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additional comments which enabled us to improve the transparency and framing of the presented 

methodology and results. We double checked the grammar in the paper and changed the 

following according to your comments. 

In line 55, we included two citations of papers from EM&S (Vrugt et al. (2016) and Kelly et al. 

(2013)) which express the need for a more objective integrated assessment of environmental 

systems.  These are included to show that novel methods such as the one we present are 

necessary to decrease uncertainty in modeling of environmental systems. Our toolbox decreases 

model uncertainty by combining mechanistic information from different environmental fields 

and evaluating models based on qualitative and quantitative criteria.  

In line 56, we included a reference to Bennett et al. (2013) who propose a generic evaluation 

procedure of model performance. Such an approach strengthens the credibility and relevance of 

modelling reported which is in line with the methodology we present. In lines 83-92, we indicate 

that our method supports all five evaluation steps proposed by Bennett et al. (2013). In our 

evaluation, however, the step of checking the data is minimal because the available measured 

data and information about its error was very limited. Nevertheless, we believe that the 

characteristics of our novel methodology are sufficiently demonstrated and that the best model is 

satisfactory given the scope of the paper.   

In section 2.4, we added a subsection describing the qualitative performance criteria that are 

generated by the toolbox. In section 2.4.3, we justify our choice in quantitative criteria. We chose 

a set of criteria that enabled us to quantify aspects related to the (mechanistic) uncertainty of the 

models which is in line with the purpose of our modeling exercise. In addition, we indicate that 

other criteria suited for other modeling purposes are readily implemented.  

Results and discussion are only slightly modified because we believe that the changes made in 

the introduction and theory already improved their framing and justification significantly. 

Furthermore, we modified the conclusion about the best model into two steps. First we conclude 

which model is best for lysimeter scale and then we conclude which model is best for full scale.     

We thank you for your time and hope our paper is now fit to contribute to Environmental 

Modelling & Software.  

Sincerely yours,  

André van Turnhout 
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Highlights

• Finding the best mechanistic model to predict the behavior of environmental systems.

• The toolbox allows to quickly assess multiple biogeochemical reaction networks.

• Coupled kinetic & equilibrium processes and mechanistic parameter resources.

• Networks are evaluated with objective statistical criteria given measured data.

• The toolbox enabled to �nd the optimal network for anaerobic digestion of MSW.
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A toolbox to find the best mechanistic model to predict the behavior of
environmental systems.

Illustrated by modeling anaerobic degradation of Municipal Solid Waste

André G. van Turnhouta,∗, Robbert Kleerebezemb, Timo J. Heimovaaraa

aGeoscience & Engineering Department, Faculty of CiTG, Delft University of Technology, Stevinweg 1, 2628CN,5

Delft, Netherlands
bEnvironmental Technology Group, Department of Biotechnology, Delft University of Technology, Julianalaan 67,

2628 BC, Delft, Netherlands

Abstract

Reliable prediction of the long-term behavior of environmental systems such as Municipal Solid10

Waste (MSW) landfills is challenging. While many driving forces influence this behavior, characteriza-

tion of them is limited by measurement techniques. Therefore, a model structure for reliable prediction

needs to optimally combine all measured information with suitable mechanistic information from lit-

erature. How to get such an optimal model structure? This study presents a toolbox to find and

build the model structure that describes an environmental system as close as possible. The toolbox15

combines environmental frameworks to include all suitable mechanistic information; it fully couples ki-

netic and equilibrium reactions and contains multiple resources to obtain biogeochemical parameters.

Several possible optimal model structures are quickly built and evaluated with objective statistical

performance criteria obtained via Bayesian inference. By applying the novel methodology, we select

the best model structure for anaerobic digestion of MSW in full scale landfills.20

Keywords: Bayesian inference, mechanistic biogeochemical modeling, integrative assessment of

environmental systems, qualitative and quantitative model selection, optimal data description

1. Introduction

It is challenging to make reliable predictions of the long-term behavior of environmental systems

such as Municipal Solid Waste (MSW) landfills. In such systems, there are many driving forces25

influencing behavior, while current measurement techniques are not sufficient to characterize them.

Therefore, for reliable predictions we require a mechanistic description with minimal uncertainty for

extrapolation of measured data.

Reliable prediction of long-term emissions is needed for landfill management. Decisions about

ending of landfill after care strongly depend on these predictions because after care can only be stopped30

∗Corresponding author, email address: a.g.vanturnhout@tudelft.nl
Preprint submitted to Elsevier April 29, 2016
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when emissions are below certain threshold values. Furthermore, reliable predictions also improve

estimations of energy recovery from emissions such as methane. This energy is directly utilized in the

facilities at the landfill.

So far, prediction of emissions by any modeling strategy is highly uncertain. In general, models

have been developed according to two strategies. One strategy extrapolates measured emissions using35

empirical relations. Some of these models fit exponential equations to measured gas and leachate

data [6, 32, 9, 13]. Others apply neural networks on emission data [26, 14]. Although the fit of

these empirical models with measured data is very good, their extrapolations are poor because these

models are not constrained by mechanistic principles. These models do not consider the impact of

changes in environmental conditions on the emissions while multiple studies have shown that e.g. pH40

and mass transport limitation significantly influence the performance of waste water and solid waste

treatment[34, 3, 1, 40, 42].

The other modeling strategy to predict emissions is mechanistic [29, 45, 20, 8, 7, 17]. These

models vary a lot in complexity and the type of mechanistic information they include. Model concepts

range from single point to three dimensional implementation and from a single type of framework45

such as biochemistry to frameworks coupling biochemistry, hydrology and settlement. Although these

models do restrict their predictions with mechanistic principles and have given interesting insights,

their prediction accuracy is often also very poor. Prediction with these models is poor because the

uncertainty in mechanistic assumptions is very large, especially for very complex models. In addition it

is difficult to reduce this uncertainty by model calibration because measured data is limited. The large50

uncertainty in mechanistic correctness is reflected by the wide spread of parameter values published

in literature [22].

To improve prediction accuracy, the challenge is to select a model structure that is constrained by

mechanistic principles and has minimum uncertainty in assumptions. In order to find such a model,

a more objective integrated assessment of environmental systems is needed [43, 15] in which model55

performance evaluation is generalized [4]. This type of assessment requires several prerequisites for

developing models. First, mechanisms from different environmental fields should be available to be

combined in order to include all suitable mechanistic information. Second, well established mechanistic

parameters with relative low uncertainty should be readily obtainable from databases or derivation

methods. Third, model performance should be able to be analyzed qualitatively and quantitatively.60

Statistical analysis of the remaining uncertainty in parameters in light of the measured data should

allow us to quantify the uncertainty in model structure, calibrated parameter values and mechanistic

correctness of the model. Finally, multiple reaction networks should be able to be quickly built and

2
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the results quickly assessed in order to find the optimal model. Current modeling approaches do not

fulfill all these prerequisites and therefore limit the possibility to find optimal models for prediction65

purposes.

The aim of this study is to develop a methodology that includes all the prerequisites previously

mentioned in order to enable us to find an optimal mechanistic model for anaerobic degradation of

MSW. The toolbox allows us to quickly build mechanistic biogeochemical reaction networks that may

include kinetic reactions, equilibrium reactions and environmental inhibitions in a multi-phase system.70

Parameter values are obtained from an extensive geochemical database [21], a derivation method

based on thermodynamic principles [16] and calibration based on measured data. Performances of

these reaction networks are evaluated quantitatively with statistical criteria obtained by applying

Bayesian inference with the DREAM algorithm [44, 18]. We illustrate our generic approach by finding

an optimal mechanistic model for describing a data set measured on a series of landfill lysimeters,75

previously published by Valencia et al. [36, 37, 35, 38, 39], by evaluating four possible reaction

networks. Our aim is to find a description which we can apply to full-scale anaerobic landfills.

2. Theory

2.1. The cycle of finding an optimal model structure

The toolbox we present here is a novel combination of several approaches enabling us to find an80

optimal mechanistic model for describing measured data. This method follows the scheme depicted

in figure 1 and allows a generic evaluation of model performance such as proposed by Bennett et al.

(2013) [4]. We start by defining a first possible mechanistic reaction network which should provide a

good fit to the measured data.

Subsequently, this reaction network is evaluated qualitatively by plotting the modeled data against85

the measured data and quantitatively by using a range of performance criteria which we obtain by

applying Bayesian inference on the most uncertain parameters. These criteria allow us to judge aspects

such as mechanistic correctness, parameter identifiability, model uncertainty, model sensitivity and

model complexity. Based on the results and the purpose of the model, we decide if the model describes

the measured data with sufficient (mechanistic) accuracy. If the accuracy is not sufficient, a next90

iteration is started where an update to the reaction network is evaluated until an optimal model is

found. All prerequisites combined in the toolbox are discussed in detail below.

3
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Figure 1: Scheme for finding an optimal mechanistic description for measured data with the toolbox

2.2. Defining the model structure with mechanistic information from different environmental frame-
works

2.2.1. Multiphase, multicomponent and multiprocess environment95

Model structures can be built that contain biogeochemical reaction networks within a multiphase

environment with mass transport across the model domain and mass transfer between the phases. A

schematic example of such a structure is given in figure 2. The model describes the fate of chemical

compounds present in the solid, gas and liquid phase. In each phase we track the change of the total

concentrations (CT
ref) and derived concentrations (CD) as a function of time. Total concentrations are100

calculated with the mass balances of building blocks of species e.g. H+ and CO3
−2 which are expressed

in terms of one reference species. Using chemical equilibrium approaches, we can calculate the derived

concentrations from the set of total concentrations (i.e. mass balances). Changes in total concen-

trations with time are caused by kinetic processes which can be either biochemical redox reactions,

transfer of compounds between phases and transport in or out of the model domain. Biochemical105
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reactions are influenced by environmental inhibitions and limitations.

To support quick implementation of a model structure, it is completely defined within a single

spreadsheet and solved with a generic matrix calculation method.

Figure 2: Schematic example of a model structure that can be build with the toolbox

2.2.2. Fully coupled rate dependent and equilibrium processes

Rate dependent processes and equilibrium processes are fully coupled within the model structure.110

This means that all derived concentrations are automatically recalculated when the total concentra-

tions change because of biochemistry and transport or transfer processes. For example, the total

concentration of H2CO3 in a standard water-carbonate system (i.e. CT
H2CO3

, CT
Ca+2 and CT

H+) changes

because of gas production. The model updates the CT
H2CO3

and as a result the pH and concentrations

of CO3
−2, HCO3

−, H2CO3 and CaCO3 are automatically updated. Full coupling allows accurate cal-115

culation of derived concentrations and their influence on the rate dependent processes in the system.

5
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Details on how to derive concentrations from mass balances according to equilibrium reactions are

given in Bethke et al. (2008) [5].

2.2.3. Type of rate dependent processes

Biogeochemical reaction rates (RK
CT

i
) are implemented as120

RK
CiT = µmax · CT

′

· I · si (1)

where µmax is the maximum rate, CT
′

is the concentration that drives the reaction, I is the total

inhibition factor ranging from 0 to 1 and si is the stoichiometry. This type of reaction supports

Monod kinetics when the inhibition factor is (partly) determined by substrate limitation and the total

concentration of bacteria is set as the driving concentration.125

The rates of change in the liquid phase (pl) and the gas phase (pg) due to the presence of a mass

transfer flux between phases are implemented as

FMF
C

T,pl
i

= kla ·
(
C

pl
′

i − Cpg
′

i ·KH ·R · T
)

(2)

FMF
C

T,pg
i

= FMF
C

T,pl
i

· Vl

Vg
(3)

where kla is the mass transfer constant, Cpl
′ and Cpg

′
are the driving concentrations (total or derived)130

in the water phase and the gas phase, KH is the Henry coefficient, T is the temperature, R is the

universal gas constant, Vl is the volume of the water phase and Vg is the volume of the gas phase.

The rate of change due to a mass transport flux (FMT
CT

i
) is implemented as

FMT
CT

i
= φ · CT

i
V

(4)

where φ is the mass transport flow and V is the volume of the phase.135

2.2.4. Type of equilibrium processes

Two types of equilibrium processes can be implemented in a model structure. The first type is a

true equilibrium reaction relating concentrations of species according to mass action law. The second

type is an equilibrium between the gas and the liquid phase. This equilibrium is implemented using

mass transfer reactions (eq. 2) with high values for kla.140

2.2.5. Environmental inhibitions and limitations

Rate inhibiting and limiting reaction terms are implemented using four mechanisms of biochemical

reactions taken from environmental studies (equations 5 to 8). These are substrate limitation (fSL) [23],

non-competitive inhibition (fNC) [10], inhibition of sulphate reduction by sulfide (fSS) and inhibition

6
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of sulphate reduction by protonated Volatile Fatty Acids (VFA) (fSA) [31]. In these equations, Cinh145

is the inhibiting concentration (either a total or derived concentration), Kinh is the inhibition or half

saturation constant and l is a shape parameter. Each mechanism gives an inhibition factor f ranging

from 0 to 1. Multiplication of all inhibition factors acting on a biochemical reaction gives its total

inhibition factor I (eq. 1).

fSL
(Cinh) = Cinh

Cinh +Kinh
(5)150

fNC
(Cinh) =

(
Kinh

Kinh + Cinh

)l

(6)

fSS
(Cinh) =

(
1− Cinh

Kinh

)l

(7)

fSA
(Cinh) =

(
1 +

(
Cinh

Kinh

)l
)−1

(8)

2.2.6. Selecting mechanistic parameter values from databases and derivation methods

Parameter values or bandwidths are entered into the spreadsheet where the model structure is155

defined. The geochemical parameters for the equilibrium reactions are automatically retrieved from

an extensive geochemical database which is part of the Orchestra chemical equilibrium model ([21]).

A wide variety in validated geochemical equilibria can be selected. As an option, activity correction

can be calculated with the Davies equation.

Stoichiometry and rate parameters of biochemical metabolic reactions can be derived from thermo-160

dynamic principles with an additional spreadsheet. This derivation method is adapted from Kleere-

bezem and van Loosdrecht, (2010) [16]. It allows to constrain the model with established mechanistic

information.

As an example, we illustrate the method with the derivation of a metabolic reaction for methanogen-

esis. Metabolism is a combination of catabolism (releasing energy) and anabolism (biological growth)165

which are coupled using the yield factor,

Yxs = CmolX
CmolS (9)

which specifies how much growth (X) occurs from substrate (S) given the amount of energy generated

by the catabolic reaction. CmolX is the number of moles of C in the biomass and CmolS is the number

of moles of C in the substrate. The redox half reactions for catabolism can be written as170

1C2H3O2
− + 2H2O ⇀↽ 2CO2 + 7H+ + 8e− (10)

7
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1C2H3O2
− + 9H+ + 8e− ⇀↽ 2CH4 + 2H2O (11)

which combine to the following catabolic reaction:

1C2H3O2
− + 1H+ ⇀↽ 1CO2 + 1CH4. (12)

Following the same principle, the anabolic reaction is as follows,175

0.5C2H3O2
− + 0.3H+ + 0.2NH4

+ ⇀↽ 1CH1.4O0.4N0.2 + 0.6H2O (13)

where we assume the generic molecular composition of bacteria (CH1.4O0.4N0.2) to be the same as

used by Henze et al. (1995) [12].

The growth yield is calculated with the method proposed by Kleerebezem and van Loosdrecht,

(2011). This is a partially empirical method based on the Gibbs reaction energy of the catabolic and180

anabolic reaction [11]. In this case, Yxs = 0.04 which leads to the following total metabolic reaction:

12.9C2H3O2
− + 12.7H+ + 0.2NH4

+ ⇀↽

1CH1.4O0.4N0.2 + 12.4CO2 + 12.4CH4 + 0.6H2O.
(14)

In addition to the stoichiometry, also the rate parameters for metabolic reactions can be estimated

from thermodynamic principles [11].

Estimated parameter values can be corrected for temperature using several relations. Maximum185

rates, equilibrium constants and the solubility of Calcite are corrected with equations 15-17 respectively

[41] [28]. In these equations, Te is the temperature of the environment, Tr is the reference temperature

of the parameter, 4H0 is the standard enthalpy, k is 64 kJ
mol , a is -171.9065, b is 0.077993, c is 2893.319

and d is 71.595.

ln (µmax
e ) = ln (µmax

r ) + ln
(
k

R
·
(

1
Tr
− 1
Te

))
(15)190

ln (Ke) = ln (Kr) + ln
(
4Ho

R · T 2
r
· (Te − Tr)

)
(16)

log10
(
Keq(Calcite)

)
= a+ b · Te + c

Te
+ d · log10 (Te) (17)

2.3. Solving the model structure with a generic matrix calculation method

The model structure is automatically assembled in to a system of ordinary differential equations

(ODE) with a generic matrix calculation method adapted from Reichel et al. (2007) [29]. This system195

of ODEs is fully coupled with the equilibrium calculator ORCHESTRA [21]. The ODEs are solved in

MATLAB and the equilibrium calculator is part of the JAVA memory space of MATLAB. This makes

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

the algorithm very efficient since both solvers use the same memory space while information about the

total and derived concentrations are exchanged via a JAVA link.

The set of ODEs for each phase can be written as200

dCT,water

dt − FT,water = RK (18)

dCT,gas

dt − FT,gas = 0 (19)

where FT are the total fluxes into the respective phase and RK are the total biochemical rates. The

total concentrations in the solid phase are included in the ODEs of the water phase and are expressed

per volume of water phase. The total fluxes FT,water, FT,gas and the total biochemical rates RK are205

calculated by vector summation over the number of fluxes or reactions j per process,

RK = µmax ◦CT
′

◦ I · S (20)

FT,water =
∑

j

FMT,water −
∑

j

FMF,water (21)

FT,gas =
∑

j

FMF,gas −
∑

j

FMT,gas − x ·
∑∑

j

FMF,gas −
∑

j

FMT,gas

 (22)

where µmax, CT
′

and I have size 1 × j, ◦ is the symbol for element-wise multiplication, S are the210

stoichiometry with size j × nl, FMF,water and FMT,water have size j × nl, FMF,gas and FMT,gas have

size j × ng and x are the molar fraction of the total concentrations in the gas phase. The last term in

FT,gas constrains the gas phase with a constant volume and a constant total pressure.

2.4. Evaluating model performance
2.4.1. Qualitative evaluation215

Model performance is evaluated visually by automatically generated plots combining the model

results with the measured data and plots of all modeled states. Because of the strong human capacity

for pattern detection, these plots may indicate extreme, under- or non-modeled behavior. In addition,

residuals are evaluated with QQ plots and auto-correlation plots.

2.4.2. Applying Bayesian inference220

In order to find a model structure which provides the best fit to the data, we also evaluate the

outcome of the simulation with several objective criteria. All these criteria are evaluated using the

results of Bayesian inference applied to the set of most uncertain parameters (θ). The outcome of

Bayesian inference,

p (θ|ŷ) ∝ p (θ) · L (θ|ŷ) , (23)225
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is the joint posterior probability distribution (p (θ|ŷ)) of the set of parameters given the measured

data. This distribution reflects the uncertainty in the different parameters. The posterior distribution

is calculated from the prior distribution of the parameters (p (θ)) and the likelihood of the parameters

in light of the measured data (L (θ|ŷ)). The posterior distribution is obtained using an adapted

version of the DREAM(ZS) algorithm [44, 18] where algorithmic settings and parameters are set to the230

recommended and default values.

The toolbox uses a Gaussian objective function, which includes the set of standard deviations of

total error (σ) for each subset of data, to evaluate the likelihood,

ln (L (θ|ŷ)) = −n2 · ln (2π)−
∑

ln (σ)− 1
2 ·
∑(

ŷ− y
σ

)2
(24)

where y is the modeled data and σ = [σsubset1
(m×1) ;σsubset2

(m×1) ; ...] with m being the size of a subset of data235

and all entries in σ(m×1) have the same value σsubset for that subset. Because it is often difficult to

estimate the measurement error, and it is more or less impossible to estimate the model error, we chose

to expand the set of uncertain parameters θ with the standard deviations σsubset for each dataset.

Prior distributions of uncertain model parameters are assumed to be uniform with an initial search

range that is 100× wider to ensure global convergence. Prior distributions of standard deviations are240

also uniform ranging from 1
5 · σ

subset to 5 · σsubset. Ranges in the prior distributions can be different

for other problems.

2.4.3. Quantitative criteria

The result from the Bayesian inference allows us to quantitatively compare the performance of

different model structures. Since our modeling objective is to find the model structure with minimal245

(mechanistic) uncertainty, we implemented criteria that quantify aspects related to this. For other

modeling objectives, other criteria/metrics [4, 43] may be more suited which are readily implemented.

One criterion is the difference in best fit or lowest total error (measurement error & model error)

between model structures. In addition, we can also assess the probability distribution of total errors

which is related to the combined probability distributions in calibrated parameters. The latter directly250

reflects the uncertainty of the complete model structure in light of the measured data. Even more,

the uncertainty of total error per subset of data can be compared between models with the marginal

probability distributions of the standard deviations.

A second criterion is the uncertainty in calibrated parameters for different model structures. Param-

eter uncertainty is quantified by the width of its marginal posterior distribution. A wider distribution255

indicates more uncertainty under the condition of the same prior distribution. For a quantitative

10
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comparison, the gain of information from marginal prior to marginal posterior for parameter i can be

quantified with the Kullback-Leibler divergence (DKL). This metric,

DKL =
∫

(p (θi|ŷ) · ln
(
p (θi|ŷ)
p (θi)

)
· dθi, (25)

is a non-symmetric measure of the dissimilarity between two probability distributions. Higher values260

of DKL indicate a larger information gain and therefore less uncertainty.

A third criterion is the presence of correlations between parameters in the model structure which can

be seen in the marginal posterior distributions. These correlations point to possibilities for optimizing

model structure by adding restrictions or lumping of correlated parameters.

A fourth criterion is the mechanistic completeness of model structure. Mechanistic completeness265

is evaluated by comparing the calibrated parameter bandwidths (i.e. 5%-95% quantiles) with ’ideal’

parameter values measured under non-limiting conditions. A close match between calibrated parame-

ters and ’ideal’ values indicates a mechanistically complete model structure. Parameters that strongly

deviate from ’ideal’ values indicate missing mechanistic processes.

A final criterion is the amount of information a model structure provides given its complexity.270

More complex models with a large number of parameters can be compared with simpler ones with the

marginalized likelihood (Lm) which is the probability of the measured data given the model structure,

not assuming any particular model parameters. It can be approximated with the harmonic mean of

likelihoods [24],

Lm =
(

1
N

N∑
i=1

L (θ|ŷ)−1

)−1

(26)275

where N is the number of likelihoods. The model structure with the highest marginal likelihood has

the best balance between information content and model complexity.

3. Results

3.1. The final four evaluated biogeochemical reaction networks

The dataset we used for testing our toolbox was obtained from Roberto Valencia [39, 36]. We280

present the final four model structures that were the outcome of our search for an optimal model with

the methodology provided by the toolbox. These four reaction networks are schematically depicted in

Figure 3. In this figure, the most simple network 1 is presented with black lines. Our hypothesis for

this network is that four kinetic reactions control the measured emissions. The first one is hydrolysis

lumped with acidogenesis. It converts the available biodegradable Solid Organic Matter (SOM) into285

a mix of Volatile Fatty Acids (VFAmix) with hydrolysis as rate limiting step. The second one is

11
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methanogenesis which converts the VFAmix into methane and carbon dioxide. The final two reactions

are decay of the two types of bacteria involved in lumped hydrolysis and methanogenesis with rates

which are 5% of the maximum growth rates [1]. Furthermore, only methanogenesis is influenced by

substrate limitation of VFAmix. The stoichiometry of the kinetic reactions is listed in table 1. We290

included the most common geochemical equilibrium reactions assuming a readily available excess of

Calcite to represent the high alkalinity of MSW. In addition, we assume that the exchange between

concentrations in the gas and liquid phases is instantaneous.

According to the experimental design, gas vents to the atmosphere and no other transport flows

are included. Because leachate was recirculated during the experiment, we simplified the problem to295

ideally mixed batch conditions. Model parameters which we considered to be well known are taken

from literature. These parameter values are listed in table 2 together with the initial experimental

conditions. The model parameters which we considered to be unknown or uncertain are listed in table

3 together with the prior ranges found in literature. These unknown parameters in the model’s reaction

network are obtained via Bayesian inference which fits the model outputs to the measurements.300

For reaction network 2, we increased the complexity by adding the main environmental inhibitions

that are known to influence the kinetic reactions in wastewater treatment. These inhibitions are non-

competitive inhibition of hydrolysis by pH and total concentration of VFAmix and non-competitive

inhibition of methanogenesis by pH and ammonia.

In reaction network 3, we further increased the complexity by adding a kinetic ammonium oxidation305

reaction. We implemented this reaction to find an explanation for the decreasing measured ammonium

concentration in time which normally does not occur under anaerobic conditions.

Finally, network 4 extends the reaction network further in order to include sulphate and sulfide.

These compounds are usually present in anaerobic environments and are known to inhibit methanogen-

esis and oxidize available biodegradable SOM. Adding mechanistic information about these processes310

may therefore optimize model performance. The following is included: 1) a kinetic sulphate reduc-

tion reaction, 2) corresponding equilibrium reactions, 3) inhibition of methanogenesis by H2S and 4)

inhibition of sulphate reduction by H2S and protonated VFAmix.

12
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Figure 3: Schematic representation of the final four reaction networks that were evaluated.

The most basic reaction network 1 is presented with the black lines. Complexity is increased stepwise from network
1-4 which is indicated by the dashed gray lines. Network 2 includes inhibition of hydrolysis by pH and CT

VFAmix
and

inhibition of methanogenesis by pH and ammonia. In network 3, an ammonium oxidation reaction is added. Network 4
is extended with sulphate reduction for which total concentrations, derived concentrations and inhibitions are included
accordingly. X represents bacterial biomass. Compounds that are in equilibrium between the gas phase and the liquid
phase have two colors.
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Table 1: Stoichiometry for the total concentrations in the biochemical reactions

SOM3 ) VFAmix
3) H2CO3 NH3 H2O CH4 SO4

−2 H2S Xacid Xmeth Xsulph H+

Hydrolysis1) −1 0.3 0.01 0.024 −0.088 - - - 0.18 - - -
Methanogenesis - −6.67 7.23 −0.2 −8.76 9.37 - - - 1 - -
Decay2 ) 0.92 - 0.08 0.14 −0.42 - - - (−1) (−1) (−1) -
Ammonium oxidation - - - −1 - - - - - - - −1
Sulphate reduction −10.6 27.1 −0.2 −27.1 −15.3 15.3 1 −30.5

The gray cells highlight the reaction driving concentrations. 1) In this reaction, the growth yield for acidogenesis on glucose is used: YXS = 1.09. 2) Each
bacterial biomass (X) decays individually. 3) The elemental compositions of SOM is CH1.79O0.63N0.06 and VFAmix is C2.64H5.28O2 which were derived from
the data measured in the lysimeter experiments.

Table 2: Model parameters and initial conditions
Kinh l Initial conditions

µmax
aci 0.12 [1] fNC

(hyd,CD
H+ ) 1× 10−5 2 [34] C

T1)

SOM 5.44 CT
Cl− 0.1

µmax
decay 0.05 · µmax

growth [1] fNC
(hyd,CT

VFA) 2.34× 10−2 1 [34] CT
SO4

−2 0.16 Vg 250
KH,CH4

1.5× 10−3 [2] fNC
(meth,CD

H+ ) 5× 10−7 2 [34] CT
NH3

0.065 ptot 1

KH,NH3
71.4 [2] fNC

(meth,CD
NH3

) 1.5× 10−3 1 [34] CT
H2CO3

1.13 T 303

KH,H2S 0.11 [2] fNC
(meth,CD

H2S) 4.29× 10−2 1 [27] CT
Ca+2 1.16 pH 6.15

KH,H2O 2.3× 103 [2] fSS
(sulph,CD

H2S) 1.61× 10−2 0.401 [31] CT
Na+ 0.2 Vl 325

KH,CO2
0.03 [2] fSA

(sulph,CD
HVFA) 9× 10−4 1.08 [31]

1) Initial concentration of SOM is taken from the total amount of carbon produced as biogas in the experiment. Units of maximum rates, Henry constants,
inhibition constants, concentrations, temperatures, pressures and volumes are respectively d−1, mol

L·atm , mol
L , mol

L , atm, K and L. All parameter values are
corrected for 303K except Kinh,CD

H2S
(298 K).
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3.2. Outcome of the Bayesian inference applied on the four networks

The result of the Bayesian inference allows us to evaluate the quality of performance of our four315

model structures. We start with the most basic evaluation, visual inspection of fit. Figure 4 presents

the modeled data with the highest likelihood (in red) and the related uncertainty bandwidths (in green)

together with the measured data (in blue) for each network. Visual inspection clearly shows that some

networks perform better than others. The fit for the cumulative biogas is better in networks 2− 4 and

the fit for ammonium concentration is better in networks 3− 4. In addition, the uncertainty is lower320

in networks 2− 4 indicated by slightly narrower green bandwidths.

Visual judgment, however, reveals very little about the mechanistic correctness and parameter

uncertainty in the models. The DKL values in table 3 indicate the uncertainty of the calibrated

parameters relative to the different model structures. Higher values mean lower uncertainty. The

uncertainty in the calibration of KSL(meth)
inh,CT

VFA
, for example, is much lower for network 2− 4 than network325

1. Preferably, we select a model with a low uncertainty in all calibrated parameters. The uncertainty

in the total error for each subset of data is shown per network by the DKL values of the standard

deviations. This shows for instance that the uncertainty for the subset of ammonium is much lower in

networks 3− 4 than networks 1− 2.

The posterior bandwidths (5%−95% quantiles) in table 3 reveal how close the calibrated parameters330

are to ’ideal’ values measured under non-limiting conditions. Parameters that are close are indicated

in bold. Ideally for mechanistic completeness, all calibrated parameters should be close to ’ideal’

values. Network 2 − 4 are therefore more mechanistic correct than network 1 because the calibrated

bandwidths of µmax
hyd and µmax

meth are closer to ’ideal’ values.

Most parameters in the networks are not correlated except for the maximum rate and the half335

saturation constant of methanogenesis in the less complex networks. These correlations are presented in

Figure 5. Interestingly, the correlation becomes weaker as the complexity and mechanistic information

content of the model structures increases.

The log-normal marginal likelihoods-values in figure 4 show the performance of the networks with

respect to the balance of information content (model complexity) versus model uncertainty. They show340

that although network 4 is most complex, the added information improves the maximum likelihood

without increasing model uncertainty too much.

When evaluating model uncertainty based on statistics, it is important to check if the statistical

assumptions applied are valid. This means that the probability of the residuals should be normally

distributed because we apply a Gaussian likelihood. We check this with Q-Q plots and normalized345

autocorrelation functions (ACF) for the residuals of the best fit results of network 4 which are presented
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in figure 6. The Q-Q plots show residual quantiles (in blue) vs quantiles from the theoretical normal

distribution. When the residual quantiles are normally distributed they should coincide with the

theoretical red line. Apparently, not all residuals are normally distributed. Therefore, some error is

present in the statistical evidence we apply to evaluate our models. The same violation of normal350

distribution is indicated by the autocorrelation of the residuals. However, for the type of evaluations

we apply this statistical error has minimal impact. If one is interested in a more statistical correct

evaluation, we suggest to use the general likelihood function presented by Schoups and Vrugt et al.

(2010)[33].

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Figure 4: Measured data and best fit model results for the four reaction networks
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Table 3: The prior ranges, posterior ranges (5% − 95% quantiles) and information gain (DKL) for the inferred parameter per network
µmax

hyd (d−1) µmax
meth (d−1) K

SL(meth)
inh,CT

VFA
(mM) C

T(ini)
Xmeth

(mM)
quantiles DKL quantiles DKL quantiles DKL quantiles DKL

Prior 0.09-0.26 [41] 0.04-0.47 [22] 0.03-420 [22] 0.27-19 [25]
Network 1 0.004-0.0045 10.6 0.013-0.029 7.72 330-1318 2.12 8.6-13.5 5.70
Network 2 0.052-0.060 7.84 0.127-0.199 6.24 60-152 4.54 8.8-12.6 5.97
Network 3 0.056-0.069 7.30 0.095-0.167 6.23 95.5-184 4.54 12.9-25.3 4.83
Network 4 0.050-0.061 7.55 0.095-0.145 6.63 152-259 4.24 14.5-25.8 4.93

µmax
NH4

(d−1) µmax
sulph (d−1) K

SL(sulph)
inh,CT

SO4
−2

(mM) C
T (ini)
Xsulph

(mM)

quantiles DKL quantiles DKL quantiles DKL quantiles DKL
Prior 0.001-1 0.024-2.4 [31] 0.178-0.26 [30] 0.27-19 [25]
Network 1
Network 2
Network 3 0.0044-0.0052 6.94
Network 4 0.0043-0.0052 6.84 16.47-210 0.26 952-25085 1.06 0.095-120 2.95

σbiogas (m3) σVFA (mM) σpH σNH4
+ (mM)

quantiles DKL quantiles DKL quantiles DKL quantiles DKL
Prior 3.41-85.2 0.05-1.24 0.16-3.95 0.005-0.136
Network 1 4.19-5.14 8.86 0.13-0.19 7.47 0.24-0.28 8.82 0.12-0.15 5.93
Network 2 2.12-2.52 9.76 0.12-0.17 7.62 0.27-0.32 8.86 0.14-0.17 5.76
Network 3 2.19-2.62 8.68 0.12-0.17 7.65 0.27-0.32 8.18 0.029-0.036 7.24
Network 4 2.06-2.49 9.64 0.12-0.17 7.58 0.23-0.26 9.11 0.029-0.038 7.06

σpCO2
(atm) σpCH4

(atm)
quantiles DKL quantiles DKL

Prior 0.04-1.01 0.04-1.05
Network 1 0.12-0.14 7.99 0.11-0.13 8.10
Network 2 0.13-0.16 7.89 0.13-0.16 7.91
Network 3 0.13-0.17 7.87 0.13-0.16 7.82
Network 4 0.13-0.17 7.82 0.13-0.16 7.79

Quantiles that are comparable with ’ideal’ values measured under non-limiting conditions are presented in bold.
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Figure 5: Correlations between parameters per network

Figure 6: Q-Q plots and autocorrelation functions (ACF) per sub dataset of the best fit residuals of reaction network 4

4. Discussion & Conclusions355

The aim of the methods combined in the toolbox is to choose an optimal network with which we can

describe anaerobic digestion of MSW. We believe this novel approach helps to reduce the ambiguity

in model structure and calibrated parameter values reported in literature for a given environmental

system. It strengthens (qualitative) judgment of model performance by providing quantitative criteria

for evaluating (mechanistic) model uncertainty and it allows integrated environmental assessment. As360

a result, we obtain model structures which allow us to make predictions with a higher certainty because

we have included more (objective) information for selecting the reaction network.
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4.1. Performance of network 1

The most basic reaction network 1 reasonably reproduced a significant portion of the measured

data (figure 4) with low uncertainty in total error (narrow green bandwidths). The model captures the365

values and trends of measured VFAmix, pH, pCH4 and pCO2 in time. This good fit was achieved by

selecting a set of reactions with the correct stoichiometry and parameter values from well established

anaerobic reaction networks from literature, databases and derivation methods. The toolbox optimizes

the implementation of such networks.

The model based on reaction network 1, however, does not provide a nice fit to all subsets of data.370

Using the results from the Bayesian inference, we modified the model structure in order to improve

the results. Figure 5 shows that KSL(meth)
inh,CT

VFA
is strongly correlated with µmax

meth. This suggests that both

parameters can be lumped together or that another process is being compensated for by the correlation

of these two parameters. The results also show that the optimized values of probability distributions of

the maximum rates are low compared to ’ideal’ values. We concluded that limitations or inhibitions are375

missing in the reaction network which reduce prediction accuracy and cause the poor fit for cumulative

biogas and ammonium.

4.2. Performance of network 2

Network 2 is extended with reaction terms which include the main environmental inhibitions acting

on hydrolysis and methanogenesis. Assessing the results for this network indicate that this extension380

significantly improves the model fit of the cumulative biogas. In addition the calibrated maximum

rates are in closer agreement with ’ideal’ values. We conclude that the mechanistic description is more

correct, while all parameters are still identifiable within sharp bandwidths (although some with slightly

broader probability distributions than in network 1).

Adding the inhibition terms weakened the correlation between KSL(meth)
inh,CT

VFA
and µmax

meth. The value of385

K
SL(meth)
inh,CT

VFA
is still high compared to ’ideal’ values which indicates that this parameter compensates for

a missing mass transport limitation in the model.

The difference in calibrated values between network 1 and network 2 nicely illustrates how easily

ambiguity is created in published parameter values and outcomes of models [22]. By assuming a

slightly different model structure, different sets of calibrated values will be reported which in turn390

may be used in yet again different model structures leading to wrong predictions. The only way to

reduce this ambiguity is to report calibrated parameters together with the reaction networks and model

structures from which they have been defined. Ideally the reactions should be mechanistically correct

and the resulting parameters should be identifiable (i.e. possessing a narrow probability distribution

without being correlated to other parameters). For this, statistical evaluation of model outcome and395
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parameter distributions is necessary because basic evaluation by eye does not give the information

needed to judge mechanistic correctness and identifiability.

In the case of reaction network 2, the evaluation indicates a structure that is nearly correct. How-

ever, the concentration of ammonium is still overestimated by the model. This is to be expected since

hydrolysis releases ammonium and the anaerobic reaction network 2 does not include an ammonium400

removal process. The experimental results clearly indicate that such a process occurs in the lysimeter.

4.3. Performance of network 3

In network 3, a relatively simple ammonium oxidation process is added to the reaction network.

As a result, the model fit of the ammonium concentration improved drastically, while the rest of the

model performance stayed similar to that of network 2. The modeled pH and the calibrated parameter405

bandwidths are not significantly influenced. The results indicate that in this lysimeter experiment an

ammonium oxidation rate of 0.0048 d−1 is likely. The ammonium oxidation in the experiment was

most likely caused by intrusion of oxygen when leachate was recirculated.

4.4. Performance of network 4

Although the results of network 3 are very good, we chose to do one more iteration. The waste410

used in the lysimeter most probably contained a source of sulphate (gypsum from building waste).

This implies that sulphate reduction can occur which may explain the delay in onset of biogas pro-

duction observed in the measured data. Although neither sulphate or sulphide were measured in this

experiment, the results indicate an improved fit because both the errors in the fit of cumulative biogas

and pH decreased. The final parameter distributions of the other parameters remained the same as415

found for network 3. The calibrated parameter values for sulphate reduction have a wide range and

are high compared to ’ideal’ values so we have to be careful in judging the mechanistic correctness of

this approach. The improved datafit can be explained by the mechanism of sulphate reduction but it

just as well can be attributed to the additional degrees of freedom added by the extra reaction. Mea-

surements of sulphate and sulphide species are necessary to make a conclusion about how to improve420

the reaction network.

4.5. Selecting the optimal model structure for anaerobic digestion of MSW
4.5.1. For lysimeter scale

Based on the evaluation of network performances, we choose reaction network 3 as the optimal

model structure for anaerobic digestion of MSW on a lysimeter scale. All parameters are either based425

on thermodynamic principles, taken from well established geochemical databases or calibrated with

bandwidths which are in agreement with ’ideal’ values. This strong mechanistic character of the
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model together with its low uncertainty in calibrated parameters increases confidence in (long-term)

prediction accuracy compared to other model structures.

For the value ofKSL(meth)
inh,CT

VFA
, we suggest to either keep it as a parameter to be calibrated as a ’material430

property’ for the system under investigation or to further extend the model with a transport limitation

mechanism such as diffusion with an extra transport parameter which then needs to be calibrated.

Network 4 is not preferred over network 3 because the mechanism of sulphate reduction can not

be adequately calibrated with this dataset. The improved likelihood is not guaranteed when applying

this reaction network to other experiments and conditions. Calibration of network 4 with an extended435

measured dataset including sulphate or sulfide measurements would be very interesting.

Another interesting option would be to include the measurement error in the likelihood function.

This was not possible for this dataset since the measurement error was unknown. Nevertheless, when

included a distinction between model and measurement error could be made. A fully correct model

would by necessity include all measured data within the green uncertainty bandwidths in figure 4.440

4.5.2. For full scale

For full scale application, we select network 2 as the optimal model structure. Network 2 is preferred

over network 3 because the ammonium oxidation in network 3 is modeled with a non-mechanistic

first order decay function based on the observations only. In this experiment, air intrusion during

recirculation of leachate is causing this degradation. This is probably not representative for large scale445

anaerobic digestion of waste in landfills.

5. Acknowledgments

This research is supported by the Dutch Technology Foundation STW, which is part of the Nether-

lands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of

Economic Affairs. We thank Roberto Valencia for providing us with the original data from his lysime-450

ter experiments. We also thank Jasper Vrugt for providing us with a very efficient DREAMZS module

which is included in the toolbox. Furthermore, we like to thank Jasper Vrugt and the anonymous

reviewers for their comments which helped us to greatly improve the paper.

6. Supporting Information

The toolbox is implemented in MATLAB[19] and the algorithm is available at DOI: 10.4121/uuid:aefbaeb9-455

85be-4fa6-a29e-a9cb71d0fb3a. Here, also a detailed manual is provided on how to use the toolbox. The
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used and provided by Jasper Vrugt. A single integration of a network takes approximately 2.5 seconds

and a Bayesian inference run with 250.000 iterations takes approximately 1 week. Inference run time460

can be substantially decreased (1
3 ) when Markov chains are run in parallel.
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Dear editor,  

Thank you for your fast reply, we are very happy that our manuscript is considered for 

publication in Environmental Modelling & Software (EM&S). We also thank you for your 

additional comments which enabled us to improve the transparency and framing of the presented 

methodology and results. We double checked the grammar in the paper and changed the 

following according to your comments. 

In line 55, we included two citations of papers from EM&S (Vrugt et al. (2016) and Kelly et al. 

(2013)) which express the need for a more objective integrated assessment of environmental 

systems.  These are included to show that novel methods such as the one we present are 

necessary to decrease uncertainty in modeling of environmental systems. Our toolbox decreases 

model uncertainty by combining mechanistic information from different environmental fields 

and evaluating models based on qualitative and quantitative criteria.  

In line 56, we included a reference to Bennett et al. (2013) who propose a generic evaluation 

procedure of model performance. Such an approach strengthens the credibility and relevance of 

modelling reported which is in line with the methodology we present. In lines 83-92, we indicate 

that our method supports all five evaluation steps proposed by Bennett et al. (2013). In our 

evaluation, however, the step of checking the data is minimal because the available measured 

data and information about its error was very limited. Nevertheless, we believe that the 

characteristics of our novel methodology are sufficiently demonstrated and that the best model is 

satisfactory given the scope of the paper.   

In section 2.4, we added a subsection describing the qualitative performance criteria that are 

generated by the toolbox. In section 2.4.3, we justify our choice in quantitative criteria. We chose 

a set of criteria that enabled us to quantify aspects related to the (mechanistic) uncertainty of the 

models which is in line with the purpose of our modeling exercise. In addition, we indicate that 

other criteria suited for other modeling purposes are readily implemented.  

Results and discussion are only slightly modified because we believe that the changes made in 

the introduction and theory already improved their framing and justification significantly. 

Furthermore, we modified the conclusion about the best model into two steps. First we conclude 

which model is best for lysimeter scale and then we conclude which model is best for full scale.     

We thank you for your time and hope our paper is now fit to contribute to Environmental 

Modelling & Software.  
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