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Abstract 
The governing load in long concrete bridges is the dead weight, as the span is long. In order 
to minimize the weight, non-prismatic beams, where the height of the beam varies along the 
length, are used, which ensures the reduction in weight and provides sufficient strength. Due 
to the alteration in height, the centroidal axis of a non-prismatic beam has a non-linear layout 
when compared to a prismatic beam. Therefore, in case of a non-prismatic beam, the vertical 
cross-section cut, on which cross-sectional analysis from the codes are performed, is no 
longer perpendicular to the centroidal axis, as is the case in a prismatic beam. Moreover, due 
to the geometry, these concrete beams are quite prone to shear failure even after providing 
sufficient amount of stirrups. This failure is mainly due to the vertical component of the inclined 
cross-section forces. The main focus of this study is to compare the cross-section results 
obtained on an inclined and vertical cross-section cut and also to validate the inclusion of the 
vertical component of the inclined cross-section forces in the shear capacity equation. 

Performing inclined cross-sectional analysis in a prismatic beam is comparable to executing 
vertical cross-section analysis in non-prismatic beam. Different approaches and methods are 
proposed to calculate the cross-section results on an inclined cross-section cut, with the 
internal forces in the global (horizontal and vertical direction) as well as in the local direction 
(perpendicular and parallel direction of the cut). From the procedure it was seen that in a 
prismatic beam, subjected to a four point bending test, the analysis performed in a constant 
bending moment zone on an inclined cut and vertical cut gives the same result. However, in 
case of non-prismatic beams, the bending moment resistance obtained on an inclined cut, 
which is perpendicular to the centroidal axis with the forces in the local direction, is greater 
than that obtained on a vertical cross-section cut. Therefore to be conservative it is 
recommended to perform cross-section analysis on a vertical cross-section cut in a non-
prismatic beam, which also ensures that an adequate amount of tensile reinforcement is 
provided. 

A procedure to calculate the shear capacity of non-prismatic beam is determined in this study. 
First, the shear resistance contributed by concrete and stirrups are calculated at the assumed 
critical section. Then the inclined cross-section forces are determined for each load case and 
the capacity of the beam is either reduced or increased by the vertical component. This 
capacity is compared with the applied loading and is checked for failure. Since the shear 
capacity is influenced by the applied loading, failure of the beam is defined as the load for 
which the determined capacity is lower than the applied loading. The results obtained from 
this procedure are in good agreement with the limited experimental data available. Therefore, 
it can be concluded that the vertical component of the inclined cross-section forces should be 
considered in the shear capacity equation.  

When a cross-sectional analysis is performed in a prestressed non-prismatic beam, the 
prestressing force Pꝏ should be applied horizontally and at the centroidal axis level. Moreover 
the applied bending moment equation is changed by an amount equal to the prestressing 
force Pꝏ

 multiplied with the eccentricity. This eccentricity is due to the variation of centroidal 
axis along the length of the beam. 

Finally, the errors made in practice while performing cross-sectional analysis on non-prismatic 
bridge decks are studied. Due to the non-linear layout of the non-prismatic bridge decks, 
engineers find it difficult to perform cross-sectional analysis on these types of beams. 
Therefore, the cross-section of the bridge deck is modified such that the centroidal axis has a 
linear layout and the volume of concrete in use is equal to the original non-prismatic deck. 
From the analysis, it was seen that the results determined on a modified deck are 
approximately equal to the one obtained from the original deck. A common error engineers 
make is ignoring the inclination of the cross-section forces, which, in most cases, leads to 
underestimation of the shear capacity. This study shows that the vertical component of the 
inclined cross-section forces, which is considered in the shear capacity equation, should be 



 
 

determined based on the bending moment obtained for the load combination in which the 
applied shear force is governing. Bending Moment envelopes obtained from different load 
combinations should be disregarded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

List of Symbols 

u
x   Compressive zone (mm)   

cu
N   Concrete compressive force (kN)   

ck
f   Charachteristic cylinder compressive strength (MPa)   

cm
f   Mean cylinder compressive strength (MPa)  

cd
f   Design cylinder compressive strength (MPa)  

sb
F   Steel force due to bottom reinforcement (kN)   

sb
A   2Area of bottom reinforcement (mm )   

yd
f   Design yield strength of steel reinforcement (MPa)   

st
F  Steel force due to top reinforcement (kN)  

st
A  2Area of top reinforcement (mm )  

Rd
V   Shear resistance (kN)   

,Rd c
V  Shear resistance contributed by concrete (kN)  

,Rd s
V  Shear resistance contributed by stirrups (kN)  

z   Lever arm (mm)   

l
   Reinforcement ratio   

/
eff

d d   Effective depth at that section (mm)   

sv
A   2Area of shear reinforcement (mm )   

s   Spacing (mm)   

Ed
V   Applied shear force (kN)   

Ed
M   Applied bending moment (kN-m)   

Rd
M   Bending moment resistance (kN-m)   

a   Shear span (mm)   

c
E   Young's modulus of concrete (MPa)   

s
E   Young's modulus of steel (MPa)   

   Angle of inclination (degrees)   

yvd
f   Design yield strength of shear reinforcement (MPa)   

All the dimensions are in ‘mm’, unless specified otherwise.  
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1 Introduction 

This chapter summaries the main objectives of this study and the methodology adapted to 
answer the research questions. 
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1.1 Background 
Beams are structural elements that transfer load mainly by bending action whilst sometimes 
supported over column. In reinforced concrete buildings, generally, slabs transfer the load to 
beams via the distribution of forces, based on the type of slab i.e. one way or two way slab. 
The loads transferred on the beam results in reaction forces which are taken up by columns, 
on which the beam is supported, and eventually transferred to the foundation of the building. 
In precast bridges, beams are laid in the longitudinal as well as in the transverse direction and 
a deck is then placed on top. In general, the longitudinal beams are precast whereas the 
transversal beams are cast in-situ. The longitudinal beams are placed on capping beams, 
which are supported on piers. Another option for cast-in situ bridges with longer spans is box 
girder bridges. In incrementally launched and cable-stray bridges, each box girder segment 
has constant dimensions whereas, in the cantilever balanced method, each segment varies 
in height. This would indicate that the height of the concrete bridge varies along the length i.e. 
non-prismatic beams. Sometimes capping beams are also non-prismatic as shown in Figure 
1.  

 

 

 

 

 

 

 

 

 

It is clear that beams are a vital part of a structure. To distinguish between different types of 
beams, several classifications are possible. Some of them are mentioned below, 

1. Type of material used can be made – Concrete, Steel or Timber. The use of material 
depends on the structure that is under construction, availability of materials, local 
expenses etc.  

2. In reinforced concrete beams, the amount of reinforcement used – under-reinforced, 
over-reinforced and neutral. Therefore while designing, cross-section analysis is 
performed to calculate the amount of reinforcement that is required to resist the applied 
load. The amount of reinforcement dictates the type of failure i.e. either yielding of steel 
or crushing of concrete, provided sufficient amount of shear reinforcement is present. 

3. Type of support – simply supported, cantilever, fixed, continuous, overhanging etc.  
4. Cross-section of the beam – Rectangular, Circular, I-shaped, T-shaped, C-shaped etc.  
5. Variation of height along the length of the beam – prismatic and non-prismatic beam. 

In this study, the focus is on the cross-section analysis of concrete prismatic and non-prismatic 
beams.  

1.1.1 Prismatic and Non-Prismatic beams 
Prismatic beams are the beams where the cross-section remains constant along the length of 
the beam whereas in non-prismatic beam the cross-section varies along the length of the 
beam. Recently, the use of non-prismatic beams has increased in the construction industry 
mainly because the material is applied more efficiently. Moreover, these beams are 
economical, aesthetically pleasing and provide easement in placement of different 
equipment’s, especially in buildings. Another benefit of non-prismatic beam is the reduction of 

Figure 1 Haunched capping beam 
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self-weight which is the governing load for long concrete bridges. Non-prismatic beams can 
be further classified based on the variation of height – tapered or haunched beams, curved 
beams and twisted beams. 

Tapered beams or Haunched beams are the beams where the cross–section varies linearly 
along the length of the beam as shown in Figure 2. Mostly, tapered beams have greater depth 
near the support, enough to resist the applied shear forces, and less depth at the center, 
enough to resist the applied bending moment. The depth at the center may increase if the 
applied load is high or the amount of reinforcement used is less. Haunched beams have a 
wide range of application such as in framed buildings, cantilever retaining wall, simply 
supported and continuous bridges for economic and aesthetic purposes. Generally, the angle 
of the haunch or the angle of taper varies from -12o to 12o. This restriction is due to construction 
complication and aesthetic view.  

 

 

 

 

 

 

 

Curved beams are the beams where the cross-section varies in a parabolic or in a curvilinear 
manner along the length. This variation might be in the horizontal or vertical plane. As 
mentioned previously, the cantilever balanced method uses box girder segments to construct 
curved beams, with spans ranging from 90-200 m as shown in Figure 3. As the box girder 
segments are used, these beams have the structural advantage of carrying torsional 
moments.  

 

 

 

 

 

 

 

 

Twisted beams are the beams where the cross-section varies along the length of the beam 
such that the cross-section rotates around the centroidal axis. Due to their complicated shape 
these beams are rarely used and are ignored in this study. 

1.2   Scope and Objectives of Research 
With the change in the cross-section along the length of the beam, non-prismatic beams 
behave differently compared to prismatic beams. When a cross-section analysis is performed 
at the critical section of the beam, which is in the haunched part, the resulting steel force or 
the concrete compressive force acts at an angle, due to the geometry. A cross-sectional 
analysis is performed at a distance ‘x’ from the support in the haunched beam shown in Figure 
2. This analysis is performed at the Ultimate Limit State (ULS). As the steel reinforcement is 

Figure 2 Negatively haunched beam 

Figure 3 Bridge with a curvilinear centroidal axis 
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placed at an angle of taper (α), the steel force (Fsb) also acts at the given angle. This force is 
further decomposed in the horizontal (Fsb.cos (α)) and the vertical component (Fsb.sin (α)) as 
shown in Figure 4. Because of the vertical component of the inclined steel force, these non-
prismatic beams are difficult to analyze.  

 

 

 

 

 

 

 

 

 

 

The vertical component is also seen in prestressed prismatic beams with parabolic tendon 
layout or with a tendon layout that varies linearly along the length of the beam as shown in 
Figure 5. In this beam, irrespective of where the cross-section analysis is performed, the 
prestressed force (∆P) always acts at an angle. Decomposition of this force would also result 
in a horizontal and a vertical component.  

 

 

 

 

 

Codes around the world suggests that this force should be considered in the shear resistance 
(VRd) or the applied shear force (VEd) of the beam. Few researchers have performed shear 
tests on non-prismatic beams and have proposed different formulae to predict the shear 
capacity of these beams. Few authors suggest that, the vertical component should be 
considered in the shear resistance of the beam whereas others suggest that it should be left 
out of the shear capacity equation. This might seem conservative but one might overestimate 
the shear capacity of these non-prismatic beams leading to brittle shear failures. Furthermore, 
this vertical component might significantly change the shear capacity of long non-prismatic 
beams, where heavy prestressing is applied. In this study, experimental data will be used to 
check the existence of the vertical component in tapered beams and its effect on the shear 
capacity.  

In prismatic beams, as the cross-section is constant along the length of the beam, the 
centroidal axis is also straight. Performing a vertical cross-sectional analysis in a prismatic 
beam would indicate that the cross-section cut is perpendicular to the centroidal axis. On the 
other hand, in non-prismatic beams the cross-section (height) varies along the length and 
hence the centroidal axis has a non-linear layout as shown in Figure 2. When a cross-sectional 
analysis is performed in non-prismatic beams, the vertical cross-section cut is no longer 
perpendicular to the centroidal axis unlike prismatic beams. Hence the cross-section cut which 
is perpendicular to the centroidal axis will be investigated in this study. Different approaches 

Figure 4 Cross-Sectional analysis in the haunch side of the beam shown in Figure 2 

Figure 5 Concrete beam with linearly varying prestressed tendon 
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are proposed to perform cross-section analysis of non–prismatic beam and the cross-section 
results are further analyzed. 

1.3   Research Hypothesis 
The research hypothesis for the above mentioned scope and objectives is as follows: 

“According to Structural Mechanics, the cross-section results for any beam should remain 
constant, irrespective of the angle of the cross-section cut. Also the vertical component of the 
inclined internal compression chord or tensile tie should be taken into account by the shear 
capacity of the beam.” 

1.3.1 Research Question and Methodology 
Based on the scope, objective and the hypothesis the following research questions are 
determined. 

1. In prismatic beams, does the cross-section results change when the cross-section cut 
is made at different angles with respect to the centroidal axis? 

2. In non-prismatic beams, does the cross-section results change when the cross-section 
analysis is performed on a vertical cut and on a cut that is perpendicular to the 
centroidal axis? 

3. What should be the procedure to predict the shear capacity of non-prismatic beams? 
4. What are the different errors that an engineer might commit while analyzing non-

prismatic bridge decks? 

The first research question answers whether the cross-section results, viz. Moment 
Resistance and Shear Resistance, in a prismatic beams are dependent on how the cross-
section cut is made. Performing a cross-section analysis in a prismatic beam on a cross-
section cut which is at an angle of ‘90+α’, with respect to the centroidal axis, is not different 
than performing a vertical cross-section cut in the tapered or curved zone of a non-prismatic 
beam. Cross-section results will be checked for different angle of inclination and the error will 
be notified. For this study, prismatic beams that are subjected to four point bending test will 
be used. These beams will be designed for a given load and modelled in DIANA. Once the 
results are obtained, different approaches would be hypothesized and checked.  

The second research question answers whether the cross-section results in a non-prismatic 
beams depends on how a cross-section cut is made or not. The approaches that were 
hypothesized in the previous research question are used here to further analyze non-prismatic 
reinforced and prestressed concrete beams.  

The third research question focuses on the shear capacity of non-prismatic beams. This 
research question highlights on whether the vertical component of the inclined compression 
strut or tensile tie should be included to the shear capacity of the beam or not. Different authors 
have performed tests on non-prismatic beams (mainly subjected to four point bending test) 
and the experimental data will be used to compare the analytically obtained results. 

The fourth research question lays emphasis on different types of error an engineer might 
commit in practice while analyzing non-prismatic bridges. Due to the non-linear layout of 
centroidal axis in non-prismatic bridges, performing cross-sectional analysis is complicated. 
Hence engineers modify the cross-section or ignore the inclination of the cross-section forces, 
which might change the shear resistance and the bending moment resistance envelope. The 
amount and different types of error will be addressed in this research question. 
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2    Literature Review 
Concrete beams are susceptible to shear failure but more so in non-prismatic beams. Many 
authors and codes believe that this failure is due to the vertical component of the inclined 
force, which is because of the geometry of the beam. The following state of art gives more 
insight in this regard. Experiments performed on non-prismatic beams by different authors are 
also discussed in this chapter. 
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2.1 Codes and Standards 
In this section, different codes are discussed for the inclined cross-section forces and different 
formulas regarding this are mentioned. 

2.1.1 Eurocode 1992-1-1 
In the Eurocode 1992-1-1 [1], clause 6.2.1(2) gives the following formula for inclined forces. 

 ,

,

.............. 2.01

where,

shear resistance offered by the shear reinforcement

vertical component of the inclined compression chord

vertical component of the inclined tensi
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The above formula states that if the compression chord or the tensile ties are inclined, the 
vertical component of this force either increases or decreases the shear capacity of the beam, 
depending on the direction of the forces as shown in Figure 6. According to the above formula, 
the vertical components are only combined with the shear capacity contributed by stirrups. A 
possible contribution of shear capacity due to concrete (VRd,c) is neglected in this regard. In 
long non-prismatic beams, the forces in the inclined chords are high and the vertical 
component of this force would significantly change the shear capacity of the beam, which is 
uncertain. 

2.1.2 ACI 318-05 
In ACI 318-05 Building code requirement for Structural Concrete and Commentary [2], clause 
11.1.1.2 states that “In a member of variable depth, the internal shear at any section is 
increased or decreased by the vertical component of the inclined flexural stresses”. ACI code 
also includes the vertical component to the shear capacity of the beam. The nominal shear 
strength (Vn) is calculated according to the following formula 

 .............. 2.02n c sV V V   

where Vc is the shear strength provided by concrete and Vs is the shear strength provided by 
shear reinforcement, formulae of which differ for every other situation. The vertical component 
of the inclined flexural stresses are added or subtracted from the equation 2.02. The general 
equation of the shear capacity of concrete and stirrups is given below. Note that these might 
be subjected to changes with different situation. 

 

    
 

2000
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Figure 6 Vertical component of the inclined forces according to Euro Code [1] 
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where, 

2

Axial force

Cross sectional area of structure

Angle of inclination of stirrups

,f ,f  is in psi

, ,  is in inches

A ,A  is in inches

c

ck yvd

c

w

v c

N
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N

A

b d s






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2.1.3 Fib Model Code 2010 
In the fib-Model Code 2010 for concrete structures [3], the clause 7.3.3.1 states that for 
determining the effective applied shear force (VEd), in case of inclined forces, the shear force 
from the sectional analysis (VEd0) may be decreased by positive influence of the inclined 
tension tie (VEtd) or inclined compression chords (VEcd) or prestressing tendons (VEpd). On the 
other hand, any negative influence from these inclined forces should be added to the shear 
force (VEd0). The vertical component of these inclined forces are added or subtracted from the 
applied shear force. The Model Code is flexible with the favourable contributions whereas 
unfavourable contribution should be considered in the applied shear force. This is taken into 
account for all the level of approximation and the shear resistance due to concrete is also 
considered to calculate the capacity of a beam or deck.  

 
 
 
 
 
 
 

 

 

2.2  Cross-section assumptions 
Few assumptions to determine the ultimate bending moment resistance of reinforced and 
prestressed concrete cross-sections are given as follows: 

a. Plane section remains plane. 
b. Tensile strength of the concrete after cracking is ignored. 
c. Stresses in concrete and reinforcement are derived from the constitutive relation 

that these materials are assigned. 
d. The strain in bonded reinforcement is same as that of the surrounding concrete. 

2.3  Arch action in beams 
From the experiments performed on non-prismatic beams, it was seen that arch action is 
present in almost every other beam. This arch action is not due to the horizontal restrained at 
the ends but due to loss of bond between steel reinforcement and the surrounding concrete. 
This mechanism is enhanced in short non-prismatic beams.  

Daejoong Kim et al. [4] studied the arch action in reinforced concrete prismatic beams. The 
author states that the internal shear resistance in a reinforced concrete beam without stirrups 
is expressed as a contribution from two actions – beam action and arch action.  

When the internal moment arm/lever arm remains constant, pure beam action is obtained 
whereas when there is a loss of bond between reinforcement and the surrounding concrete, 

Figure 7 Vertical component of the inclined forces according to Model Code [3] 
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arch action occurs. However, the combined resistance of these two mechanisms results in the 
shear resistance of the reinforced concrete beam as the bond force cannot be developed 
completely due to cracking and bond slip. The extent of contribution of each mechanism 

depends on the shear span to the depth ratio (a/d). If 
a

d
 > 2.5 i.e. in a slender beam, beam 

action governs and if 
a

d
 < 2.5 i.e. for short beams, arch action governs. 

To check the hypothesis, the authors conducted tests on 8 prismatic beams without shear 
reinforcement which were subjected to four point bending test. The steel force was analytically 
calculated along the length of the beam and was checked against the experimental results. It 
was seen that in the zone of constant bending moment, steel force obtained from the analytical 
calculation predicts quite well with the experimental results. On the contrary, in the shear span 
the experimental steel force was greater than the steel force which was calculated analytically 
using the beam theory. This was because of the assumption of constant lever arm throughout 
the length of the beam. Near the support, the actual moment arm length is shorter than the 
calculated moment arm. This leads to an increase in the steel force. The author states that 
the measured steel force is given as 

 .............. 2.05m a bT T T   

where 

T Steel Force due to the arch action

T Steel Force due to the beam action

a

b




 

The author believed that the reduction in the lever arm was due to the loss of bond between 
the steel reinforcement and the surrounding concrete leading to the arch action. Formulae for 
the Ultimate Shear Strength of reinforced concrete prismatic beam without web 
reinforcements were proposed, which takes into account the contribution of arch action as 
well. The formulae was in good agreement with other test results.  

2.4    Experiments on Non-Prismatic beams 
In this section the experiments conducted on non-prismatic beams are discussed and different 
formulas are proposed by authors that predicts the shear capacity of non-prismatic beam 
which considers the vertical component of inclined forces as well. The concrete strength 
mentioned in all the beam specimens is the cylindrical concrete compressive strength. 

2.4.1 Behaviour and Strength of Reinforced Concrete Haunched Beams in 
Shear – S. Y. Debaiky et al. [5] 

S. Y. Debaiky et al. [5]  conducted extensive research on non-prismatic beams back in 1982. 
The authors performed four point bending test on 33 different reinforced concrete beams to 
investigate the behaviour and shear strength. The beam depth vary linearly along the shear 
span and remain constant in the constant bending moment zone as shown in Figure 8 and 
Figure 9. 33 beams were divided into 6 different series. Series A and B differ in shear span 
length. Series C and A differ in concrete compressive strength, Series C and D differs in the 
amount of shear reinforcement present, Series E has different amount of longitudinal 
reinforcement compared to Series C and D. Series E also had different arrangement of 
longitudinal reinforcement and hence is ignored in this study. Series F and Series A differ in 
the percentage of longitudinal reinforcement. The point loads are applied at the vertex of the 
haunch, except in series B, and are 600 mm apart. Range of parameters for different series is 
given in Table 1. 
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Table 1 Comparison of different Series with the given range for a particular parameter [5] 

 
Parameters 

Series 

A B C D F 

Concrete Strength (MPa) 17 - 25 17 - 25 27 – 31 27 - 32 20 - 21 

Longitudinal Reinforcement Ratio 0.03 0.03 0.03 0.03 0.019-0.024 

Stirrup Reinforcement Ratio (x 10-3) 1.98 1.98 1.98 3.96-4.19 4.19 

Shear Span (mm) 900 500 - 700 900 900 900 

Table 2 Details of specimen tested by Debaiky et al. [5] 

Specimen Height at 
support 
(mm) 

Concrete 
Strength 
(MPa) 

Angle 
(α) 
(degrees) 

Shear 
Span 
(mm) 

Stirrup 
Diameter 
(mm) 

Spacing 
Stirrup 
(mm) 

Bottom 
Reinforce- 
ment 

A1 300 25 0 900 5.5 200 3 bars-20 mm 

A2 150 20 +9.46 900 5.5 200 

A3 225 17.8 +4.76 900 5.5 200 

A4 375 22 -4.76 900 5.5 200 

A5 450 22.5 -9.46 900 5.5 200 

B1 300 25 0 700 5.5 200 

B2 300 17.6 0 500 5.5 200 

B3 150 18.9 +12.1 700 5.5 200 

B4 150 21 +16.7 500 5.5 200 

B5 450 20.6 -12.1 700 5.5 200 

B6 450 20.4 -16.7 500 5.5 200 

C1 300 28.6 0 900 5.5 200 

C2 150 28.2 +9.46 900 5.5 200 

C3 225 27.8 +4.76 900 5.5 200 

C4 450 31.1 -9.46 900 5.5 200 

C5 375 31.4 -4.76 900 5.5 200 

D1 300 30.4 0 900 5.5 100 

D2 300 31.2 0 900 8 200 

D3 150 29.6 +9.46 900 5.5 100 

D4 150 27.5 +9.46 900 8 200 

D5 450 28.9 -9.46 900 5.5 100 

D6 450 32.2 -9.46 900 8 200 

F1 450 21.1 -9.46 900 6 200 3 bars-16 mm 

F2 450 20.8 -9.46 900 6 200 3 bars-18 mm 

F3 150 21.5 +9.46 900 6 200 3 bars-16 mm 

F4 150 21 +9.46 900 6 200 3 bars-18 mm 

F5 300 20.6 0 900 6 200 3 bars-18 mm 

F6 300 20.9 0 900 6 200 3 bars-16 mm 

Figure 8 Dimensions of the negatively haunched beam tested 
by Debaiky et al. [5] 

Figure 9 Dimensions of the positively haunched beam tested by 
Debaiky et al. [5] 
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Prismatic beams, negatively haunched beam – where the vertical component of the inclined 
forces has a negative effect on the shear capacity as shown in Figure 8 and positively 
haunched beam – where the vertical component of the inclined forces has a positive effect on 
the shear capacity as shown in Figure 9, were tested by authors. Most of the negatively 
haunched beams failed in shear compression and almost all of the positively haunched beam 
had instability shear failure. The length and width of all the beams was 2.4 m and 120 mm 
respectively. The height of the beam at the centre was 300 mm and was constant for all the 
beams. Beam description with the corresponding concrete strength is given in Table 2. 

Table 3 Critical Load and failure type for different specimens tested by Debaiky et al. [5] SC- Shear Compression, 
DT – Diagonal Tension, IS- Instability Shear  

Specimen Type of Beam Shear 
Crack 
Angle 
(degrees) 

Initial 
Crack 
(kN) 

Major 
Crack 
(kN) 

Failure 
Load 
(kN) 

Failure 
Type 

A1 Prismatic  48 25 45 73.5 SC 

A2 Positively Haunched beam 36 35 37.5 58 DT 

A3 Positively Haunched beam 34 25 35 78.5 SC 

A4 Negatively Haunched beam 49 25 30 51.3 SC 

A5 Negatively Haunched beam 50 25 35 57 SC 

B1 Prismatic 34 25 40 68.8 SC 

B2 Prismatic 37 25 40 82.5 SC 

B3 Positively Haunched beam 28 25 40 65.5 SC 

B4 Positively Haunched beam 16 25 35 101.5 SC 

B5 Negatively Haunched beam 39 25 40 78.5 SC 

B6 Negatively Haunched beam 50 20 40 103.5 DT 

C1 Prismatic 36 27.5 43.75 72.5 SC 

C2 Positively Haunched beam 15 25 35 72 IS 

C3 Positively Haunched beam 23 20 37.5 52 SC 

C4 Negatively Haunched beam 42 27.5 35 61 SC 

C5 Negatively Haunched beam 47 25 35 57.5 SC 

D1 Prismatic 42 22.5 38.5 83.5 SC 

D2 Prismatic 29 27.5 40 75 SC 

D3 Positively Haunched beam 22 17.5 37.5 69 IS 

D4 Positively Haunched beam 24 22.5 27.5 58.5 IS 

D5 Negatively Haunched beam 40 10 25 65 SC 

D6 Negatively Haunched beam 40 20 37.5 75 SC 

F1 Negatively Haunched beam 34 25 42.5 67 SC 

F3 Positively Haunched beam 16 25 34 44 SC 

F4 Positively Haunched beam 15 10 27.5 45.5 DT 

F5 Prismatic beam 24 20 32.5 67.5 SC 

F6 Prismatic 25 25 37.5 62.5 DT 

 

From the experiments it was seen that the number of cracks increases for higher depth at the 
support i.e. negatively haunched beam and decreases for smaller depth at the support i.e. 
positively haunched beam. The position of major cracking was also different for negatively and 
positively haunched beams. For the positively haunched beam, cracks occurred near the 
support whereas for negatively haunched beam, the cracks moved towards the loading 
position. This observation was as expected, as cracking occurs at the position of the weakest 
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section in the beam. For the negatively haunched beam, this section is near the vertex of the 
haunch, near the loading point, as the height is minimum with the vertical component of the 
inclined tensile tie further reducing the capacity. Whereas for the positively haunched beam, 
this section is near to the support as the height is small and the magnitude of the vertical 
component of the inclined tensile tie, which has a favourable contribution, is relatively low. The 
authors presented three different forces for each beam viz. Initial cracking, Major Cracking 
and Failure load as shown in Table 3. 

From Table 3, it can be observed that the force required to produce initial cracking is almost 
same for all the studied samples. Major cracking load and the failure load have quite a variation 
for prismatic and non-prismatic beam. Due to the stirrups present the major cracking load and 
the failure load for the prismatic beam is different. From the experiments it was seen that in 
positively haunched beam, the major cracking, near the support, forms a weak strut action. 
Whereas in negatively haunched beam, the crack, joining the line from the loading point to the 
support, creates a strong strut action which is capable of resisting more load. From the results 
the author concluded that the strength of positively haunched beam did not reduce much when 
compared to the prismatic beams and the ultimate strength of the negatively haunched beam 
did not increase compared to the prismatic beams. This, according to the author, is due to the 
vertical component of the inclined steel force that contributes to the shear capacity of the 
beam.  

The authors proposed a formula to calculate the nominal shear stress of reinforced concrete 
haunched beams which is given as, 

      '. 1 1.7.tan . 0.25. . .sin .............. 2.06Rd
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The critical section at which the shear capacity is calculated is considered at a distance of 

  . 1 1.7 * tancr sd d    from the support. According to the author, the last term of the 

equation i.e.  0.25. sin . .l yd sf b d   is to account for the dowel action. 

2.4.2 Shear Strength of Haunched Beams without Shear Reinforcement – I. 
A. Macleod et al. [6] 

I.A. Macleod et al. [6] describes a technique to predict the shear strength of tapered reinforced 
beam without shear reinforcement. In practice, haunched beams are present in bridges as 
shown in Figure 10. A test specimen is shown in Figure 11. The depth of the beam near the 
support is increased in order to resist the applied shear force. The authors only considered 
the haunch part and subjected it to four point bending test as shown in Figure 13 and Figure 
15. 
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The authors focused on the concept of critical section in this paper. Equations were formulated 
to predict the critical section of the beam which were validated with the experiments. The width 
of all these beams was 150 mm. Table 4 gives the specimen detailing with the respective 
experimental shear strength. When a sectional analysis is performed in the tapered zone, the 
vertical component of the inclined compression chord increases the shear capacity of the 
beam and therefore these non-prismatic beams are termed as positively haunched. 

 Table 4 Description of the beams tested by Macleod et al. [6] 

Specimen Maximum 
Height 
(mm) 

Minimum 
Height 
(mm) 

Concrete 
Strength 
(MPa) 

Angle of 
inclination 
(degrees) 

Shear Strength 
(kN) 

Beam 2 250 200 33 4.74 36.4 

Beam 3 250 250 33 0 30.9 

Beam 4 300 200 28 6.34 38 

Beam 5R 250 170 28 7.57 41 

Beam 6 250 140 28 10.37 42 

 

 

 
 

Figure 10 Intermediate haunched section 

Figure 11 Test specimen 

Figure 13 All the specimen dimensions except Beam 4 [6] 
Figure 12 Reinforcement cross-section 
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Cracking was observed with the increase in the load. Initially cracks appeared at the top side 
of the beam and then tended towards the support. When these diagonal cracks moved down 
to the compression zone, the propagation of the diagonal crack encountered resistance, which 
increased as the angle of haunch increases. This resistance was offered by the inclined 
compression zone and additional load was required to produce shear failure in the haunched 
beams as seen from Table 4. The failure pattern of all the beams was shear compression near 
the support as seen from Figure 16. From the experiments, it was seen that the failure of the 
prismatic specimen Beam 3 was brittle whereas the positively haunched beams had significant 
stand-in strength after the formation of the crack.  

 

 

 

 

 

The positively haunched beams has a less amount of concrete when compared to the 
prismatic beam and yet the shear strength of the haunched beam is greater than the prismatic 
one. This, according to the author, is due to the compression zone present in the beam. Figure 
17 and Figure 18 shows the compression zone in prismatic beam and positively haunched 
beam respectively. In the prismatic beam, compression path moves away from the loading 
point to eventually become horizontal near the support. While in the haunch beam, the 
compression path is straight/angled, which creates an inclined strut action near the support. 
With increase in the haunch angle, this strut action becomes straighter. Therefore the diagonal 
cracks encounter more resistance to propagate further down to the support and hence require 
additional load to produce failure. 

The authors also proposed a formula to predict the shear capacity of the beam which is given 
as follows, 

   , . . tan .............. 2.07Rd Rd c

cr

M
V V F

d


 
  
 

 

where, 

,

d  effective depth at the critical section
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Figure 15 Beam 4 dimensions [6] 
Figure 14 Reinforcement detailing for all the beams 

Figure 16 Cracking pattern in the specimen Beam 5 [6] 



16 
 

 

 
The author assumed that the critical section is at a distance of 2 times the effective depth of 
the prismatic section which is measured from the point of contra flexure. The factor F is 
applicable only for haunches that have a slope in the range of 0.083-0.183 (4.74-10.3 
degrees). 

2.4.3 Shear Resistance of Reinforced Concrete Beams with Non-Prismatic 
Sections – G. D. Stefanou [7] 

G. D. Stefanou [7] performed three point bending tests on varying depth beams to investigate 
the shear behaviour of reinforced concrete beam with non-prismatic sections and compared it 
with prismatic beams. The author proposed complicated formulae, to predict the shear 
capacity of non-prismatic beams, based on different type of cracking viz. Shear cracking of 
regions cracked in flexure (Flexural Shear Failure), Shear cracking in regions free from flexural 
cracks (Tensile Shear Failure) and Shear resistance following shear cracking. Two different 
types of beams were used which were subjected to three point bending test as shown in Figure 
19. The critical section for the Type A beams was considered at a distance of minimum 
effective depth (dmin) from the support. Whereas for Type B beams the critical section was 

considered at a distance of
  

min

1 1.5 * tan

d


  from the support, where ‘β’ is the angle of taper. 

Specimen Detailing is given in Table 5. 

The length and width of all these beams was 1.52 m and 150 mm respectively. The data 
present in the paper was limited. The diameter of shear reinforcement used was not mentioned 
in the paper. Therefore only the beams without shear reinforcement are discussed in this 
study. 

 

 

 

 

 

Table 5 Description of beams tested by Stefanou [7] 

Specimen Type h,max 
(mm) 

h,min 
(mm) 

Concrete 
Strength 
(MPa) 

Angle of 
inclination 
(degrees) 

Shear 
Capacity 
(KN) 

B1 A 200 75 33.44 13.5 15.8 

B2 A 200 125 33.44 7.96 26.5 

B3 B 200 75 28.27 13.5 27.5 

B4 B 200 125 28.27 7.96 26.5 

Figure 17 Compression zone in primsatic beam [6] 
Figure 18 Compression zone in tapered beams [6] 

Figure 19 Types of beams tested by Stefanou [7] 
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The proposed formulae was validated using the experimental data that was present. The 
author considered the shear capacity of concrete, shear capacity of stirrups and also the 
inclusion of the vertical component of the inclined forces in the formulation. 

2.4.4 Shear Failure Mechanism of Reinforced Concrete Haunched Beams – 
Chenwei HOU et al. [8] 

Chenwei HOU et al. [8] studied the shear failure mechanism of reinforced concrete haunched 
beams. The authors performed four point bending tests on 10 haunched beam which differed 
in four different parameters viz. position of point loads with respect to the vertex of the haunch, 
thickness of concrete cover, area of stirrups and arrangement of the bottom reinforcement. 
The influence of these four parameters on the debonding cracks along the bottom 
reinforcement, which is responsible for the strut action and increase in the shear capacity, was 
investigated. Specimen details and material properties are given in Table 6. The beams are 
divided in 4 different series shown in Figure 20, Figure 21, Figure 22 and Figure 23. The 
number in the name of the specimen indicates the distance between the point load and the 
end of the haunch for example the specimen H-100 means that the point load is applied at a 
distance of 100 mm from the vertex of the haunch.  

The depth of all the beams at the support is 300 mm and at the centre is 250 mm, providing a 
constant angle of haunch of 11.3o. The concrete cover of the beam is 50 mm, except in Series 
III. The span of the beam is 1500 mm. Two bars of 25.4 mm diameter and yield strength of 
411 MPa were used as tensile longitudinal reinforcement bars. Two bars of 6 mm diameter 
were used compression reinforcement with a yield strength of 328 MPa. Shear reinforcement 
with 6.35 mm diameter, spaced at 200 mm, and yield strength of 322 MPa were used in the 
non-test shear span of the beams in Series I, II and IV. In Series III the non-test shear span 
was reinforced with 9.52 mm diameter, spaced at 120 mm while in the test shear span, shear 
reinforcement of 6.35 mm diameter is placed at spacing of 120 mm. 

Table 6 Descripiton of beams tested by Chenwei HOU et al. [8] 

Series Specimen fc’ 
(MPa) 

Shear Span (a) 
(mm) 

b 
(mm) 

c 
(mm) 

e 
(mm) 

 
 
I 

H-0 33.0  
 
 
 

 
650 

0  
 
 
 
 

250 

400 

H-100 33.6 100 300 

H-200 29.6 200 200 

H-300 36.7 300 100 

II HN-200 28.6 200 200 

 
III 

HS-0 33.5 0 400 

HS-100 28.0 100 300 

HS-300 34.4 300 100 

IV HD-100 34.0 100 300 

HD-300 37.4 300 100 

 

 

 

 

 

 

 

 
Figure 20 Beam specimen of Series-I [8] 
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The crack pattern observed in all the beams proved the existence of strut action. In Series I, 
once the flexural cracks are developed, the main diagonal crack starts from the vertex of the 
haunch near the loading point and further propagates in two direction – towards the loading 
point and along the inclined tensile rebar as can be seen in Figure 26. This is because of the 
stress concentration at the end of the haunch. All the beams failed in Shear Compression. For 
the beams in Series II, the crack originated at the middle part of the haunch and propagated 
both ways – first the loading point and then along the tensile rebar. The crack pattern for the 
beams in Series III was similar to those of Series I, with more shear and flexural cracks, due 
to the presence of stirrups. 

The load-displacement graph of all the beams were plotted. It was seen that as the distance 
between the point load and the end of the haunch decreases, there is a drastic increase in the 
peak load mainly due to the strut action. Load-Displacement graph for beams of series I is 
given in Figure 24. The peak load and the shear capacity of all the beams are given in Table 
7.  

 

 

 

 

 

 

Figure 21 Beam specimen of Series II [8] 

Figure 22 Beam specimen of Series III [8] 

Figure 23 Beam specimen of Series IV [8] 

Figure 24 Load-Displacement curve for all the beams of Series I [8] 
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Table 7 Peak Load and Shear Capacity of all the specimens tested by Chenwei HOU et al. [8] 

Specimen Peak Load 
(kN) 

Shear Capacity 
(kN) 

H-0 136.2 68.1 

H-100 120.5 60.3 

H-200 77.1 38.5 

H-300 71.9 36.0 

HN-200 73.3 36.5 

HS-0 154.7 77.4 

HS-100 146.6 73.3 

HS-300 137 68.5 

HD-100 129.6 64.8 

HD-300 157.6 78.8 

 

The material parameters and the amount of reinforcement, in a particular series, were similar 
but still the shear capacity changes due to the position of point load with respect to the end of 
the haunch. The shear capacity of H-0 and H-100 is much higher compared to H-200 and H-
300. This significant difference between the shear capacities resulted from the different 
contribution of strut action and also due to the debonding cracks. Debonding cracks was 
formed due to the stress concentration at the bending position which made the bent tensile 
rebar straighten and push over the concrete cover. This reduces the bond, which increases 
the capacity [4]. 

Table 8 Compressive zone in all the beams of Series I [8] 

  

  

 

Table 8 shows the compression zone for all the beams of Series I just before the peak load. 
The use of concrete gauge was made to derive the strut zone in all these beams. The proof 
of bond loss, for the beam specimen H-0, is shown in Figure 25. At smaller loads, the strain 
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distribution in bottom reinforcement started from zero at the support and then increased 
proportional to the bending moment, meaning a good bond exist. But at the peak load, the 
strain distribution started at around 1200µ whereas the strains in the shear span became flat, 
leading to a partial loss of bond. This loss of bond with the presence of compression zone is 
responsible for the increase in the shear capacities. The extent of strut action in beam H-200 
and H-300 is less when compared to H-0 and H-100, which can be seen from the minimal 
difference between the shear capacities for these two beams. 

 

 

 

 

 

 

 

 

 

 

 

 

The shear capacity of the beam is equal to the shear capacity of concrete and stirrups. 

 , , .............. 2.08Rd Rd c Rd sV V V   

As the dimensions and the longitudinal reinforcements are the same for the beams in Series 
I and Series III, VRd,c for the beams of Series I and Series III were assumed to be the same 
and the shear capacity contributed by stirrups was calculated and cross-checked with the 
experimental results. 

The authors modelled the beams of Series I, II and IV in DIANA system (version 9.4.4) to get 
a better understanding of shear resistance mechanism of the haunched beams. The load-
displacement graph obtained from DIANA showed good coherence with the experimental 
graph. Figure 26 shows the principal tensile strain and the principal compressive stress for the 
beam H-100 just before the peak. The contour plot shows the debonding cracks along the 
tensile rebar and the strong compression zone, leading to strut action in the beam H-100. 

 

 

 

 

 

One of the conclusion of the author was that the bent tensile rebar has a negative effect to the 
shear resistance of the haunched beam but the strut action eventually increases the capacity 
or nullifies the effect of the vertical component. However the extent of this mechanism varies 
according to the crack pattern and the area of compression zones. In all these experiments, 

Figure 25 Strains in the reinforcement vs Distance from the support, for the beam H-0  for different load level [8] 

Figure 26 Comparison between experimental and DIANA results for the beam H-100 [8] 
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the length of the beam was very short (1.5 m) and in practice, the length of non – prismatic 
beam is considerably long. Therefore, in reality, the probability of occurrence of such type of 
strong strut mechanism is less. 

2.4.5 Shear Design of Straight and Haunched Beams – Vu Hong Nghiep [9] 
Vu Hong Nghiep [9] worked on the “Shear Design of Straight and Haunched Concrete Beams 
without Stirrups” as a PhD topic. The beams that are tested in this study are chosen from the 
bridge slab deck. The haunch part of these beams are under compression as is the case in 
the intermediate support of a bridge deck. In this study, the haunch beams are subjected to 
three point bending test. The height of all these beams are kept constant at the centre which 
is equal to 340 mm. The beams were reinforced with three longitudinal bars of 20 mm 
diameter. The width of these beams was 120 mm. Material Properties for all the beam is 
mentioned in Table 9. In the first set (L-series), the ratio of the shear span to the effective 
depth (a/d) is 5 whereas in the second set (K-series) the ratio is 3. 

Specimen 4L1-4L2 and 5L1-5L2 were reinforced with extra stirrups as shown in Figure 27. 
These specimens failed in flexure whereas all the other 14 specimens failed in shear. Table 9 
gives the failure region with corresponding concrete strength and shear capacity. The load-
deformation graph for the 4 specimens, which failed in flexure, showed ductile behaviour. The 
beams were capable to resist the load until the longitudinal reinforcements are yielded or the 
compressive strength of the concrete has reached. 

The other 14 specimens failed in shear. The author divided the shear failure process in three 
phases: 

i. Phase 1 – Flexural behaviour till half the peak load. At the midspan, where the 
bending moment is maximum, first vertical flexural crack appeared and as the 
load increases, other vertical flexural cracks originate.  

ii. Phase 2 – Flexural-shear behaviour occurred with loading of 0.5Fu-0.9Fu. The 
flexural cracks at the mid-span stays the same, but other cracks grow up. 
These cracks are no more vertical and tends to be inclined with respect to the 
neutral axis of the beam. These cracks are termed as flexural-shear cracks. 

iii. Phase 3 – Shear failure occurred between 0.9Fu-Fu. At this point of loading, the 
flexural shear crack doesn’t grow anymore, however a pure diagonal shear 
crack appeared in the web of the beam as soon as the peak load is reached. 
Hence the failure pattern of these beams was the diagonal shear failure and 
brittle collapse occurred. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 Dimensions of all the beams in Series L [9] 
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Table 9 Specification of the beams tested by Nghiep [9] with corresponding shear capacity [9] 

Specimen Height at 
the support 
(mm) 

Concrete 
strength 
(MPa) 

Angle of 
inclination (α) 
(degrees) 

Failure Region Shear 
Capacity 
(kN) 

1L1 340 48.11 0 Load Position 75.44 

1L2 340 49.24 0 Load Position 79.21 

2L1 240 49.45 3.95 Support 75.18 

2L2 240 49.99 3.95 Support 74.6 

3L1 190 50.21 5.91 Support 66.47 

3L2 190 50.98 5.91 Support 69.3 

4L1 240 52.21 6.71  
 
Flexural Failure 

- 

4L2 240 52.44 6.71 - 

5L1 190 53.13 10.01 - 

5L2 190 53.25 10.01 - 

1K1 340 53.83 0 Load Position 75.63 

1K2 340 53.95 0 Load Position 69.31 

2K1 281 54.18 3.95 Support  83.53 

2K2 281 54.22 3.95 Support 85 

3K1 240 54.26 6.71 Support 79.34 

3K2 240 54.31 6.71 Support 79.93 

4K1 190 54.78 10.01 Support 84.74 

4K2 190 54.82 10.01 Support 83.88 

The specimens failed in shear will be discussed in this study. Failure type of all the haunched 
beam was diagonal shear failure. Interestingly, the load-deflection graph of these beams 
showed brittle failure once the peak load was reached. According to the DIN 1045-01 (German 
code), the vertical component of the inclined concrete force (Vccd) increases the shear strength 
of the beam, provided it follows the same sign convention. This is seen in the K-series, where 
the shear span to effective depth (a/d) ratio is 3. Shear capacity of the beam with an inclination 
of 10o was around 18% higher than the prismatic beam. But this trend was not seen in the L-
series with the shear span to the effective depth of 3. In this case, the shear strength of 3L 
beams was around 16% lower than that of prismatic beams. The author states that this 
conclusion is in contrast to the one mentioned in the German code. 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 Dimensions of all the beams in Series K [9] 
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All these haunch beams were analysed in the Non-Linear FEM package – ABAQAS 6.9. 3-D 
beam models are analysed and the results are validated with the experimental values. The 
load-deflection graph of all the beams obtained from ABAQAS showed good coherence to the 
experimental graphs as shown in Figure 29, which is an example for the beam specimen 2L-
2. The crack pattern, crack spacing and location, and inclination of shear cracks obtained from 
numerical analysis also showed good agreement with the experimental results, but not exact 
due to the heterogeneous nature of concrete. However, the failure type of all these beams 
was exactly predicted in ABAQAS. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30 and Figure 31 shows the different failure position for the prismatic and non-prismatic 
beam. It was also seen that the shear strength distribution of haunched beams is totally 
different than the prismatic beam. In straight beams, parabolic shear stress distribution was 
observed with maximum at the centre but in the positively haunched beams, the shear stress 
distribution was half parabola with maximum at the top part of the beam as shown in Figure 
32. Figure 32 also shows that in non-prismatic beam the shear stress distribution near the 
support resembles to the prismatic beam i.e. parabolic distribution with maximum at the centre 
but when the section is closer to the loading point, the distribution takes the shape of half 
parabola with the maximum value at the top surface of the beam. 

  

 

 

 

 

 

 

Figure 31 Cracking pattern at failure for test specimen 2L-2 [9] 

 

 

 

 

The author also stated that the shear capacity of reinforced concrete beam without stirrups is 
due to the compression zone and the uncracked concrete part in the tension zone and this 
contribution is equal to 95% of the total shear force. Other shear resistance mechanism such 

Figure 32 Shear stress distribution in prismatic and positively haunched beam [9] 

Figure 29 Load - Deformation graph for the beam Specimen 2L-2 [9] 

Figure 30 Cracking pattern at failure for test specimen 1L-2 [9] 
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as aggregate interlock, dowel action etc. provides the remaining 5% of the total shear force. 
Based on the experimental results and data present, the author proposed following formulas 
to calculate the shear capacity of beams. 

1. For prismatic beam 
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2. For non-prismatic beam 
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where, 

1

2

Charachteristic cylinder compressive strength

 Shear Span

 Width of the beam

Reinforcement ratio

d Effective depth of prismatic beam at a distance 

d Effective depth of tapered beam at a dista

ck

l

f

a

b













 min

min

nce of 1.3*d  from the support

d Minimum effective depth 

 

The equation of prismatic beam was validated using 878 experimental results and the mean 
value, for the ratio between the experimental values to the analytical ones, is equal to 1.0086 
with a standard deviation of 0.1379. The equation of haunched beam was compared to the 14 
available test data set and the mean was 1.013, with a standard deviation of 0.063. The shear 
resistance of prismatic beam can be predicted using the above given equation but more 
dataset is required to validate the equation which predicts the shear resistance of non-
prismatic beam. For a conservative approach, the author proposed that whenever the vertical 
component of the inclined tensile tie or compression chord provides favourable contribution to 
the shear capacity i.e. in a positively haunched beam, only 50% of this component should be 
considered in the shear capacity or the applied shear force equation. 

 ' 0.5 .............. 2.11ed ed ccdV V V   

where, 

Vertical component of the inclined compression chordccdV   

2.4.6 Behaviour of concrete haunched beams subjected to static shear 
loading – Arturo Tena Colunga et al. [10] 

Arturo Tena-Colunga et al. [10] studied the behaviour of reinforced concrete haunched beams 
subjected to static and cyclic shear loading. In this study the results of static shear loading will 
be discussed. Five beams (one prismatic and four haunched) where tested without shear 
reinforcement and five beams (one prismatic and four haunched) with the minimum shear 
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reinforcement according to the norms of Mexico’s Federal District Code. All these beams 
where subjected to four point bending test. Figure 33 shows the static scheme and dimensions 
for the specimens (TASC αi-Rj). Table 10 shows the specimen dimensions and the concrete 
strength. 

  

 

 

 
 
 
 
 
 

The first letter in the specimen indicates the angle of inclination i.e. i = 0 = 0o, i = 1 = 3.07o, i = 
2 = 6.12o, i = 3 = 9.13o, i = 4 = 12.1o, whereas the second letter indicates the presence of 
stirrups, j = 0 = no shear reinforcement, j = 1 = Minimum shear reinforcement. 4 bars of 25.4 
mm in diameter (Ast=2026.83 mm2) were used as bottom reinforcement whereas 3 bars of 
25.4 mm diameter (Asb=1520.12 mm2) were used as top reinforcement. All these bars are 
placed in a width of 220 mm. The shear reinforcement used is 8 mm in dimeter with a spacing 
of 185 mm. An example for the specimen TASC α4-R1 specimen is shown in Figure 34. 

Table 10 Specimen dimensions and material properties tested by Arturo et al. [10] 

Specimen 
(TASC αi- Rj)  

Height at support 
(mm) 

Height at centre 
(mm) 

Concrete Strength 
(MPa) 

Angle of 
inclination 
(degrees) 

TASC α0-R0  
 
 
 
 

450 

450 33.4 0 

TASC α1-R0 400 32.1 3.07 

TASC α2-R0 350 29.5 6.12 

TASC α3-R0 300 23.6 9.13 

TASC α4-R0 250 28.1 12.1 

TASC α0-R1 450 31.5 0 

TASC α1-R1 400 26.9 3.07 

TASC α2-R1 350 29.2 6.12 

TASC α3-R1 300 28.8 9.13 

TASC α4-R1 250 21.2 12.1 

 

 

 

 

 

 

Table 11 shows the experimental shear forces for all the specimen. Critical shear force is the 
force where the first diagonal crack occurred. The ultimate shear force is the ultimate capacity 
of the beam whereas the collapse load is the force associated with the collapse of the beam. 
The cracking pattern at the ultimate load and collapse load for the beam specimen TASC α3-
R1 is given in Figure 35. One would expect the ultimate shear force and the collapse load to 

Figure 33 Dimensions of the beam tested by Arturo et al. [10] (in cm) 

Figure 34 Specimen detailing of TASC α4-R1 [10] (Beam Dimensions in cm) 
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be the same as is the case in the prismatic beam. But in non-prismatic beam, this is not the 
situation as can be seen from Table 11 

Table 11 Critical Forces for all the specimens tested by Arturo et al. [10] 

Specimen Critical Shear 
Crack Angle 
(degrees) 

Critical Shear 
Force 
(kN) 

Ultimate Shear 
Force 
(kN) 

Collapse Load 
 
(kN) 

TASC α0-R0 51 45 75 75 

TASC α1-R0 43 57.5 67.5 87.5 

TASC α2-R0 41 50 60 65 

TASC α3-R0 35 27.5 37.5 80 

TASC α4-R0 33 25 30 40 

TASC α0-R1 38 70 250 255 

TASC α1-R1 40 110 200 210 

TASC α2-R1 33 87.5 170 170 

TASC α3-R1 36 40 120 140 

TASC α4-R1 29 40 80 80 

 

 

 

 

 

 

 

 

From the load-deformation graph of all the specimens, it was seen that prismatic beam 
collapsed as soon as the ultimate load was reached. However non-prismatic beam showed 
some deformation capacity after reaching the ultimate shear force as is evident from Table 11 
and Figure 36. The ultimate shear force of the haunched beam were smaller than the prismatic 
beam but the deformation capacity showed reverse trend. The author believes that such 
ductile behaviour of reinforced concrete haunched beam is due to the redistribution of 
cracking. 

 

 

 

 

 

 

 

 

 

The cracking pattern proved the existence of strut action in reinforced haunched beams. 
Compression struts, generally, formed between the loading point and at the mid-point of the 

Figure 36 Load-Displacement curve for all the beams, without shear reinforcement, tested by Arturo et al. [10] 

Figure 35 Cracking pattern in TASCα3-R1 a) at ultimate shear  b) at collapse load [10] 
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haunch length as can be seen in Figure 37. For the specimens with minimum shear 
reinforcement, placing stirrups at the vertex did not allow the cracking to propagate in the 
prismatic section and no local fault was observed at the vertex. Another trend was seen with 
the shear crack angle and the angle of haunch. As the angle of haunch increases the shear 
crack angle further decreases. 

 

 

 

 

 

 

 

Strains in the longitudinal reinforcement, for the specimens without shear reinforcement, are 
much smaller than the yield strain of reinforcement, whereas for the beams with shear 
reinforcement, the peak strain is greater than the yield strain. For the haunched beams with 
shear reinforcement, the peak strain of the stirrups located at the vertex was greater than the 
yield strain of reinforcement. The author states that this is due to the vertical component of the 
inclined steel force. 

Based on all the test results, the authors compared the formulas proposed by Debaiky et al. 
[5] and Macleod et al. [6]. The author also discussed the shortcomings of the formulas. 
Shortcomings for the formulation proposed by Debaiky et al. [5] are 

I. The moment term was accounted indirectly for the dowel action, which was assumed 
to be constant. This was not clear and realistic, especially in case of haunched beams 
with shear reinforcement.  

II. The contribution of shear reinforcement was assumed to be the same as for the 
prismatic beam, despite the fact that the shear crack angle varies with the angle of the 
haunch. 

Shortcomings for the equation proposed by Macleod et al. [6] are 

I. The factor F increases exponentially as the angle of haunch increases, which might 
overestimate the second term of the equation 

II. Nothing was mentioned about the shear capacity contributed by stirrups 
III. The critical depth dcr was not bounded – sometimes the numerical value is greater than 

the maximum effective depth. 

To overcome these shortcomings, Arturo Tena – Colunga et al. [10] proposed an equation 
which was based on the experimental results conducted on all the non-prismatic beam. All 
these test data were checked according to the ACI code. To calculate the effective depth at 

the critical section, graph was plotted between 
min. .

c
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V

f b d
 against the tangent of the angle of 

inclination. A proposed linear regression led to the critical depth formula as shown below 
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where, 

Figure 37 Cracking pattern in the beam specimen TASCα2-R0 [10] 
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The limiting value of the formulated effective equivalent depth is to assure that a realistic value 
is considered, so that the numerically obtained value of the effective depth should not be 
greater than the maximum effective depth. The shear capacity formulation for the haunched 
beam is given by 
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The critical bending moment depends on the nominal bending moment which is calculated 
such that the beam would fail in flexure. This can be done by using the equivalent stress block 
mentioned in ACI 318-05 [2]. The exact equation to calculate Mn was not mentioned in the 
article published by the authors. The equation for the contribution of stirrups by the shear 
capacity is different as compared to the prismatic section. The author assumed that the shear 
crack angle θ is equal to 45-α. This was done for practical purposes and for consistency with 
the design of prismatic sections. This assumption might not be true in some cases. It was seen 
in the beam models tested by Debaiky et al. [5] that the shear crack angle for positively 
haunched beam could be as low as 15o and the assumption mentioned by authors would not 
reach such a small value. Nevertheless, the authors checked the above formula with the 
limited experimental data and the results are quite satisfactory. The mean and the standard 
deviation for the reinforced concrete haunched beam with shear reinforcement, for the ratio 
between the analytical to experimental result, is 0.887 and 0.17 respectively and for the 
haunched beam without shear reinforcement it is 0.879 and 0.286 respectively. 

2.4.7 Shear Behaviour of Non – Prismatic Steel Reinforced Concrete Beams 
– John J. Orr et al. [11] 

John J. Orr et al. [11] studied the shear behaviour of non-prismatic steel reinforced concrete 
beams. The authors designed non-prismatic beams based on different model – Truss Model 
or the Eurocode model (EC2), the compressive force path (CFP) model and the strut and tie 
model (STM).  

The Eurocode model states that when the cross-section forces are inclined, the vertical 
component of the ‘yielded’ inclined tensile tie or inclined compression chord should be 
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considered in the shear resistance of the beam. 4 positively haunched beams were designed 
and constructed using this concept as shown in Figure 39. 

The compressive force path method (CFP) was first invented for prismatic beams and is 
applied by considering two failure modes – ductile flexural failure and the brittle flexural-shear 
failure. For shear failure, the equation of the moment resistance and the shear capacity is 
known which depends on the effective depth. For non-prismatic members, the beam is divided 
into different sections and the effective depth is calculated, using the plain section theory, as 
the design shear force is known. Once the effective depth is known, the bending moment 
resistance, corresponding to the shear failure, and the shear capacity can be calculated. The 
point where the shear capacity is greater than the applied shear force, the iteration can be 
stopped and the effective depth will be obtained at that particular section. By doing so, a graph 
of the applied moment and the shear force, the moment and the shear force corresponding to 
flexural failure and the moment and the shear force corresponding to shear failure is plotted. 
Using this, curved beams were designed with shear failure and flexural failure as shown in 
Figure 40.  

The Strut and tie model (STM) is differentiated from the EC2 model as it does not require the 
steel reinforcement to be yielded in the tapered section, unless the tapered area is in the 
maximum bending moment zone. The effective depth, at the point of maximum bending 
moment zone, is calculated that will ensure that the area of longitudinal steel reinforcement is 
yielded in this location. Tensile tie is formed at each point by joining the adjacent nodes. Using 
the equilibrium at each node, the vertical component of the inclined tensile reinforcement is 
calculated and hence the beams are designed as shown in Figure 41. 

11 non-prismatic beams – 4 beams of EC2 model, 4 of CFP model and 3 of STM model were 
tested 19 times such that one side with the flexural failure and the other side with the shear 
failure as shown in Figure 38. The beam dimensions are given in Table 12. The width of all 
the beams was equal to 110 mm. Two high yield U-bars of 10mm diameter were used as 
bottom reinforcement and two 3mm diameter were used as top reinforcement. The mean 
concrete cylinder strength was 43.9 MPa with a standard deviation of 3.8 MPa. The 
characteristic yield strength is 500 MPa and the mean yield strength is 562 MPa. The length 
of all the specimen was equal to 2000 mm. The beams designed using CFP are curved beams 
as can be seen from Figure 40. Table 13 gives the design load, the load achieved in tests and 
the failure mode for all the specimen. Note that all the beams, except 1-EC2 and 1-CFP, were 
subjected to two test setups – one that fails in shear and the other that fails in flexure. 

Table 12 Descripiton of beams tested by John J Orr et al. [11] 

Specimen Height at the support 
(mm) 

Height at the centre 
(mm) 

Angle of inclination 
(degrees) 

Beam 1-EC2 60 220 9.09 

Beam 2-EC2 60 198 15.43 

Beam 3-EC2 60 129 12.95 

Beam 4-EC2 60 82 8.34 

Beam 1-CFP 70 220 8.53 

Beam 2-CFP 70 214 - 

Beam 3-CFP 70 181 - 

Beam 4-CFP 70 158 - 

Beam STM 70 208 15.43 
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Figure 38 Flexural (M) and Shear(V) failure setup respectively [11] 

Figure 39 EC2 beam specification tested by John J. Orr et al. [11] 

Figure 40 CFP beam specification tested by John J. Orr et al. [11] 
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Table 13 Maximum Load and Faliure mode of all the specimens tested by John J. Orr et al. [11] 

Specimen Percentage of 
Shear 
Reinforcement 
(%) 

Design Maximum 
Load 
(kN) 

Maximum 
Load 
achieved 
(kN) 

Failure Mode 

1-EC2-V 0.00 32 19 Shear 

2-EC2-V 0.00 36 28.2 Shear  

2-EC2-M 0.28 36 32.1 Shear 

3-EC2-V 0.00 31.8 17.1 Shear 

3-EC2-M 0.47 31.8 18.8 Shear 

4-EC2-V 0.00 29.2 26.1 Shear 

4-EC2-M 0.69 29.2 9.6 Anchorage 

1-CFP-V 0.06 32 29.6 Shear 

2-CFP-V 0.18 36 46.9 Flexure 

2-CFP-M 0.41 36 48.6 Flexure 

3-CFP-V 0.26 31.8 43.8 Shear 

3-CFP-M 0.56 31.8 31.5 - 

4-CFP-M 0.77 29.2 28.7 - 

STM_1(i) 0.31 36 41.8 Shear/Flexure 

STM_2 (i) 0.31 36 41.5 Shear/Flexure 

STM_1 (ii) 0.31 36 38.7 Flexure 

STM_2 (iii) 0.31 36 37.9 Flexure 

STM_1 (iii) 0.31 36 37.4 Flexure 

STM_2 (iii) 0.31 36 40.6 Flexure 

From Table 13 it can be seen that the beams designed using the EC2 concept are not 
conservative, with a mean value of the ratio between the load achieved in tests to the design 
load to be 0.66. Whereas the non-prismatic beams designed using the CFP and STM method 
has a mean value of 1.16 and 1.1 respectively, which proves that designing the beam using 
these two concept leads to conservative results. The load deflection graph for all the beams 
was also plotted. It was seen that the beams designed using EC2 concept failed in a brittle 
manner whereas the beams designed using the concept of CFP and STM method showed 
ductility in their behaviour as shown in Figure 42, Figure 43 and Figure 44 respectively. 

 

 

 

 

 

 

 

Figure 41 STM beam specification tested by John J. Orr et al. [11] 

Figure 43 Load - Delfection curve for CFP beams [11] Figure 42 Load-Deflection curve for EC2 beams [11] 
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Digital Image Correlation (DIC) was used in all the beams to check the strain distribution and 
the cracking pattern. The EC2 beams cracked initially at the support, where the principal strain 

1  was higher, and then propagated towards the point of application of load. In the Strut and 

tie model, cracking starts at the midpoint of the tapered section and spread across the loading 
point. In the beams designed using CFP method, the cracking started beneath the loading 
point and advanced across the tapered zone. In both the CFP and the STM model the area of 
tension zone moved towards the loading point, unlike the EC2 model and this was also seen 
from the strain distributions over the tapered area. 

The reason behind the brittle, unstable and the shear critical design of EC2 model is because 
it was proposed that the inclined longitudinal reinforcement will carry both the entire shear 
force as well as the bending moment. From the results, it was seen the shear capacity of the 
beam did not increase even after providing transverse reinforcement in the specimens that 
where designed to fail in flexural. Also the difference between the maximum load achieved for 
the shear type of failure and the flexural type of failure is negligible for the same specimen as 
can be seen from Table 13. 

On the contrary, the beams designed using the strut and tie model showed good coherence 
to the experimental data. Strut and tie model, unlike the EC2 model, does not consider the 
longitudinal reinforcement to be yielded everywhere in the beam but considers the actual force 
in the inclined longitudinal reinforcement in the tapered zone. Moreover all the STM specimens 
failed in flexure, leading to a ductile behaviour and less shear dominant design. But from the 
experiments the author concluded that the STM beams failed close to the brittle manner and 
that CFP was the ideal way for a conservative and a better ductile failure. 

2.4.8 Remarks on the current theory of Shear Strength of Variable Depth 
Beams – A. Pagletti et al. [12] 

A. Pagletti et al. [12] studied on the remarks on the current theory of shear strength of variable 
depth beams. The author explains the theory of shear stress in prismatic and non-prismatic 
beams and explains the origin. According to the ACI 318-05 [2], the vertical component of the 
inclined flexural stresses increases or decreases the shear strength of the beam. The author 
suggests that this in fact should not be the case and presents few paradoxes to prove this. 

I. Paradox – 1 

Consider the cantilevered beams shown in Figure 45, where Figure 45(a) is the cantilevered 
tapered beam whereas Figure 45(b) is a prismatic beam, such that the maximum depth of 

both the beams is the same. Let 
u

P  and 
u

P  denote the loading capacity of the tapered and the 

prismatic beam respectively. The beam will fail in shear if the applied load is greater than load 
capacity. Now according to the codes present worldwide, it can be concluded that the load 

required to produce a shear failure in the tapered beam 
u

P  will be greater than the load 

Figure 44 Load - Deflection curve for STM beams [11] 
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required to produce a shear failure in the prismatic beam 
u

P . However the prismatic beam is 

constructed by adding material to the non-prismatic beam as can be seen from the dotted area 
in Figure 45(b). This means that the amount of material used in the prismatic beam is greater 
than the non-prismatic beam and therefore the ultimate load of the former should not be less 
than that of the latter. The author states that this is both common sense and also the 
consequence of the lower bound theorem of limit analysis which states that “The collapse load 
cannot be decreased by increasing the strength of any part of the beam”. But if the concept of 
effective shear force is used, it can be seen that the vertical component of the inclined 
compression chord increases the shear capacity of the cantilevered tapered beam and 
therefore it is capable of resisting higher load than the prismatic beam, which, according to 
the author, should not be the case. 

 

 

 

 

 

 

 

II. Paradox – 2 

Consider the simply supported tapered beam shown in Figure 46. Figure 46 also shows the 
shear force diagram for the beam obtained due to the applied load (P), where RA and RB are 
the reaction forces at the two supports. The author states that after considering the vertical 
component of the inclined tensile tie, the effective shearing force V* would be greater or lesser 
than applied shear force Vs, as it depends on which side the cross-section analysis is 
performed. Moreover the shear force diagram will be changed even though there is no applied 
load other than ‘P’, which violates the equilibrium of the beam. 

 

 

 

 

 

 

 

 

III. Paradox-3 

Consider the cantilever non-prismatic beam shown in Figure 47. ' is the angle of taper and 

C’ is the force in the compression chord. Consider the cross-section S-S at the midpoint of the 
beam. When forces from the left side of the beam are considered, the vertical component, 

acting in the upward direction, of the inclined compression chord (C’),  '. tanV C   , would 

increase the shear force. But according to the author, the vertical component of the inclined 
compression chord (-C’) from the right side of the beam, which is acting in the downward 
direction, would negate this force and no net reduction in the applied shear force will be seen. 

Figure 45 Comparison of non-prismatic and prismatic cantilevered beam [12] 

Figure 46 Shear force diagram of positively haunched beam [12] 
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IV. Paradox – 4 

This paradox is similar to the first paradox. Consider the constant depth beam and the non-
prismatic beam shown in Figure 48 which are subjected to uniformly varying load, such that 
the ultimate shear strength of the beam is achieved. If the concept of effective shear force is 
valid, then the load bearing capacity of the beam would certainly increase by reducing the 
material and providing haunch near the support i.e. Figure 48(b) would have a higher load 
carrying capacity than Figure 48(a). According to the author this is completely unrealistic and 
is also the consequence of the lower bound theory of the limit analysis as stated previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47 Non-Prismatic cantilevered beam with cross-sectional analysis [12] 

Figure 48 Prismatic and non-prismatic beam subjected to  uniformly varying load [12] 
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3     Cross – Sectional Analysis of 
Prismatic Beam 

This chapter studies different approaches to perform cross-section analysis on an inclined cut 
that can be applied on prismatic beams which is subjected to four point bending test. Prismatic 
beams are then modelled in DIANA and the cross-section results on inclined cuts are 
calculated and further discussed. 
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3.1 General Procedure 
 

 

 

 

 

 

Consider the prismatic beam shown in Figure 49 with length L and height h, subjected to four 
point bending test, with the point loads applied at a distance ‘a’ from the support. Top and 
bottom reinforcement are placed over the width ‘b’ of the beam. Stirrups are provided in the 
shear span of the beam. The cross-sectional analysis is performed at the point of maximum 
bending moment i.e. at the centre. This analysis is performed, assuming that sufficient shear 
reinforcement is provided to avoid shear failure and also the applied load produces a ductile 
flexural behaviour in the beam. To perform the cross-sectional analysis, a vertical cross 
section cut is made at the centre of the beam and the normal forces acting on this section are 
shown in Figure 50. Note that a bi-linear constitutive model is used for concrete as given in 
Figure 3.4 of the Eurocode 1992-1-1 [1]. 
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Figure 49 Prismatic beam subjected to four point bending test 

Figure 50 Cross-Sectional analysis in the zone of maximum bending moment 
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The top reinforcement is placed to hold the stirrups in position. Steel force due to the 
reinforcement placed in the compression side provides negligible contribution to the bending 
moment resistance and hence is neglected. If the point of application of the concrete force is 
known, the bending moment resistance can be calculated. The two horizontal forces acting in 
the cross-section cut are the steel force Fsb and the concrete compressive force Ncu. 
Considering the horizontal equilibrium for the above mentioned cross-section cut,  

 

0

........ 3.01sb cu

H

F N






 

The definition of the concrete compressive force is the area of the cross-section cut under 
which the compressive stresses are acting, multiplied with the design concrete compressive 
strength. From the stress block,  

 
3. . .

........ 3.02
4

cd u
cu

f b x
N   

The equation for the horizontal equilibrium can be rewritten as, 
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When two equal forces acts in the opposite direction, a moment is produced which is equal to 
the magnitude of force multiplied by the distance between the two forces. Similarly, in this 
case also a moment is generated which is given as, 
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where, 

Concrete cover

Diameter of bottom reinforcement

Diameter of stirrups

bot

stirrup

c











 

The term 
7.

18

u
x

 in the lever arm is the point of application of the concrete compressive force 

from the top part of the section. As the height of the concrete compressive zone is known, the 
bending moment resistance can be calculated. None of the internal forces are acting at an 
angle to the cross-section cut and hence the equation of shear resistance is unaffected. Note 
that in this case a vertical cross section cut is made to calculate the bending moment 
resistance .Now, the cross-section cut is made at an angle (α) as shown in Figure 49. 
According to structural mechanics, the cross-section results should not change irrespective of 
how a cross-section cut is projected on the beam. Also the beam does not know how the 
cross-section cut is made and therefore the results should remain the same.  
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3.2 Approaches for Cross-Sectional Analysis of Prismatic beam 
Initially, different approaches were proposed for an inclined cross-section cut where the 
applied shear force was also taken into account by the moment resistance of the beam. All 
these approaches did not sound convincing as the bending moment resistance changed with 
the increase in the inclination of the cut as shown in Appendix A. However, the following 
approaches shows promising outcome and will be discussed further. 

3.2.1 Approach 1 – Vertical Compressive zone with Forces in Global 
direction 

Figure 51 shows the stress distribution and forces acting on an angled cut. The concrete 
compressive force is defined as the area, under which the compressive stresses are acting, 
multiplied with the concrete compressive strength. Note that here, the concrete compressive 
zone xu, 1 is considered in the vertical direction. According to the definition, the equation of 
compressive force Ncu, 1 is given as, 

 
 ,1

,1

3. . .
........ 3.05

4.cos

cd u

cu

f b x
N


  

 

 

 

 

 

 

 

The vertical compression zone xu, 1 is decomposed in the inclined direction, as the stresses 
are acting on this angled length, and the force is further calculated. As these inclined cuts are 
performed in the constant bending moment zone of the prismatic beam shown in Figure 49, 
the concrete compressive force (or the compressive zone) should be constant. But this is not 
the case as the equation of Ncu,1 (equation 3.05) is not the same as that of Ncu (equation 3.02). 
This leads to violation of the horizontal equilibrium , as the steel force (Fsb) is constant but the 
compressive force obtained in this case (Ncu, 1) is greater than that obtained when the cross-
section cut was vertical (Ncu) i.e. Ncu, 1 > Fsb / Ncu. This inconsistency is due to the definition of 

the compressive force and the inclined compression zone
 
,1

cos

ux


.In order to take into 

account the increased length of the concrete compressive zone, Ncu,1 is multiplied with the 
cosine of the angle of inclination and the analysis is then performed as shown in Figure 52. 

 

 

 

 

 

 

 
Figure 52 Revised stress distribution and forces in the global direction on an angled cut with vertical compression zone in prismatic 

beam 

Figure 51 Stress distribution and forces in the global direction on an angled cut with vertical compression zone in prismatic beam 
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Horizontal Equilibrium for the angled cross-section cut, shown in Figure 52, is  
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The equation of the compressive force and vertical compressive zone is given as 

 

,1

,1

,1

3. . .
 

4.cos( )

4.
........ 3.07

3. .

cd u

cu

sb
u u

cd

f x b
N

F
x x

f b




 

 

The bending moment resistance is equal to the steel force multiplied with the lever arm as, 
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The equation of bending moment resistance (equation 3.08), when the analysis is performed 
on an inclined cut (α), with a vertical compressive zone, is similar to that obtained when the 
analysis is performed on a vertical cut as shown in equation 3.04. The concrete compressive 
force is reduced by the cosine of angle of inclination which takes into account the increased 
length of the compression zone, keeping the force, bending moment resistance and the 
horizontal equilibrium in check. Also the equation of the vertical compression zone (equation 
3.07) using this approach is constant and equal to that shown in general procedure (Section 
3.1, equation 3.03). 

3.2.2 Approach 2 – Inclined Compression Zone with Forces in Global 
direction 

The stress distribution and the cross-section forces in this approach are similar to the one 
shown in Figure 52. The only difference is the definition of the compressive zone – in this case 
the compression zone xu, 2 is inclined as seen from Figure 53. However the lever arm is 
considered in the vertical direction (z2). In this case as well, the compressive force is reduced 
by the cosine of the angle of inclination, to negate the increase in the length of the cross-
section cut. 

The procedure to calculate the bending moment resistance is applied in this case 
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The equation of the vertical distance of this inclined compressive zone (xu, 2.cos (α)), obtained 
from the horizontal equilibrium, is similar to the equation of the vertical compressive zone 
(equation 3.03 and 3.07) calculated in Section 3.1 and Section 3.2.1. To calculate the point of 
application of concrete compressive force, and subsequently the lever arm, the inclined 
compressive zone is first decomposed in the vertical direction, by multiplying with the cosine 

of the angle of inclination, and then the factor of 
7

18
 is applied. After substituting the equation 

of compressive zone in the bending moment equation, the following is obtained. 
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Here also it can be seen that the equation of bending moment resistance for an angled cut 
with inclined compressive zone is similar to that obtained from the vertical cross-section cut. 

3.2.3 Approach 3 – Inclined Compression Zone with Forces in Local 
direction 

In this approach, the forces present in Figure 53 are decomposed such that one component 
is in the perpendicular direction, while the other is aligned in the parallel direction of the cross-
section cut as shown in Figure 54. Equilibrium is checked in the direction perpendicular to the 
cross-section cut and the component, which is decomposed in the parallel direction, is 
considered in the shear capacity or the applied shear force. The lever arm and the 
compressive zone both are inclined as seen in Figure 54. 
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Figure 53 Stress distribution and forces in the global direction in an angled cut with inclined compression zone in prismatic beam 
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The forces in the parallel direction are given as, 

resultant force in the parallel direction= .sin( ) .cos( ).sin( )
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From the above calculation it can be seen that there is no shear force in the direction parallel 
to the cross-section cut. Also the equation of the inclined compressive zone (equation 3.13) is 
similar to that obtained from the previous approach (equation 3.10). Moreover, in this 
approach, the steel force is reduced and the lever arm is increased, by the same amount, and 
therefore the equation of bending moment resistance remains same. 

3.3 DIANA Models 
The use of DIANA was made to validate the outcome of all the above three approaches. 
Beams are designed using hand calculations and are then analysed in DIANA. Models are 
then examined for different angle of inclination with the stresses directed in the local 
(perpendicular and parallel direction) as well as in the global direction. The beams analysed 
are subjected to four point bending test and cross-section analysis is performed at the centre 
of the beam.  

3.3.1 Model – 1 
Beam description for the 1st Model is given in Table 14. The material description for the same 
model is given in Table 15. 

 

 

Figure 54 Stress distribution and forces in the local direction on an angled cut with inclined  compression zone in prismatic beam 
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Table 14 Beam Description for DIANA Model-1 

Description Value Unit 

Length 6400 mm 

Span (L) 6000 mm 

Height (h) 350 mm 

Width (b) 200 mm 

Concrete cover (c) 35 mm 

Diameter of two legged stirrup (φstirrup) 8 mm 

Spacing of two legged stirrup (s) 250 mm 

Diameter of bottom reinforcement (φbot) 12 mm 

Area of bottom reinforcement (Asb) 452.39 mm2 

Shear span (a) 2000 mm 

Effective depth(deff) 301 mm 
Table 15 Material Description for DIANA Model-1 

Description Value Unit 

Characteristic concrete compressive strength (fck) 20 MPa 

Design concrete compressive strength (fcd) 13.33 MPa 

Design concrete tensile strength (fctd) 1.03 MPa 

Design yield strength of steel (fyd) 411 MPa 

Young’s Modulus of concrete (Ec) 23663.8 MPa 

 

As the amount of reinforcement and the yield strength of the steel is known, the steel force 
due to bottom reinforcement can be calculated. By using the procedure and the formulations 
mentioned in Section 3.1, the load bearing capacity of the beam can be determined by 
performing cross-section analysis, on a vertical cut, at the centre of the beam. The stress 
distribution and forces are similar to the one shown in Figure 50. All the symbols are mentioned 
in Section 3.1.  
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Now, the beam is modelled in DIANA with the given specifications. The concrete constitutive 
model used in the analysis is shown in Figure 56 and Figure 57. 

Figure 55 Beam dimensions for DIANA model-1 
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The reason behind the use of the brittle tensile constitutive model and the bilinear constitutive 
model was to compare the analytical results. The effect of Poison’s ratio is neglected in all the 
analysis. Displacement controlled analysis was performed in all the models. Interface was 
used at the connection between the steel plate and the beam. No hardening was allowed in 
the steel reinforcement. Linear elastic properties were assigned to the steel plates. The load 
steps used are 0.5(20), 0.2(350). Detailed convergence criteria is mentioned in Table 16. 

Table 16 Convergence criteria 

Norms Criteria 

Energy norm 0.001 

Force norm 0.01 

Satisfaction of all norms was not included in the analysis 

 

For each angle of inclination a new model was constructed in DIANA, with the desired line 
imprinted on the beam, and the model was then analyzed as shown in Figure 58. The local 
axis of the elements were aligned such that the local x-axis of all the element is perpendicular 
to the inclined cut and the local y-axis of all the element is parallel to the inclined cross-section 
cut. 

 

 

 

 

Figure 56 Tensile constitutive model for concrete 

Figure 57 Compressive constitutive model for concrete 

Figure 58 An example of the line imprinted on the beam (20 degree of angle of inclination) 

Imprinted Line 
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To check the analytical calculations, a simple model with a vertical line imprinted in the center 
of the beam was first analyzed. The Load-Deflection curve is shown in Figure 59. The 
maximum deflection, obtained at the center of the beam, is considered in the graph. The little 
hiccup in the graph can be attributed to the beginning of the non-linearity i.e. cracking begins 
after point A. The maximum load that the beam can sustain is 23.58 kN, which is almost equal 
to the one obtained with the analytical calculation. The structure has a lot of ductility as the 
concrete crushes after reaching a deflection of about 75 mm (point D). At the deflection of 
about 55 mm, the steel is yielded (point C). After this point the load in the graph is almost 
constant. At this point the stresses in the top part of the structure have reached design 
compressive strength, but the strain at that very location have not reached 3.5x10-3. This 
indicates that the strain in concrete is in the constant part of Figure 57, where the strain 
increases but the concrete strength remains constant. Point B depicts the load case where 
the concrete has reached a strain of 1.75x10-3. Almost all the load steps in the analysis are 
converged. The inclined angled cut, which is to be imprinted on the model, is made with 
respect to the neutral axis at the center of the beam similar to the one shown in Figure 49. 

 

 

 

 

 

 

 

 

 

The bending moment resistance is calculated when the bottom steel reinforcement has yielded 
and the concrete above has reached fcd i.e. at point C. To determine the compressive force, in 
the horizontal as well as in the perpendicular direction, the values of Local (σxx) and Global 
(σXX) Stresses in the X-direction along the desired line are plotted. An example of this is shown 
in Figure 60 for an angle of inclination of 20 degrees. As mentioned earlier, the concrete 
compressive force (Ncu) is obtained by multiplying the area of the cross-section cut, under 
which the compressive stress act, to the concrete compressive strength. Therefore, in general, 
the compressive force is obtained by numerically integrating the plot of σXX along the desired 
height of the cross-section cut and further multiplying with the width of the beam. The force 
obtained by numerically integrating the plot of σxx (Local stress) will act in the direction 
perpendicular to the cut (Local X-Direction) whereas the force obtained by numerically 
integrating the plot of σXX (Global Direction) will act in the horizontal direction. To calculate the 
bending moment resistance, it is important to check the horizontal equilibrium (or equilibrium 
in the perpendicular direction) in the cross-section cut. As the amount of bottom steel 
reinforcement (Asb=452.39 mm2) and the yield strength of steel reinforcement (fyd=411 MPa) 
is known, the steel force (Fsb) can be calculated and the equilibrium is checked. Note that, to 
obtain the equilibrium in the perpendicular direction of the cut, the steel force is multiplied with 
the cosine of the angle of inclination so that it is aligned in the Local – x direction. All these 
results are tabulated in Table 17. 

 

 

 

 

Figure 59 Load-Deflection curve  
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Table 17 Global and local cross-section forces for different angle of inclination for DIANA model – 1  

Angle 
(degrees) 

Fsb global 
(kN) 

Ncu global 
(kN) 

Fsb local 
(kN) 

Ncu local 
(kN) 

0 185.94 -185.95 185.95 -185.68 

5 186.13 -185.84 185.43 -185.06 

10 186.5 -189.05 183.66 -183.37 

15 186.19 -191.67 179.85 -178.90 

20 186.39 -198.1 175.15 -175.28 

25 186.51 -205.76 169.04 -168.41 

30 186.04 -215.02 161.12 -161.48 

35 186.32 -228.83 152.62 -153.20 

40 186.37 -244.10 142.76 -142.87 

45 186.40 -255.04 131.81 -131.85 

50 186.45 -282.78 119.85 -117.81 

 

From the data, it can be seen that as the angle of inclination increases, the difference between 
the steel force and the concrete compressive force in the global direction / horizontal direction 
keeps on increasing, and hence no horizontal equilibrium is obtained. On the other hand, the 
forces in the perpendicular direction of the cross-section cut are in equilibrium i.e. in the Local-
x Direction. The cross-section forces on an angled cut, in the local direction, is similar to that 
mentioned in Figure 54 of Approach 3 (Section 3.2.3). The inclined concrete compressive 
zone for every cut is known, from the plot of σxx, and the Bending Moment resistance can be 
calculated which is given in Table 18. The error in the Bending Moment Resistance, due to 
the forces in the local direction, is plotted in Figure 61. From the figure and the numbers, it 
can be concluded that the Bending Moment Resistance (MRd) does not change when the 
cross-section cut is performed at different angle of inclination as was seen from the 3rd 
Approach (Section 3.2.3).  

 

 

 

 

 

 

 

Figure 60 σxx and σXX for an angle of inclination of 20 degrees 

Figure 61 Percentage error in the bending moment resistance due to the forces in the local direction for DIANA model – 1  
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Table 18 Data in the local direction for different angle of inclination for DIANA model – 1  

Angle 
(degrees) 

Fsb local 
(kN) 

Ncu local 
(kN) 

Xu, inclined 

(mm) 
Error in Horizontal 
Equilibrium 
(%) 

Moment  
(kN-m) 

0 185.95 -185.68 154.18 0.14 44.92 

5 185.43 -185.06 145.69 0.19 45.53 

10 183.66 -183.37 150.12 0.16 45.45 

15 179.85 -178.90 169.87 0.52 44.37 

20 175.15 -175.28 153.06 -0.09 45.67 

25 169.04 -168.41 168.82 0.37 45.13 

30 161.12 -161.48 155.32 -0.26 46.17 

35 152.62 -153.20 167.18 -0.30 46.08 

40 142.76 -142.87 182.71 -0.07 45.91 

45 131.81 -131.85 195.98 -0.04 46.00 

50 119.85 -117.81 198.16 1.7 46.71 

 

Interestingly, there is no equilibrium of forces in the Global-X direction. From Table 17, it can 
be observed that as the angle of inclination increases, the difference between the concrete 
compressive force and the steel force in the global direction keeps on increasing. This is 
similar to the case shown in Figure 51. As the angle of inclination increases, the length of the 
inclined compression zone also increases and according to the definition, the magnitude of 
the concrete compressive force keeps on rising, breaching the equilibrium with the steel force. 
However it was seen that horizontal equilibrium in the inclined cross-section cut was 
maintained when the compressive force is multiplied with the cosine of the angle of inclination 
as shown in Table 19. As the inclined concrete compressive zone for every angle of inclination 
is known, from the plot of σXX (Global Stress), the Bending Moment Resistance can be 
calculated and is tabulated in Table 19. Approach 2 (Section 3.2.2) is similar to this situation 
as the stresses are in the global direction and the compressive zone is inclined as shown in 
Figure 53. Figure 62 shows the percentage error in the bending moment resistance. It can be 
observed that as the angle of inclination increases, there is a slight increase in the percentage 
error. This is due to the mesh in the modelling, as it gets difficult to minimize the number of 
distorted and triangular elements. 

Table 19 Data in the global direction for different angle of inclination for DIANA model - 1 

Angle 
(degrees) 

Fsb 
(kN) 

Ncu 
(kN) 

Ncu.cos(angle) 
(kN) 

xu 
(mm) 

Error in Horizontal 
Equilibrium (%) 

Moment 
(kN-m) 

0 185.94 -185.95 -185.95 154.18 0.00 44.93 

5 186.13 -185.84 -185.14 143.57 0.53 45.66 

10 186.50 -189.05 -186.18 148.32 0.16 45.56 

15 186.19 -191.66 -185.13 159.15 0.56 45.01 

20 186.39 -198.10 -186.15 155.48 0.12 45.53 

25 186.51 -205.75 -186.48 164.08 0.01 45.4 

30 186.04 -215.02 -186.21 161.65 -0.09 45.83 

35 186.32 -228.83 -187.45 169.50 -0.6 45.97 

40 186.37 -244.10 -186.99 186.79 -0.33 45.71 

45 186.40 -255.04 -180.34 190.28 3.25 46.25 

50 186.45 -282.78 -181.77 199.86 2.51 46.64 
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The reason for the multiplication of cosine of the angle of inclination to the concrete 
compressive force, in the Global Direction, is due to the increase in the length of the cross-
section cut. When the angle of inclination increases, the length of the cross-section cut and 
therefore the length of the inclined compressive zone also increases. Integrating the stress 
block, shown in Figure 50, over an increased length of concrete compressive zone would 
obviously lead to a higher compressive force, breaking the equilibrium with the steel force. 
Hence this force should be reduced and further analyzed.  

3.3.2 Model – 2 
In the previous example the amount of reinforcement used was low (ρ = 0.7%) and hence the 
load bearing capacity was also less. Therefore another beam was analysed which was also 
subjected to four point bending test but with a comparatively higher reinforcement ratio (ρ = 
1.2%) and higher load bearing capacity. Beam description and the material description are 
given in Table 20 and Table 21 respectively. 

Table 20 Beam description for DIANA model - 2 

Description Value Unit 

Length  6400 mm 

Span (L) 6000 mm 

Height (d) 500 mm 

Width (b) 300 mm 

Concrete cover (c) 35 mm 

Diameter of two legged stirrup(
stirrup ) 12 mm 

Diameter of bottom reinforcement (
bot )   16 mm 

Area of reinforcement (Asb) 1608.5 mm2 

Shear span (a) 2000 mm 

Effective depth (deff) 55 mm 
Table 21 Material description for DIANA model - 2 

Description Value Unit 

Characteristic Concrete Compressive Strength (fck) 40 MPa 

Design Concrete Compressive Strength (fcd) 26.67 MPa 

Design Concrete Tensile Strength (fctd) 1.64 MPa 

Design Yield Strength (fyd) 411 MPa 

Young’s Modulus of concrete  29814.5 MPa 

 

All the symbols are as discussed previously. The same procedure to calculate the load bearing 
capacity of the beam, by equilibrating the bending moment resistance and the applied 
moment, is used. The bending moment resistance for different angle of inclination is then 
calculated and compared. 

Figure 62 Percentage error in bending moment resistance due to forces in the global direction for DIANA model - 1 
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The beam is modelled and analysed in DIANA, with the concrete constitutive model given in 
Figure 63 and Figure 64. The convergence norm and criteria is similar to the one mentioned 
in Table 16. Figure 66 gives the Load-Deflection curve for the beam shown in Figure 65. The 
point A denotes the beginning of non-linearity, point B denotes the load case where the strain 
in the concrete has reached 1.75‰, point C depicts the yielding of steel and point D is where 
the concrete is crushed i.e the strain in the concrete has reached 3.5‰. The maximum load 
that the beam can carry is equal to 132.32 kN, which is equal to the analytical calculation. In 
this case also, for every angle of inclination a new model was analysed with the desired line 
imprinted on the beam.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63 Tensile constitutive model for concrete 

Figure 65 Beam dimensions for model - 2 

Figure 64 Compressive constitutive model for concrete 



50 
 

 

 

 

 

 

 

 

 

Table 22 Global and local cross-section forces for different angle of inclination for DIANA model - 2 

Angle 
(degrees) 

Fsb 
(kN) 

Ncu  
(kN) 

Fsb local 
(kN) 

Ncu local 
(kN) 

0 665.54 -665.25 665.54 -665.25 

5 664.81 -674.38 662.28 -661.45 

10 663.21 -675.41 653.13 -655.09 

15 664.30 -686.12 641.67 -641.50 

20 665.12 -707.62 625.01 -625.38 

25 665.15 -734.51 602.83 -603.20 

30 664.50 -765.10 575.47 -578.41 

35 664.58 -807.23 544.4 -544.00 

40 663.99 -860.33 508.65 -510.66 

45 664.03 -933.41 469.54 -467.36 

 

Table 22 gives the cross-section forces in the local and the global direction that are calculated 
after the steel has yielded i.e. after point C. The same trend is followed in this case as well. 
As the angle of inclination increases, the concrete compressive force in the global direction 
keeps on increasing, breaching the horizontal equilibrium with the steel force. On the other 
hand, good coherence was observed when the cross-section forces are aligned in the local 
direction i.e. the perpendicular and parallel direction of the cross-section cut. From the stress 
block in the local direction, the height of the inclined compressive zone is known and the 
bending moment resistance for different angle of inclination is calculated. Table 23 shows the 
error for the local horizontal equilibrium, which is minimal, and also the bending moment 
resistance for different angle of inclination. It can be seen that the bending moment resistance 
has hardly changed. Moreover Figure 67 gives the percentage error in the bending moment 
resistance, for the forces directed in the local direction. In this case as well, the percentage 
error is negligible (less than -0.8%). 

Table 24 shows the detailing of forces in the global direction. Also in this case it was observed, 
that when the concrete compressive force is multiplied with the cosine of the angle of 
inclination, horizontal equilibrium is maintained with the steel force. As the concrete 
compressive zone is known, the bending moment resistance for different angle of inclination 
is calculated and tabulated in Table 24. From Figure 68, it can be observed that the error in 
the bending moment resistance, when the forces are in the global direction, is also minimal 
(less than 1%). 

 

 

Figure 66 Force-Deflection diagram 
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Table 23 Data in the local direction for differnt angle of inclination for DIANA model - 2 

Angle  
(degrees) 

Fsb local 
(kN) 

Ncu local 
(kN) 

xu 
(mm) 

Error in Local Horizontal 
Equilibrium (%) 

 Moment  
(kN-m) 

0 665.54 -665.25 148.41 0.04 263.24 

5 662.28 -661.45 157.06 0.12 261.16 

10 653.13 -655.09 146.62 -0.3 263.20 

15 641.67 -641.50 156.70 0.02 262.10 

20 625.01 -625.38 164.96 -0.06 261.61 

25 602.83 -603.20 164.51 -0.06 262.93 

30 575.47 -578.41 170.27 -0.51 263.04 

35 544.39 -544.00 176.99 0.07 263.62 

40 508.65 -510.66 199.66 -0.39 261.62 

45 469.54 -467.36 204.32 0.46 263.51 

 

 

 

 

 

 

 

Table 24 Data in the global direction for different angle of inclination in DIANA model - 2 

Angle 
(degrees) 

Fsb  
(kN) 

Ncu  
(kN) 

Ncu.cos(angle) 
(kN) 

xu 

(mm) 
Error in Horizontal 
Equilibrium (%) 

Moment  
(kN-m) 

0 665.54 -665.25 -665.25 148.41 -0.04 263.24 

5 664.81 -674.38 -671.82 149.75 -1.05 262.78 

10 663.21 -675.41 -665.15 146.57 -0.29 263.21 

15 664.30 -686.12 -662.74 153.11 0.23 262.86 

20 665.12 -707.62 -664.95 155.88 0.02 263.50 

25 665.15 -734.51 -665.69 159.98 -0.08 263.84 

30 664.50 -765.10 -662.59 156.94 0.28 265.59 

35 664.58 -807.23 -661.24 187.68 0.50 261.68 

40 663.99 -860.33 -659.05 190.92 0.74 263.10 

45 664.03 -933.41 -660.02 204.13 0.60 263.54 

 

 

 

 

 

 

 

Figure 67 Percentage error in bending moment resistance due to the local cross-section forces for DIANA model - 2 

Figure 68 Percentage error in bending moment resistance due to the global cross-section forces in DIANA model - 2 
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4     Cross-Sectional Analysis on 
Reinforced Non-Prismatic Beams 

This chapter describes, in detail, the procedure to calculate the shear capacity of reinforced 
non-prismatic beams, by comparing the experimental data discussed in Chapter 2 with the 
analytical results. Approaches to calculate the cross-section results, in reinforced non-
prismatic beams, on an inclined cut is proposed and discussed further. 
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4.1  General Procedure for cross-sectional analysis on reinforced non-
prismatic beam 

 

 

 

 

 

 

 

 

Consider the negatively haunched beam shown in Figure 69, with span L and the maximum 
height (hmax) at the support. The angle of taper is ‘α’ and the beam is subjected to four point 
bending test, with point loads applied at a distance of ‘a’ from the support. The bottom 
reinforcement is placed such that it is parallel to the bottom side of the beam. Cross-sectional 
analysis is performed in the tapered zone, at a distance of ‘x’ from the support of the beam 
shown in Figure 69. 

 

 

 

 

 

 

 

 

 

Figure 70 shows the cross-section forces for an analysis performed in the tapered zone. All 
the symbols are mentioned previously in Chapter 3. As the steel reinforcement is placed at 
the angle of taper, the steel force Fsb also acts at the given angle. This force is decomposed 
in two direction: 

I. Horizontal component, which is considered in the bending moment resistance formula 
II. Vertical component, which according to the codes mentioned in Chapter 2, should be 

considered in the shear capacity of the beam. 

The bending moment resistance calculation is given as follows, 
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Figure 69 Negatively haunched beam with cross-section cut in the tapered zone 

Figure 70 Cross-Sectional analysis performed on a vertical cut in the tapered zone of Figure 69 
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All the symbols are mentioned in the nomenclature. The cross-sectional analysis is performed 
at the Ultimate limit state, where the steel force (Fsb) is assumed to be yielded. This would 
indicate that the shear capacity has increased or decreased by the yielded steel force (Fsb) 
multiplied by the sine of the angle of taper (α). John J Orr et al. [11] designed positively 
haunched beams based on the theory that the vertical component of the ‘yielded’ longitudinal 
reinforcement contributes to the shear capacity of the beam. From the results, it was 
concluded that these beams failed at a much lower load than the design load and the concept 
of contribution of ‘yielded’ longitudinal reinforcement to the shear capacity was proven to be 
wrong.  

Assuming that the vertical component is considered in the shear capacity of the beam, the 
formula for the effective shear resistance is given as 
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The formula for the effective shear resistance can also be written as, 
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Using this formula, the experimental data is validated to check whether the vertical component 
should be considered in the shear capacity equation or not. As the height of the non-prismatic 
beam varies along the length of the beam, the definition of critical section is important where 
the effective shear resistance is calculated. Also, the equation of shear resistance contributed 
by concrete and stirrups is based on design material properties. However, mean properties 
are used in experiments and the formula to calculate the shear capacity contributed by 
concrete and stirrups has been modified as shown below. 
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4.2    Validation of Literature Study 
This section comprises of the validation of the experimental data mentioned in Chapter 2. All 
experimental non-prismatic beams are briefly discussed and further comparison with the 
analytical results has been performed.  

4.2.1 Arturo Tena-Colunga et al. [10]  

The authors performed tests on 10 beams, 2 prismatic and 8 non-prismatic beams. The beams 
were subjected to four point bending test as shown in Figure 33. The first 5 beams were not 
reinforced with stirrups whereas the other 5 had minimum amount of shear reinforcement. 
Width of the beam was constant and was equal to 220 mm. The bottom reinforcement consists 
of 4 bars of 25.4 mm diameter.  

Table 11 depicts the experimental value of shear forces with the given shear crack angle. The 
critical shear force denotes the force at which the first diagonal crack occurs. The ultimate 
shear force is the force where major shear cracking occurs and the collapse load is the 
capacity of the beam to carry the load. An example of reinforcement detailing present in the 
non-prismatic beam is shown in Figure 34. All these beams are validated using the effective 
shear resistance formula (equation 4.09). 

The shear resistance is calculated at the critical section, which in this case is at the vertex of 
the haunch near the loading point. The reasons to consider the vertex as a critical section are 
as follows: 

a. The height of the beam is minimum at this point. 
b. The applied moment at this point is higher as compared to the other points of the 

tapered section and therefore the steel force would also be maximum at this section. 
The vertical component of the inclined steel force, which has a negative contribution 
with respect to the shear capacity of the beam, will have maximum effect on the 
resistance at this section. 

The calculation of shear resistance for the beam TASCα2-R0 is shown below. Beam 
description is given in Table 25. The geometry of the specimen TASCα2-R0 with the given 
critical section is shown in Figure 71. 
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Table 25 Description of the specimen TASCα2-R0 

Description Value Unit 

Angle of taper (α) 6.12 degrees 

Mean compressive strength (fcm) 29.5 MPa 

Area of reinforcement (Asb) 2026.83 mm2 

Minimum height (hmin) 350 mm 

Minimum effective depth (d) 310 mm 

 

 

 

 

 

 

 

 

 

The shear resistance contributed by concrete is calculated as shown below. The reinforcement 
ratio (ρl) has also been calculated with the effective depth at the critical section. 
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Figure 72 shows the moment-kappa diagram for a beam loaded under bending. In the linear 
elastic stage (Stage-I), till Mcr, the load is taken up by concrete and the steel force is zero. 
Once concrete has reached the flexural tensile strength, cracking occurs and the increased 
load is carried by the bottom reinforcement in the second and third stage. To calculate the 

Figure 71 Geometry of the specimen TASCα2-R0 

Figure 72 Moment-Kappa diagram for a beam subjected to bending 
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critical moment (Mcr) and the critical force (Pcr), above which cracking occurs and the steel 
force increases, the following formulas are used. 
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The concrete tensile strength and the young’s modulus is calculated according to the formulas 
mentioned in Eurocode 1992-1-1 [1]. 
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Table 26 Critical Moment and Force Description of the specimen TASCα2-R0 

Description Value Unit 

Section Modulus (W) 4490682.5 mm2 

Flexural Tensile Strength (fctm,fl) 2.9 MPa 

Critical Moment (Mcr) 13.02 kN-m 

Distance of critical section from the support (x) 933 mm 

Critical Force (Pcr) 13.96 kN 

 

When the load reaches a value of 13.96 kN, cracking occurs and the steel reinforcement is 
responsible to carry the applied load. To calculate the horizontal component of the inclined 
steel force, the following formula is used 
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The height of the concrete compressive zone can be calculated as follows, 
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Table 27 Lever arm calculation for the specimen TASCα2-R0 

Description Value Unit 

Young’s Modulus of Steel 200000 MPa 

Young’s Modulus of Concrete 30434.72 MPa 

Ratio between Young’s Modulus (αe) 6.57 - 

Reinforcement Ratio (ρl) 2.9 % 

Compressive zone (xs) 142.43 mm 

Lever arm (z) 262.49 mm 

 

The critical force (Pcr), after which cracking occurs, is known which is equal to 13.94 kN. To 
calculate the horizontal component of the inclined tensile tie, lever arm is required which is 
equal to 262.49 mm (0.85*d). The shear resistance of the negatively haunched beam 
TASCα2-R0 can now be calculated as shown in Table 28. 

Table 28 Analytical Calculation of the shear capacity for the specimen TASCα2-R0 

Load 
(kN) 

Fsb.cos(α) 
(kN) 

Fsb.sin(α) 
(kN) 

Effective Shear Resistance 
(kN) 

Failure 

1 0 0 81.94 NO FAILURE 

13 0 0 81.94 NO FAILURE 

14 49.76 5.34 76.61 NO FAILURE 

15 53.32 5.72 76.23 NO FAILURE 

25 88.86 9.53 72.42 NO FAILURE 

35 124.41 13.34 68.61 NO FAILURE 

45 159.95 17.15 64.79 NO FAILURE 

55 195.50 20.96 60.98 NO FAILURE 

56 199.05 21.34 60.60 NO FAILURE 

57 202.61 21.72 60.22 NO FAILURE 

58 206.16 22.10 59.84 NO FAILURE 

59 209.71 22.49 59.46 NO FAILURE 

60 213.27 22.87 59.08 FAILURE 

 

Till the applied load is less than the critical force (13.96 kN), cracking does not occur and both 
the components of steel force are equal to zero. The moment the applied load is greater than 
the critical force, both the components of the inclined steel force are determined. To calculate 
the effective shear resistance of the beam, the vertical component of the inclined steel force 
(Fsb.sin(α)) is subtracted from the shear resistance contributed by concrete (VRm,c). Failure in 
the beam occurs when the effective shear resistance is less than the applied load and the 
shear capacity of the non-prismatic beam is determined. Using this procedure, analytically 
calculated shear capacity of the non-prismatic beam TASCα2-R0 is equal to 59.46kN which 
is almost equal to the experimental value of 60kN. If the vertical component of the inclined 
steel force is ignored, one would overestimate the shear capacity of the beam by 36.5%. This 
also shows that the capacity of non-prismatic beam depends on the applied loading. 

Now consider the non-prismatic beam TASCα3-R1, which is reinforced with stirrups as shown 
in Figure 73. Beam description is given in Table 29. 

 



60 
 

 

 

 

 

 

Table 29 Descripiton of the specimen TASCα3-R1 

Description Value Unit 

Angle of taper (α) 9.13 Degrees 

Mean compressive strength (fcm) 28.8 MPa 

Area of reinforcement (Asb) 2026.83 mm2 

Minimum height (hmin) 300 mm 

Minimum effective depth (d) 260 mm 

Area of shear reinforcement (Asv) 100.53 mm2 

Spacing of shear reinforcement (s) 185 mm 

Mean Yield Strength (fym) 420 MPa 

Shear Crack Angle (γ) 36 degrees 

 

In this case also, the critical section is considered at the vertex of the haunch near the loading 
point. Table 30 gives the critical moment and the critical force, above which cracking occurs 
and steel reinforcement carries the additional load. All these are calculated based on the 
formula mentioned in equation 4.10, 4.11, 4.12 and 4.13. 

Table 30 Critical Moment and Force description of the specimen TASCα3-R1 

Description Value Unit 

Flexural Tensile Strength (fctm,fl) 2.95 MPa 

Section Modulus (W) 3301243.5 mm2 

Critical moment (Mcr) 9.73 kN-m 

Distance of critical section from the support (x) 933 mm 

Critical force (Pcr) 10.44 kN 

 

The procedure to calculate the lever arm is also mentioned in equation 4.16 and 4.17 with the 
important details given in the following table. 

Table 31 Lever arm calculation of the specimen TASCα3-R1 

Description Value Unit 

Young’s Modulus of Steel 200000 MPa 

Young’s Modulus of Concrete 30216.24 MPa 

Ratio between Young’s Modulus (αe) 6.62 - 

Reinforcement Ratio (ρl) 0.034 - 

Compressive zone (xs) 127.26 mm 

Lever arm (z) 217.64 mm 
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The shear resistance contributed by stirrups is given by the following formula, 

Figure 73 Geometry and Reinforcement detailing of the specimen TASCα3-R1 



61 
 

 
,

. . .cot
68.36 kN

sv yvm

Rm s

A f z
V

s


   

All the parameters are mentioned in Table 29. The lever arm calculated at the critical section 
is used in the above equation to calculate the shear resistance contributed by stirrups. Same 
procedure is applied to calculate the shear capacity of these beams as shown in Table 32. 

Table 32 Analytical shear capacity calculation of the specimen TASCα3-R1 

Load 
(kN) 

Fsb.cos(α) 
(kN) 

Fsb.sin(α) 
(kN) 

Effective Shear Resistance 
(kN) 

Failure 

1 0.00 0.00 143.64 NO FAILURE 

13 55.73 8.96 134.68 NO FAILURE 

14 60.02 9.65 133.99 NO FAILURE 

15 64.30 10.33 133.30 NO FAILURE 

25 107.17 17.22 126.41 NO FAILURE 

35 150.04 24.11 119.52 NO FAILURE 

45 192.91 31.00 112.63 NO FAILURE 

55 235.78 37.89 105.74 NO FAILURE 

65 278.65 44.78 98.85 NO FAILURE 

75 321.52 51.67 91.96 NO FAILURE 

80 342.96 55.12 88.52 NO FAILURE 

84 360.11 57.87 85.76 NO FAILURE 

85 364.39 58.56 85.07 NO FAILURE 

86 368.68 59.25 84.38 FAILURE 

 

Shear failure occurs when the effective shear resistance is less than the applied load, as was 
the case previously. The experimental shear resistance was equal to 120 kN which is higher 
than the analytically obtained shear capacity where the vertical component is taken into 
account by the shear resistance. If this component is ignored, the shear capacity of the beam 
would be equal to 143.64 kN, overestimating the capacity by 19%. 

Following the above procedure, all the beams are analysed and the shear capacities, including 
and excluding the vertical component of the inclined tensile tie, are compared with the 
experimental result. 

Table 33 Experimental and Analytical shear capacity for all the specimen tested by Arturo et al. [10] 

 Specimen Angle of 
taper 
(degrees) 

Experimental 
(kN) 

Analytical 
including the 
vertical 
component (kN) 

Analytical 
excluding the 
vertical 
component (kN) 

1 TASC α0-R0 0 75 96.93 96.93 

2 TASC α1-R0 3.06 67.5 77.64 90.13 

3 TASC α2-R0 6.12 60 59.58 81.94 

4 TASC α3-R0 9.13 37.5 42.43 70.43 

5 TASC α4-R0 12.1 30 33.12 68.15 

6 TASC α0-R1 0 250 198.36 198.36 

7 TASC α1-R1 3.06 200 155.24 168.52 

8 TASC α2-R1 6.12 170 135.9 173.9 

9 TASC α3-R1 9.13 120 85.13 143.64 

10 TASC α4-R1 12.1 80 68.04 132.91 
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Note that the shear resistance of all the non-prismatic beams is calculated at the critical 
section i.e. at the vertex of the haunch. From the experiments, it was seen that shear crack 
was initiated at the centre of the haunch and not at the vertex. Nevertheless, it can be seen 
from Table 33 and Figure 74 that the analytical results where the vertical component is taken 
into account by the shear capacity of the beam conforms well to the experimental results. On 
the other hand, the shear capacity of the beam is overestimated when the vertical component 
is ignored. 

4.2.2 Vu Hong Nghiep [9]  

The author performed three point bending test on non-prismatic beams such that the haunch 
is present at the top side of the beam as shown in Figure 27 and Figure 28. The author 
performed tests on 18 different beams – 2 prismatic beams, 12 positively haunched beams 
failed in shear and 4 positively haunched beams failed in flexure. The focus in this study will 
be on the 12 non-prismatic and 2 prismatic beams. The beams were designed such that the 
maximum height of the beam at the centre remains constant and equal to 340 mm. The width 
of the beam is equal to 200 mm. The bottom reinforcement consists of 3 bars of 20 mm 
diameter. The section 7.3.3.1 of the Model Code [3] states that in a cross-section design, the 
design shear force must in general be determined at a distance of ‘d’ i.e. effective depth from 
the support. It also state that this definition of the controlled section might change for different 
types of beams such as non-prismatic beams. To analytically calculate the shear capacity of 
the positively haunched beams tested by Nghiep, the critical section is considered at a 
distance of ‘hmin’ from the support. Figure 75 shows the beam specification for the beams 3L1-
3L2. At the ULS, the cross-section forces acting on the cross-section cut is shown in Figure 
76.  

 

 

 

 

 

 

The inclined concrete compressive force (Ncu) is given as, 
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Figure 74 Shear Capacity Comparison for all the specimens tested by Arturo et al. [10] 

Figure 75 Geometry of the specimen 3L1-3L2 
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Due to the geometry of the beam, the compressive force acts at an angle at the top part of the 
cut. The force is assumed to act at the same angle as that of the angle of taper. This force is 
decomposed in the horizontal and the vertical direction as shown in Figure 76. The vertical 
component of the inclined compression chord decreases the applied shear force or increases 
the shear capacity of the beam. The procedure mentioned in the previous section is applied 
in these positively haunched beams and the vertical component of the inclined compression 
chord is calculated. The effective shear resistance is determined by adding this component to 
the shear capacity contributed by concrete, which is further compared with the applied loading. 
All the results are determined at the critical section i.e. at a distance of hmin from the support 
and tabulated below. 

 

 

 

 

 

 

Table 34 Experimental and Analytical shear capacity of all the specimen tested by Vu Hong Nghiep [9] 

 Specimen Angle of 
taper 
 
(degrees) 

Experimental 
 
 
(kN) 

Analytical 
including the 
vertical component 
(kN) 

Analytical 
excluding  
the vertical 
component(kN) 

1 1L1 0 75.44 69.12 69.12 

2 1L2 0 79.21 69.66 69.66 

3 2L1 3.95 75.18 67.11 61.24 

4 2L2 3.95 74.6 67.59 61.71 

5 3L1 5.91 66.47 60.84 52.79 

6 3L2 5.91 69.3 61.24 52.07 

7 1K1 0 75.63 71.77 71.77 

8 1K2 0 69.31 71.81 71.81 

9 2K1 3.95 83.53 73.63 67.47 

10 2K2 3.95 85 73.65 67.48 

11 3K1 6.71 79.34 74.3 63.9 

12 3K2 6.71 79.93 74.32 63.92 

13 4K1 10.01 84.74 72.26 57.27 

14 4K2 10.01 83.88 72.27 57.28 

 

 

 

 

 

 

 

 

Figure 76 Cross-Sectional analysis performed at the critical section in Figure 75 (at ULS) 

Figure 77 Shear Capacity Comparison for all the specimen tested by Vu Hong Nghiep [9] 
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Figure 77 shows the comparison of shear capacities of all the beams with the experimental 
data. The shear crack in the beam initiated near the support and propagated to the loading 
point and from the figure and the numbers, the assumption of the critical section near the 
support is quite reasonable. Figure 77 also shows that including the vertical component of the 
inclined compressive force to the analytical formula would significantly increase the shear 
capacity of the beam and is also close to the experimentally results.  

4.2.3 Debaiky et al. [5]  

The authors performed tests on 33 concrete beams which were subjected to four point bending 
test. The authors divided the beams under 6 different series. The differences between these 
series are the shear span, concrete strength, percentage of transverse reinforcement, 
percentage of longitudinal reinforcement, angle of inclination and different arrangement of 
longitudinal reinforcement detailing as given in Table 1. The shear crack angle of some non-
prismatic beam was less than 21.5o, as shown in Table 3, which is the minimum angle allowed 
by Eurocode [1] and therefore these beams are not analysed. Detailing of the beams is given 
in Table 2. Figure 78 shows the beam specification of the negatively haunched beam C5. 

 

 

 

 

 

 

Table 35 Experimental and Analytical shear capacity of the specimens tested by Debaiky et al. [5] 

 
Specimen Angle of 

taper 
(degrees) 

Experimental 
(kN) 

Analytical 
including vertical 
component 
(kN) 

Analytical 
excluding the 
vertical 
component (kN) 

1 A1 0 73.5 54.48 54.48 

2 A2 9.46 37.5 42.08 28.15 

3 A3 4.76 35 51.19 44.02 

4 A4 -4.76 30 40.05 53.41 

5 A5 -9.46 35 31.82 53.07 

6 B5 -12.1 40 36.06 60.11 

7 B6 -16.7 40 31.27 51.88 

8 C1 0 72.5 67.21 67.21 

9 C3 4.76 37.5 68.56 59.09 

10 C4 -9.46 35 37.67 62.87 

11 C5 -4.76 35 44.35 59.32 

12 D1 0 83.5 85.48 85.48 

13 D2 0 75 118.8 118.8 

14 D3 9.46 37.5 82.39 55.43 

15 D4 9.46 27.5 79.51 53.49 

16 D5 -9.46 25 52.65 88.12 

17 D6 -9.46 37.5 55.06 92.5 

18 F5 0 67 67.48 67.48 

19 F6 0 62.5 54.3 54.3 

Figure 78 Geomtry and Reinforcement detailing of the specimen C5 



65 
 

The beams were designed in such a way that the height at the centre remains constant (300 
mm) and varies at the support. The critical section in a negatively haunched beam is 
considered at the vertex of the haunch whereas for a positively haunched beam it was 
assumed to be at a distance of ‘hmin’ from the support. The same procedure to calculate the 
shear capacity of the non-prismatic beam is applied in this case as well and the results are 
compared with the failure load as shown in Table 35. In case of the negatively haunched 
beams (except specimen D5 and D6) the analytical results, where the vertical component is 
included, conforms quite well to the experimental data. Whereas in positively haunched 
beams, the analytical result shows quite some scatter when compared to experimental data 
as can be seen from Figure 79. 

 

 

 

 

 

 

 

 

 

4.2.4 I.A. Macleod et al. [6]  

The author performed tests on non-prismatic double cantilevered beams shown in Figure 13 
and Figure 15. The reinforcement detailing present in these beams are different than the 
normal ones mentioned previously as shown in Figure 14. The tensile reinforcement placed 
on the top side of the beam consists of 2 bars of 20 mm diameter and 1 bar of 10 mm diameter. 

 

 

 

 

 

 

 

Except for the specimen ‘Beam 4’, the critical section in all the other positively haunched 
beams is at the vertex of the haunch away from the support and near the loading point as 
shown in Figure 80. The reasons to consider this as the controlled section are as follows: 

1. The height of the beam is minimum at this point when compared to the other position 
of the haunch. 

2. When a cross-sectional analysis is performed at this point, the vertical component of 
the inclined compression chord increases the shear resistance of the beam. At this 
point the magnitude of the compression chord would be minimum as the bending 
moment is small compared to the other parts of the haunch. Therefore the vertical 
component would have minimum assistance to the capacity. 
 

Figure 79 Shear Capacity comparison of the specimens tested by Debaiky et al. [5] 

Figure 80 Geometry and Reinforcement detailing of the specimen 'Beam 6' 
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In the specimen ‘Beam 4’, the critical section is considered at a distance of ‘hmin’ from the 
vertex of the haunch near the support. At the vertex of the haunch, bending moment is zero 
and hence, theoretically, there will be no force in the compression chord and no increase in 
the shear resistance. Also, the flexural-shear crack is originated from one of the point loads 
and extended towards the support. Hence the assumption of the critical section in the beams 
might be correct. The critical load and the lever arm for each specimen is calculated and the 
shear capacity is further processed, as tabulated in Table 36. 

Table 36 Experimental and Analytical shear capacity of all the specimen tested by Macloed et al. [6] 

Specimen Angle of taper 
(degrees) 

Experimental 
(kN) 

Analytical 
including vertical 
component (kN) 

Analytical 
excluding vertical 
component (kN) 

B2 4.74 36.4 38.52 33.63 

B3 0 30.9 40.62 40.62 

B4 6.277 38 40.65 34.92 

B5 7.57 41 37.27 27.72 

B6 10.38 42 44 23.33 

 

Table 36 shows the experimental and analytical results for all the specimens. The table 
clarifies that including the vertical component of the inclined compression chord will give better 
prediction about the shear capacity of these double cantilevered positively haunched beams. 

4.2.5 John J. Orr et al. [11]  

The authors performed tests on positively haunched beam which were designed based on 
three different models – the Eurocode Model (EC2), the Compressive Force Path method 
(CFP) and the strut and tie model (STM). Beams designed using STM model and the CFP 
method failed in flexure and are not considered in this study whereas the beams modelled 
using EC2 model failed in shear. The beams were tested twice with two different support 
configurations. One of the support configuration leads to shear failure whereas the other leads 
to flexural failure as shown in Figure 82 and Figure 83 respectively. The bottom reinforcement 
consists of 2 bars of 10mm diameter whereas the stirrups are 3mm in diameter. Beam 4 EC2 
is not included in this analysis as the shear span to depth ratio is less than 2. 

 

 

 

 

 

 

Figure 81 Geometry and Reinforcement detailing of the specimen 'Beam 4' 

Figure 82 Beam 2 EC2 shear failure configuration 
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Table 37 Expeimental and Analytical shear capacity of all the specimen tested by John J Orr et al. [11] 

Specimen Angle of 
taper 
(degrees) 

Experimental 
 
 
(kN) 

Analytical load 
including vertical 
component 
(kN) 

Analytical load 
excluding vertical 
component 
(kN) 

Beam 1 EC2 9.09 19 20.81 15.74 

Beam 2 EC2 15.43 28.2 18.03 12.64 

Beam 3 EC2 12.95 17.1 14.66 11.14 

The above table shows the experimental and the analytical load carrying capacity of the 
positively haunched beam. The critical section is considered at a distance of hmin from the 
support as shown in Figure 82. Once the critical load and the lever arm are calculated, the 
shear capacity of these haunched beam is determined and from this the load carrying capacity 
is further evaluated. The analytical results, including the vertical component, match quite well 
with the experimental results unlike the analytical results excluding the vertical component. 

4.2.6 Chenwei HOU et al. [8]  

Authors performed four point bending test on negatively haunched beam. The authors tested 
10 negatively haunched beams which were divided in 4 different series based on 4 different 
parameters – position of the point load with respect to the end of the haunch, concrete cover, 
different arrangement of longitudinal reinforcement and amount of shear reinforcement as 
discussed in Chapter 2. The focus of this study is on the beams of Series-1. The bottom 
reinforcement consist of 2 bars of 25.4 mm diameter. Figure 84 shows the overall dimensions 
of the beam where ‘b’ denotes the distance between the point load and the vertex of the 
haunch and ‘e’ is equal to ‘650-b’. The number in the beam specimen also indicates the 
distance between the point load and the vertex of the haunch i.e. H-0 means the point load is 
applied at the vertex of the haunch on the top side and so on.  

Arch mechanism, due to loss of bond between the steel reinforcement and the surrounding 
concrete [4], is very strong in the beam specimen H-0 and H-100, which drastically increases 
the shear capacity of the beam and are therefore not considered in this study. Also the length 
of the beam is very short, and the path which connects the point load to the support creates a 
strong strut action, as shown in Table 8, which also strengthens the capacity of the beam. 
Table 38 gives the comparison of shear capacities for the specimens H-200 and H-300.  

 

 

 

 

 

Figure 83 Beam 2 EC2 flexural failure configuration 

Figure 84 Geometry and Reinforcement detailing of the specimens in Series I tested by Chenwei HOU et al. [8] 
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Table 38 Expeimental and Analytical shear capacity of the specimens in Series I tested by Chenwei HOU et al. 
[8] 

Specimen Experimental 
(kN) 

Analytical including 
vertical component (kN) 

Analytical excluding 
vertical component (kN) 

H-200 38.5 46.8 71.47 

H-300 36 52.62 74.57 

 

A decent coherence between the analytical results, where the vertical component is included 
in the shear resistance of the beam, and the experimental result is seen. In this case as well, 
the critical section is considered at the vertex of the haunch, as the cracking pattern from the 
experiments shows the formation of crack from the vertex towards the loading point and along 
the longitudinal reinforcement. 

4.2.7 G. D. Stefanou [7]  

Stefanou, from the University of Patras, Greece performed three point bending test on 
positively haunched beams. The data for these beams was limited and hence the 4 beams 
without shear reinforcement are analysed in this study. Two different type of beams were used 
– Type A and Type B as shown in Figure 19. Beam specification are given in Table 5. Figure 
85 shows beam description of the specimen ‘B1’. As the length of the beam is short and the 
vertex of the haunch is quite close to the support, the critical section is considered at a distance 
of hmin from the vertex as shown in Figure 85. 

` 

 

 

 

 

 

Table 39 Experimental and Analytical shear capacity of the specimen tested by Stefanou [7] 

Specimen Type Experimental  
 
(kN) 

Analytical including 
vertical component 
(kN) 

Analytical excluding 
vertical component 
(kN) 

B1 Type A 15.8 16.39 9.05 

B2 Type A 26.5 16.12 12.56 

B3 Type B 27.5 15.23 8.35 

B4 Type B 26.5 14.71 11.6 

 

From Table 39, it can be said that the theory of effective shear resistance predicts a lower 
shear capacity than the experimentally calculated values and hence a conservative approach 
is seen. In this case, the assumption of the critical section does not comply with the shear 
cracks that occurs in the beam. The cracks are generally observed near the centre of the 
haunch and not so close to the support. As the length of the haunched beams is less, the 
likelihood of occurrence of the strut action might have significantly increased the shear 
capacity of the beams as shown by Chenwei HOU [8], but nothing was mentioned in the article. 

4.3   Discussion 
In this section all the beams that are mentioned above are accumulated and discussed further. 
The mean and standard deviation for the ratio between the experimental results and analytical 

Figure 85 Geometry of the specimen 'B1' 
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results are calculated to verify the inclusion of the vertical component to the shear capacity of 
the beam. The beams are divided into three different sections – Prismatic Beams, Negatively 
Haunched Beams and Positively Haunched Beams. The dead weight of the beam, obtained 
at the critical section, is added to the experimental value and then compared with the analytical 
results. All the forces are mentioned in ‘kN’ and angle of taper in ‘degrees’ 

4.3.1 Prismatic Beams 
Table 40 presents the data of shear capacity and height for all the prismatic beams. The ratio 
between the experimental value and the analytical value is tabulated. The mean for the ratio 
between the experimental (E) and the analytical value (A) is 1.04 with a standard deviation of 
0.2. Figure 86 shows scatter plot of ratios for the shear capacity of prismatic beam, which is 
evenly distributed about the line. From the graph and the tables, the following equations are 
validated, which are used to calculate the shear capacity contributed by concrete and stirrups 
when mean material properties are provided. 
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Table 40 Experimental and Analytical shear capacity of all the prismatic beams discussed above 

Specimen Height 
(mm) 

Experimental (E) 
 

Analytical (A) E/A 

TASC α0-R0 450 76.15 96.93 0.79 

TASC α0-R1 450 251.15 198.36 1.27 

A1 300 74.5 54.48 1.37 

C1 300 73.5 67.21 1.09 

D1 300 84.5 85.48 0.99 

F5 300 68.5 67.48 1.02 

F6 300 63.5 54.3 1.17 

D2 300 76 118.8 0.64 

1L1 340 77.41 69.12 1.12 

1L2 340 81.18 69.66 1.17 

1K1 340 76.58 71.77 1.07 

1K2 340 70.26 71.81 0.98 

Beam 2, Macleod 250 32.9 39.83 0.83 

Mean 1.04 

Standard Deviation 0.2 

 

 

 

 

 

 

 

 

 
Figure 86 Scatter plot of the capacity ratio for prismatic beam discussed 

above 



70 
 

4.3.2 Negatively Haunched Beams 
Table 41 presents the data for the negatively haunched beams. The angle of taper for each 
specimen along with the respective experimental shear capacity (E), including the dead weight 
are mentioned. Analytical capacity, including and excluding the vertical components, are also 
tabulated. The mean and the standard deviation for the ratio between the experimental result 
(E) and the analytical results including the vertical component (AI) is 0.98 with a standard 
deviation of 0.24. On the other hand the mean and the standard deviation for the ratio between 
the experimental result (E) and the analytical result excluding the vertical component (AE) is 
0.64 and 0.19 respectively.  

Figure 87 shows scatter plot of the ratios for negatively haunched beams where the vertical 
component is included and Figure 88 for the negatively haunched beams where the vertical 
component is excluded. Overestimation of the shear capacity of the negatively haunched 
beam is observed if the analytical result is calculated without considering the vertical 
component of the inclined forces. Whereas accurate prediction of the shear capacity of the 
negatively haunched beam can be determined if the concept of effective shear resistance is 
applied as evident from the graphs and the tables. 

Table 41 Experimental and Analytical shear capacity for the negatively haunched beams discussed above 

Specimen Angle 
 

Experimental   
(E) 

Analytical 
including 
vertical 
component 
(AI) 

Analytical 
excluding 
vertical 
component 
(AE) 

E/AI E/AE 

TASC α1-R0 3.07 69 77.48 90.13 0.89 0.77 

TASC α2-R0 6.12 61.5 59.58 81.94 1.03 0.75 

TASC α3-R0 9.13 39 42.43 70.43 0.92 0.55 

TASC α4-R0 12.1 31.5 33.12 68.15 0.95 0.46 

TASC α1-R1 3.07 201.5 155.24 180.26 1.30 1.12 

TASC α2-R0 6.12 171.5 135.9 187.07 1.26 0.92 

TASC α3-R0 9.13 121.5 91.5 153.4 1.33 0.79 

TASC α4-R0 12.1 81.5 68.04 143.04 1.20 0.57 

H-200 11.2 39.3 46.8 71.47 0.84 0.55 

H-300 11.2 36.8 52.62 74.57 0.70 0.49 

A4 4.76 30.4 40.05 53.41 0.76 0.57 

A5 9.46 35.3 31.82 53.07 1.11 0.67 

B5 12.1 40.2 36.06 60.11 1.11 0.67 

B6 16.7 40.2 31.27 51.88 1.29 0.77 

C4 9.46 35.3 37.67 62.87 0.94 0.56 

C5 4.76 35.3 44.35 59.32 0.80 0.60 

D5 9.46 25.5 52.65 88.12 0.48 0.29 

D6 9.46 37.75 55.06 92.5 0.69 0.41 

F1 9.46 42.65 40.71 67.48 1.05 0.63 

Mean 0.98 0.64 

Standard Deviation 0.24 0.19 
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The specimens D5 and D6, tested by Debaiky [5], showed some irregularities in the results 
compared to the other specimens. Both these specimens have a higher amount of shear 
reinforcement than the other specimens tested by Debaiky et al. [5], as is evident from Table 
2. Yet the shear capacity, at which major cracking occurs, is smaller than the other specimens, 
which is unexpected. If these two specimens are neglected, then the mean and standard 
deviation, for the ratio between experimental results to the analytical result including the 
vertical component, is 1.03 and 0.2 respectively. Nevertheless, from the data present it can 
be said that the vertical component of the inclined forces should be subtracted from the shear 
capacity of the negatively haunched beams. 

4.3.3 Positively Haunched Beam 
Table 42 presents the data for the positively haunched beams. The angle of taper and the 
experimental shear capacity, including the dead weight of the beam, for each specimen are 
mentioned. Ratios between the experimental and the analytical results are tabulated. The 
mean and the standard deviation for the ratio between the experimental values (E) to the 
analytical results (AI), where the vertical component of the inclined force is considered, is 1.09 
and 0.36 respectively. Whereas for the ratio between the experimental results to the analytical 
results (AE), where the vertical component of the inclined forces is ignored is equal to 1.43 
and 0.59 respectively.  

Table 42 Experimental and Analytical shear capacity for the positively haunched beams discussed above 

Specimen Angle 
 

Experimental 
 
 
 
(E) 

Analytical 
including 
vertical 
component  
(AI) 

Analytical 
excluding 
vertical 
component 
(AE) 

E/AI E/AE 

2L1 3.95 76.86 67.11 61.24 1.15 1.25 

2L2 3.95 76.28 67.59 61.71 1.13 1.24 

3L1 5.91 68.2 60.84 52.79 1.12 1.29 

3L2 5.91 71.03 61.24 53.06 1.16 1.34 

2K1 3.95 84.47 73.63 67.47 1.15 1.25 

2K2 3.95 85.94 73.65 67.48 1.17 1.27 

3K1 6.71 80.28 74.30 63.90 1.08 1.26 

3K2 6.71 80.87 74.32 63.92 1.09 1.27 

4K1 10.01 85.68 72.26 57.27 1.19 1.50 

4K2 10.01 84.82 72.27 57.28 1.17 1.48 

Figure 87 Scatter plot of the capacity ratio, including the 
vertical component, for negatively haunched beam 

Figure 88 Scatter plot of the capacity ratio, excluding the 
vertical component, for negatively haunched beam 
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B1,Stefanou 13.49 16 16.39 9.056 0.98 1.77 

B2,Stefanou 7.96 26.8 16.122 12.56 1.66 2.13 

B3,Stefanou 13.49 27.8 15.23 8.35 1.83 3.33 

B4,Stefanou 7.96 26.7 14.71 11.6 1.82 2.30 

Beam 1 EC2 9.53 19.4 20.81 15.74 0.93 1.23 

Beam 2 EC2 15.43 28.6 18.03 12.64 1.59 2.26 

Beam 3 EC2 12.95 17.5 14.66 11.14 1.19 1.57 

A2 9.46 37.5 42.08 28.15 0.89 1.33 

A3 4.76 35 51.19 44.02 0.68 0.80 

C3 4.76 37.5 68.56 59.09 0.55 0.63 

D3 9.46 37.5 82.39 55.43 0.46 0.68 

D4 9.46 27.5 79.51 53.49 0.35 0.51 

Beam 
2,Macleod 

4.74 36.65 38.52 33.63 0.95 1.09 

Beam 4, 
Macleod 

6.27 38 40.65 34.92 0.93 1.09 

Beam 5, 
Macleod 

7.57 41.25 37.27 27.72 1.11 1.49 

Beam 
6,Macleod 

10.37 42.25 44 23.33 0.96 1.81 

Mean 1.09 1.43 

Standard Deviation 0.36 0.59 

  

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Figure 89 and Figure 90 shows the scatter plot for positively haunched beam including the 
vertical component and the scatter for positively haunched beam excluding the vertical 
component respectively. One would underestimate the shear capacity of these haunched 
beams, if the vertical component is neglected whereas reasonable prediction of the shear 
capacity of the positively haunched beam can be obtained by applying the effective shear 
resistance formula. The scatter in this case is comparatively more than that of the negatively 
haunched beams as noticeable from the standard deviation. One of the reason is the 
assumption of critical section in positively haunched beams. In most cases, the critical section 
is considered near to the support and the cracking occurs mostly at the centre of the tapered 
section. Whereas in negatively haunched beam, cracking occurs near the critical section and 
therefore such a good coherence with the experimental result is observed in that case. To 
obtain better results, the positively haunched beams are analysed with different position of 
critical sections, from the support or the vertex (depending on the beam). The mean and 

Figure 89 Scatter plot of capacity ratio, including vertical 
component, for positively haunched beams 

Figure 92 Scatter for shear capacity, excluding vertical component, for 
positively haunched beams 
Figure 91 Scatter of capacity ratio, excluding vertical component, for 
positively haunched beams 

Figure 90 Scatter plot of capacity ratio, excluding 
vertical component, for positively haunched beams 
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standard deviation for the ratio between experimental results and analytical results including 
the vertical component is also calculated for different positions of the critical sections and is 
tabulated in Table 43. From the table, it can be seen that as the critical section moves away 
from the support, the mean decreases and the standard deviation remains unaltered.  

Table 43 Mean and Standard Deviaiton of positively haunched beam with different critical sections 

Critical Section  Mean Standard Deviation 

Minimum height (hmin) 1.09 0.36 

Mean height ((hmin + hmax)*0.5) 0.95 0.32 

Maximum height (hmax) 0.86 0.32 

 

This constancy in the standard deviation might be due to the positively haunched beams 
tested by Debaiky [5] which failed in an instability type of shear failure. Due to this type of 
failure, it might be the case that analytical results does not correlate well with the experimental 
results. Table 44 shows the mean and standard deviation, for the ratio between experimental 
results and analytical results including the vertical component, for different position of critical 
sections excluding the Debaiky [5] series. From the table, it can be seen that the results are 
improved when the Debaiky [5] series is not considered. Moreover, when the critical section 
is chosen at a distance of hmean from the support or the vertex (depending on the beam), the 
mean is close to unity with a reasonable standard deviation. 

Table 44 Mean and Standard Deviaiton of positively haunched beam with different critical sections excluding Debaiky series 

Critical Section  Mean Standard Deviation 

Minimum height (hmin) 1.21 0.27 

Mean height ((hmin + hmax)*0.5) 1.06 0.23 

Maximum height (hmax) 0.96 0.25 

Nonetheless, the above discussion proves the validity of the addition of the vertical component 
of the inclined cross-section forces to the shear resistance of the positively haunched beam 

4.4     Approaches for Cross-Sectional Analysis in Non-Prismatic Beam 
In Chapter 3, cross-section analysis on an inclined cut was performed on prismatic beams and 
it was proved that the cross-section results does not change. In this section, the same concept 
will be applied in haunched beams which has a non-linear layout of the centroidal axis as 
shown in Figure 69. Cross-section analysis on a vertical cut is already mentioned in the 
general approach section of this chapter. The following sub-section would indicate about the 
cross-sectional analysis on an angled cut, which is perpendicular to the centroidal axis. 

4.4.1 Approach 1 – Vertical Compressive zone with forces in the global 
direction 

 

 

 

 

 

 

 

 

Figure 93 Stress distribution and forces in the global direction on an angled cut with vertical compression zone in non-prismatic beam 
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Figure 93 shows the stress distribution in an inclined angled cut in a non-prismatic beam. The 
figure is similar to Figure 52, except the vertical component of the inclined steel force. The 
definition of concrete compressive force is equal to the area under which stresses are applied 
and multiplied with the concrete compressive strength. If this definition is applied, the concrete 
compressive force is reduced by the cosine of angle of inclination to nullify the increased 
length of the inclined compression zone as mentioned in Chapter 3. By applying the horizontal 
equilibrium in the cross-section cut, the compressive zone can be determined as follows, 
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Taking the moment about the point of application of the steel force, the following is obtained 
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In non-prismatic beam, the equation of bending moment resistance calculated on an inclined 
cut, which is perpendicular to the centroidal axis and with forces in the global direction, is 
similar to that obtained on a vertical cut i.e. equation 4.21 and equation 4.04 are same. Also 
the vertical component of the inclined steel force is added up in the applied shear force, which 
is similar to the one where the cross-sectional analysis is performed on a vertical cut. From 
the above formulation, the equation of the vertical compression zone is also same in both the 
cases – in an angled cut (equation 4.20) as well as on a vertical cross-section cut (equation 
4.03). 

4.4.2 Approach 2 – Inclined Compressive zone with forces in the global 
direction 

 

 

 

 

 

 

 

 

 

 

Figure 94 shows the stress distribution in an angled cut, with an inclined compressive zone 
(xu,2) with the forces located in the global direction. The above figure is similar to the Figure 

Figure 94 Stress distribution and forces in the global direction on an angled cut with inclined compression zone in non-prismatic beam 
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53, except the vertical component of the inclined steel force. The inclined compressive zone 
is calculated using the horizontal equilibrium as shown in equation 4.22. 
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The bending moment resistance is calculated along the point of application of the steel force 
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As the lever arm is vertical, the inclined compression zone is first decomposed in the vertical 
direction by the multiplication of cosine of angle of inclination, and then further subtracted by 
the effective depth as shown below. 
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The equation of lever arm remains the same as is the case when the analysis is performed on 
a vertical cut and hence the bending moment resistance is unaltered in this case as well. The 
vertical component of the inclined tensile tie is taken into account by the applied shear force, 
which was also seen in a Section 4.1. From the above formulation, the equation of the inclined 

compression zone for an angled cut (equation 4.24) is equal to 
 
u

x

cos α
, which is as 

expected. 

4.4.3 Approach 3 – Inclined Compression zone with forces in the local direction 
 

 

 

 

 

 

 

 

 

 

Figure 95 shows the cross-section forces directed in the local direction (Parallel and 
Perpendicular to the cross-section cut) with inclined compression zone. The lever arm is also 

Figure 95 Stress distribution and forces in the local direction on an angled cut with inclined compression zone in non-prismatic beam 
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parallel to the cross-section cut. Equilibrium in the perpendicular direction of the cross-section 
cut is used to calculate the equation of inclined compression zone as shown below. 
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In a beam, when a cross-section analysis is performed at the Ultimate Limit State, the equation 
of the vertical compression zone at a particular section, should be constant and the 
decomposition of that in the inclined direction should also be unchanged. However the 
equation of the compression zone (equation 4.29) obtained for the internal forces shown in 
Figure 95 is different than that obtained when the analysis is performed on an inclined cut with 
inclined compression zone with forces directed in the global direction i.e. Section 4.4.2 
(equation 4.24). One cannot decompose the applied shear force / shear resistance in the local 
direction, as the perpendicular components would contribute to the bending moment 
resistance and that cannot be the case (shown in Appendix A). Also the parallel component 
of the compressive force does not contribute to the shear as the applied shear force is directed 
along the vertical direction. 

To overcome this problem, the following iterative method is used. 

a. Decomposition of the parallel concrete compressive force into the vertical and 
horizontal direction.  

b. The horizontal component is further decomposed in the local direction (perpendicular 
and parallel direction) leading to an iterative process as shown in Figure 96. 

 

 

 

 

 

 

 

As mentioned, the concrete compressive force in the parallel direction of the cross-section cut 
(red) is decomposed in the vertical component (black) and horizontal component (blue). The 
horizontal force (blue) is now again decomposed in the local direction i.e. in the perpendicular 
(green) and parallel (red) direction of the cross-section cut and the procedure continues. In 
conclusion, the forces are aligned in the perpendicular direction of the cross-section cut and 
in the vertical direction as shown in Figure 97. The reason for aligning the forces in the vertical 
direction is considering the fact that in Eurocode 2, the clause 6.2.1 states that the “vertical 
component” of the inclined force is considered in the shear resistance of the beam. The final 
forces are given as follows, 
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Figure 96 Decomposition of parallel compressive force - Iterative Procedure. Color Annotation, Black – Vertical direction, 
Blue – Horizonal Direction, Red – Parallel Direction, Green – Perpendicular Direction 
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Taking the equilibrium in the perpendicular direction, the following equation is obtained 
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From basic trigonometry, 
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By this approach, the equation of the inclined concrete compression zone (equation 4.34) is 
equal to the one that was obtained when the analysis was performed on an angled cut with 
inclined compression zone and forces in the global direction (equation 4.24). From this 
equilibrium condition, the vertical component can be written as, 
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The force in the vertical direction remains the same as the case in the previous approaches 
and hence the equation of effective shear force/resistance remains the same. Now the cross-
section forces with the given lever arm is shown in Figure 97.   

 

 

 

 

 

 

 

 

The bending moment resistance is calculated at the point of application of concrete 
compressive force and the formulation is shown below.  

Figure 97 Cross-Section forces on an inclined cut with the lever arm 
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From the above formulation, it can be seen that the equation of bending moment resistance 
calculated on an inclined cut (equation 4.36), with forces in the perpendicular and vertical 
direction of the cut is not equal to the one obtained from the previous approaches (equation 
4.04, 4.21, 4.26). To be precise the above equation can be written in the following terms as, 
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The equation of lever arm in the above formulation is similar to the one mentioned in equation 
4.25. Therefore, the above equation of bending moment resistance can be written as, 
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The equation of bending moment resistance calculated using this approach (equation 4.37) is 
different and greater than that obtained from the previous approaches, which was not as 
expected. To validate the above mentioned formulation the use of a simplified approach is 
made which is shown in the next section. 

4.5   Simplified Approach 
Engineers in practice do not follow the detailed procedure mentioned in the previous section, 
but apply a simple approach to calculate the area of reinforcement and/or bending moment 
resistance. In this approach, the concrete compressive zone is not determined. Instead, the 
bending moment resistance is calculated directly with the assumption of lever arm z=0.9*deff, 
which is then multiplied with the cross-sectional force. This approach is only used to check the 
bending moment resistance for different angled cross section cuts and therefore the vertical 
component or the parallel component of the inclined forces is ignored. This approach is applied 
to the prismatic beam, negatively haunched beam and positively haunched beam. 

4.5.1 Prismatic Beam 
The concept of simplified approach is first applied to the prismatic beam which is subjected to 
four point bending test as shown in Figure 49. The analysis is performed in the constant 
bending moment zone, between the point loads.  

a. Vertical cut 

Figure 98 shows the horizontal cross-section forces in a vertical cross-section cut with a 
vertical lever arm. The bending moment resistance is equal to the force multiplied with the 
lever arm, which is quite straightforward.  

b. Angled cut 



79 
 

Figure 99 shows the cross-section forces directed in the local direction on an inclined cut with 
the lever arm parallel to the cut. The bending moment resistance is equal to the perpendicular 
component of the steel force/compressive force multiplied with the increased length of the 
lever arm. In this case the perpendicular component of the cross-section force is reduced by 
the cosine of angle of inclination and the lever arm is further increased by the same amount, 
leading to the same equation of the bending moment resistance. 
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From the simplified approach method it can be noted in a prismatic beam subjected to four 
point bending test, the cross-section results does not change when the cross-sectional 
analysis is performed on a vertical cut and on an inclined cut. This further validates the 
approaches that were proposed in Chapter 3.  

4.5.2 Negatively Haunched beam 
The concept of simplified approach is now applied to the negatively haunched beam shown in 
Figure 69. The analysis is performed in the tapered zone of the beam. 

a. Vertical cut 

Figure 100 shows the vertical cross-section cut, where the steel force is applied at an angle 
and the concrete compressive force is horizontal. The steel force is decomposed in the 
horizontal and vertical component and the bending moment resistance is calculated using the 
vertical lever arm. 

 

 

 

 

 

 

 

   ,1 .cos . . .............. 4.40Rd sb cuM F z N z   

The equation of the bending moment resistance is similar to that obtained from the general 
procedure (Section 4.1), Approach 1 (Section 4.4.1) and Approach 2 (Section 4.4.2). If the 

Figure 98 Cross-section forces on a vertical cross-section 
cut in prismatic beam (Simplified Approach) 

Figure 99 Cross-section forces on an inclined cross-section 
cut in prismatic beam (Simplified Approach) 

Figure 100 Cross-section forces on a vertical cross-section cut in negatively haunched beam (Simplified Approach) 



80 
 

applied bending moment (Med) is known, the area of bottom reinforcement (Asb,m) can be 
calculated which is given as follows. 
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The general equation of lever arm is equal to 0.9*deff and the steel force (Fsb) can be written 
as Fsb = Asb,m. fyd. Hence, 
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where fyd is the design yield strength of the steel reinforcement  

b. Inclined cut 

Figure 101 shows the cross-section forces for an angled cross-section cut, which is 
perpendicular to the centroidal axis. All the forces are directed in the local direction and the 
lever arm is considered parallel to the cross-section cut. The bending moment resistance is 
given as follows: 
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The above simplified approach proves that in a negatively haunched beam, the bending 
moment resistance calculated on an inclined cross-section cut (equation 4.42), which is 
perpendicular to the centroidal axis with the forces aligned in the local direction, is greater than 
that calculated on a vertical cut (equation 4.40).The above formulation also confirms the 
outcome of Approach 3 (Section 4.4.3), where the bending moment resistance is greater than 
the previous obtained equation. The area of bottom reinforcement (Asb,n) can be calculated by 
applying the moment equilibrium as shown below: 
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Figure 101 Cross-section forces on an inclined cross-section cut in negatively haunched beam (Simplified Approach) 
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The above calculation further proves, that one would provide less amount of reinforcement in 
a negatively haunched beam if a simplified approach is performed on an inclined cut, with 
forces in the local direction. The maximum angle of taper allowed in construction industry, and 
also from the experimental data available, is 16.1o. If an analysis is performed with the cut 
perpendicular to the centroidal axis with the forces aligned in the local direction, then the 
amount of reinforcement provided would be less by 7.5% than that calculated on a vertical 
cut.  

4.5.3 Positively Haunched Beam 
The concept of simplified approach is now applied to the positively haunched beam shown in 
Figure 102. Vertical and Inclined cross-sectional analysis is performed at a distance ‘x’ from 
the left support. 

 

 

 

 

 

 

a. Vertical cut 

Figure 103 shows the analysis on a vertical cross-section cut, where the steel force is applied 
perpendicular to the cross-section cut and the compressive force is applied at an angle. The 
compressive force is decomposed in the horizontal and vertical direction and the bending 
moment resistance is equal to the steel force multiplied with the vertical lever arm. 
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If the applied bending moment is known, the area of reinforcement to be provided can be 
calculated as follows: 
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Figure 102 Positively haunched beam 

Figure 103 Cross-section forces on a vertical cross-section cut in positively  haunched beam (Simplified Approach) 
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b. Inclined cut 

Figure 104 shows the analysis performed on an inclined cut, where the compressive force 
acts perpendicular to the cut whereas the steel force is decomposed in the local direction. The 
bending moment resistance in this case is equal to the perpendicular component of the steel 
force multiplied with the increased length of the lever arm. This bending moment resistance is 
also equal to the compressive force multiplied with the increased length of the lever arm, 
leading to a different equation when compared to the vertical cut (equation 4.44). 
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The amount of reinforcement to be provided, to resist the given loading can be calculated as 
follows: 
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From the above calculation, it can be seen that the bending moment resistance calculated on 
an inclined cut in a positively haunched beam is higher than that obtained on a vertical cut, 
similar to the case of the negatively haunched beam. However the area of reinforcement 
calculated on both the cross-section cut is exactly the same (equation 4.45 and 4.47), unlike 
negatively haunched beam. This difference is due to the fact that in negatively haunched beam 
the steel force is placed at an angle whereas in the positively haunched beam, shown in Figure 
102, the steel force is aligned horizontally.  

Let’s assume that the scenario is reversed i.e. the area of reinforcement is known and the 
concrete class is to be calculated. When the analysis is performed in the tapered zone of the 
negatively haunched beam shown in Figure 69, then the equation of design compressive 
strength (fcd) would remain constant, irrespective of whether the analysis is performed on a 
vertical or inclined cut. Conversely in case of positively haunched beam, the equation of design 
compressive strength obtained on an inclined cut is different than that obtained on a vertical 
cut. This is similar to the case of negatively haunched beam with respect to the area of 
reinforcement (equation 4.41 and equation 4.43). These inconsistency in the results are due 
to the geometry of the non-prismatic beam. 

4.6   Comparison between Prismatic and Non-Prismatic beam 
So far when the non-prismatic beams are analysed, the vertical component of the inclined 
force is taken into account in the shear resistance of the beam. But while designing the non-

Figure 104 Cross-section forces on an inclined cross-section cut in positively haunched beam (Simplified Approach) 
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prismatic beams, this component should be considered in the applied shear force and the 
shear reinforcement should be designed accordingly. Consider the prismatic and non-
prismatic beam, both of which are subjected to four point bending test, shown in Figure 105 
and Figure 106 respectively. The span of both the beam is ‘L’ and the point loads are applied 
at a distance of ‘a’ from the support. The height of the prismatic beam is hmin whereas the 
maximum height of the non-prismatic beam is at the support equal hmax and the minimum is at 
the centre of the beam which is hmin. Assuming that the percentage of longitudinal 
reinforcement in both the beams are same, the maximum load ‘P’ can be determined by 
performing a cross-sectional analysis in the zone of maximum bending moment i.e. at the 
centre of the beam. Hence the maximum load carried by both the beams will be the same, as 
long as sufficient amount of shear reinforcement is provided and all the other parameters such 
as the yield strength of the reinforcement, cover, concrete strength, width etc. remains 
constant. 

 

 

 

 

 

 

 

 

 

 

 

Stirrups are designed based on the maximum applied shear force. As mentioned earlier, the 
vertical component of the inclined steel force should be considered in the applied shear force 
while designing non-prismatic beams. Hence the shear force diagram (SFD) of the negatively 
haunched beam would be different than that of the prismatic one as shown in Figure 108. Note 
that the SFD of the negatively haunched beam is not in equilibrium with the external loading, 
but to consider the vertical component and to analyse the beam a fictitious SFD is assumed. 

 

 

 

 

  

 

 

 

 

 

Figure 105 Prismatic beam subjected to four point bending test 

Figure 106 Negatively haunched beam subjected to four point bending test 

Figure 107 Shear force diagram for prismatic beam shown in Figure 105 

Figure 108 Fictitious shear force diagram for negatively haunched beam shown in Figure 106 
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In Figure 108, ‘x’ denotes the distance of the section from the support and ‘d’ denotes the 
effective depth at the given point. The formula for the effective shear force is given by, 
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As the applied shear force in a non-prismatic beam is greater than the prismatic beam (due to 
the vertical component), the amount of shear reinforcement required to produce a flexural 
failure in the haunched beam is more than that of the prismatic beam. Figure 106 can be 
visualized as adding concrete to some parts of the prismatic beam leading to a haunch shaped 
beam. This would suggest that the volume of concrete used to construct the negatively 
haunched beams is more when compared to the prismatic beam and yet the percentage of 
shear reinforcement provided to ensure flexural failure is high in case of negatively haunched 
beams. Even though there is no conclusive proof mentioned in this regard, it can be deduced 
from the literature review. Arturo et al. [10] showed that negatively haunched beam exhibits a 
ductile behaviour even if the beam fails in shear. The beams tested by the author were such 
that the height of the beam at the support is constant and varies at the centre as shown in 
Figure 33. When the beams with the same amount of shear reinforcement were tested, the 
collapse load for the negatively haunched beam decreased with the increase in the haunch 
angle. Nothing was mentioned about the ductility of the non-prismatic beams tested by 
Debaiky et al. [5]. The beams tested by the authors were such that the height of the beam at 
the support was varying and remain constant at the centre, just as the case discussed above. 
From the results, one can infer that when the same amount of shear reinforcement is provided 
in both the straight and the negatively haunched beams, the latter failed at a smaller load than 
the former one even though the amount of material used in the negatively haunched beam is 
more as shown in Figure 109. From Figure 109 it can be seen that as the volume of concrete 
increases, the capacity first decreases and increases slightly with further increase in the 
volume. This increase might be due to the strut mechanism in the negatively haunched beam. 
However this capacity is still smaller than the prismatic beam. In conclusion, to avoid shear 
failure, negatively haunched beams requires more amount of stirrup compared to the prismatic 
beam because of the vertical component of the inclined force which increases the applied 
shear force. 

 

 

 

 

 

 

 

 

 

As mentioned in Chapter 2, Macleod et al. [6] performed tests on positively haunched double 
cantilevered beam shown in Figure 13. The height of the beam at the support is constant and 
decreases at the free end. From the results, it was seen that the shear capacity of the positively 
haunched beam increases with increase in the angle of inclination. Also as the angle of 
inclination increases, the volume of concrete decreases and the shear capacity increases as 

Figure 109 Shear capacity variation with the volume of concrete for the beams tested by Debaiky et al. [5] 
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evident from Figure 110. This is related to the first and the fourth paradox proposed by Pagletti 
[12], shown in Figure 45, where the author states that if the theory of effective shear resistance 
is applied, then Figure 45(a) would fail at a larger load than Figure 45 (b). But the author 
objects that this should not be the case, as the amount of material used in the non-prismatic 
beam is less than that of the prismatic beam. However tests conducted by Macleod and Figure 
110 shows that as the volume of concrete decreases, in a cantilevered haunched beam, the 
shear capacity increases, because of the vertical component of the inclined compression 
chord. 

 

 

 

 

 

 

 

 

 

The second paradox by Pagletti [12] states that if the concept of effective shear resistance is 
considered, the shear force diagram will change and hence no equilibrium will be maintained 
with the external load as seen from Figure 108. To avoid that, the vertical component of the 
inclined force should be added or subtracted from the shear resistance and not subtracted or 
added to the applied shear force. That’s how all the beams in this study are analysed and 
equilibrium is maintained with the external loading. 

The author also mentioned another paradox which describes the neutralization of the vertical 
force on one side of the section by that on the other side as shown in Figure 47. This would 
also suggest that there is no horizontal force present in the section and hence the bending 
moment resistance would be zero. But that’s not how a cross-section analysis is performed. 
Forces from one direction are considered and the cross-section results are calculated based 
on these forces. 

 

 

 

 

 

 

 

 

 

 

 

Figure 110 Shear capacity variation with the volume of concrete for the beams tested by Macleod [6] 
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5     Cross-Sectional Analysis of 
Prestressed Non-Prismatic Beam 

This chapter describes different issues one might come across while performing cross-
sectional analysis in prestressed non-prismatic beam and provides solutions regarding the 
same. Non-prismatic prestressed beams are modelled in DIANA and further analysed to 
overcome the issues. Cross-sectional analysis is then performed on a continuous non-
prismatic prestressed beam. 
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5.1   Prismatic Prestressed Beam 
Consider the prestressed concrete beam shown in Figure 111. The prismatic beam is 
prestressed with parabolic tendons such that the radius of the 1st parabola, with a span of L1, 
is R1 whereas the radius of the second parabola is R2 (R2>R1), with a span L2. The equation 

of these parabolas were assumed to be

2

2. i

x
y

R
 . Due to eccentricity, moments are generated 

at the ends. The origin of the parabola is at the intersection of the two parabolas, which is at 
a distance of L1 from the left support. Figure 112 shows the cross-section analysis at the 

midpoint of the beam i.e. at a distance of 
2

L
from either supports or at a distance of x1 from the 

origin of the parabola.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

The concrete compressive force Ncu acts perpendicular to the cross-section cut at the top side. 
The prestressing force Pꝏ also acts horizontally at the position of the centroidal axis i.e. at a 

distance of 
2

h
 from the top or bottom. Due to the parabolic layout of the tendon, the increase 

in the prestressing force ∆P acts at an angle ‘β’ with respect to the horizontal axis. 
Decomposition of this force yields a horizontal component which is considered in the moment 
resistance of the beam and a vertical component which should be taken into account by the 
shear resistance, according to Eurocode 1992-1-1 [1].  

The cross-section forces can be calculated using the following formula, 
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Using horizontal equilibrium the following equations are obtained 

Figure 111 Prismatic prestressed concrete 

Figure 112 Cross-Section forces at the midpoint of the beam Figure 111 



89 
 

 

 

.cos( )............ 5.04

4. .cos( )

3. .

cu

u

cd

N P P

P P
x

f b









  

 


 

Calculating the moment resistance at the point of application of concrete compressive force 
(Ncu), the following formulation is achieved: 
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The shear resistance of this prismatic prestressed concrete beam is given as, 
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The shear resistance of the above mentioned prismatic prestressed beam is reduced by the 
vertical component of the inclined prestress force ∆P. It should be noted that the cross-
sectional analysis performed in a prestressed beam is different when compared to a reinforced 
concrete beam. Moreover, it can be seen that even in a prismatic beam there can be a situation 
where the cross-section force acts at an angle, which changes the shear resistance of the 
beam. 

5.2   Prestressed Haunched Beam 
Haunched prestressed beams are generally used in bridges with taper near the mid-support 
as shown in Figure 113. Due to the shape of the beam, the centroidal axis has a non-linear 
layout along the length of the beam as seen by the dotted lines in Figure 113. The cross-
sectional analysis is performed at a distance of ‘x’ from the vertex of the haunch.  
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Assuming that at the ultimate limit state hogging moment is generated near the intermediate 
support, the cross-section force Ncu acts at an angle ‘α’ to the cross-section cut at the bottom 
side. The increase in the prestressing force ∆P acts perpendicular to the cut as the 
prestressing tendon is linear. The problem lies with the application of the prestressing force 
Pꝏ. The two issues are regarding the direction of the force Pꝏ and the position of the force 
Pꝏ. 

5.2.1 Direction of the force Pꝏ  

 
 

 

 

 

 

 

Consider the prestressed haunched beam shown in Figure 114, which is centrically 
prestressed. The angle of inclination of the haunch is ‘α’. The height is minimum at the support 
and maximum at the centre. The angle of inclination of the centroidal axis with the horizontal 

tendon is 
2


. The cross-sectional analysis is performed at a distance ‘x’ from the left support 

as shown in Figure 115. The height of the beam at this point is ‘h’. 

 

 

 

 

 

 

 

 

 

 

Due to the haunch, the concrete compressive force (Ncu) acts at an angle ‘α’. The two 
scenarios regarding the direction of the force Pꝏ is given in Figure 115, wherein the force 
either acts perpendicular to the cross-section cut or along the centroidal axis, which is at an 
angle with respect to the horizontal line. Horizontal equilibrium is used to check which one of 

Figure 113 Continuous beam with haunch near the intermediate support 

Figure 114 Positively Haunched beam with linear tendons 

Figure 115 Direction of force Pꝏ - horizontal or along the centroidal axis? 
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the above two scenarios is the correct one. For simplicity, the force Pꝏ is applied at the centre 
of the cross-section height. The study of the position of the force Pꝏ is done in the next section. 
In scenario A from Figure 115, the horizontal equilibrium is quite straightforward – the 
horizontal component of the inclined concrete compressive force should be equal to the total 
prestressing force i.e. the addition of Pꝏ and ∆P. Horizontal equilibrium in the second situation 
is bit complicated – the horizontal component of the inclined concrete compressive force is 
equal to the horizontal component of Pꝏ and the force ∆P. 

   

   

.cos ..........

.cos .cos ..........
2

cu

cu

N P P A

N P P B










  

 
   

 

 

The formulation of Pꝏ and ∆P are given in equation 5.02 and 5.03 respectively. To find the 
solution for the above mentioned problem, models in DIANA are made and the horizontal force 
equilibrium is checked. The beam model is shown in Figure 116. Beam description is 
mentioned in Table 45. The concrete properties are mentioned in Table 46. Characteristic 
concrete properties are used. The constitutive model for the prestressing tendons is shown in 
Figure 117. The horizontal equilibrium check is applied at a distance of 2500 mm from the left 
support as shown in Figure 116. This equilibrium check is applied when the beam is fully 
prestressed i.e. when the stresses in the strands are equal to σp, ꝏ. To calculate the horizontal 
component of the inclined compressive force, σxx is plotted along the respective height of the 

beam as shown in Figure 118. All the stress plot follows the formula of 
c

P M

A W
     and are 

around -1.8 MPa, which is the initial stress in concrete due to prestressing in a prismatic beam. 
The horizontal component of the inclined compressive force can be obtained by integrating 
these stress blocks along the height of the cross-section cut (h) and then multiplying it with 

the width of the beam (b). This force should either be equal to P or .cos
2

P
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 as σp,tot = 

σp,ꝏ and therefore ∆P = 0. Also the check is performed in the linear elastic stage. The dead 
weight of the beam is ignored. 

Table 45 Beam description for positively haunched prestressed beam 

Description Value Unit 

Length 9400 mm 

Span (L) 9000 mm 

Height at the support (hmin) 900 mm 

Width (b) 500 mm 

Area of Prestressing (Ap) 2000 mm2 

Stress in tendons (σꝏ) 400 MPa 

Prestressing Force (Pꝏ) 800 KN 

Angle of inclination (α) 0, 1.28, 2.57, 3.85, 5.17, 10.19, 16.28 degrees 

 

 

 

 

 

 
Figure 116 Beam dimensions of DIANA model 
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Table 46 Concrete Properties for positively haunched prestressed beam 

Description Value Unit 

Concrete Compressive Strength (fck) 45 MPa 

Concrete Tensile Strength (fctk) 2.6 MPa 

Young’s Modulus (Ec) 35495 MPa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All the curves shown in Figure 118 are numerically integrated along their respective height to 
obtain the horizontal component of the inclined compression chord (Ncu). It was seen that for 
every angle of inclination, the magnitude of this component was more or less the same, and 

follows the trend of Pꝏ and not P .cos
2




 
 
 

 as can be seen from Table 47. Figure 119 gives 

the graph for the percentage error in horizontal equilibrium of the section for the two scenarios. 

Table 47 Horizontal force equilibrium check for different angle of inclination 

Angle of inclination (α) 
(degrees) 

Ncu.cos(α) 
(kN) 

Pꝏ 

(kN) 
Pꝏ.cos(α/2) 
(kN) 

0.00 -799.99 801.64 801.64 

1.27 -799.99 801.64 801.59 

2.57 -799.99 801.64 801.44 

3.86 -799.99 801.64 801.19 

5.14 -800.00 801.64 800.83 

10.19 -801.34 801.64 798.47 

16.28 -800.00 801.64 793.56 

 

Figure 117 Constitutive model for prestressing tendons 

Figure 118 Stress block at a distance of 2500 mm from the left support for different angle of inclination 
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The percentage error in horizontal equilibrium for scenario A, in which the prestressing force 
Pꝏ acts perpendicular to the cross-section cut, is less than 0.2 for most of the models. On the 
contrary the percentage error in horizontal equilibrium for scenario B, where the prestressing 
force Pꝏ acts along the centroidal axis, keeps on increasing with the increase in the angle of 
taper. For smaller angle of taper, the error in scenario B is less than 0.2% but as the angle of 
inclination increases the error keeps on increasing.  From the curve, it can be seen that the 
maximum percentage error for situation B is less than 0.8, which is acceptable. But if it is 
assumed that the prestressing force Pꝏ acts along the centroidal axis, at an angle, then the 
shear capacity of the beam would significantly alter due to the vertical component of this 
“assumed” inclined prestress force. Moreover, the normal force would act at its original linear 
path rather than acting at an angle. Hence option A from Figure 115, where the prestressing 
force Pꝏ acts perpendicular to the cross-section cut, is the correct one.  

5.2.2 Position of the force Pꝏ 

The second query about the cross-sectional analysis of prestressed haunched beam is where 
does the horizontal prestressed force Pꝏ acts – at the centre of the cross-section height (h) or 
at the centre of the height of the beam where the tendons are initially prestressed (hmin) as 
shown in Figure 120.  

 

 

 

 

 

 

 

 

 

To check which of the above scenario is the correct one, DIANA models are made and further 
analysed. The beam shown in Figure 116 is centrically prestressed with straight tendons and 
according to the basic concepts, the displacement in the Y-direction should be zero. Note that 
the dead weight of the beam is ignored. However it was seen that as the angle of the haunch 
increases, the beam deflected in the positive Y-direction (upwards). Table 48 gives the 
maximum deflection of the haunched beam, when the beam is fully prestressed. This would 
suggest that a load is acting in the upward direction which results in the positive deflection. 
The reader of CIE 4160 – Prestressed Concrete [13] shows how to deal with prestressed 
beams which have a non-linear layout of centroidal axis. This concept introduces point loads 

Figure 119 Percentage error in horizontal equilibrium for scenario A and B 

Figure 120 Point of application of force - at the center of cross-section cut or at the center of the minimum height ? 



94 
 

to the position where there is a kink in the centroidal axis. These point loads are then applied 
to the “adjusted centroidal axis” which is linear. This concept is applied on the positively 
haunched beams and further validated. 

Table 48 Deflection at the center of the beam with varying angle of inclination calculated by DIANA 

Angle 
(degrees) 

Maximum Height 
(mm) 

Deflection 
(mm) 

0 900 0 

1.27 1000 0.21 

2.57 1100 0.33 

3.85 1200 0.40 

5.17 1300 0.45 

 

The static scheme of these 2-D haunched beams can be given by Figure 121 and Figure 122. 

 

 

 

 

 

 

 

 

Figure 121 is the static scheme obtained from the 1-D model of the prestressed haunched 
beam, where the centroidal axis has a non-linear layout which is subjected to normal loading 
(Pꝏ). Figure 122 is the static scheme where the centroidal axis is adjusted, which is then 
subjected to point loads calculated according to the concept mentioned in the reader of CIE 
4160 – Prestressed Concrete [13]. The deflection using both these static schemes are 
calculated and further discussed. 

In static scheme-I, the bending moment along the length of the beam is equal to the 
prestressing force (Pꝏ) multiplied with the eccentricity ‘y’. This eccentricity ‘y’ can be written 
in terms of the angle of inclination and the horizontal distance as: 

. tan
2

y x
 

  
 

 

The concrete parameters for the model is given in Table 46. The deflection at the centre of 
the beam can be calculated using the following formula: 

2

2
.

where,
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Figure 121 Static scheme - I 

Figure 122 Static scheme - II 
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  
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. . tan
Moment of Inertia which is varying along the length of the beam= 

12

 Deflection in the y-direction
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w



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This differential equation is solved in MAPLE and the deflection at the centre of the beam is 
calculated. For the validation of the 2nd static scheme, the 4 point loads are applied on the 2-
D haunched beam as shown in Figure 123 and the deflection at the centre of the beam is 
calculated in DIANA. The deflection, for different angle of inclination, due to both these static 
schemes are tabulated in Table 49. It can be seen that both these static scheme result into 
more or less the same deflection, which is also equal to the one obtained by the application 
of prestressing force to the 2-D haunched beam shown in Table 48. The small difference 
between the deflections from the two static schemes can be attributed to the inclusion of shear 
deformation in the Finite Element Model. 

 

 

 

 

 

Table 49 Deflection comparison from both static schemes for different angle of inclination 

Angle of inclination 
(degrees) 

Deflection due to scheme-I 
(mm) 

Deflection due to scheme-II 
(mm) 

1.27 0.20 0.20 

2.57 0.32 0.33 

3.85 0.39 0.41 

5.17 0.43 0.45 

 

Moreover the bending moment diagram for both of these static scheme is approximately equal. 
The maximum bending moment, at the centre of the beam, for both the static schemes can 
be given as: 

max,

max,

. . . tan . .sin
2 2
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2
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Both the mechanical schemes results in almost the same deflection and bending moment. 

Hence both these static schemes are similar. Nasreddin El-Mezaini et al. [14] analysed 

different frames which has non-prismatic sections. Author’s statement regarding Figure 124 

was that if one of the segment of the non-prismatic section is subjected to axial force, then 

due to the eccentricity in the centroidal axis, moment is generated in the other segment and 

the axial force is applied at the centre of the height of the other segment. 

 

 

 

Figure 123  2-D haunched beam subjected to point loads 

Figure 124 Normal force in a haunched beam [14] 
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Using this concept, if the cross-sectional analysis is performed at the centre of the haunched 
prestressed beam shown in Figure 116, then the prestressing force Pꝏ should be applied at 
the centre of the cross-section height, at the centroidal axis level. This can be done provided 
the moment due to the shift in the centroidal axis is either subtracted from the applied bending 
moment equation or added to the bending moment resistance. Hence option A from Figure 
120 is the correct one, provided the bending moment due to the variation in the centroidal axis 
is considered.  

Once the beam is prestressed, the tendons act as a reinforcement and the procedure to 
calculate the shear capacity of the prestressed non-prismatic beam is similar to that of the 
reinforced non-prismatic beam shown in Section 4.2. 

5.3  Continuous Prestressed Haunched Beam 
The concept mentioned in the previous section is now applied to a continuous prestressed 
haunched beam as shown in Figure 125. The beam is prestressed with 3 parabolas, with radii 
R1 and R2. Tapered section is provided near the intermediate support. The cross-sectional 
analysis is performed at a distance of x1 from the origin of the parabola. The mechanical 
scheme, with different loading is given in Figure 126. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The beam is subjected to dead load (qg) and live load (ql). Other than the normal prestressing 

force Pꝏ, the beam is also subjected to curvature pressure given as p

i

P
q

R

 acting throughout 

the length of the beam. The cross-section forces at the assumed critical section are given in 
Figure 127, where it is assumed that hogging moment is generated at the Ultimate Limit State. 
The force ∆P acts at an angle due to the parabolic layout of the tendon. This force is 
decomposed in the horizontal and the vertical direction. Due to the geometry of the beam, the 
concrete compressive force Ncu acts at the angle of taper ‘α’, which is further divided in the 
global direction as shown. The prestressing force Pꝏ acts horizontally at the position of the 
centroidal axis, provided the bending moment due to the shift in the centroidal axis is 
considered. 

 

Figure 125 Continuous prestressed non - prismatic beam with parabolic tendons 

Figure 126 Static scheme for the beam shown in Figure 125 
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If this cross-sectional analysis is to be performed exactly at the centre of the intermediate 
support, the cross-section forces are shown in Figure 128. The prestressing force Pꝏ acts at 
the centre of the cross-section height, provided the equation of the applied bending moment 
is given as follows: 

.

where

Bending Moment due to dead weight and live load

Bending Moment due to curvature pressure

Eccentricity at the centre

Ed g l pre

g l

pre

M M M P e
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e

 
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
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

 

The last term of the equation takes into account the moment due to the shift in the centroidal 
axis, which reduces the applied bending moment. 

 

 

 

 

 

 

 

 

 

Figure 127 Cross - section forces in the critical section cut 

Figure 128 Cross-section forces for a cut at the intermediate support in Figure 125 
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6    Errors while performing Cross-
Sectional Analysis on Non-

Prismatic Bridges 
This chapter discusses different errors that engineers make in practice while performing cross-
sectional analysis on non-prismatic bridge decks. The error in the cross-section results for 
different models are calculated for an existing bridge deck, Wolweg Bridge, and further 
discussed.  
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6.1 General Information – The Wolweg Bridge 
The Wolweg Bridge is located near a village named Stroe, in the Gelderland province of The 
Netherlands. The construction of the bridge was completed back in 1965. The bridge is located 
on the A1 motorway, where the European Route E30 also follows. The bridge is a skew bridge 
as can be seen from Figure 129, with a skew angle of 51.5o. 

 

 

 

 

 

 

 

 

 

 

The bridge has 2 deck, with three spans per deck as shown in Figure 129 and Figure 130. 
The length of the end decks is 10.5 m whereas the length of the middle deck is 13 m as shown 
in Figure 130. Tapered section is provided near the intermediate support to increase the shear 
capacity. The width of the deck is 20.8 m in the southern part, where the study is focused on. 
The zoomed in tapered section is given in Figure 131. Tapered section can also be seen in 
Figure 132 and Figure 133. 

 

 

 

 

 

 

 

 

 

 

 

 

The height of the deck in the prismatic section is 770 mm whereas the maximum height in the 
tapered section is 1200 mm and that at the intermediate support is 1350 mm. The angle of 
taper is 10.81o. The length of the tapered zone is 2250 mm. To distribute the longitudinal 
reinforcement, the bridge deck was divided into 15 different zones as can be seen in Figure 
134. In this study, the focus is on the tapered section of the deck i.e. either zone 4, 5 and 6 or 

Figure 129 Aerial photograph of the bridge [15] 

Figure 130 Deck dimensions 

Figure 131 Tapered section of the deck 
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zone 10, 11 and 12. Reinforcement detailing is given in Table 50, Table 51, Table 52 and 
Table 53. 

  

 

 

 

 

 

 

Table 50 Top reinforcement detailing 

Zone number Diameter (in mm) Spacing (in mm) 

4 40 139 

5 40 159 

6 40 139 
 

Table 51 Bottom reinforcement detailing 

Description Diameter (in mm) Spacing (in mm) 

Zone 4, 5 and 6 19 275 
 

Table 52 Concrete properties of the bridge deck 

Description Value Unit 

Characteristic Cube Compressive Strength 22 MPa 

Characteristic Cylinder Compressive Strength (fck) 19 MPa 

Design Compressive Strength 12 MPa 

Mean Compressive Strength 27 MPa 

Mean Tensile Strength 2.11 MPa 

Young’s Modulus 27750 MPa 

Figure 133 Tapered section at the intermediate support [15] Figure 132 Zoomed in tapered section [15] 

Figure 134 Lane and zone division in the bridge deck [15] 
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Table 53 Reinforcment properties of the bridge deck 

Description Value Unit 

Characteristic Yield Strength (fyk) 400 MPa 

Design Yield Strength (fyd) 348 MPa 

 

Due to the shape, these type of bridge deck has a non-linear layout of the centroidal axis along 
the length of the tapered deck as shown in Figure 131. Engineers, in practice, model these 
decks differently such that the centroidal axis remains straight. This is done by introducing 
taper or curve shape to the opposite side of the haunch. By doing so, the centroidal axis 
remains straight. The volume of concrete used is same but the structure is changed and this 
might change the cross-sectional results. The Wolweg Bridge was investigated by TNO in 
2003 for the shear capacity [15]. While analysing the bridge deck, professionals at TNO 
modified the cross-section of the deck as shown in Figure 135 so that the centroidal axis 
remains straight. Cross-sectional analysis on the original deck and the modified deck is 
performed in this study and the results are discussed. 

 

Figure 135 Modified section of the bridge deck [15] 

6.2  Cross Sectional Analysis – Original deck 
Figure 136 shows the cross-section analysis performed at a distance ‘x’ from the free end of 
the tapered section shown in Figure 131. Fst is the steel force due to top reinforcement which 
acts at a distance of 30 mm from the top fibre. Fsb is the steel force due to bottom reinforcement 
and Ncu,1 is the concrete compressive force, both of which acts at an angle ‘α’ with respect to 
the horizontal axis. Due to this inclination, these forces are decomposed in the horizontal and 
vertical component. The horizontal component is taken into account by the moment resistance 
with the given lever arms and the vertical component is included in the shear capacity or the 
applied shear force of the deck. Figure 136 shows that the vertical component of the inclined 
forces reduces the applied shear force or increase the shear capacity of the deck. This also 
confirms that providing a haunch at the intermediate support increases the shear resistance 
of the deck and is therefore advantageous for the structure. To calculate these vertical 
components, the use of horizontal equilibrium is made.  

a. Upper Bound Shear Capacity 

In this case, it is assumed that the reinforcements are yielded and concrete strength is equal 
to the design concrete compressive strength throughout the length of the tapered section. 

 

 

 

 

 

 

 

Figure 136 Cross-sectional analysis on the tapered section shown in Figure 131 

Centroidal Axis of the modified deck 
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The equation of horizontal equilibrium is given as follows: 
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The shear resistance contributed by concrete is calculated using the formula shown below, 
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The effective shear resistance is given by, 

     , ,1.sin .sin ................. 6.01Rd Rd c sb cuV V F N     

The moment resistance calculated at the point of application of top force is given as, 
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As it is a ULS check, the magnitude of both the vertical component would remain constant 
throughout the length of the tapered zone. Figure 137 shows the effective shear resistance 
variation, which is the upper bound shear capacity, along the length of the tapered deck. It 
can be seen that as soon as the tapered section begins, the concept of effective shear 
resistance comes into account which increases the capacity. This drastic increase is due to 
the assumption that the magnitude of cross-section forces are maximum throughout the length 
of the tapered deck. At the intermediate support of the tapered section, the height remains 
constant and therefore the shear resistance is constant as well. Due to the vertical component 
of the assumed inclined yielded forces, the shear resistance in the tapered section is almost 
3 times the shear resistance of the prismatic segment. But John J. Orr et al. [11] proved in his 
study that it leads to overestimation or underestimation of shear capacity of the non-prismatic 
deck/beam, if it is assumed that the steel reinforcement is yielded throughout the length of the 
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beam. Therefore the vertical component should be calculated based on the applied bending 
moment at that section. 

Figure 138 shows the bending moment variation along the length of the tapered bridge deck. 
The cross-section forces are constant, as it is a ULS check, and only the lever arm is 
increasing due to increase in the height of the cross-section. Therefore the bending moment 
resistance keeps on increasing along the length of the deck, with maximum at the intermediate 
support. 

  

 

 

 

 

 

 

 

b. Lower Bound Shear Capacity 

Figure 137 is the variation of the shear capacity of the deck based on the effective shear 
resistance concept and also on the assumption that the cross-section forces are maximum 
throughout the length of the tapered deck. This leads to overestimation of the capacity as 
evident from the jump in the plot. Therefore, a lower bound shear capacity is computed, which 
would be in effect after the construction stage. This is the capacity of the deck in the tapered 
zone which is the result of the dead load and the asphalt loading. A 1-D beam was modelled 
with a cross-section of 770 x 20800 mm2

, which are the dimensions of the prismatic deck, and 
was subjected to self-weight and asphalt loading as shown in Figure 139. The thickness of the 
asphalt was unknown and the author assumed a thickness of 0.12m [15]. The effect of the 
tapered section was taken into account by the varying self-weight near the intermediate 
support. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 137 Shear resistance variation along the length of the 
original tapered deck 

Figure 138 Bending moment resistance variation along the 
length of the original tapered deck 

Figure 139 Bridge deck subjected to dead load 

Figure 140 Bending moment diagram for the loading shown in Figure 139 
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Figure 140 gives the bending moment diagram for the static scheme shown in Figure 139. 
Note that the sign convention in the figure is different viz. negative bending moment is the 
sagging moment whereas positive bending moment is the hogging moment. The bending 
moment diagram in the haunch part varies, with maximum at the intermediate support and 
zero at the beginning of the haunch. The bridge deck has no internal or external prestressing. 
Traffic load would certainly increase the magnitude of hogging moment at the intermediate 
support. Truck point loads might decrease this magnitude, but that should be for a brief period 
as it is a moving load. Hence hogging moment is generated near the tapered section as 
expected. Now the applied bending moment at the intermediate support, due to the dead load 
and asphalt loading, is used to calculate the inclined compressive force that is generated at 
the bottom fibre. The vertical component of this inclined compressive force is then added to 
the shear resistance of concrete to create an envelope of the lower bound shear capacity as 
shown in Figure 141. This is the minimum capacity of the deck irrespective of the loading 
scenario. 
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The maximum capacity in the lower bound envelope i.e. at the intermediate support is about 
1.47 times that of the prismatic section. This capacity would be present irrespective of the 
external loading on the deck. The applied shear force at the intermediate support, due to the 
self-weight and asphalt loading, is 3250 kN which is much smaller than the shear capacity of 
the deck as can be seen from the curve. The professional at TNO calculated the applied shear 
force, at the haunch section, for different load combination and the critical value was 
approximately equal to 483.5 kN/m [15]. The maximum value of the lower bound shear 
capacity is equal to 558.7 kN/m, which is higher than the applied shear force. Note that this 
capacity is calculated based on the dead load and the asphalt loading. Traffic load would 
certainly increase this capacity. 

6.3  Cross Sectional Analysis – Modified Deck 
As mentioned earlier, engineers find it difficult to perform cross-sectional analysis on non-
prismatic beam, mainly due to the non-linear layout of centroidal axis. In order to escape that, 
engineers change the cross-section of the beam such that the centroidal axis remains straight. 
The tapered slab deck shown in Figure 131, which has a non-linear layout of centroidal axis, 
is changed to double tapered deck shown in Figure 142, which has a linear centroidal axis. In 
order to keep the same volume of concrete in the “transformed” deck, the angle of taper is 
halved, the tapered section is introduced on the top side as well and the top reinforcement is 

Figure 141 Lower Bound Shear Capacity 
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placed at an angle. Material parameters and the reinforcement detailing remains the same as 
shown in Table 50, Table 51, Table 52 and Table 53. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross-sectional analysis is performed at a distance ‘x’ from the free end of the tapered section 
as shown in Figure 143. As the deck is modified, the angle β is equal to half of the angle α. 
Also, now the top reinforcement is placed at an angle. Therefore, the steel force due to the 
top reinforcement is acting at the angle β as well. Due to the shape, the concrete compressive 
force (Ncu,2) and the steel force due to the bottom reinforcement (Fsb) also acts at the angle β, 
with respect to the horizontal. All these forces are decomposed in the horizontal and the 
vertical direction. The horizontal component is used for equilibrium in the X-direction whereas 
the vertical component is considered in the shear capacity of the deck. In this case as well it 
is assumed that the cross-section forces are maximum throughout the length of the tapered 
deck. 
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The effective shear resistance is calculated using the formula, 

Figure 142 Modified tapered section of the deck 

Figure 143 Cross-sectional analysis for the tapered section shown in Figure 142 
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       , ,2.sin .sin .sin ................. 6.03Rd Rd c sb cu stV V F N F       

The differences in the formula of the effective shear resistance for the ‘modified’ (equation 
6.03) and the actual deck (equation 6.01) is the term of the vertical component of the inclined 
top steel force (Fst) and the angle β. The formula for the shear resistance contributed by 
concrete is unchanged. The moment resistance is calculated using the following equation: 

     ,2 3 4.cos . .cos . ................. 6.04Rd cu bM N z F z    

where, 

,2

3

4

7.

18

2.

ux
z h c

z h c

  

 

  

The equation of lever arm is changed in this case, as the horizontal equilibrium in a modified 
deck is different than that of an original deck. Figure 145 shows the shear capacity envelope 
for the modified deck, which is similar to the one shown in Figure 137. Table 54 gives the 
comparison of the upper bound shear capacity, for the original and modified deck at different 
intervals. The percentage error is negligible, with an average of 0.19%, and hence this type of 
modelling of the tapered section would still yield accurate shear resistance results. 

Figure 144 shows the bending moment resistance along the length of the modified tapered 
section of the deck. Table 55 gives the comparison of the bending moment resistance for the 
original and the modified tapered section at regular intervals. From the table, the bending 
moment obtained in case of the modified tapered section is less than that of the original one, 
but the error is not more than 1% at every interval, which is acceptable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Table 54 Comparison of shear capacity for the modified and original deck 

Span 
(m) 

VRd (Original section) 
(kN) 

VRd (Modified section) 
(kN) 

Error 
(%) 

0 7869.31 7869.3 0.00 

0 19515.95 19562.12 0.24 

0.25 19764.48 19808.44 0.22 

0.5 20001.4 20049.07 0.24 

0.75 20238.8 20284.47 0.23 

1 20471.3 20515 0.21 

1.25 20699.2 20741.1 0.20 

1.5 20922.9 20963 0.19 

1.75 21142.7 21181 0.18 

Figure 144 Bending moment resistance along the 
length of the modified tapered deck 

Figure 145 Shear capacity variation along the length of 
the modified tapered deck 
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2 21358.7 21395.37 0.17 

2.25 21571.3 21606.31 0.16 

2.251 22226.27 22272.44 0.21 

2.949 22226.27 22272.44 0.21 

2.95 21571.3 21606.31 0.16 

3.2 21358.7 21395.37 0.17 

3.45 21142.7 21181 0.18 

3.7 20922.9 20963 0.19 

3.95 20699.2 20741.1 0.20 

4.2 20471.3 20515 0.21 

4.45 20238.8 20284.47 0.23 

4.7 20001.4 20049 0.24 

4.95 19758.7 19808.44 0.25 

5.2 19515.95 19562.12 0.24 

5.2 7869.31 7869.3 0.00 

Average Percentage Error 0.19 

 

Table 55 Comparison of bending moment resistance for the modified and original deck 

Span 
(m) 

MRd (Original section) 
(kN-m) 

MRd (Modified Section) 
(kN-m) 

Error 
(%) 

0 39396 39342.29 -0.14 

0.25 42360.26 42265.5 -0.22 

0.5 45324.53 45188.7 -0.30 

0.75 48288.8 48111.9 -0.37 

1 51253 51035.1 -0.43 

1.25 54217.32 53958.31 -0.48 

1.5 57181.58 56881.51 -0.52 

1.75 60145.85 59804.71 -0.57 

2 63110.11 62727.92 -0.61 

2.25 66074.38 65651.13 -0.64 

2.251 75412.3 75181 -0.31 

2.95 75412.3 75181 -0.31 

2.95 66074.38 65651.13 -0.64 

3.2 63110.11 62727.92 -0.61 

3.45 60145.85 59804.71 -0.57 

3.7 57181.58 56881.51 -0.52 

3.95 54217.32 53958.31 -0.48 

4.2 51253 51035.1 -0.43 

4.45 48288.8 48111.9 -0.37 

4.7 45324.53 45188.7 -0.30 

4.95 42360.26 42265.5 -0.22 

5.2 39396 39342.29 -0.14 

Average Percentage Error -0.42 
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6.4 Cross Sectional Analysis – Ignoring the inclination of Cross Section 
Forces 

In Chapter 4 – Cross Sectional Analysis on reinforced non-prismatic beams, tapered beams 
were analysed and comparison between the experimental results, analytical results including 
the vertical component and analytical results excluding the vertical component was performed. 
It was seen that if the vertical component is not taken into account by the shear resistance of 
the beam, one might overestimate the capacity in case of negatively haunched beam and 
underestimate the capacity in case of positively haunched beams. To evade any 
complications, an error that engineers make is to ignore the vertical component, by applying 
the cross-section forces perpendicular to the cut and not at an angle. Consider the tapered 
section of the bridge deck shown in Figure 131. Figure 146 shows the cross-sectional forces, 
where the angle of inclination of the internal forces are ignored. This analysis is performed at 
a distance ‘x’ from the free end of the tapered section shown in Figure 131. Engineer applies 
the cross-section forces perpendicular to the cross-section cut. By doing so, one would 
underestimate the shear capacity, which was also shown in Chapter 4. 
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The shear resistance of this section would be equal to the shear resistance contributed by the 
concrete. The Moment resistance is given as, 

 ,2 3 4. . ................. 6.05Rd cu sbM N z F z    

In this case, the lever arms are equal to the one where the cross-section is modified (Section 
6.3) as the equation of horizontal equilibrium in both these cases are the same. However, the 
equation of bending moment resistance is different as stated above. 

Figure 147 and Figure 148 shows the variation of bending moment resistance and the shear 
resistance along the length of the tapered section respectively where the inclination of the 
cross-section forces are ignored. It can be seen that the shear capacity of the tapered section 
where the vertical component is ignored is much smaller than the upper bound shear capacity 
of the original deck or modified deck. The difference between the capacity obtained by ignoring 
the inclination of the cross-section forces and the lower bond shear capacity envelope, showed 

Figure 146 Cross - section analysis ignoring the inclination of forces 
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in Figure 141, is about 1050 kN (50 kN/m). If the inclination of the cross-section forces are 
ignored, the capacity might just be equal to the applied shear force. The bending moment 
resistance obtained due to these cross-section forces are slightly higher than the one where 
the inclination is considered, which is logical as the reduction factor of the cosine of the angle 
of inclination is ignored. 

 

 
 

6.5   Comparison of Cross Section Results 
Figure 149 shows the bending moment resistance comparison for different models along the 
length of the deck. It can be concluded, that there is no difference in the bending moment 
resistance for the different models. This is due to the low reduction factor of the cosine of the 
angle of inclination, which creates negligible effect to the bending moment resistance.  

Figure 150 shows the comparison of shear resistance between different models. The shear 
resistance variation for the original tapered deck and the modified tapered deck is identical. 
This is because in the modified deck – the angle of taper is reduced to half, tapered section is 
introduced in the top side and the steel force at the top is placed at an angle, eventually 
yielding the same result. It can also be seen that ignoring the vertical component leads to 
underestimation of the capacity. The lower bound shear capacity envelope is approximately 
10% higher than the envelope where the inclination of the cross-section forces are ignored, 
which is due to the vertical component of the inclined compression chord. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

In reality, the magnitude of the cross section forces are not maximum throughout the length of 
the tapered deck but only at the position where the applied hogging bending moment is 
maximum, which is at the intermediate support. The shear capacity variation for the load 
combination in which the bending moment is governing is also plotted in Figure 150 (black 
graph). In this case, the cross-section forces are maximum only at the intermediate support 
and varies linearly along the length of the tapered deck. It can be seen from the graph that the 
assumption of the magnitude of cross-section forces being maximum throughout the length of 

Figure 147 Bending moment resistance variation along the 
length of the tapered deck (ignoring inclination of forces) 

Figure 148 Shear resistance variation along the length of 
the tapered deck (ignoring inclination of forces) 

Figure 149 Bending moment resistance comparison for different 
models 

Figure 150 Shear capacity comparison for different models 
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the tapered deck leads to overestimation of the capacity as was shown by John J. Orr [11]. By 
assuming that the cross-section forces are maximum at the intermediate support, the capacity 
obtained (1068.55 kN/m) is much higher than the applied shear force. However this would still 
lead to overestimation of the capacity and the procedure to calculate the real shear capacity 
variation is given as follows: 

I. The load combination where the applied shear is governing in the bridge is considered 

and the applied bending moment along the tapered section is noted. 

II. The inclined cross-section forces are calculated, from the applied bending moment, 

and the vertical component of this force is further added to the shear capacity 

contributed by concrete to obtain the “Real Shear Capacity” envelope. 

The procedure is similar to that mentioned in Chapter 4. The actual shear capacity envelope 
would be somewhere in between the “Bending Moment Governing” envelope and the “Lower 
Bound Capacity” envelope from Figure 150. The figure also shows different types of error an 
engineer might make while analysing the non-prismatic deck for the shear capacity such as: 

I. Assuming maximum cross-section forces throughout the length of the tapered deck  
II. Modifying the cross-section of the tapered deck  

III. Ignoring the inclination of the cross-section forces   
IV. Envelope of the load combination where the bending moment is governing.  

6.6  Generalized Method 
As shown from the previous section, the shear capacity of the original deck with a non-linear 
layout of centroidal axis is the same as that of a modified deck with a linear centroidal axis. A 
generalized model is proposed in this section which proves the same. Note that both these 
models are analysed in the Ultimate Limit State (ULS) and the behaviour of these two models 
might differ in the Serviceability Limit State (SLS). 

6.6.1 Original Deck – Non Linear Layout of Centroidal Axis 
  

 

 

 

 

 

 

 

Figure 151 shows a tapered deck with minimum height at the ends and maximum at the centre, 
with the angle of taper ‘α’. The cross – sectional analysis is performed at a distance of ‘x’ from 
the free end of the tapered deck as shown in Figure 136. Horizontal Equilibrium is given as 
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Figure 151 Original tapered deck near the intermediate support 
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The vertical component of the inclined compression force and the steel force due to bottom 
reinforcement increases the shear capacity of the deck. The effective shear resistance 
equation is written as follows: 
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The increase in the shear resistance of the original model is equal to the steel force due to the 
top reinforcement multiplied with the angle of taper, in radians. The moment resistance is 
given as: 
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6.6.2 Modified Model – Linear Layout of Centroidal Axis 
Figure 152 shows the double tapered deck with half of the angle of inclination of the original 
deck model. As the tapered section is introduced at the top as well, the volume of concrete in 
this deck is equal to that of the tapered original deck model. Cross-Sectional Analysis is 
performed at a distance of ‘x’ from the free end of the modified deck as shown in Figure 143, 

where
2


  . Horizontal Equilibrium is given by, 
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Figure 152 Modified double tapered deck 
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The effective shear resistance is given by  
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The equation of the bending moment resistance which is calculated at the position of the top 
reinforcement is given as, 
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It can be seen that the equation of shear resistance for the original deck (equation 6.04) is 
approximately equal to that of a modified deck (equation 6.08). The equation of Bending 
Moment Resistance for the original deck (equation 6.05) and the modified deck (equation 6.09) 
is slightly different and have different lever arms. But if the angle of inclination is not too large 
(less than 18o), the error in the bending moment resistance is small as can be seen from Table 
55 and hence it can be ignored. From the above calculations, it can be said that the shear 
resistance of a deck, with non-linear centroidal axis, is almost equal to the shear resistance of 
a modified deck with linear centroidal axis, provided that the volume of concrete in use remains 
constant. 
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7   Conclusion and 
Recommendation 

This chapter discusses the conclusion that are drawn from the results obtained in the previous 
chapters. On the work done, few recommendations are proposed for researchers to further 
explore the behavior of non-prismatic beams. 
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 7.1 Conclusion  
1. When the cross-sectional analysis is performed in a prismatic beam subjected to four 

point bending test, the cross-section results i.e. Bending Moment Resistance and 
Shear Resistance remain constant irrespective of whether the analysis is performed 
on a vertical cut or on an inclined cut. Both the detailed procedure and the simplified 
approach leads to a constant cross-section result in the prismatic beam. From the 
approaches it can be concluded that the results in a prismatic beam are independent 
of how the cross-section cut is made, as stated in the hypothesis. 
 

2. In a negatively haunched beam, when the cross-section analysis is performed in the 
tapered zone, it was observed that the bending moment resistance obtained on an 
inclined cut, which is perpendicular to the centroidal axis with forces in the local 
direction is different than that obtained on a vertical cross-section cut with forces in the 
global direction. The detailed method and the simplified approach both proves the 
same and therefore it can be concluded that in a negatively haunched beam, the cross-
section results depends on how the cross-section cut is built, not following the 
hypothesis. From the approaches it was seen that one would overestimate the bending 
moment resistance and correspondingly provide less amount of reinforcement if the 
analysis is performed on an inclined cut. However no experimental data is available to 
prove this outcome and therefore in negatively haunched beam it is recommended to 
perform a cross-section analysis on a vertical cut, until further research. 
In positively haunched beam as well, the equation of bending moment resistance 
obtained on an inclined cross-section cut, which is perpendicular to the centroidal axis 
with forces in the local direction, is different when compared to the equation obtained 
on a vertical cut, with the forces in the global direction. In this case as well the cross-
section results depends on how the cross-section cut is made. Therefore, in positively 
haunched beam as well it is recommended to perform a vertical cross-section analysis 
until some experimental data is available.  
 

3. From the analysis of the limited experimental data, it can be concluded that in non-
prismatic beam the vertical component of the inclined compression chord or tensile tie 
should be considered in the shear capacity equation. Moreover the capacity of such 
beam depends on the applied load. The procedure to calculate the shear resistance of 
the non-prismatic beams is given as follows: 
 

i. Determine the critical section in the non-prismatic beam. The critical section is 
defined as that section in the tapered zone where the shear resistance 
contributed by concrete or stirrup is less, compared to the other section of the 
haunch. Furthermore, the vertical component of the inclined cross-section 
forces has a maximum effect in case of negatively haunched beam and 
minimum assistance in case of positively haunched beam. Generally, in a 
negatively haunched beam, the critical section is at the vertex of the haunch 
near the loading point. On the other hand, in a positively haunched beam it is 
preferable to consider the section at a distance of hmin (minimum height) from 
the support/vertex depending on the beam. 
 

ii. The critical moment (Mcr) and the critical force (Pcr), above which non-linearity 
begins for the given section, are calculated as follows: 
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iii. To calculate the horizontal component of the inclined cross-section forces, 

lever arm is required which is determined using the following equations: 
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iv. Once the critical force and the lever arm are known, the horizontal component 

of the inclined force for a given load can be calculated using moment 
equilibrium. The vertical component is calculated subsequently and is added 
or subtracted from the shear resistance, which is contributed due to concrete 
and stirrups. This is done for every load increment and the failure of the beam 
occurs when the effective shear resistance is less than the applied load.  

An example to calculate the shear capacity of non-prismatic beam is shown in Table 56. The 
critical section, which is at a distance ‘x’ from the support, is predicted and the critical force 
(Pcr), lever arm (z) and the shear capacity contributed by concrete (VRd,c) and stirrups (VRd,s) 
are calculated. As soon as the applied load is greater than the critical force (Pcr), cracking 
occurs and both the components of the inclined cross-section forces (Hi and Vi) are 
determined. The shear resistance (VRd) is calculated, by adding or subtracting the vertical 
component of the inclined cross-section forces (equation 4.09). As the capacity of the beam 
depends on the applied loading, failure of the beam occurs when the effective shear resistance 
(VRd,c + VRd,s ± V26)  is less than the applied load (Pcr + 26). 

Table 56 An example to calculate the shear resistance of non - prismatic beam 

Load 
(kN) 

Horizontal 
Component in kN (Hi) 

Vertical Component 
in kN (Vi) 

Effective Shear 
resistance 
in kN (VRd) 

Condition 

1 0 0 VRd,c + VRd,s No Failure 

Pcr + 1 H1 V1 VRd,c + VRd,s ± V1 No Failure 

Pcr + 10 H10 V10 VRd,c + VRd,s ± V10 No Failure 

Pcr + 20 H20 V20 VRd,c + VRd,s ± V20 No Failure 

Pcr + 25 H25 V25 VRd,c + VRd,s ± V25 No Failure 

Pcr + 26 H26 V26 VRd,c + VRd,s ± V26 Failure 
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One of the setback of the above procedure is the assumption that the lever arm remains 
constant throughout the load increment. The change in the lever arm depends on the strain in 
the concrete at the critical section. If the strain in the concrete is less than 1.75‰ (for concrete 
class is less than or equal to C50/60) the lever arm remains unchanged but this might not 
always be the case. However, negligible effect in the lever arm is observed even if the strain 
in the concrete at the critical section enters the constant part of the bilinear concrete 
constitutive compression model given in Figure 3.4 of the Eurocode 1992-1-1 [1] (or Figure 
57). Hence the analytically calculated shear capacity of all the beams would be more or less 
the same. 

When the above procedure is applied to the available experimental data, it was seen that the 
analytically calculated shear capacity, where the vertical component is taken into account by 
the shear resistance, complies well with the experimental results confirming the hypothesis. 
The mean and the standard deviation for the ratio between experimental results to the 
analytical results for different types of beams is given in Table 57.  

Table 57 Mean and standard deviation for different types of beams 

Type of beam Ratio between experimental 
to analytical including 
vertical component 

Ratio between experimental 
to analytical excluding 
vertical component 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Prismatic beam 1.04 0.2 - - 

Negatively haunched beam 0.98 0.24 0.64 0.19 

Positively haunched beam 1.09 0.36 1.43 0.59 

From the above table it can be concluded that one would overestimate the shear capacity of 
the negatively haunched beam and underestimate the capacity of the positively haunched 
beam if the vertical component of the inclined internal force is ignored. The table also proves 
that the vertical component of the inclined cross-section forces should be considered in the 
shear capacity equation, validating the equation 4.09. In case of a positively haunched beam, 
better results are obtained if the critical section is considered at a distance of hmean 

((hmin+hmax)*0.5) from the support/vertex rather than considering at a distance of hmin from the 
support/vertex. 

4. From the experimental data it was seen that excess volume of concrete does not 
always provide higher capacity and less amount of concrete does not always lead to a 
lower capacity. Using concrete smartly such as the case of double cantilevered 
haunched beam tested by Macleod et al. [6] will provide desirable and better results.  
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5. When a cross-section analysis is performed in a prestressed haunched beam, the 

prestressed force Pꝏ is applied horizontally at the center of the cross-section height. 
Furthermore the equation of the applied bending moment is changed by an amount 
equal to the prestressing force Pꝏ multiplied with the eccentricity. This eccentricity is 
due to the variation of centroidal axis along the length of the beam. Once the non-
prismatic beam is prestressed, the tendons act as reinforcement and the procedure to 
calculate the shear capacity of non-prismatic prestressed beam remains the same. 
Note that in case of a prestressed prismatic beam, it might be that the cross-section 
force ∆P acts at an angle, due to the tendon profile, leading to a vertical component 
and effecting the shear resistance of the beam. This effect might be critical when the 
section is considered near the support as tensile splitting is the governing failure mode. 
 

6. In practice engineers make different errors while performing cross-sectional analysis 
of haunched concrete bridges, mainly because of the non-linear layout of centroidal 
axis. The haunched decks are modified such that the centroidal axis remains linear, 
with the same volume of concrete in use. Although this does not affect the shear 
capacity and bending moment resistance of the deck, but these results are obtained 
at Ultimate Limit State (ULS) and the structural behavior might differ in Serviceability 
Limit State (SLS). Another simplified method that engineers prefer is to ignore the 
inclination of the cross-section forces, underestimating the capacity in most cases. 
Moreover the assumption that the shear capacity envelope is obtained by considering 
the load combination where the bending moment is governing also leads to 
overestimation of the resistance. The shear capacity of the deck should be calculated 
based on the bending moment that occurs for the governing load combination with 
respect to shear force. 

7.2  Recommendations 
1. The result from this study shows that in a non-prismatic beam the vertical component 

of the inclined force should be considered in the shear capacity, however all the beams 
tested were short with a maximum span of 3 m. When the span of the non-prismatic 
beam is long, this inclusion might significantly affect the shear capacity, as the 
magnitude of the cross-section forces is quite large as is evident from Figure 150. 
Further study on the shear capacity and structural behavior of long non-prismatic beam 
can be done in this regard. A conservative approach in long non-prismatic beams is to 
increase the shear capacity by 0.5 times the vertical component of the inclined 
compression chord or tensile tie which was suggested by Nghiep [9]. This can also be 
further validated. 
 

2. Strut Action was observed in almost every non-prismatic beam that was experimentally 
tested, with a pronounced effect in short beams. Due to this strut action, the shear 
capacity of the beam increases significantly as is seen in the beam specimen tested 
by Chenwei et al. [8]. A study that emphasizes on the reasoning behind the occurrence 
of strut action in non-prismatic beam would be quite useful to not only predict the shear 
capacity but also to understand its effect on such beams. The study can also focus on 
whether this type of mechanism occurs in long curved bridges or not. 
 

3. When an inclined cross-sectional analysis was performed on the tapered side of a 
negatively haunched beam, it was observed that the amount of reinforcement required 
is less as compared to a vertical cross-section cut. Using both these approaches, 
negatively haunched beams can be experimentally tested and the difference between 
the estimated load bearing capacities can be further noted. From the results a 
conclusion can be drawn about which of the two approaches i.e. inclined cut or vertical 
cut gives the best estimation of the load bearing capacity. 
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Appendix A 

While performing cross-section analysis on an angled cut, different approaches were 

considered, compared to that discussed in Chapter 3 and Chapter 4, where the cross-sectional 

results are not constant. Some of them are discussed here. These cross-sectional analysis 

are performed in the constant bending moment zone of the prismatic beam shown in Figure 

49. 

1) No reduction of compressive force. 

 

 

 

 

 

 

 

 

 

 

Figure 153 shows the stress distribution on an angled cut in a prismatic beam. The cross-

section forces are similar to Figure 53 – except the reduction of the concrete compressive 

force. Bending Moment Resistance is calculated as shown below, 
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From the above formulation, the equation of the inclined compression zone (equation A.03) is 

equal to that when the cross-section analysis is performed on a vertical cut, with the vertical 

compression zone (equation 3.03). The bending moment resistance is given as follows, 
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The inclined compressive zone is first decomposed in the vertical direction and then the lever 

arm is calculated. From the above formulation, it proves that if the compressive force is not 

reduced then the equation of the bending moment resistance (equation A.04) is not equal 

when the analysis is performed on a vertical cross-section cut (equation 3.04). 

Figure 153 Cross-section forces on an inclined cut without the reduction of concrete compressive force 
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2) Decomposition of Shear Resistance 

As the analysis is performed in the zone of no applied shear force (VEd), the applied shear 

force (VEd) from the analysis is replaced by the shear resistance (VRd) as shown in Figure 154.  

 

 

 

 

 

 

 

 

In this approach the shear resistance was assumed to be a cross-section force and is 

decomposed in the local direction (parallel and perpendicular direction) as shown in Figure 

155 

 

 

 

 

 

 

 

 

 

Horizontal equilibrium equation is given as follows, 
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The equation of the inclined compressive zone (equation A.05) is completely different than the 

one showed in previous approaches. The bending moment resistance, due to the cross-

section forces in the perpendicular direction, is given as follows 

Figure 154 Cross-section forces with shear resistance 

Figure 155 Decomposition of all the cross-section forces including the shear resistance 



123 
 

   

 

 

 
 

 
 

 

1 2

1

2

.cos . .sin .

7.

cos 18

7.

2.cos 18

7. 7.
.cos . .sin . .............. A.07

cos 18 2.cos 18

Rd sb Rd

eff u

u

eff u u
Rd s Rd

M F z V z

d x
z

xh
z

d x xh
M F V

 





 
 

 

 

 

   
         

   

 

The equation of the bending moment resistance is completely different. The component of the 

shear resistance, acting in the perpendicular direction, increases the bending moment 

resistance which is not constant anymore. These different approaches leads to major error 

and should be avoided. 
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