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Abstract

This thesis presents an analysis-by-synthesis approach for single-microphone
indoor localization that inverts Neural Acoustic Fields (NAFs) by comparing
synthesized and measured room impulse responses. Inspired by Neural Radi-
ance Fields (NeRFs), NAFs model room impulse responses (RIRs) as continu-
ous functions of spatial coordinates, enabling localization through spectral loss
minimization over candidate listener positions. To mitigate computational over-
head, we introduce Standard Deviation-Weighted Sampling (SDWS), focusing
on informative time-frequency bins. Further, we evaluate regularization effects
on loss landscapes. Evaluated on SoundSpaces (simulated, binaural) and RAF
(real-world, monaural) datasets, the method shows complementary behavior
across datasets. While it outperforms direct regression baselines (ResNet-10,
NAF-Direct) in sparse-data regimes on RAF, achieving up to 32% lower mean
localization error (on RAF at 10% data), performance is lower on SoundSpaces,
likely due to the high acoustic similarity between different locations in the sim-
ulated environments. PSO reduces runtime by 75% over grid search while im-
proving accuracy by 14%, and SDWS cuts computation by 40× with only 22%
error increase. The approach demonstrates NAF’s potential for localization but
highlights trade-offs between inference time (5-200 s per query) and perform-
ance. Future work could extend the method to jointly estimate listener position
and orientation, or to incorporate a hybrid search algorithm for more efficient
exploration of the loss space.
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“Failure is simply the opportunity to begin again, this time more intelligently.”
– Henry Ford
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Chapter 1

Introduction

1.1 Motivation

Indoor localization plays a vital role in supporting a range of location-based ser-
vices, including indoor navigation, health rehabilitation, and human-computer
interaction (HCI) [32]. Classical acoustic techniques, such as time-of-flight
(ToF) [49], time-difference-of-arrival (TDoA) [36, 55], or MUSIC [51] often rely
on multiple microphones and degrade in performance under multipath effects
in complex environments. Methods that rely on a single microphone typically
require precise prior knowledge of the room geometry and are only practical in
simple and rectangular rooms [44]. Data-driven techniques address these issues
by learning patterns from acoustic data, using raw waveforms [59, 46, 37] or
features like STFT spectrograms [1, 16] and GCC vectors [63, 20, 60]. However,
these methods often require large datasets [16] for model training.

Neural Acoustic Fields (NAFs) [34] are an emerging method for modeling
room acoustics by learning a continuous mapping from spatial coordinates to
Room Impulse Responses (RIRs). They are inspired by Neural Radiance Fields
(NeRFs) [40], which represent 3D scenes as continuous functions mapping spa-
tial coordinates and viewing directions to color and density, enabling photoreal-
istic novel-view synthesis. Similarly, NAFs can synthesize realistic spatial acous-
tic signals. Most prior work [34, 54, 30] has focused on forward RIR synthesis,
leaving their potential for inverse tasks, such as localization, largely unexplored.

Analysis-by-synthesis (AxS) offers a framework to tackle such inverse prob-
lems. Rather than predicting positions directly through discriminative regres-
sion, AxS generates candidate positions, synthesizes the corresponding signals
using a generative model, and then minimizes the discrepancy between these
synthesized signals and the actual observations. The candidate with the smallest
discrepancy is then selected as the final estimate [18, 42, 4]. This approach has
been successfully applied in the field of computer vision. For instance, in [11],
an image synthesis network generates object views, which are then compared to
the input image to optimize the pose, outperforming direct regression. In the
context of visual NeRFs, iNeRF [31] extends this idea by inverting NeRF for
camera pose estimation. Similarly, recent acoustic studies [65, 61] demonstrate
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the effectiveness of AxS in the acoustic domain, with DAF [65] applied to fallen
object localization and DiffRIR [61] to RIR reconstruction. Motivated by these
works, this thesis proposes inverting NAFs through an AxS approach to per-
form single-microphone listener localization based on a single impulse response,
given a known source position. Specifically, we design an analysis-by-synthesis
pipeline that (i) synthesizes candidate RIRs using a trained NAF, (ii) searches
the acoustic loss landscape using grid search or particle swarm optimization, and
(iii) reduces computational cost via a Standard Deviation-Weighted Sampling
strategy to focus on informative spectrogram regions. We further investigate the
effect of data sparsity and regularization on localization accuracy. We evaluate
the proposed methods on two public datasets, i.e., the SoundSpaces [9, 10] and
RAF [12].

1.2 Contributions

This thesis makes the following key contributions:

• Inversion of NAF for Localization: We propose an analysis-by-synthesis
method that inverts a Neural Acoustic Field (NAF) to perform listener
localization from a single RIR measurement and a known source position.

• Optimization Strategies: We design and evaluate both grid-based and
particle swarm optimization (PSO) strategies to efficiently navigate the
complex acoustic loss landscape. In practice, PSO reduces runtime by up
to 75% compared to grid search while simultaneously improving accuracy
by 14%.

• STFT Sub-sampling Improvement: We introduce and evaluate a
Standard Deviation-Weighted Sampling technique, mitigating the signi-
ficant computational cost of the analysis-by-synthesis loop by focusing on
the most informative time-frequency bins in the RIR spectrum. This re-
duces computation by up to 40× with only a 22% increase in localization
error.

• Evaluation in Sparse-Data Scenarios: We demonstrate that our method
outperforms direct regression baselines on a real-world dataset in scenarios
where training data is limited. Specifically, it achieves up to 32% lower
mean localization error than the best-performing baseline when trained
on only 10% of the RAF dataset.

1.3 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 reviews the liter-
ature related to this work. Chapter 3 presents the proposed approach in detail.
The system is evaluated through experiments in Chapter 4. Finally, Chapter 5
concludes the thesis by discussing key findings, limitations, and directions for
future work.
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Chapter 2

Related work

This chapter reviews related work in acoustic localization, implicit neural rep-
resentations (INRs), and analysis-by-synthesis (AxS). Specifically, Section 2.1
covers related works in acoustic localization, distinguishing between classical
model-based approaches and modern data-driven techniques. Section 2.2 re-
views implicit neural representations, with a focus on NeRF and its acoustic
counterpart, i.e., NAF. Section 2.3 covers analysis-by-synthesis, from its in-
troduction to recent implementations using NeRF. Section 2.4 reviews public
datasets of room impulse responses, including two that serve as the basis for
evaluation in this thesis.

2.1 Acoustic localization

Indoor localization is crucial for enabling various location-based services, such
as indoor navigation, health rehabilitation, and human-computer interaction
(HCI) [32]. A wide variety of signal modalities have been explored for this
purpose, such as Wi-Fi [6, 5, 27], Bluetooth [3, 17], visible light [25], and iner-
tial sensors [21]. To improve localization performance, many systems integrate
multiple modalities to enhance accuracy and robustness [62].

Among these modalities, acoustic signals stand out for offering high localiza-
tion accuracy with minimal infrastructure and low latency [32]. The remainder
of this review focuses on acoustic localization and distinguishes between two
main families of approaches: classical model-based methods [49, 36, 55, 51] and
data-driven neural methods [59, 46, 37, 1, 63, 20, 60]. Section 2.1.1 discusses
classical, model-driven techniques, such as ToF [49], TDOA [36, 55], and MU-
SIC [51], that rely on explicit acoustic propagation models. Section 2.1.2 covers
data-driven, neural network-based solutions, which learn end-to-end mappings
from acoustic inputs to spatial coordinates, often providing greater robustness
in reverberant or noisy settings.

2.1.1 Classical techniques

Various physical phenomena can be exploited using model-based approaches
for acoustic localization. One of the simplest methods is Time-of-Flight (ToF),
which uses the time it takes for a signal to travel from its transmitter to its
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receiver. Knowing the speed of sound, one can calculate the distance d between
the transceiver pair using a simple formula: d = c · t, where c is the speed
of sound in the medium, and t is the time delay measured. With multiple
fixed-position anchor nodes, these estimated distances define circles in 2D or
spheres in 3D around each anchor. The target’s position is then determined
at the intersection of these loci, typically using trilateration [29]. Despite its
simplicity, ToF has several limitations. The speed of sound is temperature-
dependent, introducing potential errors in distance estimation if environmental
conditions are not accounted for [32]. Moreover, the method typically requires
precise synchronization between the transmitter and receiver clocks, which can
be challenging to achieve in practice [32].

Another widely used method is Time Difference of Arrival (TDOA) [29], which
estimates the origin of a sound by measuring the relative delays between signals
received at microphones in known positions. Since it relies only on these relative
time differences, it does not require clock synchronization. This technique can
be used to estimate the absolute position of a target, as demonstrated in [36],
which uses a 2-meter diameter microphone array to localize a sound source in
3D space, achieving a mean accuracy of 4.8 cm. However, when the source is
far relative to the array size, the incoming wavefronts appear planar, making it
difficult to resolve the source’s exact location. In such cases, only the direction-
of-arrival (DOA) can be reliably estimated, while range information is lost [55].

To estimate the time delays for TDOA, cross-correlation between microphone
signals is commonly used. The generalized cross-correlation with phase trans-
form (GCC-PHAT) is a widely used method that compares only the phase of
signals at each microphone to estimate time delays [26].

The mathematical formulations forming the basis for the TDOA algorithm,
specifically for a two-dimensional setting, are:

{
(xs − x2)

2 + (ys − y2)
2
}1/2 −

{
(xs − x1)

2 + (ys − y1)
2
}1/2

= T21c, (2.1)

{
(xs − x3)

2 + (ys − y3)
2
}1/2 −

{
(xs − x1)

2 + (ys − y1)
2
}1/2

= T31c (2.2)

where (xs, ys) are the coordinates of the sound source, (xi, yi) are the coordin-
ates of the i-th microphone, Tij is the time difference of arrival between micro-
phone i and j, and c is the speed of sound in the medium [33].

A popular method for high-resolution DOA estimation is the Multiple Sig-
nal Classification (MUSIC) algorithm, first introduced by Schmidt in 1986 [51].
It decomposes the covariance matrix of a microphone array into “signal” and
“noise” subspaces and locates sources by finding steering vectors orthogonal
to the noise subspace. Unlike ToF and TDOA methods, which triangulate a
source’s position from discrete time delays and are constrained by sampling res-
olution and synchronization, MUSIC operates on narrowband signals, does not
need clock alignment, and can resolve sources spaced closer than what conven-
tional array methods allow.
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2.1.2 Data-driven techniques

Traditional methods rely on physical models but often struggle with noise, re-
verberation, and synchronization requirements. Data-driven techniques address
these limitations by learning spatial and temporal patterns directly from acous-
tic data, enabling more robust localization in complex environments. As a res-
ult, an increasing number of acoustic localization systems based on deep neural
networks (DNNs) have been proposed in recent years [16]. This section briefly
reviews such approaches.

Some methods utilize raw audio waveforms directly as inputs [59, 46, 37].
This idea leverages the DNN’s ability to learn optimal representations for acous-
tic localization without hand-crafted features or preprocessing [16]. However,
this often leads to more complex networks, as a part of the network needs to
be responsible for feature extraction. As a result, many studies use common
signal processing representations that emphasize spatial and/or time-frequency
characteristics of the signal, such as Short-Time Fourier Transform (STFT)
spectrograms [16]. In systems using multiple microphones, STFT spectrograms
are typically 3D tensors with dimensions for time, frequency, and channel [16].
In [1], a CNN-based architecture is used for sound event detection (SED) and
DOA estimation for a set of sound classes. The model operates directly on STFT
spectrograms derived from microphone array recordings. It achieved competit-
ive DOA accuracy (3.4◦ error for single-source cases) but showed performance
degradation in reverberant conditions.

Several learning-based approaches first extract handcrafted acoustic features
such as generalized cross-correlation (GCC) vectors before processing them
through neural networks for direction-of-arrival estimation. While some meth-
ods target only DOA prediction (e.g., achieving 1.37◦ RMSE in [63] and 4.18◦

mean error in [20]), others extend to full 2D localization [60]. However, these
methods face inherent limitations: they rely on handcrafted features that per-
form poorly in noisy or reverberant environments, and their fixed preprocessing
stages restrict the model’s capacity to learn directly from raw input signals.

2.2 Implicit Neural Representations (INR)

Recent studies have shown that fully connected networks can serve as continu-
ous and memory-efficient Implicit Neural Representations (INR) for modeling
objects and scenes [52, 50]. One of the key breakthroughs in the field of INR
was the introduction of Neural Radiance Fields (NeRF) [40], which model 3D
scenes by learning a mapping from spatial coordinates and viewing directions
to color and density. This enables photorealistic novel view synthesis from a
sparse set of input images.

NeRF inspired a wide range of extensions [38, 66, 47, 64] and applications
across modalities, such as LiDAR [22], radio-frequency (RF) [67, 23], and acous-
tics [34, 54, 30]. This shift toward continuous implicit representations opens new
possibilities for efficient and generalizable spatial modeling, especially in scen-
arios with limited or sparse data [64].
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Section 2.2.1 presents a brief overview of NeRF’s principles, while Section 2.2.2
introduces Neural Acoustic Fields (NAF), NeRF’s acoustic counterpart on which
our method builds.

2.2.1 Neural Radiance Fields (NeRF)

Neural Radiance Fields (NeRF), introduced by Mildenhall et al. [40], marked
a significant breakthrough in the field of implicit neural representations for 3D
scene modeling. NeRF represents a static scene using a fully connected neural
network that maps continuous 3D coordinates and viewing directions to volu-
metric density and emitted radiance. This enables the synthesis of highly real-
istic images from arbitrary, novel viewpoints given only a sparse set of calibrated
input images. Unlike traditional voxel grids or point-based methods, NeRF is
both memory-efficient and resolution-independent due to its continuous nature.
At the core of NeRF is a neural network FΘ that approximates the following
volumetric scene function:

FΘ(x,d) = (σ, c), (2.3)

which maps the 3D location x ∈ R3 and viewing direction d = (θ, ϕ) to a
volume density σ ∈ R≥0 at that location and an RGB color c ∈ R3 emitted
in that direction. To render a pixel, NeRF casts a ray through the scene and
samples a sequence of N points along the ray. The color of the pixel is then
computed using volume rendering techniques, integrating the contributions of
sampled points based on their predicted density and color [39]:

Ĉ(r) =

N∑

i=1

Ti (1− exp(−σiδi)) ci, where Ti = exp


−

i−1∑

j=1

σjδj


 , (2.4)

where exp(·) denotes the exponential function, Ti is the accumulated transmit-
tance up to sample i, and δi is the distance between adjacent samples along the
ray. This rendering process is differentiable, meaning that NeRF can be trained
end-to-end using only image supervision by minimizing the mean squared error
between rendered and ground-truth pixels. An overview of the NeRF repres-
entation and rendering process is shown in Figure 2.1 [40].

2.2.2 Neural Acoustic Fields (NAF)

Neural Acoustic Fields (NAFs) extend the concept of implicit neural represent-
ations to the acoustic domain by learning a continuous mapping from spatial
coordinates to room impulse responses (RIRs). Inspired by NeRF [40], the NAF
framework was introduced by Luo et al. [34] as a way to model the acoustic beha-
vior of an environment directly from measurements, without relying on explicit
room geometry or simulation. A NAF takes a source and receiver coordinate
pair as input and predicts the corresponding RIR. Applying this RIR to an an-
echoic audio signal simulates how the sound would be perceived if emitted and
recorded at those specific locations. The applications of NAF include spatial
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Fig. 2: An overview of our neural radiance field scene representation and differ-
entiable rendering procedure. We synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays (a), feeding those locations
into an MLP to produce a color and volume density (b), and using volume ren-
dering techniques to composite these values into an image (c). This rendering
function is differentiable, so we can optimize our scene representation by mini-
mizing the residual between synthesized and ground truth observed images (d).

direction as a 3D Cartesian unit vector d. We approximate this continuous 5D
scene representation with an MLP network FΘ : (x,d)→ (c, σ) and optimize its
weights Θ to map from each input 5D coordinate to its corresponding volume
density and directional emitted color.

We encourage the representation to be multiview consistent by restricting
the network to predict the volume density σ as a function of only the location
x, while allowing the RGB color c to be predicted as a function of both location
and viewing direction. To accomplish this, the MLP FΘ first processes the input
3D coordinate x with 8 fully-connected layers (using ReLU activations and 256
channels per layer), and outputs σ and a 256-dimensional feature vector. This
feature vector is then concatenated with the camera ray’s viewing direction and
passed to one additional fully-connected layer (using a ReLU activation and 128
channels) that output the view-dependent RGB color.

See Fig. 3 for an example of how our method uses the input viewing direction
to represent non-Lambertian effects. As shown in Fig. 4, a model trained without
view dependence (only x as input) has difficulty representing specularities.

4 Volume Rendering with Radiance Fields

Our 5D neural radiance field represents a scene as the volume density and di-
rectional emitted radiance at any point in space. We render the color of any ray
passing through the scene using principles from classical volume rendering [16].
The volume density σ(x) can be interpreted as the differential probability of a
ray terminating at an infinitesimal particle at location x. The expected color
C(r) of camera ray r(t) = o + td with near and far bounds tn and tf is:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt , where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (1)

Figure 2.1: Overview of the NeRF procedure adopted from [40]. Im-
ages are synthesized by sampling 5D coordinates (location and view-
ing direction) along camera rays (a), and these locations are fed into
an MLP to produce a color and volume density (b), and volume ren-
dering techniques are used to combine these values into an image (c).
This rendering function is differentiable, the scene representation can
be optimized by minimizing the difference between synthesized and
ground-truth images (d).

audio rendering for virtual or augmented reality (VR/AR), as well as acoustic
scene analysis. For instance, properties like room geometry are implicitly en-
coded in the NAF and can be leveraged for downstream tasks such as geometry
inference, as demonstrated by the authors of NAF [34]. The NAF model can be
described using the following function:

FΘ(q, θ, k,q
′) = v, (2.5)

where q ∈ R3 represents the listener location, q′ ∈ R3 the emitter location,
θ ∈ R2 the listener orientation, and k ∈ {0, 1} the ear (binary left/right).
Here, the output v ∈ RT is the time-domain impulse response waveform [34].
This model assumes a directional, binaural listener, similar to how a human
listener would perceive sound. In fact, directly outputting the time-domain
impulse response is difficult due to its high-dimensional and chaotic nature [34].
Therefore, in practice, the impulse response is represented using the STFT,
which is more convenient for neural network prediction due to the smoother
nature of the time-frequency space. The final parametrization becomes:

FΘ(q, θ, k,q
′, t, f) = [vSTFT mag(t, f),vSTFT IF(t, f)] , (2.6)

where t and f represent the time and frequency coordinates in the STFT spec-
trogram, respectively. The outputs [vSTFT mag,vSTFT IF] are the magnitude
and phase angle components for that given time and frequency coordinate [34].

To improve convergence and spatial detail at high frequencies, positional en-
codings are applied to the inputs of NAF, following NeRF’s design choices. The
reason is that deep networks are biased towards learning lower frequency func-
tions [40]. Having the network operate on raw coordinates results in renderings
that perform poorly at representing high-frequency variations in color, in the
case of NeRF, and audio, in the case of NAF. To incorporate local geometric
detail into the NAF model, the scene is divided into a regular grid of k pixels
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Figure 2: Overview of our NAF architecture where listener and emitter share a feature grid. Given a listener
position and an emitter location, we first query a grid for local features which are learned together with the
network during training. We compute the sinusoidal embedding of the positions, frequency, and time, and query
a discrete embedding matrix using the orientation and left/right ear. Our method predicts magnitude and phase.

at an "infinite resolution". In [Jiang et al., 2020] proposed a grid based representation for implicit
scenes, while more recently [DeVries et al., 2021] has adopted spatial conditioning for 3D image
synthesis, where in both settings, the grid enables a higher-fidelity encoding of the scene. Our work
also leverages local grids to model acoustics, but as an inductive bias and way to generalize to novel
inputs.

Audio-Visual Learning Our work is also closely related to joint modeling of vision and audio. By
leveraging the correspondence between vision and audio, work has been done to learn unsupervised
video and audio representations [Aytar et al., 2016, Arandjelovic and Zisserman, 2017], localize
objects that emit sound [Senocak et al., 2018, Zhao et al., 2018], and jointly use vision and audio
for navigation [Chen et al., 2020]. Recent work aims to propose plausible reverberations or sounds
from image input [Singh et al., 2021, Du et al., 2021], these approaches model the STFT using either
convolution or implicit functions, which we also utilize. Different from them, our work leverages
the geometric features learned by modeling acoustic fields to improve the learning of 3D view
generation.

3 Methods

We are interested in learning a generic acoustic representation of an arbitrary scene, which can
capture the underlying sound propagation of arbitrary sound sources across both seen and unseen
locations in a scene. We first review relevant background information towards modeling environment
reverberations. We then describe Neural Acoustic Fields (NAFs), a neural field which we show
can capture, in a generic manner, the acoustics of arbitrary scenes. We further discuss how we can
parameterize NAF so that it can capture acoustics property even at unseen sound sources and listener
positions. Finally, we discuss the implementation details of our model illustrated in Figure 2.

3.1 Background on the Propagation of Sound

The sound emitted by a sound source undergoes decay, occlusion, and scattering due to both the
geometric and material properties of a scene. For a fixed location pair (q, q′), we define the impulse-
response at a listener position q, as the sound pressure p(t; q, q′) induced by an impulse at q′.

Given an accurate model of the impulse-response p(t; q, q′), we may model audio reverberation of
any sound waveform s(t) emitted at q′, by computing the response r(t, q, q′) at listener location q
by querying the continuous field and using temporal convolution:

r(t; q, q′) = s(t) ~ p(t; q, q′) (1)

3

Figure 2.2: Overview of NAF procedure adopted from [34]. Given
emitter and listener coordinates, local features are interpolated from
a shared learnable feature grid. These are combined with sinusoidal
embeddings of spatial position, frequency, and time, along with dis-
crete embeddings for orientation and ear side. The combined repres-
entation is passed through an implicit decoder to predict the room
impulse response in both magnitude and phase. The model is trained
using an MSE loss between predicted and ground truth spectrograms.

P = {P1, . . . , Pk}, each storing a learnable feature vector. For any query loca-
tion (x, y), such as the coordinates of an emitter or receiver, local features are
interpolated from the grid using a differentiable weighting function. Specific-
ally, a Nadaraya-Watson estimator [41] with a Gaussian kernel assigns weights
to each nearby pixel based on its distance to the query point. The final inter-
polated feature is a weighted sum of the surrounding grid features. Because the
interpolation is fully differentiable, the feature vectors at each grid cell are op-
timized jointly with the rest of the network during training. These interpolated
local features are then combined with sinusoidal positional encodings of the in-
put coordinates and discrete scene embeddings before being passed to the MLP.
This combination allows the network to model both global spatial variation and
fine-grained local acoustic structure. Figure 3.2 illustrates the NAF method.

2.3 Analysis-by-synthesis

The analysis-by-synthesis (AxS) framework models perception as an active pro-
cess [18, 42]. Instead of passively interpreting input, the system generates in-
ternal hypotheses about the world, synthesizes expected input based on those
hypotheses, and compares it to the actual observation. The error is then min-
imized by adjusting the hypothesis. This approach has a long history in speech
perception [18] and has recently gained renewed attention due to its potential
for neural modeling.

In language perception, AxS explains how listeners can understand speech
even when the input is unclear or noisy. Instead of directly decoding the sound,
the brain generates possible interpretations based on prior knowledge of lan-
guage, simulates what those would sound like, and compares them to the actual
input. This process repeats until the internal guess closely matches what was
heard. The concept of AxS was further elaborated by Neisser in [42]. Decades
later, it was revitalized in [4], in which it is proposed as a unifying framework
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Fig. 2: An overview of our pose estimation pipeline which inverts an optimized neural radiance field (NeRF). Given an initially estimated
pose, we first decide which rays to emit. Sampled points along the ray and the corresponding viewing direction are fed into NeRF’s
volume rendering procedure to output rendered pixels. Since the whole pipeline is differentiable, we can refine our estimated pose by
minimizing the residual between the rendered and observed pixels.

scenes, we can use the same iNeRF formulation to perform
localization, for example in challenging real-world LLFF
scenes – this capability was not demonstrated in [3], and
may be challenging due to the memory limitations of voxel
representations for sufficient fidelity in large scenes. While
object pose estimation methods are often separate from
methods used for visual localization of a camera in a scene as
in the SfM literature (i.e. [33], [41], [31]), because NeRF and
iNeRF only require posed RGB images as training, iNeRF
can be applied to localization as well.

III. BACKGROUND

Given a collection of N RGB images {Ii}Ni=1, Ii ∈
[0, 1]H×W×3 with known camera poses {Ti}Ni=1, NeRF
learns to synthesize novel views associated with unseen
camera poses. NeRF does this by representing a scene as
a “radiance field”: a volumetric density that models the
shape of the scene, and a view-dependent color that models
the appearance of occupied regions of the scene, both of
which lie within a bounded 3D volume. The density σ
and RGB color c of each point are parameterized by the
weights Θ of a multilayer perceptron (MLP) F that takes
as input the 3D position of that point x = (x, y, z) and the
unit-norm viewing direction of that point d = (dx, dy, dz),
where (σ, c) ← FΘ(x,d). To render a pixel, NeRF emits
a camera ray from the center of the projection of a camera
through that pixel on the image plane. Along the ray, a set
of points are sampled for use as input to the MLP which
outputs a set of densities and colors. These values are then
used to approximate the image formation behind volume
rendering [7] using numerical quadrature [19], producing
an estimate of the color of that pixel. NeRF is trained to
minimize a photometric loss L =

∑
r∈R ||Ĉ(r) − C(r)||22,

using some sampled set of rays r ∈ R where C(r) is the
observed RGB value of the pixel corresponding to ray r in
some image, and Ĉ(r) is the prediction produced from neural
volume rendering. To improve rendering efficiency one may
train two MLPs: one “coarse” and one “fine”, where the
coarse model serves to bias the samples that are used for the
fine model. For more details, we refer readers to Mildenhall
et al. [22].

Although NeRF originally needs to optimize the represen-
tation for every scene independently, several extensions [28],
[39], [45], [47] have been proposed to directly predict a
continuous neural scene representation conditioned on one or
few input images. In our experiments, we show that iNeRF
can be used to perform 6D pose estimation with either an
optimized or predicted NeRF model.

IV. INERF FORMULATION

We now present iNeRF, a framework that performs 6 DoF
pose estimation by “inverting” a trained NeRF. Let us assume
that the NeRF of a scene or object parameterized by Θ has
already been recovered and that the camera intrinsics are
known, but the camera pose T of an image observation I
are as-yet undetermined. Unlike NeRF, which optimizes Θ
using a set of given camera poses and image observations, we
instead solve the inverse problem of recovering the camera
pose T given the weights Θ and the image I as input:

T̂ = argmin
T∈SE(3)

L(T | I,Θ) (1)

To solve this optimization, we use the ability from NeRF to
take some estimated camera pose T ∈ SE(3) in the coordi-
nate frame of the NeRF model and render a corresponding
image observation. We can then use the same photometric
loss function L as was used in NeRF (Sec. III), but rather
than backpropagate to update the weights Θ of the MLP, we
instead update the pose T to minimize L. The overall proce-
dure is shown in Figure 2. While the concept of inverting a
NeRF to perform pose estimation can be concisely stated, it
is not obvious that such a problem can be practically solved
to a useful degree. The loss function L is non-convex over
the 6DoF space of SE(3), and full-image NeRF renderings
are computationally expensive, particularly if used in the
loop of an optimization procedure. Our formulation and
experimentation (Sec. V) aim to address these challenges.
In the next sections, we discuss (i) the gradient-based SE(3)
optimization procedure, (ii) ray sampling strategies, and (iii)
how to use iNeRF’s predicted poses to improve NeRF.

Figure 2.3: Overview of iNeRF adopted from [31]. Starting from an
initial pose estimate, selected rays are rendered using NeRF, and
the pose is iteratively refined by minimizing the difference between
rendered and observed pixels through end-to-end differentiable op-
timization.

for language and vision, grounded in evidence from cognitive neuroscience.

2.3.1 Analysis-by-synthesis in Vision and Acoustics

In computer vision, Brachmann et al. [7] estimate the 6D pose of objects by pre-
dicting 3D object coordinates from images and matching them to the observed
depth data. While not explicitly framed as AxS, the method fits the same
structure: predict, compare, and adjust. More recent work has used neural net-
works to implement this idea directly. Chen et al. [11] use a network to render
synthetic views of objects at different poses, then optimize the pose by compar-
ing these to the input image. This AxS loop outperforms direct pose regression.
Building on NeRF, iNeRF [31] estimates pose by rendering images from a neural
radiance field and optimizing the pose so that the rendered view matches the
input. Starting from an initial pose guess, iNeRF emits a set of rays, samples
points along them, and renders pixel values using the trained NeRF model. The
pose is then refined by minimizing the difference between the rendered and ob-
served pixels through gradient-based optimization. This AxS framework allows
accurate pose estimation. An overview of the pipeline is shown in Figure 2.3 [31].

Disentangled Acoustic Fields (DAFs) [65] apply AxS to acoustic fields by re-
constructing a sound’s power spectral density (PSD) from disentangled factors:
object location, material, type, and a latent scene variable. Unlike STFT rep-
resentations that struggle with temporal silence gaps, PSD provides a stable
frequency-domain target for optimization. The scene latent captures environment-
specific acoustics (e.g., reverberation) separately from object properties, en-
abling generalization across rooms. By comparing synthesized and observed
PSDs, DAFs generate uncertainty maps that guide robotic search for fallen
objects, outperforming direct regression by 14% in unseen environments. The
DiffRIR framework [61] applies analysis-by-synthesis to room acoustics by re-
constructing spatial audio from sparse RIR measurements. Unlike DAFs, which
model sound through disentangled latent variables, DiffRIR uses interpretable
parametric models for sound source directivity and surface reflectivity, optim-
izing time-domain RIRs rather than PSDs. It combines geometric acoustics
(e.g., image-source methods) with a learned residual component, enabling ef-
ficient differentiable rendering for immersive audio synthesis. The parameters

9



of the acoustic model are optimized using analysis-by-synthesis, comparing a
synthesized RIR to a ground-truth RIR measured at the same location.

2.4 Datasets

To evaluate the effectiveness of acoustic methods, many acoustic datasets have
been introduced over the years. This section will focus specifically on spatial
room impulse response (RIR) datasets, since NAF [34] is trained on this type
of acoustic data. Section 2.4.1 will cover simulated datasets, while Section 2.4.2
will discuss real-world recorded datasets.

2.4.1 Simulated datasets

A widely used dataset in NAF research is SoundSpaces [9], which provides sim-
ulated binaural room impulse responses (RIRs) sampled from emitter-listener
pairs on a 0.5 m resolution 2D grid. These simulations cover 85 3D-scanned
real-world indoor environments from the Matterport3D dataset [8], as well as
18 high-quality reconstructed scenes from the Replica dataset [53]. NAF and
its successors [34, 54, 30] are evaluated on six selected scenes from the Replica
dataset. SoundSpaces 2.0 [10] replaces the fixed grid with a geometry-based
rendering engine for simulating RIRs at any location or orientation, and adds
extensive configuration options. Other simulated datasets include BIRD [15],
which contains 100,000 multichannel RIRs generated using the image-source
method in randomly sampled, empty rectangular rooms. GWA [58] uses nearly
19,000 professionally designed CAD models of indoor scenes but provides relat-
ively few samples per scene compared to SoundSpaces.

2.4.2 Real-world datasets

Besides these simulated datasets, real-world recorded datasets are essential for
evaluating performance of methods like NAF in practical scenarios. Recording a
dense dataset of RIRs is a very time-consuming task, which means realism often
comes at the expense of data diversity. The recently introduced Real Acoustic
Fields (RAF) dataset [12] offers a dense collection of 3D sampled RIRs from
two environments, which are furnished and unfurnished versions of the same
room. Other real-world datasets, such as MeshRIR [28], BUT Reverb [57], and
GTU-RIR [45], were not used in this work since their spatial sampling density
is considerably lower compared to RAF. An overview of available datasets is
given in Table 2.1.

2.5 Research Gap and Motivation

Existing acoustic localization research, spanning classical methods (e.g., TDOA [36],
MUSIC [51], Section 2.1.1) and data-driven approaches (e.g., CNNs on STFT
or GCC features [1, 63], Section 2.1.2), primarily focuses on sound source local-
ization using microphone arrays, leaving listener (microphone) localization un-
derexplored despite its potential for localizing household robots, smartphones,
or people [44]. Focusing on single-microphone setups, as opposed to arrays,
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Dataset Type RIRs Scenes Scene Types

SoundSpaces [9] Sim. 17.6M 103 Scanned indoor scenes
SoundSpaces 2.0 [10] Sim. - - Any input mesh
BIRD [15] Sim. 100K 100K Empty shoebox rooms
GWA [58] Sim. 2M 18.9K Professional CAD models
MeshRIR [28] Real 4.4K 2 Acoustic lab
BUT Reverb [57] Real 1.3K 8 Uni meeting rooms
GTU-RIR [45] Real 15.2K 11 Uni meeting rooms
RAF [12] Real 86K 2 Furnished + Unfurnished

Table 2.1: Overview of popular RIR datasets, both simulated and real.
It is clear that simulated datasets offer more samples and scenes, but
this comes at the expense of realism.

enhances compatibility with off-the-shelf devices like smartphones, reducing
hardware complexity. Direct regression methods excel in high-data settings
but often struggle in low-data or reverberant conditions [1]. At the same
time, analysis-by-synthesis (AxS) approaches, as seen in vision (iNeRF [31],
Section 2.3) and acoustics (DAF [65], DiffRIR [61], Section 2.3), offer strong
performance in sparse-data scenarios and enhanced capabilities such as uncer-
tainty maps. Neural Acoustic Fields (NAF [34], Section 2.2.2) effectively model
RIR synthesis, yet their potential for inverse localization tasks remains unex-
plored. This work addresses these gaps by leveraging a trained NAF to perform
listener localization with a known source in low-data, single-microphone setups,
enabling accurate localization across varied and acoustically complex spaces.
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Chapter 3

Method

This chapter provides a detailed overview of the NAF-based localization method
proposed in this thesis. We formulate the problem statement in Section 3.1 and
introduce the system design in Section 3.2.

3.1 Problem Statement

Forward problem. Neural Acoustic Fields (NAFs) address the forward prob-
lem of acoustic synthesis, i.e., predicting the resulting room impulse response
(RIR) from a known configuration of source, listener, and environment. In this
setting, the positions are given, and the task is to generate the corresponding
acoustic impulse response. We follow the formulation of Luo et al. [34], but we
add the emitter orientation term θe to the inputs, enabling the model to account
for directional emitters. We define the forward model as follows.
Let FΘ denote a neural acoustic field parameterized by Θ. Given an emitter

position qe ∈ R3 with (optional) orientation θe, a listener position qℓ ∈ R3 with
(optional) orientation θℓ, and a channel index k ∈ {1, . . . ,K} (e.g., K=1 for
monaural, K=2 for binaural), FΘ predicts the STFT-domain RIR, denoted by
v(k)(t, f), for each time-frequency bin (t, f):

FΘ(qℓ, θℓ, k,qe, θe, t, f) = v(k)(t, f). (3.1)

FΘ captures multipath reflections and reverberation without explicit geometric
modeling. In our work, we consider only the STFT magnitude, omitting the
phase component, as opposed to the formulation in Equation (2.6). While the
original NAF predicts both magnitude and phase [34], the authors note on their
GitHub repository [35] that omitting the phase results in lower spectral error,
indicating that NAF is more effective at predicting magnitude. Therefore, our
implementation solely predicts the magnitude component.

Inverse problem (listener localization). We now formulate the inverse
problem, which is the focus of this thesis: given a trained NAF FΘ, a known
emitter position qe (and, if directional, its orientation θe), and an observed
RIR (STFT spectrum) with K listener channels, V = {v(k)}Kk=1, the goal is to
estimate the listener position qℓ. In the most general setting, one could also
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estimate θℓ for directional listeners, but in our current implementation, θℓ is
assumed to be known in the case of a directional listener.
The reconstruction loss between the ground-truth RIR spectrum V and the

synthesized RIR spectrum V̂ is defined as the mean squared error (MSE) com-
puted over all listener channels, time frames, and frequency bins:

L(V, V̂) =
1

KTF

K∑

k=1

T∑

t=1

F∑

f=1

(
v(k)(t, f)− v̂(k)(t, f)

)2

, (3.2)

where v̂(k) is synthesized by FΘ as described in Equation (3.1), K represents the
number of channels, and T and F represent the number of time and frequency
bins in the STFT spectrum. Inverting the formulation from [34], we can define
the following inverse problem statement:

q̂ℓ = arg min
qℓ∈Ω

L(V, FΘ(qℓ, θℓ,qe, θe)) , (3.3)

where q̂ℓ is the estimated listener position and Ω denotes the search region,
which is limited to the interior of the room. The room geometry is assumed to
be known, so Ω is simply taken as the bounding box of the room. When θℓ is
unknown and the listener is directional, the search could be extended to (qℓ, θℓ),
but this is left for future work.

Assumptions (dataset-agnostic). For the scope of this work, we make the
following assumptions to ensure the problem remains well-posed. Including
additional unknowns, such as the emitter position, would greatly increase com-
plexity and is left beyond the scope of this thesis.

• The environment is static and indoor. FΘ is trained on RIRs from that
space.

• The emitter position qe is known; if directional, its orientation θe is known.

• No additional sensing modalities (e.g., vision, IMU) are used.

• The room dimensions are known and used to define the search region Ω.

Dataset-specific problem statements. While the general formulation above
is dataset-agnostic, each dataset introduces specific constraints on emitter direc-
tionality, listener directionality, channel count, and whether orientation is known
or estimated. For clarity, we restate the inverse problem for both datasets used
in the evaluation of the system, in the notation of Equation (3.3):

• RAF [12]: directional emitter with fixed orientation; omnidirectional,
single-channel listener (K = 1). Listener orientation θℓ is irrelevant. We
solve:

q̂ℓ = arg min
qℓ∈Ω

L
(
V, FΘ(qℓ, –,qe, θe)

)
.

• SoundSpaces [9]: omnidirectional emitter; directional, binaural listener
(K=2). We assume known listener orientation θℓ and optimize only qℓ:

q̂ℓ = arg min
qℓ∈Ω

L
(
V, FΘ(qℓ, θℓ,qe, –)

)
.
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Estimating listener orientation is feasible by extending the optimization
in Equation (3.3) to jointly minimize over qℓ and θℓ using grid search or
PSO, leveraging binaural cues like inter-channel time/energy differences
for uniqueness. This is beyond the scope of this thesis, which focuses on
listener position estimation.
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3.2 System Design

This section presents the design of the proposed NAF-based listener localization
system. We begin with data processing (Section 3.2.1), where the derivation and
pre-processing of room impulse responses (RIRs) are described. Next, we detail
the NAF architecture and training procedure (Section 3.2.2), which form the
core of the system. Building on this, we introduce the localization pipeline
(Section 3.2.3), followed by optimizations aimed at improving computational
efficiency (Section 3.2.4).

3.2.1 Data Processing

RIR Measurement and Simulation. The room impulse response can be
obtained either through direct measurement or simulation. In real-world scen-
arios, RIRs are typically obtained through direct measurement. Classical meas-
urement techniques include the exponential swept-sine method [14] and maximum-
length sequences (MLS) [48], both widely used for acoustic characterization of
real spaces. The Real Acoustic Fields (RAF) dataset [12], used in our eval-
uation, provides RIRs measured in real rooms with exponential sine sweeps,
thereby capturing authentic acoustic effects. Alternatively, RIRs can be gener-
ated synthetically using acoustic models, such as the image source method [2].
The SoundSpaces dataset [9] is created using this strategy, rendering RIRs via
geometric acoustic simulation that combines the image source method with ray
tracing.

RIR Pre-processing. The NAF is trained on STFT log-spectrograms of the
RIRs (see Figure 3.1 for an example of a time-domain RIR and its STFT rep-
resentation). Directly training on time-domain RIRs is difficult due to their
high-dimensional and chaotic nature [34]. The short-time Fourier transform
(STFT) represents a signal in both time and frequency by computing the Four-
ier transform over short, overlapping windows. For a discrete-time signal x[n]
and a window function w[n], the STFT is defined as [43]:

X[t, ω] =

∞∑

n=−∞
x[n]w[n− t] e−jωn, (3.4)

where t indexes the time frame and ω is the angular frequency. We use the
STFT implementation of the librosa Python package [13] with the default
Hann window. We use an FFT size of Nfft = 512 and a hop length of 128
samples, following the configuration of [34]. The magnitude of the STFT is
then converted to the log scale and normalized. The mean µ(t,f) and standard
deviation σ(t,f) are computed for each time/frequency index, and each “pixel”
of the spectrogram is normalized as follows [34]:

vSTFT mag(t, f) =
vSTFT mag(t, f)− µ(t,f)

3.0× σ(t,f)
. (3.5)

Although the scaling factor of 3.0 is not explicitly motivated in [34], a reason-
able interpretation is that it serves as a practical normalization step, ensuring
that most values fall within a bounded range (roughly [−1, 1] under Gaussian
assumptions) and thus improving numerical stability during training.
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Figure 3.1: Time-domain RIR (top) and its log-magnitude STFT (bot-
tom) from the RAF dataset.

3.2.2 NAF Architecture and Training

Neural Acoustic Fields (NAFs) [34] extend the idea of implicit neural repres-
entations to the acoustic domain, enabling the synthesis of Room Impulse Re-
sponses (RIRs) for arbitrary emitter-listener configurations. Inspired by Neural
Radiance Fields (NeRF) [40], NAFs learn a continuous mapping from spatial co-
ordinates (and optional orientations) to a time-frequency representation of the
RIR, without requiring explicit room geometry or simulation. As formalized in
Section 3.1, a trained NAF model FΘ takes the positions and orientations of
an emitter and listener, as well as a time-frequency index (t, f) as inputs, and
predicts the corresponding STFT magnitude. By applying the model over all
(t, f), a full RIR can be synthesized and applied to anechoic audio for spatial
rendering. The localization system is based on the original NAF [34] rather than
newer variations (e.g., INRAS [54], NACF [30]) due to the lack of stable open-
source implementations and because our focus lies on the analysis-by-synthesis
localization paradigm rather than network architecture innovation. The follow-
ing four numbered paragraphs (1-4) detail the key components of the NAF and
its training process, linking directly to the corresponding numbered parts in
Figure 3.2.

1. Global Features and Positional Encoding: Since both the Sound-
Spaces and RAF datasets lack the full parametrization of an acoustic field as
given in Equation (3.1), we train NAF with a dataset-specific restricted para-
meterization. The core inputs, always present, include the listener position
(xℓ, yℓ, zℓ), the emitter position (xe, ye, ze), and the time-frequency indices (t, f).
Additional inputs are dataset-dependent: the listener orientation θℓ, the emitter
orientation θe, and the listener channel index k. These are therefore marked as
optional in Figure 3.2.

A distinction can be made between continuous and categorical variables. Con-
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Figure 3.2: NAF inputs and training setup. Inputs include emit-
ter/listener positions (with optional orientations and channel selec-
tion), time, and frequency. Local features are interpolated from a
learnable grid and combined with the other inputs. The MLP net-
work predicts STFT magnitudes per time-frequency bin. Training
uses the magnitude MSE loss between synthesized and ground-truth
spectrograms.

tinuous variables, including positions and the (t, f) tuple, are scaled to (−1, 1)
and encoded with sinusoidal embeddings (as proposed by NeRF [40]) using 10
frequencies of sine and cosine. For positions, the maximum frequency is 27,
while for time and frequency it is 210. Categorical variables, such as discrete
orientations or the listener channel index, are represented with learned embed-
dings.

The datasets differ in how positions and orientations are represented. In
SoundSpaces, listener and emitter positions are only provided in 2D (xℓ, yℓ), (xe, ye) ∈
R2, with a binaural directional listener. Emitters are omnidirectional, while the
listener orientation θℓ is limited to four discrete values {0◦, 90◦, 180◦, 270◦}, em-
bedded via a learned matrix of size R4×n, from which a single R1×n vector is
selected. The listener channel index k ∈ {0, 1} is embedded using a matrix
of size R2×n. In RAF, positions are fully 3D (xℓ, yℓ, zℓ), (xe, ye, ze) ∈ R3, and
listeners are omnidirectional and single-channel. Emitters have a continuous
orientation θe represented as a quaternion, which is passed through a sinusoidal
encoding before feeding it to the network.

2. Local Feature Grid: To incorporate local geometric detail, the acoustic
space is discretized into a regular 2D or 3D grid of learnable feature vectors. For
any query location (emitter or listener), local features are interpolated from this
grid using a differentiable weighting function. Specifically, a Nadaraya-Watson
estimator [41] with a Gaussian kernel assigns weights to each nearby grid cell
based on Euclidean distance. The interpolated feature vector is a weighted sum
of neighboring grid features and is jointly optimized with the rest of the net-
work parameters during training. The inputs and feature grid are illustrated in
Figure 3.2, adopted from [34]. The original NAF formulation uses a 2D grid,
evaluated on the SoundSpaces dataset with fixed height, but this would impose
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Figure 3.3: NAF architecture taken from [34]. RIR spectrogram pixels
are predicted individually, with (t, f) bins supplied as inputs.

a height constraint when applying the NAF for localization. Our 3D implement-
ation extends this to (x, y, z) coordinates, capturing height-dependent reflection
patterns and enhancing performance in datasets with vertical variation, such as
RAF [12].

3. Neural Network Structure: The interpolated local features are concat-
enated with the positional encodings of spatial coordinates, the time index t, the
frequency index f , and any discrete scene or orientation embeddings. This com-
bined representation is passed to a multi-layer perceptron (MLP), illustrated in
Figure 3.3, that outputs the STFT magnitude for the given (t, f) bin. As each
bin is predicted independently, a complete spectrogram requires evaluating FΘ

over all (t, f) pairs.

4. Model Training and Loss Function: The model is trained using mean
squared error (MSE) between predicted and ground-truth spectrograms, com-
puted over all listener channels, time frames, and frequency bins, as defined
in Equation (3.2). A small amount of noise sampled from N (0, εreg) is added
to both the ground-truth emitter and listener coordinates during training, to
prevent degenerate solutions [34]. The regularization parameter εreg (originally
set to 0.1 in [34]) regulates the amount of noise added. In our implementation,
εreg was reduced to 0.01 to improve localization precision (Section 4.3.5).
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Figure 3.4: Overview of the acoustic localization pipeline using NAF.
The framework estimates the listener’s position given a fixed emitter
position using a recorded room impulse response (RIR). NAF syn-
thesizes RIRs for candidate listener positions, enabling loss map gen-
eration through MSE comparison with the recorded RIR. Two point
selection strategies are employed: non-iterative grid-based search and
Particle Swarm Optimization (PSO) with updates over Ni iterations.
The position with the minimum loss is selected as the final estimate.

3.2.3 Localization Pipeline

Localization Problem. The inverse localization process follows an analysis-
by-synthesis strategy inspired by iNeRF [31]. Given a recorded RIR from an
unknown listener position, the system synthesizes candidate RIRs using the
trained NAF for locations within a bounded search space Ω (defined by the
room dimensions), compares them to the target RIR, and selects the position
that minimizes the loss in Equation (3.2). The elements of the localization
pipeline, as depicted in Figure 3.4, are discussed below.

Candidate Initialization. The localization process begins by defining a set
of candidate listener positions within the bounded search space Ω. Depending on
the available information, Ω may correspond to a detailed 3D scan of the room
geometry, which constrains candidates to physically valid regions, or, in the
absence of such data, to a coarse bounding box defined by the room dimensions.
Candidate positions are then initialized either uniformly on a predefined grid or
sampled from a uniform distribution when using Particle Swarm Optimization
(PSO). Each candidate represents a hypothesis of the listener’s true position
and serves as an input for RIR synthesis. A denser sampling of candidates
improves the chances of localizing the true position, though it comes with higher
computational cost.

RIR Synthesis. For each candidate position qℓ ∈ Ω, a synthetic RIR is
generated using the neural acoustic field FΘ. This step leverages the NAF as
the forward model that links spatial hypotheses to their acoustic signatures.
The synthesized responses are then compared against the measured RIR using
the mean squared error (MSE) loss, which provides a measure of similarity.
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Figure 3.5: 2D slice of a loss map generated at 10 cm resolution. Al-
though the minimum-loss point is close to the true listener location,
many local minima exist, complicating gradient descent.

Loss Map Generation. Once losses have been computed for all candidate
positions, they can be aggregated into a spatial loss map that represents the er-
ror landscape across Ω. This map not only supports localization by identifying
the minimum-loss region but also provides a diagnostic view of the search space.
Sharp, well-defined minima indicate a clear localization outcome, while flat re-
gions or multiple local minima suggest that localization may be less reliable. In
addition to guiding position estimation, loss maps thus offer an interpretable
tool for assessing the reliability of the localization process.

Location Estimation. The estimated listener position q̂ℓ is obtained by se-
lecting the candidate with the minimum loss in the landscape. Other strategies
may be explored in future works. For instance, one could estimate the posi-
tion as a weighted average over the lowest-loss candidates, which might reduce
sensitivity to noise or incorrect local minima at the cost of introducing bias.
Probabilistic approaches such as maximum-likelihood or Bayesian estimation
could also be used to incorporate prior knowledge of likely receiver positions
or to explicitly quantify uncertainty in the final estimate. In the context of
analysis-by-synthesis, selecting the lowest-loss candidate is the most straight-
forward strategy, as it reflects the principle that the true location is the one
whose synthesized RIR best explains the measurement.

Search Strategies. Several strategies can be used to explore the search space
Ω. Inspired by iNeRF [31], gradient descent is a natural choice. In their setting
of camera pose estimation, an initial pose is chosen, a view is synthesized with
the NeRF, and compared to the real image. The resulting MSE loss, which in
training would update the network weights, is instead used to refine the pose
estimate. This process is repeated until convergence to the true pose. Directly
applying this to acoustics is problematic. A typical acoustic loss landscape
(Figure 3.5) is full of local minima, causing gradient descent to get stuck in
sub-optimal solutions. We therefore investigate two alternative approaches:
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Figure 3.6: Visualization of the particle swarm optimization (PSO)
algorithm applied to explore the search space. The particles quickly
converge to the minimum-loss area, providing a much more efficient
solution than an exhaustive grid-based search.

• Grid-based: The first is a grid-based search, where Ω is uniformly sampled
in either two or three dimensions, depending on the dataset. High-resolution
grids are capable of locating the global minimum accurately but incur sig-
nificant computational costs. For instance, a grid with 10 cm resolution in
a 4× 5× 3m environment already requires 60,000 NAF inferences, which
may cause problems in practical scenarios where computational power is
limited.

• Particle Swarm Optimization: The second strategy is Particle Swarm
Optimization (PSO) [24], a metaheuristic that maintains a population of
particles, each with an individual and group-best location. Initially, Np

particles are distributed randomly within the search space Ω. At every
iteration, particles update their velocity and position by balancing inertia,
personal experience, and collective information. Specifically, for particle i
at iteration t, the velocity and position updates are

v
(t+1)
i = w v

(t)
i + c1r1

(
pi − x

(t)
i

)
+ c2r2

(
g − x

(t)
i

)
,

x
(t+1)
i = x

(t)
i + v

(t+1)
i ,

where w is the inertia weight, c1 and c2 are the cognitive and social coeffi-
cients, r1, r2 ∼ U(0, 1) are random scalars, pi is the personal best position
of particle i, and g is the global best position across the swarm. After each
update, positions are clamped to the search space bounds. This process
is repeated for Niter iterations, as illustrated in Figure 3.6.

This method converges to low-loss regions more efficiently than exhaustive
grid search, though typically at the expense of some accuracy. By tuning
swarm parameters (Np, Niter, w, c1, c2), PSO allows flexible trade-offs
between speed and precision.
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A. Gradient-Based SE(3) Optimization

Let Θ be the parameters of a trained and fixed NeRF,
T̂i the estimated camera pose at current optimization step
i, I the observed image, and L(T̂i | I,Θ) be the loss used
to train the fine model in NeRF. We employ gradient-based
optimization to solve for T̂ as defined in Equation 1. To
ensure that the estimated pose T̂i continues to lie on the
SE(3) manifold during gradient-based optimization, we pa-
rameterize T̂i with exponential coordinates. Given an initial
pose estimate T̂0 ∈ SE(3) from the camera frame to the
model frame, we represent T̂i as:

T̂i = e[Si]θi T̂0 ,

where e[S]θ =

[
e[ω]θ K(S, θ)

0 1

]
,

where S = [ω, ν]T represents the screw axis, θ the magni-
tude, [w] represents the skew-symmetric 3× 3 matrix of w,
and K(S, θ) = (Iθ+ (1− cos θ)[ω] + (θ− sin θ)[ω]2)ν [14].
With this parameterization, our goal is to solve the optimal
relative transformation from an initial estimated pose T0:

Ŝθ = argmin
Sθ∈R6

L(e[S]θT0 | I,Θ). (2)

We iteratively differentiate the loss function through the
MLP to obtain the gradient ∇SθL(e[S]θT0 | I,Θ) that is
used to update the estimated relative transformation. We
use Adam optimizer [9] with an exponentially decaying
learning rate (See Supplementary for parameters). For each
observed image, we initialize Sθ near 0, where each element
is drawn at random from a zero-mean normal distribution
N (0, σ = 10−6). In practice, parameterizing with e[S]θ T0
rather than T0 e

[S]θ results in a center-of-rotation at the initial
estimate’s center, rather than at the camera frame’s center.
This alleviates coupling between rotations and translations
during optimization.

B. Sampling Rays

In a typical differentiable render-and-compare pipeline,
one would want to leverage the gradients contributed by all of
the output pixels in the rendered image [43]. However, with
NeRF, each output pixel’s value is computed by weighing the
values of n sampled points along each ray r ∈ R during ray
marching, so given the amount of sampled rays in a batch b =
|R|, then O(bn) forward/backward passes of the underlying
NeRF MLP will be queried. Computing and backpropagating
the loss of all pixels in an image (i.e., , b = HW , where H
and W represent the height and width of a high-resolution
image) therefore require significantly more memory than is
present on any commercial GPU. While we may perform
multiple forward and backward passes to accumulate these
gradients, this becomes prohibitively slow to perform each
step of our already-iterative optimization procedure. In the
following, we explore strategies for selecting a sampled
set of rays R for use in evaluating the loss function L
at each optimization step. In our experiments we find that
we are able to recover accurate poses while sampling only
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Fig. 3: An illustration of 3 sampling strategies. The input image and
the rendering corresponding to the estimated pose of the scene are
averaged. We use x to represent sampled pixels on the background;
+ to represent sampled pixels that are covered by both rendered
and observed images; o to represent sampled pixels that are only
covered by either the rendered or the input image. When performing
random sampling (left) many sampled pixels are x, which provide
no gradients for updating the pose. For “interest point” sampling
(middle) some of the sampled pixels are already aligned and
therefore provide little information. For “interest region” sampling,
many sampled pixels are o, which helps pose estimation achieve
higher accuracy and faster convergence.

b = 2048 rays per gradient step, which corresponds to a
single forward/backward pass that fits within GPU memory
and provides 150× faster gradient steps on a 640 × 480
image.

a) Random Sampling.: An intuitive strategy is to sam-
ple M pixel locations {pix, piy}Mi=0 on the image plane
randomly and compute their corresponding rays. Indeed,
NeRF itself uses this strategy when optimizing Θ (assuming
image batching is not used). We found this random sampling
strategy’s performance to be ineffective when the batch size
of rays b is small. Most randomly-sampled pixels correspond
to flat, textureless regions of the image, which provide little
information with regards to pose (which is consistent with
the well-known aperture problem [42]). See Figure 3 for an
illustration.

b) Interest Point Sampling.: Inspired by the literature
of image alignment [36], we propose interest point sam-
pling to guide iNeRF optimization, where we first employ
interest point detectors to localize a set of candidate pixel
locations in the observed image. We then sample M points
from the detected interest points and fall back to random
sampling if not enough interest points are detected. Although
this strategy makes optimization converge faster since less
stochasticity is introduced, we found that it is prone to local
minima as it only considers interest points on the observed
image instead of interest points from both the observed
and rendered images. However, obtaining the interest points
in the rendered image requires O(HWn) forward MLP
passes and thus prohibitively expensive to be used in the
optimization.

c) Interest Region Sampling.: To prevent the local
minima caused by only sampling from interest points, we
propose using “Interest Region” Sampling, a strategy that
relaxes Interest Point Sampling and samples from the dilated
masks centered on the interest points. After the interest
point detector localizes the interest points, we apply a 5× 5

Figure 3.7: iNeRF sampling strategies (Figure adopted from [31]).
‘×’ denotes pixels on the common background, ‘+’ denotes aligned
pixels, and ‘◦’ denotes informative, misaligned pixels. Interest Region
sampling focuses on the latter for efficient optimization.

RIR Standard Deviation Sampling Distribution Sampled Subset of Bins

Standard Deviation-Weighted SamplingUniform Sampling

Sampled Subset of Bins

Figure 3.8: Comparison of pixel selection strategies. In Uniform
Sampling, time-frequency bins are selected with equal probability.
In Standard Deviation-Weighted Sampling, a probability distribution
derived from the per-bin RIR standard deviation guides selection, pri-
oritizing STFT bins with higher variability.

3.2.4 Optimization

A major drawback of analysis-by-synthesis is its high computational demand.
To mitigate this, we take inspiration from iNeRF [31]. The core computational
insight from iNeRF is to avoid generating a full synthetic output for every com-
parison. iNeRF’s key contribution is a strategy for selecting a small, informative
subset of pixels (rays) to use for gradient calculation in each optimization step,
rather than rendering a full image. As illustrated in Figure 3.7, they evaluated
three strategies:

• Random Sampling is inefficient, as many pixels (marked ‘×’) lie on
uninformative regions.

• Interest Point Sampling selects feature-rich pixels but often samples
points that are already aligned (‘+’), providing weak gradients.

• Interest Region Sampling proves most effective by sampling from dilated
regions around interest points, favoring misaligned pixels (‘◦’) that provide
strong directional gradients for pose correction.

This targeted sampling reduces the number of expensive rendering operations
by orders of magnitude. In the acoustic setting, we apply the same principle
by selecting only a subset of time-frequency bins from the STFT spectrogram
for comparison. Comparable to iNeRF, randomly sampled STFT bins often
fall in uninformative regions such as silent RIR segments. To address this,
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a Standard Deviation-Weighted Sampling (SDWS) strategy is introduced: we
compute the standard deviation for each bin across the training set and con-
struct a sampling distribution that is proportional to these standard deviations.
Bins with high variability, such as those containing the direct sound and early
reflections, are prioritized, as they carry more discriminative information for
localization than low-variance bins (e.g., late reverberation or inactive frequen-
cies). As a baseline, Uniform Sampling (US), which selects bins with equal
probability, is also tested. These two strategies are illustrated in Figure 3.8.
As demonstrated in Section 4.3, this reduces the number of required NAF in-
ferences per candidate location by one to two orders of magnitude, while only
marginally affecting localization accuracy.
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Chapter 4

Evaluation

This chapter evaluates the proposed system on two datasets: SoundSpaces [9]
(simulated, binaural) and RAF [12] (real-world, monaural), detailed in Sec-
tion 4.1. Localization performance is evaluated using the full training dataset
(Section 4.3.1) and in sparse training data scenarios (Section 4.3.2). The effects
of PSO parameters (Section 4.3.3), pixel selection (Section 4.3.4), and regular-
ization (Section 4.3.5) are also studied. Finally, the system’s parameter count
and computation time are profiled in Section 4.4.

4.1 Datasets

The RAF [12] and SoundSpaces [9] datasets were selected due to their comple-
mentary strengths. RAF [12] offers real measurements in 3D spaces, captur-
ing authentic acoustic complexities such as multipath reflections and material
properties. At the same time, SoundSpaces [9] provides a larger selection of
(simulated) environments. RAF is used to test real-world applicability, while
SoundSpaces allows experiments across a wider variety of environments, though
at the expense of realism.
For SoundSpaces, we use the provided binaural RIRs (left and right ear chan-

nels) with omnidirectional emitters and directional listeners at fixed height,
adapting the system to 2D coordinates (x,y) and assuming known listener ori-
entation θℓ. The dataset covers diverse indoor scenes, and our system is evalu-
ated on the same representative subset of six environments, listed in Table 4.1,
as the original NAF work [34].
For RAF, we use monaural RIRs (single-channel) with directional emitters

(fixed orientation) and omnidirectional listeners. Since the dataset spans two
rooms with samples at varying heights, the model is trained with full 3D co-
ordinates. In both cases, datasets are split into training (90%) and test (10%)
sets. Positions are normalized to the room bounds, and RIRs are pre-processed
into STFT log-spectrograms as described in Section 3.2.2.

4.2 Baselines and evaluation metrics

Baselines. To assess the effectiveness of the proposed NAF-based analysis-
by-synthesis approach, we compare it against two direct regression baselines.
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Room Description Dimensions Samples

SoundSpaces (2D) [9]
frl apartment 2 Non-rectangular room 12.9× 7.4m 240K
frl apartment 4 Non-rectangular room 7.9× 12.8m 227K
room 2 Rectangular room 6.8× 4.9m 29.5K
office 4 Rectangular room 6.5× 6.5m 67.6K
apartment 1 Multi-room apartment 10.7× 7.9m 264K
apartment 2 Multi-room apartment 9.4× 10.2m 264K

RAF (3D) [12]
EmptyRoom Empty room 7.5× 9.8× 4.1m 47.5K
FurnishedRoom Furnished room 7.5× 9.8× 4.1m 39.1K

Table 4.1: Overview of the SoundSpaces [9] and RAF [12] environments
used for evaluation, including description, dimensions, and number
of samples.

These baselines are trained to directly predict the listener position from the
input STFT spectrogram and emitter position/orientation, using mean squared
error (MSE) loss on the position coordinates. We chose ResNet-10 as a widely
used, lightweight CNN baseline for spectrogram regression, offering a strong but
generic reference point. We designed NAF-Direct to mirror the original NAF
architecture while replacing synthesis with direct regression, isolating the effect
of analysis-by-synthesis versus direct prediction. Both are covered in more detail
below.

• ResNet-10: A reduced-complexity variant of ResNet-18 [19], consisting
of an initial convolutional layer followed by basic residual blocks (with
each block consisting of 2 convolutional layers), global average pooling,
and a fully connected output layer. It maintains the same input format as
ResNet-18 but with a lower parameter count for fair comparison to NAF.
For architecture details, see [19].

• NAF-Direct: A custom baseline inspired by the NAF architecture. A
convolutional feature extractor is added to compress the STFT spectro-
gram into a 64-dimensional feature vector, followed by MLP layers that
mirror the original NAF structure (Figure 3.2) for direct position regres-
sion. This design ensures comparable complexity to the original NAF
while enabling direct localization. The NAF-Direct architecture is illus-
trated in Figure 4.1.

The proposed method uses the original NAF model for RIR synthesis, com-
bined with search strategies (grid-based or PSO) for localization. Unlike the
baselines, it does not perform direct regression but optimizes the position via
loss minimization in the search space. The proposed method and both baselines
are comparable in terms of trainable parameters, with exact numbers provided
in Section 4.4.

Evaluation metrics. For evaluating localization performance, we use the 2D
Euclidean localization error (in cm) between the estimated and ground-truth
listener positions in the (x,y) plane. This metric ensures comparability across

26



1x256x261 16x128x131 32x64x66

64x32x33

Convolution Convolution Convolution

1x64

Max-Pool

NAF

Input RIR spectrum

Predicted
listener
position

Emitter position/orientation (fixed)

Convolutional feature extractor NAF hidden layers

Figure 4.1: NAF-Direct baseline architecture. A convolutional fea-
ture extractor compresses the input STFT spectrogram into a 64-
dimensional feature vector, which is passed through MLP layers mir-
roring the NAF structure, but with a modified output layer that
outputs the listener position.

datasets: SoundSpaces is inherently 2D with fixed height, while for RAF (3D),
we project the error by ignoring the z-component, focusing on horizontal ac-
curacy, which is often the primary concern in indoor localization. All results
are averaged over 100 random emitter-listener combinations per environment,
randomly selected from the test set, with errors reported in centimeters.

Fixed Parameters. Unless specified otherwise, the experiments use:

• NAF as described in Section 3.2.2 (3.6M params, εreg = 0.01).

• Grid-based search at 25 cm grid resolution.

• PSO configured with Np = 250 particles, Niter = 10 iterations, inertia
w = 0.7, and cognitive/social coefficients C1 = 1.5, C2 = 1.

• Standard Deviation-Weighted Sampling (SDWS) at 2.5% STFT pixels.

• Full datasets (100% of training samples).
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4.3 Experiments

4.3.1 Localization with models trained on full datasets

Setup. This experiment evaluates the baseline localization performance of the
proposed NAF-based analysis-by-synthesis approach using the full training data-
sets for both SoundSpaces and RAF. We compare grid-based and PSO search
strategies against direct regression baselines (ResNet-10, and NAF-Direct) to
assess accuracy in high-data regimes. Baselines are trained on flattened STFT
spectra plus emitter positions, outputting listener positions via regression with
MSE loss.

Results. The mean error of our method (both grid-based and PSO-based) and
the two baselines is presented in Figure 4.2. Clearly, both baselines outperform
our NAF-based approach in this high-data regime. However, subsequent exper-
iments in Section 4.3.2 demonstrate that the NAF method achieves lower errors
when trained on reduced dataset fractions of RAF, indicating its advantage in
real-world sparse data conditions. In contrast, its performance on the Sound-
Spaces dataset is noticeably worse, likely due to differences between simulated
and real acoustic environments, which are discussed further in Section 4.3.2.
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Figure 4.2: Our method underperforms the baselines when 100% of
the training data is available.
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4.3.2 Localization with models trained on sparse data

Setup. Low-data regimes simulate practical constraints, like rapid deployment
in new rooms with limited measurements. This experiment tests robustness by
training the NAF on randomly sampled subsets (5%, 10%, 25%, 50%, 100%) of
the training data for both RAF and SoundSpaces.

Results. Figure 4.3 shows localization error versus training data percentage
for the proposed grid-based and PSO-based strategies and the two baselines.
In the 5-25% range, our grid-based approach consistently outperforms both
baselines for the RAF dataset. Specifically, at 10% data, it achieves 35.1 cm
error, and at 25% data 18.6 cm, corresponding to 22% and 32% lower error
than NAF-Direct, the strongest baseline in this range. For the SoundSpaces
dataset, however, both baselines achieve significantly lower errors across all
data percentages. One possible explanation is that the simulated environments
have limited acoustic variability and a smooth relationship between position
and RIR, allowing the regression models to interpolate well to unseen locations.
In contrast, the analysis-by-synthesis approach relies on distinct acoustic cues
to identify a unique position, which may be less pronounced in these regular,
simulated settings.

5% 10
%

25
%

50
%

10
0%

Data Percentage

0.0

0.5

1.0

1.5

2.0

M
ea

n 
Er

ro
r (

m
)

RAF Dataset

5% 10
%

25
%

50
%

10
0%

Data Percentage

0.0

0.5

1.0

1.5

2.0

M
ea

n 
Er

ro
r (

m
)

SoundSpaces Dataset

Ours (grid-based) Ours (PSO-based) Baseline NAF-Direct Baseline ResNet-10

Figure 4.3: Mean localization error vs. training data percentage used
for our method and two baselines. For RAF, in sparse-data scenarios,
our grid-based approach outperforms the baselines.

Acoustic ambiguity analysis. To test this hypothesis, a nearest-neighbor
ambiguity analysis was performed. For 100 RIR spectrograms, the five acoustic-
ally most similar training samples were found (based on L2 distance), and the
spatial distances between their listener positions were measured while keeping
the emitter location and listener orientation fixed. Averaged over all environ-
ments, the mean top-5 spatial distance was 2.92m for SoundSpaces and 0.42m
for RAF. The much higher value for SoundSpaces shows that acoustically sim-
ilar RIRs often come from distant listener positions, revealing strong acoustic
ambiguity in the simulated data. RAF, in contrast, shows a tighter link between
acoustic and spatial similarity. Because the analysis-by-synthesis method must
locate a unique minimum, such ambiguity leads to flatter loss landscapes and
less precise localization.
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4.3.3 PSO parameters

Setup. This experiment analyzes the impact of PSO hyperparameters on loc-
alization performance and efficiency using the full RAF dataset. Grid-based
search is computationally expensive, and PSO provides a more efficient explor-
ation of the search space. We vary particle count Np (50, 100, 250), iterations
Niter (10, 25, 50), inertia w (0.5, 0.7, 0.9), and the cognitive and social coeffi-
cients C1/C2 (1.0, 1.5, 2.0). Grid-based search at various resolutions serves as
a baseline.

Results. Figure 4.4 presents a plot of mean localization error versus mean
computation time for all PSO parameter combinations, as listed in the previous
paragraph, on RAF and SoundSpaces. The plot shows vertical clusters of points,
as only Np and Niter impact computation time, while w, C1, and C2 have
negligible influence. Hence, configurations with equal Np and Niter form vertical
lines.

For RAF, the 25 cm grid-based method takes 5.46 seconds with a 12.5 cm
error, whereas the PSO configuration with (Np = 250, Niter = 10, C1 = 1.5,
C2 = 1, w = 0.7) achieves a 10.7 cm error in 1.35 seconds, a 75% runtime
reduction and a 14% error reduction. There appears to be a clear trade-off
between accuracy and computation time.

In fact, the Pareto front of PSO configurations clearly dominates that of the
grid-based approach on RAF, yielding solutions with both lower runtime and
reduced mean error. For SoundSpaces, this dominance is less clear, suggesting
that the relative benefit of PSO is greater in 3D settings. A plausible explanation
is that the computational load of grid-based search increases exponentially with
dimensionality, rendering it particularly inefficient in 3D spaces, while PSO
can exploit this larger search space more effectively, leaving more potential for
optimization in the 3D case.
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Figure 4.4: Mean localization error vs. mean computation time for
PSO hyperparameter combinations on RAF (blue) and SoundSpaces
(green) datasets. Vertical clusters of points arise because only Np and
Niter affect computation time, while w, C1, and C2 influence the mean
error without affecting runtime. The red crosses show the perform-
ance of the grid-based approach at various resolutions. PSO is clearly
superior in the case of RAF.
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Individual parameter contributions. Figures 4.5, 4.6, 4.9, 4.7, and 4.8
show individual parameter sweeps for Np (50-350), Niter (5-35), w (0.1-0.9),
C1 (0.5-2.5), and C2 (0.5-2.5). In each sweep, all other parameters are fixed
to values that showed strong performance across both datasets: Np = 100,
Niter = 25, w = 0.7, C1 = 1.5, C2 = 1.5. Each figure includes side-by-side plots
for RAF and SoundSpaces. Accuracy improves with larger Np or Niter, though
at the cost of longer runtimes. In contrast, adjusting w, C1, and C2 shows no
clear effect across datasets.
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Figure 4.5: Mean localization error and runtime vs. number of particles
Np for RAF (left) and SoundSpaces (right). Error decreases with
increasing Np, but the improvement diminishes beyond 200 particles.

Figure 4.5 shows that increasing Np reduces error but with diminishing re-
turns after 200. There is a clear trade-off between accuracy and runtime. Fig-
ure 4.6 similarly shows improvements up to about 25 iterations.
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Figure 4.6: Mean localization error and runtime vs. Niter for RAF
(left) and SoundSpaces (right). Error decreases with increasing Niter,
but the improvement diminishes beyond 25 iterations.

Beyond these scaling parameters, C1 and C2 control individual and social
exploration. As Figure 4.7 and 4.8 show, C1 and C2 have no clear relationship
to localization accuracy.
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Figure 4.7: Mean localization error vs. C1 for RAF (left) and Sound-
Spaces (right). No clear pattern can be observed across the datasets.
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Figure 4.8: Mean localization error vs. C2 for RAF (left) and Sound-
Spaces (right). No clear pattern can be observed across the datasets.

Finally, the inertia weight w in Figure 4.9 also shows little impact across
datasets. Together, these results indicate that Np and Niter are the key PSO
parameters, while w, C1, and C2 have minor effects.
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Figure 4.9: Mean localization error vs. inertia (w) for RAF (left) and
SoundSpaces (right). No clear pattern can be observed across the
datasets.
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4.3.4 Pixel selection

Setup. As discussed in Section 3.2.4, sampling a subset of STFT pixels to
generate and compare spectra accelerates localization. Here, we evaluate this
approach on the RAF and SoundSpaces datasets using grid search, comparing
Uniform Sampling (US) and Standard Deviation-Weighted Sampling (SDWS)
across 1-100% of spectrum pixels.

Results. Figure 4.10 illustrates the trade-off between STFT pixel percentage
(proportional to computation time) and localization error for both sampling
strategies. SDWS consistently outperforms Uniform Sampling, particularly at
low sampling rates, by prioritizing informative high-variance pixels. Using 2.5%
of pixels with SDWS (chosen as the default for the remaining experiments) re-
duces computation time by roughly 40× while increasing error only moderately,
from 10.75 cm to 13.16 cm (+22%). This optimization is key to mitigating our
method’s significant runtime compared to the baselines.
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Figure 4.10: Mean localization error vs. STFT pixel sampling percent-
age. SDWS clearly outperforms US as the percentage of compared
STFT pixels decreases.
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4.3.5 Regularization impact

Setup. This experiment investigates the impact of the regularization para-
meter εreg on localization, for both the RAF and SoundSpaces datasets. As
discussed in Section 3.2.2, εreg influences the amount of noise added to the
emitter and listener locations during training. We train NAFs using εreg values
(0.01, 0.05, 0.1) and apply grid-based localization to observe the impact of εreg
on localization accuracy.

Results. Figure 4.11 shows the mean localization error for the varying εreg
values over a range of grid resolutions. There is an interesting pattern to observe
here. As we decrease the grid resolution, a lower εreg becomes beneficial, while
at higher resolutions, a higher εreg is better. An explanation for this effect can
be found by analyzing the loss maps in Figure 4.12: lower εreg values produce
sharper, more detailed minima (right figure), which improve accuracy on fine
grids but can be missed on coarse grids. In contrast, higher εreg smooths the loss
landscape (left panel), making the minima easier to capture with coarse grids,
but slightly reducing accuracy on fine grids. This explains why the optimal
regularization strength depends on the grid resolution.
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Figure 4.11: Mean localization error vs. grid resolution for varying εreg
values. Higher εreg performs better at coarser resolutions (larger step
sizes), while lower εreg is better at finer resolutions.
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Figure 4.12: Example loss landscapes from the RAF dataset with
εreg = 0.1 (left) and εreg = 0.01 (right). The right landscape appears
slightly more detailed, with the minimum-loss region more strongly
concentrated around the ground-truth location, improving localiza-
tion accuracy with a sufficiently fine search grid.
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4.4 System Profiling

In this section, the computational requirements of the evaluated method and
the baselines are covered.

4.4.1 Model Size

Table 4.2 compares our proposed method to the ResNet-10 and NAF-Direct
baselines, as introduced in Section 4.2, in terms of parameter count and floating-
point operations (FLOPs). For our approach, NAF-Loc, the computational
cost depends on the number of STFT pixels synthesized. We therefore provide
FLOPs for both the full spectrum (100%) and the reduced setting (2.5%), the
latter being the setting used in our experiments. All experiments were performed
on Snellius NVIDIA A100 GPU nodes, using 18 of the 72 available CPU cores
(Intel Xeon Platinum 8360Y) [56].

Model #Params FLOPs Type

NAF-Loc (100% pixels)
3.6M

148.6G Analysis-by-synthesis
NAF-Loc (2.5% pixels) 3.72G Analysis-by-synthesis
ResNet-10 (baseline) 4.9M 112.9G Direct regression
NAF-Direct (baseline) 2.4M 4.8G Direct regression

Table 4.2: Comparison of model complexities for the proposed NAF
and direct regression baselines.

4.4.2 Training Time

Table 4.3 reports the wall-clock training times required to optimize NAF-Loc
across the evaluation datasets. Each model was trained for 200 epochs, consist-
ent with the experimental setup used in the original NAF paper [34], and under
the same hardware conditions described in Section 4.4.1. For each batch, we
sample 20 impulse responses and, for each spectrogram, randomly select 2,000
time-frequency pairs. The observed training times vary considerably between
environments, as the room sizes and spatial sample density vary.

Room Training Time (hh:mm)

SoundSpaces [9]
frl apartment 2 11:07
frl apartment 4 12:02
room 2 1:14
office 4 2:53
apartment 1 12:43
apartment 2 12:13

RAF [12]
EmptyRoom 4:40
FurnishedRoom 3:51

Table 4.3: Training times per room in the evaluation datasets. Each
network was trained for 200 epochs.
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4.4.3 Inference Time

Table 4.4 reports the time required for a single forward inference by each model.
All measurements are obtained on the RAF dataset. For NAF-Loc, we again
distinguish between generating all STFT pixels (100%) and generating only
2.5% of the pixels. For the baseline models, a forward inference corresponds to
predicting a location directly from a given STFT input. The direct regression
baselines are substantially faster, as their inference time and localization time
are identical. In contrast, NAF-Loc follows an analysis-by-synthesis strategy in
which a single localization requires many STFT inferences, making the total loc-
alization time considerably longer. Clearly, NAF-Loc offers a trade-off: higher
computational cost in exchange for improved accuracy.

Model Inference Time Localization Time

NAF-Loc (100% of pixels) 19.24ms 218.4 s
NAF-Loc (2.5% of pixels) 0.481ms 5.46 s
ResNet-10 (baseline) 0.013ms 0.058ms
NAF-Direct (baseline) 0.025ms 0.058ms

Table 4.4: Inference time and total localization time for the proposed
NAF-Loc system and direct regression baselines on the RAF dataset.
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Chapter 5

Conclusions and Discussion

This chapter summarizes the key findings of this thesis and reflects on their
implications. We first present the main conclusions drawn from the experimental
results (Section 5.1). Next, we discuss the limitations of the proposed approach
and interpret the broader meaning of the findings (Section 5.2). Finally, we
outline promising directions for future research (Section 5.3).

5.1 Conclusions

This thesis has demonstrated that Neural Acoustic Fields can be effectively in-
verted through an analysis-by-synthesis approach to perform acoustic listener
localization. The core finding is that a pre-trained NAF, originally designed
for acoustic synthesis, can successfully solve the inverse problem of geometry
estimation from a single RIR measurement, and outperform direct regression
baselines in sparse-data scenarios.

The proposed method works by synthesizing RIRs for candidate listener pos-
itions and identifying the location that minimizes spectral loss when compared
to an observed RIR. This approach proved particularly valuable in data-sparse
conditions, where it consistently outperformed direct regression baselines. When
trained on only 5-25% of the available data, our grid-based search method
achieved up to 32% lower error than direct regression approaches, demonstrat-
ing its advantage in practical scenarios where extensive data collection may be
infeasible.

However, when evaluated on the simulated SoundSpaces dataset, both baselines
achieved lower errors across all data percentages. We hypothesize that this
difference arises from the regular and low-variability nature of the simulated
SoundSpaces environments, where the mapping between position and RIR is
smooth and predictable. Under these conditions, direct regression models can
interpolate effectively, while the analysis-by-synthesis search is more sensitive
to acoustic ambiguities between locations that sound alike.

Analysis-by-synthesis is computationally intensive, as it requires generating
and comparing many examples, unlike direct regression, which requires only a
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single inference. To address this cost, two key optimizations were developed
and evaluated. A Standard Deviation-Weighted Sampling technique reduced
the computational cost by focusing on the most informative time-frequency
bins, achieving a 40× reduction in required computations with only a minimal
impact on the mean error. Additionally, Particle Swarm Optimization proved
more efficient than grid search for navigating the 3D loss landscape, with one
configuration reducing compute time by 75% while simultaneously reducing the
mean error by 14% on the RAF dataset. The clear superiority of PSO over grid
search on the 3D RAF dataset stems from the algorithm’s ability to efficiently
escape local minima in the high-dimensional loss landscape. This demonstrates
that metaheuristics such as PSO are not just a faster alternative but a fun-
damentally more effective search strategy than grid-based search or gradient
descent.

The experiments also showed that the combination of model regularization
and search resolution affects performance. Lower regularization values create
sharper loss landscapes that work well with fine-grid searches, while higher
values create smoother landscapes that are better for coarse searches, giving
practical insights for system configuration.

In summary, this work shows that analysis-by-synthesis through NAF inver-
sion is a viable approach for acoustic localization, especially when only limited
training data is available or when the acoustic environment varies strongly across
space. The weaker performance on the simulated SoundSpaces dataset suggests
that the method benefits most from the irregularities and richer cues found in
real acoustic data, rather than from the smooth, predictable structure of syn-
thetic environments. Therefore, the choice of dataset and the balance between
accuracy and computational cost remain important considerations for applying
this method effectively.

5.2 Discussion

The computational cost of the analysis-by-synthesis loop remains the most sig-
nificant limitation of this approach, currently precluding real-time application.
The method also currently estimates only the listener position and requires
knowing its orientation in the case of a directional listener (as was the case for
the SoundSpaces dataset). This represents an important constraint for prac-
tical deployment in applications involving directional hearing. Furthermore,
the approach assumes a static environment, meaning performance would likely
degrade if room acoustics changed after NAF training.

The results highlight a fundamental trade-off between data efficiency and
computational cost when choosing between analysis-by-synthesis and direct re-
gression for acoustic localization. The method provides an interpretable out-
put through spatial loss maps, which offer visual representations of localization
uncertainty that could be valuable for applications requiring uncertainty quan-
tification. However, for resource-constrained applications, a direct regression
approach may still be preferable.
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5.3 Future Work

Future work should focus on enhancing the method’s efficiency and scope:

• Joint Position and Orientation Estimation: A natural extension
is to expand the search space to include the listener’s orientation (θℓ),
leveraging the binaural cues present in multi-channel datasets such as
SoundSpaces. If this proves infeasible, an attempt could be made to make
localization independent from prior knowledge of θℓ.

• Multi-Stage Optimization: Unlike iNeRF [31], our method does not
currently exploit the differentiability of NAFs. Gradient descent alone is
unsuitable for global search in the complex loss landscape, but combining
PSO with local gradient-based refinement may improve both speed and
accuracy. A coarse PSO search with few particles (or grid search) could
locate the global minimum-loss region, after which gradient descent refines
the solution.

• Architectural Improvements: This thesis used the original NAF archi-
tecture [34], but newer methods [54, 30] achieve better RIR reconstruction
results, which may also enhance localization accuracy and efficiency.

• Practical Implementation: A key step toward deployment is moving
from a research framework to a standalone system on consumer hardware,
such as a smartphone or home robot. This requires an offline calibration
phase to train a NAF for the environment, and efficient optimization of the
analysis-by-synthesis loop. In tracking scenarios, prior position estimates
could further narrow the search region and greatly accelerate localization.
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