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Summary

Ocean currents play a crucial role in many scientific and industrial applications. Contemporary mea-
surement techniques are limited in spatial coverage or spatial resolution. The goal of this thesis is to
develop a new algorithm to measure sea surface currents. The proposed measurement principle relies
on the fact that for a ship, the ship speed can be defined relative to land or water. By subtracting the two
ship speed vectors, the surface current is estimated along and across the ship track. The ship speed
relative to land is determined using GNSS-based data from the Automatic Identification System (AIS).
The ship speed relative to water can be determined using optical satellite imagery of ship-induced wave
patterns, which are called Kelvin wakes.

From linear wave theory, it is shown that the spectral signal of a Kelvin wake is controlled by three
variables. The radial location of the signal in a two-dimensional spectrum is determined by the ship
speed through water. The orientation of the signal in the spectrum is determined by the course of the
ship through water, while the energy distribution along the spectral signal is determined by the ship hull
geometry. The ship speed through water and ship course through water are recovered by applying a
generalized Radon transform to the Kelvin wake spectrum.

Surface currents were computed for 97 Kelvin wakes taken from Sentinel-2 imagery in two study
areas: the North Sea/Kattegat Strait and the Strait of Gibraltar. In the North Sea study area, estimated
currents were compared to modelled currents from the Dutch Continental Shelf Model (DCSM). Linear
fits between the two data sets explained 82 and 64% of the variance for the along- and across-ship sur-
face currents, respectively. In the Gibraltar study area, estimated currents were validated with modelled
currents from the Copernicus Marine Environmental Monitoring Service (CMEMS) and currents derived
from High-Frequency Radars (HFRs). With respect to the HFR observations, linear fits explained 95
and 76% of the variance for the along- and across-ship surface currents, respectively.

Standard deviations were estimated for the surface currents using two methods. First, the errors in
the two ship speed vectors were estimated individually and then propagated into the surface currents.
However, the resulting uncertainties were not correlated with observed errors for the along-ship surface
currents. Although the estimated uncertainties for the across-ship surface currents showed some corre-
lation with observed errors, they were still limited. Therefore, the developed error estimation algorithm
is currently not sufficiently accurate to be utilized for quality control of individual measurements.

Second, standard deviations were also estimated using a statistical technique called Triple Collo-
cation (TC). In TC, three data sets of the same quantity collocated in space and time are compared
to estimate the uncertainty per data set. In the Gibraltar study area, estimated along-ship surface cur-
rents ranged from −2.1 to 2.2ms−1, with an estimated standard deviation of 0.14ms−1. The estimated
across-ship surface currents ranged from −1.6 to 2.1ms−1, with an associated standard deviation of
0.30ms−1. It was shown that the inferior accuracy of the across-ship surface currents could largely
be explained by an increased sensitivity of this component to small variations in ship course. By filter-
ing out data points with the most variation in ship course, the estimated uncertainty in the across-ship
currents decreased to 0.16ms−1.

To gain insight into the applicability of the developed algorithm, a specular reflection model was
used to show that reflectance patterns could be reconstructed using the viewing geometry between the
sun, imaging platform and sea surface. However, this model was not able to predict for an individual
ship if its Kelvin wake would be visible on satellite imagery. Therefore, more research is needed to
study the influence of ship geometry, oceanic and atmospheric conditions on Kelvin wake visibility.

By taking vessel density and cloud cover data into account, it has been estimated that 120 000 data
points could be acquired annually if the algorithm would process all Sentinel-2 imagery over European
open waters. This number is on the same order of magnitude as the number of current measurements
obtained by Argo floats each year. Moreover, the measurement frequency could be increased by using
data from other high-resolution optical satellite missions. Since cloud cover is a limitation of optical
satellite imagery, it would be interesting to investigate the applicability of the algorithm to Synthetic
Aperture Radar imagery. A better understanding of the spatiotemporal distribution of measurements is
required to appreciate potential areas of application.
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1
Introduction

1.1. Motivation
Ocean currents are important for many scientific and industrial applications. They influence weather
and climate, water levels, transport of energy, sediment and pollutants, shipping routes and fish distri-
bution, among others. Therefore, measurements of ocean currents are crucial to their understanding.
Currently, there exist several techniques to measure ocean currents.

First, there are in-situ measurements with current meters at a fixed location or buoy. Such instru-
ments require maintenance and are expensive, especially when a large number of them is required.
Currents can also be measured by tracking the position of so-called drifters or chemical tracers over
time. Currently, there are several thousand drifters in operation worldwide [24]. Although these devices
provide excellent temporal resolution, their number is too few to provide good spatial resolution.

Another technique to measure ocean currents is by using radar systems. A radar can transmit
electromagnetic waves towards the sea surface. Some part of this signal will be scattered back to the
radar through a mechanism called Bragg scattering [31]. The Doppler shift in this return signal is a
measure of the surface current in the line of sight from the sea surface to the radar. By measuring line-
of-sight surface currents from multiple radars, total surface currents may be reconstructed. Although
this technique provides good spatial and temporal resolution, radars are expensive and their spatial
coverage is limited to coastal areas.

Next, there are also several satellite-based techniques to measure ocean currents. In [24] four re-
mote sensing techniques are highlighted. First, infrared imagery can be used to derive sea surface
temperature fields. Since currents transfer heat, the sea surface temperature fields also reveal infor-
mation about flow patterns such as the Gulf Stream. This method is hindered by the presence of cloud
cover and is limited to large spatial scales.

Second, oceanographic features such as chlorophyll or sediment plumes can be tracked over suc-
cessive satellite images to estimate currents. Unless the features are tracked using radar imagery, also
here cloud cover is a limitation. Moreover, in [24] it is stated that ”There is a need to improve ocean
feature detection and tracking techniques and to develop more reliable operational procedures.”.

The third technique is by measuring line-of-sight currents from Synthetic Aperture Radars (SAR).
This works by measuring the Doppler shift introduced by the relative motion between the satellite plat-
form and the sea surface and relating it to the line-of-sight sea surface current. Ideally, multiple satellite
platforms would receive the backscattered radio waves to measure line-of-sight currents in multiple di-
rections. This would allow the reconstruction of the total surface currents. This is one of the goals of
the Harmony mission [30], which will be launched in 2029 at the earliest.

Finally, the last technique covered in [24] is the measurement of geostrophic currents from satellite
altimetry. Geostrophic currents are currents arising from a balance between pressure gradients and
the Coriolis effect. However, this methodology breaks down when currents are not geostrophic and in
coastal regions where backscattering from land contaminates the signal. Therefore, it can be concluded
that although there exist several promising remote sensing techniques, their application is still usually
limited to specific cases or large spatial scales.

Recently, data from the Automatic Identification System (AIS) has also been exploited to estimate

1



1.2. Background Kelvin ship wakes 2

surface currents [25, 6, 51]. The AIS is a maritime collision-avoidance system in which ships transmit
their position, speed over ground, course over ground and true heading. In [25] it is shown that surface
currents can be estimated by aggregating data from multiple ships within a spatiotemporal interval. A
validation with respect to currents measured by drifting buoys yields root-mean-square errors on the
order of 0.3ms−1. A limitation of their method is the fact that the ship speed through water is not
broadcast through AIS. This introduces the need to combine data from multiple ships while assuming
that the flow field is homogeneous within a spatiotemporal interval. This reduces the temporal and
spatial resolution, depending on ship density.

In order to be able to estimate the surface current for an individual ship, the ship’s speed through
water needs to be known. It turns out that this variable is related to the ship-induced wave pattern
behind a ship. Background information considering this wave pattern is given in the next section.

1.2. Background Kelvin ship wakes
Under the assumption that a ship can be represented by a point source moving at a uniform speed,
Lord Kelvin investigated the resulting wave pattern. He concluded that the resulting V-shaped wake,
now called the Kelvin wake, should be contained within an angle of 19.47◦ with respect to either side
of the sailing line, regardless of the ship speed [46]. Furthermore, he reasoned that the waves in the
wake pattern travel with the ship speed, which causes their wavelengths to depend solely on the ship
speed [46]. Further research has shown that these wakes consist of two types of waves: transverse
and divergent waves (see Figure 1.1a) [12]. The transverse waves propagate along the sailing line
while the divergent waves travel away from the sailing line. Along the boundary of this wave system,
the transverse and divergent waves interfere to form so-called cusp waves [36] [27]. Typically, these
cusp waves are the most visible feature on imagery (e.g. Figure 1.1b).

(a) Schematic of theoretical shape of a Kelvin wake. The letters t,
d and c denote the transverse, divergent and cusp waves

respectively. Figure taken from [54].

(b) Sentinel-2 image of a Kelvin wake behind a ship.

Figure 1.1: Theoretical and observed Kelvin wake.

The simplification of a ship by a point source is quite substantial. It is then no surprise that in
practice, the wake angle has been observed to differ from the classical 19.47◦ predicted by Kelvin. In
fact, it turns out that the wake angle reduces with increasing hull Froude number [37] [13]. However,
Kelvin’s second conclusion, that the wavelengths in the wave pattern are uniquely determined by the
ship speed seems to be more accurate. This relationship has been exploited to determine ship speeds
from air- and spaceborne Synthetic Aperture Radar images of ship waves.

In [54] ship speeds were estimated by taking one-dimensional Fourier transforms of the image
intensity along the cusp waves in airborne SAR imagery. Subsequently, the peak wavenumber in the
resulting periodogram was related to the ship speed. The accuracies ranged from 3 to 10%. The main
limitation of their methodology is that the Fourier transform was only taken along the cusp lines instead
of taking the full two-dimensional wave pattern into account.
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A different method to retrieve ship speeds from three spaceborne SAR images was used in [47].
They used the fact that moving objects are displaced in the azimuth-direction on SAR imagery. There-
fore, the ship and its Kelvin wake are not connected on a SAR image. The azimuth offset between the
ship and the vertex of the cusp lines is a measure of the ship speed. The accuracy of the estimated
ship speeds was within 15%.

In [19] ship speeds were estimated from 33 SAR images of ship wakes using both methods de-
scribed above. Both methods produced ship speeds that showed agreement within 14%, however
there was no validation with independent ship speed data. In [20] the same two methods were applied
again and results were validated with respect to data from the Automatic Identification System (AIS).
Relative ship speed errors were found to be within 12%.

With a typical ship speed of 10ms−1, errors from 3-12% are already between 0.3 and 1.2ms−1.
Hence, the errors are relatively large with respect to the order of magnitude of surface currents. There-
fore, it appears that the existing methods do not measure ship speeds with sufficient accuracy to es-
timate surface currents. However, in all studies, SAR imagery was used. Since SAR images contain
more noise than optical imagery, estimation may have been less reliable.

The full two-dimensional spectrum of a Kelvin wake was analyzed in [18] [45]. In [27] 32 optical
satellite images were analyzed to count the number of visible Kelvin wakes. A probability of Kelvin
wake visibility of about 25% was found, depending on satellite resolution and ship type. In [29] and [42]
a simple reflectance model is used to study the appearance of Kelvin wakes on optical satellite imagery.
Finally, there is a significant amount of literature on ship detection for marine surveillance by looking for
Kelvin wakes (e.g. [39], [9]). A thorough search of the relevant literature returned no papers covering
the estimation of surface currents using either optical or radar imagery of Kelvin ship wakes. In the next
section, the new concept to measure surface currents through Kelvin wake imagery is presented.

1.3. Measurement principle
In this section, the new measurement principle for estimation of surface currents is presented. The
measurement principle relies on the fact that the movement of a ship can be described by two different
ship speed vectors. First, the speed of the ship can be described relative to land. The corresponding
magnitude and direction are called the Speed Over Ground (SOG) and Course Over Ground (COG)
respectively. Second, the vessel movement can also be represented with respect to the surrounding
water. The corresponding magnitude and direction are now given by the Speed Through Water (STW)
and Course Through Water (CTW) respectively. In Figure 1.2 the vectors are visualized.

Figure 1.2: Geometrical relation between the ship speed vectors and the surface current components.

In the presence of a current, the two ship speed vectors will not coincide. The difference between
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the two vectors will be the current vector. Independent estimation of the two ship speed vectors will
thus allow estimation of the underlying current. From Figure 1.2, an equation for each component of
the current can be derived:

Ualong = VSOG cos (θCTW − θCOG)− VSTW, (1.1)
Uacross = VSOG sin (θCTW − θCOG) . (1.2)

It should be noted that currents act on a ship over its entire draft. Hence, the estimated currents are
related to the average current along the ship draft. Therefore, the representative depth of the surface
currents is likely several meters below the surface and will vary from ship to ship. Hereafter, it will be
assumed that the estimated currents are representative of the conditions at the surface. Therefore, the
currents derived from Equations 1.1 and 1.2 will be referred to as surface currents.
Equations 1.1 and 1.2 contain four unknowns. VSOG and θCOG are variables that are transmitted through
the Automatic Identification System (AIS). The AIS is primarily a collision-avoidance system based on
satellite navigation. More information on the AIS is given in Section 4.1.2.
Now, only two unknowns remain. The ship course through water could be approximated using the True
Heading, which is the direction that the ship is pointing to. This variable is also contained in the AIS
data, however it is also influenced by crosswinds. Alternatively, the orientation of a ship’s Kelvin wake
can be considered. The Kelvin wake follows the course through water of a ship and is expected to
be less influenced by crosswinds on the ship. The orientation can be estimated from optical imagery.
Finally, VSTW is related to the wavelengths in the ship’s Kelvin wake. The faster the ship sails, the longer
the waves in the Kelvin wake. In Section 2.2 the governing relationship is derived. The derivation is a
consequence of the linear dispersion relation for surface gravity waves, which is first derived in Section
2.1.

1.4. Research question
The main goal of this thesis is to examine to what extent the measurement principle from the previous
section can actually be used to estimate surface currents. This leads to the following main research
question:

• Is it possible to estimate sea surface currents by combining optical satellite imagery of Kelvin
wakes with data from the Automatic Identification System?

In order to answer this research question, some theory concerning ocean waves is presented in Chapter
2. There, a model for the two-dimensional Fourier transform of a Kelvin wake will be derived. Moreover,
it will be shown that the spectral shape of the Kelvin wake is not sensitive to the geometry of the ship
hull. Thereafter, an algorithm to match an observed spectral Kelvin wake signal to the theoretical model
will be developed in Chapter 3. Using this algorithm, surface currents will be estimated from Sentinel-2
imagery in Chapter 4. The estimated currents will be compared to independent datasets of modelled
and observed currents to validate the measurement principle, which allows the main research question
to be answered.

From a favorable answer to the main research question naturally yields a follow-up question, i.e.,
how accurate are the estimated surface currents? To answer this question, an error analysis is con-
ducted in Chapter 5. First, two potential sources of modelling error will be studied. Thereafter, two
different statistical approaches are undertaken to estimate the uncertainty in the surface currents.

Subsequently, it is interesting to study how applicable the proposed measurement concept is. To
that end, in Chapter 6 it will be studied to what extent the viewing geometry and ship direction determine
whether a Kelvin wake will be visible on optical satellite imagery. Finally, the expected number of data
points that the measurement principle could yield in a given year is estimated in Chapter 7. Concluding
remarks are given in Chapter 8.



2
Modelling

In this chapter, the models used throughout the remainder of this thesis are derived. In Section 2.1, it
is shown how the linear dispersion relation for surface gravity waves can be derived. This dispersion
relation is the starting point for the derivation of a model for the spectral shape of a Kelvin wake, which
is derived in Section 2.2. This spectral model is used to retrieve one of the ship speed vectors from
optical imagery, using the algorithm presented in Chapter 3. Finally, in Section 2.3 a model for the
surface elevations in a Kelvin wake is derived. This model is used to study the influence of the Froude
number and hull geometry on the spectrum of a Kelvin wake. Moreover, in Chapter 6, this model is
used to study the influence of the viewing geometry on the reflectance of a Kelvin wake.

2.1. Linear wave theory
The goal of this section is to derive the linear dispersion relation for surface gravity waves, which will be
used in Section 2.2 to derive a model for the spectral shape of a Kelvin wake. To that end, the basics
from linear wave theory are presented. The derivation here follows [23]. The following assumptions
are made:

• The fluid is incompressible, inviscid and irrotational.
• Surface tension effects are negligible.
• Wave amplitudes are small with respect to the wavelength.

The principle of conservation of mass leads to the continuity equation:
∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where ρ is the fluid density and u = (ux, uy, uz)
T represents the velocity vector. The fluid density is

constant in case of incompressible flow, hence ∂ρ
∂t = 0. Furthermore, ρ can be factored out of the

divergence term. Hence, the continuity equation reduces to

∇ · u = 0. (2.2)

Moreover, a curl-free vector field can be represented by the gradient of a scalar function. Let u = ∇ϕ,
where ϕ is called the velocity potential. Substitution of the velocity potential into Equation 2.2 yields

∇2ϕ = 0. (2.3)
Hence, the flow problem is reduced to the Laplace equation. Three boundary conditions will be imposed
in order to provide a well-posed problem. The first two are of kinematic nature, i.e., they relate to motion
of the fluid. The last boundary condition is dynamic, which means that it is related to forces acting on
the fluid. First, it is assumed that water particles do not cross the air-sea interface. To that end, the
speed of a water particle normal to the surface of the water is required to be equal to the speed of the
fluid surface in that direction. After linearization, this leads to

uz =
∂η

∂t
at z = 0, (2.4)

5
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where η = η(x, y, t) denotes the free surface elevation. The second boundary condition states that no
fluid is flowing through the bottom. This yields

uz = 0 at z = −h, (2.5)

where h is the water depth. The dynamic boundary condition results from the assumption that the
waves are not forced by atmospheric pressure, i.e., it is assumed that atmospheric pressure is constant.
Without loss of generality, the pressure can be set to 0 at the free surface. Hence, the dynamic boundary
condition reads

p = 0 at z = 0. (2.6)

The three boundary conditions are now transformed into a form which expresses them in terms of the
velocity potential. For the kinematic boundary conditions, substitution of u = ∇ϕ directly leads to

∂ϕ

∂z
=

∂η

∂t
, at z = 0, (2.7)

∂ϕ

∂z
= 0 at z = −h. (2.8)

The transformation of the dynamic boundary condition follows from conservation of momentum. For
an inviscid fluid, the linearized momentum equations are:

∂ux

∂t
= −1

ρ

∂p

∂x
, (2.9)

∂uy

∂t
= −1

ρ

∂p

∂y
, (2.10)

∂uz

∂t
= −1

ρ

∂p

∂z
− g, (2.11)

where g is the gravitational constant. Substitution of the velocity potential, changing the order of differ-
entiation and reordering yields

∂

∂x

(
∂ϕ

∂t
+

p

ρ

)
= 0, (2.12)

∂

∂y

(
∂ϕ

∂t
+

p

ρ

)
= 0, (2.13)

∂

∂z

(
∂ϕ

∂t
+

p

ρ
+ gz

)
= 0. (2.14)

The expression ∂ϕ
∂t + p

ρ + gz is invariant with respect to x, y and z. It can therefore only be a function
of time, i.e., ∂ϕ

∂t + p
ρ + gz = f(t). Since the velocity potential is non-unique, it can be redefined to

incorporate f(t). Then, the linearized Bernoulli equation for unsteady flow remains:

∂ϕ

∂t
+

p

ρ
+ gz = 0. (2.15)

Evaluation of Equation 2.15 at the free surface z = η, along with the dynamic boundary condition p = 0
yields the transformed dynamic boundary condition:

∂ϕ

∂t
+ gη = 0 at z = 0. (2.16)

Now, the two boundary conditions at the free surface can be combined to eliminate the surface elevation
as an unknown function from the boundary value problem. Temporal differentiation of Equation 2.16
and substitution of the kinematic free surface condition ∂ϕ

∂z = ∂η
∂t yields

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= 0 at z = 0. (2.17)
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Hence, linear wave theory leads to the following boundary value problem:

∇2ϕ = 0, (2.18)
∂ϕ

∂z
= 0 at z = −h, (2.19)

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= 0 at z = 0. (2.20)

An analytical solution to the above problem is given by a harmonic wave propagating in the positive
x-direction

η(x, y, t) = a sin(ωt− kx), (2.21)

where a is the wave amplitude, ω = 2π/T is the angular frequency corresponding to a wave period T
and k = 2π/L is the wavenumber, or spatial frequency, corresponding to wavelength L. The corre-
sponding velocity potential is given by

ϕ =
ωa

k

cosh[k(h+ z)]

sinh(kh)
cos(ωt− kx). (2.22)

Substitution of Equations 2.21 and 2.22 into the dynamic boundary condition Equation 2.16 leads to
the linear dispersion relation:

−ω2a

k

cosh(kh)
sinh(kh)

sin(ωt− kx) + ga sin(ωt− kx) = 0, (2.23)(
ga− ω2a

k
coth(kh)

)
sin(ωt− kx) = 0, (2.24)

ga− ω2a

k
coth(kh) = 0, (2.25)

ω2 = gk tanh(kh). (2.26)

The dispersion relation associates a wavenumber k with an angular frequency ω. It can be interpreted
as the connection between spatial and temporal frequency. In the next section, the dispersion relation
will be used to derive a forward model for the spectral shape of a Kelvin wake.
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2.2. Derivation spectral model Kelvin wake
In this section, a model that relates a ship’s Speed Through Water (STW) to the wavelengths in its
Kelvin wake will be derived. To that end, the following assumptions are made:

• The ship is sailing with constant speed VSTW in the positive x-direction.
• The Kelvin wake is stationary with respect to the moving ship.
• Linear wave theory is appropriate for describing the propagation of the Kelvin waves.

Uncertainties introduced by violation of the first assumption are part of the uncertainty quantification
in Section 5.2.2. Furthermore, in Section 5.1.2 the model presented here will be extended to include
nonlinear effects due to wave steepness. The derivation in this section is based on [18]. Assuming
linear wave theory, the dispersion relation for surface gravity waves is given by

ω2 = gk tanh(kh), (2.27)

Now suppose that the reference frame is fixed to the ship, with the x-axis aligning with the sailing line.
Then, the reference frame moves with a constant speed VSTW. This introduces a Doppler shift which
yields an apparent frequency in the moving frame of reference given by (see Section A)

ω′ = ω − VSTWkx, (2.28)

where ω′ is the apparent angular frequency in the moving frame of reference. Substitution of Equa-
tion 2.28 into Equation 2.27 gives

(ω′ + VSTWkx)
2 = gk tanh(kh). (2.29)

Since the Kelvin waves are assumed to be stationary with respect to the ship, ω′ = 0. Hence, the
above equation reduces to

VSTW = ±
√
gk tanh(kh)

kx
. (2.30)

As the Kelvin waves are travelling in the same direction as the ship, the negative solution can be ignored.
The above equation indicates that a ship’s speed through water depends only on the local water depth
and the wavelengths in the Kelvin wake. However, often the wavelengths in the Kelvin wake are small
with respect to the water depth. In particular, often it is the case that h ≥ λ

2 , hence kh = 2π h
λ ≥ π.

Since tanh(x) ≈ 1 for x ≥ π, tanh(kh) ≈ 1. In that case, Equation 2.30 reduces to

VSTW =

√
gk

kx
. (2.31)

Hence, in this deep-water regime, a ship’s speed through water depends only on the wavenumbers
in the Kelvin wave pattern. Section 5.1.1 covers the case where the deep-water approximation is not
strictly applicable. The above equation can also be reordered such that ky = f(kx;VSTW). This gives

ky = ±kx

√
V 4
STW
g2

k2x − 1. (2.32)

The above formulation is useful for visualizing the Kelvin wave pattern in the spectral domain and will
be used to fit the model to observed data. In Figure 2.1 the model is plotted for three different values
of a ship’s STW. The origin corresponds to zero wavenumbers, i.e., infinitely long waves. By moving
away from the origin radially, the wavelength decreases.
Consider the solid black line corresponding to a ship moving at 10 m/s through the water. Each point on
this curve corresponds to a direction in which the Kelvin waves could propagate. Hence, the interpreta-
tion of the curve is that it gives the wavenumbers that a wave in a particular direction needs to have to
stay stationary with respect to the ship. It can be seen that the waves travelling in the same direction
as the ship (along positive x-axis), will have the smallest wavenumber, i.e., longest wavelength. As the
angle with respect to the sailing line increases, the wavelengths of the Kelvin waves decrease.
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Figure 2.1: a) Theoretical shape of the Kelvin wave patterns in the spectral domain if the deep-water approximation is
applicable. The dotted, dashed and solid lines correspond to a ship Speed Through Water (STW) of 6, 8 and 10 m/s

respectively. Ship is assumed to be moving in positive x-direction, as indicated by the red arrow. b) As in a), but now for a ship
with a heading of 45◦ counter-clockwise with respect to the positive x-axis.

So far, only the case that a ship is sailing along the positive x-axis has been considered. However,
when this is not the case, the curves can simply be rotated numerically by the direction that the ship is
moving in. Figure 2.1b shows the model for a ship with a heading of 45◦ with respect to the positive
x-axis.

2.2.1. Lower bound ship speed through water
In Figure 2.1 it can be seen that as the ship speed decreases, the model moves radially outward. At
some point, the model is no longer visible on the spectrum. The boundaries of the spectrum are chosen
such that they correspond to the maximum wavenumber distinguishable on Sentinel-2 imagery. By the
Nyquist criterion, a wave needs to be sampled with at least 2 samples per wavelength in order to be
reconstructed. For an image, this comes down to having at least two pixels per wavelength. In the
case of Sentinel-2 imagery, with a ground sampling distance of 10m, the wavelengths must be at least
20m. This gives a wavenumber of 2π/20 ≈ 0.314 rad/m.

The last part of the Kelvin wake that remains in the spectrum corresponds to its smallest wavenum-
ber, thus, its largest wavelength. From Equation 2.31 an equation for the longest wavelength present
in the Kelvin wake can be derived. The longest waves are found along the sailing line, hence they have
ky = 0. This gives k = kx, such that Equation 2.31 reduces to

VSTW =

√
g

kx
. (2.33)

Reordering the above equation gives

Lmax = 2π
V 2
STW
g

, (2.34)

where Lmax denotes the longest wavelength present in the Kelvin wake. In Figure 2.2 this relationship
between VSTW and the longest wavelength in the Kelvin wake is shown. By substituting Lmax = 20m, it
can be shown that the minimum STW required for detection on Sentinel-2 imagery is about 5.6ms−1.
However, since the waves in the rest of the Kelvin wake are even shorter, the ship speed should be
slightly larger in practice. It has been observed that a ship speed through water of about 6ms−1 suffices.
For higher resolution satellite imagery, such asWorldView or SPOT, a lower ship speed will be sufficient.
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Figure 2.2: Longest wavelength in the Kelvin wake as a function of the ship Speed Through Water (STW) (Equation 2.34).
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2.3. Derivation spatial model Kelvin wake
In this section, an analytical model for the surface elevation pattern in a Kelvin wake is derived. This
model is used to reveal the influence of the Froude number on the spectrum of a Kelvin wake. Moreover,
in Chapter 6, a reflectance model is used to study the influence of the viewing geometry on the visibility
of a Kelvin wake on satellite imagery. The basis for this reflectance model is provided by the spatial
Kelvin wake model presented here.

The Kelvin wake model is originally presented in [13]. Part of the derivation here follows [38]. Clas-
sical linear wave theory is adjusted to include an external source term which represents a ship. Let
pext(x, y, t) denote an external pressure term. Suppose it is steady and moves with a speed V in the
−x direction. Then, pext(x, y, t) = p0(x+ V t, y), where p0(x, y) denotes the initial pressure distribution.
In order to include the pressure term in the boundary value problem, it is introduced into the linearized
unsteady Bernoulli equation (Equation 2.15):

∂ϕ

∂t
+

pext(x, y, t)

ρ
+ gη = 0. (2.35)

The two free surface boundary conditions can again be combined into one boundary condition by dif-
ferentiating Equation 2.35 with respect to time and substituting the kinematic free surface boundary
condition ∂ϕ

∂z = ∂η
∂t . This yields

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= −1

ρ

∂pext
∂t

at z = 0. (2.36)

Moreover, deep water will be assumed as opposed to the finite depth from Section 2.1. Hence, the
boundary value problem in presence of an external pressure distribution becomes:

∇2ϕ = 0, (2.37)
∂ϕ

∂z
= 0 as z → ∞, (2.38)

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= −1

ρ

∂pext
∂t

at z = 0. (2.39)

A general solution to Equation 2.37 is given by

ϕh(x, y, z, t) = Aei(ωt+kxx+kyy)ekz, (2.40)

where A is a constant depending on the boundary conditions. If the reference frame is fixed to the
moving pressure distribution, the waves are stationary. In that case, ω = kxV (see Appendix A). Sub-
stitution of ω into Equation 2.40 yields

ϕh(x, y, z, t) = Aei(kxV t+kxx+kyy)ekz, (2.41)
= Aei(kx(x+V t)+kyy)ekz. (2.42)

Since the PDE is linear and homogeneous, any linear combination of such solutions is also a solution.
Therefore, the velocity potential may be expressed by

ϕ(x, y, z, t) =

∫ ∞

−∞

∫ ∞

−∞
A(kx, ky)e

i(kx(x+V t)+kyy)ekzdkxdky (2.43)

The amplitudes A(kx, ky) are found by substituting Equation 2.43 into Equation 2.36. Note that by
evaluating the derivatives of the velocity potential at z = 0, the exp(kz) term disappears. Let x̄ = x+V t.
Then, ϕ is defined by an inverse Fourier transformation ofA(kx, ky) from the (kx, ky) domain to the (x̄, y)
domain. Evaluation of the derivatives of ϕ at z = 0 yields

ϕz(x, y, z = 0, t) =

∫ ∞

−∞

∫ ∞

−∞
kA(kx, ky)e

i(kx(x+V t)+kyy)dkxdky, (2.44)

ϕtt(x, y, z = 0, t) =

∫ ∞

−∞

∫ ∞

−∞
−V 2k2xA(kx, ky)e

i(kx(x+V t)+kyy)dkxdky. (2.45)
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Here, note that ϕz(x, y, z = 0, t) is the inverse Fourier Transform of kA(kx, ky) and ϕtt(x, y, z = 0, t) is
the inverse Fourier transform of −V 2k2xA(kx, ky). Hence, substitution of the above two identities into
Equation 2.36 yields

F−1
[
−V 2k2xA(kx, ky)

]
+ gF−1 [kA(kx, ky)] = −1

ρ

∂pext
∂t

, (2.46)

where F−1 denotes inverse Fourier transformation. Now, the rhs can also be linked to its Fourier
transform. Since pext(x, y, t) = p0(x+ V t, y), it follows by the chain rule that

∂pext
∂t

=
∂p0
∂t

(2.47)

=
∂p0
∂x′

∂x′

∂t
+

∂p0
∂y

∂y

∂t
(2.48)

= V
∂p0
∂x′ . (2.49)

By the differentiation property of the Fourier transform, it follows that

F
[
∂p0
∂x′

]
= ikxp̂0(kx, ky), (2.50)

where p̂0(kx, ky) is the Fourier transform of the function p0(x, y). By combining Equation 2.49 and
Equation 2.50, it follows that

∂pext
∂t

= F−1 [ikxV p̂0(kx, ky)] . (2.51)

Substituting Equation 2.51 back into Equation 2.46 yields

F−1
[
−V 2k2xA(kx, ky)

]
+ gF−1 [kA(kx, ky)] = −1

ρ
F−1 [ikxV p0(kx, ky)] . (2.52)

By taking the Fourier transform over Equation 2.52 and reordering the amplitudes A(kx, ky) are found:

A(kx, ky) = − ikxV p̂0(kx, ky)

ρ(gk − V 2k2x)
. (2.53)

An equation for the surface elevation can now be found by substitution of Equation 2.43 and Equa-
tion 2.53 into Equation 2.7. This gives

η(x, y, t) =

∫ ∞

−∞

∫ ∞

−∞

kA(kx, ky)

ikxV
ei(kx(x+V t)+kyy)dkxdky, (2.54)

=

∫ ∞

−∞

∫ ∞

−∞
− kp̂0(kx, ky)

ρ(gk − V 2k2x)
ei(kx(x+V t)+kyy)dkxdky. (2.55)

Since the moving pressure distribution is assumed to be steady, the equation above can be evaluated
at any time t. Hence, let t = 0. The equation simplifies to

η(x, y) =

∫ ∞

−∞

∫ ∞

−∞
− kp̂0(kx, ky)

ρ(gk − V 2k2x)
ei(kxx+kyy)dkxdky. (2.56)

Note that the denominator of the integrand is zero for values of kx, ky such that gk − V 2k2x = 0. Since
these values are located on the real plane, there are poles on the domain of integration. In contour
integration, multiple contours could be chosen to avoid the poles. However, these contours may lead
to different answers. Therefore, the integral is not well defined. To circumvent this problem, a radiation
condition is imposed on the problem. The radiation condition states that no energy has been generated
at infinity. In [26, p. 267] this is done by imposing that ω = kxV − iε. Subsequently, the limit of ε → 0
is considered. The surface elevation integral becomes

η(x, y) = lim
ε→0

∫ ∞

−∞

∫ ∞

−∞
− kp̂0(kx, ky)

ρ(gk − (kxV − iε)2)
ei(kxx+kyy)dkxdky. (2.57)
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Note that the effect of the ε-term is that the poles have shifted onto the imaginary axis. Therefore,
the poles are no longer on the path of integration. Now a change of variables from kx, ky to k, θ is
introduced following

kx = k cos θ, (2.58)
ky = k sin θ, (2.59)

where k is the magnitude of the wavenumber vector and θ denotes the wave direction. The determinant
of the Jacobian of this transformation is given by k. Using the change of variables the surface elevation
may be expressed as

η(x, y) = lim
ε→0

∫ ∞

−∞

∫ π/2

−π/2

− k2p̂0(k cos θ, k sin θ)
ρ(gk − (k cos θV − iε)2)

eik(x cos θ+y sin θ)dθdk. (2.60)

After reordering and neglecting the O(ε2) term, the form as presented in [13] is found:

η(x, y) = lim
ε→0

∫ ∞

−∞

∫ π/2

−π/2

− p̂0(k cos θ, k sin θ)
ρ(g/k − V 2 cos2 θ + 2iεV cos θ/k)

eik(x cos θ+y sin θ)dθdk. (2.61)

Thereafter, in [13] the equation is non-dimensionalized to emphasize the influence of the Froude num-
ber on the Kelvin wake pattern. The Froude number is given by Fr = V /

√
gL, where L is a character-

istic length scale. Subsequently, the other variables can be normalized using this characteristic length,
i.e.,

ζ =
η

L
X =

x

L
Y =

y

L
K = kL P̂0 =

p̂0
ρgL3

ε̃ =
ε√
g/L

. (2.62)

Note that p̂0 is the Fourier transformed version of p0(x, y). Hence, it has units of N as opposed to
N/m2. Moreover, ε is related to the angular frequency ω, hence it has units s−1. Substitution of the
nondimensional quantities yields

ζ(X,Y ) = lim
ε̃→0

∫ ∞

−∞

∫ π/2

−π/2

−K
P̂0(k cos θ, k sin θ)

1−KFr2 cos2 θ + 2iFrε̃ cos θ
eiK(X cos θ+Y sin θ)dθdk. (2.63)

Equation 2.63 still depends on ε̃. It is therefore not yet suitable for numerical approximation. In order
to get rid of the ε-dependence, a result from complex analysis is used. The Sokhotski-Plemelj formula
is given by [3, p. 226]

lim
ε→0

∫ ∞

−∞

f(x)

x− x0 − iε
dx = p.v.

∫ ∞

−∞

f(x)

x− x0
dx+ iπf(x0), (2.64)

where p.v. denotes the Cauchy principal value. In order to apply this formula to Equation 2.63, the
order of integration in Equation 2.63 is interchanged. Subsequently, a factor of Fr2 cos2 θ is factored
out of the denominator. This gives

ζ(X,Y ) =

∫ π/2

−π/2

lim
ε̃→0

∫ ∞

−∞
−K

P̂0(k cos θ, k sin θ)/(Fr2 cos2 θ)
1/(Fr2 cos2 θ)−K + 2iε̃/(Fr cos θ)

eiK(X cos θ+Y sin θ)dkdθ. (2.65)

Let f(K) = KP̂0e
iK(X cos θ+Y sin θ)/(Fr2 cos2 θ), ε′ = 2ε̃/(Fr cos θ) and K0 = 1/(Fr2 cos2 θ). Then,

Equation 2.65 becomes

ζ(X,Y ) =

∫ π/2

−π/2

lim
ε′→0

∫ ∞

−∞

f(K)

K −K0 − iε′
dKdθ. (2.66)

In this form, the Sokhotski-Plemelj formula can be applied. This gives

ζ(X,Y ) =

∫ π/2

−π/2

iπf(K0) + p.v.

∫ ∞

−∞

f(K)

K −K0
dKdθ, (2.67)

= iπ

∫ π/2

−π/2

f(K0)dθ +
∫ π/2

−π/2

p.v.

∫ ∞

−∞

f(K)

K −K0
dKdθ. (2.68)
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It turns out that the second term is rapidly decreasing with distance from the pressure source. To see
this, let

I(X,Y ) =

∫ π/2

−π/2

p.v.

∫ ∞

−∞

f(K)

K −K0
dKdθ (2.69)

By transforming back from polar to Cartesian coordinates, the integral becomes

I(X,Y ) =

∫ ∞

−∞
p.v.

∫ ∞

−∞

K0P̂0(K)

K −K0
exp(i(KxX +KyY ))dKxdKy. (2.70)

Here, note that I(X,Y ) is the inverse Fourier Transform of K0P̂0(K)
K−K0

. If the external pressure distribu-
tion P̂0(K) is chosen to be a rapidly decreasing function in K, K0P̂0(K)

K−K0
is also rapidly decreasing in K.

The Schwartz space of rapidly decreasing functions is closed under Fourier transformation. Therefore,
I(X,Y ) is also rapidly decreasing inX and Y . Thus, at a distance sufficiently far from the pressure dis-
tribution, I(X,Y ) may be neglected. Then, the surface elevation due to a moving pressure distribution
can finally be approximated by

ζ(X,Y ) ≈ iπ

∫ π/2

−π/2

f(K0)dθ, (2.71)

where

f(K0) = K2
0 P̂0(K0, θ) exp (iK0 (X cos θ + Y sin θ)) , (2.72)

K0 = 1/(Fr2 cos2 θ). (2.73)

2.3.1. Numerical evaluation
In this section, Equation 2.71 is evaluated numerically for different values of the hull Froude number.
The Froude number was defined as Fr = V /

√
gL, where L is a characteristic length scale. Let the ship

speed V be constant. Then, only L can be changed to vary the Froude number. This aims to capture
the effect of different hull geometries on the produced surface elevation pattern.

In order to evaluate Equation 2.71, an initial pressure distribution needs to be chosen. A simple
choice is a two-dimensional isotropic Gaussian function, i.e.,

p0(x, y) = exp
(
−1

2

(
x2 + y2

σ2

))
, (2.74)

where σ needs to be chosen to represent an appropriate length scale. To that end, it will be related to
the length scale defining the Froude number. In many marine applications, the length scale is taken as
the length of the ship at the waterline. Therefore, L can be interpreted as such. Then, L needs to be
related to σ from the Gaussian distribution. Here, L is chosen such that it equates the width of 95% of
probability density of the Gaussian. This yields that σ = L/4. Hence, the initial pressure distribution
becomes

p0(x, y) = exp
(
−8

(
x2 + y2

L2

))
. (2.75)

Up to a constant, the Fourier transform of the above function is given by

p̂0(kx, ky) ∝ exp
(
−L2

32

(
k2x + k2y

))
. (2.76)

Substitution of K = kL yields the nondimensionalized Fourier transform of the pressure distribution:

P̂0(K) ∝ exp
(
−K2

32

)
. (2.77)

To compare the resulting surface elevation fields for different Froude numbers, it should be noted that
the wavelengths in the field scale with the Froude number squared. To produce the same number of
wavelengths for different Froude numbers, the coordinates X and Y are scaled by the Froude number
according to

X̃ =
X

Λ
Ỹ =

Y

Λ
, (2.78)
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where Λ = 2πFr2.
Subsequently, Equation 2.71 is approximated using the trapezoidal rule over a uniform grid over θ
consisting of 500 cells. The spatial coordinates X̃, Ỹ are discretized on a uniform rectangular grid of
600× 600 cells.
In Figure 2.3 the resulting surface elevations are shown for Froude numbers of 0.4, 0.7 and 1 respec-
tively. In the top three panels, the corresponding generating pressure distributions are given. Note
that the pressure distributions are given on a different spatial scale compared to the surface elevation
plots. Lastly, in the final row, the discrete Fourier transforms of the surface elevation fields are given.
In these spectra, the red lines show one side of the curves predicted by Equation 2.32.

Clearly, the surface elevation patterns resemble Kelvin wakes. At a Froude number of 0.4, the
transverse waves dominate the pattern. The transverse waves are those waves which travel more or
less parallel to the sailing line. At increasing Froude number, the divergent waves are also introduced.
These are the waves moving at an angle away from the sailing line. Consequently, a larger variety in
wave direction is found at larger Froude number.

In the wavenumber spectra, the energy is clearly distributed over the shape of the forward model
derived in Section 2.2. Moreover, at increasing Froude number, the energy is more spread out over
the curves produced by the forward model. This represents the increased variety in wave direction
at increased Froude numbers. A practical consequence of this is that ships sailing at higher Froude
number generate a Kelvin wake with a more defined spectral signal. This might make the signal more
distinguishable from the noise in spectra derived from real imagery. Therefore, it is expected that a
more robust fit of the forward Kelvin wake model is possible at higher Froude number.



2.3. Derivation spatial model Kelvin wake 16

Figure 2.3: First row: assumed pressure distributions given by Equation 2.75. Second row: simulated surface elevation
patterns for three different Froude numbers, produced by numerical approximation of Equation 2.71. Third row: Discrete

Fourier Transforms of the surface elevation plots. The red lines visualize the forward model from Equation 2.32.

Evidently, the shape of a ship is not well approximated by an isotropic Gaussian as in Figure 2.3.
A first step towards a more realistic pressure distribution can be achieved by choosing an anisotropic
Gaussian. An uncorrelated bivariate Gaussian is given by

p0(x, y) = exp
(
−1

2

(
x2

σ2
x

+
y2

σ2
y

))
, (2.79)

where σx and σy control the width of the Gaussian in x and y-direction respectively. The corresponding
Fourier transform is given by

p̂0(kx, ky) ∝ exp
(
−1

2

(
σ2
xk

2
x + σ2

yk
2
y

))
. (2.80)

Suppose the width of a ship is a quarter of its length. Then, σy = σx/4. Let σx = L/4 as before. After
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non-dimensionalization, the Fourier transform of the pressure distribution becomes

P̂0(K, θ) ∝ exp

(
−

(
K2 cos2(θ)

32
+

K2 sin2(θ)
512

))
. (2.81)

Now, numerical evaluation of Equation 2.71 yields the results in Figure 2.4. As can be seen, the
pressure distributions already become more reminiscent of the shape of a ship. It can be seen that the
divergent waves now start to become important at a lower Froude number than before. This can also
be seen in the wavenumber spectra, where the spectrum for a Froude number of 0.4 resembles the
spectrum for a Froude number of 0.7 from the previous simulations.

In practice, the hull shape of a ship will not be known from satellite imagery. However, here it is
shown that for different pressure distributions, the energy in the spectrum is still contained along the
curve given by Equation 2.32. Hence, although the hull geometry influences the distribution of energy
over the curves, it does not influence the location of the curves in the spectrum. This indicates that the
current retrieval algorithm should not be sensitive to the ship hull geometry.

Although a much more accurate pressure distribution could be constructed, the simulated surface
elevation patterns are realistic enough for their use in this thesis. In Chapter 6, the spatial Kelvin wake
model is used with a reflectance model to study the influence of the viewing geometry on the visibility
of a Kelvin wake on satellite imagery.
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Figure 2.4: First row: assumed pressure distributions given by Equation 2.79 with σx = L/4 and σy = L/16. Second row:
simulated surface elevation patterns for three different Froude numbers, produced by numerical approximation of

Equation 2.71. Third row: Discrete Fourier Transforms of the surface elevation plots. The red lines visualize the forward model
from Equation 2.32.



3
Model fitting

This chapter will show how a ship’s Speed Through Water (STW) and Course Through Water (CTW)
can be retrieved from an image of its Kelvin wake. First, Section 3.1 will outline how the spectral
signal corresponding to the Kelvin wake is extracted from a satellite image. Thereafter, in Section 3.2
an algorithm is presented to fit the forward model derived in Section 2.2 to an observed Kelvin wake
signal. A correction to the estimated CTW due to a conversion between map projections is given in
Section 3.3. Finally, Section 3.4 covers some examples.

3.1. From spatial to spectral domain
In Section 2.2 a model for the spectral signature of a Kelvin wake was derived. Satellite imagery
naturally shows Kelvin wakes in the spatial domain. Thus, to compare the data with the model, a
satellite image needs to be mapped from the spatial to the spectral domain. To that end, the Discrete
Fourier Transform (DFT) is used. In 2 dimensions, the DFT of a digital image is given by [14]

S[k, l] =
1

MN

M−1∑
m=0

N−1∑
n=0

x[m,n]e−2πi(mk
M +nl

N ) k = 0, . . . ,M − 1; l = 0, . . . , N − 1, (3.1)

where

• M is the number of rows in the image,
• N is the number of columns in the image,
• x[m,n] is the value of the image at the mth row and nth column,
• S[k, l] is the complex Fourier coefficient.

An example of applying the DFT to a satellite image of a Kelvin wake is given in Figure 3.1. The
shape of the forward model (Figure 2.1b) can already be recognized. However, the spectrum still
contains much energy at frequencies that do not correspond to the Kelvin wake signal. A part of
this energy comes from the ship having a much larger intensity than the water. This introduces large
intensity gradients in the optical image, which require many different frequencies to represent in the
spectral domain. Another part of the undesired energy in the spectrum comes from spectral leakage.
Spectral leakage is the phenomenon that energy at a frequency that is not exactly one of the DFT
analysis frequencies will spread out over all other frequency bins.
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Figure 3.1: a) Example of a Sentinel-2 image of a Kelvin wake. b) Discrete Fourier transform of a).

To mitigate these problems, the optical image is multiplied with a window function before Fourier
transformation. A window function is typically a bell-shaped function which smooths the underlying
data. Generally, this reduces the amount of spectral leakage at frequencies far away from the true
frequency. The disadvantage of a window function is that it reduces spectral resolution. Spectral
resolution is important for this application as the location of the Kelvin wake signal in the spectrum
determines the ship speed through water. Thus, for an accurate retrieval, good spectral resolution is
desired. Therefore, the choice of a window function is a trade-off between reducing spectral leakage
and not decreasing spectral resolution too much. The Hann-window function was found to provide a
good balance between these issues. In Figure 3.2a, the Hann-windowed satellite image is shown. In
Figure 3.2b the resulting Fourier transform is shown. Clearly, undesirable energy has been suppressed
while the Kelvin wake signal remains well defined.

Figure 3.2: a) Same Sentinel-2 image as in Figure 3.1a, however now multiplied by a Hann window. b) Discrete Fourier
transform of a).

Next, two more steps are taken to further isolate the Kelvin wake signal from the spectrum. In the
spectrum, there is more energy at the low frequencies (near the origin) than at the high frequencies
(near the corners). Thus, there exists a radial trend in the spectrum. Therefore, the following equation
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is fitted to the spectrum using least squares:

S(kx, ky) = a
√
k2x + k2y + b, (3.2)

where a and b are constants to be fitted. In Figure 3.3a the fitted trend corresponding to Figure 3.2b is
given. After subtracting this radial trend from the spectrum, all pixels with a value below 0 are removed.
The remaining spectrum is shown in Figure 3.3b. In this form, the spectrum is ready to be fit to the
model.

Figure 3.3: a) Least squares fit of a radial trend to Figure 3.2b. b) Remaining signal after subtracting radial trend and rejecting
pixels with a value below 0.
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3.2. From spectral to parameter domain
The previous section showed how the spectral Kelvin wake signal is extracted from a satellite image.
In Section 2.2, a forward model for this signal was derived. Therefore, an algorithm that fits the for-
ward model to the observed spectrum is needed. This inverse problem can be interpreted as a curve-
detection problem, i.e., finding where a curve is located within the spectrum. It will here be solved using
a modification of the Generalized Radon Transform (GRT).

The GRT of a spectrum S with coordinates k = (kx, ky) is given by [32]

R{S}(p) =
∫
Cp

S(k)dk, (3.3)

where Cp denotes the curve corresponding to the forward model with parameters p = (VSTW, θCTW).
The goal of the GRT is to find the set of parameters p such that the curve Cp aligns with the Kelvin

wake signal present in S. To that end, initial guesses of p are first defined. Subsequently, for each
candidate set p, a line integral along Cp over S(k) is computed. In Figure 3.4a, the curves Cp for three
inaccurate guesses of p are shown. As can be seen, the curves do not align with the Kelvin wake signal.
Therefore, the value of the line integral will be small. On the other hand, Figure 3.4b shows a curve Cp

for an accurate guess of p. Now, the model overlaps with the Kelvin wake signal. Therefore, the value
of the line integral is large. The GRT computes the line integral over all prescribed initial guesses for p.
Finally, the best fit is given by the set of parameters that maximizes the line integral.

Figure 3.4: a) Examples of inaccurate guesses of the parameter set p that yield a model curve Cp that does not align with the
Kelvin wake signal. b) Example of accurate guess of the parameter set p yielding a model curve that lines up with the observed

curve.

In practice, there are only a finite number of pixels in an image. Hence, the line integral in Equa-
tion 3.3 is discretized which gives

R{S}(p) =
N−1∑
i=0

S(ki), (3.4)

where ki for i ∈ {0, N − 1} represent the image coordinates of the pixels located along curve Cp. How-
ever, in this application, the curves produced by the forward model have different lengths for different
combinations of parameters. Hence, a bias towards longer curves may be introduced. Therefore, the
GRT is modified to take the average along a curve instead of only summing the relevant pixels. This
gives

R{S}(p) = 1

N

N−1∑
i=0

S(ki). (3.5)

The GRT defines a mapping from the spectral domain to a parameter domain. The parameter domain,
also called the Radon domain, is spanned by VSTW and θCTW. Hence, the result of the GRT can also be
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shown as a 2D image. An example of this is shown in Figure 3.5. Every point in this parameter domain
corresponds to a combination of VSTW and θCTW. The intensity at this point is equal to the average
power in the spectrum over the curve produced by this combination of parameters. Hence, a large
intensity means that the model curve is overlapping with a signal in the spectral domain. Therefore,
the location of the maximum in the parameter domain gives the fitted parameters, i.e.,

p̂ = (V̂STW, θ̂CTW) = argmax
p

R{S}(p). (3.6)

Figure 3.5: a) Filtered Fourier spectrum of windowed Sentinel-2 Kelvin wake image. b) Generalized Radon Transform of a).

3.3. Convergence angle correction
The algorithm presented in the previous section yields an estimate for the ship Course Through Water
(θCTW). However, this angle is measured in the coordinate system corresponding to the Kelvin wake
image. For example, Sentinel-2 imagery is given in a local Universal Transverse Mercator (UTM) pro-
jection. The importance of this is that a measured direction in the local projection is generally not equal
to the direction in a global projection. Since the Course Over Ground (θCOG) reported by the AIS is
given with respect to the WGS84 ellipsoidal coordinate reference system, it is necessary to transform
the estimated θCTW from the local to a global projection.

A line of constant x in a local projection points to the grid north. Similarly, a line of equal longitude,
i.e., a meridian, points to the true north. Along the central meridian in a UTM projection, grid north and
true north coincide. The difference between the grid north and true north increases as the distance
from a point to the central meridian increases. The angle between the true north and the grid north is
called the grid convergence [35]. For the spherical transverse Mercator projection, the convergence
angle is given by [35]

γ(λ, ϕ) = tan−1(tan(λ− λ0) sinϕ), (3.7)

where λ and ϕ denote longitude and latitude respectively. The longitude of the central meridian in the
local projection is represented by λ0. For example, Sentinel-2 imagery over the Strait of Gibraltar is
given in UTM zone 30N. This zone has the central meridian at−3◦, hence λ0 = −3◦. By substituting the
ship’s location into Equation 3.7, the relevant convergence angle is found. Subsequently, the Course
Through Water can be corrected following

θCTW,global = θCTW,local − γ(λ, ϕ). (3.8)

For all data points considered in this thesis, the magnitudes of the convergence angles ranged between
1.25◦ and 2.42◦. Note that the formula for the convergence angle given above holds for a spherical
transverse Mercator projection, not an ellipsoidal transverse Mercator projection. Since UTM zones
are based on an ellipsoidal transverse Mercator projection, a small error is introduced. However, im-
plementation of the formulae for the ellipsoidal grid convergence up to 7th order given in [35] has shown
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that the convergence angles between the two projections differed by approximately 10−5◦. Such an
error has no effect on the estimated surface currents. Since the expression for the ellipsoidal case is
much more tedious, the spherical formulae were used.

3.4. Examples
3.4.1. Fast ships
Ships that sail faster generate longer waves. Longer wavelengths correspond to smaller wavenumbers.
Therefore, the spectral Kelvin wake signal corresponding to a fast-moving ship will be closer to the origin
than for a slow-moving ship. This effect is clearly visible in the spectral domain of Figure 3.6. The radial
location of the Kelvin wake signal is much closer to the origin than in Figure 3.5a.

A consequence of this high ship speed can be seen in Figure 3.7c. The signal in the parameter
domain is more stretched out compared to Figure 3.5b. This is explained by the relationship between
wavenumber and ship speed. Reordering Equation 2.34 gives

k =
g

V 2
STW

. (3.9)

In the spectral domain, each pixel is separated by a constant amount of wavenumber. However, since
the equation above is non-linear, a constant spacing in wavenumber does not yield a constant spacing
in ship speed.

To illustrate the effect of this, suppose that the spectral signal in Figure 3.7 would be displaced
by one pixel towards the origin. The vessel speed of 14.8ms−1 corresponds to a wavenumber of
about 0.045 radm−1. Suppose that the wavenumber resolution of the spectrum is 0.001 radm−1. If the
signal would be moved by one pixel towards the origin, the corresponding wavenumber would become
0.044 radm−1. This wavenumbers belongs to a ship speed of 14.97ms−1. Hence, a displacement of
one pixel in the spectrum caused a change in ship speed of 0.17ms−1.

The above calculations can be repeated for a ship that is sailing much slower, say at a speed of
7ms−1. Then, a shift of one pixel would only lead to a change in ship speed of 0.02ms−1. Hence, at
higher ship speeds, the fitted ship speed is more sensitive to a small displacement of the Kelvin wake
signal in the spectrum. This can be interpreted by noting that near the origin, one pixel in the spectrum
corresponds to a larger range of ship speeds than a pixel near the corners. Therefore, a wider range
of candidate ship speeds provide a good fit, which explains the more diffuse shape of the parameter
domain in Figure 3.7c compared to Figure 3.5b. As a consequence, the resulting fitted parameters
at higher ship speeds might be less reliable than those fitted at lower ship speeds. The uncertainty
introduced by this effect is taken into account in Section 5.2.2.
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Figure 3.6: a) Sentinel-2 image of a Kelvin wake of a fast-sailing ship. b) Filtered Fourier Transform of a). c) Generalized
Radon Transform of b). d) Fitted spectral Kelvin wake model.
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3.4.2. Asymmetrical visibility
In some cases, the Kelvin wake is only visible on one side of the ship. In Figure 3.7d, the Kelvin waves
are only visible behind the right-side of the ship. In the spectral domains, only half of the curve of the
forward model can be recognized. In the parameter domain, this is characterized by a single diagonal
line as opposed to two intersecting diagonal lines. The algorithm is still able to detect the signals,
though the fitted parameters might be less robust compared to cases where the entire Kelvin wake is
visible.

Figure 3.7: a) Sentinel-2 image where the Kelvin wake is only visible behind the right-side of the ship. b) Filtered Fourier
Transform of a). c) Generalized Radon Transform of b). d) Fitted spectral Kelvin wake model.
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3.4.3. Multiple Kelvin wakes in one image
In Figure 3.8a an image that contains two intersecting Kelvin wakes is given. The Kelvin wake from
north to south is most clear. It is generated by a ship that is headed south, just outside of the image
frame. Moreover, upon close inspection, it becomes clear that also the bottom ship that is travelling
eastwards is leaving a partially visible Kelvin wake. The top eastwards-sailing ship is not generating
a visible Kelvin wake. Moreover, its ship speed is too low to correspond to the observed west-to-east
spectral signal. In Figure 3.8b the filtered spectral domain is given. There, signals corresponding to both
Kelvin wakes can indeed be distinguished. The spectral signal corresponding to the eastwards-sailing
ship is smeared out in the radial direction. Although this could generally be indicative of variations in
ship speed, this was not observed in this case. Therefore, it is not clear what has caused this radial
smearing.

The model fit shown in Figure 3.8c is found for the bottom ship travelling eastwards. Similarly, the
fit in Figure 3.8d is found for the ship travelling southwards. Both fits yield an estimate for the surface
current. By reprojecting the estimated along- and across-ship currents to east and north components,
the two estimated vectors can be more easily compared. The first fit yields east and north currents of
1.62ms−1 and 0.29ms−1 respectively. The second fit yields east and north currents of 1.91ms−1 and
0.15ms−1 respectively. Clearly, the estimates show reasonable agreement.

It should be noted that the two estimates do not correspond to the exact same location. The esti-
mated currents reflect the average conditions along the length of the respective Kelvin wake. Since the
ship paths are different, also the encountered flow conditions are different. Therefore, this may explain
part of the observed discrepancy. To conclude, this example shows that even if two Kelvin wakes are
intersecting, an accurate retrieval of surface currents from both Kelvin wakes may be possible.
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Figure 3.8: a) Sentinel-2 image where two Kelvin wakes are intersecting. b) Filtered Fourier Transform of a). c) Fitted spectral
Kelvin wake model for the Kelvin wake oriented east-west. d) Fitted spectral Kelvin wake model for the Kelvin wake oriented

north-south.
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3.4.4. Background waves
In Figure 3.9a a Sentinel-2 image is shown that contains a visible Kelvin wake along with clear back-
ground ocean waves. Interference of background waves with Kelvin waves may lead to reduced visibil-
ity of a Kelvin wake. In this case however, the Kelvin wake is still clearly visible in the spectral domain.
Furthermore, in the spectral domain the near-triangular patterns correspond to the background waves.
Here, the signals from the Kelvin wake and the background waves only show a small spectral over-
lap. Therefore, the Kelvin wake model is fitted well. However, if there would be more spectral overlap
between the two signals, the algorithm may not be able to accurately fit the spectral Kelvin wake model.

Figure 3.9: a) Sentinel-2 image where a Kelvin wake is visible along with background ocean waves. b) Filtered Fourier
Transform of a). c) Generalized Radon Transform of b). d) Fitted spectral Kelvin wake model.
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3.4.5. Unsuccessful fit
In some cases, the spectral Kelvin wake signal may be too weak compared to the noise. In Figure 3.10a
a small Kelvin wake can be seen behind the ship sailing southwards. In the spectral domain, the
corresponding signal is weakly visible. However, after applying the Generalized Radon Transform,
the model is fit to noisy pixels in the spectrum. The final model fit is visualized by the red lines in
Figure 3.10c. Clearly, the model fit does not align with the Kelvin wake signal. Hence, in this case no
surface current retrieval is possible. In total, there were about 10 cases in which the algorithm was not
able to provide a good model fit.

Figure 3.10: a) Sentinel-2 image where a Kelvin wake is partially visible behind the ship sailing south. b) Filtered Fourier
Transform of a). c) Generalized Radon Transform of b). d) Fitted spectral Kelvin wake model.



4
Validation

In this chapter, the developed algorithm for estimating surface currents from Kelvin wake imagery is
validated. In Section 4.1, the used datasets are given. Subsequently, the methodology is outlined
in Section 4.2. Section 4.3.1 and Section 4.3.2 contain the validation for the along- and across-ship
components of the surface currents respectively. In Section 4.3.3, the estimated vectors are compared
spatially with vector fields derived from validation datasets. Section 4.3.4 discusses the effect of the
convergence angle correction on the estimated surface currents.

4.1. Data
4.1.1. Sentinel-2 imagery
Sentinel-2 is a satellite mission that is part of the Copernicus program of the European Space Agency
(ESA). The mission currently consists of two nearly identical satellites, Sentinel-2A and Sentinel-2B,
flying in an almost identical polar and sun-synchronous orbit [1]. The main instrument aboard each of
the satellites is the MultiSpectral Instrument (MSI). The MSI is a passive imager, which means that it
measures sunlight reflected by the Earth and its atmosphere. It measures in 13 different wavelength
bands, with varying spatial resolutions [1]. The instrument is a pushbroom scanner with a swath width
of 290 km [1]. At the equator, the two satellites each have a revisit time of about 10 days [1]. Hence,
combined a revisit time of 5 days is reached. However, at higher latitudes, the revisit times decrease
due to the convergence of meridians.

In this thesis, only three of the bands in the visible range of the electromagnetic spectrum are used:
the red, green and blue bands. This is mainly due to the high spatial resolution of these bands at 10m
ground sampling distance, in contrast to the 20 and 60m spatial resolutions at other wavelengths [1].
The Very-Near Infrared (VNIR) band, centered around 833 nm, also has 10 meter spatial resolution.
However, the reflectance of water is small in this wavelength range (see Figure 4.1). For further analysis,
the three remaining bands are averaged by taking the arithmetic mean to produce a one-dimensional
intensity image. Level 2A imagery was downloaded from [10].

31
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Figure 4.1: Schematic reflectance spectrum of water, soil and vegetation. Image from [41].

North Sea & Kattegat
Several Sentinel-2 level 2A images covering the waters around Denmark during June 2021 were down-
loaded. A manual scan through these images returned 16 visible Kelvin wakes. Their locations are
shown in Figure 4.2. The Sentinel-2 images were manually cropped around the Kelvin wakes, so that
a dataset of 16 images of Kelvin wakes resulted.

Figure 4.2: Locations of the 16 Kelvin wakes around Denmark that were visible on Sentinel-2 imagery.

Strait of Gibraltar
All Sentinel-2 level 2A imagery covering the Strait of Gibraltar during July and August of 2021 was
downloaded. This returned a collection of 25 images. The AIS data covering the same time period
was filtered for ships sailing faster than 5.6ms−1. Subsequently, the ships were manually looked up on
the corresponding Sentinel-2 image. In 5 images, no visible Kelvin wake was found. In the remaining
20 images, 81 visible Kelvin wakes were distinguished. Their locations are shown in Figure 4.3. The
Sentinel-2 images were cropped around the Kelvin wakes for further processing.
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Figure 4.3: Locations of the 81 Kelvin wakes in the Strait of Gibraltar that were visible on Sentinel-2 imagery during July and
August 2021.

4.1.2. AIS data
Since January 2005, the International MaritimeOrganization (IMO) requiresmost ships to carry transpon-
ders that automatically communicate ship information to surrounding ships and coastal authorities [33].
The system is called the Automatic Identification System (AIS). The primary objective of AIS is to in-
crease safety in the marine environment [33]. However, some of the information broadcast by AIS may
be relevant for other scientific applications.

The variables broadcast through AIS that are used in this thesis are:

• Longitude
• Latitude
• Speed Over Ground (SOG), given in increments of 0.1 knots
• Course Over Ground (COG), given in increments of 0.1◦

The temporal resolution of the system depends on the vessel speed and whether or not the ship
is changing course [34]. Open access historical AIS data covering the waters surrounding Denmark
is provided by the Danish Maritime Authority [4]. Historical AIS data covering the Strait of Gibraltar is
provided by Made Smart Group [21]. It should be noted that in general, AIS data is not open access.
Hence, this introduces a limitation to the proposed measurement principle.

4.1.3. High-frequency radar
To validate estimated surface currents in the Strait of Gibraltar, currents derived from High-Frequency
Radar (HFR) are used. An HFR transmits electromagnetic waves towards the sea surface. Some
part of this signal will be scattered back to the radar through a mechanism called Bragg scattering
[31]. The Doppler shift in this return signal is a measure of the surface current in the radar’s line-of-
sight. By measuring line-of-sight surface currents from multiple HFRs, total surface currents may be
reconstructed. In the Strait of Gibraltar, three HFRs are operated by Puertos del Estado. Together,
they provide hourly estimates of east- and northward components of surface currents in the Strait of
Gibraltar, with a spatial resolution of approximately 1 × 1 km [31]. Data from July and August of 2021
is downloaded from [16]. In Figure 4.4 an example of the spatial coverage of the HFR data is given.
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Figure 4.4: Map of eastward currents derived from High-Frequency Radar in the Strait of Gibraltar on 19th of August 2021
10:00 AM.

4.1.4. Modelled currents
DCSM
In order to validate the estimated surface currents in the North Sea and Kattegat strait, modelled cur-
rents derived from the Dutch Continental Shelf Model (DCSM) are used. The DCSMv6 is a 2D hydrody-
namic model covering the North Sea and adjacent waters with a structured uniform grid [53]. Since the
model is 2-dimensional, it only provides depth-averaged currents. The spatial resolution in east-west
direction is 1/40◦, while it is 1/60◦ in north-south direction. For the North Sea part of the model, the
temporal resolution was 10 minutes. For the Kattegat strait, the temporal resolution was 1 hour.

CMEMS
A second source of validation data in the Strait of Gibraltar is provided by modelled currents from the
Copernicus Marine Environment Monitoring Service (CMEMS). They provide a hydrodynamic model
for the Mediterranean basin with a spatial resolution of 4 km× 4 km, temporal resolution of 15 minutes
and 141 vertical levels [7]. Data were acquired from [8].

4.2. Methods
To compute the along- and across-ship surface currents using Equations 1.1 and 1.2, four variables
need to be determined: VSOG, θCOG, VSTW and θCTW. The first two are derived from a ship’s AIS transpon-
der, while the last two are derived from an image of a ship’s Kelvin wake. First, each Kelvin wake image
was manually matched to the corresponding ship’s AIS data. Figure 4.5 shows an example of a ship
track according to its AIS transponder. The red arrow represents the ship’s location on the Sentinel-2
image. The green dots highlight the AIS data points that are spatially contained within the Kelvin wake.
The ship’s VSOG and θCOG were computed by taking their median over these green points. The reason
for this is discussed in Section 5.2.1.
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Figure 4.5: Example of a ship track derived from AIS data. Gray and green dots correspond to AIS data points, with the green
points overlapping with the Kelvin wake. The red arrow represents the ship position on the Sentinel-2 (S2) image. The black
dot denotes the middle of the Kelvin wake, which is used for spatial interpolation of validation data sets. The dashed box

represents the boundaries of the cropped S2 image.

To find the last two unknowns, VSTW and θCTW, the algorithm from Chapter 3 was run for each Kelvin
wake image. To run the algorithm, candidate parameter sets for VSTW and θCTW had to be defined. In
order to save computation time, the VSOG and θCOG derived from AIS data were used to narrow the
parameter set that had to be considered. This resulted in the following settings:

θCTW,min = θCOG − 20, VSTW,min = max(6, VSOG − 2),

θCTW,max = θCOG + 20, VSTW,max = VSOG + 2, (4.1)
∆θCTW = 0.1◦, ∆VSTW = 0.01ms−1.

The fitting algorithm presented in Chapter 3 returns estimates for VSTW and θCTW. Evaluation of Equa-
tions 1.1 and 1.2 yields estimates of the along- and across-ship components of the surface current.

Subsequently, the estimated surface currents were compared to validation data sets. These vali-
dation data sets provide east and north currents that need to be interpolated in time and space to an
appropriate location and timestamp. The black point in Figure 4.5 approximates the center of the Kelvin
wake. This point was chosen as the representative location of the estimated surface current. Hence,
this point is used for spatial interpolation of the validation data sets. Similarly, the average timestamp
between the first and last green point in Figure 4.5 was taken as the appropriate timestamp to which
validation data sets were temporally interpolated. For the data points in the North Sea and Kattegat, the
only validation data set consisted of modelled currents from the Dutch Continental Shelf Model (DCSM).
Those currents were bilinearly interpolated in space. In the Strait of Gibraltar, two validation data sets
were used: observations derived from High-Frequency Radar (HFR) and modelled currents from the
Copernicus Marine Environment Monitoring Service (CMEMS). Since the HFR dataset contains some
missing data in space, nearest-neighbour interpolation was used in space for both datasets to avoid
exceptions that would be introduced in more accurate interpolation methods. In all cases, temporal
interpolation was performed linearly. Finally, the interpolated east and north currents were reprojected
into each ship’s frame of reference using

Ualong = Ueast cos(θCOG) + Unorth sin(θCOG), (4.2)
Uacross = Ueast sin(θCOG)− Unorth cos(θCOG). (4.3)
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4.3. Results
4.3.1. Along-ship component
For the datapoints in the North Sea and Kattegat strait, the computed surface currents were compared
with depth-averaged currents from the DCSM. In Figure 4.6 the resulting comparison is shown for the
along-ship component of the currents. There is excellent agreement, with 82% of variance explained
by the linear fit. Furthermore, the Root-Mean-Square-Error (RMSE) is only 0.05ms−1. This is espe-
cially remarkable considering the fact that surface currents are being correlated with depth-averaged
currents.

Figure 4.6: Correlation of estimated along-ship surface currents with depth-averaged currents from the DCSM for data points
in the North Sea and Kattegat Strait.

However, the comparison with DCSM is only a validation with respect to modelled data. It is desir-
able to validate the methodology with observations instead. In the Strait of Gibraltar, a pair of High-
Frequency Radars (HFR) provides indirect observations of surface currents. In two months of Sentinel-
2 imagery, 81 visible Kelvin wakes were found. In 4 cases, no HFR data was available on that particular
day. In another 24 cases, the ships did not spatially overlap with the HFR data (see Figure 4.4). Hence,
only 53 data points could be compared to the HFR currents. Moreover, the data points were also com-
pared with modelled surface currents from CMEMS. There was no missing CMEMS data, hence all 81
data points could be compared to the modelled currents.

In Figure 4.7 the three datasets are correlated against each other for the along-ship component
of the surface current. The red lines correspond to least-squares fits of the data points. In general,
there is good agreement between the three datasets. The correlation between the Sentinel-2+AIS
currents and HFR observations is largest, with 95% of variance explained by the least squares fit.
The fit between Sentinel-2+AIS currents and CMEMS currents explains 88% of variance while 87% of
variance is explained in the fit between CMEMS and HFR. Some of the datapoints in the top right of
Figure 4.7b do not show up in the other 2 panels. This is because of the missing HFR data.
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Figure 4.7: Correlation between three datasets of along-ship surface currents in the Strait of Gibraltar. a) Sentinel-2+AIS vs.
High-Frequency Radar (HFR). b) Sentinel-2+AIS vs. numerical model CMEMS. c) CMEMS vs. HFR.

The RMSE of the S2+AIS currents with respect to the HFR is 0.21ms−1. This is considerably larger
than for the data points in the North Sea. This may partially be explained by the fact that the ships in
the Strait of Gibraltar are undergoing more variations in speed and course than the ships in the North
Sea and Kattegat. This effect is analyzed in Section 5.2.1. Figure 5.5 shows boxplots of standard
deviations in VSOG and θCOG. The median standard deviation in VSOG increases from 0.05ms−1 in the
North Sea/Kattegat to 0.13ms−1 in the Strait of Gibraltar. Since the along-ship currents depend linearly
on VSOG, the same magnitude of uncertainty is introduced into the surface current. Another factor that
may explain the difference in accuracy between the study areas is the difference in accuracy between
DCSM and HFR-derived currents. In Table 4.1 some statistics on the errors of the Sentinel-2+AIS
dataset with respect to the validation datasets are summarized.

Table 4.1: Error statistics of the estimated along-ship surface currents with respect to validation datasets.

Study area Validation dataset N Bias [m s−1] SD [ms−1] RMSE [ms−1] max [ms−1]
North Sea/Kattegat DCSM 16 0 0.05 0.05 0.09
Strait of Gibraltar HFR 53 -0.11 0.18 0.21 0.38
Strait of Gibraltar CMEMS 81 -0.12 0.33 0.35 0.80
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4.3.2. Across-ship component
In Figure 4.8 the across-ship currents for data points in the North Sea/Kattegat study area are compared
with depth-averaged currents from DCSM. Although there is still some agreement, the correlation has
decreased with respect to the along-ship component of the surface current. This can be seen by the
R2 value that has decreased from 0.82 to 0.64. Furthermore, the RMSE has increased from 0.05ms−1

to 0.10ms−1.

Figure 4.8: Correlation of Sentinel-2+AIS across-ship surface currents with depth-averaged currents from the DCSM for data
points in the North Sea and Kattegat Strait.

Considering the second study area, in Figure 4.9 the three datasets are correlated against each
other for the across-ship component of the surface current. Although there is a clear correlation be-
tween all three datasets, there are large outliers and the correlation is generally worse than for the
along-ship currents. Note that the sample size is larger in Figure 4.9b, since this comparison does not
suffer from missing data in the HFR dataset.

The worse quality of the across-ship currents may be explained by the fact that their estimation is
more sensitive to the angular difference between the two ship speed vectors, i.e., θCOG−θCTW, than the
along-ship component. This can be seen mathematically by differentiating Equations 1.1 and 1.2 with
respect to the angular difference. Let γ = θCOG − θCTW. Differentiation of both equations with respect
to γ yields

∂Ualong

∂γ
= −VSOG sin(γ), (4.4)

∂Uacross

∂γ
= VSOG cos(γ). (4.5)

Since γ << 1, sin(γ) ≈ γ and cos(γ) ≈ 1− γ2

2 . Substitution of these approximations leads to

∂Ualong

∂γ
≈ −VSOGγ, (4.6)

∂Uacross

∂γ
≈ VSOG

(
1− γ2

2

)
. (4.7)

Clearly, VSOG(1 − γ2

2 ) > VSOG|γ| for small γ. Therefore, the across-ship component of the surface
current is more sensitive to the angular difference between the ship speed vectors than the along-ship
component. In Figure 5.5 it is shown that the median standard deviation in θCOG is 0.7◦ for ships in the
Strait of Gibraltar. According to Equation 4.7, at a ship speed of 10ms−1, a change of 0.7◦ in the angular
difference between the ship speed vectors already leads to a change of 0.12ms−1 in the across-ship
surface current. In Figure 4.9 the datapoints corresponding to a σθCOG of more than 2 degrees have
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been highlighted in red. In the first two figures, the red dots clearly correspond to some of the largest
outliers. In Figure 4.9c, which contains no S2+AIS currents, the red dots no longer correspond to the
largest outliers. Hence, the variability in θCOG indeed plays a role in the accuracy of the estimated
across-ship surface current.

Figure 4.9: Correlation between three datasets of across-ship surface currents in the Strait of Gibraltar. a) Sentinel-2+AIS vs.
High-Frequency Radar (HFR). b) Sentinel-2+AIS vs. numerical model CMEMS. c) CMEMS vs. HFR. In all figures, the red dots

correspond to datapoints where σθCOG > 2◦.

For quality control purposes, ships can be filtered by the standard deviation in θCOG. In Figure 4.10,
only data points where the ship’s σθCOG was less than 2◦ are included. The RMSE for the top two
panels has now lowered with respect to Figure 4.9, while it remains similar for the bottom panel. This
makes sense as the bottom panel does not contain S2+AIS data, which is the only dataset that is
sensitive to σθCOG . The RMSE of the S2+AIS across-ship currents with respect to HFR now becomes
0.24ms−1, which is only 0.03ms−1 larger than the RMSE for the along-ship surface current. However,
the disadvantage of filtering is that the sample size has decreased from 53 to 41 datapoints. In Table 4.2
some statistics on the errors of the Sentinel-2+AIS dataset with respect to the validation datasets are
summarized.



4.3. Results 40

Figure 4.10: Correlation between three datasets of across-ship surface currents in the Strait of Gibraltar after filtering for ships
with σθCOG . a) Sentinel-2+AIS vs. High-Frequency Radar (HFR). b) Sentinel-2+AIS vs. numerical model CMEMS. c) CMEMS

vs. HFR.

Table 4.2: Error statistics of the estimated across-ship surface currents with respect to validation datasets.

Study area Validation dataset Filter N Bias [m s−1] SD [ms−1] RMSE [ms−1] max [ms−1]
North Sea DCSM - 16 -0.02 0.10 0.10 0.12
Gibraltar HFR - 53 0.01 0.37 0.37 0.88
Gibraltar HFR σθCOG < 2◦ 41 0.04 0.24 0.24 0.57
Gibraltar CMEMS - 81 -0.03 0.46 0.46 1.38
Gibraltar CMEMS σθCOG < 2◦ 65 -0.02 0.38 0.38 0.79
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4.3.3. Vector representation
In this section, the estimated surface currents are compared in the spatial domain. Figure 4.11 visu-
alizes the surface currents in the Strait of Gibraltar on 4 different days. The red vectors correspond
to the Sentinel-2+AIS estimates. The black vectors denote the currents derived from High-Frequency
Radar (HFR), while the CMEMS modelled vector field is visualized by the blue vectors. In general,
the agreement between Sentinel-2+AIS and HFR is excellent in magnitude and direction. The largest
deviation is seen at the rightmost red vector in Figure 4.11d, where the direction disagrees by about
60◦. The modelled currents from CMEMS deviate substantially from the other two datasets. This is
especially clear in the eastern half of Figure 4.11d, where some blue and black vectors are orthogonal
to each other.

Figure 4.11: Surface currents in the Strait of Gibraltar. The red arrows visualize the estimated Sentinel-2+AIS surface currents,
while the black arrows represent the vector field derived from High-Frequency Radar (HFR). The modelled currents from

CMEMS are given by the blue vectors. The black crosses denote the locations of the HF radars.
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4.3.4. Convergence angle correction
In Section 3.3, a correction to θCTW was introduced to correct for the difference between grid and true
north. This correction has been applied to obtain the results from the previous sections, however the
actual effect of the correction is discussed here. According to Equation 4.6, the along-ship component
of the surface current is not sensitive to the angular difference θCOG − θCTW. Thus, a small correction
in θCTW alone should not have a large effect on this component. In Figure 4.12 it can indeed be seen
that the convergence angle correction has negligible effect on the quality of the estimated along-ship
surface currents.

Figure 4.12: a) Correlation of Sentinel-2+AIS along-ship components of surface currents with High-Frequency Radar (HFR)
observations, without correcting the estimated θCTW for the convergence angle between grid and true north. b) Same as a),

after correcting for the convergence angle.

However, since the across-component of the surface current is more sensitive to the angular dif-
ference θCOG − θCTW, the convergence angle correction becomes relevant. In Figure 4.13a, a bias of
0.27ms−1 is observed before applying the convergence angle correction. In Figure 4.13b, the bias has
reduced to 0.04ms−1. Therefore, it is indeed necessary to apply the convergence angle correction to
accurately estimate the across-ship surface currents.

Figure 4.13: a) Correlation of Sentinel-2+AIS across-ship components of surface currents with High-Frequency Radar (HFR)
observations, without correcting the estimated θCTW for the convergence angle between grid and true north. b) Same as a),

after correcting for the convergence angle.



5
Error analysis

This chapter covers the quantification of errors introduced in the surface current retrieval algorithm.
First, Section 5.1 will assess the validity of two assumptions made in the derivation of the spectral
Kelvin wake model. Thereafter, in Section 5.2 the errors in the four ship speed and direction variables
are estimated individually. Then, they are propagated into the estimated surface currents using a first-
order Taylor series expansion. Finally, an alternative method to quantify the uncertainty in the estimated
surface currents by comparing them with two independent surface current datasets is given in Section
5.3.

5.1. Model error
5.1.1. Intermediate depth
The results obtained in Chapter 4 all depend on the use of the deep water approximation to derive the
forward model for the spectral Kelvin wake signal. In this section, the applicability of this approximation
will be verified using bathymetry data. Thereafter, the Kelvin wake model will be extended to include
depth effects. It will then be assessed if application of this more general model leads to better results
for those ships where the deep water approximation was not strictly applicable.

For each Kelvin wake image in both study areas, the depth-to-wavelength ratio was computed. The
depth was computed using bilinear interpolation of the bathymetry data. The wavelength was computed
following Equation 2.34. For all datapoints in the Strait of Gibraltar, the depth-to-wavelength ratio was
larger than 0.5, justifying the use of the deep water approximation. However, for one datapoint in the
Kattegat strait, a depth-to-wavelength ratio of 0.40 was computed, hence the deep water approximation
may not be appropriate in that case.

The spectral model from Section 2.2 will now be extended to include depth effects. To find the
spectral shape, we would like to reorder Equation 2.30 to a form such that ky = f(kx;VSTW, h). However,
due to the tanh(·) term, it is not possible to derive an explicit formula for ky. Therefore, the equation will
be reordered to an implicit equation after which a solution will be estimated using an iterative approach.
An implicit reordering of Equation 2.30 is given by

ky = ±kx

√
V 4
STW

g2 tanh(kh)
k2x − 1. (5.1)

Subsequently, the solution to the above equation is approached using Algorithm 1, where the super-
script for ky denotes the iteration number.

Algorithm 1 Iterative estimation solution Equation 5.1
k0y = 0

while ||kiy − ki−1
y ||2 > 1× 10−3 do

ki+1
y = kx

(
V 4
STWk

2
x

(
g2 tanh

(√
(k2x + (kiy)

2)h
))−1

− 1

) 1
2

end while

43
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In Figure 5.1 the estimated solutions to Equation 5.1 are shown, alongside with the solutions ob-
tained after deep water approximation. In these figures, the wavelength of the Kelvin wake is fixed and
corresponds to a ship with VSTW = 9ms−1. The local water depth is varied to explore the sensitivity of
the spectral shape to the depth-to-wavelength ratio. For depth-to-wavelength ratios of 0.4 and 0.3, the
difference between the two models is small and manifests itself in waves travelling in a similar direction
as the ship. At smaller depth-to-wavelength ratios, the difference between the two models becomes
significant, indicating that incorrect usage of the deep water approximation could lead to large errors in
estimating a ship’s speed through water from its Kelvin wake spectrum.

Figure 5.1: Comparison between theoretical spectrum Kelvin wake with and without deep water approximation, for different
water depth-to-wavelength ratios (h

λ
). Solid lines correspond to the solution of Equation 2.32, while the dashed lines

correspond to an estimated solution of Equation 5.1.

For the data point with a depth-to-wavelength ratio of 0.4, the algorithm from Chapter 3 was ran
with the extended forward model using the local water depth derived from the bathymetry dataset. The
resulting fits for VSTW and θCTW did not change, which indicates that for this application, the deep water
approximation can still be used at a depth-to-wavelength ratio of 0.4. However, if the methodology is
implemented into an operational system, one should be aware of the implications of a small depth-to-
wavelength ratio.

In Figure 5.2 the implications of combinations of ship speed and water depth are visualized. The
shaded green area shows all combinations of ship speed and water depth for which surface current
retrieval is possible with Sentinel-2 imagery. The shaded yellow area shows the combinations for which
surface current retrieval may be possible if the local bathymetry is taken into account. Furthermore, if
higher resolution imagery were to be used, the dashed red line would be lowered. This would increase
the shaded green area.
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Figure 5.2: Relationship between ship speed through water (VSTW) and local water depth at two different depth-to-wavelength
ratios. The shaded green area indicates where the deep-water approximation is valid, while the local water depth needs to be
taken into account in the shaded yellow area. The dashed red line gives a lower bound for the ship speed through water due to

the spatial resolution of Sentinel-2.
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5.1.2. Stokes waves
Another assumption that was made in Section 2.2 was that linear wave theory is appropriate to describe
the propagation of Kelvin waves. Linear wave theory is applicable if the wave steepness is small, i.e., if
the ratio between the wave amplitude and wavelength is small [48]. Stokes developed an approach to
derive higher-order corrections to the linear wave theory which are useful if wave steepness increases.
At third order, the deep water dispersion relation becomes [48]

ω2 = gk(1 + k2a2), (5.2)

where a represents the wave amplitude. Compared to the linear case (Equation 2.27), the k2a2 term
is introduced. It is precisely this term that represents the steepness of a wave. For a small amplitude
long wave, this term approaches zero and the linear case is recovered. By introducing the apparent
frequency shift due to a moving frame of reference as in Section 2.2 and reordering, an explicit equation
of the form ky = f(kx, VSTW, a) can be derived. In Figure 5.3 the resulting spectral shape is compared
to the spectral shape in the deep water case. It can be seen that differences are small until wave
amplitudes exceed 0.5m.

Figure 5.3: Comparison between theoretical spectrum Kelvin wake using linear wave theory and a third order Stokes wave,
both in deep water. Solid lines correspond to the solution of Equation 2.32, while the dashed lines correspond to the solution of

Equation 5.2 with amplitudes of 0.1, 0.3, 0.5 and 1m.

The wave height of Kelvin waves depends on many factors including the vessel speed, ship ge-
ometry and local bathymetry [43]. In [2], several measurements of wave heights from Kelvin wakes
are presented. Typically, the wave heights did not exceed 0.2m. However, these measurements were
performed about 200m perpendicular to the sailing line. Although wave heights will be larger near the
ship, the length of the Kelvin wake is typically in the order of several kilometers. It is therefore expected
that in most cases, the average wave height in the Kelvin wake will be small enough such that linear
wave theory is appropriate.
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5.2. Estimation error
In this section, errors introduced during the estimation process are quantified. In Section 5.2.1 the un-
certainties in VSOG and θCOG are quantified. The errors in VSTW and θCTW are estimated in Section 5.2.2.
Subsequently, in Section 5.2.3, the individual errors are propagated into the final current estimates
using a first-order Taylor series expansion.

5.2.1. Variables derived from AIS data
In this section, the uncertainty in VSOG and θCOG is assessed. As mentioned in Section 4.2, VSOG and
θCOG are computed by taking their median values over all AIS data points spatially contained within
the Kelvin wake. The median was chosen over the mean as there were many instances where time
series of θCOG showed a constant level and a course change. As can be seen in Figure 5.4, the course
changes drag the mean away from the constant level while the median is able to extract the constant
level. The orientation of the Kelvin wake is a product of all ship courses along the length of the Kelvin
wake. The relevant ship course corresponds to the dominant orientation of the Kelvin wake, which is
the ship course at which most of the Kelvin has been generated at. Hence, this corresponds to the
constant levels shown in Figure 5.4.

Figure 5.4: Two examples of time series of θCOG. The dashed red lines indicate the mean, while the dashed black lines denote
the median level.

To compute the uncertainty in the AIS variables, the standard deviation over all data points could be
taken. However, this suffers from the same problem as the mean, since outliers can greatly increase
the standard deviation. Therefore, an alternative is to take the Median Absolute Deviation (MAD), which
is computed as

MAD(x) = median(|xi −median(x)|). (5.3)

In Figure 5.4, it can be seen that indeed the standard deviation is much larger than the MAD due to
the course changes. However, these standard deviations do not accurately reflect the uncertainty in
the constant level. Therefore, the MAD seems to be more appropriate. Though, to fill the covariance
matrix Σx in Equation 5.11, estimates for σ2

VSOG
and σ2

θCOG
are required. By definition, the median ± 1

MAD covers 50% of the probability density in a random variable. The mean ± 1 standard deviation
covers about 68% of probability density. Therefore, to use the MAD as an estimator for the standard
deviation, this effect has to be corrected for. To that end, it is assumed that at the constant level, VSOG
and θCOG are normally distributed random variables. Then, the MAD and standard deviation are related
following [40]

σ ≈ 1.4826 ·MAD. (5.4)

Hence, by computing the MAD in VSOG and θCOG, the related standard deviations in VSOG and θCOG can
be found. In Figure 5.5, the distributions of these standard deviation per study area are shown. It can
be seen that the uncertainty in both variables is larger in the Strait of Gibraltar than in the North Sea
study area. This indicates that ships in the Strait of Gibraltar are showing more variation in ship speed
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and ship course than ships in the North Sea study area. The median standard deviations in VSOG in the
two study areas are 0.05ms−1 and 0.13ms−1 respectively. The median standard deviations in θCOG in
the two study areas are 0.3 ° and 0.7 ° respectively.

Figure 5.5: a) Distribution of standard deviations in VSOG per study area. b) Distribution of standard deviations in θCOG per
study area.
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5.2.2. Variables derived from optical imagery
In this section, the uncertainty in VSTW and θCTW is assessed. To that end, the parameter domain
obtained after fitting the spectral Kelvin wake model will be useful (see Section 3.2). Intuitively, a well-
defined peak in the parameter domain represents a high degree of certainty that the model fit is robust.
In contrary, if the peak is more diffuse, the fitted parameters may be quite uncertain. This is illustrated
in Figure 5.6, where the figure on the left contains a narrow peak while the figure on the right contains
a broad band of parameters that provide a decent fit.

Figure 5.6: Two examples of parameter domains obtained after fitting the spectral Kelvin wake model.

To make the intuitive idea presented above more rigorous, suppose the parameter domain is rescaled
such that it represents a log-likelihood function. Assume that p̂ is a maximum-likelihood estimator for
p = (VSTW, θCTW). Then, by Theorem 5.9 in [5], under some regularity conditions, it follows that as the
sample size tends to infinity

p̂ ∼ N (p, I−1(p)), (5.5)

where I(p) is the Fisher information for p. The Fisher information can be estimated using the observed
Fisher information Î(p̂), which is the same as the negative Hessian of the log-likelihood function evalu-
ated at p̂, i.e.,

Î(p̂) = −H(p̂) = −

∂2l(p̂)
∂V 2 (p̂) ∂2l(p̂)

∂V ∂θ (p̂)

∂2l(p̂)
∂θ∂V (p̂) ∂2l(p̂)

∂θ2 (p̂)

 , (5.6)

where H(·) denotes the Hessian matrix and l(·) represents the log-likelihood function.
To estimate the Hessian, numerical differentiation of the parameter domain could be performed.

However, due to the non-smoothness of the parameter domain and the fact that numerical differenti-
ation amplifies noise, the resulting estimate for the Hessian is unreliable. Therefore, a workaround is
to first fit a curve through the parameter domain and use the analytical derivative of the fitted curve in-
stead. However, the typical cross-shaped feature found in the parameter domain does not have a trivial
analytical representation. Therefore, the parameter domain is first projected into two one-dimensional
domains, one for VSTW and one for θCTW. This is done by taking the maximum along each column
and row of the parameter domain, respectively. Subsequently, these projected versions of the param-
eter domain are rescaled such that their area is 1 to represent a likelihood function. Thereafter, the
logarithm is taken to derive the log-likelihood functions as presented in Figure 5.7.
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Figure 5.7: One-dimensional projections from the parameter domain in Figure 5.6a. The left figure is obtained by taking the
maximum of each column, while the right figure is obtained by taking the maximum of each row. Both figures are rescaled such

that they resemble a log-likelihood function. The red lines denote least squares fits of Equation 5.7 to 21 point intervals
centered on the fitted parameters V̂STW and θ̂CTW.

Subsequently, the following quadratic functions are fitted to 21 point intervals centered on the max-
imum likelihood estimates:

l(VSTW) = a · V 2
STW + b · VSTW + c,

l(θCTW) = d · θ2CTW + e · θCTW + f,
(5.7)

where a, b, c, d, e and f are constants fitted using ordinary least-squares. The second derivatives of the
above equations are given by 2a and 2d, respectively. A large absolute value of a or d indicates that
the curvature in the log-likelihood function is large. This corresponds to a well-defined peak. There-
fore, the fitted parameter should be more certain. A quantification of the uncertainty follows from one-
dimensional equivalents of Equation 5.6, i.e.,

σVSTW =

√√√√−

(
∂2l(V̂ )

∂V 2

)−1

=

√
− 1

2a
,

σθCTW =

√√√√−

(
∂2l(θ̂)

∂θ2

)−1

=

√
− 1

2d
.

(5.8)

In Figure 5.8 the distributions of estimated standard deviations per study area are shown. It can be
seen that there is one large outlier where σθCTW = 15.1◦. This corresponds to a data point where no
good parabolic fit was possible, as shown in Figure 5.8c. The median standard deviations in VSTW in
the two study areas are 0.10ms−1 and 0.15ms−1 respectively. The median standard deviations in
θCTW in the two study areas are 1.1 ° and 1.3 ° respectively.
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Figure 5.8: a) Distribution of standard deviations in VSTW per study area. b) Distribution of standard deviations in θCTW per
study area. The red triangle represents an outlier of 15.1◦. c) One-dimensional projection of parameter domain for the data

point that produced the largest σθCTW .
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5.2.3. Surface current uncertainty
In this section, the estimated standard deviations from the previous sections are propagated into the
current estimates. The equations relating the two ship speed vectors to the surface current vector
(Equations 1.1 and 1.2) are non-linear. A method to compute how the uncertainty propagates from the
ship speed vectors to the surface current vector starts by linearizing the equations using a first-order
Taylor series expansion, i.e.,

U ≈ U0 + Jx, (5.9)

where U = [Ualong, Uacross]
T , x = [VSOG, θCOG, VSTW, θCTW]

T , U0 denotes the evaluation of U at x = 0
and J represents the Jacobian matrix given by

J =

[
cos(θCTW − θCOG) VSOG sin(θCTW − θCOG) −1 −VSOG sin(θCTW − θCOG)
sin(θCTW − θCOG) −VSOG cos(θCTW − θCOG) 0 VSOG cos(θCTW − θCOG)

]
. (5.10)

The uncertainty in U can now be computed following

ΣU = JΣxJ
T , (5.11)

where ΣU and Σx denote the covariance matrices of U and x respectively. It will here be assumed
that all errors in the two ship speed vectors are independent. In that case, Σx reduces to the following
diagonal matrix:

Σx =


σ2
VSOG

0 0 0
0 σ2

θCOG
0 0

0 0 σ2
VSTW

0
0 0 0 σ2

θCTW

 . (5.12)

The estimated standard deviations from the previous sections can be used to fill the covariance matrix
Σx. Subsequently, evaluation of Equation 5.11 yields estimates for the uncertainty in the two compo-
nents of the surface current vector.

The distributions of estimated standard deviations for the surface currents per study area are given
in Figure 5.9. In general, the estimated uncertainties are larger in the Strait of Gibraltar study area. The
median standard deviations in the along-ship surface currents in the two study areas are 0.13ms−1 and
0.22ms−1 respectively. The median standard deviations in the across-ship surface currents in the two
study areas are 0.20ms−1 and 0.30ms−1 respectively.

Figure 5.9: Distribution of estimated standard deviations for each of the surface current components.

In Figure 5.10 the estimated standard deviations are compared with the observed error with respect
to the HFR dataset. If the estimated standard deviations are accurate, they should be able to predict to
some extent the observed errors. Of course, an estimated standard deviation of e.g. 0.20ms−1 does
not guarantee an error of 0.20ms−1, even if the HFR data would be perfect. However, on average,
larger uncertainties should correspond to larger observed errors.
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In Figure 5.10a, no such relationship can be found for the along-ship currents. Therefore, the
error method developed in this section is not able to accurately distinguish accurate from inaccurate
measurements. In Figure 5.10b it can be seen that for the across-ship currents, larger estimated
standard deviations indeed tend to lead to larger observed errors. The factor that the error estimation
works better for this component may be explained by the sensitivity of the across-ship currents to small
variations in ship course. These variations are quantified by σθCOG , which is taken into account in the
error estimates.

Figure 5.10: Correlations between estimated standard deviations and observed errors with respect to the HFR dataset. The
left panel corresponds to along-ship currents, while the right panel corresponds to across-ship currents.



5.3. Triple collocation 54

5.3. Triple collocation
In this section, an alternative method to the uncertainty quantification from the previous section is
presented. In the Strait of Gibraltar, there were three independent datasets representing the same
variable in space and time. For this exact situation, there exists a statistical technique to quantify
the uncertainty associated to each individual dataset: Triple Collocation [44] [55] [22]. The method
assumes that the three datasets can be represented as noisy linear transformations from the truth, i.e.,

yni = αi + βix
n + εi, (5.13)

where yni represents the nth measurement of dataset i for i ∈ {1, 2, 3}, the α’s and β’s represent
calibration coefficients, xn denotes the unknown truth and the ε’s represent additive Gaussian noise. It
can be shown that [22, Eq. 6]

σ2
ε1 = σ2

1 −
σ12σ13

σ23
= σ2

1(1−
ρ12ρ13
ρ23

), (5.14)

σ2
ε2 = σ2

2 −
σ12σ23

σ13
= σ2

2(1−
ρ12ρ23
ρ13

), (5.15)

σ2
ε3 = σ2

3 −
σ13σ23

σ12
= σ2

3(1−
ρ13ρ23
ρ12

), (5.16)

where σ2
i is the total variance in dataset i for i ∈ {1, 2, 3}, σij is the covariance and ρij is the correlation

factor between dataset i and j for i, j ∈ {1, 2, 3} and i ̸= j. By applying the above equations to the three
datasets of along-ship currents in the Strait of Gibraltar, the following standard deviations are found

σS2+AIS,along = 0.14ms−1,

σHFR,along = 0.09ms−1,

σCMEMS,along = 0.23ms−1.

(5.17)

The standard deviation for the S2+AIS dataset is smaller than themedian standard deviation of 0.22ms−1

from the error analysis in the previous section. The standard deviation of the difference between
S2+AIS and HFR is given by

σdiff,along =
√
σ2
S2+AIS,along + σ2

HFR,along (5.18)

=
√
0.142 + 0.092 (5.19)

= 0.16ms−1. (5.20)

This value is similar to the observed standard deviation between the two datasets of 0.18ms−1 as given
in Table 4.1.

For the across-ship currents, the triple collocation is performed before and after filtering for ships
with σθCOG < 2◦. Therefore, the first column below presents the resulting uncertainties when all data
points are included, while the second column shows the results after filtering.

Table 5.1: Estimated standard deviations for across-ship surface currents before and after filtering for datapoints with σθCOG
<

2◦.

Dataset Standard deviation [m s−1]
Before filtering After filtering

S2+AIS 0.30 0.16
HFR 0.16 0.16

CMEMS 0.28 0.29

The median standard deviation of 0.30ms−1 derived in the previous section also took all ships into
account. Hence, in this case, the two methods seem to agree on the magnitude of the uncertainty.
After filtering, the standard deviation is reduced to 0.16ms−1. This shows that indeed, the quality of
the across-ship surface currents is sensitive to variations in ship course. The standard deviation of the
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difference between S2+AIS and HFR is given by

σdiff,across =
√

σ2
S2+AIS,across + σ2

HFR,across (5.21)

=
√

0.162 + 0.162 (5.22)
= 0.23ms−1. (5.23)

This value is similar to the observed standard deviation between the two datasets of 0.24ms−1 as
given in Table 4.2. Therefore, the Triple Collocation seems to produce reasonable estimates for the
uncertainties. The downside of Triple Collocation is that it treats all datasets as being homoscedatic,
i.e., it assumes that all measurements within a dataset have the same variance. Therefore, it cannot
be used for quality control of individual measurements.

Also note that the sample sizes were only 53 datapoints before filtering and 41 after. In [55] it is
estimated that the relative error in the estimated standard deviations is equal to

√
5
N , withN the sample

size. For N = 53, this yields a relative error of 0.31. Therefore, the estimated standard deviations are
still quite uncertain themselves. For a relative error of less than 0.1, a sample size of 500 datapoints
would be required.



6
Reflectance model

Even in the absence of cloud cover, a ship’s Kelvin wake is not always visible on optical satellite imagery.
The visibility of the Kelvin wake will depend on many variables including ship geometry, oceanic and
atmospheric conditions, and viewing geometry. In this chapter, the influence of the viewing geometry
on the visibility of a Kelvin wake will be assessed. Section 6.1 presents a reflectance model to simulate
the expected reflectance of a Kelvin wake. This model is used to reconstruct observed Kelvin wakes
in Section 6.2. Thereafter, the reflectance model is used to attempt to predict the optimal ship direction
given a fixed viewing geometry in Section 6.3.

6.1. Reflectance model
Optical satellite imagery depends on the reflectance of solar radiation at the Earth’s surface. In this
section, a reflectance model originally presented in [28] is given. First, it is assumed that direct solar
radiation is the only light source. Hence, reflectance of ambient skylight is neglected. Furthermore, it is
assumed that the only mechanism of reflection is specular reflection on the water surface. In specular
reflection, incoming light is reflected into a single direction, as opposed to diffuse reflection. Moreover,
for specular reflection, the angle of reflection is equal to the angle of incidence.

The orientation between the light source, the target object and the imaging platform is here called
the viewing geometry. To describe the viewing geometry, four angles are introduced. The zenith angle
describes the angular distance between an object and a local vertical line. In Figure 6.1a the definition
of the source and receiver zenith angles is visualized. The azimuth angle describes the angular position
of an object in the north-south plane. Figure 6.1b visualizes the source and receiver azimuth angles.
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Figure 6.1: a) Definition of source and receiver zenith angles (θs, θr). b) Definition of source and receiver azimuth angles (ϕs,
ϕr).

In general, the solar and satellite zenith angles will not be equal. Therefore, if the sea surface would
be perfectly flat, specular reflection of sunlight would not reach the satellite. However, in reality the sea
surface is irregular and adopts a range of surface slopes. The surface slope that is required for direct
specular reflection between a source and a receiver can be computed following [52, Eqs. A7, A8]

ζx,specular = −sin(θs) cos(ϕs) + sin(θr) cos(ϕr)

cos(θs) + cos(θr)
, (6.1)

ζy,specular = −sin(θs) sin(ϕs) + sin(θr) sin(ϕr)

cos(θs) + cos(θr)
, (6.2)

where θs and ϕs represent the solar zenith and azimuth angles. The receiver zenith and azimuth angles
are denoted by θr and ϕr respectively.

The waves in the Kelvin wake also modify the sea surface slopes. The wave elevations produced in
a Kelvin wake are simulated using the spatial model derived in Section 2.3. Subsequently, the x and y
derivatives of these simulations are taken to compute the surface slopes generated in the Kelvin wake.
These surface slopes will generally not be equal to the required surface slopes for specular reflection.
The difference in surface slopesmay need to be provided by wind waves. Using superposition of waves,
the required surface slopes for the wind waves can be computed as

ζx,wind = ζx,specular − ζx,Kelvin, (6.3)
ζy,wind = ζy,specular − ζy,Kelvin. (6.4)

To estimate the probability of a given surface slope, the Cox-Munk model is used. The Cox-Munk model
defines a probability density function for the sea surface slopes at a given wind speed. The model is
derived from airborne imagery of the sea surface. It is given by [11]

p(ζx, ζy,W ) =
1

2πσuσc
exp

[
−1

2

(
ζ2x
σ2
u

+
ζ2y
σ2
c

)]
, (6.5)

σ2
u = 0.00316W, (6.6)

σ2
c = 0.00192W, (6.7)

where σ2
u and σ2

c are the variances in the surface slopes ζx, ζy respectively; andW represents the wind
speed.
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Given the probability of the required background surface slopes, the expected reflectance of the
Kelvin wake can be computed. The reflectance of the sea surface is defined as the ratio between the
outgoing and incoming radiation. It can be approximated by [11, Eq. 9]

R =
ρp(ζx,wind, ζy,wind,W ) sec4(θn)

4 cos(θr)
, (6.8)

where ρ is the Fresnel reflectivity factor at the air-sea interface, and θn is the zenith angle of the normal
to the surface at which specular reflection occurs. It can be computed using [52, Eq. A5]

tan2(θn) =
sin2(θs) + sin2(θr) + 2 sin(θs) sin(θr) cos(ϕs − ϕr)

(cos(θs) + cos(θr))2
. (6.9)

The Fresnel reflectivity factor is computed following

ρ =
1

2
(ρs + ρp) , (6.10)

ρs =

∣∣∣∣n1 cos(θi)− n2 cos(θr)
n1 cos(θi) + n2 cos(θr)

∣∣∣∣2 , (6.11)

ρp =

∣∣∣∣n1 cos(θr)− n2 cos(θi)
n1 cos(θr) + n2 cos(θi)

∣∣∣∣2 , (6.12)

where ρs and ρp denote the reflectivity factors for p and s−polarized light; n1 is the refractive index of
air and n2 is the refractive index of seawater.

Evaluation of Equation 6.8 at every point in the Kelvin wake now yields a 2-dimensional expected
reflectance pattern.
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6.2. Reconstruct observed Kelvin wakes
In this section, several observed Kelvin wakes are simulated to assess to what extent the reflectance
model can be used to explain observed Kelvin wake visibility patterns. In order to do so, three images
of Kelvin wakes were picked as they contained asymmetrical visibility features. These images were
rotated to have the ship travel from east-to-west, which matches the ship direction from the forward
model. Subsequently, the zenith and azimuth angles of the sun and satellite were extracted from the
Sentinel-2 metadata. The solar and receiver azimuth angles were corrected for the image rotation.
The wind speed was set at 8ms−1. It was observed that changing the wind speed yielded different
magnitudes for the reflectance, however, the general visibility pattern was preserved. Moreover, only
the case in which the dominant wind direction was aligned with the sailing line was considered.

In Figure 6.2 the resulting comparisons between observed and simulated Kelvin wakes are shown.
In the top two observed figures, the bottom cusp waves are brighter than the top cusp waves. This
features is also produced by the model. Similarly, in the bottom figure only the top cusp waves are
visible. Although the model does show the bottom cusp waves, they are much less bright. Therefore, it
can be concluded that the reflectance model from the previous section is indeed able to explain certain
visibility patterns of Kelvin wakes.
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Figure 6.2: Comparison between observed and simulated Kelvin wakes by taking the viewing geometry into account.
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6.3. Predict optimal ship direction
In the previous section, it was shown that the viewing geometry explains part of the visibility of a Kelvin
wake. Possibly, the ship direction relative to the viewing geometry is a factor that influences whether a
Kelvin wake is visible or not. Hence, it is interesting to assess whether an optimal ship direction for a
given viewing geometry can be found.

Suppose a viewing geometry is fixed. Then, the reflectance model can be used to compute the
average expected reflectance over the Kelvin wake. After performing this for a range of different Kelvin
wake orientations, the orientation with the largest average simulated reflectance suggests an optimal
ship direction. Subsequently, this predicted optimal ship direction can be compared to the directions of
observed Kelvin wake images to assess whether there is a correlation.

The approach above is performed for the study area in the Strait of Gibraltar. All datapoints in the
Strait of Gibraltar were located in the same Sentinel-2 tile. However, these tiles were acquired during
two different relative orbits. Between the two relative orbits, the viewing geometry is considerably
different. Therefore, two viewing geometries were fixed for each of the relative orbits. The solar zenith
and azimuth angles are reasonably constant within a tile, however they do vary with the time of the year.
Therefore, solar angles were picked to represent the average conditions for the months of July and
August over the Strait of Gibraltar. The receiver zenith and azimuth angles also show some variation
within a tile. As an approximation, the receiver angles were averaged spatially to find representative
values for each relative orbit. The final values for the viewing geometry for the two relative orbits are
summarized in Table 6.1.

Table 6.1: Approximate viewing geometry for Sentinel-2 imagery in the Strait of Gibraltar for two different relative orbits.
Definition of the four angles is given in Figure 6.1. The sample size of visible Kelvin wakes per relative orbit is given by N.

Relative orbit θs[
◦] ϕs[

◦] θr[
◦] ϕr[

◦] N
094 25 132 9 104 19
137 25 138 7 278 62

In Figure 6.3 the resulting predicted reflectances for the two viewing geometries are given. The
solid black lines represent the average reflectance over the Kelvin wake for a given ship direction. In
both cases, ships sailing northwest or southeast are predicted to be most likely to produce a visible
Kelvin wake. However, the green dots in both figures indicate the ship directions of the actual observed
Kelvin wakes. Clearly, the observed ship directions do not agree with the predicted optimal directions.
Therefore, it can be concluded that the reflectance magnitude produced by the model cannot be used
to predict visibility of a ship’s Kelvin wake.

Figure 6.3: Predicted reflectance of Kelvin wakes by ship direction. The left subfigure is computed for Sentinel-2 imagery from
relative orbit 094, while the right subfigure represents the viewing geometry from relative orbit 137. The green dots denote the
ship directions of actual observed Kelvin wakes. The sample sizes are 19 and 62 datapoints respectively. The blue and orange

dots denote the azimuth angles of the satellite and sun respectively.

In Figure 6.4 the distribution of ship courses over the Sentinel-2 tile in the Strait of Gibraltar is given.
There, it can be seen that the northwest-southeast direction does have the least amount of traffic. This
partially explains why no visible Kelvin wakes were found along that direction. However, the abundance
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of observed Kelvin wake directions that were orthogonal to the predicted optimal direction indicates that
the reflectance model is not sufficiently accurate for predicting favorable ship directions in a given area
of interest. Still, the predicted spatial pattern of the reflectance matches observed patterns as shown
in the previous section.

Figure 6.4: Ship course distribution in Strait of Gibraltar derived from AIS samples in July and August 2021.



7
Number of data points

In order to gain insight into the applicability of the estimated surface currents, it is desirable to know
how many data points could be expected per unit of time and space. To that end, this chapter presents
a rough estimate for the number of data points that could be acquired if all Sentinel-2 imagery over
European open waters would be processed. The methodology is given in Section 7.1. The resulting
estimate is presented in Section 7.2.

7.1. Methodology
The European open waters were divided into grid cells of 1 km × 1 km. Subsequently, the number of
observations was estimated using

Nobs = P1P2

∑
i,j

P3,ijρijNrevisit,ij , (7.1)

where

• P1 denotes the fraction of ships sailing with sufficient speed for them to generate Kelvin waves
with a wavelength of more than 20m,

• P2 is the probability that the Kelvin wake of a ship with sufficient speed is visible on Sentinel-2
imagery,

• P3,ij represents the probability of grid cell i, j being cloud-free,
• ρij denotes the average instantaneous number of ships in grid cell i, j,
• Nrevisit,ij is the number of Sentinel-2 images in a year covering grid cell i, j.

The following five sections cover the computational details of the five terms in the equation respectively.

7.1.1. Vessel density
The vessel density, ρij , for European waters is obtained from [17]. The dataset provides the average
number of monthly ship hours per grid cell in the year 2021, derived from AIS messages. The average
number of monthly ship hours per grid cell were converted to the average number of instantaneous
ships per grid cell by multiplying each data point with a conversion factor of 12/(365 · 24), as proposed
in [15]. The spatial resolution is 1 km × 1 km. The dataset is visualized in Figure 7.1. A summation
over all grid cells now gives an estimate for the total number of instantaneous ships in European open
waters, which yields a value of around 30 000 ships.
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Figure 7.1: Map of average vessel density in European waters in 2021. The spatial resolution is 1× 1 km.

7.1.2. Fraction of ships sailing sufficiently fast
Retrieval of a ship’s speed from imagery of its Kelvin wake requires the Kelvin waves to be sufficiently
long with respect to the spatial resolution of the image. In the case of Sentinel-2 imagery with spatial
resolution up to 10m, the Kelvin waves need to have a wavelength of at least 20 meters to satisfy the
Nyquist criterion. The ship’s speed through water is related to the the wavelengths in the Kelvin wake
following

VSTW =

√
gL

2π
. (7.2)

Plugging in a wavelength L = 20m gives a minimum ship speed through water VSTW ≈ 5.6ms−1.
The probability that a random ship transmitting AIS messages exceeds this ship speed was es-

timated by taking samples of AIS messages from the Strait of Gibraltar. Ten samples consisting of
100 000 data points each were randomly extracted from the dataset. Subsequently, for each sample
the fraction of data points having a VSOG of over 5.6ms−1 was computed. Thereafter, the average frac-
tion over the 10 samples was taken which resulted in a probability of about 30%, hence P1 = 0.3. Of
course, this value may be inaccurate outside of the Strait of Gibraltar, which would introduce an error
in the total estimate.

7.1.3. Probability of visible Kelvin wake
In the previous section, the probability that a random ship is theoretically able to generate sufficiently
long Kelvin waves was estimated. However, this does not guarantee the visibility of its Kelvin waves
on satellite imagery. This could be due to a variety of factors such as dominating background waves,
disadvantageous viewing geometry or unfavourable atmospheric conditions. To account for all these
factors, another probability was empirically estimated by looking at two months of AIS data in the Strait
of Gibraltar.

First, all ships sailing with a VSOG of over 5.6ms−1 during a Sentinel-2 overpass were counted. Then,
the resulting 405 ships were manually checked on the corresponding imagery to assess the visibility
of their Kelvin wakes in the spatial domain. Cloud cover prevented the visibility of 87 of these ships.
Out of the remaining 318 ships, 81 had a Kelvin wake that was sufficiently visible for the algorithm
to compute a surface current. Hence, the probability of a visible Kelvin wake was 81

318 ≈ 0.25, hence
P2 = 0.25. This value is in agreement with figures between 19 and 27% reported by [27]. A flow chart
summarizing the counting procedure described above is given in Figure 7.2.
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405 ships with
sufficient speed

318 cloud-free 87 covered by clouds

81 visible Kelvin
wakes

237 invisible Kelvin
wakes

Figure 7.2: Flowchart describing the probability of a visible Kelvin wake for 405 candidate ships corresponding to two months
of AIS data in the Strait of Gibraltar.

7.1.4. Cloud cover
Subsequently, the effect of cloud cover was incorporated using data from [49]. The dataset provides
an annual mean cloud cover percentage on a near-global grid of 1 × 1 km, derived from 15 years of
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The cloud cover dataset
was linearly interpolated to the grid of the vessel density dataset. Figure 7.3 shows the interpolated
dataset. The white indent over the Atlantic Ocean is due to missing data.

Figure 7.3: Map of yearly average cloud free fraction over Europe. The spatial resolution is 1× 1 km.



7.2. Results 66

7.1.5. Revisit times
Finally, the number of images in a year is required. However, Sentinel-2 revisit times differ with geo-
graphical location. The vessel density dataset consisted of about 50 million grid cells. It was computa-
tionally too expensive to check the number of yearly Sentinel-2 images at each grid point individually.
Hence, the vessel density bounding box was divided into 10 000 grid cells with equal spacing in longitude
and latitude. For each of these grid cells, the number of Sentinel-2 images covering its center point
in 2021 was determined by computing the size of the corresponding image collection in the Google
Earth Engine. However, as Sentinel-2 tiles may slightly overlap, the center point could be contained in
multiple images on the same date. Hence, in order not to overestimate the number of revisit times, the
number of unique days in 2021 with a Sentinel-2 image covering the center point was counted instead.
Finally, each vessel density grid point was assigned to the revisit time grid cell in which it is contained.
The resulting map of Sentinel-2 revisit times in 2021 is shown in Figure 7.4.

Figure 7.4: Map of Sentinel-2 revisit times over European opean waters in 2021.

7.2. Results
By multiplying each of the factors from the previous sections, an estimate for the number of yearly
potential measurements in a grid cell was produced. In Figure 7.5 the spatial distribution of these
estimates is shown. A summation over all grid cells yields an estimated 120 000 potential measurements
in European open water per year.
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Figure 7.5: Map of estimated number of potential measurements per year over European waters. The total summation yields
an estimate of 120 000 data points per year.

In order to provide a sanity check of the estimated magnitude, the number of data points extracted
from 2 months of AIS data in the Strait of Gibraltar (Figure 7.2) was compared with the predicted figure.
In Figure 7.6 the estimated yearly potential number of measurements is shown for the Strait of Gibraltar,
with the bounding box roughly corresponding to the Sentinel-2 tile limits. A summation over all grid
cells yields an expected 680 data points per year in the Strait of Gibraltar. In the Strait of Gibraltar case
study, 81 data points were found for two months of AIS data. Extrapolating this figure to an entire year,
a value of 486 measurements per year in the Strait of Gibraltar is found. Hence, the actual number
of measurements is smaller than the predicted number of measurements, but both values are in the
same order of magnitude. This gives some credibility to the total estimate of 120 000 data points over
all European waters in a given year. It should be noted that the factors P1 and P2 were estimated using
AIS data from the Strait of Gibraltar. The estimated values need not be representative for all European
open waters.

As a comparison, the Argo float network has accumulated about 2 million velocity measurements
at a depth of 1 km over the past twenty years [50]. Hence, the network produces about 100 000 velocity
measurements per year. Thus, the expected number of observations for Sentinel-2+AIS is on the same
order of magnitude. It should be noted that the Argo floats are distributedmore homogeneously over the
oceans, while the Sentinel-2+AIS measurements are mostly contained in coastal regions. Moreover,
Argo floats also provide measurements of other variables such as salinity and temperature. Another
comparison for the order of magnitude can be made with the HFRs in the Strait of Gibraltar. During the
two months of the case study performed in this thesis, the radars produced about 700 000 current mea-
surements. This would amount to roughly 8 million measurements per year, which is considerably more
than the Sentinel-2+AIS currents. Still, the number of measurements may be increased significantly if
imagery from other satellites, such as SPOT-6/7, WorldView-3/4 or Landsat-8/9 is also used.
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Figure 7.6: Expected number of observations per year for the Strait of Gibraltar. Black dots represent the locations of
observed Kelvin wakes acquired in a case study covering two months of Sentinel-2 imagery in this area.



8
Conclusion

This thesis aimed to examine the feasibility of a novel measurement principle to estimate sea surface
currents using optical satellite imagery of Kelvin wakes and AIS data. It has been shown that the
proposed methodology is successful at estimating surface currents with uncertainties between 0.14and
0.3ms−1. The across-ship component of the currents was generally less accurate than the along-ship
component due to its increased sensitivity to variations in ship course.

The success of the methodology is a consequence of the sharp Kelvin wake signal in the spectral
domain, whose shape and location were shown to be insensitive to variations in ship hull geometry.
Moreover, it was shown that in many cases, even a partially visible Kelvin wake provided sufficient
spectral signal to estimate surface currents. Therefore, provided that a Kelvin wake is visible on im-
agery, the retrieval algorithm is robust.

In this thesis, only Sentinel-2 imagery was considered. The spatial resolution of Sentinel-2 sets a
lower bound on the ship speed through water of approximately 6ms−1. In the Strait of Gibraltar, about
30% of AIS data points exceeded this ship speed. By using higher resolution optical satellite imagery,
such as imagery acquired by SPOT-6/7 or WorldView-3/4, the lower bound on the ship speed will be
reduced. This may increase the number of Kelvin wakes visible on imagery, although slower-sailing
ships generate smaller waves which can in turn reduce the likelihood of Kelvin wake visibility. Moreover,
ships in inland waterways also sail at a lower speed. Therefore, higher-resolution imagery may enable
the application of the retrieval algorithm to Kelvin wakes in inland waterways. In such shallower waters,
it should be noted that the local water depth needs to be taken into account if the depth-to-wavelength
ratio decreases below 0.4. This requires an additional data source which may increase uncertainty.

A disadvantage of using optical satellite imagery is that it is hindered by cloud cover. Therefore,
the applicability of the developed algorithm also depends on the geographical location of interest. It is
potentially interesting to study whether the algorithm can also be successfully applied to Synthetic Aper-
ture Radar (SAR) imagery, since radar waves penetrate clouds. However, this may prove challenging
as the speckle noise in SAR imagery hinders the detection of waves on the sea surface. Therefore, the
signal-to-noise ratio of the Kelvin wake signal on spectra derived from SAR imagery is likely reduced.
Another limitation of the developed methodology is that it depends on AIS data. In general, AIS data
is not open access. Therefore, it would have to be acquired from commercial providers which reduces
accessibility and potentially increases expenses.

Specular reflection was shown to explain the reflectance pattern of observed Kelvin wakes. How-
ever, it was not sufficient to explain whether a Kelvin wake would be visible on satellite imagery. There-
fore, a better understanding of the influence of ship geometry, oceanic and atmospheric conditions to
Kelvin wake visibility is desired.

Finally, using vessel density and cloud cover data, it was estimated that by applying the algorithm
to all Sentinel-2 imagery over European open waters, approximately 120 000measurements could be
acquired yearly. This number could be increased by using imagery from multiple satellite missions.
Further research is needed to study the spatiotemporal distribution of measurements, which dictates
the potential areas of application.
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A
Derivation frequency shift moving

observer

Consider a one-dimensional setting in which two frames of reference are distinguished. First, one with
a fixed origin with coordinate x. Second, a frame of reference moving with constant speed V and
coordinate x′ = x+ V t. Let h(x, t) denote the wave height of an arbitrary sinusoid with wavenumber k
and angular frequency ω, i.e.,

h(x, t) = sin(kx− ωt) (A.1)

In the second frame of reference, this gives

h(x′, t) = sin(kx′ − ωt) (A.2)
= sin(k(x+ V t)− ωt) (A.3)
= sin(kx− (ω − V k)t) (A.4)
= sin(kx− ω′t). (A.5)

Hence, the apparent angular frequency in a frame of reference moving with speed V is given by

ω′ = ω − V k. (A.6)
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