

Delft University of Technology

SparkGA
A Spark Framework for Cost Effective, Fast and Accurate DNA Analysis at Scale
Mushtaq, Hamid; Liu, Frank; Costa, Carlos; Liu, Gang; Hofstee, Peter; Al-Ars, Zaid

DOI
10.1145/3107411.3107438
Publication date
2017
Document Version
Final published version
Published in
ACM-BCB '17 Proceedings of the 8th ACM International Conference on Bioinformatics, Computational
Biology,and Health Informatics

Citation (APA)
Mushtaq, H., Liu, F., Costa, C., Liu, G., Hofstee, P., & Al-Ars, Z. (2017). SparkGA: A Spark Framework for
Cost Effective, Fast and Accurate DNA Analysis at Scale. In ACM-BCB '17 Proceedings of the 8th ACM
International Conference on Bioinformatics, Computational Biology,and Health Informatics (pp. 148-157).
Association for Computing Machinery (ACM). https://doi.org/10.1145/3107411.3107438
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3107411.3107438
https://doi.org/10.1145/3107411.3107438

SparkGA: A Spark Framework for Cost Effective, Fast and
Accurate DNA Analysis at Scale

Hamid Mushtaq

TU Delft

h.mushtaq@tudelft.nl

Frank Liu

IBM

frankliu@us.ibm.com

Carlos Costa

IBM

chcost@us.ibm.com

Gang Liu

IBM

gliu@us.ibm.com

Peter Hofstee

IBM

hofstee@us.ibm.com

Zaid Al-Ars

TU Delft

z.al-ars@tudelft.nl

ABSTRACT
In recent years, the cost of NGS (Next Generation Sequencing)

technology has dramatically reduced, making it a viable method for

diagnosing genetic diseases. The large amount of data generated by

NGS technology, usually in the order of hundreds of gigabytes per

experiment, have to be analyzed quickly to generate meaningful

variant results. The GATK best practices pipeline from the Broad

Institute is one of the most popular computational pipelines for

DNA analysis. Many components of the GATK pipeline are not very

parallelizable though. In this paper, we present SparkGA, a parallel

implementation of a DNA analysis pipeline based on the big data

Apache Spark framework. This implementation is highly scalable

and capable of parallelizing computation by utilizing data-level

parallelism as well as load balancing techniques. In order to reduce

the analysis cost, SparkGA can run on nodes with as little memory

as 16GB. For whole genome sequencing experiments, we show that

the runtime can be reduced to about 1.5 hours on a 20-node cluster

with an accuracy of up to 99.9981%. Moreover, SparkGA is about

71% faster than other state-of-the-art solutions while also being

more accurate. The source code of SparkGA is publicly available at

https://github.com/HamidMushtaq/SparkGA1.git.

ACM Reference format:
Hamid Mushtaq, Frank Liu, Carlos Costa, Gang Liu, Peter Hofstee, and Zaid

Al-Ars. 2017. SparkGA: A Spark Framework for Cost Effective, Fast and

Accurate DNA Analysis at Scale. In Proceedings of ACM-BCB ’17, Boston,
MA, USA, August 20-23, 2017, 10 pages.
https://doi.org/10.1145/3107411.3107438

1 INTRODUCTION
The fast reduction in the cost of DNA sequencing is making it an

accessible method to use in clinics for diagnosing genetic diseases.

However, the computational cost of DNA analysis has become the

bottleneck in deploying this technique at scale. DNA analysis is

needed to process the generated data to identify mutations in the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACM-BCB ’17, August 20-23, 2017, Boston, MA, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4722-8/17/08. . . $15.00

https://doi.org/10.1145/3107411.3107438

DNA that could indicate specific susceptibilities to certain diseases.

One of the most popular methods for DNA analysis is the GATK

best practices pipeline from the Broad Institute [Auwera13]. The

data generated by the DNA sequencing platforms is typically hun-

dreds of GBs in size and therefore requires a lot of computational

resources to process. This means that for efficient analysis, we re-

quire parallelizable solutions which can be easily scaled. While

some stages of the analysis pipeline, such as the Burrows-Wheeler

Aligner (BWA mem) [Li13], are highly scalable, other stages are

not, when executed on a distributed computing infrastructure.

In recent years, a number of big data frameworks have emerged

to efficiently manage and process large datasets in an easy way,

the most popular of which are MapReduce [Dean08] and Apache

Spark [Zaharia10]. Both of these frameworks provide good scala-

bility and fault tolerance. The MapReduce framework has a limita-

tion on programmability though, as it requires the programmer to

write code where a map step is always followed by a reduce step.

Moreover, it saves intermediate data into disk, which increases

disk access overhead. Spark removes those restrictions, allowing

programmers to perform many other transformations besides just

map and reduce, while keeping data in memory between these

transformations.

There are existing big data frameworks that attempt to improve

the scalability and efficiency of genomics pipelines. One example is

SparkBWA [Abuin16], which implements a Spark API to allow easy

cluster scalability of BWA. However, SparkBWA only addresses

the first stage of the GATK pipeline. Like SparkBWA, [Al-Ars15]

also only deals with the first stage of the pipeline. Other solutions,

such as the Churchill DNA analysis pipeline, efficiently utilize the

available computational resources using a custom-made tightly-

integrated computational pipeline [Kelly15]. The disadvantage of

Churchill though is that it combines the different analysis stages

into a single tightly-integrated computational pipeline, making it

non-generic, meaning that parts of the pipeline cannot be easily re-

placed. Another solution proposed to solve the scalability challenge

of the GATK pipeline is the Halvade framework, which implements

the different GATK pipeline stages using a Hadoop-based MapRe-

duce approach [Decap15]. The advantage of the Halvade’s approach

is that it leaves the pipeline tools unmodified, meaning that one

can easily replace a pipeline tool with another one. A drawback

of the Halvade framework though is that it is implemented using

a classic Hadoop MapReduce based big data framework that is

heavily disk oriented, which therefore leads to large disk access

overhead due to the large data set sizes of genomics applications.

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

148

https://doi.org/10.1145/3107411.3107438
https://doi.org/10.1145/3107411.3107438

Map and
Reduce

Map and
Reduce

Transformation Transformation

Spark

Hadoop MapReduce

HDFS HDFS

HDFS HDFS

HDFS

Figure 1: Spark vs Hadoop MapReduce

[Mushtaq15] discusses a Spark implementation of the full GATK

DNA analysis pipeline that targets smaller Exome input files. The

system described there attempts to process the GATK pipeline fully

in memory, which creates memory size bottlenecks resulting in

runtime failure for input files of larger sizes. In addition, that frame-

work does not differentiate between the requirements of the various

stages of the GATK pipeline, and runs the whole pipeline as a single

run, thereby not fully optimizing system utilization for each stage.

In this paper, we propose a new Spark based framework called

SparkGA (Spark Genome Analysis) that allows a DNA pipeline

to run efficiently and cost-effectively on a scalable computational

cluster. SparkGA uses Spark’s in-memory computation capabilities

to improve performance of the framework. At the same time and

depending on available system resources, it can be configured to

reduce its memory needs as a trade off for reduced performance.

Due to this feature, it can even be run on a single node computer

with just 16 GB of RAM. SparkGA implements the genomics com-

putational pipeline as three distinct steps, and therefore allows

for optimizing various Spark runtime parameters independently

for each step of the framework. Moreover, like Halvade, it uses

the pipeline tools unmodified, meaning that one tool can easily be

replaced with another one. There has been recent work to accel-

erate individual stages of the pipeline using accelerators, such as

in [Ahmed15] and [Ren15]. Since, like Halvade, SparkGA can also

use the individual tools unmodified, such tools can directly rely on

SparkGA for a scalable solution.

The contributions of this paper are as follows.

• We implemented SparkGA: a highly scalable, cost-effective,

accurate and generic Apache Spark-based framework for a

DNA analysis pipeline, which uses the original unmodified

tools of a classical DNA pipeline.

• We optimized the framework using a memory-efficient load

balancing step to ensure reducing the memory requirements

of the compute nodes. Due to this, SparkGA can run even

on a single node computer with just 16 GB of RAM.

• We ensured a modular implementation of the framework

as three distinct steps that allow us to optimize the Spark

runtime parameters for each step.

This paper is organized as follows. In Section 2, we discuss big

data techniques, different stages of a DNA analysis pipeline and

related work. Section 3 presents the Apache Spark framework we

implemented to enable pipeline scalability. This is followed by Sec-

tion 4, which discusses the performance and accuracy evaluations.

We finally conclude the paper with Section 5.

2 BACKGROUND
In this section, first we discuss big data techniques available for

executing parallel applications on scalable computational infras-

tructure, and thenwe discuss the GATK best practices DNA analysis

pipeline. Lastly, we discuss the related work.

2.1 Big data techniques
The MapReduce programming model has been one of the most

prevalent approaches used to manage data intensive computational

pipelines that need to be processed on multiple compute nodes in

a scalable cluster. This model divides the computation into two

phases: map and reduce. During the map phase, input data is first

formatted as key-value <K ,V> pairs followed by performing a spe-

cific mapping function on all of these pairs, resulting in a mapping

of the input to an output set of <K ,V> pairs. The mapping function

is executed in a distributed fashion using various mapping tasks

that run locally on the data present in the nodes of the cluster. The

output is then taken by the reduce tasks which first shuffle the data

by grouping all the values that belong to the same key together.

Afterwards, the reduce tasks compute a single output from the

grouped <K ,V> pairs. Apache Hadoop is an open source imple-

mentation of the MapReduce programming model, which consists

of three components: 1) the Hadoop Distributed File System (HDFS)

that allows storing large data files on multiple nodes, 2) a resource

manager called YARN that distributes the tasks to be executed to

the various nodes in the cluster, and 3) the Hadoop MapReduce

framework itself.

One disadvantage of the MapReduce framework is that it stores

all data generated between the two phases (map and reduce) on disk,

and if multiple map/reduce stages are chained together, it stores the

output of each stage on the HDFS. This implies significant overhead

due to the intensive disk access. Another disadvantage is that the

only transformations allowed are map and reduce. If a different

transformation has to be applied, it has to be done by modifying

the map and reduce functions, thus making development with this

framework very cumbersome.

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

149

Mapping
Sort and

mark
duplicates

Indel
realignment

Base quality
recalibration

Variant
calling

BWA mem Picard tools

GATK toolkit

Raw sequencing
reads

Discovered
variants

Variant discovery

Figure 2: Classical DNA analysis and variant calling pipeline.

Apache Spark is a more recent big data framework that addresses

the disadvantages of MapReduce listed above, as illustrated in Fig-

ure 1. First, it allows more transformations than mere map and

reduce. It provides transformations such as join, cogroup, inter-

section, distinct and many others as predefined operations. This

makes development of programs much easier as compared to the

MapReduce framework. Moreover, the output of each transforma-

tion is saved in memory, but still allowing disk to be used to save

data that does not fit within the available memory size. In this way,

Spark avoids the overhead of disk access that is so prevalent in

the MapReduce framework. In addition, Spark provides a program-

ming interface to implement algorithms in various programming

languages such as Scala, Python and Java, which allows writing

programs in the language that is best suitable for the problem.

2.2 DNA analysis pipeline
Figure 2 shows a typical DNA analysis and variant calling pipeline.

The input data set to this pipeline are the raw sequencing reads,

which are obtained from a DNA sequencing machine. Since the

DNA is usually over-sampled by as much as 30x to 100x by the

sequencing machine, the number of such reads for a human are very

large, and therefore the file storing these reads is of a very large

size, typically in the range of several hundreds of gigabytes. One

standard file format used today to store these reads is the FASTQ

file format [Jones12].

The first step performed in the DNA analysis pipeline is DNA

mapping. In this step, raw reads are mapped to a reference genome.

Many classic alignment tools can be used in the GATK pipeline,

including Bowtie2 [Langmead12] or the popular Burrows-Wheeler

Aligner (BWA).

Since the DNA sequencing machine over-samples the DNA, the

input data set might have multiple copies of the same raw read.

These copies are reduced to a single copy by marking the duplicates.

In the GATK best practices pipeline, this is usually done by using

the mark duplicates tool from Picard [Picard]. The output of mark

duplicates is a compressed file of BAM format.

Finally, the last part of the GATK best practices pipeline is done

using tools from the GATK toolkit built by the Broad institute. The

final output of the pipeline is a VCF (variant call format) file that

contains all of the discovered variants. The first step is the indel

realigner, which performs local realignment of reads around indels.

The output of this part goes to the base quality recalibrator, which

corrects quality scores for those reads which were assigned incor-

rect quality scores by the sequencing machine. Finally, a variant

calling tool, such as the haplotype caller, discovers all the variants

and saves them in a VCF file.

While the BWA mem DNA alignment tool of the best practices

pipeline can scale well on a multicore system using multi-threading,

it is difficult to exploit parallelism for other tools in the rest of the

pipeline. In addition, other pipelines, not as well constructed and

optimized as the best practices pipeline, are much less able to utilize

the available computational infrastructure efficiently. The objective

of our framework is to provide a generic method that is easy to

use to ensure scalability to many of the various genomics analysis

pipelines.

2.3 Related work
Recently, there have been approaches to tackle the scalability prob-

lem of a DNA analysis pipeline, by using big data parallelization

techniques. One such example is the Churchill [Kelly15] DNA anal-

ysis pipeline, which utilizes the available computational resources

using a custom-made tightly-integrated computational pipeline.

Due to this tight integration, it is not trivial to replace parts of

that pipeline. Halvade on the other hand, which uses the Hadoop

MapReduce framework, allows the original unmodified pipeline

tools to be used, meaning that parts of the pipeline can easily be

replaced by new and better tools. The DNA mapping part is done

by the map tasks while marking of duplicates and remaining parts

of the pipeline are done by the reduce tasks. Within a map task, the

unmodified DNA mapping tool is called using the Java’s process

package. Similarly, marking of duplicates and the remaining parts of

the pipeline are done using unmodified original tools. The output of

the mapping phase contains mapped reads keyed by chromosomal

regions, where each chromosomal region is a part of a chromosome.

Each reduce task therefore works on a chromosomal region, and

outputs a corresponding vcf file. These vcf files are later combined

into a single file.

There are a few limitations with Halvade’s approach though.

Firstly, it employs the MapReduce framework, which is heavily disk

oriented, which leads to disk access overhead due to the large data

set sizes of genomics applications. Secondly, it creates chromosomal

regions based on the length of the chromosomes, while not check-

ing the actual number of reads. This tends to create unbalanced

regions, meaning that some regions may have significantly larger

number of reads than other regions. This in turn, slows down the

execution time of tasks working on bigger regions significantly,

compared to tasks working on smaller regions, thus limiting the

overall performance.

Our previous work [Mushtaq15] addressed the problems with

MapReduce based solutions like Halvade by having a Spark based

implementation of the DNA analysis pipeline. The system described

there attempts to process the DNA pipeline fully in memory, and

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

150

Preprocessed
input chunk 1

Preprocessed
input chunk 2

Preprocessed
input chunk n

Mapping
(and static

load
balancing)

Sort
(and dynamic

load
balancing)

Mark
duplicates

Mark
duplicates

Mark
duplicates

Mark
duplicates

Variant
discovery

Variant
discovery

Variant
discovery

Variant
discovery

Final VCF

Figure 3: Data flow of the Spark-enabled GATK best practices pipeline using our framework

Table 1: Comparison of tools used in GATK best practices
pipeline and SparkGA

Step GATK best
practices

Our framework

Align reads BWA mem BWA mem

SAM to BAM Picard Picard’s Java library

Sort reads Picard Sorting in Scala

Mark duplicates Picard Picard

Indel realignment GATK GATK

Base recalibration GATK GATK

Haplotype caller GATK GATK

thus is able to create chromosomal regions based on the number

of reads. However, since its load balancing step is done fully in

memory, it results in out of memory errors for large input files.

In addition, that framework does not differentiate between the

requirements of the various stages of the GATK pipeline, and runs

the whole pipeline as a single run, thereby not fully optimizing

system utilization for each stage.

SparkGA, addresses the problem of [Mushtaq15] by implement-

ing a memory efficient load balancing step. Moreover, since the

memory and computational requirements for different steps vary,

instead of running the whole pipeline with one program, SparkGA

runs the pipeline in three different steps: DNAmapping& static load

balancing; dynamic load balancing & SAM to BAM; and marking of

duplicates and variant discovery. Through an xml configuration file,

SparkGA allows the user to tune memory and cores of executors for

all those three different steps. It has to be noticed here that Apache

Spark does not allow to modify the memory and number of cores

for executors at runtime. Therefore, the only way we can achieve

this is by running the program in three steps, like SparkGA does.

3 IMPLEMENTATION
We used Apache Spark to implement our framework to parallelize

a DNA classical pipeline. We use all the tools of a DNA pipeline

unchanged. As shown in Table 1, the only parts of the pipeline that

our framework replaces are sorting and SAM to BAM conversion.

Those two parts are straightforward to implement anyway and do

not require complex tools.

We discuss the overview of our parallelized GATK approach

in Section 3.1, followed by our mapping and static load balancing

approach in Section 3.2. Next, we discuss our sorting and dynamic

load balancing method in Section 3.3 followed by our method to

discover the variants in Section 3.4.

3.1 Overview
The dataflow of the execution of SparkGA is shown in Figure 3.

In a typical DNA sequencing experiment, two FASTQ files are

generated, that represent the two ends of a pair of sequences. These

two input FASTQ files are divided into interleaved chunks using a

chunks segmentation tool built by us, that also uploads these files to

HDFS, thereby making them accessible to all nodes in a distributed

cluster. Each chunk is then processed by a separate DNA mapping

task that performs DNA alignment of the short reads against a

reference genome, using a DNA mapping tool, such as BWA mem.

The output of this step represents a list of read alignments (so-called

SAM records) that will normally be stored in the SAM file. Since,

we already know the length of each chromosome through the given

reference file, we can already apply an approximate load balancing

by reading the output of the SAM files produced by each BWAmem

task. We call this approach static load balancing, since it depends

upon information available even before running the program. Later,

we apply further load balancing that evenly distributes the data for

further computation. We call this approach dynamic load balancing,

since it depends upon actual reads, which are only available at

runtime. Each load balanced region contains reads from a part of

a chromosome. By being able to create regions based on actual

reads, rather than just the chromosomal length, like in the case of

Halvade, we are able to achieve a better performance, as shown by

the evaluation results section (Section 4 of this paper). Moreover,

unlike Halvade, our tool is able to run even with less free disk space.

Lastly, unlike [Mushtaq15], which consumes too much memory in

the load balancing step, and is therefore prone to memory crashes

for big data sets, our tool can work even on a single node with just

16 GB of RAM.

Subsequently, for each chromosome region, the aligned reads are

sorted using their alignment positions (which replaces the sorting

step in the best practices pipeline). Then, the rest of the analysis

steps are performed in parallel using a tool for marking duplicates

and other tools of the pipeline, such as indel realigner, base recali-

bration and haplotype caller, by applying those tools on different

chromosomal regions separately, resulting in various VCF files. Fi-

nally, the contents of those VCF files are sorted and merged into a

single file that contains all variants identified in the analysis.

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

151

Chunk 1 Chunk 2 Chunk N

BWA mem BWA mem BWA mem

Sam1_1b

Sam1_1a Sam1_2

Sam1_y Sam2_1b

Sam2_1a Sam2_2

Sam2_y SamN_1b

SamN_1a SamN_2

SamN_y

Figure 4: Mapping and static load balancing

We perform the execution in three different steps: mapping and

static load balancing; sorting and dynamic load balancing; and mark

duplicates and variant discovery. The benefit of this approach is

that we can set different optimized Spark execution parameters

(such as executor memories and number of executors) for each of

these three steps separately. Spark has limitations that do not allow

it to change those parameters at runtime.

3.2 Mapping and static load balancing
Figure 4 illustrates this step of our implementation. In this step, each

input chunk is fed to a mapping and static load balancing task. Map-

ping can be done by using a mapping tool, such as BWAmem, while

load balancing is done by creating sub-groups (or chromosomal

regions) of the resulting mapped reads output by the mapping tool,

according to the chromosome number and mapping position. The

chromosomal regions are created by equally dividing chromosomes

based on their length. This means that longer chromosomes will

have more regions than smaller ones. All the SAM files produced

by this step are placed into the HDFS in preparation to perform

the next step. Each of the mapping and static load balancing tasks

creates SAM files that map to any region of the whole genome. For

example, it is possible that task 1 produces a SAM file for region

<1,a> (Chromosome 1, part a) and task 2 also produces a SAM file

for that same region (<1,a>). That is why we tag each SAM file

with the task number. For example, for task 1, we can name this file

as Sam1_1a, while for task 2, name it as Sam2_1a. All the data from

SAM files corresponding to the same region will then be grouped

together by the next step of the framework, which is the sorting

and dynamic load balancing step.

The advantage of static load balancing is that it incurs almost

no performance cost, as we rely on the length of the chromosomes

which are already known. We notice that after this step, most of

the regions made are already balanced according to the number of

reads, which reduces the amount of work that needs to be done by

the dynamic load balancing part of the next step. Lastly, since we

communicate data from this step to the next step through the HDFS,

the memory requirement for the nodes is reduced significantly,

which enables SparkGA to run on nodes with as little memory as

16 GB.

SparkGA also provides the feature of multiplicating the number

of regions after the static load balancing step, through a region

multiplicating factor. For example, if the user sets the region multi-

plication factor of 4, the dynamic load balancing step would create

Chr 1a Chr 1b Chr 2a Chr Y

Sam1_1b

Sam1_1a Sam1_2

Sam1_y Sam2_1b

Sam2_1a Sam2_2

Sam2_y

Sorting and Dynamic load balancing

Chr 2b

SamN_1b

SamN_1a SamN_2

SamN_y

Figure 5: Sorting and dynamic load balancing

approximately 4 times more regions than created by the static load

balancing step. The benefit of that is that fewer number of files

would have to be uploaded by the static load balancing step, thus

reducing the overhead of accessing HDFS.

3.3 Sorting and dynamic load balancing
Approach. In this step, all the SAM files produced for different

regions in the mapping and static load balancing part are combined

and sorted to produce BAM and BED files. A BED file is used to

restrict the computation in the variant discovery part. The idea

is that since a BAM file for a region contains data for only that

region, the variant discovery part does not need to scan the whole

genome for finding mutations, but instead just inspect within that

region. The way SAM files are combined is illustrated in Figure 5.

For example, all SAM files produced for region 1a (for example,

Sam1_1a, Sam2_1a, etc.) are combined into one BAM file.

The dynamic load balancing step can further divide a region if

it has too many reads, since the execution time for several tools

in the pipeline depends on the number of reads being processed.

We note that after static load balancing, most of the regions during

the dynamic load balancing step are already well-balanced. Only

a limited number of regions need further division by the dynamic

load balancer. The information about the number of reads is already

provided by the mapping and static load balancing part, so by

reading that information, we already know which regions are too

big.

Creating BAM and BED files for a region which is already bal-

anced is simple. The SAM records for such a region are simply

sorted and put into a BAM file. Moroever, the BED file is created

by looking at the positions of the SAM records in that region.

However, for regions which are not balanced, dynamic load

balancing has to be applied. For that purpose, for each SAM chunk

produced by the static load balancer, a corresponding file which

contains positions of all the reads inside that SAM chunk, is also

produced. This is done because otherwise, when dividing a region

into sub regions, a dynamic load balancing task would have to

collect all the SAM records for that region and sort them first.

Sorting the SAM records themselves is memory intensive. That is

why, in SparkGA, instead of sorting the SAM records themselves, a

dynamic load balancing task just sorts the positions that come from

the files containing the positions of those SAM records. Afterwards,

as it reads each SAM record from the corresponding chunks, it

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

152

Algorithm 1: Dynamic load balancing

procedure createBAMFiles

▷ Elements of the RDD are of type <regID, <chunkID, numOfReads>>
inputData ← readInf oFile(dynLBInf o).cache()

▷ Get the number of reads for each chunk
readsPerChunk ← inputData.map{case(reдID, (chunkID,numO f Reads)) => numO f Reads}

▷ Get the total number of reads
totalReads ← readsPerChunk .reduceByKey(_ + _)

▷ Group the input data by region
chrReд← inputData.дroupByKey()
chrReд.cache()

▷ Calculate average number of reads per statically load balanced regions
avдReadsPerReдion ← totalReads/chrReд.count()

▷makeBAM divides a region further if required, & creates BAM and BED files for each (sub)region
chrReд. f oreach{case(reдID, in f oList) => makeBAM(reдID, in f oList ,avдReadsPerReдion)}

end procedure

checks which subregion that SAM record would go to by finding

its position in the sorted positions array, using binary search. After

finding out this information, it directly appends that SAM record

to the SAM file representing that subregion. To accelerate this

step, SparkGA allows to perform this step with multiple threads.

In this way, different threads can read the SAM records from the

different chunks representing a region, in parallel. Afterwards, all

SAM files created by a dynamic load balancing task are read, sorted

and converted into BAM files. The BED files are also created in that

step. The sorting and conversion from SAM to BAM for subregions

can also be done in parallel by using multiple threads.

Algorithm. The main algorithm for dynamic load balancing is

shown as algorithm 1. Besides creating the SAM chunks and their

corresponding positions files, the static load balancing step also

uploads a global information file to help the dynamic load balancer.

Each line of this file corresponds to a SAM chunk and contains

information about the region ID that chunks belongs to, the ID of

that chunk itself, and the number of reads it has. This file is then

read by the dynamic load balancing step as shown in algorithm 1.

The information from this file is first placed in a Spark’s RDD

(Resilient Distributed Dataset), which is the basic distributed data

structure of Spark. This RDD is transformed into another RDD

where each element of the RDD is assigned to the number of reads

the corresponding chunk contains. Next, these number of reads

are summed up using reduceByKey, giving us the total number of

reads. After that, we group the input data by region, so that the

information for each region is now contained in a list. The total

number of reads divided by the total number of regions then gives us

the average number of reads per region. Then for each statically load

balanced region, the function makeBAM is called which performs

the dynamic load balancing. The makeBAM function reads all the

SAM files pertaining to the region its working on. The information

passed to it contains a list of tuples (the 2nd parameter), where each

tuple contains the chunk ID and the number of reads that chunk

contains. Since the number of reads for each chunk is known as

well as the average number of reads per statically load balanced

regions (the 3rd parameter), the makeBAM function can divide a

Chr 1a Chr 1b Chr 2a Chr Y

VCF 1a VCF 1b VCF Y

Final VCF

Chr 2b

VCF 2a VCF 2b

Mark

duplicates

Mark

duplicates

Mark

duplicates

Mark

duplicates

Mark

duplicates

Variant

discovery

Variant

discovery

Variant

discovery

Variant

discovery

Variant

discovery

Figure 6: Mark duplicate and variant discovery

statically load balanced region into subregions of approximately

equal sizes if that region has too many reads. Through a region

multiplication factor, the user can also set how many regions the

dynamic load balancer step would create. For example, if the user

sets a region multiplication factor of 4, the dynamic load balancing

step would create approximately 4 times more regions than what

the static load balancing step created. The dynamic load balancing

tasks can be run with multiple threads to improve the performance,

as discussed in the previous paragraph.

3.4 Mark duplicates and variant discovery
In the last step, the BAM and BED files produced by the previous

step, are used as an input for the rest of the pipeline. Each task

works on a separate set of BAM and BED files, and outputs a VCF

file. Later, all these VCF files are combined into one final VCF file.

This is illustrated in Figure 6 as discussed next.

Mark duplicates—In this step, all identical short reads mapping

to the exact same location in the reference are marked as copies of

each other. This is done because allele frequencies and genotype

calls can be skewed if certain individual reads are preferentially

amplified relative to others.

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

153

Table 2: Runtime in minutes on a 4-data node Power7+, and a 5, 10, 15 & 19-data node Power8 (+1 name node) IBM cluster

4-node P7+ 5-node P8 10-node P8 15-node P8 19-node P8

Step Time % Time % Time % Time % Time %
Mapping and static LB 128 30% 78.7 32% 40.6 29% 29.0 28% 24.4 27%

Sorting and dynamic LB 45 11% 22.1 9% 19.5 14% 18.8 18% 18.7 21%

Variant discovery 249 59% 145.9 59% 77.7 56% 57.2 54% 47.7 52%

Total 422 100% 246.7 100% 137.7 100% 105.0 100% 90.9 100%

Ò«³¾»® ±º ²±¼»
ë ïð ïë ïç

ð

ëð

ïðð

ïëð

îðð

îëð
Û¨»½«¬·±² ¬·³» ±² ¬¸» ×ÞÓ ½´«¬»®

ÞÉßóÓÛÓ ¿²¼ Í¬¿¬·½ ÔÞ
Ü§²¿³·½ ÔÞ ú ÍßÓ ¬± ÞßÓ
Ê¿®·¿²¬ ¼·½±ª»®§
Ì±¬¿´

Figure 7: Performance on the IBM cluster

Ò«³¾»® ±º ²±¼»
ë ïð ïë ïç

ï

ïòë

î

îòë

í

íòë

ì
Í½¿´¿¾·´·¬§ ±² ¬¸» ×ÞÓ ½´«¬»®

ÞÉßóÓÛÓ ¿²¼ Í¬¿¬·½ ÔÞ
Ü§²¿³·½ ÔÞ ú ÍßÓ ¬± ÞßÓ
Ê¿®·¿²¬ ¼·½±ª»®§
Ì±¬¿´
Ô·²»¿®

Figure 8: Scalability on IBM cluster

Indel realigner—The indel realigner tool performs local realign-

ment of reads around indels, so as to minimize mismatching bases

across all reads.

Base quality recalibration—When a sequencing machine out-

puts data, it assigns a quality score to each read. This quality score

is to signal howmuch a read can be trusted to be accurate. However,

sometimes a sequencing machine can also generate erroneous qual-

ity scores. The base quality recalibrator tries to correct this problem

by looking at a human genome database. Since it is estimated that

99% of all variants in the Caucasian population have been put in

the dbSNP database, the vast majority of mapping differences not

in dbSNP should basically be sequencing errors. By using this data-

base and and applying machine learning models on the output from

indel realigner, the base recalibrator tries to correct any erroneous

quality scores given to the reads.

Haplotype caller—The haplotype caller is the variant discovery

tool of choice for the GATK pipeline. Whenever the haplotype

caller sees a region which shows signs of variations, it discards

the existing mapping information and assembles the reads itself

for that region. This helps in making the haplotype caller more

accurate for regions which are difficult to call, such as those that

contain variants close to each other.

4 EVALUATION RESULTS
We tested the results on three different types of hardware platforms.

The first platform is an IBM Power7+ cluster with 4 data nodes

+ 1 master node. Each node has two sockets that host a Power7+

processor. In total, a node there has 16 physical cores and 128GB of

memory. Each Power7+ core is capable of 4-way simultaneous mul-

tithreading. Spark is run over YARN in that platform. The second

platform consists of 20 IBM Power8 S822LC nodes (19 data nodes

+ 1 master node), with each node having two sockets, where each

socket hosts a Power8 processor. In total, a node there has 20 phys-

ical cores and 512GB of physical memory. Each Power8 core can

support 8-way simultaneous multithreading. Spark was run using a

Spark cluster on that platform. Lastly, the third platform used was

the Dutch national e-infrastructure’s SURFsara cluster [SURFsara],

which allows up to 72 Intel/AMD nodes to be used using YARN as

a resource manager. This cluster was used to compare our results

with Halvade.

We tested SparkGA with the publicly available whole human

genome dataset G15512.HCC1954.1 from Genomics Data Commons

(formally Cancer Genomics Hub) [GDC], with the reference genome

human_g1k_v37_decoy. The raw reads have 65x coverage with size

of over 402GB. SparkGA is able to compute the pipeline in 422

minutes (7 hours and 2 minutes) on the 4-node Power7+ cluster.

The breakdown of this runtime for different steps is shown in Ta-

ble 2, indicating that the variant discovery step consumes most of

the time amounting to 59%, followed by the mapping step at 30%,

then the sorting at 11%. On the 19-node IBM Power8 cluster, the

execution consumed a total of 90.9 minutes, with similar distribu-

tion of runtime. However, the table shows that the for this shorter

runtime, the sorting step is becoming more dominant, with its share

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

154

Figure 9: Utilization of the compute resources of a single data node in a 5-node Power8 cluster

increasing to 21%. In the same table, execution times for different

sizes of IBM Power8 clusters are also shown.

4.1 Scalability analysis
Figure 7 shows a bar chart of the execution times registered for

different steps and the total runtime for the IBMPower8 cluster with

an increasing number of data nodes activated, ranging from 5, 10,

15 to 19 data nodes. The corresponding speedup graph is shown in

Figure 8. Here, we observe that the BWAmem and variant discovery

steps scale quite well, while the load balancing step plateaus. BWA

mem was expected to scale well, but here we see that the variant

discovery step scales almost as well. The reason it scales so well

is that tools such as the haplotype caller can make very efficient

use of vector instructions to improve the performance. Moreover,

simultaneous multithreading also improves the performance. Each

IBM Power8 processor has 8 high quality simultaneous threads for

each physical core, which can benefit the workload greatly.

4.2 Performance measurements
In order to understand the bottlenecks in the three steps, we plot

the utilization of system resources in Figure 9. The figure shows

rather high CPU utilization in the mapping as well as in the variant

discovery steps. We also observe a drop in the CPU utilization for

the mapping step at regular intervals. This is caused by the files that

this step needs to upload to the HDFS. In addition, we observe some

idle time in the sorting and dynamic load balancing step. This is

due to the heavy I/O activity done by the sorting and dynamic load

balancing step. This explains the limited scalability of the sorting

and dynamic load balancing step as we increase the size of the

Ø¿´ª¿¼» Í°¿®µÙß
ð

îð

ìð

êð

èð

ïðð

ïîð

ïìð

ïêð

ïèð
Ð»®º±®³¿²½» ½±³°¿®·±² ¾»¬©»»² Ø¿´ª¿¼» ¿²¼ Í°¿®µÙß

Í¬»° ï
Í¬»° î
Í¬»° í
Ì±¬¿´

Figure 10: Halvade vs SparkGA performance comparison

cluster. However, we see a very high utilization in the last step

(mark duplicates and variant discovery). The reason is that in this

step there is no interaction with the HDFS, except for when the

BAM files from the dynamic load balancing part are read, and when

the final output VCF files (which are very small in size anyway) are

written.

4.3 Performance comparison with Halvade
We also compared the performance with Halvade on a YARN based

cluster. For that purpose, we used the maximum 72 nodes allowed

by the SURFsara cluster. The SURFsara cluster nodes have mixed

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

155

Table 3: Different steps of Halvade and SparkGA

Steps Halvade SparkGA
1 Mapping and static load bal-

ancing

Mapping and static load bal-

ancing

2 Sorting and grouping of

data by regions

Sorting, Dynamic load bal-

ancing and SAM to BAM

3 SAM to BAM, Mark dupli-

cates and Variant discovery

Mark duplicates and Vari-

ant discovery

Table 4: Performance comparison between Halvade and
SparkGA

Halvade SparkGA

Step Minutes % of Total Minutes % of Total
1 28 16% 33 33%

2 5 3% 15 15%

3 138 81% 52 52%

Total 171 100% 100 100%

»½
ïððð îððð íððð ìððð ëððð

ïðóí

ð

ðòë

ï
Ø¿´ª¿¼»

»½
ëðð ïððð ïëðð îððð îëðð

ïðóí

ð

ðòë

ï

ïòë
Í°¿®µÙß

Ó·² ã ëè

Ó¿¨ ã ëèìè

Ó»¿² ã ïîéç

Í¬¿²¼¿®¼ ¼»ª·¿¬·±² ã ìèï

Ó·² ã êé

Ó¿¨ ã îêçè

Ó»¿² ã ïîîð

Í¬¿²¼¿®¼ ¼»ª·¿¬·±² ã íêé

Figure 11: Load balancing of tasks in step 3

Intel and AMD processors, with each processor having 8 processing

cores, and each node having 56 GB of RAM. We also tried to run

Halvade on the 4 node IBM P7+ cluster, but it exceeded the available

disk space. On the other hand, [Mushtaq15] exceeded the memory

available on the 4 node IBM P7+ cluster. However, SparkGA is able

to run on the 4 node IBM P7+ cluster, despite the low hard disk

space and memory on the nodes.

It has to be noted first that the steps taken by SparkGA are

not exactly the same as those taken by Halvade. This difference is

shown in Table 3. In the second step, Halvade does not perform

dynamic load balancing nor it creates the BAM and BED files, which

it creates in the third step rather. However, since creation of BAM

4160158

Reference: 75686

Halvade: 34465

(a) Acurracy of Halvade

4217948

Reference: 17896

SparkGA: 42890

(b) Accuracy of SparkGA

Figure 12: Accuracy comparison of SparkGA and Halvade
with the classical GATK pipeline

and BED files take on average, just around 5% of a reduce task in

Halvade, The execution times of Halvade and SparkGA for the third

step can still be compared fairly.

The comparison with Halvade is shown in Table 4 and illustrated

in Figure 10. The time for Step 1 is slightly higher for SparkGA

because SparkGA also uploads some files required for its next step:

sorting and dynamic load balancing part. In Step 2, Halvade per-

forms sorting without dynamic load balancing, that is why it con-

sumes less time than SparkGA. In the variant discovery step (Step 3)

however, SparkGA is much faster than Halvade due to its improved

load balancing. Overall Spark took 71% less time than Halvade for

the selected data set.

The improvement achieved due to better load balancing can be

understood from the Figure 11, which shows bell curve of the time

taken by the tasks of Step 3. The mean and standard deviations of

the execution time of these tasks are also shown in that figure. We

can see that the standard deviation for Halvade is poorer (481 as

compared to 367 seconds for SparkGA). This is because some of the

tasks in Halvade take too much time. On the other hand, the task

execution times for SparkGA are concentrated more towards the

mean.

Since the cost of using a cluster depends directly on the time

spent running the applications, this means that compared to Hal-

vade, our solution is much more cost effective, as it takes signifi-

cantly less time in comparison.

4.4 Correctness of the results
We evaluate the correctness of our framework by comparing the

variants discovered in the VCF files of SparkGAwith those resulting

from the GATK best practices pipeline as a reference. One obvious

concern is that since our method partitions the input dataset into

chunks and the reference genome into regions, there is a risk of

reduction in accuracy of the results. The correctness analysis is

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

156

Table 5: Accuracy comparison of SparkGA and Halvade

Parameter Formula Halvade (%) SparkGA (%)
Sensitivity TP / (TP + FN) 98.2% 99.6%

Specificity TN / (TN + FP) 99.999% 99.999%

Precision TP / (TP + FP) 99.18% 99.0%

False discovery rate FP / (TP + FP) 0.82% 1.01%

Accuracy (TP + TN) / (TP + TN + FP + FN) 99.9966% 99.9981%

based on measuring: the true positive (TP) variants detected by the

analysis in the sample (those detected by both SparkGA and GATK);

the false negatives (FN) detected by GATK but not by SparkGA; the

false positives (FP) detected by SparkGA but not by GATK; and the

true negatives (TN) representing all possible mutation locations in

the genome that are not detected by either pipeline.

We first experiment by varying the number of chunks and re-

gions from 512 to 8192 in powers of 2 and measure the accuracy

of the results. Our method achieves a constant accuracy rate of

99.9981% for all experiments, which is better than Halvade’s accu-

racy of 99.9966%. The Venn diagrams of Figure 12 show the compar-

ison results of the VCF output of SparkGA and Halvade with that of

the traditional GATK pipeline. The lower Venn diagram in that fig-

ure shows that both SparkGA and GATK pipelines detect 4217948

variants (TP). Moreover, SparkGA detects 42890 false positives and

17896 false negatives. In comparison, Halvade detects less variants,

meaning it has more false negatives (75686 compared to SparkGA’s

17896), as shown by the upper Venn diagram in Figure 12.

Table 5 also compares SparkGA’s accuracy with that of Halvade.

Moreover, it defines a number of parameters to quantify the correct-

ness. Besides, better accuracy, SparkGA also has better Sensitivity

compared to Halvade, due to its ability to detect more variants.

Halvade however is slightly better when it comes to precision and

false discovery rate.

5 CONCLUSIONS
Next generation sequencing has dramatically increased the speed

and throughput of DNA sequencing. However, DNA analysis re-

quires efficient and scalable solutions to ensure high computational

performance at an affordable cost. We propose SparkGA, a big

data framework based on Apache Spark that runs efficiently on

a multi-node cluster. By applying novel static and dynamic load

balancing techniques, our framework can spread the input data

more uniformly across the computational nodes, hence ensuring

better scalability. It also allows to run the framework on lower-cost

nodes with as little as 16GB of memory. SparkGA enables scaling

up the GATK best practices pipelines, a well accepted industry stan-

dard, achieving a high accuracy of up to 99.9981%. Experimental

results show that when deployed on a 20-node IBM Power8 cluster,

SparkGA can complete the GATK best practices pipeline in about 90

minutes. Moreover, it is 71% faster than the state-of-the-art solution.

Having better performance also means that it is more cost-effective.

The source code of SparkGA is publicly available at the GitHub

repository (https://github.com/HamidMushtaq/SparkGA1.git).

ACKNOWLEDGMENTS
Special thanks to SURF cooperative for providing support in testing

our framework on the Dutch national e-infrastructure’s SURFsara

cluster [SURFsara].

REFERENCES
[Auwera13] G.A. van der Auwera, M. Carneiro, C. Hartl, R. Poplin, G. del Angel, A.

Levy-Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks, K. Garimella,

D. Altshuler, S. Gabriel, M. DePristo, "From FastQ Data to High-Confidence Variant

Calls: The Genome Analysis Toolkit Best Practices Pipeline", Current Protocols in

Bioinformatics, 43:11.10.1-11.10.33, 2013.

[Decap15] D. Decap, J. Reumers, C. Herzeel, P. Costanza and J. Fostier, "Halvade:

scalable sequence analysis with MapReduce", Bioinformatics, btv179v2-btv179,
2015.

[Picard] https://broadinstitute.github.io/picard/

[GDC] https://gdc.cancer.gov/

[SURFsara] https://www.surf.nl/en/services-and-products/big-data-services/

access/index.html

[Dean08] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large

Clusters", Commun. ACM, vol. 51, no. 1, 2008.

[Zaharia10] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker and I.Stoica, "Spark:

cluster computing with working sets", HotCloud’10, USENIX Association, Berkeley,

CA, USA, 10-10.

[Abuin16] J.M. Abuin, J.C. Pichel, T.F. Pena and J. Amigo, "SparkBWA: Speeding Up

the Alignment of High-Throughput DNA Sequencing Data" Ed" PLoS ONE 11.5
(2016), e0155461. PMC. Web. 31 Oct. 2016.

[Jones12] D.C. Jones, W.L. Ruzzo, X. Peng and M.G. Katze, "Compression of next-

generation sequencing reads aided by highly efficient de novo assembly", Nucleic
Acids Research, 2012.

[Kelly15] B.J. Kelly, J.R. Fitch, Y. Hu, D.J. Corsmeier, H. Zhong, A.N. Wetzel, R.D.

Nordquist, D.L. Newsom and P. White,"Churchill: an ultra-fast, deterministic,

highly scalable and balanced parallelization strategy for the discovery of human

genetic variation in clinical and population-scale genomics", Genome Biology,
vol. 16, no. 6, 2015.

[Ahmed15] N. Ahmed, V. M. Sima, E. Houtgast, K. Bertels and Z. Al-Ars, "Hetero-

geneous hardware/software acceleration of the BWA-MEM DNA alignment al-

gorithm", 2015 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), Austin, TX, 2015, pp. 240-246.

[Ren15] S. Ren, V. M. Sima and Z. Al-Ars, "FPGA acceleration of the pair-HMMs for-

ward algorithm for DNA sequence analysis", 2015 IEEE International Conference

on Bioinformatics and Biomedicine (BIBM), Washington, DC, 2015, pp. 1465-1470.

[Al-Ars15] Z. Al-Ars and HamidMushtaq "Scalability Potential of BWADNAMapping

Algorithm on Apache Spark", SIMBig 2015, Cusco, Peru, 2015, pp. 85-88.

[Li13] H. Li, "Aligning sequence reads, clone sequences and assembly contigs with

BWA-MEM", arXiv:1303.3997 [q-bio.GN], 2013.

[Mushtaq15] H. Mushtaq and Z. Al-Ars, "Cluster-based Apache Spark implementation

of the GATK DNA analysis pipeline", 2015 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), Washington, DC, 2015, pp. 1471-1477.

[Langmead12] B. Langmead and S.L. Salzberg, "Fast gapped-read alignment with

Bowtie 2", Nature Methods, vol. 9, no. 4, pp. 357-359, 2012.

Session 6: Big Data in Bioinformatics I ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

157

https://broadinstitute.github.io/picard/
https://gdc.cancer.gov/
https://www.surf.nl/en/services-and-products/big-data-services/access/index.html
https://www.surf.nl/en/services-and-products/big-data-services/access/index.html

	Abstract
	1 Introduction
	2 Background
	2.1 Big data techniques
	2.2 DNA analysis pipeline
	2.3 Related work

	3 Implementation
	3.1 Overview
	3.2 Mapping and static load balancing
	3.3 Sorting and dynamic load balancing
	3.4 Mark duplicates and variant discovery

	4 Evaluation results
	4.1 Scalability analysis
	4.2 Performance measurements
	4.3 Performance comparison with Halvade
	4.4 Correctness of the results

	5 Conclusions
	References

