the
intended context or domain of the conversation [15].

4.1.2 Constraints
One way to categorize prompts is based on the constraints
they define. For example, the prompt ”Write a function in
Java that sorts the provided array and a short simple expla-
nation of how it works” contains a multitude of constraints.
The generated output must be a ”function in Java” (code-
style constraint), alongside an explanation (document-type
constraint). The explanation must be ”short” (structural
constraint), and formulated in ”simple” terms (stylistic con-
straint), and both the code and the explanation need to be
about sorting the array that was given to the model (subject
constraint). Therefore, this partitioning of constraints can be
defined, as all prompts can be viewed as combinations of dif-
ferent constraint types [24].

Recent studies, such as Lu et al., 2023 [24], observed that
especially stylistic and structural constraints have a high in-
fluence on the quality of the output. Stylistic constraints refer
to guidelines regarding the tone, formality, or specific writing
style to be followed. Structural constraints, on the other hand,
govern the organization, coherence, and overall structure of
the output. These constraints are widely encountered across
prompts and prove challenging to engineer. While incorpo-
rating them individually might seem manageable, the interac-
tion between different stylistic and structural constraints can
lead to unexpected and diverse outputs, making it difficult to
model their combined influence accurately [27].

In their study, Lu et al., 2023 [24] also discovered some
interesting results about GPT-3’s prompt interpretation:

• GPT-3 relies on incidental connections between style
and subject matter, leading to spurious correlations.
Some style constraints may be incompatible with writ-
ing certain types of content due to negative correlations.

• GPT-3 sometimes confuses style with subject when
prompted with complex inputs. This is more common
with less used styles, and it tends to treat the style itself
as the subject in uncertain situations.

• GPT-3 encounters difficulties with words that are not ex-
clusive to creative writing, due to an imbalance in the
training dataset between creative and functional text.

• The difficulty perceived by humans in the prompt does
not correlate with GPT-3’s performance, indicating dif-
fering factors influencing difficulty between humans and
LMs.

• GPT-3 faces challenges with numerical constraints, of-
ten failing to generate text within the required length but
approximating the desired numerical value.

• Descriptive structural limitations, such as ”long” or
”short,” result in varied outputs with overlapping
lengths, likely influenced by the relative and context-
dependent nature of length definitions.

4.1.3 Prompting techniques
Outside of seeing prompts as a string of tokens, where each
individual token, or group of tokens, is interpreted as a spe-
cific category of constraints, prompts can also be viewed as
tools for advanced prompting engineering techniques that al-
low us to achieve more complex and interesting tasks. Mod-
ern LLMs, like GPT-3, are trained to adhere to instructions

and have been extensively trained on vast datasets. As a
result, these models possess the ability to perform certain
tasks without any explicit training on those specific tasks,
known as ”zero-shot” capability [39]. On the other hand,
there is ”few-shot” prompting, that can serve as a method
to facilitate in-context learning, allowing us to enhance the
model’s performance by providing demonstrations within the
prompt. These demonstrations act as conditioning for sub-
sequent examples, guiding the model in generating desired
responses [8]. LLMs have demonstrated remarkable profi-
ciency in ”few-shot” learning, displaying the ability to learn
from a limited number of examples [5]. However, they tend
to be less effective in ”zero-shot” learning scenarios. GPT-
3, for instance, exhibits significantly lower performance in
”zero-shot” tasks such as context comprehension, problem-
solving, and natural language processing compared to ”few-
shot” tasks. One possible explanation for this discrepancy is
that without a ”few-shot” training paradigm, models strug-
gle to excel in prompts that deviate from the format of the
pre-training data. On top of this, it has also been observed
that stylistic constraints prove hard to engineer in ”zero-shot”
prompting contexts [33].

Recent research has highlighted a substantial disparity be-
tween the universal knowledge embedded in LLMs and the
specific behavioral patterns exhibited by users within private
domain data [44]. Hence, ”zero-shot” and ”few-shot” engi-
neering methods may be insufficient to deploy LLMs in spe-
cific private task systems. In the paper ”Fine-tuned Language
Models Are Zero-Shot Learners” (FLAN) by Google [39], a
simple approach to enhance the ”zero-shot” performance of
LLMs is introduced, thus extending their applicability to a
wider user base. Instruction tuning is a straightforward tech-
nique that combines advantageous elements from both the
pretrain–finetune and prompting approaches. By employing
supervision through finetuning, it aims to enhance the LM’s
responsiveness to text interactions during inference. In Fig.
2 we can see a diagram comparison between the 3 popular
approaches to LM tuning.

Pretrain-finetuning generally requires many task-specific
examples in order to properly perform the desired task, and
the model ends up specializing in that task and performing
poorly in other instances (e.g. BERT). In the case of the
GPT-3 engine, prompt engineering is employed to improve
the performance of its generative capabilities via ”few-shot”
training. At last, instruction tuning combines these two previ-
ous approaches by training the model to perform many differ-
ent tasks via natural language instructions, and inferring from
that how to solve new, unseen tasks.

Another strategy that has shown positive results is Chain-
of-thought (CoT) prompting, a technique proposed by Google
researchers, which improves the reasoning ability of LLMs
by allowing them to derive the final answer to a multi-step
problem by prompting them to generate a sequence of inter-
mediate steps [40].

4.1.4 Heuristic strategies
In their study, Jiang et al. [15] tested how participants cope
with model failures when generating code and the repair
strategies they resort to. The ”few-shot” prompts they use

Figure 2: Comparing the process of pretrain–finetuning, prompting,
and instruction tuning.

combine natural language and code in their input. They re-
fer to this type of input as mixed inputs, which signifies that
users can blend different types of input, such as code and nat-
ural language, in their requests to the model. Interestingly, it
was discovered that the prompts do not necessarily need to in-
clude examples that mix natural language and code in the de-
scription field. Even without such examples, LLMs can often
accurately interpret mixed inputs and generate code as out-
put. Upon initial failure, the heuristic approaches that were
mainly used, both by novice and expert coders, were: reword
(add, drop, change, or reorder words), expand the scope of the
request, retry (rerun the same request unchanged), reduce the
scope of the request, re-calibrate specific targets with ”easier”
targets. In general, they did not find any specific strategy that
consistently increased the likelihood of participants accepting
the generated code as correct.

However, a strategy that has proven beneficial for code out-
put repair is a conversational approach [42; 15]. This form
of interaction, where the model assists the user in deriving
specifications in a reply exchange manner, aligns naturally
with user expectations, and it can support novices in breaking
down complex problems into more manageable components.

In their paper, Liventsev et al. [22], found out that GTP-3
achieves the highest performance for code completion in C++
instructions when the input contains the word ”obviously”.
In general, they observed that GPT-3 performs poorly in C++
when the input instruction includes verbs such as ”yield” and
”ensure,” which are likely infrequently used in code docu-
mentation.

4.2 RQ2: The potential use of NLP techniques in
teaching and learning practices that leverage
LLMs

In order to explore the viability of pair programming with an
intelligent agent, Kuttal et al. [18] conducted a Wizard-of-

Oz study. The findings suggest that agents can be valuable
partners in pair programming, helping overcome expertise-
related challenges, although there may be a trade-off in terms
of code creativity.

In another study, Brandt et al. [4] demonstrated the in-
tegration of web search into a development environment to
simplify the process of discovering and applying web-based
examples to code. By utilizing a generative model trained
on a code-inclusive corpus in a similar way, comparable out-
comes can be achieved for certain information-seeking re-
quirements. Specifically, users can express their intentions
using natural language, and the generative language model
can produce the relevant code. This concept is exemplified
by GPT-3 demonstrations that convert natural language into
code or continue writing code on behalf of the user. In this
scenario, the natural language input to the model functions
akin to a search query, but instead of returning web pages,
the model generates code.

The idea of leveraging NLP techniques to influence the
generation of better code outputs was also explored in the
study of Jiang et al. [15]. Due to the unexpected responses
of each model, participants in the study felt that in order to
generate the desired output, one needs to familiarize them-
selves with the model’s syntax, including specific words and
phrases it is more likely to interpret accurately. Despite this,
participants expressed optimism regarding the potential of us-
ing natural language to overcome barriers in interacting with
technology, and that the user group who would benefit most
from such interactions with code-generation models could be
individuals who have some coding knowledge but lack exper-
tise in a specific programming language, struggle with syntax,
or have limited experience with a particular library or API.

GPT-3 exhibits greater reliability in detecting erroneous
code compared to its ability to generate from scratch code
without errors [33], which hints that providing it snippets of
related code in the input may increase its efficiency in pro-
ducing a correct code output.

In the field of computer science, MacNeil et al. [25] have
utilized GPT-3 to generate code explanations. While there
are still open research and pedagogical questions that require
further investigation, this work has effectively showcased the
potential of GPT-3 in aiding learning by providing explana-
tions for various aspects of a given code snippet.

Another LLM that has been tested in education settings
is OpenAI’s Codex, a descendant of the GPT-3 model, fine-
tuned for use in programming applications. Through ”few-
shot” learning, Sarsa et al. [34] demonstrated that the Ope-
nAI Codex model can offer a range of programming tasks
along with their corresponding correct solutions, automated
tests to validate students’ solutions, and additional code ex-
planations. In general, fine-tuning LLMs on domain-specific
corpora, such as IT documents and code, enables them to gen-
erate domain-specific language and better support learners in
this domain [16].

In the study of Megahed et al. [26], ChatGPT also proved
successful in solving programming tasks and facilitating the
learning of new programming languages. However, a con-
tributing factor to its success in this context can be attributed
to the use of widely recognized packages with extensive on-

line documentation in the input prompt.

5 Discussion
In this section, we first discuss the implications of the findings
and their significance for the field, and then the ethical and
responsible considerations that were taken into account when
conducting this research.

5.1 The findings and their implications
The background information first reveals the differences in
architecture between BERT and ChatGPT. ChatGPT’s au-
toregressive nature makes it more suitable for text genera-
tion tasks, while BERT’s encoder-only design makes it effec-
tive for downstream tasks that involve generating fixed-length
representations of input text. This proves to show that cer-
tain models perform better on certain tasks, and when choos-
ing an LLM to integrate into an educational environment, its
strengths and weaknesses need to be taken into account.

The findings explored prompt engineering techniques used
to support problem solvers in producing accurate and con-
textually appropriate responses from LLMs. The length and
complexity of prompts, the type and structure of questions
asked, the intended context or domain of the conversation,
and the confidence of the tone are all indicators that need
careful consideration. Constraints also play a significant role
in prompt engineering, and recent studies have shed light on
the influence of different constraint types. Stylistic and struc-
tural constraints were found to have a high impact on the qual-
ity of output, and their combined influence can lead to unex-
pected and diverse outputs. LLMs, such as GPT-3, exhibit
sensitivity to style-subject constraint pairings and struggle
with descriptive structural limitations. Understanding these
constraints and their interactions can help in designing more
effective prompts.

Moreover, the review highlighted the distinction between
”zero-shot” and ”few-shot” prompting. While LLMs possess
the ability to perform certain tasks without explicit training
(”zero-shot” capability), they tend to be less effective in such
scenarios. ”Few-shot” prompting, which provides demon-
strations as conditioning for subsequent examples, has been
shown to enhance model performance. For generating more
accurate, step-by-step explanations of code, one can leverage
”few-shot” prompting in combination with CoT.

The findings of this study also shed light on the potential
use of NLP techniques in teaching and learning practices that
leverage LLMs. These findings suggest that LLMs have the
ability to assist in pair programming, code generation, code
explanations, and programming language learning, offering
promising opportunities for educational applications. How-
ever, it is important to note that there may be a trade-off in
terms of code creativity when relying on LLMs in such con-
texts.

The study also found that familiarity with the LLM’s syn-
tax, including specific words and phrases it is more likely to
interpret accurately, is crucial for achieving the desired output
and for correcting upon initial failure in the response. LLMs
have the potential to support individuals with coding knowl-
edge but lack expertise in specific programming languages

(such as R [26]), struggle with syntax, or have limited experi-
ence with particular libraries or APIs. It is also worth noting
that the use of widely recognized packages with extensive on-
line documentation in the input prompt can contribute to the
quality of the output. This highlights the importance of pro-
viding LLMs with relevant and comprehensive information to
enhance their performance in programming-related tasks.

The findings also highlight the reliability of LLMs in de-
tecting erroneous code compared to their ability to generate
code from scratch without errors. This suggests that provid-
ing LLMs with snippets of related code in the input may en-
hance their efficiency in producing correct code outputs. This
insight can inform the design of prompts or inputs provided
to LLMs to improve their performance in generating accurate
and error-free code.

The ease of generating information through LLMs can po-
tentially have a detrimental effect on critical thinking and
problem-solving skills. This is because the model simplifies
the process of acquiring answers or information, which can
foster laziness and discourage learners from conducting their
own investigations and arriving at their own conclusions or
solutions. To mitigate this risk, it is crucial to acknowledge
the limitations of LLMs and utilize them as tools to support
and enhance learning, rather than relying on them as sub-
stitutes for human authorities and other authoritative sources
[29]. Such limitations include but are not limited to lack of
interpretability, the potential for bias, unexpected brittleness
even in relatively simple tasks, and hallucinations, a known
limitation of current generative AI models where they output
a completely made-up answer [14]. In terms of biases, at the
heart of these LLMs lies the training process, which involves
billions of lines of code extracted from open-source projects,
including public GitHub repositories. Although these sources
significantly contribute to the performance of LLMs, they
often harbor security vulnerabilities resulting from insecure
API calls, outdated algorithms/packages, insufficient valida-
tion, and subpar coding practices, among other issues [37].

5.2 Responsible research
In conducting this systematic literature review, ethical con-
siderations were taken into account throughout the research
process. The research question was carefully formulated to
ensure that the study would not cause harm or discrimination
to any individuals or groups. The study solely focused on the
impact of natural language modifications to problem descrip-
tions on the generation of successful code solutions, and no
data related to personal information or sensitive topics were
collected.

Moreover, the search criteria and methodology process
used for the selection of papers were designed to be trans-
parent and reproducible. By using a well-known and widely
available search engine such as Google Scholar and speci-
fying the search terms and filters, the process can be easily
replicated by other researchers. The criteria for inclusion and
exclusion of papers were carefully defined and reported in de-
tail in the methodology section, making it possible for readers
to assess the validity and accuracy of the selection process.

Furthermore, the process of selecting papers was carried
out with a high level of rigor and transparency. To ensure

that only relevant and appropriate papers were included in
the review, the titles and abstracts of all the results were read
and analyzed, and the full texts of papers were scanned when
necessary. Additionally, the use of the backward snowballing
technique and recommendations from the author’s supervi-
sors helped to ensure that a comprehensive and unbiased col-
lection of papers was used.

In summary, this systematic literature review was con-
ducted in a responsible and ethical manner, and the method-
ology used was designed to be transparent and reproducible.
By adhering to these principles, the research can contribute to
the advancement of knowledge in the field, while also main-
taining ethical standards and upholding the integrity of the
research process.

6 Threats to validity
While the author of this paper made proper efforts to ensure
the validity of this research, there are still potential threats to
validity that need to be taken into consideration.

Firstly, the study was conducted within a time frame of
8 weeks, a quite limited amount of time to properly delve
into such a complex topic. Due to this time limitation, newer
studies that have been published since the end of the search
period may have been missed. This is a particularly important
threat to consider, as this subject is a relatively new area of
research, so one can expect more extensive research to appear
in the future.

Secondly, building upon the previous threat, the study re-
lied on a limited number of sources, and it is possible that im-
portant research on the topic may have been missed. Despite
the inclusion criteria being carefully defined and the author
being as methodical as possible in selecting the sources most
relevant to the research topic, it is still possible that some rel-
evant studies were excluded.

Additionally, the author considered only literature written
in English, as this is the language they were most comfortable
with and that yielded the most papers found. However, this
leaves space for a certain degree of language bias, leading to
an incomplete or biased view of the available literature.

Another significant limitation is the absence of an analy-
sis of Google’s Bard, a highly anticipated LLM. Due to its
recent launch, there was limited availability of research and
comprehensive evaluation, making it difficult to incorporate
Bard’s findings within the scope of this paper.

Relying solely on Google Scholar for paper retrieval may
also limit the inclusiveness of the search. Other databases
or platforms might have contained relevant publications that
were not captured. Likewise, considering only the first three
search result pages may introduce a bias by potentially ex-
cluding relevant papers beyond those pages.

Lastly, it is worth noting that the author of this study is
not an expert in NLP techniques, code generation models, or
LLMs. Consequently, there may be limitations on the choice
of papers included in this study, and to the depth to which
certain sub-topics were treated.

Despite these limitations, it is hoped that this study will
contribute to a better understanding of the use of NLP tech-
niques in code generation and stimulate further research in

this area.

7 Conclusions & future work
In this last section, we provide a summary of the findings of
this study, followed by a discussion of potential avenues for
further research.

7.1 Conclusions
The findings highlight the advancements in NLP techniques
brought about by LLMs and the potential for integration into
educational environments.

Overall, the findings suggest that NLP techniques in con-
junction with LLMs have significant potential in enhancing
teaching and learning practices in the field of computer sci-
ence. A number of prompting techniques and their impact
on the quality of the response have been investigated. Fac-
tors such as the prompt’s length, complexity, question types,
and constraints, play a significant role in obtaining accurate
responses. Notably, ”few-shot” prompting shows promise
in improving LLM performance, especially in combination
with CoT. By leveraging these techniques, LLMs can serve as
valuable partners in pair programming, aid in code generation
and explanations, support programming language learning,
and facilitate the completion of programming tasks. How-
ever, it is important to consider factors such as code creativity
trade-offs, familiarity with the LLM’s syntax, and the provi-
sion of relevant information to optimize the use of LLMs in
educational settings.

7.2 Future work
Future work should focus on refining prompt engineering
techniques, exploring the potential of ”few-shot” prompting
in various educational scenarios, and investigating ways to
strike a balance between LLM assistance and fostering in-
dependent thinking. Research is also needed to address the
limitations of LLMs, including interpretability, bias mitiga-
tion, and improving their performance in complex program-
ming tasks. Furthermore, efforts should be made to ensure
the security and reliability of LLMs by addressing vulnerabil-
ities and coding practices in the training process. By address-
ing these challenges and capitalizing on the potential of NLP
techniques and LLMs, the integration of these technologies
into educational settings can significantly enhance teaching
and learning experiences.

A Acronyms
In this section, we present a list of the acronyms that are used
frequently throughout this paper.

BERT = Bidirectional Encoder Representations from
Transformers

GPT = Generative Pre-trained Transformer
LLM = Large Language Model
LM = Language Model
MLM = Masked Language Model
NLP = Natural Language Processing
RQ = Research Question

B Surveyed research
In this section, we present in Table 1 an overview of the re-
search sub-topics and themes addressed in this paper, with a
summarized list of the relevant references for each category.

Table 1: Surveyed Research on the RQs

RQ Themes References

Background
Transformers [1], [2], [9], [10], [11], [31], [36], [38], [43], [46]

BERT [6], [10], [19], [31], [41], [43]
ChatGPT [10], [30], [31], [46]

RQ1

Prompt engineering [3], [5], [7], [12], [15], [20], [21], [22], [23], [32], [45]
Constraints [24], [27]

Prompting techniques [5], [8], [33], [39], [40], [44]
Heuristic strategies [15], [22], [42]

RQ2 - [4], [14], [15], [16], [18], [25], [26], [29], [33], [34], [37]

C References
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473,
2014.

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei.
Beit: Bert pre-training of image transformers. arXiv
preprint arXiv:2106.08254, 2021.

[3] Rohan Bavishi, Harshit Joshi, José Cambronero, Anna
Fariha, Sumit Gulwani, Vu Le, Ivan Radiček, and
Ashish Tiwari. Neurosymbolic repair for low-code for-
mula languages. Proceedings of the ACM on Program-
ming Languages, 6(OOPSLA2):1093–1122, 2022.

[4] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R Klemmer. Example-centric programming: inte-
grating web search into the development environment.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 513–522, 2010.

[5] T Brown, B Mann, N Ryder, M Subbiah, JD Ka-
plan, P Dhariwal, A Neelakantan, P Shyam, G Sastry,
A Askell, et al. Language models are few-shot learners
in advances in neural information processing systems
(eds larochelle, h., ranzato, m., hadsell, r., balcan, mf
& lin, h.) 33 (curran associates, inc., 2020), 1877–1901.
arXiv preprint arXiv:2005.14165, 2020.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[7] Zhiyu Fan, Xiang Gao, Abhik Roychoudhury,
and Shin Hwei Tan. Automated repair of pro-
grams from large language models. arXiv preprint
arXiv:2205.10583, 2022.

[8] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-
trained language models better few-shot learners. arXiv
preprint arXiv:2012.15723, 2020.

[9] Henry Gilbert, Michael Sandborn, Douglas C Schmidt,
Jesse Spencer-Smith, and Jules White. Semantic com-
pression with large language models. arXiv preprint
arXiv:2304.12512, 2023.

[10] Anthony Gillioz, Jacky Casas, Elena Mugellini, and
Omar Abou Khaled. Overview of the transformer-based
models for nlp tasks. In 2020 15th Conference on
Computer Science and Information Systems (FedCSIS),
pages 179–183. IEEE, 2020.

[11] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-
Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai
Zhang, Ralph R Martin, Ming-Ming Cheng, and Shi-
Min Hu. Attention mechanisms in computer vision:
A survey. Computational Visual Media, 8(3):331–368,
2022.

[12] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao
Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang,
Liang Zhang, et al. Pre-trained models: Past, present
and future. AI Open, 2:225–250, 2021.

[13] Samireh Jalali and Claes Wohlin. Systematic literature
studies: database searches vs. backward snowballing. In
Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement,
pages 29–38, 2012.

[14] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto,
and Pascale Fung. Survey of hallucination in nat-
ural language generation. ACM Computing Surveys,
55(12):1–38, 2023.

[15] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Ol-
son, Claire Kayacik, Aaron Donsbach, Carrie J Cai, and
Michael Terry. Discovering the syntax and strategies
of natural language programming with generative lan-
guage models. In Proceedings of the 2022 CHI Confer-
ence on Human Factors in Computing Systems, pages
1–19, 2022.

[16] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann,
Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, et al. Chatgpt for good? on opportuni-
ties and challenges of large language models for educa-
tion. Learning and Individual Differences, 103:102274,
2023.

[17] Khalid S Khan, Regina Kunz, Jos Kleijnen, and Gerd
Antes. Five steps to conducting a systematic review.
Journal of the royal society of medicine, 96(3):118–121,
2003.

[18] Sandeep Kaur Kuttal, Bali Ong, Kate Kwasny, and Peter
Robe. Trade-offs for substituting a human with an agent
in a pair programming context: the good, the bad, and
the ugly. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, pages 1–20,
2021.

[19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising
sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv
preprint arXiv:1910.13461, 2019.

[20] Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al.
Competition-level code generation with alphacode. Sci-
ence, 378(6624):1092–1097, 2022.

[21] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting
methods in natural language processing. ACM Comput-
ing Surveys, 55(9):1–35, 2023.

[22] Vadim Liventsev, Anastasiia Grishina, Aki Härmä,
and Leon Moonen. Fully autonomous program-
ming with large language models. arXiv preprint
arXiv:2304.10423, 2023.

[23] Robert L Logan IV, Ivana Balažević, Eric Wallace,
Fabio Petroni, Sameer Singh, and Sebastian Riedel.
Cutting down on prompts and parameters: Simple few-
shot learning with language models. arXiv preprint
arXiv:2106.13353, 2021.

[24] Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi
Wang, and Diyi Yang. Bounding the capabilities of large
language models in open text generation with prompt
constraints. arXiv preprint arXiv:2302.09185, 2023.

[25] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bern-
stein, Erin Ross, and Ziheng Huang. Generating diverse
code explanations using the gpt-3 large language model.
In Proceedings of the 2022 ACM Conference on In-
ternational Computing Education Research-Volume 2,
pages 37–39, 2022.

[26] Fadel M Megahed, Ying-Ju Chen, Joshua A Ferris, Sven
Knoth, and L Allison Jones-Farmer. How generative ai
models such as chatgpt can be (mis) used in spc practice,
education, and research? an exploratory study. arXiv
preprint arXiv:2302.10916, 2023.

[27] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
Training language models to follow instructions with
human feedback. Advances in Neural Information Pro-
cessing Systems, 35:27730–27744, 2022.

[28] Matthew J Page, Joanne E McKenzie, Patrick M
Bossuyt, Isabelle Boutron, Tammy C Hoffmann, Cyn-
thia D Mulrow, Larissa Shamseer, Jennifer M Tetzlaff,
Elie A Akl, Sue E Brennan, et al. The prisma 2020 state-
ment: an updated guideline for reporting systematic re-
views. International journal of surgery, 88:105906,
2021.

[29] John V Pavlik. Collaborating with chatgpt: Considering
the implications of generative artificial intelligence for
journalism and media education. Journalism & Mass
Communication Educator, page 10776958221149577,
2023.

[30] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[31] Abir Rahali and Moulay A Akhloufi. End-to-end
transformer-based models in textual-based nlp. AI,
4(1):54–110, 2023.

[32] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Am-
brosio Blanco, and Shuai Ma. Codebleu: a method for
automatic evaluation of code synthesis. arXiv preprint
arXiv:2009.10297, 2020.

[33] Laria Reynolds and Kyle McDonell. Prompt program-
ming for large language models: Beyond the few-shot
paradigm. In Extended Abstracts of the 2021 CHI Con-
ference on Human Factors in Computing Systems, pages
1–7, 2021.

[34] Sami Sarsa, Paul Denny, Arto Hellas, and Juho
Leinonen. Automatic generation of programming exer-
cises and code explanations using large language mod-
els. In Proceedings of the 2022 ACM Conference on In-
ternational Computing Education Research-Volume 1,
pages 27–43, 2022.

[35] Hannah Snyder. Literature review as a research method-
ology: An overview and guidelines. Journal of business
research, 104:333–339, 2019.

[36] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-
Chi Cheung, Jacques Klein, and Tegawendé F Bis-
syandé. Is chatgpt the ultimate programming assistant–
how far is it? arXiv preprint arXiv:2304.11938, 2023.

[37] Catherine Tony, Markus Mutas, Nicolás E Dı́az Fer-
reyra, and Riccardo Scandariato. Llmseceval: A dataset
of natural language prompts for security evaluations.
arXiv preprint arXiv:2303.09384, 2023.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Ad-
vances in neural information processing systems, 30,
2017.

[39] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. Finetuned language models are
zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of
thought prompting elicits reasoning in large language
models. arXiv preprint arXiv:2201.11903, 2022.

[41] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[42] Chunqiu Steven Xia and Lingming Zhang. Conver-
sational automated program repair. arXiv preprint
arXiv:2301.13246, 2023.

[43] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiao-
tian Han, Qizhang Feng, Haoming Jiang, Bing Yin,

and Xia Hu. Harnessing the power of llms in prac-
tice: A survey on chatgpt and beyond. arXiv preprint
arXiv:2304.13712, 2023.

[44] Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin
Zhao, Leyu Lin, and Ji-Rong Wen. Recommenda-
tion as instruction following: A large language model
empowered recommendation approach. arXiv preprint
arXiv:2305.07001, 2023.

[45] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and
Elena L Glassman. Interactive program synthesis by
augmented examples. In Proceedings of the 33rd An-
nual ACM Symposium on User Interface Software and
Technology, pages 627–648, 2020.

[46] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu,
Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Li-
fang He, et al. A comprehensive survey on pretrained
foundation models: A history from bert to chatgpt.
arXiv preprint arXiv:2302.09419, 2023.

	Introduction
	Background
	Transformers
	BERT
	ChatGPT

	Methodology
	Search criteria & filtering
	Inclusion & exclusion criteria
	Analysis

	Results
	RQ1: The prompt engineering techniques used to support problem solvers to modify the problem description successfully
	Prompt engineering
	Constraints
	Prompting techniques
	Heuristic strategies

	RQ2: The potential use of NLP techniques in teaching and learning practices that leverage LLMs

	Discussion
	The findings and their implications
	Responsible research

	Threats to validity
	Conclusions & future work
	Conclusions
	Future work

	Acronyms
	Surveyed research
	References

