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Summary

This thesis consists of two parts, which are separate with respect to content.
The first part considers a subject in the field of number theory, while in the
second part a subject from probability theory is studied.

The first part of this thesis deals with a variation on the Three Gap The-
orem. The Three Gap Theorem states that the fractional parts of the first n
multiples of an irrational number divide the interval [0, 1] in subintervals
of at most three different lengths. Instead of the fractional parts of these
multiples, we considered the distances to the nearest integers, so the main
question in this part of the thesis is:

What can we say about the distribution of the distances of multiples of an irra-
tional number to the nearest integer?

We found a result similar to the Three Gap Theorem: these distances di-
vide the interval [0, 1/2] in subintervals of at most four different lengths.
We give a proof of this result and also some additional properties are de-
rived.1

The second part of this thesis is devoted to differences of random Cantor
sets. The main question is the following:

Under which conditions does the algebraic difference between two random Can-
tor sets contain an interval?

There exist already some results in this direction. Dekking and Kuijven-
hoven found some conditions under which the algebraic difference of two
random Cantor sets contains an interval almost surely. In particular, they
formulated the joint survival condition which they need to prove their main
result. In the first chapter of Part II we try to find weaker conditions under
which the result of Dekking and Kuijvenhoven can be proved. This results
in the triangle growth condition and the max-min growth condition, of which
the latter is the most promising condition. In the second chapter we con-
sider a canonical class of random Cantor sets: correlated fractal percolation.
Due to the elegant properties of this class, it is justified to pay special atten-
tion to it, but it also serves as a test case for the max-min growth condition.
After derivation of some general results for correlated fractal percolation,
we study some cases of flimsy correlated fractal percolation.

1This first part of the thesis is conditionally accepted by Acta Arithmetica.
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The Four Gap Theorem
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Chapter 1

On the distribution of the
distances of multiples of an
irrational number to the nearest
integer

1.1 Introduction

Take an arbitrary irrational number α and compute for the first n multiples
the distance to the nearest integer. What can we say about the distribution
of this sequence in the interval [0, 1/2]? In this paper we study the partition
of the interval [0, 1/2] induced by this sequence. The main result (Theo-
rem 1.2) states that this sequence divides the interval in subintervals which
can take at most four different lengths. This result is strongly related to
the Three Gap Theorem, which states that for α irrational and n ∈ N, the
numbers

{α}, {2α}, {3α}, . . . , {nα} (1.1)

divide the interval [0, 1] in subintervals of at most three different lengths.
Here {x} = x − bxc = x mod 1 is the fractional part of x. The Three Gap
Theorem was originally a conjecture of H. Steinhaus. Proofs were offered
by various authors, for example by Sós [3], Świerckowski [5], Surányi [4],
Slater [2] and van Ravenstein [1].

The Three Gap Theorem compares multiples of an irrational number with
their floor. The floor of a number x is the nearest of the integers smaller
than or equal to x. That inspired us to compare multiples of an irrational
number with the nearest of all integers. We wrote a Matlab program, that
takes a random number and computes the first n multiples of that num-
ber and their distances to the nearest integer, giving a sequence of n num-
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bers in [0, 1/2]. After that, the distances between consecutive numbers in
this sequence were calculated. In doing this, we always found at most four
different distances. We tried to prove that this was no coincidence, which
resulted in the Four Gap Theorem. For the Matlab program, see Appendix
A.

We start with Theorem 1.1, a variation on the Three Gap Theorem, which
states that if we divide the interval [0, 1] in subintervals by the numbers

{α}, {−α}, {2α}, {−2α}, . . . , {nα}, {−nα} (1.2)

then the subintervals again have at most three different lengths. We give an
elementary proof for this theorem.

From Theorem 1.1 we extract the main result, Theorem 1.2. This ‘Four Gap
Theorem’ gives an analogous statement about the distances to the nearest
integers of the multiples of α: the numbers

||α||, ||2α||, ||3α||, . . . , ||nα|| (1.3)

divide the interval [0, 1
2 ] in subintervals of at least two and at most four dif-

ferent lengths, where ||x|| denotes the distance from x to the nearest integer.
Here the number four is the best possible. We also derive some properties
of the lengths of the subintervals in which [0, 1

2 ] is divided.

1.2 A variation on the three gap theorem

If we consider not only the fractional parts of the positive multiples of an
irrational number α, but also of the negative multiples, we have the follow-
ing result:

Theorem 1.1 Let α be an irrational number between 0 and 1, and let n ∈ N, n ≥
1. For the first n numbers in the sequence

Sα : {α}, {−α}, {2α}, {−2α}, {3α}, {−3α}, . . . (1.4)

the following assertions hold:

1. They divide the interval [0, 1] in subintervals of either two or three different
lengths, l1 > l2(> l3). If we have three different lengths, l1 > l2 > l3, then
l1 = l2 + l3.

2. By adding the (n+ 1)th element of the sequence Sα to the partition of [0, 1],
one of the subintervals of length l1 is divided in a subinterval of length l2
and a subinterval of length l1 − l2.
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Figure 1.1: The first steps in the partition process.

Before proving the assertions we make some preparations by collecting ob-
servations that will be helpful in proving the assertions. Note that it makes
no difference in Theorem 1.1 if we consider the open interval (0, 1).

First note that for x ∈ R \ Z we have {-x} = 1 - {x}, so the partition in-
duced by the first 2n terms of the sequence Sα is symmetric with respect
to 1

2 . This also means that without loss of generality we may assume that
α < 1

2 . Sometimes α will be called the step size.

It will prove useful to introduce some notation and definitions. For n ≥ 1,
Sα(n) denotes the nth term of Sα. For each k ∈ N, k ≥ 1 let nk(α) be the
unique integer for which:

nk(α)α < k < (nk(α) + 1)α. (1.5)

Since α is irrational, k can never be a multiple of α. Define β by

β := (n1(α) + 1)α− 1. (1.6)

Note that β = {(n1(α) + 1)α}. Figure 1.1 illustrates these definitions in case
n1(α) = 3.

Definition 1.1 For k ∈ N, k ≥ 1 the kth cycle of the sequence Sα consists of all
those fractional parts {mα} ,m ∈ Z for which k− 1 < |mα| < k, or equivalently
nk−1(α) < |m| ≤ nk(α).

Observe that a cycle consists of at least four partition points, because we
assumed that α < 1

2 . We are going to use this observation later. The next
definition concerns intervals which are partitioned in the same way.

Definition 1.2 For 0 ≤ a, b < 1, y ≤ min{1 − a, 1 − b} and n ∈ N we write
(a, a+ y)(n) ' (b, b+ y)(n) if for all x ∈ (0, y) the following equivalence holds:

∃k1 ∈ Z, |k1| ≤ n such that a+ x = {k1α}

⇐⇒

∃k2 ∈ Z, |k2| ≤ n such that b+ x = {k2α}.
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Note that ' is an equivalence relation on the class of partitioned open
subintervals of (0, 1). If we replace b+x by b+y−x in Definition 1.2, we get
an equivalence for an interval and the mirror image of an other interval. If
two intervals satisfy this adjusted definition, we will write (a, a + y)(n)

m'
(b, b+ y)(n).

Now let us investigate what happens in the interval (0, α). Note that Sα
is a sequence in the open interval (0, 1). Therefore also here we investigate
which values we get in the open interval (0, α). For k ∈ N, k ≥ 1 the inter-
val (k, k + α) contains exactly one positive multiple of α and the interval
(−k,−k + α) contains exactly one negative multiple of α. Hence in each
cycle we get two values in (0, α), one of them being the fractional part of a
positive multiple of α and the other being the fractional part of a negative
multiple of α. The first cycle is an exception, since there is no positive mul-
tiple of α in (0, α).

The first positive multiple of α for which the fractional part is in (0, α) is
(n1(α) + 1)α = 1 + β, which gives β as a first hit in (0, α). Because 1 + β is
a positive multiple of α, the numbers k + kβ are also positive multiples of
α, where k ∈ N. The fractional parts of these numbers are (fractional parts
of) multiples of β. As long as kβ < α this gives hits in (0, α). As soon as
kβ exceeds α, i.e. when k = bα/βc + 1, we leave the interval (0, α), but in
that case we already had hit the value kβ − α. This is exactly how it con-
tinues all the time: each next hit in (0, α) is shifted β in positive direction
and as soon as we leave the interval, we come back modulo α. Hence the
kth hit by the fractional part of a positive multiple of α in (0, α) is kβ mod α.

The first negative multiple of α for which the fractional part is in (0, α) is
−n1(α)α, giving the value {−n1(α)α} = 1−{n1(α)α} = 1−n1(α)α = α−β.
Each next hit in (0, α) is shifted β to the left until α − kβ dives under 0.
In that case we leave (0, α), but we should note that the previous hit was
α − kβ + α, which is in (0, α). Hence the kth hit by the fractional part of a
negative multiple of α in (0, α) is α− (kβ mod α).

By noting that the hits by fractional parts of positive and negative multi-
ples of α are alternating we see that in (0, α) we get the following sequence
of hits:

α− (β mod α), β mod α, α− (2β mod α), 2β mod α,
α− (3β mod α), 3β mod α, . . . (1.7)

By multiplying each term by 1/α we get

1−
(β
α

mod 1
)
,
β

α
mod 1, 1−

(2β
α

mod 1
)
,
2β
α

mod 1,
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1−
(3β
α

mod 1
)
,
3β
α

mod 1, . . . (1.8)

By defining α̃ := 1− β

α
, we can rewrite this as

{α̃}, {−α̃}, {2α̃}, {−2α̃}, {3α̃}, {−3α̃}, . . . (1.9)

Hence (1.7) is a scaled version of the sequence Sα (with a different irrational
step size). That means that the partition of the subinterval (0, α) has exactly
the same structure and properties as the partition of (0, 1). The same self-
similarity holds for the subintervals (α, 2α), . . . , ((n1/2(α)− 1)α, n1/2(α)α),
where n1/2(α)α is the largest multiple of α smaller than 1/2. In these subin-
tervals we get the same sequence (1.7), but now shifted by a multiple of α
to the corresponding positions in the subinterval. By using symmetry we
also find the same structure of lengths for the intervals (1 − n1/2(α)α, 1 −
(n1/2(α)−1)α), . . . , (1−α, 1). These intervals are mirror images of the subin-
tervals (0, α), . . . , ((n1/2(α)− 1)α, n1/2(α)α).

Each cycle of Sα gives two hits in each of those intervals. We conclude that
for all k ∈ N, k ≥ 1

(0, α)(nk(α)) ' . . . ' ((n1/2(α)− 1)α, n1/2(α)α)(nk(α))
m' (1.10)

(1− n1/2(α)α, 1− (n1/2(α)− 1)α)(nk(α)) ' . . . ' (1− α, 1)(nk(α)).

The only part which is not yet considered is the middle part of (0, 1): the in-
terval (n1/2(α)α, 1−n1/2(α)α), which will be denoted by Im. First consider
the positive multiples of α. Note that the length of the complement of Im
is a multiple of the step size α, which implies that the values we hit in Im
are of the form n1/2(α)α + (kα mod L), for integer k, where L denotes the
length of Im. By symmetry we see that by adding the negative multiples of
α too, we find the following sequence of hits in Im:

n1/2(α)α+ (α mod L), 1− n1/2(α)α− (α mod L),
n1/2(α)α+ (2α mod L), 1− n1/2(α)α− (2α mod L),

n1/2(α)α+ (3α mod L), 1− n1/2(α)α− (3α mod L), . . . , (1.11)

where the alternating order follows from the fact that the successor of {kα}
in Sα is {−kα}.

Subtract n1/2(α)α to get

α mod L,L− (α mod L), 2α mod L,
L− (2α mod L), 3α mod L,L− (3α mod L), . . . (1.12)

10



Multiplying by 1/L yields

α

L
mod 1, 1−

(α
L

mod 1
)
,
2α
L

mod 1,

1−
(2α
L

mod 1
)
,
3α
L

mod 1, 1−
(3α
L

mod 1
)
, . . . (1.13)

This is exactly Sα, with step size α/L. It follows that (1.11) is a scaled and
translated version of the sequence Sα with a different step size.

The next step is to find the relation between the behavior of the partition
process in Im and its complement. The intervals (0, L) and Im have the
same length (by definition of L) and the distance between their left end-
points is a multiple of α. From this we can conclude that in each cycle a
value x ∈ (0, L) is hit if and only if in the same cycle the point x + n1/2(α)
is hit in Im. This reasoning is also valid when (0, L) and Im are not disjoint
(which is possible when L > α). By noting that (0, L)(n1(α)) ' Im(n1(α))
and using induction on k it follows that ∀k ∈ N, k ≥ 1:

(0, L)(nk(α)) ' Im(nk(α)). (1.14)

In words: after each complete cycle the two intervals (0, L) and Im are par-
titioned in an equivalent way in the sense of Definition 1.2.

To prove Theorem 1.1, we use induction on the cycle number k. Note that
if the theorem holds for n, then to go to n+ 1 it suffices to check the second
assertion of the theorem. We can see this as follows. If we had three lengths,
then one of the longest subintervals is divided in two existing lengths, so
we get nothing new. If we had two lengths, then we get one new length, be-
ing the difference of the two existing lengths. These remarks show that the
‘at most three’ part of the first assertion and the requirement l1 = l2 + l3 in
case of three lengths are not violated. The ‘at least two’ part of the first as-
sertion of the theorem follows from the irrationality of α. If only one length
is remaining, the interval [0, 1] must be divided in equal parts. Hence in this
case α would be a rational number.

Proof of Theorem 1.1
-Step 1- The first step in our induction argument is to show that during
the first cycle (containing the first 2n1(α) terms of Sα) always one of the
longest subintervals is divided in two intervals of which one has the sec-
ond length occurring before the division. The first number in the sequence
Sα is {α}, so after adding this first number the interval (0, 1) is divided in
two subintervals, one of length α and one of length 1 − α, where the latter
is the longest in view of our assumption that α < 1/2. So now this longest
subinterval should be divided in a part of length α (the second length) and

11



0 {α} {2α} . . . {nα} {−mα} . . . {−2α} {−α} 1

-� -� -� -� -� -� -�
α α α α− β α α α

Figure 1.2: Halfway the first cycle: either n = m or n− 1 = m.

a remaining part. Because the second hit is {−α} = 1− α this is indeed the
case. The process continues in the same way, each time reducing the length
of the middle subinterval by α, until the length of the middle subinterval
becomes smaller than α. Now this middle subinterval has length α− β, by
definition of β.

At this point we have two different lengths: α and α − β. The situation
is illustrated by Figure 1.2. We now distinguish two cases.
If n = m, then the next hit will be {(n+ 1)α}, dividing an interval of
length α in a part of length α − β (which was the second length) and a
part of length β (a new length). Now we have three different lengths and
the sum of the two smallest equals the largest, as required. The next hit
now is {−(n+ 1)α} and again this divides an interval of length α in a part
of length α − β and a part of length β. The partition process continues in
this way as long as we are in the first cycle.
If n + 1 = m, then the next hit will be {−(n+ 1)α} and also in this case all
intervals of length α will successively be divided in a part of length α − β
and a part of length β.
Hence we conclude that the theorem holds for 1 ≤ n ≤ 2n1(α).

-Step 2- The next step in the induction argument is to show that if the theo-
rem holds in the first k cycles, then the theorem also holds in the next cycle.
To prove this we use the observations made before, which state that the
behavior of the partition process in each of the intervals

(0, α), . . . , ((n1/2(α)− 1)α, n1/2(α)α), (n1/2(α)α, 1− n1/2(α)α),
(1− n1/2(α)α, 1− (n1/2(α)− 1)α), . . . , (1− α, 1) (1.15)

has after rescaling the same properties as the behavior in the entire interval
(0, 1). From now on we will call these intervals elementary intervals.

A crucial remark is that all boundaries (except 0 and 1) of the elementary
intervals belong to the first cycle of Sα. This implies that (at any point in
one of the next cycles) the subintervals in which (0, 1) is divided can only

12



intersect one of the elementary intervals. This guarantees that to find all
lengths of subintervals in (0, 1), it suffices to find all lengths in the elemen-
tary intervals.

For the elementary intervals we introduce the following abbreviations:

Ik := ((k − 1)α, kα), (1.16)
I−k := (1− kα, 1− (k − 1)α), (1.17)

where 1 ≤ k ≤ n1/2(α). Recall that for the middle elementary interval we
already introduced the symbol Im. The sequence of hits in an elementary
interval I will be denoted by SIα. For example, SI

1

α is equal to the sequence
(1.7). Because these sequences are scaled and translated versions of Sα (pos-
sibly with a different step size), we can also here introduce cycles. We are
going to use this later, but we do not need to specify these cycles explicitly.

Induction Hypothesis: Assume that for all α the theorem holds as long
as we are in one of the first k cycles of Sα, where k ≥ 1.

Consider the partition of (0, 1) in subintervals by the first n terms of Sα.
Denote the lengths of the subintervals by l1 > l2(> l3). To complete our
proof of the theorem it suffices to show that the following three require-
ments are satisfied if Sα(n+ 1) is an element of the (k + 1)th cycle of Sα:

Requirement 1: If Sα(n + 1) is the very first hit in an elementary inter-
val, then it should divide a subinterval of length l1 in subintervals of
length l2 and l1 − l2.

Requirement 2: If Sα(n+1) ∈ I , where I is one of the elementary intervals,
then I should contain one of the subintervals of length l1.

Requirement 3: If Sα(n+ 1) is not the very first hit in an elementary inter-
val, denote the two largest lengths in this elementary interval by l̂1 > l̂2.
Sα(n + 1) should divide a subinterval of length l̂1 in subintervals of
length l̂2 and l̂1 − l̂2.

We check each of the three requirements in the substeps below.

-Substep 2.1- The theorem only gives an assertion about the division in
subintervals if we have already at least two lengths. Hence our induction
hypothesis makes no statement about the very first hit in an elementary
interval. Therefore we should start by checking that in each of the elemen-
tary intervals the partition process starts in the right way. If the very first
hit in an elementary interval is an element of the first cycle of Sα, then we
have no problems, because we already checked that the theorem holds for

13



1 ≤ n ≤ 2n1(α).

The only elementary interval which possibly contains no element of the
first cycle is Im, if L < α. Suppose the first value we hit in (0, L) is x. Then
in the same cycle we hit the value n1/2(α)α + x. This is the first hit in Im.
This first hit divides Im in exactly the same way as x has divided (0, L).
That means, two subintervals originate with lengths already occurring be-
fore the division (viz. l2 and l3 = l1 − l2).

-Substep 2.2- After each complete cycle of Sα, Im is partitioned in a sym-
metric way. This means that the longest subinterval occurring in Im is a
subinterval of (n1/2(α)α, (n1/2(α) + 1)α). From this observation, combined
with (1.10) and (1.14) it follows that after each complete cycle all the in-
tervals Ik,I−k, where 1 ≤ k ≤ n1/2(α), contain a subinterval which has
the maximal length. Now note that in each cycle the order in which the
elementary intervals will get hits is as follows (writing n1/2(α) as nα1/2 for
typographical reasons):

I1, I−1, I2, I−2, . . . , I
nα

1/2 , I
−nα

1/2︸ ︷︷ ︸
1st sequence

, Im, . . . , Im︸ ︷︷ ︸
2nd sequence

, I
−nα

1/2 , I
nα

1/2 , . . . , I−2, I2, I−1, I1︸ ︷︷ ︸
3rd sequence

,

(1.18)
where the second sequence can be empty. Because all elementary intervals
in the first sequence (as indicated by (1.18)) contain a subinterval of the
maximal length, the corresponding hits in these elementary intervals sa-
tisfy Requirement 2.

After the third sequence of hits a cycle is completed, so after this sequence
again all the intervals Ik,I−k, where 1 ≤ k ≤ n1/2(α), contain a subinter-
val which has the maximal length. Before the third sequence the maximal
subinterval in each of these elementary intervals was certainly not smaller,
which shows that the hits in the third sequence also satisfy Requirement 2.

The hits corresponding to the second sequence in (1.18) can only violate
the Requirement 2 if the last of these hits does so. This last hit gives a
value in (n1/2(α)α, (n1/2(α) + 1)α). After the third sequence the (k + 1)th
cycle is complete and hence we have the equivalence (0, α)(nk+1(α)) '
(n1/2(α)α, (n1/2(α) + 1)α)(nk+1(α)). The third sequence gives only one hit
in (0, α). The distance between this hit and the last hit of the second se-
quence is n1/2(α)α. It follows that the last hit of the second sequence gives
exactly the same division in the middle elementary interval as the third se-
quence gives in (0, α). By equivalences and symmetry the same holds for
the other elementary intervals. Hence the hits in the second sequence also
satisfy Requirement 2.
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-Substep 2.3- To check Requirement 3 we use our induction hypothesis. Sup-
pose x is a hit in an elementary interval I . Suppose x is an element of one
of the first k cycles of SIα. Then by our induction hypothesis it follows that
x divides an interval of lenght l̂1 in a part of length l̂2 and a part of length
l̂1 − l̂2, where l̂1 > l̂2(> l̂3) are the lengths of the subintervals in I .

If an elementary interval I has length not larger than α, then we get in
one cycle of Sα at most 2 hits in I . After k + 1 complete cycles of Sα, we
have recorded at most 2(k + 1) values in I . After k complete cycles of SIα,
we have at least 4k hits in I . k ≥ 1, so 4k ≥ 2(k + 1) which shows that Re-
quirement 3 is satisfied for hits in I . The only elementary interval to which
this argument possibly not applies is Im, if L > α.

Consider Im, and suppose L > α. Note that from the definitions it follows
that L = 2α − β. In the first cycle of Sα we get 2 hits in Im. Each next cycle
of Sα gives either 2 or 4 hits in Im. After k + 1 complete cycles of Sα, we
have recorded at most 4k + 2 values in Im. After k complete cycles of SImα ,
we have at least 4k hits in Im. It follows that if the (k+1)th cycle of Sα gives
two hits in Im, then Requirement 3 is satisfied. If the (k + 1)th cycle of Sα
gives four hits in Im, then it suffices to check if the last two of these four
hits satisfy Requirement 3.

Suppose the (k + 1)th cycle of Sα gives four hits in Im. Denote them by
x1, . . . , x4. Then x3 and x4 are in ((n1/2(α)+1)α, 1−n1/2(α)α) and (n1/2(α)α,
1 − (n1/2(α) + 1)α) respectively. These intervals have both length L − α =
α− β. The distance between x4 and the next hit x in (0, α− β) is a multiple
of α and by (1.14) we know that after adding both to the partition of (0, 1)
we have (n1/2(α)α, 1− (n1/2(α) + 1)α)(n) ' (0, α− β)(n), for some n ∈ N.
Hence x4 divides (n1/2(α)α, 1− (n1/2(α) + 1)α) in exactly the same way as
x divides (0, α − β). We already know that x satisfies Requirement 3 and
therefore also x4 satisfies Requirement 3. Using symmetry we see that an
analogous argument applies to x3, which completes the proof. �

1.3 A Four Gap Theorem

We are now in position to prove our main theorem, the ‘Four Gap Theo-
rem’.

Theorem 1.2 (The Four Gap Theorem) Let α ∈ R\Q and n ∈ N. Let ||x|| denote
the distance from x to the nearest integer. The numbers

||α||, ||2α||, ||3α||, . . . , ||nα|| (1.19)

divide the interval [0, 1
2 ] in subintervals of at least two and at most four different

lengths. For these lengths the following assertions hold:
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1. The rightmost length, denoted by lr, is unique.

2. There are two different lengths if and only if n||α|| < 1
2 .

3. If we have three different lengths, denote the two lengths not equal to lr by
l1 > l2. Then exactly one of the following four equalities holds: 2lr = l1,
2lr = l2, 2lr + l2 = l1 or l1 + l2 = 2lr.

4. If we have four different lengths, denote the three lengths not equal to lr by
l1 > l2 > l3. Then l1 = l2 + l3 and one of these lengths is equal to twice lr.

Proof. It is not possible to have only one length occurring, since α is irra-
tional. Without loss of generality we assume that α ∈ [0, 1], since we may
consider the fractional part of α.

Observe that min{{x}, {−x}} ∈ [0, 1
2 ]. So if we look at the sequence

min
{
{α}, {−α}

}
,min

{
{2α}, {−2α}

}
,min

{
{3α}, {−3α}

}
, . . . (1.20)

we get a subsequence of the sequence Sα. A term of the sequence Sα is
also a term of the sequence (1.20) if and only if it is in [0, 1

2 ]. Consequently,
by Theorem 1.1, the first n terms of the sequence (1.20) divide the interval
[0, 1

2 ] in subintervals of at least two and at most four different lengths. We
already had three different lengths and possibly we get a fourth because
we cut it off at 1/2.

Now note that
min

{
{nα}, {−nα}

}
= ||nα||, (1.21)

and it follows that the numbers in (1.19) divide [0, 1
2 ] in subintervals of at

least two and at most four different lengths.

We now turn our attention to the four assertions about these lengths. If
the rightmost length is not unique, then there exist integers 0 ≤ k, l,m ≤
n, l 6= m such that

1
2
− ||kα|| = ||lα|| − ||mα||, (1.22)

which implies that 1
2 is the sum of a multiple of α and an integer, contra-

dicting the irrationality of α. Hence the rightmost length lr is unique.

If n||α|| < 1
2 , then the only lengths are ||α|| and lr, so we have only two

different lengths. Now assume that we have only two different lengths.
The leftmost interval has length min1≤k≤n ||kα||. It follows that the num-
bers ||α||, . . . , ||nα|| are all multiples of min1≤k≤n ||kα||. From the irrationa-
lity of α we conclude that min1≤k≤n ||kα|| = ||α|| and ||nα|| = n||α||, which

16



is only possible if n||α|| < 1
2 .

Consider the partition of [0, 1] by the numbers

{α} , {−α} , {2α} , {−2α} , . . . , {nα} , {−nα} . (1.23)

This partition is symmetric with respect to 1
2 . The subintervals in which

[0, 1] is divided by these numbers, have either two or three different lengths,
according to Theorem 1.1. In the former case, if cutting it off at 1

2 gives three
lengths, either 2lr = l1 or 2lr = l2. In the latter case, if cutting it off at 1

2 gives
three lengths, either 2lr + l2 = l1 or l1 + l2 = 2lr.

The last assertion of the Four Gap Theorem follows immediately from The-
orem 1.1 and the observations made before. �
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Part II

Differences of random Cantor
sets
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Chapter 2

Introduction

We construct an M−adic random Cantor set F using the following mecha-
nism: take the unit interval and divide it in M subintervals of equal length.
Each of those subintervals corresponds to a number in the alphabet A =
{0, . . . ,M − 1}. It will be convenient to consider A as an Abelian group
with addition. So for instance if M = 6 we have 5 + 3 = 2. Now define a
joint survival distribution µ on 22A

. According to this distribution we choose
which subintervals are kept and which are discarded. Then in each next
construction step, each of the surviving subintervals is again divided in M
subintervals of equal length, of which again a subset survives according to
the distribution µ.

The marginal probabilities pi for i ∈ A are defined by

pi :=
∑

X⊆A:i∈X
µ(X). (2.1)

An important role is played by the cyclic correlation coefficients γk, k ∈ A,
defined by

γk :=
M−1∑
i=0

pipi+k. (2.2)

Our main question is whether or not the algebraic difference F1−F2 of two
random Cantor sets F1 and F2 constructed in this way contains an interval.
For both sets we take the same M , but not necessary the same joint sur-
vival distribution. We can distinguish between joint survival distributions
selecting intervals independently and joint survival distributions not ha-
ving this property. When we do not allow for dependence, the problem is
somewhat less complicated, but still far from trivial. Intervals are selected
and discarded independently if and only if the joint survival distribution
satisfies the equality

µ(X) =
∏
i∈X

pi
∏
i 6∈X

(1− pi) (2.3)
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for all X ⊆ A. For the case where intervals are discarded independently,
we already have the following result, due to Dekking and Simon in [1].

Theorem 2.1 Consider two independent random Cantor sets F1 and F2 with sur-
vival probabilities p0, . . . , pM−1.

1. If γk > 1 for all k = 0, . . . ,M − 1, then F1 − F2 contains an interval a.s.
on {F1 − F2 6= ∅}.

2. If γk, γk+1 < 1 for some k, then F1 − F2 contains no interval a.s.

For general (by general we mean that dependent intervals are allowed) joint
survival distributions the same result is proved in [2] (the result also holds
for the asymmetric case, that is, the joint survival distributions of F1 and
F2 need not to be the same), but an additional condition is needed in the
proof: the joint survival distributions µ and λ of F1 and F2 should satisfy
the following condition:

Condition 2.1 A joint survival distribution µ : 22A → [0, 1] satisfies the joint
survival condition if it assigns positive probability to its marginal support Suppm(µ),
which is defined by

Suppm(µ) :=
⋃
{X ⊆ A : µ(X) > 0} (2.4)

In Chapter 3 we will try to improve on this condition. The result of Dekking
and Kuijvenhoven is the following:

Theorem 2.2 Consider two independent random Cantor sets F1 and F2 whose
joint survival distributions satisfy Condition 2.1, the joint survival condition.

1. If γk > 1 for all k = 0, . . . ,M − 1, then F1 − F2 contains an interval a.s.
on {F1 − F2 6= ∅}.

2. If γk, γk+1 < 1 for some k ∈ A, then F1 − F2 contains no interval a.s.

2.1 Notation and approach to the problem

The algebraic difference of F1 and F2 can be seen as a projection under 45◦

of the Cartesian product F1 × F2. If φ : R2 → R is given by φ(x, y) = x− y,
then F1−F2 = φ(F1×F2). From this point of view we will try to investigate
the question if an interval will occur in the algebraic difference.

We denote the joint survival distributions of F1 and F2 by µ and λ, and the
corresponding vectors of marginal probabilities by p and q respectively.
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The n-th level approximations are denoted by Fn1 and Fn2 . We define the
following subsets of the unit square [0, 1]2:

Λn := Fn1 × Fn2 , n ≥ 0, Λ := F1 × F2 =
∞⋂
n=0

Λn. (2.5)

Strings over the alphabet A can be interpreted asM -ary expansions of num-
bers. Let T be the M -ary tree, the set of all strings over A. The set of strings

Figure 2.1: An illustration forM = 3 of the unit square [0, 1]2 rotated by 45◦, being projected
by φ to a

√
2-scaled-down version of [−1, 1]. The columns CUkn

split the n-th level squares
Qin,jn

= Iin × Ijn
into the ‘left’ and ‘right’ triangles Lin,jn

and Rin,jn
.
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of length n is denoted by Tn and corresponds to the set of all nodes at level
n. For all i1 . . . in ∈ T we let [i1 . . . in] denote the value of i1 . . . in as an
M -ary number:

[i1 . . . in]M :=
n∑
k=1

Mn−kik. (2.6)

The n-th level M -adic subintervals of [0, 1] are defined by

Ii1...in :=
1
Mn

[[i1 . . . in]M , [i1 . . . in]M + 1], (2.7)

for all i1 . . . in ∈ Tn. The Λn are unions of M -adic squares

Qi1...in,j1...jn := Ii1...in × Ij1...jn . (2.8)

The projection φ(Qi1...in,j1...jn) of an M -adic square is equal to the union of
two subsequentM -adic intervals in [−1, 1]. We define left and rightM -adic
intervals and ‘columns’ in the plane R2 by

ILi1...in := Ii1...in − 1, IRi1...in := Ii1...in ,

CLi1...in := φ−1(ILi1...in), CRi1...in := φ−1(IRi1...in).
(2.9)

These M -adic columns split M -adic squares Qi1...in,j1...jn in left (L-) and
right (R-) triangles, denoted by Li1...in,j1...jn and Ri1...in,j1...jn . These defini-
tions are illustrated by Figure 2.1. AnM -adic interval IUkn is absent in φ(Λn)
if and only if there are no triangles in the corresponding column CUkn in Λn.
Therefore we count triangles: for U, V ∈ {L,R} and kn ∈ T we let

ZUV (kn) := #
{

(in, jn) : Qin,jn ⊆ Λn, Vin,jn ⊆ C
U
kn

}
(2.10)

denote the number of level n V -triangles in Λn
⋂
CUkn

. We denote the total
number of V -triangles in columns CLkn and CRkn together by

ZV (kn) := ZLV (kn) + ZRV (kn). (2.11)

Squares Qi1...in,j1...jn and Qi′1...i′n,j′1...j′n are called aligned if i1 . . . in = i′1 . . . i
′
n

or j1 . . . jn = j′1 . . . j
′
n. The union of an unaligned left and right triangle

surviving in the same column is called a ∆-pair. The following expectation
matrices play an important role:

M(kn) :=
[

EZLL(kn) EZLR(kn)
EZRL(kn) EZRR(kn)

]
, (2.12)

satisfying the relationM(k1 . . . kn) =M(k1) . . .M(kn). It is not difficult to
prove that

[1 1]M(k) = [EZL(k) EZR(k)] = [γk+1 γk], (2.13)
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where the correlation coefficients for the asymmetric case are defined by

γk :=
M−1∑
i=0

qipi+k, (2.14)

for k ∈ A. The smallest correlation coefficient is denoted by

γ := min
k∈A

γk. (2.15)

An important tool in studying algebraic differences of random Cantor sets
are higher order random Cantor sets. The idea is to collapse n (this is the order)
steps of the construction into one single step. Let’s give a simple example.

Example 2.1 Take the standard triadic Cantor set (which in fact is not random
but deterministic), then M = 3 and the joint survival distribution µ is defined by
µ({0, 2}) = 1, giving marginal probabilities p = (p0, p1, p2) = (1, 0, 1). The same
set can also be obtained by taking the corresponding second order set: let M (2) = 9
and let µ(2) be defined by µ(2)({0, 2, 6, 8}) = 1, giving marginal probabilities
p(2) = (1, 0, 1, 0, 0, 0, 1, 0, 1).

A more detailed and precise description of the construction of random Can-
tor sets and the approach to solve the problem can be found in [2].

A little lemma that we will need in Chapter 4 is the following:

Lemma 2.1 Let X and Y be subsets of A. Then∑
k∈A

∑
j∈A

1Y (j)1X(j + k) = #X#Y. (2.16)

Proof.∑
k∈A

∑
j∈A

1Y (j)1X(j + k) =
∑
j∈A

∑
k∈A

1Y (j)1X(j + k)

=
∑
j∈A

(
1Y (j)

∑
k∈A

1X(j + k)

)
=
∑
j∈A

(1Y (j)#X)

= #X
∑
j∈A

1Y (j) = #X#Y. (2.17)

�
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Chapter 3

Improving on the joint survival
condition

The joint survival condition is a rather strong and restrictive condition, and
it is hard to believe that it is really an essential condition. Therefore, in this
chapter we try to find alternative conditions, which of course should be
weaker than the joint survival condition. In [2] the joint survival condition
is needed to be able to prove that with positive probability the growth of
left triangles and the growth of right triangles are both exponential in all
subcolumns of a ∆-pair. In our search for better conditions we will focus
on alternative ways to ensure positive probability of exponential growth.

The joint survival condition is only needed for the first part of Theorem 2.2.
In the first section we give a rough sketch of the proof of the first part of this
result for general joint survival conditions, as appearing in [2]. We mention
the lemma’s needed and develop a strategy to find conditions under which
we can prove these lemma’s. In the subsequent sections we discuss some
alternatives for the joint survival condition.

3.1 Rough sketch of the proof

The idea of the proof that we almost surely can find an M -adic interval
in the projection φ(Λ) is roughly as follows: suppose we have a ∆-pair in
one of the columns with positive probability. If we can prove that there is a
strictly positive probability that the number of L-triangles and R-triangles
in all subcolumns of this column grows exponentially, then it can be shown
that with positive probability the M -adic interval corresponding with this
column is in the projection φ(Λ). Now we make use of the fact that con-
ditioned on Λ 6= ∅ the Hausdorff dimension of Λ is almost surely larger
than 1, which is implied by γ > 1. It can be shown (see [1]) that from this
it follows that the number of unaligned squares grows to infinity. By self-
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similarity of the process each of the unaligned squares has positive proba-
bility to generate an interval in the projection, and hence with probability
one there will be an interval in the projection.

To show that a ∆-pair occurs somewhere with positive probability it suf-
fices that γ > 1. So the joint survival condition is only needed to ensure
positive probability of exponential growth in all subcolumns of a ∆-pair.
For any level m ∆-pair (Lm, Rm) that is contained in a level m column
C, the distribution of the number of level m + n V -triangles surviving in
Λm+n in the kn-th subcolumn of (Lm, Rm), conditional on the survival of
(Lm, Rm) in Λm, is independent of m, the particular choice of the column
C and the ∆-pair in it. Therefore, we can unambigiously denote a random
variable having this distribution by

Z̃V (kn) (3.1)

for all V ∈ {L,R} and kn ∈ T . In general Z̃V (kn) does not have the dis-
tribution of ZV (kn) because there is possible dependence between the off-
spring generation of two level 0 triangles, whereas there is no dependence
between the offspring generation of the L-triangle and the R-triangle of a
∆-pair, because they are unaligned by definition of a ∆-pair. However, both
do have the same expected value. Let

Ñ(kn) := min
{
Z̃L(kn), Z̃R(kn)

}
(3.2)

be the minimum number of pairs of each triangle type that survive in the
kn-th subcolumn of a level 1 ∆-pair. In [2] the following lemma on expo-
nential growth of triangles is proved:

Lemma 3.1 If γ > 1, and the joint survival distribution(s) satisfy the joint sur-
vival condition, then for all n ≥ 0

P(Ñ(km) ≥ γm for all km ∈ Tm for all 0 ≤ m ≤ n) > 0. (3.3)

For the proof of the theorem it is not essential that the growth factor is equal
to γ. The only requirement is that it is larger than 1. Our goal is to prove this
lemma (possibly with a different growth factor) under weaker conditions
than the joint survival condition.

3.2 Triangle growth condition

In this section we discuss the triangle growth condition, which is based on
a geometric argument. Suppose that in the first construction step none of
the level 1 squares is discarded. Observe that in this case for all k ∈ A the
number of V -triangles in columns CLk and CRk together is given by ZV (k) =
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M . Note that these V -triangles are all pairwise unaligned. That means that
if we take an arbitrary i0 ∈ A and discard all squares Qi0,j , then in each
column at most one of these triangles is lost. The same holds if we take an
arbitrary j0 ∈ A and discard all squares Qi,j0 . By doing this M − 2 times we
get the following: let I and J be subsets of A which have together M − 2
elements and discard all level 1 squares Qi,j for which i ∈ I or j ∈ J .
In doing this we lose at most M − 2 triangles in each column and hence
ZV (k) ≥ M − (M − 2) = 2 for all k ∈ A and V ∈ {L,R}. That means
that we have positive probability that the number of L- and R-triangles
will double in each column in each level of the construction, up to a certain
level n. The details of this reasoning are filled in in the proof of Lemma
3.2. Note that #(A \ I) + #(A \ J) = M + 2, a number which appears
in the condition below. The idea of discarding described here leads to the
following condition:

Condition 3.1 A pair of joint survival distributions (µ, λ) satisfies the triangle
growth condition if there exist setsX,Y ⊆ A for which µ(X) > 0 and λ(Y ) > 0
and #X + #Y ≥M + 2.

With help of the triangle growth condition we can prove that we have po-
sitive probability to get the desired exponential growth:

Lemma 3.2 If the pair of joint survival distributions (µ, λ) satisfies the triangle
growth condition, then for all n ≥ 0

P(Ñ(km) ≥ 2m for all km ∈ Tm for all 0 ≤ m ≤ n) > 0. (3.4)

Proof. LetX,Y ⊆ A be such that µ(X) > 0, λ(Y ) > 0 and #X+#Y ≥M+
2. Define the joint survival distributions µ? and λ? by µ?(X) = λ?(Y ) = 1.
All entities corresponding to these survival distributions will be marked
with a star superscript.

We take k ∈ A and investigate which squares possibly generate triangles in
columns CRk and CLk . It is not so difficult to see that L-triangles in column
CLk can be generated by squares Qi,j for which j − i = M − (k + 1), L-
triangles in column CRk can be generated by squares Qi,j for which i− j =
k+ 1, R-triangles in column CLk can be generated by squares Qi,j for which
j − i = M − k and R-triangles in column CRk can be generated by squares
Qi,j for which i− j = k.

Now let’s focus on the L-triangles in columns CLk and CRk together. These
triangles can occur in squares Qi,j for which either i = k + 1 + j −M or
i = k + 1 + j. For i ∈ A fixed, there is exactly one j ∈ A satisfying one of
these two equalities. We have M choices for i, hence we find M unaligned
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squares Qi,j possibly generating a L-triangle in CLk ∪ CRk . This gives

Z?;L(k) ≥ M −#(A \X)−#(A \ Y )
= M − (M −#X)− (M −#Y )
= −M + #X + #Y
≥ −M +M + 2 = 2. (3.5)

By an analogous argument it follows thatZ?;R(k) ≥ 2. This reasoning holds
for all k ∈ A. Consequently, the column sums of the matricesM?(k) are all
at least equal to 2. This leads to the following componentwise (in)equalities:

[Z̃?;L(km) Z̃?;R(km)] = [EZ̃?;L(km) EZ̃?;R(km)]
= [EZ?;L(km) EZ?;R(km)]
= [1 1]M?(km) = [1 1]M?(k1) . . .M?(km)
≥ [2m 2m], (3.6)

for all km ∈ Tm. For in ∈ Tn we write in ∈ Xn if i1, . . . , in ∈ X . Now
consider for each n ≥ 0 the event

Jn :=
{
Qin,jn

⊆ Λn for all in ∈ Xn, j
n
∈ Y n

}
. (3.7)

Then P(Jn) = µ(X)
∑n
j=1(#X)jλ(Y )

∑n
j=1(#Y )j > 0 and P?(Jn) = 1. By the

self-similarity of the process and the requirement that the process runs in-
dependently in the triangles of a ∆-pair, the event that in the first n ≥ 0
sublevels of the surviving ∆-pair all triangles (in the ∆-pair) Lin,jn and
Rin,jn

with in ∈ Xn, j
n
∈ Y n survive simultaneously, occurs with at least

probability (P(Jn))2 > 0. Conditional on this latter event we have (using
(3.6))

[Z̃L(km) Z̃R(km)] = [Z̃?;L(km) Z̃?;R(km)] ≥ [2m 2m] (3.8)

elementwise for all 0 ≤ m ≤ n and km ∈ Tm. This implies the statement of
the lemma. �

3.2.1 Discussion on the triangle growth condition

We now have found some alternative for the joint survival condition, the
next question is how it relates to the joint survival condition. In some sense
it is a somewhat more intuitive condition. Why the joint survival condition
has some contra-intuitive properties is made clear in the following exam-
ple.
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Example 3.1 Take M = 6 and µ = λ such that µ({0, 1, 2, 3, 4}) =
µ({1, 2, 3, 4, 5}) = 1/2. The vector of marginal probabilities is given by p =
(1/2, 1, 1, 1, 1, 1/2), yielding the following correlation coefficients:

γ0 = 4
1
2
, γ1 = γ5 = 4

1
4
, γ2 = γ3 = γ4 = 4. (3.9)

So all correlation coefficients are far above one. From the six subintervals always
only one is discarded and hence intuitively one should somehow get an interval
in the projection φ(Λ) (it will turn out that this is indeed the case). However, this
example fails to satisfy the joint survival condition, because the marginal support
is equal to

Suppm(µ) = {0, 1, 2, 3, 4} ∪ {1, 2, 3, 4, 5} = {0, 1, 2, 3, 4, 5} (3.10)

and µ({0, 1, 2, 3, 4, 5}) = 0. So the joint survival condition is the breaking point in
the proof. However, we still have not mentioned the most striking fact. If we adapt
the joint survival distribution such that µ({1, 2, 3, 4}) = 1, then the marginal
probabilities become p = (0, 1, 1, 1, 1, 0), giving correlation coefficients:

γ0 = 4, γ1 = γ5 = 3, γ2 = γ3 = γ4 = 2. (3.11)

Moreover, it is trivial that the joint survival condition is satisfied now, and there-
fore we conclude that φ(Λ) almost surely contains an interval. Summarizing: we
have an example, where we can not prove existence of an interval in φ(Λ), we adapt
the joint survival distribution in such a way that all sets to which was assigned
positive probability become smaller (!) and now suddenly we are able to prove the
existence of an interval in φ(Λ).

In some cases where we couldn’t solve the problem because the joint sur-
vival condition was not satisfied, we actually can solve the problem with
help of the triangle growth condition. Let’s illustrate this with an example.

Example 3.2 Take M = 4 and µ = λ such that µ({0, 1, 2}) = µ({1, 2, 3}) =
1/2. The vector of marginal probabilities is given by p = (1/2, 1, 1, 1/2), and the
following correlation coefficients are given by:

γ0 = 2
1
2
, γ1 = γ3 = 2

1
4
, γ2 = 2. (3.12)

The marginal support is equal to

Suppm(µ) = {0, 1, 2} ∪ {1, 2, 3} = {0, 1, 2, 3} (3.13)

and µ({0, 1, 2, 3}) = 0. So this example violates the joint support condition. Now
let’s check the triangle growth condition. Take

X = Y = {0, 1, 2} , (3.14)

then we have #X + #Y = 3 + 3 ≥ M + 2 = 6. Hence the triangle growth
condition is satisfied and we can conclude that the projection φ(Λ) contains an
interval almost surely.
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The above example shows that in some cases the triangle growth condition
holds, while the joint survival condition fails. Unfortunately, also the oppo-
site case possibly occurs, and therefore an objective answer to the question
which condition is better is hard to give. The example below shows that it is
also possible to be able to prove occurrence of an interval in the projection
almost surely with help of the joint survival condition, while the triangle
growth condition is not satisfied.

Example 3.3 Let M = 7 and define µ = λ by µ({0, 1, 2, 4}) = 3
4 and µ(∅) = 1

4 .
Computing the marginal probabilities we find

p = (3
4 ,

3
4 ,

3
4 , 0,

3
4 , 0, 0),

which means that the correlation coefficients are given by

γ0 =
9
4
, γi =

9
8

for i ∈ {1, 2, 3, 4, 5, 6} .

Hence all correlation coefficients are bigger than 1. Now let’s check the triangle
growth condition. The largest set having positive probability is {0, 1, 2, 4}. There-
fore we take X = Y = {0, 1, 2, 4}. Then #X + #Y = 4 + 4 = 8 6≥ M + 2 =
7 + 2 = 9. So using the triangle growth condition, we fail to prove existence of an
interval in φ(Λ). Because the marginal support of µ (being equal to {0, 1, 2, 4}) has
positive probability, the joint survival condition is satisfied and here we succeed in
proving occurrence of an interval in φ(Λ).

We have seen that neither of the joint survival condition and the triangle
growth condition implies the other one. Although the triangle growth con-
dition at first sight seems to be a more natural condition it has a big disad-
vantage: in contrast with the joint survival condition it does not propagate
to higher order Cantor sets. For example, if M = 9 and the largest set to
which is assigned positive probability by µ has 6 elements, then the trian-
gle growth condition is satisfied because 2 ·6 = 12 ≥ 11 = M +2. However,
for the corresponding second order Cantor set, M (2) = 81 and the largest
set having positive probability has 36 elements. Now 2 · 36 = 72 6≥ 83 =
M (2) + 2. Thus, the corresponding second order Cantor set is not satisfying
the triangle growth condition.

3.3 Max-min growth condition

If we have the algebraic difference of two deterministic Cantor sets, then
we can describe this with two joint survival distributions assigning proba-
bility one to subsets X and Y of A, i.e. µ(X) = λ(Y ) = 1. The marginal
probabilities are then given by

pi = 1X(i) qi = 1Y (i), (3.15)
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for i ∈ A. Hence for the correlation coefficients (by (2.13) being the column
sums of the expectation matricesM(k), k ∈ A) we find

γk =
M−1∑
i=0

qipi+k =
M−1∑
i=0

1Y (i)1X(i+ k). (3.16)

To guarantee exponential growth of triangles, it suffices that the minimum
of the column sums of the expectation matrices exceeds 1. This leads to the
following criterion:

min
k∈A

M−1∑
i=0

1Y (i)1X(i+ k) > 1. (3.17)

We use this observation to formulate another condition under which we
can prove to have exponential growth with positive probability. We only
need positive probability of exponential growth and therefore we can mani-
pulate with positive probabilities, as long as we keep them positive. What
we mean by this is the following: suppose that the joint survival distribu-
tions µ1 and λ1 assign strictly positive probability to all (and only those)
sets in Cµ and Cλ respectively, where Cµ and Cλ are collections of subsets of
A.

Now suppose that µ2 and λ2 assign positive probability to sets in a smaller
collection of subsets of A. So µ2 and λ2 assign positive probability only
to sets in C̃µ and C̃λ respectively, where C̃µ ⊆ Cµ and C̃λ ⊆ Cλ. If the pair
(µ2, λ2) gives positive probability to have exponential growth of triangles,
then this implies that the pair (µ1, λ1) also satisfies this property, no matter
what the exact probabilities assigned to the subsets of A are. Now take C̃µ
and C̃λ consisting of one single subset of A, or to state it differently: take
µ2 and λ2 deterministic, such that µ2(X) = λ2(Y ) = 1 for some X,Y ∈ A.
If it is possible to do this in such a way that X and Y satisfy the criterion
in (3.17), then the pair (µ1, λ1) gives positive probability to get exponential
growth of triangles.

The above reasoning motivates the formulation of the following condition.

Condition 3.2 A pair of joint survival distributions µ, λ : 22A → [0, 1] satisfies
the max-min growth condition (MMGC) if the following holds:

max
X,Y⊆A:µ(X),λ(Y )>0

min
k∈A

M−1∑
j=0

1Y (j)1X(j + k) > 1. (3.18)

Under this condition we can prove that we have positive probability to
get the exponential growth we need. Basically, the proof is the same as the
proof of Lemma 3.2.
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Lemma 3.3 If the joint survival distributions satisfy the MMGC, then for all
n ≥ 0

P(Ñ(km) ≥ 2m for all km ∈ Tm for all 0 ≤ m ≤ n) > 0. (3.19)

Proof. Let X,Y ⊆ A be sets for which the maximum in the MMGC is at-
tained. Now define the joint survival distributions µ? and λ? by requiring
that µ?(X) = λ?(Y ) = 1. Note that the MMGC now states that γ? > 1, and
because this is a deterministic case, we even have γ? ≥ 2. By noting that
[1 1]M?(k1) . . .M?(km) ≥ [(γ?)m (γ?)m], we can from here do exactly
the same as in the proof of Lemma 3.2 starting from equation (3.6). �

3.3.1 Discussion on the max-min growth condition

In concrete situations, one frequently deals with the symmetric case µ = λ.
In that case it is a natural question if it makes sense to allow for asymmetry
in the MMGC or that X = Y always is a good choice. Obviously, allow-
ing for asymmetry gives a theoretically weaker condition, but it also highly
increases the required effort to check the condition. Possibly allowing for
symmetry gives in practice an equivalent condition, although it is theoreti-
cally weaker. Do there exist concrete cases where µ = λ and the symmet-
ric condition is not satisfied, while the asymmetric condition is satisfied?
We searched for such examples and found one for M = 7, (which is the
smallest M for which such an example exists), showing that allowing for
asymmetry is useful.

Example 3.4 LetM = 7 and define the setsB := {0, 2, 4, 6} andC := {0, 1, 2, 3}.
Consider the symmetric case and let the joint survival distribution µ be defined by
µ(B) = µ(C) = 1

2 . The set B contains only even numbers, and therefore all terms
in the sum below are zero, except the last one:

6∑
j=0

1B(j)1B(j + 1) = 1B(6)1B(0) = 1. (3.20)

For the set C the following expression holds:

6∑
j=0

1C(j)1C(j + 3) = 1C(0)1C(3) = 1. (3.21)

Because B and C are the only sets to which µ assigns positive probability, we get
the following result:

max
X⊆A:µ(X)>0

min
k∈A

6∑
j=0

1X(j)1X(j + k) ≤ 1. (3.22)
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With some additional computations, it can be shown that

6∑
j=0

1C(j)1B(j + k) ≥ 2. (3.23)

for all k ∈ A. Consequently, the MMGC is satisfied, and according to (3.22) it is
crucial that asymmetry in the MMGC is allowed.

One of the disadvantages of the triangle growth condition was that it failed
to propagate to higher order Cantor sets. Fortunately, the MMGC scores
better on this point, as the following lemma shows.

Lemma 3.4 (Propagation of the MMGC to higher order Cantor sets) Suppose the
pair of joint survival distributions (µ, λ) satisfies the MMGC, then for all n ≥ 1,
(µ(n), λ(n)) satisfies the MMGC.

Proof. Let X,Y ⊆ A be sets for which the maximum in the MMGC is
reached. Now define the joint survival distributions µ? and λ? by requi-
ring that µ?(X) = λ?(Y ) = 1. According to the MMGC we have γ? > 1. Let
n ≥ 1 and k = [k1 . . . kn]M ∈ A(n). Then the following holds component-
wise:

[γ?(n)
k+1 γ

?(n)
k ] = [1 1]M?(n)(k) = [1 1]M?(k1) . . .M?(kn)

≥ [(γ?)n (γ?)n] > [1 1] (3.24)

Now define

X(n) := {[i1 . . . in]M : i1, . . . , in ∈ X} , (3.25)
Y (n) := {[i1 . . . in]M : i1, . . . , in ∈ Y } . (3.26)

Then µ?(n)(X(n)) = λ?(n)(Y (n)) = 1 and hence for all k ∈ A(n) we have

γ
?(n)
k =

Mn−1∑
j=0

1Y (n)(j)1X(n)(j + k). (3.27)

Therefore we can conclude that

min
k∈A(n)

Mn−1∑
j=0

1Y (n)(j)1X(n)(j + k) > 1, (3.28)

so it follows that (µ(n), λ(n)) satisfies the MMGC. �

An important question about the MMGC is how it relates to the joint sur-
vival condition. Did we make any progress in finding this alternative condi-
tion? Lemma 3.5 shows that the joint survival condition implies the MMGC,
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provided γ > 1. Recall that the cases which we are interested in, are those
where γ > 1. Hence we conclude that the MMGC is a better condition than
the joint survival condition from a theoretical point of view. The joint sur-
vival condition has the practical advantage that it is much more easy to
check.

Lemma 3.5 (The JSC implies the MMGC) Suppose that the joint survival distri-
butions µ and λ satisfy the joint survival condition. If γ > 1, then the pair (µ, λ)
satisfies the MMGC.

Proof. Define the joint survival distributions µ? and λ? by requiring that
µ?(Suppm(µ)) = λ?(Suppm(λ)) = 1. Then for all k ∈ A we have

γ?k =
M−1∑
j=0

1Supp
m

(λ)(j)1Supp
m

(µ)(j + k)

≥
M−1∑
j=0

qjpj+k = γk ≥ γ > 1, (3.29)

since qj = 0 if j 6∈ Suppm(λ), and similarly for pi. Taking the minimum
over k we find

min
k∈A

M−1∑
j=0

1Supp
m

(λ)(j)1Supp
m

(µ)(j + k) > 1. (3.30)

Now note that µ(Suppm(µ)) > 0 and λ(Suppm(λ)) > 0, because µ and λ
satisfy the joint survival condition. It follows that the pair (µ, λ) satisfies
the MMGC. �

Now let’s compare the MMGC with the triangle growth condition. We al-
ready showed the existence of examples where the joint survival condi-
tion holds, while the triangle growth condition fails (Example 3.3). Using
Lemma 3.5, it follows that it is also possible to find examples where the
MMGC holds and the triangle growth condition fails. The opposite is not
possible, because in the following lemma we show that the MMGC is a
weaker condition than the triangle growth condition.

Lemma 3.6 (The TGC implies the MMGC) Suppose that the pair of joint survival
distributions (µ, λ) satisfies the triangle growth condition. Then the pair (µ, λ)
satisfies the MMGC.

Proof. Let X ⊆ A and Y ⊆ A be such that µ(X) > 0, λ(Y ) > 0 and #X +
#Y ≥M + 2. Take k ∈ A and consider the sum

∑M−1
j=0 1Y (j)1X(j+ k). This
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sum has M terms and from the triangle growth condition it follows that at
least two of these terms are equal to 1. Consequently

min
k∈A

M−1∑
j=0

1Y (j)1X(j + k) ≥ 2, (3.31)

and we conclude that the pair (µ, λ) satisfies the MMGC. �

3.4 Conclusion and research ideas

Of the three conditions we examined thus far, the MMGC is the best condi-
tion, in the sense that it is the weakest and hence covers most cases. How-
ever, both the joint survival condition and the triangle growth condition are
much easier to check. Especially the joint survival condition can be checked
at a glance. In checking the joint survival condition one should bear in mind
that it can be useful to replace some sets having positive probability by sub-
sets, as we did in Example 3.1.

The proof of Theorem 2.2 is based on two lemma’s. In Lemma 1 in [2] it
is shown that there is positive probability to get exponential growth of tri-
angles in all subcolumns of a column containing a ∆-pair. Lemma 2 in [2]
states that there is positive probability of existence of a level m ∆-pair in
Λm. For both lemma’s γ > 1 is needed, and for Lemma 1 also the joint sur-
vival condition is used. As we have seen, if we keep both lemma’s the same,
then we can replace the joint survival condition by the MMGC. An interest-
ing idea is to adapt the two lemma’s in the following way. Lemma 2 can be
made stronger by requiring that there exists a certain number (say n, possi-
bly dependent of M ) of level m ∆-pairs in the same column of Λm. Lemma
1 can be weakened by only requiring that there is positive probability to get
exponential growth of triangles in all subcolumns of a column containing
n ∆-pairs. In doing this, one hopes that both lemma’s can be proved under
weaker conditions. We already made some investigations (without finding
results worth mentioning) in this direction. The problem becomes rather
complex due to dependencies between columns, but this certainly seems a
promising direction to go.
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Chapter 4

A canonical class of random
Cantor sets

In this chapter we consider a class of random Cantor sets that deserves
special attention due to its natural construction and interesting properties:
correlated fractal percolation. Studying this class is also motivated since
we want to test the MMGC. Does this condition help us to solve problems
from the correlated fractal percolation class? Or possibly even more in-
teresting: can we find Cantor sets in this class for which the sum of the
Hausdorff dimensions is greater than one and for which the MMGC is
not satisfied? This is an interesting question due to the Palis conjecture: if
dimH(F1) + dimH(F2) > 1, then generically it should be true that F1 − F2

contains an interval. Although there exist examples where the Palis con-
jecture does not hold (see [2]), it would be rather surprising if the Palis
conjecture fails for Cantor sets from the very symmetric correlated fractal
percolation class. So if we can find examples of correlated fractal percola-
tion not satisfying the MMGC, then this probably gives ideas to improve
on the MMGC.

We will start with the definition and some general properties and results for
correlated fractal percolation. Our goal is to answer the question whether
or not an interval occurs in the algebraic difference of two random Cantor
sets from the correlated fractal percolation class. Theorem 4.1 gives an an-
swer to this question for most of the sets in this class. In the subsequent
sections we look at some particular random Cantor sets for which the the-
orem gives no conclusion.

4.1 Construction and general properties

We start with the definition of the class of random Cantor sets which we
will take into consideration.
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Definition 4.1 Consider the algebraic difference of two M -adic random Cantor
sets. Consider the symmetric case µ = λ and suppose µ assigns the same positive
probability to all subsets of A with m elements for some fixed integer m ∈ A.
Assume that µ assigns probability zero to all other non-empty subsets of A. If
p := (1− µ∅)mM then we call this (m,M, p)-percolation.

Now let’s have a look at some properties of (m,M, p)-percolation. Due to
symmetry, all marginal probabilities are the same, and we can compute
them as follows. Let X be a subset of A, chosen according to the survival
distribution µ. The probability that X is non-empty is 1 − µ(∅). Given that
X is non-empty, the probability that a fixed k ∈ A belongs to X equals m

M .
It follows that for all k ∈ A the marginal probability pk is given by

pk = (1− µ(∅))m
M

= p, (4.1)

which is exactly the reason why we defined (m,M, p)-percolation by requi-
ring that p = (1 − µ∅)mM . Because 0 ≤ µ(∅) ≤ 1, (m,M, p)-percolation is
only defined for 0 ≤ p ≤ m

M . From now on we will assume that p > 0 and
m > 0, since giving the empty set probability one does not yield the most
exciting situation. As a consequence of the fact that all marginal probabili-
ties are the same, also all correlation coefficients are the same. For all k ∈ A
we have

γk =
M−1∑
j=0

pjpj+k = Mp2 =: γ. (4.2)

As we see, (m,M, p)-percolation is perfectly balanced and symmetric, and
these features make this to be the most elegant and natural class of random
Cantor sets.

Obviously for (m,M, p)-percolation the joint survival condition is not sa-
tisfied, unless we are in the case m = M , giving positive probability only
to the full alphabet and the empty set (actually, this is uncorrelated fractal
percolation, where intervals are discarded independently and the marginal
probabilities pk are all equal to p). This illustrates the importance of the
MMGC, most of the research in this chapter involves attempting to find
subsets of A satisfying the MMGC.

The following theorem gives an answer to the interval or not question for
a large part of the (m,M, p)-percolation class.

Theorem 4.1 Consider (m,M, p)-percolation. Then the following two assertions
hold:
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1. If m <
√
M or p <

1√
M

, then F1 − F2 contains no interval a.s.1

2. If m ≥
√

2M and p >
1√
M

, then F1 − F2 contains an interval a.s. on

{F1 − F2 6= ∅}.

Proof. Suppose that p < 1√
M

, then for all k ∈ A we have

γk = Mp2 < M

(
1√
M

)2

= 1, (4.3)

and consequently F1 − F2 contains no interval a.s. by Theorem 2.2. If m <√
M , then p = (1 − µ∅)mM < 1√

M
and consequently the same argument is

applicable, completing the proof of the first part of Theorem 4.1.

For the second part, suppose that m ≥
√

2M and p > 1√
M

and define the
following subsets of A:

X := {0, 1, . . . ,m− 1} , (4.4)

Y :=
{⌊

lM

m

⌋
; l = 0, 1, . . . ,m− 1

}
. (4.5)

Then for k ∈ A
M−1∑
j=0

1Y (j)1X(j + k) =
M−k+m−1∑
j=M−k

1Y (j) (4.6)

by definition of X . Assume for some k ∈ A that the sum on the right hand
side is smaller than or equal to 1. Since there arem terms in this sum, we can
find m consecutive elements of A of which at most one is also an element
of Y (where also M − 1 and 0 are considered to be consecutive). Using the
definition of Y it now follows that⌊

(l + 2)M
m

⌋
−
⌊
lM

m

⌋
≥ m+ 1 (4.7)

for some l ∈ {0, . . . ,m− 1}.

Now observe that M ≤ 1
2m

2 and for a real number x, let {x} = x − bxc.
Note that {x} < 1 for all x ∈ R. Then we find⌊

(l + 2)M
m

⌋
−
⌊
lM

m

⌋
=

(l + 2)M
m

−
{

(l + 2)M
m

}
− lM

m
+
{
lM

m

}
1Actually, m <

√
M implies that p < 1/

√
M . Hence the statement ”If p < 1/

√
M ,

then F1 − F2 contains no interval a.s.” is equivalent to the first assertion of Theorem 4.1. We
formulated the theorem in this way to emphasize what the bounds on m are.
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=
2M
m

+
{
lM

m

}
−
{

(l + 2)M
m

}
≤

2(1
2m

2)
m

+
{
lM

m

}
−
{

(l + 2)M
m

}
< m+ 1, (4.8)

contradicting (4.7). Hence the sum in (4.6) must be greater than one:

M−1∑
j=0

1Y (j)1X(j + k) > 1 (4.9)

for all k ∈ A. We conclude that X and Y satisfy the MMGC. On top of that,
for γ we find

γ = Mp2 > M

(
1√
M

)2

= 1, (4.10)

and therefore, by Theorem 2.2,F1−F2 contains an interval a.s. on {F1 − F2 6= ∅}.
�

The above result motivates the following definition.

Definition 4.2 If we have (m,M, p)-percolation with m <
√

2M , then we call
this flimsy percolation.

In the proof of Theorem 4.1 it is shown that (m,M, p)-percolation satis-
fies the MMGC if m ≥

√
2M . This bound is sharp in the sense that flimsy

(m,M, p)-percolation does not satisfy the MMGC, as is shown in the fol-
lowing property.

Property 4.1 (m,M, p)-percolation satisfies the MMGC if and only if it is not
flimsy.

Proof. Consider (m,M, p)-percolation. If it is not flimsy, then the MMGC is
satisfied, as is shown in the proof of Theorem 4.1. Therefore, it suffices to
check that flimsy (m,M, p)-percolation fails to satisfy the MMGC.

Now consider flimsy (m,M, p)-percolation. Let X and Y be arbitrary non-
empty sets to which µ assigns positive probability. By definition, X and Y
both contain m elements. Using Lemma 2.1 it follows that for X and Y the
following holds:

M−1∑
k=0

M−1∑
j=0

1Y (j)1X(j + k) = #X#Y = m2 < 2M, (4.11)

where the last inequality follows from the fact that the percolation is flimsy.
This means that in the sum

∑M−1
k=0

∑M−1
j=0 1Y (j)1X(j + k) at least one of the
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M terms must be smaller than 2. By noting that each of these terms is an
integer, it follows that at least one of the terms is smaller than or equal to 1.
So we have

min
k∈A

M−1∑
j=0

1Y (j)1X(j + k) ≤ 1. (4.12)

Since X and Y were arbitrary sets, the MMGC does not hold. �

Due to the above lemma, studying higher order Cantor sets is the way to
go when trying to solve the problem for flimsy (m,M, p)-percolation. An
indication of the difficulty of the problem for a concrete case of (m,M, p)-
percolation is given by the lowest order possibly satisfying the MMGC. The
next lemma gives an expression of this difficulty measure in terms ofm and
M .

Lemma 4.1 Consider (m,M, p)-percolation with m >
√
M . Let µ(n) be the nth

order joint survival distribution. If

n <
log 2

2 logm− logM
, (4.13)

then µ(n) does not satisfy the MMGC.

Proof. Consider the nth order random Cantor sets corresponding to (m,M, p)-
percolation. The largest subsets of A(n) to which µ(n) assigns positive pro-
bability consist of mn elements. If (mn)2 < 2Mn, then by a reasoning very
similar to the proof of Lemma 4.1, it can be shown that at least one of the
terms in the sum

Mn−1∑
k=0

Mn−1∑
j=0

1Y (n)(j)1X(n)(j + k) (4.14)

is smaller than or equal to 1. HereX(n) and Y (n) are arbitrary subsets of A(n)

for which µ(n)(X(n)) > 0 and µ(n)(Y (n)) > 0. Consequently, the MMGC is
not satisfied. Solving the inequality (mn)2 < 2Mn for n, we find the bound
given in the lemma. �

The first order for which we can hope to find sets satisfying the MMGC
is equal to the ceiling of the bound in (4.13). Evaluating the bound for the
smallest m for which the percolation is not flimsy (that is m =

√
2M), we

get

log 2
2 log

√
2M − logM

=
log 2

log 2M − logM
=

log 2
log 2 + logM − logM

= 1,

(4.15)
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confirming that for non-flimsy percolation the first order possibly already
satisfies the MMGC. The problem becomes more difficult when the deno-
minator in (4.13) approaches zero. For example, if we take (4, 15, p)-percola-
tion, then we have to go at least to the 11th order (bound≈ 10.74), while for
(5, 15, p)-percolation the 2nd order probably is sufficient (bound ≈ 1.36).

4.2 Some cases of flimsy (m, M, p)-percolation

In this section we are going to use the theory which we have developed so
far. We will try to solve some cases of flimsy percolation for which

√
M <

m <
√

2M .

4.2.1 (2, 3, p)-percolation

It is well known that C−C = [−1, 1], where C is the standard deterministic
triadic Cantor set. So a natural place to start our investigations is the case
of percolation that most resembles this known case: (2, 3, p)-percolation. C
is constructed by each time dividing each interval in three equal subinter-
vals and discarding the middle of these three intervals. If we take (2, 3, p)-
percolation with p = 2

3 , then again intervals are divided in three equal
subintervals, the only difference with the construction of C is that the in-
terval to be discarded can be chosen freely. For M ≤ 3, (2, 3, p)-percolation
is the only case of percolation which is flimsy. Figure 4.1 gives an illustra-
tion of (2, 3, 2

3)-percolation.

Figure 4.1: Illustration of the first construction steps of a realization of (2, 3, 2
3
)-percolation.

The black area is a 3rd level approximation of F1 × F2, the union of black and dark grey
is a 2nd level approximation and the union of black, dark grey and light grey is a 1st level
approximation.
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We now use Lemma 4.1 to compute the lowest order for which we can hope
to succeed in finding sets satisfying the MMGC:

log 2
2 log 2− log 3

≈ 2.41, (4.16)

so we can start our search at the 3rd order. We are looking for subsets X(3)

and Y (3) of A(3) = {0, 1, . . . , 26} that should satisfy the following require-
ments:

1. X(3) should contain 8 elements. If we divide A(3) in 3k blocks of 33−k

elements, then each of these blocks should contain either 0 or 23−k

elements of X(3) for k = 1, 2. The same should hold for Y (3).

2. X(3) and Y (3) should satisfy

min
k∈A(3)

26∑
j=0

1Y (3)(j)1X(3)(j + k) > 1. (4.17)

The first requirement is due to the special construction procedure and the
second requirement is needed to let the MMGC be fulfilled. Note that the
first of these two requirements only allows for subsets of A(3) containing 8
elements, while there also exist smaller sets to which µ(3) assigns positive
probability if p < 2

3 . However, due to the second requirement it makes no
sense to allow for smaller sets.

With some trial and error guesswork we failed to find appropriate sub-
sets of A(3). Therefore we switched to using a Matlab program. The imple-
mented algorithm works as follows. Without loss of generality, we assume
that in the first construction step the subsets X,Y ⊆ {0, 1, 2} are given by:

X = Y = {0, 1} . (4.18)

This does not violate the generality, since for the 3rd order we are interested
in the family of sums

26∑
j=0

1Y (3)(j)1X(3)(j + k), k = 0, . . . , 26, (4.19)

which is invariant under the addition of a constant to all elements in X or
Y . To see this, note that the two-element subsets of {0, 1, 2} are {0, 1}, {1, 2}
and {0, 2}. The subset {1, 2} can be obtained by adding the constant 1 to
all elements of X and the subset {0, 2} can be obtained by adding 2 to all
elements ofX . If we now for example takeX = {0, 2}, this leads to replace-
ment of k in the sum appearing in (4.19) by k + 18. But if k runs through
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the complete alphabet A(3), then the same holds for k + 18. Consequently,
we find the same family of sums as in (4.19).

A subset S of the nth order alphabet A(n) can be represented as a vector
of zeros and ones, where a 1 at the ith position means that i − 1 ∈ S. If we
denote such a vector by ~S, then ~X and ~Y are given by

~X = ~Y =

 1
1
0

 . (4.20)

Going to the next order means that each 1 in ~X and ~Y is replaced by a vec-
tor of length 3 of which two elements equal 1 and one element equals 0.
Each 0 in ~X and ~Y is replaced by the length 3 zero vector.

Now the sum
Mn−1∑
j=0

1Y (n)(j)1X(n)(j + k) (4.21)

is the inner product of ~X(n) and ~Y (n), where the first k elements of ~X(n) are
moved to the end. For each pair X(n), Y (n) of subsets of A(n), this gives Mn

inner products. If the minimum of those inner products is at least 2, then
we have succeeded and X(n) and Y (n) satisfy the MMGC. If the minimum
of the inner products is 0, then we can stop searching in this direction, since
the zero will never disappear if we go to higher orders.

Our algorithm now starts with the two vectors given in (4.20) and com-
putes all pairs of second order sets X(2) and Y (2) for which the minimum
of the inner products equals 1. Note that by Lemma 4.1 it is impossible to
find second order sets with a minimum inner product of 2. For all those
pairs of second order sets we compute the corresponding third order sets
and check if they satisfy the MMGC. An implementation of this algorithm
can be found in Appendix B.

We found the following six pairs of third order sets X(3)
j , Y

(3)
j ∈ A(3) satis-

fying the construction requirements and the MMGC:{
X

(3)
1 = {0, 2, 7, 8, 9, 10, 15, 17} ,

Y
(3)
1 = {0, 1, 3, 4, 13, 14, 16, 17} ,

(4.22){
X

(3)
2 = {0, 2, 7, 8, 9, 10, 15, 17} ,

Y
(3)
2 = {0, 1, 4, 5, 12, 13, 16, 17} ,

(4.23){
X

(3)
3 = {0, 2, 7, 8, 9, 10, 15, 17} ,

Y
(3)
3 = {0, 1, 3, 4, 12, 13, 16, 17} ,

(4.24)
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{
X

(3)
4 = {0, 2, 7, 8, 9, 10, 15, 17} ,

Y
(3)
4 = {0, 1, 4, 5, 13, 14, 16, 17} ,

(4.25){
X

(3)
5 = {0, 1, 7, 8, 9, 10, 16, 17} ,

Y
(3)
5 = {0, 1, 3, 5, 12, 14, 16, 17} ,

(4.26){
X

(3)
6 = {1, 2, 7, 8, 9, 10, 15, 16} ,

Y
(3)
6 = {0, 1, 3, 5, 12, 14, 16, 17} ,

(4.27)

and 6 other pairs of solution sets, where the roles of X(3) and Y (3) are re-
versed. Hence there are only 12 pairs of sets satisfying our requirements,
while our algorithm searched in 312 = 531441 pairs of sets. So it is quite a
hard problem to find appropriate sets.

The reason why we explicitly specified all pairs of sets satisfying the re-
quirements is that we hope to see some structure in it. If we find some re-
gularity in the solutions, then it possibly becomes easier to solve other cases
of (m,M, p)-percolation. The first property of the solution sets that catches
the eye is that most of them are symmetric with respect to 17/2, only for
Y

(3)
3 and Y

(3)
4 this does not hold. The second thing worth mentioning is

that the range of the solution sets is maximal in all but one case. Due to our
assumption (4.18) the maximal element possibly occurring in a third order
solution set is equal to 2∗32−1 = 17. All solution sets, except X(3)

6 , contain
both 0 and 17. A third characteristic is that for all j, X(3)

j contains the four-
element cluster {7, 8, 9, 10} (being in the middle between the extrema 0 and
17) and that for all j, Y (3)

j contains no element of the six-element cluster
{6, 7, 8, 9, 10, 11} (also being in the middle between the extrema).

Summarizing, we see that in the third order the MMGC is satisfied, and
hence we conclude that for (2, 3, p)-percolation, F1 − F2 contains an inter-
val a.s. on {F1 − F2 6= ∅}, provided

1√
3
< p ≤ 2

3
, (4.28)

which is needed to guarantee that γ > 1.

4.2.2 (3, 5, p)-percolation

For M = 4, there exists no integer m such that
√
M < m <

√
2M . There-

fore, the next case which deserves attention is (3, 5, p)-percolation. An illus-
tration of the first construction steps of a realization of (3, 5, 1

2)-percolation
appears in Figure 4.2.
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Figure 4.2: Illustration of the first construction steps of a realization of (3, 5, 1
2
)-percolation.

The colors have the same interpretation as in Figure 4.1. Note that in this case p < m
M

= 3
5

,
which means µ(∅) > 0. Consequently, possibly additional empty strips occur. This is seen
in the rightmost vertical strip of the figure for the 2nd level approximation and somewhere
in the middle we get an empty horizontal strip in the 3rd level.

According to Lemma 4.1, the lowest order for which it makes sense to
search for appropriate sets is the 2nd order, since

log 2
2 log 3− log 5

≈ 1.18, (4.29)

which is quite close to one, indicating that it might be not too difficult to
find proper 2nd order sets. This time the requirements on the subsets X(2)

and X(2) of A(2) are:

1. X(2) should contain 9 elements. If we divide A(2) in five blocks of
five elements, then each of these blocks should contain either 0 or 3
elements of X(2). The same should hold for Y (2).

2. X(2) and Y (2) should satisfy

min
k∈A(2)

24∑
j=0

1Y (2)(j)1X(2)(j + k) > 1. (4.30)

An heuristic argument why this should be easier than the search for sets
for (2, 3, p)-percolation in the previous subsection is that we now search
for larger sets (9 elements instead of 8) while the alphabet is smaller (25
elements instead of 27). This is confirmed by the fact that we already found
suitable sets in one of the first guesses. For example, as can be checked by

45



hand, the following pair of sets satisfy both the construction requirement
and the MMGC:{

X(2) = {0, 2, 4, 10, 12, 14, 20, 22, 24} ,
Y (2) = {2, 3, 4, 5, 6, 7, 10, 11, 12} , (4.31)

Taking random pairs of subsets of A(2) for which the construction require-
ment holds, we found 951 pairs satisfying the MMGC in 10000 realizations,
which is much more than the 12 out of 531441 which we found for (2, 3, p)-
percolation.

Recapitulating, also for (3, 5, p)-percolation F1−F2 contains an interval a.s.
on {F1 − F2 6= ∅}. Here the condition on p is

1√
5
< p ≤ 3

5
. (4.32)

4.2.3 (3, 6, p)-percolation

The next and last percolation class we consider is (3, 6, p)-percolation. Com-
puting the bound of Lemma 4.1, we find

log 2
2 log 3− log 6

≈ 1.71, (4.33)

so we are going to search for 2nd order sets X(2), Y (2) ⊆ A(2) satisfying

1. #X(2) = #Y (2) = 9, and dividing A(2) in six blocks of six elements,
each block should contain either 0 or 3 elements of X(2) and Y (2).

2. X(2) and Y (2) should satisfy

min
k∈A(2)

35∑
j=0

1Y (2)(j)1X(2)(j + k) > 1. (4.34)

Simple guessing, while keeping in mind the characteristics of the solutions
for (2, 3, p)-percolation, did not lead to success. The number of possible sets
at the first level is (

6
3

)
= 20, (4.35)

which means that at the 2nd level we have 204 possible sets, and since
we search for pairs of 2nd order sets, the number of possibilities is 208 =
25600000000. Although we can correct this somewhat by accounting for
symmetries, it costs far too much computing time to check all possibilities.
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Inspired by the proof of Theorem 4.1, where the best choice of sets was
given by (4.4) and (2.6), we restrict our search by the assumption that the
first order approximations X(1) and Y (1) of X(2) and Y (2) are given by

X(1) = {0, 1, 2} , Y (1) = {0, 2, 4} . (4.36)

Still, the number of pairs to check is 64000000. Our approach now is to take
a random pair of sets X(2), Y (2), for which the first order approximation is
given by (4.37), and to check if the requirements are satisfied. We did this
600000 times, but unfortunately, we failed to find a solution pair.

4.3 Convolutions on cyclic groups

In this section we describe (m,M, p)-percolation problems from a different
point of view. Using a convolution approach, an equivalent formal descrip-
tion of the problem will be derived. To explain the ideas, we take a realiza-
tion of (3, 5, 3

5)-percolation as an example.

Suppose that in the first order the approximating sets are given by

X = {0, 1, 3} , Y = {0, 2, 4} . (4.37)

Then ~X and ~Y , written as row vectors, are given by

~X = (1 1 0 1 0), ~Y = (1 0 1 0 1). (4.38)

Taking the characteristic functions 1X(j) and 1Y (j), we get two mass dis-
tributions on A:

Figure 4.3: Mass distributions on A corresponding to X and Y .

Now let X(n) and Y (n) be nth order sets and consider the convolution
1X(n) ∗1Y (n) of the corresponding mass distributions. When k runs through
A, then we find the collection of sums

(1X(n) ∗ 1Y (n))(k) =
Mn−1∑
j=0

1Y (n)(j)1X(n)(k − j), k = 0, . . . ,Mn − 1. (4.39)
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If we can find sets X(n) and Y (n) such that all those sums are greater than
one, then by defining

X̃(n) :=
{
j ∈ A : M − j ∈ X(n)

}
, Ỹ (n) := Y (n), (4.40)

we see that the collection of sums

Mn−1∑
j=0

1Ỹ (n)(j)1X̃(n)(j + k), k = 0, . . . ,Mn − 1 (4.41)

is exactly the same collection as (4.39). On top of that, if X(n) and Y (n) sa-
tisfy the construction requirements, then the same holds for X̃(n) and Ỹ (n).
So instead of searching for sets for which the sums in (4.41) are all greater
than one, we can search for sets such that all sums in (4.39) exceed one.

Continuing with our example, consider the sum

4∑
j=0

1Y (j)1X(k − j), (4.42)

for X and Y as in (4.37). This is the convolution of the mass distributions
on A corresponding to X and Y . Plotting this convolution on the integers
we get:

Figure 4.4: The sum
∑4
j=0 1Y (j)1X(k − j) plotted on the integers. This is the convolution

of the mass distributions plotted in Figure 4.3.

If we now adjust this plot for the group structure of A, then we get a con-
volution of the mass distributions on the cyclic group A, which is shown in
Figure 4.5.

What we need is to find sets X and Y such that the corresponding plot
representing the sum

∑4
j=0 1Y (j)1X(k − j) as a function of k (as in Figure

4.5) has height at least two on the domain {0, . . . , 4}. However, for the first
order this is not possible, since the area under the plot is always 9, where
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Figure 4.5: The same convolution plotted on the group A.

10 is needed to make a minimum height of 2 possible.

The corresponding graph for 2nd order sets X(2) and Y (2) can be con-
structed by starting with their vector representation and following the same
procedure as above. It seems more interesting to look at the graph for 2nd
order sets in a different way. This graph can be obtained by moving all the
blocks (by blocks, we mean the 1 × 1 squares together building the graph)
in Figure (4.4) to the position which is 5 times the original position. After
having done that, each of the blocks has to be replaced by a nine-block clus-
ter. For example, the rightmost square in the plot of Figure (4.4), being at
position 7, should be moved to position 35. This block was present in the
graph because 3 ∈ X and 4 ∈ Y . Since 3 ∈ X , X(2) will contain three num-
bers from the set {15, 16, 17, 18, 19} and Y (2) contains three numbers from
{20, 21, 22, 23, 24}, because 4 ∈ Y . Those two times three numbers form
nine pairs, and the sum of each of these pairs causes the presence of a block
at the corresponding position in the graph for X(2) and Y (2). In this way a
nine-block cluster in constituted. The same should be done for all blocks in
Figure 4.4. The last step is to subtract 25 from the position of all blocks out
of the range of A(2).

Note that the area under the 2nd order graph obtained now is 81, such that
a minimal height of two is possible since the domain is {0, 1, . . . , 24}. One of
the ideas is that in choosing clusters of nine blocks and building up the 2nd
order graph, one has a visualization of the problem, one can see where still
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gaps occur and what clusters fit best to build a graph with a minimal height
of two. We tried out this approach for (3, 5, p)-percolation, and succeeded
in the first try. Unfortunately, for (3, 6, p)-percolation we did not find ap-
propriate sets. Complications arose due to dependencies between clusters:
choosing a cluster in a certain position gives restrictions on clusters that are
allowed in other positions. The situation became indistinct and it was not
clear how to determine what good choices for the clusters would be.

The above convolution approach can be used to derive a formal descrip-
tion of the (m,M, p)-percolation problems by looking at the characteristic
function of the mass distributions corresponding to X and Y . This yields
for X and Y as in (4.37):

PX(x) := 1 + x+ x3, PY (x) := 1 + x2 + x4. (4.43)

The characteristic function of the convolution of the two mass distributions
is given by:

PXY (x) = PX(x)PY (x) = (1+x+x3)(1+x2+x4) = 1+x+x2+2x3+x4+2x5+x7.
(4.44)

If we define P to be the class of polynomials of degree four, with exactly 3
coefficients equal to 1 and 2 coefficients equal to 0, then the characteristic
polynomials of the 2nd order sets X(2) and Y (2) can be found in the fol-
lowing way. Compute PX(x5) and PY (x5) and multiply each of the terms
with a polynomial from P , leading to

PX(2)(x) = P1 + x5P2 + x15P3, PY (2)(x) = P4 + x10P5 + x20P6, (4.45)

for some P1, . . . , P6 ∈ P . Multiplying these two polynomials gives the char-
acteristic polynomial of the 2nd order we are interested in:

PX(2)Y (2)(x) = (P1 + x5P2 + x15P3)(P4 + x10P5 + x20P6). (4.46)

Note that this product can also be obtained by evaluating PXY (x5) and
multiplying each of its terms (where 2x3 and 2x5 should be regarded as two
terms each) by a product of two polynomials from P . Observe that only 6
of these polynomials can be chosen freely, indicating that the polynomials
are dependent, which are exactly the same dependencies as we found be-
fore for the clusters described above.

Accounting for the group structure of the alphabet, all powers in the poly-
nomial (4.46) should be taken modulo 25. What is required now is that all
coefficients of the resulting polynomial are at least equal to two. The coef-
ficient for xk can be found by evaluating the kth derivative for x = 0 and
dividing by k!.
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Summarizing, the formulation of the problem is now as follows:
Take polynomials PX , PY ∈ P . Compute PX(x5) and PY (x5) and multiply each
of the terms with a polynomial from P . Find the product of the two resulting poly-
nomials and call it PX(2)Y (2) . Calculate for k ∈ A(2)

1
k!

dk

dxk
PX(2)Y (2)(x) +

1
(k + 25)!

d(k+25)

dx(k+25)
PX(2)Y (2)(x). (4.47)

Is it possible that these numbers are at least 2 for all k ∈ A(2)?

We did not yet manage to solve this problem. An approach that might
work is to consider the coefficients in the 8 polynomials PX , PY , P1, . . . , P6

as unknown variables that can take only the values 0 and 1. These variables
should satisfy some requirements: the five coefficients of each of the poly-
nomials should sum up to 3 and the numbers in (4.47) should be at least
two. So this leads to an integer programming problem with 8 equality con-
straints and 25 inequality constraints.

Adapting this reformulation of the problem for other cases of (m,M, p)-
percolation is straightforward.

4.4 Conclusion

In studying correlated fractal percolation, the MMGC proved to be an use-
ful tool to answer the question whether or not an interval occurs in the
algebraic difference of two random Cantor sets from the correlated fractal
percolation class. For most cases of (m,M, p)-percolation (m <

√
M and

m >
√

2M ) an answer to this question is found. For m somewhere in be-
tween these two bounds, the problem seems to be quite hard. Although it
is possible to solve some particular cases (if m is close to

√
2M the problem

is relatively easy), we did not manage to prove general results for flimsy
percolation.

One of the reasons to study (m,M, p)-percolation was to see if we could
find random Cantor sets for which the MMGC is not satisfied, in spite of
the sum of the Hausdorff dimensions being greater than one. As we have
seen, finding sets satisfying the MMGC in some cases costs much (comput-
ing) time. Checking that such sets do not exist by simply going through
all possibilities is a hopeless mission, since the number of possibilities ex-
tremely rapidly increases with m and M . Also here, more understanding
of the general structures of (m,M, p)-percolation is needed to get some re-
sults.

In further investigations to tackle the problem of flimsy percolation, it is

51



recommended to have a close look at the solutions for (2, 3, p)-percolation.
If there exist some general structural properties, then studying these solu-
tions is probably helpful in discovering them. Examining the formulation
of the problem derived in Section 4.3 could also give new insights in the
problem.
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Appendix A

Matlab program to check the
Four Gap Theorem

The following Matlab program was used to come to our conjecture that the
distances of the first n multiples of an irrational number α to the nearest
integer partition the interval [0, 1/2] in subintervals of at most four different
lengths.

function lengths = fourgaps(alpha,n)

% This function computes the first n multiples of alpha
% and after that for each of those multiples, the dis-
% tance to the nearest integer is calculated. Those n
% distances are sorted and lenghts of subintervals in
% which [0,1/2] is divided by those numbers are calcula-
% ted. If alpha is not specified (input 0), we take a
% random number between zero and one.

% Print alpha:
if alpha == 0

alpha = rand
else

alpha
end
x = []; % x will be used to store the distance of

% multiples of alpha to the nearest integer.

for i = 1:n
mult = i*alpha; % mult is the multiple of alpha

% for which the distance to the
% nearest integer will be calcu-
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% lated.
x = [x;abs(i*alpha-round(i*alpha))];

end

% Now sort the hitted values (including 0 and 1/2):
x = sort([0;x;1/2]);

% We now are going to compute the lengths:
y = []; for i = 2:length(x)

y = [y;x(i)-x(i-1)];
end

% Remove lengths that occur multiple times in y:
k = 1; while k < length(y)

len = length(y);
for i = 1:len-k

index = len+1-i;
if y(k) == y(index)

y(index) = [];
end

end
k = k+1;

end

% sort the lengths and multiply them by n (otherwise we
% get output like 0.000000000... if n is large):
lengths = n*sort(y)
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Appendix B

Matlab programs for
(2, 3, p)-percolation

The code below is an implementation of the algorithm described in Sec-
tion 4.2.1. The first two functions, autocor.m and nextlevel2uit3.m,
are functions needed for TwoThreePerco.m, the program performing the
search for sets satisfying the MMGC.

B.1 autocor.m

function [autocor] = autocor(x,y);

% This function computes the correlation coefficients
% for two row vectors x and y.

% Check if x and y have the same lengths:
if(length(x) ˜= length(y))

’Error: lengths of x and y not the same.’
end M = length(x);

autocor = zeros(M,1); y = [y,y]; for i = 0:M-1
autocor(i+1) = x*y(i+1:i+M)’;

end

B.2 nextlevel2uit3.m

function [nextlevel2uit3] = nextlevel2uit3(A)

% Each row in A represents a pair of subsets of the
% alphabet. This function computes all possible pairs
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% of sets on the next level, given the pairs of sets
% in the matrix A.

B = [];
% In the matrix B, we record all possible pairs of
% sets on the next level.

for j = 1:size(A,1)
% j indicates the row of A which is in
% consideration.
C = [];
% In the matrix C we collect next order pairs of
% sets that correspond to the jth row of A.
for k = 1:size(A,2)

% k indicates the column of A being in
% consideration.
rijen = max(1,size(C,1));
kolommen = size(C,2);
if A(j,k) == 0

% If the element in A equals zero:
% Add three zeros in each row of C
C(1,kolommen+3) = 0;

end
if A(j,k) == 1

% If the element in A equals one:
% Make two copies of C, such that each row
% appears three times. Now add 110 to the
% first, 101 to the second and 011 to the
% third.
C = [C;C;C];
C([1:2*rijen],kolommen+1) = ones(2*rijen,1);
C([1:rijen],kolommen+2) = ones(rijen,1);
C([2*rijen+1:3*rijen],kolommen+2) =

ones(rijen,1);
C([rijen+1:3*rijen],kolommen+3) =

ones(2*rijen,1);
end

end
% Add the pairs of sets found for this row of A to
% the pairs found for the previous rows:
B = [B;C];

end A = B;

% And the result is:
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nextlevel2uit3 = A;

B.3 TwoThreePerco.m

function [success, solutions] = TwoThreePerco(n)

% For (2,3,p)-percolation and a given n (the input
% argument), this function computes all nth order sets
% satisfying the MMGC and the construction requirements.

A = [1,1,0,1,1,0];

% Each row in the matrix A represents two sets (e.g. the
% above row represents the sets X = {0,1} and Y = {0,1}.
% For each row in A we compute the correlation coeffi-
% cients. If the minimum of these coefficients is 2,
% then we have succeeded. If the minimum is 0, then the
% row is deleted, since this will not lead to success.

k = size(A,1);
rijteller = 1; % Indicates which row of A is in

% consideration.
success = 0; % Will be set to 1 as soon as a

% solution is found.
solutions = []; % This matrix specifies all

% solutions. Each row represents a
% pair of sets satisfying the MMGC.

deletions = 0; % Counts the number of deleted rows.

for j = 1:n
% Check all possibilities from A:
for i = 1:k

x = A(rijteller,1:3ˆj);
y = A(rijteller,3ˆj+1:2*3ˆj);
cor = autocor(x,y)’;
gamma = min(cor);
if gamma == 0

% This will never lead to success, so
% delete this row:
deletions = deletions+1
A(rijteller,:) = [];
rijteller = rijteller-1;

end
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if gamma > 1
% We have succeeded and found a solution.
’hurrah’
success = 1;
solutions = [solutions;A(rijteller,:)];

end
rijteller = rijteller+1;

end
if j ˜= n

% We have finished checking all rows of A. Now
% replace A by sets of the next level.
A = nextlevel2uit3(A);
k = size(A,1);
rijteller = 1;

end
end
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