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Abstract: Mapping coastal bathymetry from remote sensing becomes increasingly more attractive for
the coastal community. It is facilitated by a rising availability of drone and satellite data, advances
in data science, and an open-source mindset. Coastal bathymetry, but also wave directions, celerity
and near-surface currents can simultaneously be derived from aerial video of a wave field. However,
the required video processing is usually extensive, requires skilled supervision, and is tailored
to a fieldsite. This study proposes a video-processing algorithm that resolves these issues. It
automatically adapts to the video data and continuously returns mapping updates and thereby aims
to make wave-based remote sensing more inclusive to the coastal community. The code architecture
for the first time includes the dynamic mode decomposition (DMD) to reduce the data complexity
of wavefield video. The DMD is paired with loss-functions to handle spectral noise and a novel
spectral storage system and Kalman filter to achieve fast converging measurements. The algorithm
is showcased for fieldsites in the USA, the UK, the Netherlands, and Australia. The performance
with respect to mapping bathymetry was validated using ground truth data. It was demonstrated
that merely 32 s of video footage is needed for a first mapping update with average depth errors of
0.9–2.6 m. These further reduced to 0.5–1.4 m as the videos continued and more mapping updates
were returned. Simultaneously, coherent maps for wave direction and celerity were achieved as well
as maps of local near-surface currents. The algorithm is capable of mapping the coastal parameters
on-the-fly and thereby offers analysis of video feeds, such as from drones or operational camera
installations. Hence, the innovative application of analysis techniques like the DMD enables both
accurate and unprecedentedly fast coastal reconnaissance. The source code and data of this article
are openly available.

Keywords: remote sensing; coastal zone; bathymetry; depth inversion; waves; dynamic mode
decomposition; on-the-fly

1. Introduction

Observations of near-shore hydrodynamics and bathymetry are used for various pur-
poses: to study and manage the coast [1–3], to update early warning systems [4], to monitor
swimmer safety [5–7], for dredging-and-dumping surveillance [8], and military landing
operations [9]. An observation of hydrodynamics or bathymetry with areal coverage, a
map, is thereby often beneficial if not a prerequisite to recognize relevant spatial details.
A straightforward approach to map coastal hydrodynamics and bathymetry is via video-
based remote sensing of a wave-field. In comparison to in-situ measurements, video-based
remote sensing is less accurate; however, data acquisition is also less labor-intensive, and
measurements have high spatial coverage by default.

Different instruments and video-processing methods are used to map hydrodynamics
and bathymetry. In terms of instruments, videos may be recorded with stationary cam-
eras [10], aircrafts [11], UAVs/drones [12–16], (navigational) X-Band radars [17–21], or satel-
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lites [22,23]. In terms of video-processing methods, various types exist, e.g., [17,20,24–30].
Most widely used among the coastal remote-sensing community are video-processing
methods that analyse wave-dispersion properties. They prove applicable to different in-
struments [31,32] and allow to estimate several coastal parameters. Consecutive frames
of a wave-field recording are scanned [20,33] to extract dominant wave frequencies, ω
(rad/s), and associated wave lengths and directions via wave-number vectors, kkk with [kx,
ky] (rad/m) [18,21,34–36], but also wave celerity vectors, ccc with [cx, cy] (m/s) [37–39], near-
surface current vectors, UUU with [u, v] (m/s) [11,20,40,41], and the apparent depth, d (m)
[9,11,17,42–44]. While ω, kkk, and ccc are retrieved directly from wave patterns [45,46] or their
corresponding frequency–wave-number spectra, e.g., [37], (Figure 1 left), UUU and d are re-
trieved indirectly, albeit simultaneously [2,30,47–49], by matching frequency–wave-number
spectra with a theoretical wave model (Figure 1 right). This study focused on mapping ccc, d,
and UUU. Vector fields of kkk are directly coupled to vector fields of ccc via corresponding ω.

ω

kx

ky

spectral data

dispersion cone fit ω
k

c(ω,k) = 
d, Uvideo

Figure 1. Video of a wave field (left) as a basis to retrieve wave spectra and coastal parameters (ccc, d,
and UUU) (right grey box). Local gravity wave spectra are given by clouds of frequency–wave-number
(ω and kkk) pairs (blue dots). Local wave celerity vectors ccc (m/s) (green) can be calculated from
the frequency ω (rad/s) and wave-number vector kkk (rad/m). Fitting the Doppler-shifted linear
dispersion relationship as a theoretical model (magenta) to the observed spectral data yields local
estimates of depth d (m) and near-surface current UUU (m/s).

The wave model is typically given by the Doppler-shifted linear dispersion relation-
ship, Equation (1):

ωmodel(d,UUU) =
√

g|kkk| tanh (|kkk|d) +UUU · kkk, (1)

where ωmodel (rad/s) is the wave model frequency, which is adjusted with unknown
parameters d and UUU until it optimally matches (and therewith explains) the observed
ω. The gravitational acceleration is given by g (m/s2). Note that UUU is derived as the
depth-averaged velocity of a depth-uniform current profile; however, in natural settings
with depth-varying current profiles, UUU represents the weighted average of velocities in the
upper layer and is therefore typically referred to as the near-surface current vector [20,41].
Advanced techniques also allow to resolve the underlying current profile [50,51]. Yet, the
advantage of condensing the profile to a bulk vector UUU is a comparably simple expression
for the Doppler shift (+UUU · kkk in Equation (1)), by which UUU can be estimated together with
d [47,49]. Moreover, near-surface currents can then directly be visualized through maps of
vector fields, e.g., [40,52].

Two aspects need to be considered for estimating coastal parameters from video: first,
the optimal extraction of wave length and wave frequency characteristics from optical
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spectra, and second, the optimal estimation of ccc, d, UUU from the found wave-length and
-frequency data. Both aspects are successively treated in Sections 1.1 and 1.2.

1.1. Optimizing Wave-Number–Frequency Extraction from Optical Spectra

One of the core challenges of wave dispersion-based video processing is to robustly
identify the wave-number–frequency signature of gravity waves (kkk↑, ω↑, where ↑ denotes
the “gravity wave signature”). Different strategies [30,37,43,53] follow different pathways
to do this (Figure 2). All strategies use greyscale video as a basis and inspect local subdo-
mains to capture spatial variation in kkk↑. Searching for an optimal pathway to retrieve kkk↑, ω↑,
the alternatives are briefly presented (Figure 2). Appendix A contains a more detailed
review of how successive transformations in different strategies lead to the retrieval of
kkk↑, ω↑ (Figure 2, arrows) and summarizes some benefits and drawbacks in Table A1.

Local cut-outs from the video form cubes in space time (x, y, t; in short xxx, t) and
can directly be used as analysis subdomains. Decomposing a cube reveals the wave
constituents of different frequency, either directly in wave-number–frequency space (in
kkk, ω) [37] (Figure 2, left pathway) or via their complex-valued phase images (in xxx, ω) [30]
(Figure 2, centre pathway). Separation from the spectral noise floor finally yields kkk↑, ω↑

(Figure 2 bottom). Associated to one frequency component, a phase image is referred to
as a one-component phase image [30] and shows the distinct wave pattern at a certain
wave frequency. The suggested benefit of using one-component phase images is better
localization of kkk↑. Instead of deriving local one-component phase images (LOCPI) from
video cut-outs (Figure 2, centre pathway), global one-component phase images (GOCPI) of
the full video domain can be derived [53] (Figure 2, right pathway). These GOCPI are then
further analysed in local subdomains. Independent of using LOCPI [30], GOCPI [53], or
both [43], the final phase structure should be spatially coherent to get kkk↑.

The benefits of GOCPI are that they can be generated taking global spatial coher-
ence into account [53], while additionally the dimensionality of the video data can be
reduced [53]. Reducing dimensionality is an important asset as it offers a reduction in
the required computational working memory and thereby an increase in computational
speed. For this purpose, a singular value decomposition (svd)(Appendix A, Equation (A1))
can be employed, which is a dimensionality reduction technique that is controlled by
the variance in the video. The svd splits the video into modes, consisting of spatial and
temporal structures. The first r ∼ O(1) −O(10) modes typically describe most of the
video’s variance (see σj in Appendix A, Equation (A1)) and thereby capture its essence.
The remaining modes confine noise and can be discarded, which reduces the data load.
Simarro et al. [53] directly use the spatial structures from svd as GOCPI. However, a spatial
structure from svd may contain mixed wave patterns of different frequencies (see [54],
Figure 6) such that its corresponding temporal structure is not a pure oscillation. Hence,
using spatial structures from svd as GOCPI is suboptimal.

Aiming to map coastal parameters on-the-fly, kkk↑, ω↑ must be retrieved at minimal
computational cost. A strategy similar to Simarro et al. [53] is therefore desirable but with
pre-knowledge of oscillating spatial structures when generating GOCPI. This is what the
dynamic mode decomposition (DMD) aims to do (Appendix A, Table A1).

The DMD is a mathematical procedure designed to reduce the dimensionality of video
data by identifying dominant oscillating spatial structures. Different variants of DMD
have been developed, e.g., [54–60], employed in various fields of science amongst which
electrical engineering [61,62], system and control applications [57], neuroscience [63], but
also physical oceanography [58] and coastal engineering [64].
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Figure 2. Pathways to identify wave-number–frequency signatures of gravity waves (kkk↑, ω↑) (bottom
panel, purple dots) in video of a wave field (top panel). The video can be transformed directly
from space-time (x,y,t) into the spectral domain (kx, ky, ω) (left pathway) or via construction of
one-component phase images (x, y, ω), which may be local (LOCPI) (middle pathway) or global
(GOCPI) (right pathway). In the left and middle pathways, all analyses are local (yellow). In the right
pathway, the initial construction of GOCPI is global (orange) and then followed by local subdomain
analysis to capture spatial variation in kkk↑, ω↑.

Here, the spatial structures from DMD represent phase images of waves with different
periods. The DMDs’ foundation lies in the assumption that snapshots in a video (sequence
of frames) are related to each other through a linear dynamic system of oscillatory compo-
nents. This means that the benefits of Simarro et al. [53], offering GOCPI and the possibility
for dimensionality reduction can be complemented with a guarantee that GOCPI oscillate
in time. What is more, the oscillation frequencies are inherently found.

To summarize, the DMD can be used to reduce video data to a set of GOCPI (Figure 2,
right pathway) but with guaranteed oscillatory time behaviour. These GOCPI are the basis
to find local kkk↑, ω↑ signatures (Figure 2 left, purple dots): while (global) ω↑ are known
from the DMD, kkk↑ still need to be locally deduced. This can be done in various ways, such
as via characteristic spatial phase differences in sub-domains [30,43,53] or alternatively
via (computationally cheap) spatial 2D-FFTs or particle image velocimetry (PIV) [23,65].
Derived local kkk↑, ω↑ form the basis to retrieve maps of wave celerity per GOCPI frequency,
via ccc(ω↑) = ω↑/kkk↑ [66], but also maps of depths and near surface currents d, UUU through
Equation (1).
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1.2. Optimizing Depth and Near-Surface Current Estimates

Pursuing the best approximations to d and UUU, optimization problems using Equation (1)
(with/without Doppler shift +UUU · kkk) have been stated differently, with some as (non-linear)
least-squares (LS) minimization problems [20,30,43] and others as maximization problems
of a normalized scalar product (NSP) [19,49]. These schemes have been formulated to han-
dle an abundance of spectral information from Fourier decompositions. However, applying
dimensionality reduction techniques to video data concentrates spectral information to its
essence offering far fewer data points for an optimization of d, UUU. As such, inaccuracies
and outliers in the spectral data gain negative influence on the solution. Standard LS
minimization is not fit to handle this issue and with little data to fit, NSP maximization
using a Heaviside step function is a crude approach. Outlier contamination is a common
issue in applications such as the training of neural networks [67], because reducing the
relatively large residual of an outlier is more attractive in minimizing the cost function than
reducing the small residual of an inlier. In standard LS optimization, residuals are squared,
whereby the impact of outliers on the solution is disproportionately large. However, LS
problem statements have the benefit that many different methods have been developed
to solve them [68], among which the Levenberg–Marquardt method is often applied to
invert d, UUU e.g., [2,43]. It is therefore attractive to adapt LS formulations such that they can
handle outliers. This is achieved using various kinds of loss functions [69], among which
the Cauchy (also called Lorentzian) loss function is an effective type.

Higher accuracy in d, UUU can also be achieved by successively producing estimates and
converging the results with a Kalman filter [29,43,70]. The quality of an estimate is thereby
typically judged based on the sensitivity of the fit to the data. If the data are plagued by
inaccuracies and outliers, this sensitivity increases, making the Kalman filter a suitable tool
to mitigate their influence.

To summarize, while loss-functions can increase the quality of an individual d, UUU
estimate, the application of a Kalman filter increases the quality over several d, UUU estimates.
Both techniques can be used simultaneously.

1.3. Outlook of This Study

This study is about a self-adaptive, robust method to map ccc, d and UUU on-the-fly from
video of a wave-field. The DMD plays a key role in making the video-processing algorithm
self-adaptive to the data and computationally fast: it reduces (video) data complexity,
finds the dominant wave-components, and allows self-adaptive sampling schemes, which
cause the standardly used computational cubes to instead become pyramids for optimal
localization. For the optimization of d, UUU, the algorithm implements a loss-function
to handle spectral outliers, which seemingly counteracts the error of overestimating UUU
and also reduces depth errors. The two errors are commonly interlinked [2,47,48,70].
The algorithm temporarily stores spectral data and employs Kalman filtering for quick
convergence of measurements, and it comprises a set of rules and filters for autonomous
decision making such that the algorithm does not need to be tuned to the field site. In
summary, the algorithm’s main elements include:

• Data reduction and retrieval of wave components through DMD.
• Wave-component-dependent subdomains using pyramid cells.
• Counteracting spectral outliers and errors in d,UUU with loss functions.
• Fast convergence of d,UUU and recognition of current refraction through temporary

spectral data storage.
• Additional fast convergence of d,UUU using Kalman filtering.

Section 2 describes the workflow of the proposed video-processing algorithm, which
includes explanations of the core principles of the DMD and the workflow of the algorithm.
Section 3 describes the field sites and data. In Section 4, the algorithm is validated for
measuring near-shore bathymetry (i.e., d) based on four field sites in the USA, the UK,
the Netherlands, and Australia. A qualitative discussion on the algorithm’s ability to
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measure hydrodynamics (i.e., ccc, UUU) follows in Section 5, together with a discussion on the
algorithm’s potential for mapping on-the-fly. The findings are concluded in Section 6.

2. Method

Ahead of presenting the mapping algorithm in Section 2.2, first the implemented
dynamic mode decomposition (DMD) is explained and demonstrated in Section 2.1.

2.1. Dynamic Mode Decomposition

The DMD forces oscillatory time dynamics through a set of discrete linear differential
equations whose solution consists of complex eigenvalues and eigenvectors. The eigenval-
ues represent the temporal oscillations, which may include a real part denoting growth
or decay. The corresponding eigenvectors are the dynamic modes and represent spatial
structures, which after entry-wise normalization to unity represent global one-component
phase images (GOCPI).

Suppose a linear model AAA can advance a (squeezed) frame xxxn at time tn to the next
frame at time tn+1: xxxn+1 = AxAxAxn. Extending the model to advance a (time) series of N frames
simultaneously, YYY = AXAXAX, where matrices XXX = [xxx1, xxx2, ..., xxxN−1] and YYY = [xxx2, xxx3, ..., xxxN ] pair
each frame xxxn+1 with the previous frame xxxn. It essentially requires AAA to propagate a
frame through time since [xxx1, xxx2, xxx3...] = [xxx1, AxAxAx1, AAA2xxx1...], which in mathematical terms is
referred to as a Krylov sequence. It indicates that YYY = AXAXAX is a discrete formulation that is
closely tied to a system of continuous differential equations dxxx/dt = AxAxAx(t) and therewith
an eigenvalue problem λϕϕϕeλt = AAAϕϕϕeλt. Conceptually, AAA hence describes a dynamical
process, whose eigenvectors ϕϕϕ present the dynamic modes, with the associated frequencies
captured in the complex eigenvalues λ. Note that, in contrast to the modes retrieved from
an svd (Section 1, [53]), dynamic modes do not have to be orthogonal to each other, which
implies that they do not have to be fully independent of each other.

The goal of the DMD is to find the eigenvalues and eigenvectors of AAA at minimal
computational cost. Finding the eigenvalues and eigenvectors straightforwardly by first
calculating AAA ≈ YXYXYX† († ≡ pseudo-inverse) poses a problem for computer memory. Say
video footage has a frame size of 1000× 1000 px, then XXX and YYY have a row size m = 106,
resulting in an AAA matrix of size m×m = 106 × 106. Even in case a computer can handle
such data loads, the calculation is slow, and the matrix size suggests a large amount of
redundancy. The conceptual idea is to convert the eigenvalue problem from m into a
lower dimension r. Typically, r is in the range 1–100 such that r � m, expressing a severe
dimensionality reduction. By deflating the eigenvalue problem m→ r, eigenvectors and
eigenvalues can be quickly calculated. Subsequently, the eigenvectors are inflated again
r → m to yield the dynamic modes. Although the details of the conversions differ between
DMD algorithms (e.g., standard DMD vs. optimized DMD [60,71], respectively), they share
the common principle of using r modes from the svd of XXX (Appendix A, Equation (A1)) for
dimensionality reduction. There exists no general strategy to make a choice for r. It may be
based on existing knowledge about the observed system [60], but it can also be based on
the amount of singular values needed to capture a certain percentage of the variance in the
video, for example, 99% [54], or on an algorithmic truncation of noise [72].

Note that XXX (and YYY) may first be converted to a time-analytic signal [53]. It is not
necessary, but it has the benefit that the DMD, similar to an FFT, does not produce conjugate
dynamic mode pairs. Then, r frequency components associate to r modes instead of 2r
modes. Preventing the generation of conjugate modes also prevents the DMD to produce
them imperfectly (i.e., with slightly different frequency to their counterpart). Analytic
extension comes at a computational cost; however, since r can be halved to achieve the
same number of frequency components, successive matrix multiplications within the DMD
become computationally cheaper.

An important factor when applying a DMD is whether the recorded data contain
standing-wave behaviour. Without adjustments, a DMD cannot capture standing waves [55].
For a fixed framerate, Tu et al. [55] offer a straightforward solution through augmentation
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of the video matrix XXX with a time-shifted version of itself, by which the DMD acquires the
skill to detect standing waves.

From the existing DMD algorithms, the optimized DMD based on variable projections [60]
is an elaborate variant. Formulated as a least-squares optimization problem, it is more
accurate than other DMD algorithms and theoretically allows video frames to be spaced
non-equidistantly in time. Instead of splitting the video into two video matrices XXX and
YYY, it uses a single, transposed video matrix XXXT = [xxx1, ...xxxN ]

T . A detailed explanation
can be found in Appendix B. The methods skill for complex harmonic analysis was re-
cently demonstrated in modelling rotating detonation waves [73]. Note that other DMD
algorithms could be potent alternatives, for example, by allowing elaborate forms of
regularization to handle noisy or lower-quality images [74].

Wave components in a wave field can be accurately extracted using the DMD [54]. To
illustrate this, a wave field consisting of six known wave components is considered and
recorded over a period of 32 s at 2 fps. The corresponding video matrix hence comprises
64 frames (XXXT has 64 rows, see Appendix B, Equation (A2)). Subsequently, the signal is
made time-analytic such that r modes associate to r frequency components. The DMD
with r = 6 modes identifies the underlying components precisely (Figure 3a, orange stars)
(Figure 3b). It demonstrates that the DMD is not only powerful in analysing a short frame
sequence but therein superior compared to a standard time-domain fast Fourier transform
(FFT) (Figure 3a, green squares): the FFT returns (much) more spectral data and with
significant redundancy, and yet, the pre-set frequency resolution restricts its ability to
capture the six intrinsic wave components to a mere rough spectral representation. Half
of the components (Figure 3a, first, third, and fifth component) are poorly captured in
frequency and amplitude.

For a real wave field, the amount of wave components is not known a-priori and a
choice needs to be made for the amount of modes r returned by the DMD. The question
arises what the DMD returns if the choice for r is smaller or larger than the actual number
of components in the wave field: if r is smaller, the DMD simply returns fewer components,
but those components are still correctly represented (Figure 3c, r = 3). If r is larger, the
DMD still identifies the intrinsic components; however, it also adds spurious modes and
these modes may be energetic, which indicates that r being too large is a scenario that
should be avoided (Figure 3c, r = 12). For observations of a real wave-field this scenario
is unlikely, as waves have a stochastic nature and typically dense spectra [66]. In fact,
for r ∼ O(1)−O(10), the number of modes is certainly less than the actual number of
wave components (cf. Figure 3c, r = 3), and the DMD’s representation of the wave field
simplifies to the governing wave components.

A real wave field may also experience standing-wave dynamics as waves reflect back
from the shoreline. Although, at flat dissipative beaches, sea-swell waves are typically
progressive [75], at steeper beaches and longer sea-swell periods, incident wave reflection
can be significant with reflection coefficients up to K = 0.4− 0.45 [76–79]. In the presence
of hard structures like sea-walls even up to K ≈ 0.9 [80]. Here, K = [0, 1] denotes [no,
full] reflection [81]. High wave reflection signals (partially) standing-wave characteristics,
prompting adaption of the DMD as of [55]. Doing so enables the DMD to cope with any
degree of incident wave reflection (Figure 3c, K = 0, K = 0.5, and K = 1) and thereby
accommodates application to a broad range of wave field scenarios.
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Figure 3. Dynamic Mode Decomposition (DMD) of an artificial wave field with six wave components
(w1 − w6), recorded over a period of 32 s at 2 fps, resulting in 64 video frames. (a) True amplitude
spectrum of the wave field (blue dots), compared against spectra acquired from DMD with r = 6
modes (orange stars) and FFT (green squares); E{ai} (m) denotes the expected amplitude of the ith
wave component and ω (rad/s) the angular frequency. (b) Real part of the complex valued dynamic
modes acquired from DMD, resembling the true wave components. (c) The DMD from (a), with
r = 6 and a progressive wave field with no wave reflection (reflection coefficient K = 0) is used as
reference (dashed grey outline) in a comparison with DMDs of the same progressive wave field but
where the number of modes is halved (r = 3, red) or doubled (r = 12, red). If r > 6, spurious modes
appear. The reference case is also compared against DMDs with the same number of modes (r = 6)
but of wave fields with mixed progressive standing waves (K = 0.5, red) or fully standing waves
(K = 1, red). To acquire the same expected amplitudes as in the reference case, wave components for
the two cases where K > 0 were rescaled in amplitude, accounting for their nodal structures in space
(see also [81], Equation (11)).

2.2. Mapping Algorithm

The proposed workflow for a self-adaptive and on-the-fly mapping algorithm of
coastal hydrodynamics and bathymetry follows a series of steps (Figure 4, labels 1 ... 13 ).
The workflow requires video in greyscale and orthorectified format as basis input. If the
video is in colour, standard BGR-to-grey conversions can be used to prepare the video. The
orthorectification differs per field site and is briefly treated in Section 3. The workflow is
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set-up in such a way that a video feed could be processed. For that purpose, the algorithm
marches forward in time by consecutively analysing short sequences of N video frames
(e.g., N = 64) and then updating the maps of ccc, d and UUU after each sequence, which is
referred to as mapping updates. Consecutive frame sequences may overlap, as for on-the-
fly application, which is explained in Section 5 (see also [82], Figure 3). Default settings for
the algorithm as used in this study are listed in Table A2 (Appendix C).

The workflow commences with the global analysis of a video frame sequence. The first
step is to retrieve r global one-component phase images (GOCPI) through DMD (Figure 4,
1 ). GOCPI linked to frequencies outside the ocean wave band (Appendix C, Table A2,
[Tmin, Tmax]) are discarded (Figure 4, 2 ). (Note that in case the video is not extended to a
time-analytic signal, conjugate modes are also discarded; see Section 2.1). By construction
of the DMD, the remaining number p of GOCPI with frequencies ω↑1 ...ω↑p describe dominant
wave field components. These are treated as equally important (regardless of their spectral
weight b; see Appendix B).

Knowing ω↑, the maximum wavelengths in each GOCPI are predictable. The size of
the subdomains that are used to determine local kkk↑, can thereby be automatically tailored
to the individual GOCPI (Figure 4, 3 ). This is done ahead of analysing any location.
A conservative rule is to set the subdomain size to one or two offshore wave lengths,
Lo f f (ω

↑) = 2gπ/(ω↑)2, where g denotes the gravitational acceleration. Here, 2× Lo f f (ω
↑)

is used, unless this is too large, for example, near a boundary, where the size is reduced
up to a minimum of 1× Lo f f (ω

↑). High-frequency GOCPI are analysed with smaller
subdomains than low-frequency GOCPI, such that stacking the subdomains in layers on
top of each other creates a pyramid-shaped cell at a certain location (see Figure 4, 3 ,
yellow pyramid). Note that this contrasts with the usual cube shape, whose size is typically
predefined manually, e.g., [41,83].

Since the pixel resolution is constant between cell layers, large layers used for lower
frequencies likely encompass plentiful pixels, capturing the underlying waves in unneces-
sarily high spatial resolution. It is therefore computationally attractive to subsample larger
cell layers. The rules for subsampling require a minimum resolution of 8 samples per Lo f f .
Instead of skipping pixels for subsampling, the current set-up lowers the resolution through
fast bilinear interpolation. It preserves more image information and makes the algorithm
robust to videos with different pixel resolutions. For proper analysis, a cell layer is set
to hold at least 24× 24 samples. Note that demanding eight samples per offshore wave
length may exclude higher-frequency GOCPI from being analysed, if the pixel resolution
of the video is not high enough to capture the correspondingly short wavelengths.

After subdomain sizes and resolutions have been determined, the local analysis of the
GOCPI commences. The local analysis occurs around points in a grid. The processing of
different grid point locations can be done in parallel, which increases computational speed.
Since the algorithm aims to map results on-the-fly, the grid resolution is determined based
on computational speed (see also Section 5). Note that computation speeds are different
for different processing machines. A solution to find an optimal number of gridpoints
for different processing machines could be to start with a low number of gridpoints and
then increase the number of gridpoints for consecutive frame sequences until an optimum
is reached.

To analyse a certain grid point, first a pyramid-shaped cell is built around it (Figure 4,
4 ) using GOCPI subdomains as cell layers with formats as determined under step 3 .

Each cell layer is first autocorrelated in space to accentuate the waveform and tapered
with a two-dimensional Hanning-window, which focusses wave information to the centre
point and prepares for analysis with two-dimensional fast Fourier transforms (2D-FFTs).
For robustness, kkk↑ (Figure 4, 5 ) is estimated in two different ways: directly, by analysing
spatial properties through 2D-FFT and indirectly, by analysing wave celerity through
particle image velocimetry (PIV).
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Figure 4. Workflow for mapping coastal hydrodynamics and bathymetry on-the-fly from video of a wave field. Steps in the
flowchart are visualized with icons. Box shapes denote: data (parallelogram), input (right trapezoid), process loop start
(trimmed top corners) and process loop end (trimmed bottom corners), and process (rectangle). Box and arrow colours
relate to: storage (gold), input (green), for-loop (blue), and parallel-for-loop (magenta). Arrows and their annotations signify
flow of information. The input requires video with a top-down view, its pixel resolution, and framerate. Computational
grid and other settings suffice with default values. The output contains maps of wave directions and celerity, depth, and
near-surface currents (grey square bottom row). Symbols represent: GOCPI = global one-component phase images, ω↑

(rad/s) = wave frequency per GOCPI, kkk↑ (rad/m) = wave-number vector at gridpoint, W (-) = weight per kkk↑, ω↑ pair, ccc
(m/s) = wave celerity vector at gridpoint, d (m) = depth at gridpoint, UUU (m/s) = near-surface current vector at gridpoint,
subscript s = from spectral data storage. Other symbols are labelled with arrow annotations.

Performing a 2D-FFT on a cell layer yields its spectral content in space. Besides the
footprint of a gravity wave component, kkk↑, this also includes spectral noise. Typically, an
energy threshold aims to separate the two [41]. To avoid a search for an optimal energy
threshold [2], here simply the spectral point with maximum energy is chosen as kkk↑. A
different approach to acquire kkk↑ is via the wave celerity, kkk↑ = ω↑/ccc↑. The wave celerity
is encoded in the complex values of the cell layer. The difference between the real and
imaginary parts denotes a temporal phase shift of 90◦, hence resembling a quarter wave
period. Performing PIV between the real and imaginary image of the cell layer yields the
translation of (wave) patterns over a quarter wave period, which directly translates to ccc↑.
Note that the temporal phase shift between real and imaginary parts is 90◦ regardless of
whether the video matrix XXX is analytic or whether dealing with standing waves. While the
2D-FFT approach inherently presumes that the observed pattern in a cell layer describes
a wave, the PIV approach does not, as it investigates movement of any pattern in the
cell layer. Both approaches may have their benefits in case the pattern is noisy and are
therefore used synchronically. If one or both estimates are unphysical, they are discarded
in following the filter steps. Each estimate of kkk↑ gets a weight W assigned, whose value
between [0, 1] gives an indication of the respectively [low, high] quality of the estimate
(Figure 4, 5 red-coloured bar). A weight, W, is calculated from the correspondence
between two images: the source image and the target image. For the 2D-FFT approach,
this is the correspondence between the original pattern displayed by the cell-layer and
the approximation of this pattern by its most energetic spectral wave component. For
PIV, it is the correspondence between the translated real image of the cell-layer with the
imaginary image of the cell-layer. The correspondence is calculated via W = 1− εim, where
εim represents the normalized root-mean-square error between the source image relative to
the target image [84].

Together, the estimates of kkk↑ over all ω↑ layers in the pyramid cell form a sparse
spectral point cloud (SSPC) of kkk↑, ω↑ pairs with assigned weights W. The SSPC expects to
follow a cone shape as described by the dispersion relationship (Figure 1; Equation (1)).
This pre-knowledge aids in the identification and removal of unphysical kkk↑, ω↑ points in
the SSPC by means of a wavelength and direction filter (Figure 4, 6 ). Wave lengths are
filtered using their ratio over the offshore wave length Γ = |kkko f f |/|kkk↑|, where |kkko f f | =
2π/Lo f f (ω

↑). SSPC points with Γ < 0.3 occupy the shallow water regime as they resemble
wavelengths larger than twenty times the local depth [85] and are thereby too large to
capture morphological detail. Such kkk↑ are deemed unsuited for a localized depth estimate,
d. On the other hand, SSPC points with Γ > 1.0 signalize an unphysical deep water regime
if UUU is small and are therefore also deemed unsuited. Note that in other algorithms this
upper limit is often set lower, to Γ > 0.9, which presents an approximate elbow value where
the uncertainty in estimates of d becomes disproportionately large [39,53,86]; however, a
higher limit Γ > 1.0 preserves spectral points that are valuable for the estimation of UUU and
thereby also simultaneous estimates of d. Lastly, the wave direction filter excludes SSPC
points, which do not align with the general direction by means of the svd filter of Gawehn
et al. [2].
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The idea behind the next two steps of the workflow (Figure 4, 7 , 8 ) is to augment
the SSPC left after 6 with additional spectral points to make it a dense spectral point cloud
(DSPC), which captures directional spread in time and space and thereby allows for a solid
inversion of d, UUU. As desired and designed, the SSPC as is holds the essence of the local
hydrodynamics. The sparsity, however, brings along statistical uncertainty in time and
space. An approach to acquire a DSPC is to combine several SSPCs into one. The additional
SSPCs can be retrieved from preceding updates (i.e., previously analysed frame sequences)
but also from surrounding grid locations within a collection radius Rad (Figure 4, 8
attached green arrow; Appendix C, Table A2). Such an approach requires memorizing
SSPCs in a designated short-term storage. Therein, the just-retrieved SSPC is stored
(Figure 4, 7 ) and SSPCs from preceding updates and from surrounding grid locations
are called up (Figure 4, 8 ). The size of the short-term storage for SSPCs is manageable
since, by construction, each SSPC holds just a few essential spectral points. Note that
accumulating spectral information over successive updates is only a valid approach if their
computations occur (near) on-the-fly, because it assumes that the wave signal is stationary
across several updates. Hence, SSPC data are discarded after a short stationary time period
(e.g., 60 s; see Appendix C, Table A2) and replaced by new SSPCs.

An example illustrates the augmentation of an SSPC to a DSPC by means of stored
spectral data: assuming a wave signal is stationary for 1 min, the algorithm stores SSPCs
for 1 min. If the processing of a frame sequence takes 15 s, the storage contains stored SSPCs
of all grid locations from the preceding 60 s/15 s = 4 updates. Now, as the algorithm starts
to analyse a certain location, it retrieves one new SSPC for that location. By itself, this new
SSPC might be sufficient to estimate d but not UUU. For that, a DSPC is required, which is
achieved by augmenting the new SSPC with stored SSPCs from the same grid location and
surrounding grid locations (Figure 4, 9 ), be it 10 within some radius Rad. The acquired
DSPC then consists of 4stored × (1gridloc + 10surr.gridlocs) + 1new × 1gridloc = 45 SSPCs. In this
example, the augmentation of the new SSPC of step 6 has hence produced a DSCP that is
45 times denser.

Using surrounding grid locations to augment spectral information has benefits and
drawbacks. A drawback is that depth estimates d become less localized. A benefit is that
wave refraction caused by near surface currents UUU is captured in space, which is essential
for estimating UUU (and thereby also improves d). To minimize the loss in localization of d,
but to still have improved UUU estimates, the SSPCs that make up the DSPC are weighted
differently. These SSPC weights are multiplied with the individual quality weights W of the
spectral points and are subsequently normalized to the range [0, 1]. In the current set-up,
the new SSPC at a certain grid location weighs 50%. Stored SSPCs of the same grid location
weigh together 25%, and stored SSPCs from surrounding grid locations weigh together
25%. In total, this means that 75% of the spectral information focuses on the currently
analysed grid location, and 25% focuses on the surrounding area, thereby aiming to keep d
estimates localized but still constructing a DSPC that includes enough current refraction
for UUU estimates.

The DSPC from step 9 may include a minority of spectral points from incorrect wave
directions. This occurs because some of the SSPCs, which the DSPC consists of, contain too
little spectral information to determine wave directions at step 6 . Therefore, the direction
filter repeats for the DSPC (Figure 4, 10 ). Now, the DSPC is ready for the algorithm
to retrieve wave celerities per frequency, ccc↑(ω↑) (Figure 4, 11 ) and depths and surface
currents d, UUU (Figure 4, 12 ). While ccc↑ are directly computed via ccc↑ = ω↑/kkk↑, the inversion
of d, UUU is done by fitting a wave model—here, the Doppler-shifted dispersion relationship
(Equation (1))—to the spectral points of the DSPC. The fit results from a nonlinear regres-
sion that aims to minimize the sum of residuals between the model frequencies ωj,model

(Equation (1)) and the observed frequencies ω↑j per spectral point j using Equation (2). The

implicit link of observed kkk↑j with ωj,model and ω↑j is assumed to be trivial.
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minimizeF(d,UUU) =
1
2 ∑

j
Wjρ

(
f j(d,UUU)2

)
subject to

dmin < d < dmax

|UUU| < |UUU|max

with (2)

ρ
(

f j(d,UUU)2
)
= α2 ln

(
1 +

f j(d,UUU)2

α2

)
and

f j(d,UUU) = ωj,model(d,UUU)−ω↑j ,

where F(d,UUU) is the cost function, minimized by adjusting the regression parameters d and
UUU. Typically, residuals per spectral point, j, are evaluated by the product of their weight
Wj with the difference f j(..) between ωj,model and ω↑j . Here, f j(..) is first modulated by a
Cauchy loss function ρ(..) to penalize outliers. A predefined softmargin α tunes ρ(..) to
the optimization problem. Setting α such that the Cauchy loss function heavily penalizes
residuals larger than ∼ 1/5th of the average DMD frequency resolution produces accurate
d, while counteracting overfitting of UUU. Lastly, bounds for depth [dmin, dmax] and surface
current magnitude |UUU|max set the range in which a solution for d,UUU is sought. To improve
estimates, first a regression is done without a Doppler shift to acquire a close estimate for
d that can be used as an initializer for the follow-up regression including a Doppler shift.
Adding the first regression has little impact on computation times, since its estimate of
d closely approximates the local minimum of the second regression. The minimization
of Equation (2) occurs using a sequential least-squares quadratic programming method
(SLSQP) [87], which omits potentially expensive computations of Hessians and allows for
straightforward implementation of loss-functions.

The final step of the mapping algorithm is a Kalman filter (Figure 4, 13 ) that judges
the quality of d,UUU results based on the sensitivity of the fit with regard to earlier updates. It
causes d,UUU estimates to quickly converge over successive updates. The implementation
of the Kalman filter is identical to Gawehn et al. [2]. If the observation periods are short,
say, less than 5 min, morphodynamics but also hydrodynamics can be assumed stationary,
such that process variance is negligible. If observation periods are longer, say, 10–20 min,
it may become important to capture changes in surface current direction (e.g., due to the
formation of a rip current). To allow for such applications, the Kalman filter assumes small
process variances Qc and QU for phase celerities and near-surface currents, respectively
(i.e., Qc = 0.0005 m2/s3, QU = 0.0005 m2/s3; see Appendix C, Table A2).

3. Field Sites and Data

Videos of four different field sites around the world were used to test the algorithm’s
performance (Figure 5): Duck (North Carolina, USA) [43], Porthtowan (UK) [88], Schevenin-
gen (NL) [89], and Narrabeen (AU) [90]. Specifics on video collections are listed in Table 1.
Cameras were positioned at heights of 43–110 m to observe waves over a large distance
without wave-shadowing effects. The recorded videos are available in orthorectified for-
mat. The geometries have been solved using ground control points (GCPs), by matching
GCP image coordinates with world coordinates. The accuracy of the geometries differs
per site and was quantified by the GCP reprojection error in world coordinates. These
reprojection errors are generally in the (sub)meter range, but in case of Scheveningen and
Narrabeen, they increased to on average ∼ 7 m at distances of 0.5–2 km from the camera.
At Porthtowan, the reprojection errors are unknown, yet slight errors in the geometry likely
exist, particularly further afield [91]. The videos from Duck and Porthtowan (UK) are
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∼ 17 min long and were recorded with Argus stations. The videos of Scheveningen and
Narrabeen are ∼ 9 min long and were recorded with UAVs. All videos have a framerate of
∆t = 2 fps. Pixel resolutions are ∆px = 5 m for Duck and Porthtowan, and ∆px = 2 m at
Scheveningen and Narrabeen. The hydrodynamic conditions varied over the sites between
Hs = 0.8− 1.63 m and Tp = 5.0− 10.0 s (Table 2).

The videos of all sites were analysed using sequences of 64 frames equalling 32 s.
Marching forward in time, the next frame sequence overlapped 50% with the previous
sequence (i.e., overlap of 32 frames at 2 fps), resulting in mapping updates every 16 s
of video. This overlap was fixed for reproducibility, since computation times differ per
processing machine. For on-the-fly applications, the overlap varies based on processing
speed. This is simulated in Section 5 using a standard laptop. Each image sequence was
decomposed into r = 16 dynamic modes. The chosen r represents a balance between
significantly reducing dimensionality, while retrieving enough pyramid cell layers to
estimate d, UUU. Details on other settings are found in Appendix C, Table A2.

Duck

Porthtowan

Narrabeen

(50.29°, -5.24°)

(52.11°, 4.27°)

(36.18°, -75.75°)

(-33.71°, 151.30°)

Scheveningen

Figure 5. World locations (Lat◦, Lon◦) of video recordings from Duck (North Carolina, USA),
Porthtowan (UK), Scheveningen (NL), and Narrabeen (AU). Videos were recorded with different
instruments with different camera properties and therefore have different lighting, format, and
orientation.

Table 1. Video collection.

Field Site Instrument
Camera Camera Video Frame Pixel Reprojection
Height

(m) Tilt (◦) Length (min) Rate (fps) Size (m) Error (at Distance)

Duck Argus 43 68–82 17 2 5 <1 m (<500 m)
Porthtowan Argus 44 75–85 17 2 5 -

Scheveningen UAV 110 61 9 2 2 ∼ 1 m (<200 m)
∼7 m (400–600 m)

Narrabeen UAV 89 73 9 2 2 < 1 m (<250 m)
∼7 m (1.5–2 km)
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Table 2. Hydrodynamic conditions during field recordings.

Field Site HsHsHs (m) TpTpTp (s) WLWLWL (m)

Duck 0.79 5.0 0.08
Porthtowan 1.03 10.0 −0.96
Scheveningen 0.75 5.5 0.60
Narrabeen 1.63 8.5 0.67

In Section 4, the results of the mapping algorithm are presented. The field-site of
Duck, NC, USA was used as the lead case to elucidate the processing steps of the workflow
for an arbitrary real case. The final results are presented for all field-sites: Duck (NC,
USA), Narrabeen (Australia), Scheveningen (the Netherlands), and Porthtowan (UK). The
quality of the final results for the depth estimates, d, was assessed by comparison with
in-situ bathymetry data. Maps for wave direction and celerity and near-surface currents
are discussed in Section 5.

4. Results

The field site of Duck gives an illustrative example (Figure 6) of the processing
steps described in Section 3. After decomposing image sequences of Duck (Figure 6a)
into 16 dynamic modes, the modes were normalized to global one-component phase
images (GOCPI) and filtered for frequency and resolution (as of Figure 4). The frequency
filter discarded eight GOCPI, and another four GOCPI failed the criterion of minimum
8 px/Lo f f , leaving four GOCPI for further analysis (Figure 6b). These remaining GOCPI
reveal intricate wave patterns and finely capture wave refraction towards the coast. The
associated frequencies ω↑ (rad/s) ≈ {0.59, 0.78, 0.97, 1.17} were quite constant across
successive image sequences, showing that wave periods T(s) = {10.6, 8.1, 6.5, 5.4} govern
the mixed wave field. On the basis of these wave components, the subdomain sizes for
local analysis were determined. Stacking them in layers for some grid location revealed
a pyramid-shaped cell, and tapering the layers put the focus toward its centre grid point
(Figure 6c).

Performing PIV and 2D-FFTs to the autocorrelated layers revealed a sparse spectral
point cloud (SSPC) with eight points, with kkk↑ values increasing for increasing ω↑, sketching
a typical wave-dispersion curve (Figure 6d). In the example, the PIV and 2D-FFT estimates
for kkk↑ were almost indistinguishably close in three of the four spectral layers; however,
for the uppermost layer, they lay further apart. In this case, the point that lays off-track
corresponds to the 2D-FFT estimate. This is signalled by its quality weight W, which is
lower than for the PIV counterpart (Figure 6d, blue vs. yellow point). Augmenting the
SSPC with stored SSPCs from the past minute (i.e., from four previous updates) within a
radius of Rad = 75 m yields the dense spectral point cloud (DSPC) (Figure 6e). The choice
of Rad = 75 m was arbitrary and represents a balance between extracting information from
close by, while capturing sufficient current refraction (especially of shorter period waves).
Other choices for Rad may be made, but the algorithm is not too sensitive to this parameter
since the surrounding SSPCs within Rad resemble just 25% of the total spectral weight. As
desired, this lower weighting is apparent from the corresponding spectral points in the
DSPC (Figure 6e, blue points). Note that in contrast to Duck, points in DSPCs of Porthtowan,
Scheveningen, and Narrabeen were more dispersed over the frequency domain, because
GOCPI frequencies vary more across successive updates (not shown). Finally, the DSPC
was fitted with the Doppler-shifted linear dispersion relationship (Equation (1)) to produce
characteristic cones corresponding to certain d,UUU estimates (Figure 6f, magenta cone).
Combining the local estimates from all grid locations yields global maps of d,UUU.

These resulting maps were not only quickly retrieved, but they also show that es-
timates of d are accurate (Figure 7). For all four field sites, depth maps compare with
the ground truth. Recall that the algorithm was not tuned to the individual field sites.
While the first depth update–after 32 s of video–is still rough, it already gives a clear
overall picture of the bathymetry with shallower and deeper regions (Figure 7, 1st update).
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Nearshore sandbars at Duck (Figure 7a) are readily visible. With the fifth update–after
96 s of video–(Figure 7, 5th update) the depth maps approximated the ground truth (cf.
Figure 7, 5th update and ground truth). Estimates quickly improved after the first update,
indicating that the temporary spectral storage together with Kalman filtering effectively
converged d estimates. Mapping updates continued to improve and become spatially more
coherent towards the end of the videos (Figure 7, last update).

t

x
y

ω

x
y

ω

x
y

ω

kx

ky

video frame

sequence

(32 s)

frequency filtered

GOCPI

pyramid cell

at grid point

SSPC DSPC d,U fit

grid point ω↑  

ω↑  

ω↑  

ω↑  

 = 0.78

 = 0.97

 = 1.17

 = 0.59

a) b) c)

d) e) f)
W

Figure 6. Processing results for a selected grid location at the Duck field site at the 7th update. (a) Image sequences (x, y, t
space, see Figure 2 top) used for successive updates depict 32 s of wave movement and have a 50% frame overlap in time.
(b) Frequency-filtered global one-component phase images (GOCPI) from dynamic mode decomposition (DMD) (x, y, ω

space, see Figure 2 right pathway) uncovering frequencies ω↑ = {0.59, 0.78, 0.97, 1.17} as essential components in the
wave field recording. GOCPI outside the gravity wave frequency band are discarded as well as higher frequency GOCPI
where 5 m pixel resolution is insufficient to guarantee at least 8 points per offshore wave length (cf. Figure 4, 2 and 3 ).
(c) The pyramid cell at the grid location, with subdomain layers subsampled for computational speed and tapered with
Hanning windows to focus wave information. A colour gradient from red to yellow highlights decreasing subdomain
size for increasing frequency. (d) Sparse spectral point cloud (SSPC) (kx, ky, ω space; see also Figure 2 bottom), consisting
of pairs of kkk↑ estimates from FFT and PIV per frequency layer ω↑. Colours indicate the weight of each estimate (colour
scale) (cf. Figure 4, 6 ). (e) The SSPC augmented to a dense spectral point cloud (DSPC) using stored spectral data of the
grid location and surrounding grid locations within a radius of 75 m (cf. Figure 4, 10 ). Blue colours elucidate the lower
weighting of stored spectral data. (f) The d,UUU fit on the DSPC (magenta cone) using Equations (1) and(2) (cf. Figure 4, 12 ).
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Figure 7. Depth updates from video of the field sites (a) Duck, (b) Porthtowan, (c) Scheveningen, and (d) Narrabeen. In
(a–d): left-most panel depicts an example frame (grey scale) of the video with corresponding dimensions; inverted depths
(dinv) of the 1st update are overlaid. Following two panels to the right present inverted depths of the 5th and last update.
Ground truth measurements (gr. truth, d0) are mapped in the second panel from the right (dinv and d0 in identical colour
scale); the extents are indicated by dashed black lines in panels of last update. Differences between ground truth and last
update (di f f ., d0 − dinv,last) are depicted in right-most panel, with red/blue indicating under/overestimation (colour scale).
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For all videos, differences with the ground truth are minimal over large parts of the
observed area (Figure 7, difference, light areas). Regions with errors |∆d| > 0.5 m are mostly
found in shallow water or the deep water boundary of the observed domain. At Duck and
Scheveningen, depth overestimation of ∆d ≈ −0.5 to −1.0 m occurs around the sandbars
(Figure 7a,c, difference, blue areas), while in other shallow parts, the errors are smaller. At
Porthtowan and Narrabeen, the overestimations are larger ∆d ≈ −0.5 to −2.0 m and gener-
ally occur in shallow water (Figure 7b,d, difference, blue areas). The reason is probably that
wave heights at Porthtowan and Narrabeen are larger Hs = 1.0− 1.6 m (Table 2) and more
nonlinear close to shore, compared to Duck and Scheveningen where Hs < 0.8 m and wave
breaking restricts to the sandbars, after which most wave nonlinearity is lost. Another,
physical reason for near-shore depth estimates appearing larger is local wave set-up [26],
which is not accounted for in the comparison with the ground truth. Regions and reasons
for depth underestimation differ per site. At Duck, depths were only underestimated
around the pier, which blocks the view to the underlying waves (Figure 7a, red patch).
At Porthtowan and Scheveningen, depths were underestimated by ∆d ≈ 0.5− 1.5 m near
the offshore boundary (Figure 7b,c, red patches). At Porthtowan (Figure 7b), the under-
estimation was mainly caused by the fact that relevant lower-frequency cell layers in
near-boundary pyramid cells were too large to be used. The underestimated region also lay
>800 m from the camera, where inaccuracies in geometry influence depth estimates [91].
The size of errors in the video geometries (Table 1) suggests a limited effect on depth
estimates in general, yet some depth error may be induced in regions further afield (e.g.,
for T = 8 s and d = 10 m, an error ∆L = 7 m in wave length causes a depth error of
∆d ≈ 2 m; see also Figure 1 of [39]). At Scheveningen (Figure 7b), the underestimated
region begins further away from the offshore boundary, where boundary effects should be
less pronounced. Here, the underestimation likely stems from the relatively small waves,
Hs = 0.75 m and Tp = 5.5 s, who feel little of the underlying bottom. At Narrabeen, under-
estimation mainly occurs at the boundary farthest from the camera. This underestimation is
likely caused by similar boundary effects as at Porthtowan, since here the underestimated
region also lies more than 900 m from the camera. In conclusion, depth maps can show
regions that are less accurate, yet all in all, the maps approximate local bathymetries: on
average 80% of the mapped area had errors ∆d < 1 m.

Direct comparison of estimated depths against the ground truth confirms generally
accurate depth maps (Figure 8). Median depth estimates per given depth are mostly close
to ground truth (cf. Figure 8, double green curves and black 1:1 line). For the video of
Duck (Figure 8a), the similarity is visible for the entire depth range from d = 1.5− 5.0 m,
except for the scour hole where the pier obscures the underlying waves. At Porthtowan,
median depth estimates deviate more from the ground truth but remain ∆d < 2.0 m for
depths d < 10 m (Figure 8b). Errors are largest in the breaking region where depths
are d = 2− 3 m, which is a common observation in depth inversion studies e.g., [92].
This is similar for Narrabeen (Figure 8d). Here, however, differences between median
depth estimates and the ground truth are minimal for the entire depth range beyond that,
d = 3− 17 m. In contrast to Porthtowan (Hs = 1.0 m), the wave heights at Narrabeen
were larger (Hs = 1.6 m); moreover, the few large boundary errors in the statistics were
outnumbered by otherwise accurate estimates (Figure 8d, relatively few outliers). Median
depth estimates at Scheveningen (Figure 8c) also confirm earlier spatial observations of
slight depth overestimation near the shallow sandbar and underestimation for d > 7 m.

Although for each field site the first mapping update after 32 s of video was consid-
erably more scattered compared to the last update (cf. Figure 8, white and blue scattered
dots), the median estimate is comparable (cf. Figure 8, double grey and double green
curves). Hence, the first mapping updates already give a rudimentary impression of the
bathymetry, albeit with more local uncertainty. It suggests that waiting for many mapping
updates is superfluous and that it may be efficient to stop after a couple of updates, when
a certain degree of accuracy in the depth map is reached.
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Figure 8. Direct comparison between inverted depths (dinv) and ground truth depths (d0) for field
sites (a) Duck, (b) Porthtowan, (c) Scheveningen, and (d) Narrabeen. Coloured dots correspond to the
last update whose median is shown with a double green line. Analogously, underlying white dots
correspond to the first update whose median is shown with a double grey line. Potential water-level
differences within the observed domains, due, for example, to near-shore wave set-up, were not
accounted for in the comparisons.

Bulk errors decreased with the increasing number of mapping updates (Figure 9).
Since depth errors are not always constant and linearly distributed over depth (Figure 8b)
and may contain outliers (Figure 8d), the median bias was adopted to quantify structural
over- or underestimation, and the interquartile range (IQR = 75th − 25th percentile) was
used to measure the scatter. In comparison to other common error measures, note that
Duck, with quite linear and normally distributed depth errors (see Figure 8a), had a median
bias that was almost identical to the commonly used mean bias, and its IQR was close to
the root mean square error (not shown). Absolute median biases (Figure 9, dashed lines)
start small |∆dbias| < 0.5 m with the first update and eventually become |∆dbias| < 0.1 m
at Duck (with update 3), Scheveningen (with update 27), and Narrabeen (with update
10). The median bias at Porthtowan reached ∆dbias ≈ −0.25 m. The IQRs (Figure 9, solid
lines) decreased fast over the first couple of updates, signalling fast improvements in the
accuracy of the depth map. After that, the convergence rates started to relax. The total IQR
improvements were 0.9 m→ 0.5 m (Duck), 1.7 m→ 1.4 m (Porthtowan), 1.6 m→ 0.6 m
(Scheveningen), and 2.6 m→ 1.1 m (Narrabeen). The elbow in the exponentially decreasing
curves represents a compromise between the size of error and the number of updates. It
is difficult to pinpoint the exact locations of the elbows, but for Duck and Porthtowan,
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they appeared to be somewhere between the 2nd–6th update, while for Scheveningen
and Narrabeen they were more likely located between the 5th–10th update. The reason
for the different elbow positions probably roots in the instrumentation. The videos of
Duck and Porthtowan were recorded with stationary Argus stations, while the videos of
Scheveningen and Narrabeen were recorded with UAVs. In contrast to the Argus stations,
UAVs have some freedom to move and are not professionally tuned to the field site, which
likely causes depth errors to be initially large; however, these errors decrease rapidly.
Concluding the previous findings, a general rule of thumb might be to stop with the 5th
update, after 1.5 min of video. Awaiting more updates may further improve results but
also requires more computation time and a larger video length. A single estimate based
on 32 s of video is enough to get a rough depth map. In the end, the use of the data, and
desired accuracy, determine whether to stop the analysis sooner or later.

update [-]

er
ro

r 
[m

]

Duck
Porthtowan
Scheveningen
Narrabeen

median bias

IQR

Figure 9. Depth errors at successive updates for field sites Duck (red), Porthtowan (blue), Schevenin-
gen (purple), and Narrabeen (orange). Dashed lines present a median bias. Solid lines present
confidence intervals by the interquartile range (IQR = 75th−25th percentile).

5. Discussion

Alongside the maps of depth, mapping updates for hydrodynamics, wave celerity, ccc,
and local near-surface currents, UUU, were retrieved. Since no ground truth data are available
for these parameters, they are discussed qualitatively in Section 5.1. The subsequent
Section 5.2 discusses the algorithm’s ability to process video on-the-fly.

5.1. Maps of ccc and UUU

While vector fields of ccc remain quite stable after the first mapping update, vector fields
of UUU require more updates to converge. Here, approximately the 10th update (Figure 10)
shows convergence of the local current patterns. Additionally, the current velocities and
directions appear realistic. Note that local changes in ccc and UUU still occur after the 10th
update, as allowed by the process variance in the Kalman filter (not shown).
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Figure 10. Maps for wave celerity, ccc, and near surface currents, UUU, for field sites (a) Duck, (b) Porthtowan, (c) Scheveningen,
and (d) Narrabeen. The maps exemplify the 10th update. Wave celerity vectors of different wave periods, T, are superim-
posed and coloured according to top-left colour scale. Near-surface currents are indicated by streamlines whose colours
highlight the current magnitudes as of top-right colour scale. In the UUU-map of (c), the Scheveningen harbour is outlined
in black.
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Maps of ccc reflect the general direction of wave propagation for all videos (Figure 10,
left column). Local vectors are oriented normally to the recorded wave crests and trace
characteristic wave refraction towards the coastline. Mean wave directions per wave
period are quite similar for all field sites, except for Duck, which shows some directional
spread between shorter and longer period waves (Figure 10a left, red vs. yellow arrows).
Wave celerity decreases towards shallower water, being most apparent for Porthtowan
and Narrabeen. This was expected as cross-shore differences in depth were the largest
at these locations (Figure 10b,d, left). Moreover, the wave celerity of long-period waves
started to decrease further offshore than for short-period waves (Figure 10d left, starting at
offshore boundary, green arrows already get shorter while red arrows had constant length
until close to the shoreline). This was also expected since longer waves feel relatively
smaller depths.

Maps of UUU show intricate patterns that are largely consistent in time and space
(Figure 10 right). Coastal currents are typically tide or wave driven [85] and have magni-
tudes of decimetres per second (dm/s), e.g., [93]. They can reach meters per second (e.g.,
strong rip currents [94] such as the “Backpackers’ Express” at Bondi Beach [95]), but such
conditions are not likely at the field sites analysed in this study. With mostly 0–5 dm/s,
the maps of UUU had the correct order of magnitude. At Duck, near-surface currents close to
shore often pointed in offshore directions, while further from shore they also pointed in
southerly directions (Figure 10a right). The near-shore offshore-directed flows probably
represent the effect of undertow caused by normally incident waves (see Figure 10a left). It
is interesting to note that surface current estimates using optical flow on wave-averaged im-
ages might predict opposite flow directions in shallow water, namely, shoreward directed
currents, as recent data analyses for a similar wave situation at Duck suggest [96]. The
hypothesis is that current estimates from optical flow are more indicative of Stokes drift,
while wave-inverted current estimates capture the undertow. Especially around the thinner
part of the sandbar in the south (see also Figure 7a, ground truth), streamlines from northerly
and southerly directions often converge to form a common flow direction offshore, which
could be indicative of a local rip current and which is not uncommon at this site [97].
Although it is visible throughout many updates (not shown), it is often hard to recognize
among enlarged UUU estimates on the sandbars. Note that UUU estimates on the sandbars are
influenced by distorted wave celerity estimates of breakers, which simultaneously leads to
larger depth errors (see Figure 7a, difference). At Porthtowan, near-surface current estimates
generally point in south and south-easterly directions, except for the deeper region where
directions are less coherent. Additionally, at shallow parts, currents point away from the
coast (Figure 10b right). The southerly directed flows may reflect some remaining tidal ebb
flow consistent with the time of the video recording approaching low water. Similar to
Duck, offshore-directed flows close to the shoreline are suggestive of a cross-shore-directed
undertow under almost shore-normal wave incidence. Near-surface current estimates
at Scheveningen were well in line with expectation. The video recording was taken just
above a harbour (Figure 10c right). During flooding, the longshore tidal current accelerates
around the harbour jetties forcing larger current velocities, and a characteristic region with
eddies and opposite directed flows is formed on the lee side of the northern jetty. Both
effects were visible, and current magnitudes of mostly 0.4–0.6 m/s off the coast also agree
with typical current magnitudes off the nearby Rotterdam coast. Close to the coastline,
UUU estimates are again offshore-oriented, suggesting undertow. Similar to Scheveningen,
coastal currents at Narrabeen run mostly alongshore. Here, however, they are likely not
driven by tides but by waves instead. The direction of flow at this location is sensitive to
the angle of wave incidence and alongshore differences in wave height and dissipation,
e.g., [98]. For the recorded situation, the angle of wave incidence suggests northward
flow; however, alongshore differences in wave height may still force a southward flow
as mapped. The true current direction remains uncertain at this site. Summarizing, near-
surface current estimates are coherent and can be explained, but the Scheveningen field-site
is most relatable to expected tidal flow patterns (Figure 10c, right).



Remote Sens. 2021, 13, 4742 23 of 33

5.2. On-The-Fly Processing

Maps of d, ccc, and UUU are realistic and ideally returned on-the-fly. To allow for an
on-the-fly analysis during this study, specific choices were made to balance calculation time
and spatiotemporal resolution of mapping updates. The algorithm marches forward in
time by consecutively analysing small sequences of video frames, giving mapping updates
after each sequence. The frame sequences partly overlap (see legend Figure 11a). For
pre-recorded video, the overlap could be controlled. It was 50%, since frame sequences
were 32 s long, and the algorithm was set to march forward in 16 s intervals. For on-the-fly
analysis of a video feed, this approach does not work, as processing times start to play a
role. A mapping update now needs to reflect the current situation and therefore is mostly
based on the latest recorded video frames. Say the processing time of a frame sequence
was 20 s, then during the processing, 20 s of new video frames have been recorded. The
next frame sequence to analyse includes these new 20 s plus 12 s from the previous frame
sequence representing the overlap. The amount of overlap hence depends on the processing
time, which may vary per update. Statistically, the shorter a frame sequence, the more it
represents a random sample of the wave field, where waves vary in height and direction,
currents change, etc. [66]. Additionally, the video quality itself may vary due to changes in
lighting, the accuracy of the orthorectification, etc. This impacts the processing time, which
may hence be slower or faster causing smaller or larger overlap, respectively, between
consecutive frame sequences.

For the results presented up until now, the processing time for an update—using a
standard laptop with four CPUs and a working memory of 4 GB—was typically 30–60 s. If
the fixed, 16 s overlap was changed to instead be variable-based on the processing time,
this would be too slow. To enter the realm of on-the-fly computation, the processing time
hence needs to be further reduced. The three main elements influencing processing time
are: (i) the computational power, (ii) the grid resolution, and (iii) the amount of spectral
data points stored and used to locally derive ccc, d, UUU. In this study, the effect of (ii) and (iii)
was considered using the video of Duck as a testcase:

(ii) In a first step to increase computational speed, the grid resolution was reduced
from 1260 to 720 grid points. As required to simulate on-the-fly analysis, the overlap was
set to depend on the processing time. The resulting simulation returns mapping updates
in variable time intervals with correspondingly variable overlap between analysed frame
sequences (Figure 11a). Yet, on average, every 23 s, a mapping update is given. Although
the grid resolution is lower, the bathymetry is still estimated in reasonable detail, as well
as wave propagation and near-surface currents. At the 5th update, after 102 seconds, the
results again converged to a large extent. The analysis could at this point be deemed
on-the-fly; however, more frequent updates would further improve the user experience.
A detailed view of the first ≈ 4 updates reveals that they were returned at a faster pace
than consecutive updates (Figure 11a, orange lines closer together, and more, darker green
overlap between frame sequences). During the first updates, the amount of spectral data in
storage still increased towards full capacity, which suggests that the rate of updates should
increase for a smaller number of spectral data points.

(iii) Reducing the number of spectral data points that are stored and used reduces
the number of spectral points in the dense spectral point clouds (DSPCs). This should be
acceptable as long as the true local wave spectra are well represented by the DSPCs. By
construction, a DSPC represents an aggregate of (mostly stored) sparse spectral points
clouds (SSPCs) (Section 2). These SSPCs stem from surrounding grid points within a
radius Rad (Appendix C, Table A2, Rad = 75 m) from the location under analysis and from
previous updates within a short period where the wave signal is assumed to be stationary
(see Section 2 and Figure 4). Now instead of using SSPCs from all grid points within Rad,
a random subset can be selected. Here, a random subset of 12 surrounding grid points
was selected from the full set of 48 grid points. The amount of SSPCs from this subset
of grid points can be reduced even further by simply storing fewer SSPCs. The storage
time, which is the time that the wave signal is assumed stationary (Section 2), was here
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reduced from 60 s to 30 s. The effect of both measures on processing speed was significant,
while mapping results remained similar (not shown). The 5th update now occurred approx.
20 s earlier and the 10th update even 80 s earlier compared to the simulation with only a
reduced grid resolution (cf. Figure 11a,b). Updates were, on average, returned every 13 s,
which may be considered a quite continuous temporal output, as desired for on-the-fly
application (Figure 11b). It is noteworthy to mention that convergence rates appear to
depend rather on the number of updates than on the timing (not shown), which suggests
that it may be favourable to return updates at a faster pace; however, a detailed analysis
remains a subject for future study.
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Figure 11. On-the-fly analysis of Duck video. Video frame sequences of 32 s (green boxes, see
legend) were consecutively analysed with mapping updates after each sequence (vertical orange
lines). Depending on the computational processing time (CPU time), frame sequences overlapped
more or less (darker green, see legend). The CPU time mainly depends on the used machine, the grid
resolution, and the amount of spectral data. The amount of spectral data is controlled by the number
of sample grid points within a radius (Rad; see Section 2 and Figure 4) from each location and the
duration that spectral data are stored and used, which is the duration the wave signal is assumed
stationary. Timings of the first ten updates are shown for (a) 48 samples in Rad, stationary time 60 s
and (b) 12 random samples in Rad, stationary time 30 s. Both grids consist of 720 grid cells. For (a),
the 5th mapping update is visualized as an example.

6. Conclusions

This study describes a fast and self-adaptive algorithm to map coastal parameters
on-the-fly from aerial wave imagery. Updates of depth, d, wave propagation, ccc, and near-
surface currents, UUU, are returned every few seconds, such that a video feed can theoretically
be processed on-the-fly, and a user does not need to wait and engage in post-processing.
The input requires orthorectified video with known pixel size (m) and frame rate (fps).
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Apart from that, the algorithm works unsupervised for the presented field sites. The basis
for fast computational speed and increased automation lays in the use of the dynamic
mode decomposition (DMD), which is a dimensionality reduction technique that disposes
redundant video information. It reduces the video to a set of, here, 16, intrinsic wave
patterns and autonomously finds the corresponding frequencies. Applying a DMD, the
search for optimal spatial sampling schemes can also be automated, such that in the end, no
manual choices underlie the local wave spectra, which are the basis to derive ccc and invert d,
UUU. Consecutive mapping updates are improved by taking specific measures, such as using
an innovative system to temporarily store and call up spectral data but also by penalizing
spectral outliers through a loss-function and Kalman filtering. The algorithm’s potential
for all-round application was demonstrated using video data from stationary camera
installations and UAVs, recorded at four different field sites, Duck (USA), Porthtowan (UK),
Scheveningen (NL), and Narrabeen (AU), with hydrodynamic conditions ranging between
Hs = 0.75− 1.63 m and Tp = 5− 10 s. Validating the depth maps, d, showed that they
accurately reflected ground truth measurements. The maps quickly improved from the
first update to typically the fifth update, at 1.5 min into the video, after which the rate of
improvement relaxed. It suggests that for time-efficient coastal mapping of depths, 1.5 min
of video suffice, such that the next location of interest can be recorded. The interquartile
range (IQR) of depth errors decreased from the first update, with minimum and maximum
values of 0.9 m (Duck) and 2.6 m (Narrabeen), respectively, to the last update, with values
of 0.5 m (Duck) and 1.3 m (Porthtowan). Absolute depth biases were small throughout all
updates, slightly improving from minimum and maximum values of respectively 0.1 m
(Scheveningen) and 0.4 m (Porthtowan) at the first update, to 0.0 m (Duck) and 0.3 m
(Porthtowan) at the last. Maps of wave celerity, ccc, and near-surface currents, UUU, could not
be validated at this stage; however, qualitative assessment showed vector fields of ccc to
match observed wave propagation and vector fields of UUU to match expected tide- and wave-
induced currents. The algorithm finally demonstrated its potential for on-the-fly video feed
analysis by taking computational processing times into account. Therewith the groundwork
is laid for a fast and easy-to-use tool for coastal reconnaissance. Striving towards universal
applicability, more field cases and community-driven development are desired, wherefore
the code and data are openly available at https://doi.org/10.4121/c.5704333 (accessed on
22 November 2021).
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Appendix A. Review of Strategies to Extract Spectral Gravity Wave Signatures

• Dugan et al. [11], Young et al. [20], Ziemer [21], Irani et al. [37]

The most straightforward strategy is to transform local video cut-outs from 3D xxx, t
into 3D kkk, ω spectra via 3D fast Fourier transforms (3D-FFTs). An energy threshold
can then be used to separate the spectral footprint of gravity waves kkk↑, ω↑ from the
noise floor. A benefit of this approach is the possibility to retrieve spectral data up to
two times the Nyquist frequency [18], which can be important if frame rates are low
(e.g., slow radar rotation speeds).

• Senet et al. [30]

The strategy starts as [11,20,21,37], but with reduced size of the video cut-out, which
requires a follow-up step: after producing 3D kkk, ω spectra, they are sliced into separate
2D wave-number layers kkkj, ωj per constant frequency ωj. These spectral layers are
then filtered to separate the wave-number signature of gravity waves from the noise
floor. Subsequently, using inverse 2D fast Fourier transforms (2D-FFT−1), each filtered
2D kkkj, ωj layer is transformed back to the spatial domain to produce a corresponding
complex-valued image (xxxj, ωj), which depicts the local wave pattern associated to ωj.
Being associated to one frequency component and neglecting spatial differences in
amplitude (which can be achieved through entry wise normalization), the complex
valued images represent LOCPI. Finally, assuming the wave field is homogenous,
spatial gradients in each LOCPI yield a local representative vector kkk↑j associated to that

frequency component ωj = ω↑j . The suggested benefit of extracting kkk↑j from LOCPI,
instead of straight from 3D kkk, ω spectra, is that the reduced size of the video cut-out
leads to better localisation of kkk↑, ω↑.

• Stockdon and Holman [39], Holman et al. [43], Plant et al. [99]

Similar to [30], this strategy constructs one-component phase images. First, the video
is transformed from 3D xxx, t to 3D xxx, ω via FFTs in time. This process finds GOCPI per
Fourier frequency but without taking spatial coherence into account. A subsequent
local analysis aims to find this spatial coherency. Cross-spectral matrices are com-
puted for predefined frequency bands with central frequencies ωc. The idea is that the
strongest eigenvector of each cross-spectral matrix, after entry-wise normalization to
unit magnitude, resembles a spatially coherent LOCPI (xxxc, ωc) corresponding to ωc.
Analogous to [30], kkk↑ is finally deduced from phase gradients and ωc = ω↑c . A benefit
of this strategy is that the video can be sampled in any fashion (e.g., non-regularly)
in preparation of local cross-spectral matrices. A drawback of this strategy is the
uncertainty around the frequency associated to kkk↑ as it lies within a frequency band
and needs to be approximated by the bands’ central frequency ω↑c .

• Simarro et al. [53]

The most recently developed strategy suggests that globally coherent GOCPI can
be found through a singular value decomposition of the time-analytic signal of the
video. First, the video is reshaped into a matrix XXX, whose columns represent the video
frames squeezed into arrays and whose rows hence contain the timeseries of a pixel.
Each timeseries is converted into its analytic signal using the Hilbert transform, which
makes the timeseries complex valued (with a single-sided frequency spectrum) and
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prepares for a natural retrieval of phases. A singular value decomposition (svd) of the
video matrix XXX, Equation (A1), then describes the video as a sum of modes, given by
pairs of spatial structures and their associated temporal evolution:

XXX = UΣVUΣVUΣV∗ = ∑
j

jth mode︷ ︸︸ ︷
σjuuujvvv∗j , (A1)

where the orthonormal columns uuuj of UUU represent the (squeezed) spatial structures
( 6= UUU of Equation (1)), the columns vvvj of VVV the associated temporal evolution, and
the diagonal matrix contains the singular values σj, which sorted in decreasing order
denote the contribution of each mode to the total variance in XXX. The asterisk denotes
the complex conjugate transpose.
Unfolding uuuj into the two spatial video dimensions now provides GOCPI. Simarro
et al. [53] argue that the associated time evolution vvvj closely corresponds to a fixed-
frequency oscillation ωj and can therefore be estimated by the averaged temporal
phase gradient. This moreover implies that uuuj approximately resembles global one-
component phase images (xxxj, ωj), that is, GOCPI. In practice, the final deduction of
local kkk↑ is done from phase gradients in local subdomains of the GOCPI.
However, the GOCPI being only approximately one-component (i.e., GÕCPI, where
∼ denotes approximate) flags a deeply rooted issue: using the svd on a wave signal,
whether analytic or not, is prone to the mixing of Fourier modes, meaning that wave
patterns of different frequencies mix together in uuuj (Equation (A1)) (see [54], Figure 6).
The problem can be understood from the fact that the svd result for uuuj is invariant
to the ordering of the video frames [54]. As such, these GÕCPIs do not reflect the
distinctly sinusoidal time dynamics of ocean waves.

Table A1. Pros and cons of different strategies used to retrieve local gravity wave kkk↑, ω↑ signatures
from video of a moving wave-field.

Strategy Pros Cons

e.g., [37]
• Simple approach
• Spectral data: 2 × Nyquist limit • Comp. load: full-dimensional video

[30]
• LOCPI: sugg. higher localisation
• Spectral data: 2 × Nyquist limit • comp. load: full-dimensional video

[43]
• LOCPI: sugg. higher localisation
• Freedom local pixel sampling • Comp. load: full-dimensional video

• approximate ω↑

[53]

• GÕCPI: sugg. higher localisation
• Freedom global pixel sampling
• Globally coherent wave patterns
• Predict subdomain sizes from ω↑

• Comp. load: reduce dimensionality

• Sensitive to mixing Fourier modes

proposed

• GOCPI: sugg. higher localisation
• Freedom global pixel sampling
• Globally coherent wave patterns
• Predict subdomain sizes from ω↑

• Comp. load: reduce dimensionality

Appendix B. Optimized DMD Based on Variable Projections

Appendix B.1. Synopsis

The optimized DMD by Askham and Kutz [60] finds a solution to Equation A2 via
non-linear least-squares minimization (Equation (A3)).
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XXXT ≈ ΨΨΨ(ωωω, t)BBB (A2)

or

m×n︷ ︸︸ ︷−−− xxx1 −−−
...

...
...

−−− xxxm −−−

 ≈
m×r︷ ︸︸ ︷eω1t1 . . . eωrt1

...
. . .

...
eω1tm . . . eωrtm


r×n︷ ︸︸ ︷−−− βββ1 −−−

...
...

...
−−− βββr −−−


solved via

minimize
1
2
‖XXXT −ΨΨΨ(ωωω, t)BBB‖2 (A3)

Tailored to the case of processing grey-scaled video frames, the rows xxx1. . . xxxm of
XXXT ∈ Rm×n denote the m frames of the video, each squeezed into an array of n pixels
(e.g., 10× 10 frame becomes n = 100 array). Typically, the number of pixels is larger
than the number of video frames, n > m. The superscript T signifies that the video
matrix XXX is transposed in this DMD formulation. The complex valued matrix ΨΨΨ(ωωω, t) ∈
Cm×r holds in its columns the timeseries of r sinusoids with frequencies ωωω = ω1...ωr
over time t1...tm such that Ψ(ω, t)i,j = eωjti . The dependency on ti is implicit (i.e., ti are
known). The rank r is a choice, typically r ∼ O(1)−O(10), such that r < m < n. The
rows β1...βr of BBB ∈ Cr×n resemble weighted dynamic modes coupled to the frequencies
ω1...ωr. The key to “variable projections” [60] is that Equation (A2) can be solved purely
by optimizing ωωω: Say ωωω was known, then BBB ≈ Ψ(ω, t)†XXX and Equation (A3) becomes
minimize 1

2‖XXX −ΨΨΨ(ωωω, t)ΨΨΨ(ωωω, t)†XXX‖2, which can be iteratively solved using a Levenberg–
Marquardt algorithm. For computational details, see [60].

Finding a local minimizer for ωωω automatically finds corresponding BBB, whose weighted
dynamic modes βββj reflect pre-products of one-component phase-images. The frequen-
cies and corresponding phase-images are hence found together as the optimal building
blocks to form the video matrix XXXT . Note that conforming to the introduction of the
DMD in Section 2.1, the weighted dynamic modes βββj resemble (scaled) eigenvectors of the
linear model AAA in the system of differential equations dxxx/dt = AxAxAx(t). This is shown in
Appendix B.2. Weighted dynamic modes βββj are split into a dynamic mode with unit norm,
ϕϕϕj = βββj/bj with associated spectral weight bj = ‖βββj‖. The complex valued entries of ϕϕϕj dif-
fer in magnitude, accounting for spatial differences in the importance of the dynamic mode.
To retrieve a phase-image, all entries of ϕϕϕj need to be normalized to unit magnitude, upon
which the array can be reshaped back into a plane of the original video-frame dimensions.

To boost computational speed, the dimensionality of the video matrix XXXT can first be
strongly reduced m× n→ m× r by projecting XXX onto the first r columns UUUr = uuu1, ...uuur in
UUU of its svd (Equation (A1)), X̃̃X̃X = UUUT

r XXX. Substituting X̃̃X̃XT for XXXT in Equations (A2) and (A3)
yields a set of deflated dynamic modes B̃̃B̃B, which are straightforwardly inflated back to the
original video frame dimensions, via BBBT = UB̃UB̃UB̃T (see [60], Algorithm 3). The weights and
frequencies stay the same.

The optimized DMD needs proper initialization [60]. The implicit trapezoidal rule
(i.e., 2nd-order Adams Moulton formula) in the exact DMD-like Algorithm 4 of Askham
and Kutz [60] may fail a proper initialization of the optimized DMD. This especially
occurs if r > 1.5–2 times the actual number of components in the data. It is therefore
advisable to use a 3rd- or 4th-order Adams–Moulton formula instead ([100], p. 466). For
regular, equispaced video frames, alternatively a standard or exact DMD algorithm ([55],
Algorithm 1 or Algorithm 2) can also be used as initializer; however, the computation
requires more working memory.
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Appendix B.2. Eigenvectors BBB of Linear Model AAA

Askham and Kutz [60] and Boyce and DiPrima [100], pp. 414–419

A system of differential equations dxxx/dt = AxAxAx(t) has a (fundamental) set of vector
functions xxxj(t) = ϕϕϕje

ωjt as solutions (Equation (A4), LHS), where each xxxj(t) combines an
eigenvector ϕϕϕj of AAA with an exponential function of the corresponding eigenvalue ωj of AAA
(Equation (A4), RHS).

 ||| ||| . . .
xxx1(t) xxx2(t) . . .
||| ||| . . .

 =

 ||| ||| . . .
ϕϕϕ1 ϕϕϕ2 . . .
||| ||| . . .


eω1t

eω2t

. . .

 (A4)

or

XXX(t) = ΦΦΦQQQ(ωωω, t)

A superposition of these vector functions yields the general solution to the system of
differential equations: xxx(t) = XXX(t)ccc, where XXX(t) is referred to as the fundamental matrix,
and ccc is a vector of coefficients. Given some initial conditions xxx(0) = x0x0x0 and noticing that
XXX(0) = ΦΦΦ (since QQQ(ωωω, 0) = III), the coefficients ccc are determined straightforwardly (from
the general solution) x0x0x0 = ΦcΦcΦc→ ccc = ΦΦΦ†x0x0x0. Substituting the expression for ccc back into the
general solution and using XXX(t) = ΦQΦQΦQ(ωωω, t) (Equation (A4)) finds Equation (A5):

xxx(t) = ΦQΦQΦQ(ωωω, t)ΦΦΦ†x0x0x0 (A5)

Now note the similarity between Equations (A2) and (A5): if a frame xxxi (Equation (A2))
= xxx(ti) (Equation (A5)), and recognizing that Ψ(ω, t)i,j = Q(ω, ti)j,j = eωjti , then βββj =

sϕϕϕj, where the scalar value s = Φ†
j,:x0x0x0. It proves that the weighted dynamic modes

βββj resemble scaled eigenvectors sϕϕϕj of the linear model AAA in the system of differential
equations dxxx/dt = AxAxAx(t). Moreover, it shows that Equation (A2) is inherently linked to
the differential equation problem Equation (A5) and that given xxx(ti) at sample times ti,
Equation (A3) can hence be used to solve this system of differential equations for AAA.

Appendix C. Default Algorithm Settings

Table A2. Default parameter values of the mapping algorithm.

Parameter Value

N 64 frames

Overlap 16 s (results, Section 4)
Variable (on-the-fly, Section 5)

Analytic extension of XXX True
Mode frequencies (= r if XXX is analytic) 16
[Tmin,Tmax ] [3,15] s

Subdomain size per ω↑
2× Lo f f (ω

↑) (maximum)
1× Lo f f (ω

↑) (minimum)
[Γmin,Γmax ] [0.3,1.0]
Rad 75 m
Stationary time (temp. spectral storage) 60 s
α 0.012
|UUU|max 0.75 m/s
[dmin,dmax ] [0.1,50] m
Qc 0.0005 m2/s3

QU 0.0005 m2/s3
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