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 a b s t r a c t

Fault detection and diagnosis (FDD) are crucial to improving the efficiency of heating, ventilation, and air condi-
tioning (HVAC) systems, reducing energy waste, and maintaining indoor comfort. Diagnostic Bayesian Networks 
(DBNs) present a compelling approach, offering robustness to uncertainty, adaptability to different sensor con-
figurations, and interpretable inference. Existing FDD studies for air handling units (AHUs), however, are often 
limited to simulation or laboratory settings, seldom consider AHUs with heat recovery wheel (HRW) in operation, 
and rarely analyze how diagnostic performance changes under diverse sensor configurations. This study defined 
three practical sensor configurations (Sensor-Rich, Standard, and Limited) based on international guidelines and 
a practical survey, developed a corresponding DBN framework, and evaluated its performance on seventeen com-
mon faults using real-world data from an AHU in a Dutch office building. Existing FDD studies are often limited 
to simulation or specific Air Handling Unit (AHU) types with fixed sensor configurations, rarely investigating 
AHUs with heat recovery wheels, which are common in Europe. This study addresses these gaps by first defining 
three sensor configurations (Sensor-Rich, Standard, and Limited) based on international guidelines and a practi-
tioner survey. A DBN-based FDD model was then developed for these configurations using historical data, expert 
knowledge and subsequently evaluated for its ability to diagnose seventeen common faults in an operational 
AHU with heat recovery wheel.The DBN correctly diagnosed fifteen, nine, and four faults for these configura-
tions, respectively. The results show that increasing sensor availability improves overall diagnostic performance. 
However, certain cases demonstrate that additional measurements can also introduce conflicting evidence and 
reduce diagnostic accuracy. The study suggests that sensor selection must be combined with effective DBN model-
ing strategies to achieve robust diagnosis. Taken together, the analysis of key sensors and DBN modeling practices 
provides practical guidance for designing and implementing DBN-based FDD in common European AHU systems 
under diverse sensor configurations.The results indicate that increasing sensor quantity alone does not improve 
FDD performance; strategic sensor selection, placement, and effective data processing are also crucial.

1.  Introduction

According to official reports from the European Parliament and 
Council, commercial and residential buildings collectively account for 
approximately 40% of total energy consumption in EU countries [1]. 
Among this, Heating, Ventilation, and Air Conditioning (HVAC) systems, 
which are essential to maintaining indoor air quality and climate com-
fort, are primary energy consumers in buildings [2]. However These 
systems are also prone to faults, such as component malfunctions, im-
proper installations, sensor biases, and suboptimal setpoints, resulting 
in substantial energy waste in buildings [3,4]. Consequently, there is an 
urgent need to implement effective Fault Detection and Diagnosis (FDD) 
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tools, not only to ensure a healthy and comfortable indoor environment 
but also to minimize energy waste and reduce maintenance costs.

This work focuses on FDD for Air Handling Units (AHU), essential 
HVAC components that connect primary heating and cooling sources 
with building zones, regulate fresh air intake and significantly impact 
building energy use [5]. FDD tools for AHUs can generally be divided 
into two categories: knowledge-based and data-driven approaches 
[6,7]. In knowledge-based approaches, fault detection rules are 
developed based on predefined rules or physical models, and diagnosis 
simulates the diagnostic reasoning of HVAC experts [8,9]. AHU perfor-
mance assessment rule (APAR) is a classical knowledge-based FDD tool 
that uses a set of expert rules derived from mass and energy balances to
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\begin {equation}P(F_i | S) = \frac {P(S | F_i) \cdot P(F_i)}{P(S)} \label {Xeqn1-1}\end {equation}
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\begin {equation}\eta _{sa} = \frac {T_{oa} - T_{pre}}{T_{oa} - T_{ra}} \label {Xeqn2-2}\end {equation}


\begin {equation}\eta _{ea} = \frac {T_{ra} - T_{eha}}{T_{ra} - T_{oa}} \label {Xeqn3-3}\end {equation}
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Nomenclature

 No. Name of the Variable  Sign  Unit
 1 Indoor air temperature 𝑇in ◦𝐶
 2 Indoor air temperature setpoint 𝑇in,set ◦𝐶
 3 Supply air temperature 𝑇sa ◦𝐶
 4 Supply air temperature setpoint 𝑇sa,set ◦𝐶
 5 Supply air temperature in 

distribution
𝑇sad ◦𝐶

 6 Preheat air temperature 𝑇pre ◦𝐶
 7 Return air temperature 𝑇ra ◦𝐶
 8 Return air temperature in 

distribution
𝑇rad ◦𝐶

 9 Outdoor air temperature 𝑇oa ◦𝐶
 10 Heating coil valve openness 𝑈hc  %
 11 Predicted heating coil valve 

openness
𝑈hc,pred  %

 12 Supply air static pressure 𝑃sa  Pa
 13 Supply air static pressure setpoint 𝑃sa,set  Pa
 14 Predicted supply air static 

pressure
𝑃sa,pred  Pa

 15 Filter pressure difference Δ𝑃fi  Pa
 16 Supply fan pressure difference Δ𝑃sf  Pa
 17 Predicted fan pressure difference 𝑃sf,pred  Pa
 18 Supply fan speed 𝑁sf  %
 19 Predicted supply fan speed 𝑁sf,pred  %
 20 Supply air flow rate 𝐹sa  m3/h
 21 Nominal supply air flow rate 𝐹sa,nm  m3/h
 22 Nominal heat recovery efficiency 𝜂hrw,n  %
 23 Maximum heat recovery 

efficiency
𝜂hrw,max  %

 24 Heat recovery efficiency (Supply) 𝜂sa  %
 25 Heat recovery efficiency 

(Exhaust)
𝜂eha  %

 26 CO2 concentration 𝐶𝑂2  ppm
 27 Supply fan speed 𝑁sf  %
 28 Predicted supply air temperature 𝑇sa,pred ◦𝐶
 29 Exhausted air temperature 𝑇ea ◦𝐶
 30 Supply coil water temperature 𝑇sw ◦𝐶
 31 Supply air flow rate in Zone 1.05 𝐹sa,105  m3/h
 32 Supply air flow rate in Zone 

North
𝐹sa,north  m3/h

 33 Supply air flow rate in Zone 
South

𝐹sa,sorth  m3/h

 34 Indoor air temperature in Zone 
1.05

𝑇in,105 ◦𝐶

 35 Indoor air temperature in Zone 
North

𝑇in,north ◦𝐶

 36 Indoor air temperature in Zone 
South

𝑇in,south ◦𝐶

 37 Indoor air temperature setpoint 
in Zone 1.05

𝑇in,105set ◦𝐶

 38 Indoor air temperature setpoint 
in Zone North

𝑇in,northset ◦𝐶

 39 Indoor air temperature setpoint 
in Zone South

𝑇in,south ◦𝐶

diagnose faults [10]. The development of knowledge-based FDD ap-
proaches relies heavily on domain knowledge and may be less adaptive 
to the diversitydiversety of AHU design and operation. On the other 
hand, data-driven approaches reduce strongly dependency on domain 
knowledge and offer a more flexible alternative by learning from his-
torical data to automatically detect and classify faults. Several popular 
machine learning algorithms have been successfully applied to diagnose 

faults in AHUs, including Support Vector Machine (SVM) [11,12], Ex-
treme Gradient Boosting (XGBoost) [13–15], Convolutional Neural Net-
work (CNN)[16–18] Transformer-based neural network (Transformer) 
[19], Multi-Task Network (MTN) [20], Generative Adversarial Network 
(GAN) [20,21]. Despite their strong diagnostic capabilities, data-driven 
approaches are highly dependent on large amounts of high-quality train-
ing data, which is often unavailable in real-world buildings [22,23]. Fur-
thermore, since they are usually trained on specific datasets, their ap-
plicability is typically limited to particular AHU systems or operational 
conditions, limiting their generalizability [24–26]. Diagnostic Bayesian 
networks (DBNs), as probabilistic graphical models, provide a promis-
ing solution. They align with HVAC design and implementation pro-
cesses, offering key advantages such as flexible modeling (accommodat-
ing both knowledge-based and data-driven approaches), robustness to 
incompleteness and inaccuracy in sensor measurements, and enhanced 
modeling interpretability [27–29]. Zhao et al. [28,30] successfully ap-
plied DBNs for AHUs of a typical small commercial building from the 
American Society of Heating, Refrigerating and Air Conditioning Engi-
neers (ASHRAE) Project RP-1312. Li et al. [31] proposed a hybrid ap-
proach that leverages an improved genetic algorithm to optimize the 
DBN structure, enhancing its diagnostic performance and adaptability. 
Furthermore, they proposed a hierarchical object oriented DBN method 
for large-scale and complex systems [32], which was evaluated on an in-
dustrial building with 51 AHUs. Chen et al. [33] investigated a discrete 
DBN for cross-level faults in the AHU and the primary cooling subsystem 
of one campus building in the U.S. More systematically, Taal et al. [34] 
proposed the Four Symptoms and Three Faults (4S3F) reference archi-
tecture to guide DBN modeling for HVAC systems; it has been applied 
to demand-controlled ventilation in a Dutch university building and to 
full HVAC systems [35]. Moreover, Wang et al. [36] applied a DBN to 
the AHU heating component in a real office building using the same 
framework.

Sensor configurations play a significant role in influencing FDD per-
formance. Most studies adopt a "top-down" approach, using feature se-
lection to identify the important sensors for FDD in a sensor-rich labora-
tory setting or simulation software [20,37–40]. However, the idealized 
laboratory sensor setting may not accurately reflect the variability and 
constraints found in actual building environments. Real-world sensor 
configurations are influenced by factors such as budget, space limita-
tions, and the specific needs of each building system [41,42], which can 
differ greatly from controlled lab conditions. Therefore, this study aims 
to better align with the practical realities of the building industry by 
adopting a "bottom-up" approach, which begins with a detailed investi-
gation of existing sensor configurations in AHUs and then investigates 
their impact on FDD performance.

Most studies focus on specific types of AHUs with mixing box heat 
recovery system using the dataset from ASHRAE Project RP-1312 [5], 
which includes comprehensive field surveys, laboratory tests and perfor-
mance evaluations of AHU under faulty conditions [5,43–45]. However, 
during the Covid-19 pandemic, air recirculation was prohibited to avoid 
high infection risk according to the guidelines of many professional 
HVAC associations [46]. In contrast, the European Union mandates the 
installation of alternative heat recovery devices, such as rotary and plate 
heat exchangers, rather than recirculation [47]. AHUs with heat recov-
ery systems play a key role in providing safer and healthier ventilation, 
especially in the post-COVID era, and very few related FDD studies have 
been conducted. Nehasil et al. developed a rule-based FDD tool for ven-
tilation units with heat recovery and validated it on several field AHUs 
[48]. Geoffroy et al. published an experimental dataset for an AHU with 
a fixed plate air-to-air heat exchanger and simulated faults to benchmark 
FDD algorithms, but did not develop a complete FDD scheme on top of 
this dataset [49]. Melgaard et al. introduced contextual KPIs and virtual 
sensors to track the performance of a rotary heat exchanger in an AHU 
during operation, focusing on performance monitoring rather than full 
fault diagnosis [50]. More recently, Lu et al. implemented a diagnostic 
Bayesian network for heat recovery ventilation units with rotary heat 
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recovery wheels (HRW) in a Dutch campus building, assuming a fixed 
Building Management System (BMS) sensor set and without systemati-
cally exploring alternative sensor configurations or fault-severity levels 
[51]. Collectively, these studies either focus on single-component per-
formance or limited failure modes, lack a complete FDD framework for 
AHUs, or do not focus on model diagnosis performance under varying 
sensor configurations.Moreover, most studies focus on specific types of 
AHUs using the dataset from ASHRAE Project RP-1312 [5], which in-
cludes comprehensive field surveys, laboratory tests and performance 
evaluations of AHU under faulty conditions [5,43–45].

In terms of heat recovery, the AHUs investigated in ASHRAE Project 
RP-1312 rely on recirculated air through a mixing box [5]. But for im-
proved energy efficiency, the European Union mandates the installa-
tion of heat recovery devices, such as rotary and plate heat exchangers, 
rather than recirculation [47]. Additionally, during the Covid-19 pan-
demic, air recirculation was prohibited to avoid high infection risk ac-
cording to the guidelines of many professional HVAC associations [46]. 
Heat recovery devices can still be utilized, as long as the leakage is 
within acceptable limits, as Federation of European Heating, Ventilation 
and Air Conditioning Associations (REHVA) indicates that heat recov-
ery device installation is justified for a ventilation system for leakage is 
below 5% [52]. 

This research therefore focuses on AHUs with HRW and extends pre-
vious work on DBN-based fault diagnosis by analyzing its real-world per-
formance under diverse sensor configurations. To better align with the 
practical realities of the building industry, this study adopts a "bottom-
up" approach, beginning with a detailed investigation of existing sensor 
configurations from both guidelines’ recommendations and a practice 
survey of real-world AHUs in the Netherlands. Then three sensor con-
figuration levels are defined: Limited, Standard, and Rich, ranging from 
the essential sensors required for basic AHU operation to advanced mea-
surements for monitoring and optimization.The contribution of this pa-
per can be summarized as follows:

• Defines three sensor configuration levels based on the investigation 
of recognized guidelines and practice survey.

• Develops a DBN framework, based on a real-world building’s AHU 
equipped with a heat recovery wheel, and evaluates fault diagnosis 
performance across varying sensor configurations.

• Provides recommendations for sensor deployment and identifies key 
sensors in AHU systems for FDD.

• Investigates DBN’s modeling practices.

The remainder of this paper is organized as follows. Section 2 out-
lines the research framework, including the DBN and the 4S3F reference 
model, which is a structured way to defined and link AHU symptoms 
and faults for AHU FDD. Section 3 describes the FDD sensor configu-
rations from guidelines and the practice survey. Section 4 presents the 
case study, detailing the DBN structure, symptom and fault definitions, 
parameter modeling, and data collection, followed by model evaluation 
through Bayesian inference and fault isolation. Section 5 reports the re-
sults of symptom detection, case analyses across sensor configurations, 
and diagnostic sampling scenarios. Finally, Sections 6-7 provide the dis-
cussion and conclusion, highlighting key findings, limitations, and fu-
ture research directions.

2.  Methodology

2.1.  Research framework

A systematic methodology was developed to investigate the impact 
of different sensor configurations on fault diagnosis performance within 
the AHU system. This methodology, illustrated in Fig. 1, encompasses 
the following key steps: (1) Sensor Configuration Survey, (2) FDD Mod-
eling, (3)Experiment & Data Collection, (4) FDD Result Evaluation, and 
(5) Discussion.

Fig. 1. Flowchart of the DBN-based fault diagnosis method in three sensor con-
figurations based on recognized guidlines and practice survey.

• Step 1 (Section 3): Three sensor configurations (Rich, Standard, and 
Limited) were defined based on established guidelines, specifically 
ASHRAE Guideline 36 [53], which is widely used internationally, 
and ISSO Publication 31 from the Dutch Institute for the Study and 
Promotion of Research in Building Installations (ISSO) [54], relevant 
for the Dutch case study building. In addition, a practice survey of 
real-world buildings was conducted.

• Step 2 (Section 4), FDD modeling was developed. This process in-
volved defining the model’s key components: fault nodes, which rep-
resent potential system malfunctions (e.g., a stuck valve), and symp-
tom nodes, which represent the observable data (e.g., sensor read-
ings) used to detect those faults. These nodes were defined for three 
sensor configurations, fault-symptom relationships were established 
based on domain knowledge and expert input, and DBN parameters 
were modeled by defining prior and conditional probabilities.

• Step 3 (Section 4.5), An experiment was conducted in which faults 
were introduced into the AHU system and data was primarily col-
lected from the Sensor-Rich configuration. Datasets for the other 
configurations were derived by reducing available sensors.

• Step 4 (Section 5), FDD results were evaluated, including fault iso-
lation and interpretation of results in three sensor configurations.

• Step 5 (Section 6), the results were discussed, considering real-world 
application and system complexities, comparisons across sensor
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Fig. 2. 4S3F method illustrating relationships between symptoms and faults.

configurations, sensor recommendations and the role of key sensors, 
and modeling practices for diagnostic samples.

2.2.  Diagnostic Bayesian network and 4S3F

This section introduces the FDD methodology for AHU, which in-
cludes DBN, the Noisy-OR model, and the 4S3F reference model.

A DBN is a probabilistic graphical model representing dependen-
cies between fault and symptom nodes through a directed acyclic graph 
(DAG) [55]. Fault nodes indicate potential system faults (typically with 
two states: faulty and fault-free), while symptom nodes represent ob-
servable variables that respond to faults. The directed edges from the 
fault to the symptom nodes represent the causal relationships between 
them.

Posterior fault probabilities in the DBN are calculated using Bayes’ 
theorem:

𝑃 (𝐹𝑖|𝑆) =
𝑃 (𝑆|𝐹𝑖) ⋅ 𝑃 (𝐹𝑖)

𝑃 (𝑆)
(1)

This Bayesian inference framework enables the update of fault pos-
terior probability as a new detection of symptoms.

Each node in the DBN is quantified by a conditional probability ta-
ble (CPT), which specifies the probability of each node state for every 
possible combination of its parent-node states. For a binary symptom 
node with 𝑘 binary fault parents, a full CPT requires 2𝑘 probability pa-
rameters. In this study, the Noisy-OR model [56] is used to construct the 
CPTs for symptom nodes with multiple parent faults. By treating each 
fault as an independent cause, the model reduces the required parame-
ters from 2𝑘 to 𝑘. This efficiency makes it practical to parameterize the 
fault-symptom relationships within the proposed DBN.In this study, the 
Noisy-OR model [56] is introduced to reduce the exponential growth 
of parameters in conditional probability tables as the number of parent 
nodes increases.

For systematic and scalable AHU FDD development, the 4S3F refer-
ence model is adopted [27,29,34] as illustrated in Fig. 2. This structured 
two-stage model closely aligns with HVAC system diagrams and reflects 
the way HVAC systems and controls are designed [27].

In the first stage, 4S3F group symptoms into four categories: bal-
ance symptoms, which indicate deviations in energy, mass, or pressure 
balance within the system; energy performance (EP) symptoms, which 
reflect deviations in key performance metrics such as the coefficient of 
performance (COP) and are often derived from data-driven or model-
based analyses; operational state (OS) symptoms, which capture abnor-
mal system behavior, including a temperatures or flows and can be de-
tected through historical data analysis or machine learning methods; 
and additional symptoms include external information sources such as 
maintenance logs and historical FDD output.

In the second stage, faults are classified into three types: faults in con-
trols, faults in components, and model faults. Component faults origi-
nate from failures, degradation, or improper installation of system parts; 
control faults arise from setpoint errors, software issues, or problems in 
control algorithms; and model faults are related to inaccuracies or im-
proper hypotheses in system modeling. In this study, only component 
and control faults are considered.

3.  FDD sensor configurations in practice and guidelines

This section discusses sensor configurations for AHU FDD, first by 
examining the two recognized guidelines and then by performing a prac-
tice survey for Dutch office buildings. Based on the discrepancies found, 
three distinct configurations (Limited, Standard, and Rich) are defined 
to evaluate FDD performance. All sensors and measurement points ref-
erenced in the guidelines, practice survey, and defined sensor configu-
rations are detailed in Table 1.

3.1.  Guidelines

To evaluate the impact of sensor configurations on AHU FDD, this 
study uses ASHRAE Guideline 36, which has served as a foundational 
reference for AHU FDD and has been used in many studies [5,28,57], as 
well as the Dutch ISSO Publication 31, which is the standard guideline 
in the Netherlands. The list of recommended sensors by both guide-
lines can be found in the first columns of Table 1.Both documents 
specify sensor requirements to support energy efficiency, system sta-
bility, and FDD. A comparative analysis highlights the key findings
below.

• ASHRAE Guideline 36 focuses on standardized control sequences 
for common HVAC systems to reduce energy use, enhance sta-
bility, and enable FDD, while ISSO Publication 31 emphasizes 
standardized measurement methods and optimal sensor place-
ment for accurate data collection, system reliability and facili-
tation of FDD. Consequently, ASHRAE integrates FDD into ad-
vanced control logic, whereas ISSO structures its FDD frame-
work around sensor classification for governance, monitoring, and
evaluation.

• ASHRAE Guideline 36 focuses on the control and monitoring of the 
air distribution systems in air-side HVAC configurations, specifically 
multi-zone, single-zone, and dual-fan dual-duct Variable Air Volume 
Air Handling Unit (VAV). In contrast, ISSO Publication 31 covers 
both AHUs and hydronic systems, extending to complete climate 
systems and advanced heat recovery, and includes distribution, gen-
eration, and user modules. This broader scope requires additional 
monitoring and measurement for effective FDD.

• ISSO Publication 31 specifies a broader range of sensors and mea-
surement points compared to ASHRAE Guideline 36, reflecting its 
inclusion of more diverse systems for FDD. While ASHRAE Guide-
line 36 lists only the minimum required control sensors and classifies 
measurements by operating states, both guidelines require core mea-
surements such as supply, return, mixed, and outdoor air tempera-
ture, as well as supply and return water temperatures. These form 
the basis of FDD processes. Both guidelines also emphasize control 
signals for fan speed, dampers, and coil valves. In addition, ISSO 31 
recommends further monitoring sensors, including pressure differen-
tial sensors across filters, humidity sensors for different air streams, 
water and airflow sensors, and air quality sensors at the return 
side, enabling more comprehensive diagnostics and robust system
monitoring.

• Both guidelines emphasize the importance of control signals for FDD, 
including those for supply and return fans, dampers, heat recov-
ery wheels, coil valves, and speed-controlled pumps. Combined with 
sensor measurements, these control signals form a comprehensive 
foundation for monitoring, diagnosing, and optimizing AHU perfor-
mance.
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Table 1 
Comparison of sensor recommendations between ASHRAE Guideline 36 and ISSO Publication 31. Numbers 1 to 18 refer to different P&IDs surveyed in this 
study. The sensor configurations are defined as Sensor-Rich, Sensor-Standard, and Sensor-Limited to categorize sensor availability.
 Sensor  ASHRAE  ISSO  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  Limited  Standard  Rich
 Outdoor air temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Outdoor air relative humidity ✓ ✓ ✓ ✓ ✓ ✓

 Preheated air temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Preheated air relative humidity ✓ ✓

 Supply air temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Supply air temperature setpoint ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Supply air relative humidity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Return air temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Return air relative humidity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Exhaust air temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Exhaust air relative humidity ✓ ✓ ✓ ✓

 Supply coil water temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Return coil water temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Pressure difference supply filter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Pressure difference return filter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Pressure difference supply fan ✓ ✓ ✓ ✓ ✓

 Pressure difference return fan ✓ ✓

 Supply air flow rate ✓ ✓ ✓ ✓

 Return air flow rate ✓

 Coil valve control signal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Supply fan control signal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Return fan control signal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Supply damper control signal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Return damper control signal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Air quality sensor ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Supply air static pressure ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Duct static pressure setpoint ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Coil water flow ✓ ✓ ✓ ✓

 Interior air temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 Interior air temperature setpoint ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3.2.  Practice survey on AHU sensor configuration

A survey of Pipe and Instrumentation Diagrams (P&IDs)P&ID dia-
grams from 18 AHUs in 18 Dutch public buildings was conducted by 
firstly selecting P&IDs and then systematically recording the presence 
of each component, sensor, and measurement point. The occurrence of 
these elements was then counted and summarized in Table 1.

The survey shows notable differences in sensor configurations among 
the 18 AHUs. Essential sensors like supply air temperature and return 
air temperature, along with most control signals for valves, fans, and 
dampers, were present in at least 16 of the 18 units. Sensors for out-
door air temperature, air humidity, coil water temperature, and select 
setpoints were moderately common, appearing in 9 to 15 AHUs. Con-
versely, advanced sensors for air quality, coil water flow, and fan pres-
sure differences were found in 5 or fewer units, indicating less common 
installation. These sensor installation patterns align with findings from 
Gao and Berges [58].

14 out of 18 surveyed AHUs do not fully meet sensor recommen-
dations from the two guidelines, as each unit is missing one or more 
required sensors. The absence of critical sensors in these AHUs, such as 
coil flow rates, supply and return water temperatures, air quality, and 
airflow, constrains the implementation of FDD method recommended 
by two guidelines, potentially leading to missed opportunities for en-
ergy savings and system performance improvements.

Discrepancies between guidelines and practice surveys arise from 
cost, system complexity, and lack of FDD standardization for sensor de-
ployment in AHU. As a result, sensor installations in practice are largely 
focused on operational management rather than diagnostics or energy 
efficiency. Despite comprehensive guideline recommendations, practi-
cal implementation is often constrained by financial, technical, and lo-
gistical challenges. Therefore, it is crucial to investigate the impact of 
sensor configuration on practical FDD to better align guideline recom-
mendations with real-world constraints and, oppositely, to showcase the 
positive effect of following to the guidelines.

3.3.  Definition of sensor configurations

Based on practice surveys and the two referenced guidelines, 
this study defines three sensor configurations: Sensor-Limited, Sensor-
Standard, and Sensor-Rich, as detailed in Table 1. Because the 18 AHUs 
from the practice survey and the two guidelines differ significantly, the 
three sensor configurations were extrapolated based on expert judg-
ment.

The Sensor-Limited configuration represents a minimalist approach, 
containing only the essential sensors required for basic AHU operation 
and system safety, like cases 1 and 2. these sensors include supply air 
temperature, static pressure, and basic control commands. This configu-
ration ensures fundamental system functionality, but lacks the capability 
for advanced diagnostics or energy optimization.

The Sensor-Standard configuration introduces additional sensors to 
enhance control accuracy and system feedback, like case 5. This config-
uration typically includes return air temperature, pre-heating air tem-
perature, filter differential pressure, and supply water temperature sen-
sors, supporting improved energy management and more comprehen-
sive FDD, as recommended in previous studies [10].

The Sensor-Rich configuration extends beyond standard practice 
by incorporating a advanced sensors for detailed system monitor-
ing and optimization, like case 14 and 15. Along with all sensors 
in the Standard configuration, it also includes room humidity, sup-
ply fan flow, and air quality sensors, in line with feature selection 
methods recommended by Li et al. [41] and the ASHRAE Project RP-
1312 dataset. This configuration is expected to support advanced FDD
strategies.

It should be noted that AHU sensor configurations vary, and some 
units may include most but not all sensors for a given definition. Thus, 
AHUs are classified by the nearest matching configuration, like Case 
8. For example, an AHU with more sensors than Limited but not fully 
meeting Standard is classified as Standard. This approach accommo-
dates practical variability in sensor deployment and enables systematic 
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Fig. 3. A simplified version of process and instrumentation diagram (P& ID) diagram of the case study AHU system.

comparison of AHU capabilities from essential operation to advanced 
diagnostics.

4.  Case study

This section describes the development of DBNs for FDD across dif-
ferent sensor configurations, including case description, DBN structure, 
assignment of symptom-fault relationships, data collection and model 
evaluation processes.

4.1.  Case description

The case study building in the Netherlands is a typical Western Eu-
ropean office building, equipped with comprehensive sensor and energy 
meter data similar to Sensor-Rich configuration. There was a possibility 
to conduct fault experiments in the case study building. The building 
is divided into three HVAC zones, each served by a central AHU with 
supply and return fans, filters, a heat recovery wheel, and a heating 
coil. Cooling is provided by three separate after-coolers for each zone, 
while heating uses a gas-fired boiler and zone hydronic system (radia-
tors). Temperature control is managed by a master-slave Proportional-
Integral-Derivative (PID) strategy. All three zones have an indoor tem-
perature setpoint of 21.5 °C, and their controllers compute the needed 
supply air temperature setpoint based on the measured zone tempera-
tures. The AHU controller sets the supply air temperature setpoint equal 
to the highest of these three demands and limits it to 26 °C, then con-
trols the heating coil valve (HCV) so that the supply air temperature fol-
lows this setpoint.  Temperature control is managed by a master-slave 
Proportional-Integral-Derivative (PID) strategy to adjust HCV based on 
the measurement of zones temperature. Supply air temperature and 
static pressure setpoints were dynamically adjusted throughout the day, 
with the system maintaining zones temperature at 21.5°C and supply 
static pressure at 250 Pa. Key measurement points and sensor locations 
are shown in  Fig. 3.

4.2.  DBN structure modeling

The DBN structure is developed by defining common faults in AHUs, 
followed by symptom definition and the connection between faults and 
symptoms.

4.2.1.  Faults
Fault in this section representing common AHU issues [59], are 

named with initials 𝐹  described in Table 2. The fault nodes correspond 
to key control faults of the AHU, including wrong supply air temperature 
setpoints (𝐹5), wrong supply air pressure setpoints (𝐹4), and component 
faults like a faulty heat recovery wheel (𝐹1), sensor biases (𝐹7 - 𝐹11), 
and a supply fan stuck (𝐹2). Each fault node is defined with two possi-
ble states: faulty or normal, depending on the working state.

4.2.2.  Symptoms
Symptom nodes are defined through logical analysis and the authors’ 

expertise based on the 4S3F reference model, abbreviated as 𝑆, detailed 
in Table 3.

OS symptoms are defined as deviations in system state from the ex-
pected or intended condition, where the reference may be a control 
setpoint, historical or model-based norm. For example, supply air tem-
perature and setpoint deviation (𝑆1) and supply air static pressure and 
setpoint deviation (𝑆2) both reflect how closely the system tracks its 
respective control targets. In addition to static setpoint comparisons, 
several OS symptoms are defined by the residual of prediction models, 
as summarized in Table 4.  Several prediction models are classified as 
OS symptoms wherever the corresponding sensors are available, as sum-
marized in Table 4. These prediction models, trained on historical fault-
free data, establish a dynamic baseline for normal system operation. In 
these cases, the symptom is defined as a deviation from the model’s pre-
dicted baseline that exceeds a predefined threshold, where the residual 
is calculated as the difference between the actual measured sensor value 
and this baseline The symptom is defined as the residual, which is the
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Table 2 
Fault nodes across sensor-rich, sensor-standard, and sensor-limited configurations.
 No.  Fault  Abbreviation  State  State definition  Rich  Standard  Limited
𝐹1

Heat recovery wheel
stuck HRW-Stuck

Faulty
Normal

Abnormal working state
Correct working state ✓ ✓

𝐹2
Supply fan
stuck SF-Stuck

Faulty
Normal

Abnormal fan speed control
Correct fan speed control ✓ ✓ ✓

𝐹3
Heating coil valve
stuck HCV-Stuck

Faulty
Normal

Abnormal valve openness
Correct valve openness ✓ ✓ ✓

𝐹4
Supply air static pressure
setpoint wrong Pset-Wrong

Faulty
Normal

Incorrect setpoint
Correct setpoint ✓ ✓ ✓

𝐹5
Supply air temperature
setpoint wrong Tset-Wrong

Faulty
Normal

Incorrect setpoint
Correct setpoint ✓ ✓ ✓

𝐹6
Supply air temperature
sensor bias Tsa-Bias

Biased
Normal

𝑇sa sensor biased
𝑇sa is normal ✓ ✓

𝐹7
Supply air static pressure
sensor bias Psa-Bias

Biased
Normal

𝑃sa sensor biased
𝑃sa is normal ✓

𝐹8
Pre-heating air temperature
sensor bias Tpre-Bias Biased

Normal
𝑇pre sensor biased
𝑇pre is normal ✓ ✓

𝐹9
Return air temperature
sensor bias Tra-Bias

Biased
Normal

𝑇ra sensor biased
𝑇ra is normal ✓ ✓

𝐹10
Supply heating coil
water temperature sensor bias Tsw-Bias

Biased
Normal

𝑇sw sensor biased
𝑇sw is normal ✓ ✓

𝐹11
Supply air flow rate
sensor bias Fsa-Bias

Biased
Normal

𝐹sa sensor biased
𝐹sa is normal ✓

Table 3 
Symptom nodes across sensor-rich, sensor-standard, and sensor-limited configurations.
 No.  Symptom  Abbreviation  State  Rule of state definition  Rich  Standard  Limited

𝑆1
Supply air temperature
and setpoint deviation Tset-Tsa-Diff

Present
Absent

|𝑇sa − 𝑇sa,set| > 𝜀𝑇
|𝑇sa − 𝑇sa,set| ≤ 𝜀𝑇

✓ ✓ ✓

𝑆2
Supply air static pressure
and setpoint deviation Pset-Psa-Diff

Present
Absent

|𝑃sa − 𝑃sa,set| > 𝜀𝑃
|𝑃sa − 𝑃sa,set| ≤ 𝜀𝑃

✓ ✓ ✓

𝑆3
Room air temperature
and setpoint deviation Tin-Tinset-Diff

Present
Absent

|𝑇in − 𝑇in,set| > 𝜀𝑇 𝑖𝑛
|𝑇in − 𝑇in,set| ≤ 𝜀𝑇 𝑖𝑛

✓ ✓

𝑆4
Heating coil valve position
and prediction deviation Uhc-Upred-Diff Present

Absent
|𝑈hc − 𝑈hc,pred| > 𝜀ℎ𝑐
|𝑈hc − 𝑈hc,pred| ≤ 𝜀ℎ𝑐

✓

𝑆5
Pre-heating
air temperature high Tpre-Tra,oa-Max Present

Absent
𝑇pre > max(𝑇ra , 𝑇oa) − 𝜀𝑇 𝑝𝑟𝑒
𝑇pre ≤ max(𝑇ra , 𝑇oa) − 𝜀𝑇 𝑝𝑟𝑒

✓ ✓

𝑆6
Supply air temperature
and prediction deviation Tsa-Tpred-Diff Present

Absent
|𝑇sa − 𝑇sa,pred| > 𝜀𝑇 𝑠𝑎
|𝑇sa − 𝑇sa,pred| ≤ 𝜀𝑇 𝑠𝑎

✓ ✓

𝑆7
𝐶𝑂2 concentration
high CO2-Max

Present
Absent

𝐶𝑂2 > 𝜀𝐶𝑂2

𝐶𝑂2 ≤ 𝜀𝐶𝑂2

✓

𝑆8
Heat recovery
efficiency high HRW-Effi-Max

Present
Absent

𝜂hrw > 𝜂hrw,max
𝜂hrw ≤ 𝜂hrw,max

✓ ✓

𝑆9
Supply air static pressure
and prediction deviation Psa-Ppred-Diff Present

Absent
|𝑃sa − 𝑃sa,pred| > 𝜀𝑃𝑠𝑎
|𝑃sa − 𝑃sa,pred| ≤ 𝜀𝑃𝑠𝑎

✓

𝑆10
Heat recovery
efficiency low HRW-Effi-Min

Present
Absent

𝜂sa ≤ 𝜂sa,nm
𝜂sa > 𝜂sa,nm

✓ ✓

𝑆11
Filter pressure drop
low Pfi-diff-Min

Present
Absent

Δ𝑃sf < 350Pa ∧ Δ𝑃fi < 𝜀fi
¬(Δ𝑃sf < 350Pa ∧ Δ𝑃fi < 𝜀fi)

✓ ✓ ✓

𝑆12
Heat recovery
efficiency ratio deviation HRW-Effi1-Effi2

Present
Absent

|𝜂sa − 𝜂eha| > 𝜀𝑠,𝑒
|𝜂sa − 𝜂eha| ≤ 𝜀𝑠,𝑒

✓ ✓

𝑆13
Nearby supply air
temperature sensor deviation Tsa-Tsa2-Diff

Present
Absent

|𝑇sa − 𝑇sad| > 𝜀𝑇 2
|𝑇sa − 𝑇sad| ≤ 𝜀𝑇 2

✓

𝑆14
Supply pressure
setpoint control high Pset-Toa-Ctrl

Present
Absent

𝑃sa,set > 250Pa ∧ 𝑇oa ≤ 𝜀𝑜𝑎
¬(𝑃sa,set > 250Pa ∧ 𝑇oa ≤ 𝜀𝑜𝑎)

✓ ✓ ✓

𝑆15
Supply temperature
setpoint control high Tset-Toa-Ctrl

Present
Absent

𝑇sa,set > 26 ◦C ∧ 𝑇oa ≤ 𝜀𝑜𝑎
¬(𝑇sa,set ≥ 26 ◦C ∧ 𝑇oa ≤ 𝜀𝑜𝑎)

✓ ✓ ✓

𝑆16
Supply air flowrate
low SF-Fsa-Min

Present

Absent

|𝑁sf −𝑁sf,nm| ≤ 𝜀𝑁
∧𝐹sa < 𝐹sa,nm
|𝑁sf −𝑁sf,nm| ≤ 𝜀𝑁
∧𝐹sa ≥ 𝐹sa,nm

✓

𝑆17
Nearby return air
temperature sensor deviation Tra-Tra2-Diff

Present
Absent

|𝑇ra − 𝑇rad| > 𝜀𝑇
|𝑇ra − 𝑇rad| ≤ 𝜀𝑇

✓

𝑆18
Fan pressure drop
and prediction deviation Psf-Psfpred-Diff Present

Absent
|Δ𝑃sf − Δ𝑃sf,pred| > 𝜀Δ𝑃sf
|Δ𝑃sf − Δ𝑃sf,pred| ≤ 𝜀Δ𝑃sf

✓

𝑆19
Fan control signal
and prediction deviation Nsf-Nsfpred-Diff Present

Absent
|𝑁sf −𝑁sf,pred| > 𝜀𝑁sf

|𝑁sf −𝑁sf,pred| ≤ 𝜀𝑁sf

✓

difference between the actual measured sensor or control signal value 
and the value predicted by the model. A small residual indicates nor-
mal operation, while a large, sustained residual indicates symptom de-
tection. For example, fan pressure drop and prediction deviation (𝑆18) 
and fan control signal and prediction deviation (𝑆19) adopt methods 

from Zhao et al. [30] and Li and Wen [60]. The supply air temperature 
and prediction deviation (𝑆6) utilizes a polynomial regression model 
following Torabi et al. [61]. Supply air pressure and prediction devi-
ation (𝑆9) is defined using an XGBoost model with features selected 
by expert knowledge. The heating coil valve position and prediction
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Table 4 
Prediction models for the 5 symptoms based on fault-free data. The input vari-
ables in the formulations (e.g., 𝑇𝑠𝑎, 𝐹𝑠𝑎) represent sensor readings and control 
signals as defiend in Nomenclature.
 Model  Symptom No.  Model Formulation  RMSE
 1 𝑆4 𝑈hc,pred = 𝑓 (𝑇sa , 𝑇oa , 𝑇in, 105 , 𝑈sa,damper , 𝐹sa,105)  7.5 %
 2 𝑆6 𝑇sa = 3.6926 + 0.5025 𝑇pre + 0.3618 𝑇sw  0.4 ◦𝐶
 3 𝑆9 𝑃sa,pred = 𝑓 (Δ𝑃sf , 𝑇pre , 𝑇sa)  4.64 Pa
 4 𝑆18 Δ𝑃sf = −541.6087 + 0.1412𝐹sa − 3.7897 × 10−6 𝐹 2

sa  19.71 Pa
 5 𝑆19 𝑁sf = −112.3844 + 0.0313𝐹sa − 1.1846 × 10−6 𝐹 2

sa  2.01 %

deviation (𝑆4), as proposed by Zhao et al.[28], is modeled in this study 
using XGBoost using the top five predictive features from the training 
dataset.

EP symptoms are defined as deviations from nominal performance 
metrics, reflecting how well the system or its components achieve ex-
pected operation. For example, the calculation of the performance of the 
heat recovery wheel is assessed using the supply side (𝜂𝑠𝑎) and exhaust 
side (𝜂𝑒𝑎) efficiencies, calculated following Pecceu and Cailou [62] un-
der the assumption of balanced flows: heat recovery efficiency low (𝑆10) 
follows the method of Pecceu and Cailou [62], under the assumption of 
balanced flows:

𝜂𝑠𝑎 =
𝑇𝑜𝑎 − 𝑇𝑝𝑟𝑒
𝑇𝑜𝑎 − 𝑇𝑟𝑎

(2)

𝜂𝑒𝑎 =
𝑇𝑟𝑎 − 𝑇𝑒ℎ𝑎
𝑇𝑟𝑎 − 𝑇𝑜𝑎

(3)

Where all temperature variables are defined in the Nomenclature. 
The symptom heat recovery efficiency low (𝑆10) is then defined. This bi-
nary symptom transitions from ’Absent’ to ’Present’ when the calculated 
supply side efficiency (𝜂𝑠𝑎) drops below a nominal threshold (𝜂sa,nm). 
Furthermore, the efficiency ratio deviation (𝑆12) compares supply side 
(𝜂sa) and exhausted side (𝜂ea) efficiencies to detect abnormalities.

Balance symptoms include mass, energy, or pressure balance, and 
consistency checks between nearby sensors. For instance, the symptom 
of nearby air temperature sensor deviation (𝑆13) detects when there’s a 
notable difference between nearby sensors measuring the same variable.

In this study, no external data sources such as maintenance logs or 
prior FDD outputs are available, and thus no additional symptoms are 
defined.

4.2.3.  Symptom threshold definition
A symptom is detected when a measured value deviates from its ex-

pected value by more than a specified threshold 𝜀𝑖, as summarized in 
Table B.1. Thresholds are determined based on system control documen-
tation (e.g., 𝑆14, 𝑆15), manufacturer specifications (e.g., 𝑆11, 𝑆8), and 
expert knowledge accounting for sensor location (e.g., 𝑆17, 𝑆13, 𝑆18). 
For symptoms based on prediction-based models (e.g., 𝑆4, 𝑆6, 𝑆9, 𝑆19, 
𝑆19), thresholds are established using fault-free historical data, with 𝜎
calculated via the t-student approach on prediction residuals. A symp-
tom is detected if the deviation is out of the upper and lower limits of 
±3*𝜎. All coefficients for prediction models in this study are trained on 
fault-free data from the case study building. 70% of this dataset (24,586 
data points) are randomly selected for model training, and the remain-
ing 30% is used as test data to validate the models.

4.2.4.  Fault-symptom relationships related to DBNs structure
Faults and symptoms are connected using logical analysis, first prin-

ciples, and the authors’ expertise. For instance, in the case of the 
HRW, when the HRW is stuck at a low rotation speed or not operat-
ing, heat recovery efficiency (𝑆10) typically decreases, as the temper-
ature difference across the HRW (𝑇pre and 𝑇oa) becomes small. In ad-
dition to efficiency, HRW faults can increase heating demand, which 
is reflected by higher heating coil valve openness compared to pre-
dictions under normal conditions (𝑆4). Deviations also occur in fan 

pressure drop and control signals, as the decreased rotation speed af-
fects duct static pressure and airflow through the wheel matrix, leading 
to measurable differences between actual and predicted values based 
on normal conditions (𝑆18, 𝑆4) as described by O’Connor and Calautit 
[63,64]. Therefore these four symptoms are connected to HRW fault in
DBN.

The ability to diagnose a fault depends on the availability of mea-
sured symptoms; as the number of available symptoms decreases, the 
number of diagnosable faults also declines, resulting in a progressive 
reduction in DBN complexity from Sensor-Rich to Sensor-Limited con-
figurations, as shown in  Fig. 4(a) to (c). This reduction in DBN complex-
ity occurs for two primary reasons. First, when a key sensor is absent, 
any faults and symptom nodes that rely on it are removed from the net-
work. For example, in the Sensor-Standard and Sensor-Limited configu-
rations (see  Fig. 4(b) and (c)), the absence of 𝐹sa sensor results in the 
elimination of the Fsa-Bias fault (𝐹11) in the DBN, and related Symptom 
SF-Fsa-Min (𝑆16), because it does not relate to any other faults. Second, 
the removal of certain sensors reduces the number of symptoms con-
nected to specific fault nodes. For instance, the Fault HRW-Stuck node 
in the Sensor-Standard configuration loses several associated symptoms, 
such as Uhc-Uhcpred-Diff (𝑆5), Psf-Psfpred-Diff (𝑆18), and Nsf-Nsfpred-
Diff (𝑆19) leaving only HRW-Effi-Min (𝑆10) linked to this fault. In the 
Sensor-Limited configuration, the absence of all relevant sensors means 
that all symptoms related to the Fault HRW-Stuck node are removed, 
resulting in the complete exclusion of this fault node and its associ-
ated symptoms from the DBN structure. In this study, eleven, nine, and 
four faults could be theoretically diagnosed in the Sensor-Rich, Sensor-
Standard, and Sensor-Limited configurations, respectively, based on the 
DBN structures.

4.3.  Parameter modeling

Once the DBN structure is established, parameters are assigned by 
specifying fault node prior probabilities, which represent fault frequen-
cies, and conditional probabilities, which define the likelihood of symp-
tom detection given each fault.

4.3.1.  Prior probability
The initial prior probability distribution in this study is adopted from 

expert assessments and reported values for similar systems. Specifically, 
the assignment for each fault node divides the state into a faulty state 
and a fault-free state. Following the approach used by Taal et al. [34], 
each fault node is assigned a prior probability of 0.05 for the faulty state 
and 0.95 for the fault-free state. These values reflect an assumption that 
there is a 5% likelihood for any specific fault to occur, while the com-
ponent is expected to remain fault-free with a 95% probability. These 
prior probabilities are intentionally kept uniform for all faults, as ob-
taining detailed fault occurrence data for real application buildings is 
often limited.

4.3.2.  Conditional probability
The conditional probabilities between fault and symptom nodes are 

defined using a Noisy-OR model, with influence levels (high, medium, 
low) set to probabilities of 0.9, 0.5, and 0.1, respectively, as shown in 
Table B.2. These values are based on expert knowledge. For example, a 
"high" relationship degree means that the presence of a fault is highly 
likely to cause the associated symptom.

4.4.  DBN inference and fault isolation procedure

This section describes the BN inference and fault isolation of the 
FDD model. In BN inference for fault diagnosis, the process generally 
consists of four key steps: (1) HVAC data collection from sensors, (2) 
symptom detection based on measured data, (3) DBN inference using 
detected symptoms as input, and (4) posterior probability calculation 
for potential faults [29]. The approach to diagnostic sampling between 
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Fig. 4. DBN structures under three sensor configurations: (a) Sensor-Rich, where all symptoms are available; (b) Sensor-Standard, with a reduced symptoms and 
faults; and (c) Sensor-Limited, with limited symptoms and faults.

these steps varies in the literature, affecting how input data are aggre-
gated and analyzed [27]. Three diagnostic sampling strategies are com-
monly used in BN-based FDD (Fig. 5). Scenario 1 aggregates each sensor 
time series over the evaluation window before symptom detection and 
runs one DBN inference per case. Scenario 2 detects symptoms at each 
time step, then aggregates their occurrence rates over the evaluation 
window and performs one DBN inference per case [65]. Scenario 3 runs 
DBN inference at every time step and then aggregates the resulting fault 
posterior probabilities [31,33,35]. This study adopts Scenario 2 because 
faults were maintained over the working day, and the diagnosis is in-
tended to reflect aggregated daily symptom patterns rather than per-step 
variations [66].Three general strategies are used in BN-based FDD, as 
illustrated in Fig. 5. These involve aggregating sensor data before detec-
tion (Scenario 1), applying symptom detection before rate aggregation 
(Scenario 2) [65], and aggregating posterior probabilities after time-step 
inference (Scenario 3) [31,33,35]. In this study, Scenario 2 was adopted 

because it aligns with our experimental goal of reflecting aggregated 
daily symptom patterns, and its performance is further explored against 
Scenario 1 in Section 5.5.

The evaluation process proceeds as follows. Initially, "symptom 
present rates" were calculated. Methods for converting symptom detec-
tions into DBN inputs vary across FDD studies, depending on system 
dynamics and specific symptom definitions [27]. In this study, for each 
symptom, the rate is defined as the proportion of detected samples over 
the total number of samples in the evaluation window for a single ex-
perimental day.For each monitored symptom, this rate represents the 
fraction of time steps in the dataset where the symptom was detected 
as present. These rates were converted to a single binary states (present 
or absent) using a 0.5 threshold. This value serves as a hard threshold 
to detect persistent abnormalities within a fixed evaluation window. By 
applying this "majority rule," the method ensures that a symptom is con-
sidered detected for the DBN only if the symptom was present in more 
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Fig. 5. Illustration of the three diagnostic sampling strategies: (a) Scenario 1-sensor aggregation, (b) Scenario 2-symptom aggregation, and (c) Scenario 3-posterior 
probability aggregation. Key parameters: 𝑛 = cost of symptom extraction per time step, 𝑚 = cost of a single BN inference, 𝑡 = number of time steps per case.

Table 5 
Summary of fault experiments. Cases 1a-1d correspond to 𝐹1, Cases 2a-2b to 𝐹2, Cases 3a-3b to 𝐹3, and Cases 
4-11 to 𝐹4-𝐹11 as defined in Table 2. Case 12 represents the fault-free day.
 Case  Fault Description  Abbreviation  Experiment Scheme  Date

 Case 1a  Heat recovery wheel stuck  HRW-Stuck-0
Fixing the heat recovery
wheel rotation speed at 0%  03/22/23

 Case 1b  Heat recovery wheel stuck  HRW-Stuck-30
Fixing the heat recovery
wheel rotation speed at 30%  11/09/23

 Case 1c  Heat recovery wheel stuck  HRW-Stuck-50
Fixing the heat recovery
wheel rotation speed at 50%  03/27/23

 Case 1d  Heat recovery wheel stuck  HRW-Stuck-80
Fixing the heat recovery
wheel rotation speed at 80%  03/08/23

 Case 2a  Supply fan stuck  SF-Stuck-30
Supply fan speed fixed at 30%
control signal unchanged.  02/07/23

 Case 2b  Supply fan stuck  SF-Stuck-65
Supply fan speed fixed at 65%
control signal unchanged.  03/28/23

 Case 3a  Heating coil valve stuck  HCV-Stuck-100
Fixing the heating coil
valve openness at 100%  02/28/23

 Case 3b  Heating coil valve stuck  HCV-Stuck-75
Fixing the heating coil
valve openness at 75%  03/17/23

 Case 4  Supply air pressure setpoint wrong  Pset-Wrong-50

Changing the supply
pressure setpoint
higher than desired (50Pa)  03/13/23

 Case 5  Supply air temperature setpoint wrong  Tset-Wrong-3

Changing the supply
temperature setpoint
higher than desired (3◦C)  03/15/23

 Case 6  Supply air temperature sensor bias  Tsa-Bias-3

Changing the temperature
sensor module reading
with a positive bias (3◦C)  02/10/23

 Case 7  Supply air pressure sensor bias  Psa-Bias-30

Changing the pressure
sensor module reading
with a positive bias (30Pa)  02/13/23

 Case 8  Pre-heating temperature sensor bias  Tpre-Bias-3

Changing the temperature
sensor module reading
with a positive bias (3◦C)  01/03/23

 Case 9  Return air temperature sensor bias  Tra-Bias-3

Changing the temperature
sensor module reading
with a positive bias (3◦C)  01/05/23

 Case 10  Supply water temperature sensor bias  Tsw-Bias-3

Changing the temperature
sensor module reading with
a positive bias (3◦C)  03/10/23

 Case 11  Airflow rate sensor bias  Fsa-Bias-1000

Changing the airflow sensor
module reading with a
negative bias (1000m3∕h)  01/09/23

 Case 12  Normal day  NM  Fault free date  02/03/23

than 50% of the evaluation window. were then converted to a single bi-
nary states (present or absent) using a 0.5 threshold, meaning that only 
if the symptom was present in more than 50% of the samples, it was 
considered to be present. This binary symptom data was subsequently 
used as input for DBN inference to calculate the posterior probability for 
each potential fault. Fault classification relied on these posterior prob-
abilities. A fault was classified as present if its probability surpassed 
a predefined 0.15 threshold, adopting the method of Chen et al. [33]. 
If multiple faults met this criterion, the fault with the highest poste-
rior probability was selected, as it is assumed that only a single fault is 
present at a time.

4.5.  Data collection

Data were collected from the AHU in the case study building on 
working days from 9:00 to 16:00 during the 2023-2024 heating sea-
son. Experiments covered November, December, January, February and 
March, including both fault-free and faulty operations. All measurement 
data were recorded at a one-minute interval. The fault-free dataset con-
sists of 420 one-minute samples per working day and was obtained by 
removing all periods affected by injected faults. This dataset is used to 
train the prediction models’ baseline. Faulty datasets for each exper-
iment contain between 260 and 420 one-minute samples, depending 
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on the duration of the fault injection, and are used only for validating 
the DBN FDD result. Experiments covered January, February, March, 
and November, including both fault-free and faulty operations with one-
minute interval measurements. Table 5 details the implemented faults, 
covering components such as HCV, HRW, and fans, as well as several 
sensor and setpoint control faults.

5.  Result

The DBN was evaluated under three sensor configurations. First, the 
results of symptom detection are presented. Next, the FDD performance 
of the Sensor-Rich configuration is discussed using selected cases, fol-
lowed by the results for the Sensor-Standard and Sensor-Limited config-
urations. Finally, the modeling practice includes a comparison of differ-
ent sampling approaches.

5.1.  Result of symptom detection

This section analyzes the performance of the proposed symptom set 
by examining the relationship between known faults and their corre-
sponding detected symptoms.

5.1.1.  Overview of the symptom detection
The performance of the symptom set is summarized in the symptom 

detection matrix presented in Fig. 6. These "symptom present rates" are 
fundamental to the diagnostic process, as they are converted into binary 
inputs for the DBN. As detailed in Section 4.4, a symptom is considered 
’present’ (input as 1) only if its detection rate exceeds the 0.5 thresh-
old. Thus, only symptoms with a sustained presence influence the final 
diagnostic outcome. For all three sensor configurations of the DBN, the 
symptom present rates remained identical for available symptoms.

5.1.2.  Analysis of fault-robust symptoms
Several symptoms showed high robustness for specific fault cate-

gories. For example, Symptom HRW-Effi-Min (𝑆10), which indicates low 
heat recovery efficiency, had present rates above 0.5 for all HRW-Stuck 
(𝐹1) faults. Similarly, Symptom Pset-Psa-Diff (𝑆2) showed strong robust-
ness for Fan-Stuck faults, with present rates of 1.0 across all Fan-Stuck 
cases (𝐹2). In contrast, Symptom Uhc-Upred-Diff (𝑆4) was detected in 
only one of the four variants of Case 1, while Symptom Nsf-Nsfpred-Diff 
(𝑆18) was detected in three of the four cases.

5.1.3.  Analysis of general symptoms
Some symptoms functioned as general indicators for diverse fault 

categories. The Symptom Tin-Tinset-Diff (𝑆3), for instance, indicates a 
failure to meet the interior air temperature setpoint. It was detected with 
present rates well above the 0.5 threshold for several distinct faults, in-
cluding HRW-Stuck-50 (Case 1c, present rate = 0.81), HCV-Stuck-75 
(Case 3b, present rate = 0.95), and Tset-Wrong-3 (Case 5, present rate 
= 0.91). Additionally, several prediction-based symptoms (𝑆4, 𝑆6, 𝑆9, 
𝑆18, 𝑆19) acted as general indicators across sensor faults, as model train-
ing relied on multiple sensor inputs (see Fig. B.1). A fault in any of 
these input sensors could trigger the corresponding symptom. For exam-
ple, the Symptom Tsa-Tpred-Diff (𝑆6) was predictably triggered by input 
sensor faults such as Fault Tpre-Bias-3 (Case 8), Tsw-Bias-3 (Case 10), 
and Tsa-Bias-3 (Case 6). Another non-intuitive case was the detection of 
Symptom Nsf-Nsfpred-Diff (𝑆19) during a Fault Tset-Wrong-3 (Case 5). 
Although the temperature setpoint is not a direct model input, this de-
tection likely occurred because the BMS unexpectedly changed the fan 
control logic to meet the higher temperature setpoint, indirectly affect-
ing the supply temperature control loops. While these general symptoms 
provide valuable evidence, they may also introduce uncertainty in BN 
inference without more specific indicators.

5.1.4.  Analysis of undetected symptoms
The matrix reveals critical undetected symptoms (i.e., a rate below 

0.5) . An example is the small sensor bias fault, Psa-Bias-30 (Case 7). 
While this fault did trigger the Symptom CO2-Max (𝑆7), it failed to trig-
ger the other two symptoms linked to it in the BN model. Another impor-
tant case is the non-detection of Symptom Tset-Tsa-Diff (𝑆1) for HCV-
Stuck faults (Case 3a, 3b) indicating one-third of expected evidence was 
absent. These undetected symptoms may impact BN inference, likely 
resulting in false negatives in fault diagnosis.

5.2.  Fault diagnosis result of DBN in sensor-rich configuration

This section presents the results of the diagnosis for the Sensor-Rich 
configuration. In here, only Fault HRW-Stuck cases (Case 1a-1d), Tset-
Wrong-3 (Case 5), and Tpre-Bias-3 ((Case 8)) are selected and described. 
The detail explanation of other cases are described in Appendix A. Fig. 7 
presents the results of the fault diagnoses in diverse sensor configura-
tions, in the Sensor-Rich configuration, 15 out of 17 cases are correctly 
diagnosed.

5.2.1.  Fault HRW-stuck (Case 1a–1d)
As demonstrated in Fig. 7(a)–(d), Fault HRW-Stuck-0 (Case 1a) was 

accurately diagnosed with a posterior probability of 0.78. In contrast, 
Fault HRW-Stuck-30 (Case 1b) resulted in a false negative diagnosis with 
a posterior probability of 0.11. The remaining cases, Fault HRW-Stuck-
50 and 80 (Cases 1c and 1d), were correctly diagnosed with a high poste-
rior probability of 0.95. The primary diagnostic evidence was Symptom 
HRW-Effi-Min (𝑆10). To illustrate this, Fig. 8 presents the sensor read-
ings for 𝑇pre, 𝑇oa, and 𝑇ra, alongside both the nominal and calculated 𝜂
of HRW.

In Case 1a, the complete failure of the HRW caused the heat recovery 
process to cease. Consequently, the 𝑇pre and 𝑇oa sensor readings became 
nearly identical, leading to 𝜂sa approaching zero and triggering Symp-
tom HRW-Effi-Min (𝑆10). Furthermore, the excessively low 𝑇pre meant 
the AHU relied solely on the heating coil to heat the supply air. This 
resulted in difficulties in achieving the setpoint for 𝑇sa (𝑇sa,set), thus de-
tecting symptom Tset-Tsa-Diff (𝑆1), which is typically used to distin-
guish HCV faults.

In Cases 1b and 1c, with the HRW rotation speed fixed at 30% and 
50% respectively, the 𝜂sa remained below its nominal value, and Symp-
tom HRW-Effi-Min (𝑆10) was detected. However, as shown in Fig. 6(d), 
Symptom Uhc-Upred-Diff (𝑆4) was not detected in these cases possibly 
because the general threshold (3 𝜎) used for this symptom is too wide, 
leading to high tolerance for the discrepancy between prediction and ac-
tual control signal. Additionally, the false negative diagnosis of Case 1b 
can be attributed to unexpected BMS control behavior. During this in-
jected fault, an unrecorded drop in fan rotation speed, from the nominal 
80% to between 50% and 70%, was observed. This unexpected opera-
tional shift likely altered the system’s dynamic baseline, preventing the 
activation of other expected symptoms and leading to the misdiagnosis.

In Case 1d, the HRW rotation speed was fixed at 80%, which is close 
to the nominal operating condition. This resulted in Symptom HRW-
Effi-Min (𝑆10) not being consistently detected. Nevertheless, as shown 
in Fig. 8(d), Symptom HRW-Effi-Min (𝑆10) was detected in more than 
50% of the time steps throughout Case 1d, and therefore, it was still 
considered detected.

5.2.2.  Fault Tset-Wrong-3 (Case 5)
In Case 5, as shown in Fig. 7(j), the fault was misdiagnosed as Fault 

Fsa-bias, with a posterior probability of 0.57, while the actual fault, 
Fault Tset-Wrong, was incorrectly assigned a low probability of 0.03. 
In this case, only one of three indicators, Symptom Tin-Tinset-Diff (𝑆3), 
was detected. Symptom Tset-Toa-Ctrl (𝑆15) was detected in less than 
50% of the time steps as shown in Fig. 9(a). This is because, despite the 
positive bias, the dynamic 𝑇sa,set gradually dropped below the symptom 
detection threshold during the day.This may be because this symptom 
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Fig. 6. Heatmap of the symptom present rates for the three sensor configurations. Each cell represents the rate at which a symptom (x-axis) is present for a given 
fault (y-axis).

is related to the BMS 𝑇sa,set control strategy. When outdoor temperature 
is increased during the day and the interior temperature is satisfied, 
𝑇sa,set will decrease leading Symptom Tset-Toa-Ctrl (𝑆15) remains unde-
tected. Additionally, the prediction-based symptom Uhc-UPred-Diff (𝑆4) 
was also undetected, as shown in Fig. 6, possibly due to the same wide 
threshold reason as described in Section 5.2.1 Case 1b.

5.2.3.  Fault tpre-bias-3 (Case 8)
As shown in Fig. 7(m), Case 8 was correctly diagnosed as Fault Tpre-

Bias with a posterior probability of 1.0. The Symptom HRW-Effi-Max 
(𝑆8) and HRW-Effi1-Effi2 (𝑆12) were both detected. Since 𝑇pre is in-
volved in the calculation of these two symptoms, a positive bias in 𝑇pre
increases 𝜂sa, making it more likely to exceed the nominal value and trig-
ger the detection of Symptom HRW-Effi-Max (𝑆8). It also creates a devia-
tion between 𝜂sa and 𝜂eha, as shown in Fig. 9(b). Moreover, the Symptom 
Tpre-Traoa-Max (𝑆5) was also detected. As shown in Fig. 9(b), due to the 
bias, 𝑇pre becomes higher than 𝑇ra, violating the expected energy bal-
ance in the heat recovery wheel. Additionally, prediction-based symp-
tom Tsa-Tpred-Diff (𝑆6) exceeded the present rate over 0.5, as shown in 
Fig. 6 due to 𝑇pre function in model training as input .

5.3.  Fault diagnostic result of DBN in sensor-standard configurations

This section presents the diagnostic performance of the DBN under 
Sensor-Standard configurations, which have reduced sensor availability. 
The results are compared to the Sensor-Rich configuration, referencing 
overall fault diagnosis counts from Fig. 7. In the Sensor-Standard con-
figuration, with fewer available sensors, the DBN correctly diagnosed 9 
out of the 17 fault cases. The detailed diagnosis results are as follows.

The reduction in sensors led to specific misdiagnoses. Fault HCV-
Stuck-100 (Case 3a), depicted in Fig. 7(g), was misdiagnosed as Fault 
HRW-Stuck with a posterior probability of 0.46. This misdiagnosis hap-
pened because the missing Symptom Uhc-UPred-Diff (𝑆4) led the DBN 
to depend on the undetected Symptom Tset-Tsa-Diff (𝑆15). Meanwhile, 
Symptom HRW-Effi-Min (𝑆10) was detected due to the BMS’s protective 
control mechanism, which reduced the HRW rotation speed in response 
to the HCV fault, misleading the DBN. A mutual false positive diagnosis 
occurred between Fault Tsa-Bias-3 (Case 6) and Tsw-Bias-3 (Case 10); 
each was incorrectly diagnosed as the other. This confusion arose from 
the lack of Symptoms Tsa-Tsa2-Diff (𝑆13) and Uhc-Upred-Diff (𝑆4), caus-
ing both faults to display identical evidential symptoms (Tsa-Tpred-Diff 
and Tin-Tinset-Diff) and similar conditional probability relationships in 
the DBN. Additionally, a normal operating day (Case 12) was falsely di-
agnosed as Fault Tset-Wrong with a posterior probability of 0.19, likely 
due to the absence of Symptom Uhc-Upred-Diff (𝑆4).

Some faults showed false negative. Fault Psa-Bias-30 (Case 6) was 
a false negative as its associated symptoms were absent in this DBN 
model configuration. Similarly, Fault Fsa-Bias-1000 (Case 11) went un-
diagnosed due to the exclusion of the relevant airflow sensor (𝐹sa) from 
this configuration.

Notably, Fault HRW-Stuck-30 (Case 1b) was correctly diagnosed 
with a posterior probability of 0.46. This relied on Symptom HRW-Effi-
Min (𝑆10), which became crucial due to the lack of other symptoms in 
the Sensor-Rich configuration. Interestingly, Fault Tset-Wrong-3 (Case 
5), previously a false negative in the Sensor-Rich configuration, was cor-
rectly diagnosed here with a posterior probability of 0.19. This improve-
ment occurred because removing Symptoms Uhc-Upred-Diff (𝑆4), Nsf-
Nsfpred-Diff (𝑆19), and Psf-Psfpred-Diff (𝑆18) due to sensor reductions 
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Fig. 7. Diagnostic performance of Rich, Standard, and Limited sensor configurations across 17 test cases. Each subplot shows posterior probabilities for a specific 
fault. A fault is classified as present if its probability exceeds the predefined 0.15 symptom detection threshold (dashed line). Markers indicate classification outcomes: 
True Positive (TP, solid color), False Negative (FN, solid gray), and False Positive (FP, hatched hollow). The specific fault case for each subplot is as follows: (a) 
HRW-Stuck-0, (b) HRW-Stuck-30, (c) HRW-Stuck-50, (d) HRW-Stuck-80, (e) Fan-Stuck-30, (f) Fan-Stuck-65, (g) HCV-Stuck-100, (h) HCV-Stuck-75, (i) Pset-Wrong, 
(j) Tset-Wrong, (k) Tsa-Bias, (l) Psa-Bias, (m) Tpre-Bias, (n) Tra-Bias, (o) Tsw-Bias, (p) Fa-Bias, and (q) NM (Normal).

Fig. 8. Time series data illustrating key sensor readings (𝑇oa, 𝑇ra, and 𝑇pre) and the 𝜂𝑠𝑎 for Fault HRW-Stuck cases. (a) HRW-Stuck-0 (Case 1a). (b) HRW-Stuck-30 
(Case 1b). (c) HRW-Stuck-50 (Case 1c). (d) HRW-Stuck-80 (Case 1d).
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Fig. 9. Time series data illustrating key sensor readings (𝑇oa, 𝑇ra, 𝑇ea, 𝑇pre, alongside the 𝜂𝑠𝑎, and 𝜂𝑒ℎ𝑎) values for (a) Fault Tset-Wrong (Case 5). (b) Tpre-Bias-3 
(Case 8).

prevented conflicting diagnoses with other faults, allowing the DBN to 
assign a higher posterior probability to Fault Tset-Wrong.

5.4.  Fault diagnostic result of DBN in Sensor-Limited configuration

Diagnostic capabilities were further reduced in the Sensor-Limited 
configuration, with only 4 out of 17 faults correctly diagnosed.

A case of misdiagnosis involved Fault HRW-Stuck-0 (Case 1a), falsely 
classified as Fault HCV-Stuck with a posterior probability of 0.47. This 
error arose because the sole symptom for Fault HCV-Stuck, Symptom 
Tset-Tsa-Diff (𝑆1), was detected in the Fault HRW-Stuck-0 case.

A significant number of faults went undiagnosed. All HRW-Stuck 
fault cases (Cases 1a-1d) were undiagnosable because all HRW-specific 
symptoms had been removed from this configuration. Additionally, 
other sensor-related faults were undiagnosable due to missing relevant 
sensors and symptoms. Specifically, Fault Tset-Wrong-3 (Case 5) was a 
false negative with a low posterior probability of 0.03. This was due 
to the removal of Symptom Tin-Tinset-Diff (𝑆3), leaving only Symptom 
Tset-Toa-Ctrl (𝑆15), which wasn’t detected in this scenario.

Despite the significant reduction in sensors, Fault SF-Stuck (Cases 
2a and 2b) was correctly diagnosed with a high posterior probabil-
ity of 0.95 (Fig. 7(e), (f)). This accuracy was achievable because two 
key symptoms, Pset-Psa-Diff (𝑆2) and Pfi-Diff-Min (𝑆11), remained de-
tectable even with limited sensors. Fault Pset-Wrong (Case 4) was also 
correctly diagnosed with a posterior probability of 0.90 (Fig. 7(i)), as 
its two remaining indicators, Symptoms Pset-Toa-Ctrl (𝑆14) and Tset-
Tsa-Diff (𝑆1), were successfully detected. Notably, in contrast to the 
Sensor-Standard configuration, a normal operating day (Case 12) was 
correctly diagnosed as fault-free. This improvement resulted from re-
moving Symptom Tin-Tinset-Diff (𝑆3), which previously caused a false 
positive in the Sensor-Standard configuration.

5.5.  Modeling practice for diagnostic samples

Following the BN inference and fault isolation process in Section 4.4, 
this section evaluates how different approaches to diagnostic sampling 
affect the accuracy and computational complexity of fault detection.

In terms of accuracy, as shown in Table 6, Scenarios 2 and 3 achieved 
the highest diagnostic accuracy, each correctly identifying 15 out of 17 
faults. Scenario 1 identified 14, performing less effectively on symptoms 
with transient information due to sensor data averaging; for example, 
Fault HCV-Stuck-75 (Case 3b) was misdiagnosed as Fsa-Bias because 
transient deviations in 𝑈hc,pred were lost. Scenario 3, while highly ac-
curate, was sometimes overly sensitive to temporal fluctuations; for in-
stance, in Fault HRW-Stuck-80 (Case 1d), it also indicated a high prob-
ability for Fsa-Bias during short periods when HRW efficiency appeared 
nominal, leading to temporary misclassifications.

Table 6 
Comparison of diagnostic sampling strategies in terms of diagnostic ac-
curacy, computational complexity, and execution time. Key parameters: 
𝑛 = cost of symptom extraction per time step, 𝑚 = cost of a single BN 
inference, 𝑡 = number of time steps per case.
 Scenario  Correct Diagnosis  Time Complexity  Execution Time (s)
 Scenario 1  14 (𝑛 + 𝑚)  0.2912
 Scenario 2  15 (𝑡 ⋅ 𝑛 + 𝑚)  0.8331
 Scenario 3  15 (𝑡 ⋅ (𝑛 + 𝑚))  86.6769

In terms of computational complexity, Scenarios 1 and 2 had low 
runtimes of 0.29 and 0.83 s, while Scenario 3 required 86.68 s, as sum-
marized in Table 6. Scenario 1 is the simplest, with a single inference; 
Scenario 2, though scaling with the number of time steps, remains mod-
erate in complexity; Scenario 3 is the most complex due to performing 
inference at every time step. Notably, in this study, the cost of a sin-
gle BN inference is represented as 𝑚 for simplicity, although the actual 
complexity depends on the network structure, including the number of 
nodes, factor sizes, and the joint domain of the conditional probability 
tables. All experiments were run on a MacBook Pro (Apple M2 Pro, 12-
core CPU, 16 GB memory, MacOS Sequoia 15.5). Posterior probability 
results are shown in Fig. B.2

In summary, Scenario 3 preserves detailed temporal information 
and achieves high accuracy, making it effective for detecting symptoms 
with transient information but computationally intensive. Scenario 1 is 
the least accurate due to aggregated input but is suitable for resource-
constrained applications. Scenario 2 provides a balanced trade-off, com-
bining high diagnostic accuracy and moderate computational cost, and 
is therefore recommended in this study.

6.  Discussion

This section discusses the findings regarding the practical applica-
tion of DBNs for FDD in AHUs across diverse sensor configurations, fo-
cusing on three key aspects: implication of real-world application and 
system complexities, comparison in different sensor configurations, sen-
sor recommendations and the role of key sensors. The key findings and 
implications of this research are detailed below.

6.1.  Implications of real-world application and system complexities

Unlike many studies assuming fixed sensor configuration in labo-
ratory [28], simulation environments [67,68], or real buildings [69] 
this work addresses the challenge of sensor variability in real-world. 
By integrating guidelines with a practical survey, this study developed 
an adaptable DBN to evaluate FDD performance across varied sensor

Energy & Buildings 354 (2026) 116913 

14 



Z. Wang et al.

configurations, identifying 15 of 17 faults in the Sensor-Rich configura-
tion. However, this approach also revealed several practical challenges:

• Unexpected BMS control behavior (e.g., reducing HRW rotation 
speed as protection when a heating coil valve is stuck at high open-
ness) and unpredictable operational factors (such as occupant behav-
ior, weather, or undocumented maintenance) can lead to symptoms 
being missed or falsely detected, and therefore it remains an under-
explored area of research [70]. For example, Symptom Nsf-Nsfpred-
Diff (𝑆19) and CO2-Max (𝑆7) was false positively detected in Fault 
Tset-Wrong-3 (Case 5) and Tsa-Bias03 (Cases 6) respectively.

• For a number of symptoms (see Table 4), detection relied on pre-
diction models applying fixed statistical thresholds, like ±3𝜎. Al-
though this is common in laboratory studies [28,30], it can hinder 
symptom detection in real-world settings, as certain symptoms were 
undetected due to overly wide thresholds. For example, Symptom 
Uhc-UPred-Diff (𝑆4) was not detected in Fault Tsa-Bias-3 (Case 6). 
This suggests that fixed boundaries may reduce diagnostic accuracy 
in practical applications.

6.2.  Comparison in different sensor configurations

Overall, the Sensor-Rich configuration achieves the highest number 
of correctly diagnosed faults, but the comparison across individual cases 
shows that more sensors do not always lead to better diagnoses. Al-
though additional sensors generally improve diagnosis accuracy by pro-
viding more symptoms to the DBN, this study reveals that increasing 
the number of symptoms does not always guarantee improved results. 
For example, faults such as HRW-Stuck-30 (Case 1b) and Tset-Wrong-3 
(Case 5) were correctly diagnosed with the Sensor-Standard configura-
tion, but misdiagnosed in the Sensor-Rich configuration. These different 
results may be due to the removed symptoms Uhc-UPred-Diff (𝑆4), Nsf-
Nsfpred-Diff (𝑆19), and Psf-Psfpred-Diff (𝑆18). These symptoms unex-
pectedlyunexpetctly detected or undetectedundetectin above cases mis-
lead the BN inference, resulting in false positive or negative diagnoses. 
This finding highlights the potential for redundant or confounding infor-
mation in DBNs to sometimes reduce diagnostic accuracy, aligning with 
the suggestion from Li et al. [31] that improper prior fault-symptom 
relationships should be removed to improve DBN’s accuracy.

6.3.  Sensor recommendations and the role of key sensors

Results in Fig. 7 indicate that the Sensor-Standard configuration sup-
ports basic FDD for AHUs with heat recovery, broadly consistent with 
the measurement points recommended by Schein et al. [10]. The im-
portance of several sensors is evident from the number of faults they 
are associated with, such as outdoor air temperature (𝑇oa, 10 faults), 
supply coil water temperature (𝑇sw, 9 faults), and pre-heating air tem-
perature (𝑇pre, 8 faults). From Sensor-Limited to Standard, adding 𝑇pre
and 𝑇sw enables HRW efficiency and prediction-based symptoms (e.g. 
𝑆6: Tsa-Tpred-Diff), which allows correct diagnosis of the HRW fault 
(𝐹1), the supply temperature setpoint fault (𝐹5), and sensor faults such 
as Tsa-Bias (𝐹6), Tpre-Bias (𝐹8) and Tra-Bias (𝐹9). From Standard to 
Rich, additional supply water temperature (𝑇sw), airflow (𝐹sa) and fan 
pressure difference (Δ𝑃sf) sensors provide related symptoms that suc-
cessfully diagnosed HCV-Stuck (𝐹3) and separated Tsw-Bias (𝐹10) from 
Fsa-Bias (𝐹11). Finally, adding 𝐶𝑂2 concentration provides the CO2-Max 
symptom (𝑆10), which in combine with air flow sensors to identify Psa-
Bias (𝐹7) as a pressure related fault rather than a fan fault. By linking 
these key measurements to more fault nodes in the DBN, the model 
gains stronger and more diverse symptom evidence, which improves 
DBN’s ability to diagnose faults have similar symptoms. Therefore, up-
grading the standard sensor configuration to include these key mea-
surement points is recommended for improved FDD capability.Results 
in Fig. 7 indicate that the Sensor-Standard configuration supports basic 
FDD for AHUs with heat recovery, in line with the measurement points 

recommended by Schein et al. [10]. The importance of several sensors 
is evident from the number of faults they are associated with, such as 
outdoor air temperature (𝑇oa, 10 faults), supply coil water temperature 
(𝑇sw, 9 faults), and pre-heating air temperature (𝑇pre, 8 faults). Key sen-
sors, including airflow rate (𝐹sa), supply fan pressure difference (Δ𝑃sf), 
supply coil water temperature and flow, and 𝐶𝑂2 concentration, further 
enhance diagnostic accuracy and broaden the scope of fault detection, 
approaching Sensor-Rich performance. 

6.4.  Limitations and data quality

This study has several limitations that should be considered re-
lated to data quality, modeling assumptions, and practical implemen-
tation. First, the accuracy of sensor data is critical for FDD perfor-
mance. Although the DBN showed ability to diagnose sensor biases, 
the lack of sensor calibration, possible possible drift, and missing data 
may have influenced the detection of certain symptoms, particularly for
prediction-based models that rely on consistent and reliable input data. 
While quality checks and data cleaning procedures were applied, resid-
ual uncertainties may remain, especially in periods with unrecorded 
maintenance or sensor malfunctions. Second, prediction-based symp-
toms and specific symptom thresholds depend on fault-free data. This 
method requires high-quality historical labeled data. Third, the condi-
tional and prior probabilities in the DBN were assigned mainly based 
on expert knowledge due to the lack of comprehensive data. While this 
approach enables model construction when fault data are limited, it 
also introduces subjectivity and may not fully capture all real-world de-
pendencies, particularly in complex or poorly understood fault scenar-
ios. Fourth, the modeling practices adopted in this work, including the 
structure of the DBN and data focus on a specific dutch office building, 
present limitations to generalizability. Because the DBN was developed 
and validated using data from a single AHU, there is a risk of overfit-
ting. As a result, the DBN framework and findings are likely transferable 
to other AHUs with similar architectures but may not be universally 
applicable to other AHUs with different configurations or operational 
profiles.

6.5.  Future research

Based on the discussions and limitations, several directions for fu-
ture research are recommendedsuggested. Firstly, further investigation 
is needed into the inconsistent symptom detection observed for certain 
faults and the diagnosis of multiple simultaneous faults, which were 
not extensively covered in the present work. Secondly, more extensive 
labelled fault datasets are needed to enable quantitative comparative 
analyses with other FDD methods and to support cross-building valida-
tion of symptom thresholds, prediction models, conditional probabilities 
and DBN structures across different AHU layouts, sensor configurations, 
building types and climatic conditionsmethodologies for cross-building 
adaptation should be explored to optimize symptom detection thresh-
olds and improve the transferability and accuracy of prediction models 
across different buildings and HVAC systems. Thirdly, given the DBN’s 
reliance on expert knowledge for defining fault-symptom relationships 
and conditional probabilities, future work should focus on developing 
structured methodologies or automated techniques for model construc-
tion [71,72] and knowledge elicitationautomated techniques to stream-
line the modeling process and integrate it into Bayesian frameworks 
more robustly, thereby reducing potential biases and the complexity of 
this process. Finally, further research should investigate the application 
and adaptability of DBNs to diverse climatic zones, building types, and 
operational conditions.

7.  Conclusion

This study investigated the effectiveness of a DBN for fault diagnosis 
in a real-world AHU with diverse sensor configurations. The developed 
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DBN framework provides a robust diagnostic approach for AHUs with 
heat recovery, establishes a baseline for evaluating the cost-effectiveness 
of sensor selectiondeployment, and offers a monitoring solution for fu-
ture engineering implementations of AHU FDD. The key findings of this 
research are summarized as follows:

• Discrepancy between guidelines and practice: This study defines 
three sensor configurations (Rich, Standard, Limited) for AHU FDD 
to bridge the gap between two recognized guidelines and the lim-
ited sensor installations in real-world, based on analysis of ASHRAE 
Guideline 36 and ISSO Publication 31 and the practice survey of 
Dutch AHUs.

• DBN framework for AHU with heat recovery: The proposed 
DBN was successfully applied to a real-world AHU with a heat 
recovery wheel, demonstrating its capability to diagnose a com-
mon operational and component faults across different sensor
configurations.

• Impact of sensor availability on diagnosis: Diagnostic accuracy 
generally improves with increased sensor availability, with the 
Sensor-Rich configuration yielding the highest accuracy. However, 
simply adding more sensors do not always guarantee a better diagno-
sis for all faults. Diagnostic performance depends on strategic sensor 
selection and effective DBN modeling practices in order to achieve 
robust diagnosis.due to unexpected system behavior or inaccuracies 
in prediction-based symptoms.

• Sensor configuration recommendations and key sensors: The 
Sensor-Standard configuration provides a practical FDD baseline, 
while additional sensors for airflow, fan pressure, and key tem-
peratures significantly enhance diagnostic performance toward the 
Sensor-Rich configuration.

• Effectiveness of diagnostic sampling practices: The method 
of processing diagnostic samples significantly affects FDD accu-
racy and computational efficiency. symptom aggregation followed 
by a single BN inference (Scenario 2) achieved the best bal-
ance between diagnostic accuracy and computational cost, outper-
forming both sensor aggregation and posteriorposteirorprobability
approaches.
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Appendix A.  Rest diagnostic result of sensor-rich configuration

Fig. A.1. Time series data illustrating key sensor readings (𝑇oa, 𝑇ra, and 𝑇pre) and 
the 𝜂𝑠𝑎 for Fault HCV-Stuck-100 (Case 3a).

A.0.1.  Fault SF-stuck (Case 2a–2b)
In cases 5 and 6, as illustrated in Fig. 7(e) and (f), Fault SF-Stuck 

was correctly diagnosed with posterior probabilities of 1.0 and 0.91, re-
spectively. In Case 2a, the supply fan speed was fixed at 30%, resulting 
in a reduced supply airflow rate. Consequently, the supply air pressure 
(𝑃sa) failed to reach its setpoint, and both the filter pressure difference 
(𝑃fi) and the supply pressure (𝑃sa) decreased significantly. This triggered 
Symptom Pset-Psa-Diff and Pfi-Diff-Min. Moreover, the prediction-based 
symptoms Nsf-Nsfpred-Diff and Psa-Psapred-Diff were also detected, as 
shown in Fig. B.1(a) and (e). Furthermore, the lower fan speed reduced 
the volume of outdoor air supplied to the interior, limiting the dilution 
of CO2 generated by occupants, which led to the detection of Symptom 
Co2-Max. Notably, Symptom HRW-Effi-Max and HRW-Effi1-Effi2 were 
also detected. This can likely be attributed to the decreased air velocity 
across the HRW at lower fan speeds, deviating from nominal operat-
ing conditions and allowing for excessive heat exchange between the 
exhaust and supply air streams.

In Case 2b, similar symptoms were detected. However, with the fan 
speed fixed at 65%, which was closer to normal operation, the HRW 
related symptoms (HRW-Effi-Max and HRW-Effi1-Effi2) were not de-
tected.

A.0.2.  Fault HCV-stuck (Case 3a–3b)
As shown in Fig. 7(g) and (h), the DBN correctly diagnosed Fault 

HCV-Stuck in Cases 7 and 8 with a posterior probability of 0.51. In 
Case 3a, two of the three primary symptoms, Symptom Uhc-UPred-Diff 
and Symptom Tin-Tinset-Diff, were detected, leading to the correct di-
agnosis. Notably, Symptom HRW-Effi-Min was unexpectedly detected, 
as illustrated in Fig. 6. When overheating occurs while the HCV remains 
stuck, the BMS might activate a protective control mechanism, reducing 
the HRW speed to lower the supply temperature to reach the tempera-
ture setpoint. As shown in Fig. A.1, the similarity between the 𝑇pre and 
𝑇oa sensor readings supports this assumption. This mechanism may also 
explain why another primary symptom, Symptom Tset-Tsa-Diff, was de-
tected in less than 50% of the time steps and therefore was not consid-
ered detected.

In Case 3b, similar to Case 3a, Symptoms Uhc-UPred-Diff and Tin-
Tinset-Diff were detected, as shown in Fig. 6(h), leading to the correct 
diagnosis. Additionally, Symptom Tset-Tsa-Diff was detected in less than 
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50% of the time steps, meaning that it was not considered detected. This 
could be because when the HCV was stuck at 75% openness, it remained 
close to the nominal operational conditions.

A.0.3.  Fault Pset-wrong (Case 4)
As shown in Fig. 7(i), Case 4 was correctly diagnosed as Fault 

Pset-Wrong with a posterior probability of 1.00. The expected opera-
tional state (OS) symptoms Pset-Toa-Ctrl, HRW-Effi-Min, and Tset-Tsa-
Diff were detected. When the pressure setpoint is higher than expected, 
Symptom HRW-Effi-Min is consistently detected at every time step. This 
occurs because a higher pressure setpoint increases the fan speed. As the 
fan speed increases, air moves through the HRW more quickly, reducing 
the contact time between the HRW surface and the air, which in turn 
decreases the heat exchange efficiency. Additionally, the increased fan 
speed leads to an unstable supply temperature, causing the detection 
of Symptom Tset-Tsa-Diff as shown in Fig. 6. Moreover, two prediction 
symptoms, Uhc-UPred-Diff and Psa-Ppred-Diff, were also detected, as 
shown in Fig. B.1(d) and (e).

A.0.4.  Fault Tsa-bias (Case 6)
As shown in Fig. 7(h), Case 6 was correctly diagnosed as Fault Tsa-

Bias with a posterior probability of 0.78. Two of the three symptoms, 
Tsa-Tsa2-Diff and Tsa-Tpred-Diff, were detected, leading to the correct 
diagnosis. When 𝑇sa is biased, the prediction Symptom Tsa-Tpred-Diff 
is expected to detect a deviation from the predicted 𝑇sa, as shown in 
Fig. B.1(c). Similarly, Symptom Uhc-UPred-Diff is also expected to be 
detected, as 𝑇sa is used as input during model training. However, it re-
mained undetected, as shown in Fig. B.1(d).

A.0.5.  Fault Psa-bias (Case 7)
As shown in Fig. 7(l), Case 7 was correctly diagnosed as Fault Psa-

Bias with a posterior probability of 0.19. Only symptom CO2-Max was 
detected in this case. When 𝑃sa is biased, the BMS incorrectly believes 
that the desired pressure has been reached or exceeded. As a result, it 
reduces the fan speed or maintains it at a lower level, leading to reduced 
airflow being supplied to the zone, which triggers the detection of Symp-
tom CO2-Max. Furthermore, the prediction-based symptom Psa-Ppred-
Diff is expected to detect a deviation from the predicted 𝑃sa. However, 
this symptom was not detected, as shown inFig. B.1(e).

A.0.6.  Fault Tra-bias (Case 9)
As shown in Fig. 7(n), Case 9 was correctly diagnosed as Fault Tra

-Bias with a posterior probability of 0.10. Similar to Case 8, 
since 𝑇ra is involved in the calculation of Symptoms HRW-Effi-Min 
and HRW-Effi1-Effi2, a positive bias in 𝑇ra decreases 𝜂hrw, causing 
it to fall below the nominal value and creating a deviation be-
tween 𝜂sa and 𝜂eha, thus triggering the detection of both Symptom 
HRW-Effi-Min and HRW-Effi1-Effi2. Another primary evidence, Symp-
tom Tra-Tra2-Diff, was also detected at all time steps. This is be-
cause the symptom uses 𝑇rad, measured in the distribution system, 
for comparison. When 𝑇ra is biased, it becomes easier to detect this
symptom.

A.0.7.  Fault Tsw-bias (Case 10)
In Case 10, as shown in Fig. 7(o), Case 10 was correctly diag-

nosed as Fault Tsw-Bias with a posterior probability of 0.76. Two re-
lated diagnostic evidences Symptoms Tsa-Tpred-Diff and Tin-Tinset-
Diff were detected as shown in Fig. 6(o). When 𝑇sw is biased, Symp-
tom Tsa-Tpred-Diff detects a deviation from the predicted 𝑇sa as 
shown in Fig. B.1(c) and explained in Section 5.1. Another prediction 
symptom, Symptom Uhc-UPred-Diff, was not detected, as shown in 
Fig. B.1(d).

A.0.8.  Fault Fsa-bias (Case 11)
As shown in Fig. 7(p), Case 11 was correctly diagnosed as Fault Fsa-

Bias with a posterior probability of 1.0. All three related symptoms Nsf-
Nsfpred-Diff, Psf-Psfpred-Diff, and SF-Fsa-Min were detected. When 𝐹sa
is biased, Symptom Nsf-Nsfpred-Diff detects a deviation from the pre-
dicted 𝑁sf, as shown in Fig. B.1(a). The same explanation applies to 
Psf-Psfpred-Diff, as shown in Fig. B.1(b). Another key diagnostic symp-
tom, Sf-Fsa-Min, was detected in nearly all time steps. This is because 
the biased 𝐹sa reading fails to meet the nominal airflow value, leading 
to the detection of this symptom.

A.0.9.  Normal day (Case 12)
As shown in Fig. 7(q), Case 12 was correctly diagnosed as a true 

negative across all faults. With the exception of Symptom Tin-Tinset-
Diff, all other symptoms remained undetected in this case, leading to 
the accurate true negative diagnosis.

Appendix B.  Additional material

This section contains supplementary data.

Energy & Buildings 354 (2026) 116913 

17 



Z. Wang et al.

Fig. B.1. Comparison of measured and predicted values for symptom detection. (a) Fan control signal prediction symptom (𝑆19: 𝑁sf,pred); (b) Fan pressure difference 
prediction symptom (𝑆18: 𝑃sf,pred); (c) Supply air temperature prediction symptom (𝑆6: 𝑇sa,pred); (d) Heating coil valve openness prediction symptom (𝑆4: 𝑈hc,pred); (e) 
Supply air static pressure prediction symptom (𝑆9: 𝑃sa,pred).

Energy & Buildings 354 (2026) 116913 

18 



Z. Wang et al.

Fig. B.2. Comparative diagnostic performance of Scenario 1, Scenario 2, and Scenario 3, illustrating the posterior probability for seventeen fault cases. (a) HRW-Stuck-
0. (b) HRW-Stuck-0. (c) HRW-Stuck-0. (d) HRW-Stuck-80. (e) Fan-Stuck-30. (f) Fan-Stuck-65. (g) HCV-Stuck-100. (h) HCV-Stuck-75. (i) Pset-Wrong. (j) Tset-Wrong. 
(k) Tsa-Bias. (l) Psa-Bias. (m) Tpre-Bias. (n) Tra-Bias. (o) Tsw-Bias. (p) Fa-Bias. (q) NM(normal).

Table B.1 
𝜀 values for symptom state definitions.
 Symptom 𝜀𝑇 𝜀𝑃 𝜀𝑇 𝑖𝑛 𝜀ℎ𝑐 𝜀𝑇 𝑝𝑟𝑒 𝜀𝑇 𝑠𝑎 𝜀𝐶𝑂2

𝜂ℎ𝑟𝑤,𝑚𝑎𝑥 𝜀𝑃𝑠𝑎 𝜂𝑠𝑎,𝑛𝑚 𝜀𝑓𝑖 𝜀𝑠,𝑒 𝜀𝑇 2 𝜀𝑜𝑎 𝜀𝑁 𝜀Δ𝑃sf 𝜀𝑁sf

 Value  0.5  5  0.5  18  1  1.19  500  0.8  11.46  0.71  55  1  1  20  700  59.55  6.3
 Unit ◦C  Pa ◦C  % ◦C ◦C  ppm  %  Pa  %  Pa  % ◦C ◦C ◦C  Pa  %
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Table B.2 
Summary of defined fault-symptom relationships and their presence across sensor 
configurations along with the presence (✓) of each symptom under the Sensor-Rich, 
Sensor-Standard, and Sensor-Limited configurations, respectively.
 No.  Fault  Symptom  Relationship  Rich  Standard  Limited
𝐹1  HRW-Stuck  HRW-Effi-Min  High ✓ ✓

 Uhc-Upred-Diff  Medium ✓

 Nsf-Nsfpred-Diff  Medium ✓

 Psf-Psfpred-Diff  Medium ✓

𝐹2  SF-Stuck  CO2-Max  High ✓

 Pset-Psa-Diff  High ✓ ✓ ✓

 HRW-Effi-Max  High ✓ ✓

 Pfi-Diff-Min  High ✓ ✓ ✓

 Psa-Ppred-Diff  Medium ✓

 Tsa-Tpred-Diff  Medium ✓ ✓

 Uhc-Upred-Diff  Medium ✓

 Psf-Psfpred-Diff  High ✓

 Nsf-Nsfpred-Diff  High ✓

𝐹3  HCV-Stuck  Tin-Tinset-Diff  High ✓ ✓

 Tset-Tsa-Diff  Medium ✓ ✓ ✓

 Uhc-Upred-Diff  High ✓

𝐹4  Pset-Wrong  HRW-Effi-Min  High ✓ ✓

 Psa-Ppred-Diff  High ✓

 Pset-Toa-Ctrl  High ✓ ✓ ✓

 Tset-Tsa-Diff  High ✓ ✓ ✓

 Uhc-Upred-Diff  High ✓

 Nsf-NsfPred-Diff  Medium ✓

 Psf-PsfPred-Diff  Medium ✓

𝐹5  Tset-Wrong  Tin-Tinset-Diff  Medium ✓

 Tset-Toa-Ctrl  Medium ✓ ✓ ✓

 Uhc-Upred-Diff  High ✓ ✓

𝐹6  Tsa-Bias  Tin-Tinset-Diff  Medium ✓

 Tsa-Tsa2-Diff  High ✓

 Tsa-Tpred-Diff  High ✓ ✓

 Uhc-Upred-Diff  Medium ✓

𝐹7  Psa-Bias  CO2-Max  High ✓

 Uhc-Upred-Diff  Medium ✓

 Psa-Ppred-Diff  Medium ✓

𝐹8  Tpre-Bias  HRW-Effi-Min  High ✓ ✓

 HRW-Effi1-Effi2  High ✓ ✓

 HRW-Effi-Max  High ✓ ✓

 Psa-Ppred-Diff  Medium ✓

 Tpre-Traoa-Max  High ✓ ✓

 Tsa-Tpred-Diff  High ✓ ✓

𝐹9  Tra-Bias  HRW-Effi-Min  High ✓ ✓

 HRW-Effi1-Effi2  High ✓ ✓

 Tra-Tra2-Diff  High ✓

𝐹10  Tsw-Bias  Tsa-Tpred-Diff  High ✓

 Uhc-Upred-Diff  Medium ✓

 Tin-Tinset-Diff  Medium ✓ ✓

𝐹11  Fsa-Bias  Sf-Fsa-Min  High ✓

 Psf-Psfpred-Diff  High ✓

 Nsf-Nsfpred-Diff  High ✓
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