
A Keplerian method for Collision Detection
in Protoplanetary Disk Simulations

Calculating the computational efficiency and the consecutive collision times in
N-body systems as a function of Keplerian parameters.

by

Martijn Moorlag

to obtain the degree of Bachelor of Science
at the Delft University of Technology

to be defended publicly on Monday September 7, 2022 at 13:30.

Student number: 4866363
Bachelor End Project
Applied Physics & Applied Mathematics

Delft, 31 August 2022
TU Delft

Supervisors: Dr. Paul Visser
Prof. Dr. Jos Thijssen

Table of contents
1. Introduction . 1

2. Literature . 3
2.1 Protoplanetary Disks and the Formation of Planetary Systems 3
2.2 Collision Detection . 3
2.3 Kepler Orbit . 4

3. Experimental Method . 7
3.1 The initialization of the algorithm . 7

3.1.1 Initialization, N-body system . 7
3.1.2 Initialization, collision pairs . 8
3.1.3 Initialization, time of collision . 10

3.2 Creating a new particle from a merger. 12
3.3 The Main loop of the algorithm . 13

4. Results and Discussion . 14
4.1 Results of the simulation . 14

4.1.1 Keplerian parameters . 15
4.1.2 Planetary formation . 21

4.2 Results of the method . 23
4.2.1 Number of checks and pairs . 24
4.2.2 Run time . 27

5. Discussion . 32

6. Conclusion . 34

Bibliography . 36

Appendix . 42

7. Appendix . 42
7.1 Derivations . 42
7.2 Code . 43

ii

Abstract
This report has been made to gain more insight and knowledge of the Keplerian method for
collision detection simulations by simplifying N-body systems to a list or particles with orbital
parameters. Collision detection is an essential part in modeling the evolution of protoplanetary
disk becoming planetary systems by the merging of planetesimal objects. Presumably Kep-
lerian systems allow for a computationally efficient algorithm, having its computational time
influenced by orbital parameters, unlike the efficient octree method which only scales with the
number of particles.

The aim of this research was to create a collision detection model for a simplified proto-
planetary disk system using Kepler systems and analyse the results of the model to check the
reliability of this simulation method, i.e. if the quality of the results are trustworthy, perform-
ing consistently well, and are accurate. In addition, the method was tested on its computational
efficiency by investigating the run time of separate parts of the algorithm.

In the initialisation of the algorithm a particle list is created and sorted by increasing apoap-
sis. Then by a sweep and prune filter the list is checked for possible collision pairs. For pairs
that have a small enough minimal orbital intersection distance that they can collide, the colli-
sion time is calculated and added to a time-ranked collision list. The algorithm keeps merging
the pairs on top op the list, creating a new particle with new possible collision pairs and new
collision times, and updates the time-ranked collision list after each merge. An empty collision
list implies the end of the simulation. Various parameters as well as length of the lists are saved
within the algorithm for subsequent examination.

The results of the Keplerian model found showed similarities to other simulation studies,
and include the perceived critical eccentricity of 0.02, preservation of shape of body radius
distribution, and the formation of large bodies. Simulations showed three stages of collisions,
characterised by collisions occurring homogeneously throughout the disk, large body colli-
sions, a final stage of small body collisions. The performance of the algorithm could be sum-
marised by the number of checks by the sweep and prune filter #checks ∝ N2 and #checks ∝ ϵ
for eccentricity ϵ < 0.1, the number of pairs in the collision pair list was found to be propor-
tional to the number of starting particles N , the body radius s, the inverse of the inclination
1/I , and the eccentricity ϵ, so #pairs ∝ N2, s, 1/I , ϵ. For N < 1000 the computation time of
the algorithm appeared to be proportional to N2, but for N < 10.000 proportional to to a higher
power. For ϵ < 10−9 and N < 10.000 the computation time was found to be runtime ∝ s.

The conclusion of this research is that the Keplerian model could be used to model N-body
systems for collision detection because of its behavioural resemblance to observable astrophys-
ical systems. The computation time of the Keplerian system scales with a higher order per N
than for instance the three code algorithm, but has showed to be influenced by orbital parame-
ters in which this method differentiates itself from other simulation methods, with a remarkable
influence on the total computation time by the body radius s of the system. More research could
be done for higher orders of N to better model reality as well as providing more insight on the
proportionality of the computation time. Recommendations to the algorithm consist of adding
planetary spin as a particle parameter, and methods to incorporate apsidal precession in a com-
petent manner.

iii

List of Symbols
Symbol explanation:

a semi-major axis
b semi-minor axis
c semi-focal separation
E eccentric anomaly
G gravitational constant
I inclination
k, l rounds to collisioin (integer)
m mass
M central mass
N number of particles
s body radius
T orbital period
t0 creation time
� ascending node
ϵ eccentricity
R rotational matrix
ω angular speed
ϖ argument of periapsis
K⃗ nodal line vector
L⃗ angular momentum
r⃗ position vector
v⃗ velocity
ξ uniform distribution [0,1]

iv

1. Introduction

“If the planetary structure, with all its order and beauty, is only an effect of the
universal laws of motion in matter left to itself, if the blind mechanism of natural
forces knows how to develop itself out of chaos in such a marvellous way and to
reach such perfection on its own, . . . we derive from a glance at the beauty of the
cosmic structure, . . . nature is self-sufficient, the divine rule is unnecessary”

–Immanuel Kant,
"Universal Natural History and Theory of the Heavens"

The contemplation of how one has and, considering the vastness of things, how everything
has come to be, has startled the mind and pushed the imagination of us humans probably long
before the preservation of written language. Today, the question "How did the Earth form?"
does have a pretty well formulated answer. The well established and widely used Solar Neb-
ular Disc Model hypothesised by Safronov (1969) [1] gives a decent answer to begin with:
Giant collapsing molecular clouds start spinning by the conservation of angular momentum
and heat up while matter is continuously accumulated at the center, forming a protostar slowly
growing in size. Gravity, electromagnetic forces and other forces will flatten the cloud that
is rotating around the protostar, known as a protoplanetary disk. In order to form a planetary
system the disk needs to undergo three stages of transformation. This evolutionary process
starts with the accretion of small dust grains(µm) to planetesimals(km) (by coagulation), then
these planetesimals(km) form protoplanets(103km) (by inelastic collision). Then in the late
third stage a final assemblage will take place where protoplanets(103km) will form planets
(planetary cores) (by gravity-assisted merging) [2][3].

To test this hypothesis and investigate specific processes in the evolution of these celestial
systems, simulations can be made. As described above, the formation of planetary systems is
primarily characterised by the merging of particles and their growth in size. In order to replicate
the transformation of the disk, it is of the importance to keep track of if, when, and where
two particles are going to come into contact, collide, and merge. Hence the title: Collision
Detection, a field of study characterized by answering those three questions. The protoplanetary
disk can be considered an N-body system, where every particle is in motion and interacting
with every other particle. To keep track of the every body in the system is computationally
exhaustive as the number of particles increase. For an N-body system this would result in
simulating N2 interactions. When simulating the motion of these particles with brute force,
these N2 interactions have to be calculated for every time step, making this method more and
more computationally expensive. One of the most efficient is the octree code, which has a time
complexity of, big O notation, O(N log(N)) [4], and when considering the simulations time
step with a fixed integration time it has a time complexity of O(N4/3 log(N)) [5].

In this research, the model is simplified to a Keplerian system, where every body is de-
scribed in a few orbital parameters [6][7][8], omitting the small effects of interpartical interac-
tion and time step determination. The orbits of particles around a central mass are considered
fixed, disregarding the observed precession of orbits [6]. The Keplerian method is expected
to have a computation time of N2ϵ + (N4s3)/(Ia3) [5]. Astrophysical disk systems that can
potentially be simulated by this Keplerian model include but are not limited to protoplanetary
disks, accretions disks, debris disks, asteroid belts, planetary systems and satellites in orbit.

1

In chapter 2 of this report the literature study will be discussed, followed by the experimen-
tal method in chapter 3. Chapter 4 is where the results will be presented and is where these
results will be discussed. Then, finally, the conclusion of this report will be described in chapter
5. This research report is part of the bachelors program Applied Mathematics and Applied of
the Technical University Delft and is an attempt to obtain the degree of Bachelor of Science.

2

2. Literature

2.1. Protoplanetary Disks and the Formation of Planetary Systems
In 1734 Swedenborg proposed the first theory that is now known as the nebular hypothesis,
stating that stars and planetary systems are formed by gas and dust [9][10]. Immanuel Kant
developed his hypothesis further in his own work on the mechanisms involved in the process
[11]. Even with this theory proposed centuries ago, it still remains a prominent commitment
for astronomers today to study planetary formation [12][1]. The formation starts with a giant
molecular cloud (nebula [13]) collapsing into itself by gravitational pull [11].

Figure 1: Protoplanetary disk
formed around a young star HL
Tauri. ALMA 2014 [14]

By the conservation of angular momentum, the collapsing
gas cloud will start spinning. Temperature increases as more
and more particles collide, and a protostar will form at the cen-
tre where most of the matter is accumulated [15]. By a combina-
tion of gravity, magnetic forces, pressure and other mechanical
phenomena, the remaining spinning gas cloud will eventually
flatten and form a rotating disk around the centered star. The
resulting structure is called a protoplanetary disk [12][16][17]
(figure 1). These disks primarily consist of gas and dust, but
due to turbulence within the gas the dust and grain particles
will clump together via chemical condensation, van der Waals
bonding and electrostatic/magnetic forces [2]. This clumping
together is called accretion [18]. Then, by gravitational scatter-
ing, paths of particles are perturbed enough by bigger clumps

resulting in more collisions. By inelastic collision, planetesimals will form and the last stage of
planet formation begins [19]. In this last stage the large solids will clump together by mutual
gravitational interaction to form large planetary-sized objects. These have been individually
observed [20].

Protoplanetary disks are thin structures, meaning that their height is much smaller than
their radius, and the rotating disks are only a fraction of the mass of the central protostar [17].
Protoplanetary disks can be described as N-body systems, and to understand their behavior
simulations can be run and analysed [21].

2.2. Collision Detection
The subject of collision detection (synonym for: collision determination/intersection detec-
tion/interface detection) can be categorized by three main questions; if, when, and where two
particles are going to come into contact [22]. To answer these question, you have to keep track
of all the particles in the system. Even for a low number of particles in the system this task
is surprisingly hard. For instance, Isaac Newton kept getting inconsistent results when trying
to explain the motion of the Moon [23]. This is because the Sun-Earth-Moon system could
be considered a Three-body problem. It took another century before Poincaré proved that the
three-body system is unsolvable: The motion of three bodies is usually non-periodic, with
exceptions in special cases [24][25]. When considering N-body systems, collision detection
becomes increasingly complex and computationally expensive in the order given [22].

Collision detection plays an essential part in computer-aided machining and environmental

3

simulations for motion planning, engineering analysis, virtual prototyping, robotics, etc. [26].
These simulations are used in astronomy to find if, when and where asteroids, planets or satel-
lites collide. The interpenetration of protoplanetary objects is fundamental during the formation
phase of a planetary system [27], and collisions continue to occur in the formed planetary sys-
tem. An important example would be the collision responsible for the formation of the Moon
[28][29].

2.3. Kepler Orbit
As stated before, N-body systems can become increasingly complex to simulate. For every par-
ticle in the system the interaction between that particle and every other particle should be taken
into account. This method very quickly becomes computationally exhaustive as the number of
particles increase [30][31][32].

One method to simplify the N-body system is to assume Keplerian orbits. In a Keplerian
system one assumes elliptical orbits around a stationary central mass which occupies most of
the mass of the system; central mass ≫ mass disk [33], i.e. planetary systems and planet ring
systems. This is not the case for star systems [34]. To understand the motion of the particles in
orbit there are some common principles to be acquainted with; Kepler’s Laws [35][36], together
with some basic elliptical parameters (or Keplerian elements) [6][7][8]:

Figure 2: Diagram illustrating and explaining
various terms in relation to Orbits of Celestial
bodies. [37]

Figure 3: Diagram clarifying the eccentric
anomaly E [38]

The elliptical elements: The semi-major axis a is and the semi-minor axis b are the width
and the height parameters of the ellipse. The semi-focal separation c is the distance from the
centre tot the focal points. The eccentricity ϵ of an orbit describes the elongation of the orbit.
These parameters are related by a2 = b2 + c2, c = aϵ, b = a

√
1− ϵ2. The eccentricity is

quantized as follows: ϵ = 0 is a circle, 0 < ϵ < 1 is an ellipse, ϵ = 1 is a parabola, and ϵ > 1 is
a hyperbola.

The orbital orientation elements: As seen in figure 2, the inclination I is the tilt with respect
to the plane of reference. The angle is measured from the ascending node �, where the orbit
passes upward through the plane of reference. The ascending nodes are on their turn positioned
by the Longitude of ascending node. Because these two quantities ultimately report the same

4

information, only the ascending node � will be used in this report, with values ranging from 0
to 2π.

Two remaining elements: The argument of periapsis ϖ describes the orientation of the
ellipse in the orbital plane. The eccentric anomaly E describes the position of orbiting particle
at time t0, see figure 3. To know the starting position of your elements is essential for collision
detection. The equation of a centred ellipse is (x/a + ϵ)2 + (y/b)2 = 1, and the projections in
the horizontal and vertical directions are

x = a(cosE − ϵ) and y = a
√
1− ϵ2 sinE (1)

The ellipse is here is rotated and oriented by the orbital elements mentioned above. So in the
reference plane of the ellipse, x is the horizontal position and y is the vertical position. To
transform from the orbital coordinate systems with the orbital angels (�, I,ϖ) to the Cartesian
coordinate system (x, y, z), the use of the constant rotation matrix R is needed:

R =

cosϖ cos�− sinϖ sin� cos I − cosϖ sin�− sinϖ cos� cos I sinϖ sin I
sinϖ cos�+ cosϖ sin� cos I − sinϖ sin�+ cosϖ cos� cos I − cosϖ sin I

sin� sin I cos� sin I cos I

(2)

Now the position vector with Cartesian coordinates can be expressed with the orbital elements
mentioned above.

r⃗ =

x
y
z

 = R(�, I,ϖ)

 a(cosE − ϵ)

a
√
1− ϵ2 sinE

0

 (3)

Here r⃗ is the position vector in the reference frame of the large centered mass (e.g. the sun). To
calculate the velocity we need the radial distance, the time elapsed since periapsis, and Kepler’s
third law. These are respectively

r = a(1− ϵ cosE), t =
E − ϵ sinE

ω
, ω =

√
GM

a3
(4)

Here the radial distance r is obtained by squaring both the equations in (1) and then taking the
root of the sum. ω is the mean motion or angular speed ω = 2π/T , where T is the orbital
period, G is the gravitational constant, M is the mass of the large centered mass, t is the time
elapsed since periapsis, E is the eccentric anomaly, and ϵ is the eccentricity the ellipse. The
velocity v⃗ can be expressed as

v⃗ =
dr⃗

dt
=

ωa

r
R

 −a sinE

a
√
1− e2 cosE

0

 (5)

The angular momentum L⃗ = r⃗ ×mv⃗, with m being the mass of the body in orbit, is equal to

L⃗ = mωabR

0
0
1

 = mωa2
√
1− ϵ2R

0
0
1

 (6)

5

With ω as the mean motion of the orbit, and a and b being the semi-major and semi-minor axis
respectively. The last parameter to help describe a Keplerian orbit is the eccentricity vector ϵ⃗.

ϵ⃗ =

−−→
LRL

GMm2
=

v⃗ × L⃗

GMm
− r⃗

r
= ϵR

1
0
0

 (7)

The eccentricity vector ϵ⃗ points from apoapsis to periapsis and with magnitude ϵ.
−−→
LRL is the

Laplace-Runge-Lenz vector [39], v⃗ is the velocity vector, L⃗ is angular momentum, G is the
gravitational constant, M is the mass of the large centered mass, m is the mass of the body
in orbit, r⃗ is the position vector, r the radial distance, and R is the constant rotation matrix
[6][7][8].

The orbits of the particles are also assumed to be stationary, i.e. the argument of periapsis ϖ
is assumed to be constant. In reality the orbits of celestial bodies are found to be non-stationary,
and actually rotate by a phenomenon called apsidal precession [6]. This precession is caused
by a combination of different factors, including general relativity [40], rotational quadrupole
bulges on the planet, tides raised on the planet and the star [41], stellar quadrupole moment
[6], the Kozai mechanism [42], and perturbing planets [43]. The last one of which is expected
to have the most dominant effect of the overall apsidal precession [44]. These effects are not
monitored in this research’s algorithm. Although the precession rate of planets in our solar
system are of the order of magnitude of ∼ 105 years, but is occasionally observed to be a
couple of days in rare cases of exoplanets [45]. In addition, the formation of planetary system
take multiple Myears to develop. The neglection of this apsidal precession may therefore be
considered as the Achilles’ heel of the Keplerian model.

This concludes the literature review. In the next section the methods for how these param-
eters are used in the simulations of this research will be stated.

6

3. Experimental Method
The algorithm and model is based on the Keplerian orbit methods created by P.M.Visser (2022)[5].
The model is three dimensional. The desired protoplanetary disk is therefore not flat, but more
of a triangular torus shape, with its height gradually expanding (Class II protoplanetary disk),
as hypothesised in [20][46][47]. The appearances of protoplanetary disks decrease with the
stellar age of the central star, therefore the maximum simulation time is set to 10 Myears [48].

3.1. The initialization of the algorithm
The algorithm starts by creating a triangular torus shape disk with a uniform particle distribu-
tion. In nature, the densities observed are not at all uniform [49][50]. But in this research it was
preferred to keep the model simple, so the algorithm can be better tested, than to go for a more
realistic model. Also, disk structure simulations will many times approach approximately iden-
tical solutions, regardless of specific initial distributions [51]. But it is of importance that the
model is not completely circular symmetric, because in studies it is hypothesised that nonuni-
formity is necessary to create planetesimals [47].

3.1.1. Initialization, N-body system

Firstly, a few global constants are introduced to the code: gravitational constant G = 6.674 28×
10−11N, mass of the sun M = 1.988 47 × 1030kg, astronomical unit AU = 1.495 978 707 ×
1011m, radius of the sun S = 0.00465047AU, mass of Jupiter MJ = 1.898× 1027kg, radius of
Jupiter SJ = 0.00047789AU.

Then, a system is created with N bodies. For each body j = 1, ..., N , a list of parameters
is chosen and stored: [t0j , aj, ϵj, sj,mj, r⃗0j , L⃗j, ϵ⃗j, ωj]. Here t0 is the time of creation, a is the
length of the semi-major axis, ϵ is the eccentricity of the body’s orbit, s is the radius of the
body, m is the mass of the body, r⃗0 is its position at time t0, L⃗ is its angular momentum, ϵ⃗ is
the eccentricity vector, and ω is its mean motion or angular speed.

The procedure of appointing values to these parameters is as follows: For every body j the
time of creation in set to t0 = 0. After all, the time of collision needs to be calculated for this
collision detection system.

Since the desired disk has a uniform density, the semi-major axis a should not be chosen
from a uniform distribution. The further one gets from the sun, the more space there is to be
occupied. Let ξ be a random uniform distribution [0, 1], then a is distributed as follows

a = 3

√
(a3+ − a3−)ξ + a3− (8)

The minimal semi-major axis is set at a− = 1AU, because for lower values dust particles
are subject to the star’s evaporation zone and almost no big protoplanetary objects can form
[52][53]. The maximum value is set as a+ = 10AU. At distances larger than 10AU the surface
density as well as the average particle size becomes so small that they are dismissed from scope
of this research [20] [54]. To maintain this uniform density distribution throughout the entirety
of the disk, the inclination I must also be chosen in a specific way. It suffices to take

I = arccos(ξ[1− cos(Imax)] + cos(Imax)) (9)

7

Derivations can be found in the appendix. In this research Imax = 0.1, this was chosen
because the inclinations of protoplanetary disks are fairly low [55][28]. In the initialization,
the eccentricity ϵ of body j is picked from a uniform distribution: ϵ = ϵmaxξ, with ξ = [0, 1] a
uniform distribution and ϵmax = 0.1. In the solar system, the eccentricities of the planets are
relatively small (ϵ < 0.1), with mercury as the exception with ϵ = 0.2056. Various studies have
shown that the eccentricities of the orbital bodies are damped over time [55][56][57]. This,
together with the appeal to keep the model simple, gives the model enough room to choose its
eccentricity ϵ from a ϵ = ϵmaxξ distribution.

Because of the many different sizes of bodies during planetary formation, the radius s of
body j is also picked at random. The radius of Jupiter RJ = 4.779×10−4AU is a good measure
for the radii of the other bodies, since it is the largest planet in the solar system. Therefore s is
chosen around that radius with the distribution s = 1AU · 10−7+4ξ.

The mass of each body is chosen to be the mass of Jupiter MJ = 1.898×1027kg divided by
the number of elements in the N-body system. so m = MJ/N . The mass of Jupiter accounts
for almost all the mass in the solar system, therefor its mass is distributed among the bodies in
the system to create a pre-solar-system-like environment.

To ensure axisymmetry, both the argument of periapsis ϖ, the ascending node �, and the
true anomaly E are all separately sampled from a uniform distribution with range [0, 2π].

The initial position vector r⃗0 is calculated with a, ϵ, E, ϖ, �, and I using (3), and the
angular speed ω is calculated with G,M , and a using (4). Then at last the angular momentum
L⃗ is calculated with m, ω, a, ϵ, ϖ, �, and I using (6), and ϵ⃗ with ϵ, ϖ, �, and I using (7)

This process of sampling and calculating is repeated for every j until N lists of parameters
are filled. The last step of creating the N-body system is by ordering the set of bodies by
increasing periapsis, including planet radius. Hence by increasing value of (aj− ϵjaj−sj). All
listed bodies then lose their original numbering, and obtain their new numbering j, synonym
for their rank in the list e.g. j = 1 has the smallest value for (aj − ϵjaj − sj) and j = N has
the largest. This finalizes the initialization of the particle list.

3.1.2. Initialization, collision pairs

Figure 4: Illustration of two orbits. As-
suming their radii are much smaller than
their orbits, collisions may occur near
their mutual nodal line. This line is of the
intersection of the two orbital planes. [58]

Up next, a pair list will be made of all pairs that can
possibly collide. Instead of checking each possible pair
for each particle, the algorithm only checks the a few
pairs within a vicinity of the particle’s periapsis. To be
more specific: the reach of a particle j is limited by its
semi-major axis aj , its eccentricity ϵj , and its radius sj .
It has an inward reach (periapsis) of (aj − ϵjaj − sj)
and an outward reach (apoapsis) of (aj+ ϵjaj+sj). So
particle j reaches values between the interval

[aj − ϵjaj − sj, aj + ϵjaj + sj] (10)

This means that the algorithm only has to check those
particles with overlapping reach. And since the particle
list is sorted; piece of cake.

Let i = 1...N and let j = i + 1, i + 2, ..., N . Be-
cause of the list being well-ordered, it can be seen that (ai − ϵiai − si) ≤ (aj − ϵjaj − sj) [59].

8

So while (ai + ϵiai + si) ≥ (aj − ϵjaj − sj) holds, i and j are a candidate for collision and
their orbits have to be analysed (later explained) [58]. j can be increased by 1 and check if the
inequality hold. Once (ai + ϵiai + si) > (aj − ϵjaj − sj) the body j is out of reach and so will
all other bodies with a numbering higher than j, so no more collisions. i can be increased by 1
and repeat the checking. This process is called sweep and prune [60].

If a pair i, j is a candidate for collision, their minimum orbit intersection distance (MOID)
is calculated [61]. This distance is analytically evaluated for a point near the nodal lines, see
figure 4 for clarification. In the case where the MOID is smaller than si + sj , then a collision is
most likely to occur somewhere in the future. Because we assume all radii to be smaller than
their orbits s ≪ a, the MOID needs to be close to the nodal line, i.e. the line of intersection of
their orbital planes. The nodal line is determined by [5] [58] [62]

K⃗ = ±L⃗i × L⃗j (11)

where K⃗ is the directional vector of the nodal line and L⃗i, L⃗i are the angular momenta of bodies
i, j. The ± indicate the two opposite directions in which the vector can point, denoting the two
regions where the orbits intersect and where collision may occur. The intersection points are
obtained by

r⃗i =
(1− ϵ2i)aiL⃗i × L⃗j

±|L⃗i × L⃗j|+ ϵ⃗i • (L⃗i × L⃗j)
(12)

r⃗j =
(1− ϵ2j)ajL⃗i × L⃗j

±|L⃗i × L⃗j|+ ϵ⃗j • (L⃗i × L⃗j)
(13)

Here r⃗i is the intersection point vector, ai the semi-major axis, ϵi the eccentricity, and ϵ⃗i the
eccentricity vector of orbit i. Their velocities v⃗ can be expressed by [39]:

v⃗ =
GMm

L⃗ • L⃗
L⃗×

(
ϵ⃗+

r⃗

r

)
(14)

Here G is the gravitational constant, M is is the mass of the heavy central mass, m the mass
of the orbiting body, L⃗ the bodies angular momentum, r⃗ as positional vector of the body, and
r the radial distance as described in (4). To approximate the MOID, the motion of i and j is
linearized, this can be done because again: s ≪ a. The tangent line at r⃗i points in the direction
of v⃗i. The same applies to j. If we follow those tangent lines, hence the linearization, we find
that the distance between the two lines is given by

d =

∣∣∣∣(r⃗j − r⃗i) •
v⃗i × v⃗j
|v⃗i × v⃗j|

∣∣∣∣ (15)

Now the positions where the distance is minimal are expressed as

r⃗min
i = r⃗i +

(
(r⃗j − r⃗i) •

v⃗j × (v⃗i × v⃗j)

|v⃗i × v⃗j|2

)
v⃗i (16)

r⃗min
j = r⃗j +

(
(r⃗j − r⃗i) •

v⃗i × (v⃗i × v⃗j)

|v⃗i × v⃗j|2

)
v⃗j (17)

|r⃗min
i − r⃗min

j | < si + sj (18)

9

The last equation states the condition that whenever the distance between these two points is
smaller than the sum of their radii, then bodies i and j collide [5]. One needs to keep the ±
sign in mind; for every pair, two locations have to be checked.

After applying the sweep and prune filter and checking for all remaining pairs if i and j
collide, all pairs that satisfied condition (18) can be stored in a collision pair list. Up next is
the calculation of the collision time.

3.1.3. Initialization, time of collision

The time it takes for body to move from position r⃗0 to position r⃗1 is given by [5]

t1 − t0 =
E1 − E0

ω
− ϵ⃗× (r⃗1 − r⃗0)

1− ϵ⃗ • ϵ⃗
• L⃗

GMm
(19)

Here t1 and t0 are the times at r⃗1 and r⃗1, E1 and E0 are the eccentric anomalies of r⃗1 and r⃗1, ω
is the mean motion of the body, ϵ⃗ is the eccentricity of the orbit, L⃗ is the angular momentum,
G is the gravitational constant, M is the mass of the heavy central mass, and m is the mass of
the body. To calculate the difference in eccentric anomalies E1−E0 the following expressions
can be used.

E1 − E0 = arg(z) (20)

z =

(
r⃗1

a
− i|r⃗1|v⃗

a2ω

)
•
(
r⃗0 − ϵ⃗⃗ϵ • r⃗0

a− aϵ⃗ • ϵ⃗
+ ϵ⃗

)
r⃗0 • ϵ⃗
a

+ ϵ⃗ • ϵ⃗ (21)

When taking r⃗min for r⃗1, the first passage of crossing t1 can be calculated. These can differ
for the two colliding bodies, so t1i and t1j can differ. From here the collision time ti,j can be
calculated. For simplicity we take i = 1 and j = 2. An equality may look like this

t1,2 = t11 + T1k + dt1 = t12 + T2l + dt2 (22)

t11 and t12 are the times of first passage of crossing, T1 and T2 are the orbit period of body 1
and 2, with T = 2π/ω and ω being the bodies mean motion, k and l are integers indicating the
number of completed orbits of the bodies, and dt1 and dt2 are small margins that allow for the
fact that the bodies do not need to be exactly at r⃗min when the bodies collide. The two bodies
will ultimately collide, unless they are in mean-motion resonance [63].

To find smallest k and l, a combination must be found that satisfies the following condition

∣∣t11 + T1k − t12 − T2l
∣∣ < |v⃗12|

√
(s1 + s2)2 − |r⃗min

2 − r⃗min
1 |2

|v⃗1 × v⃗2|
= δ|t11 − t12| (23)

Where s1, s2 are the radii of the bodies and v⃗12 = v⃗2 − v⃗1, and

p =
T1

|t11 − t12|
, q =

T2

|t11 − t12|
(24)

p, q, and δ are dimensionless parameters. This allows the problem to be rewritten as

1− δ < kp− lq < 1 + δ (25)

10

This means that k and l are the smallest integer points that lie in between the lines

x =
q

p
y +

1− δ

p
and x =

q

p
y +

1 + δ

p
(26)

To find k and l an algorithm is implemented that makes use of the continued-fraction repre-
sentation of p/q [64]. The iteration scheme is similar to lattice base reduction [65] and works
by searching entire parallelograms before changing the basis. The algorithm works as followed
[5]:

Start with n = 0

q0 =
2π

ω1|t11 − t12|
, k0 = 1

q1 =
2π

ω2|t11 − t12|
, k1 = 0

α2n =

⌊
q2n
q2n+1

⌋
q2n+2 = q2n − α2nq2n+1

if q2n+2 = 0 =⇒ next pair (can be neglected) 1

k2n+2 = k2n − α2nk2n+1

α2n+1 =

⌊
q2n+1

q2n+2

⌋
q2n+3 = q2n+1 − α2n+1q2n+2

if q2n+3 = 0 =⇒ next pair (can be neglected)
k2n+3 = k2n+1 − α2n+1k2n+2

and then test the coordinates [67]

x =

⌈
1− δ

q2n

⌉
, ...,

⌊
1 + δ

q2n+2

⌋
, y = max

(
0,

⌈
q2nx− 1− δ

q2n+1

⌉)
(27)

whether they satisfy

xq2n − yq2n+1 > 1− δ (28)

If none of the points (x, y) from (27) satisfy this inequality, increase n by 1 and start from top.
If the inequality is satisfied, the solution becomes

k = xk2n − yk2n+1, t0 = t11 +
2π

ω1

(29)

Where t0 is the collision time between body 1 and 2.

This process needs to be repeated for every pair in the collision list. Then, every pair i, j
together with their collision time t0 are stored in a time-ranked collision list. This finalizes
the initialisation of the algorithm.

1probability of picking a rational number from a real number line = 0 [66]

11

3.2. Creating a new particle from a merger.
Every collision in the simulation was assumed to be inelastic, so calculations for in a simple
merger were used. This however does not portray reality for bodies with radii s > 103km.
Oblique collisions transfer orbital angular momentum into planetary spin, combined with the
fact that fragmentation occurs, indicate that the simple mergers method for these collisions is
not desirable [68]. Yet again; in this research it was preferred to keep the model simple, so
the algorithm can be better tested, than to go for a more realistic model. So when two bodies
i and j collide, we assume a simple merger. The creation of the new particle follows simple
conservation laws [5]:

snew = 3

√
s3i + s3j

mnew = mi +mj

r⃗new =
mir⃗i +mj r⃗j

mnew

v⃗new =
miv⃗i +mj v⃗j

mnew

L⃗new = L⃗i + L⃗j

(30)

lnew =
L⃗new • L⃗new

GMm2
new

rnew =
√
r⃗new • r⃗new

ϵ⃗new =
v⃗new × L⃗new

GMmnew

− r⃗new
rnew

ϵnew =
√

ϵ⃗new • ϵ⃗new

(31)

Here, s is the body radius, m is the body’s mass, r⃗ is the position vector, v⃗ is the body’s
momentum, L⃗ is angular momentum, l is the semi-latus rectum of the orbit. r is the radial
distance, ϵ⃗ is the eccentricity vector with ϵ as the eccentricity of the new particle. Before we
introduce this new body to the particle list, first check conditions

lnew > (1 + ϵnew)S and ϵnew < 1 (32)

Only then the new particle stays in the system. S is the radius of the central mass. If l ≤ (1+ϵ)S
the body collides with the central mass, and if ϵ ≥ 1 the body escapes the system. Regardless
of the satisfaction of the conditions, the bodies i and j are deleted from the particle list. When
both conditions of (32) are satisfied the new body can be added to the particle list with its new
parameters

a =
l

1− ϵ2
, ω =

√
GM

a3
(33)

12

3.3. The Main loop of the algorithm
1. If the time-ranked collision list is empty, end the simulation.
2. Take the collision pair i, j on top of the timed collision list, so the smallest collision time

and add this to the chronological collision list.
3. With the time-ranked collision and the particle list, calculate a new time-ranked collision

list and particle list. This is done by:

(a) Temporary store the data of the i, j pair from the time-ranked collision list.
(b) Remove the pair and remove any pair containing either i or j from the time-ranked

collision list.
(c) In the time-ranked collision list, for any pair containing an index ≥ i, subtract that

index by 1.
(d) In the time-ranked collision list, for any pair containing an index ≥ j, subtract that

index by 1.
(e) Create a new body from the collision of i, j with its time of creation t0 equal to the

time of collision of bodies i, j.
(f) If the orbit of the new body collides with the central mass or leaves the system, go

back to 1. of the main loop.
(g) Put the new body in the particle list, sort this list again and mark the new particles

numbering k.
(h) Calculate all new possible collision pairs with respect to k. Check for all bodies l

with a smaller apsiosis (ak+ ϵkak+sk ≥ al− ϵlal−sl), but this time, start at l = 0.
When (ak + ϵkak + sk < al − ϵlal − sl) no more new pairs shall be detected.

(i) For the new pairs k, ln, calculate the collision time.
(j) In the time-ranked collision list, for any pair containing an index ≥ k, add 1 to that

index.
(k) Add all new pairs k, ln to the time-ranked collision list, and order the list by collision

time.

4. Store values of interest.

13

4. Results and Discussion
First the results and findings of the simulation are presented and analysed, going over the
behaviour in changes of different Keplerian parameters, as well as collision time and the change
in the number of particles in the system. In the next section the results of the method itself are
analysed, going over the number of checks, pairs, and collisions for different sizes of the N-
body system, as well as runtime for the initialisation, the main loop, and the total run time for
different sizes of the N-body system.

4.1. Results of the simulation
Figures 5-11 show the results of a system created with N = 10.000. The semi-major axis a
was picked from distribution (8) with a− = 1AU and a+ = 10AU, I from (9) with Imax = 0.1,
ϵ from uniform distribution [0,0.1] such that the mean eccentricity is 0.05 as in [69], s from
s = 1AU · 10−7+4ξ as described in section 3.1.1. In the model it was chosen to uniformly
distribute the bodies throughout the disk.

(a) (b)

(c) (d)

Figure 5: The time between collisions plotted for a number of consecutive collisions for a
system starting with N = 10.000 bodies, and a total of 4037 collisions. (a) shows the time
between collisions for the first 120 collisions, (b) for the first 1000 collisions, (c) for the first
2500, and (d) for the first 4030.

In figure 5 the collision times are shown. In each of the sub-figures the times between the
consecutive collisions is displayed. Placed on the horizontal axis is the index of the collision.
It can be seen that in the beginning of the simulation the time between collisions seems quite
random. The time between collisions fluctuates about a hundred years and does not seem to

14

de- or increase. Only after a mere thousand collisions a perceivable increase can be noted,
which when the scope is broadened, increases in an exponential manner. Figure 5(d) is added
to portray the explosive behaviour of the trend. The collision time is further displayed in figure
6. Both figures are in agreement with similar studies [70].

(a) (b)

(c) (d)

Figure 6: The time of collision measured from the start of the simulation plotted for a number
of consecutive collisions for a system starting with N = 10.000 bodies, and a total of 4037
collisions, revealing mostly the same as figure 5. (a) shows the number of particles in the
system versus time for the first 22 collisions, (b) for the first 190 collisions, (c) for the first
1500 collisions, and (d) for all 4037 collisions. A line is added to (a) and (b) to exhibit
linearity. The slope in (a) corresponds to 1 collision every 102.6 ± 3.1 years, and in (b) to 1
collision every 108.3± 4× 10−5.

In figure 6 the number of particles in the system is plotted against time. The decrease
seems random in the beginning, which is consistent with figure 5, with an average of 102.6
± 3 years between each collision for the first 22 collisions. This number says fairly constant
with an average of 108.3 ± 4 × 10−5 years between each collision for the first 190 collisions.
This matches what is shown in figure 5(a,b). Later the trend shows the exponential increase
in collision time as seen the previous figure. Obviously the number of particles in the system
decreases by one after each collision. The system that is left after a substantial number of
collisions is therefore more empty. Thus the chances of a collision occurring drops, resulting
in longer time between collisions.

4.1.1. Keplerian parameters

To display the distribution of the orbital profile of the protoplanetary disk the semi-major axis
a of every particle in the system is plotted against its eccentricity ϵ in figure 7. On the left
(blue) the initial state is displayed, with the semi-major axes distributed as in (8), and a clear

15

Figure 7: Semi-major axis versus eccentricity for initial system with N = 10.000 (left, blue)
and final system with N = 5.963 (right,red). For the initial state: The distribution of ϵ is
clearly uniform as well as the increasing probability of a. For the final state: a decrease in
overall density is seen, especially for higher values for eccentricity.

uniform distribution for the eccentricity. On the right (red) the final distribution of these orbital
parameters. A moderate reduction in the number of particles displayed can be seen, especially
for eccentricities in the upper half (above 0.05). One outlier with an an eccentricity of 0.14
is displayed as well. Eccentricity build-up is a common effect in disk evolution [71]. These
distribution changes are more extensively displayed in figure 8 with some additional parameters
of interest.

The eccentricity, starting with an almost uniform distribution, shows high damping activ-
ity during the simulation, shown in figure 8(a). Bodies with higher eccentricities collide more
because their broader range in (10) gives them more possible collision pairs, and thus have a
greater tendency to collide [72]. The distribution of eccentricity at the end of the simulation
shows a peak at an eccentricity around 0.02, hinting at a critical eccentricity of around 0.025
[55]. When two bodies collide the remaining merged body establishes an eccentricity close/-
closer to 0.02. This results in a less damped effect in eccentricity around this point. The critical
eccentricity highly influences the eccentricital damping of the system [72].A critical eccentric-
ity of 0.02 is the same order of magnitude as those found in similar studies; 0.0315 [55], 0.027,
and 0.015 [73]. The shape of the eccentricity distribution slowly takes shape of that of observed
distributions in asteroid belts [74].

The distribution of the body radius shows an overall decrease from the initial distribution,
with the newly form bodies with larger radii added to the final distribution. A few bodies are
displayed with larger radii, standing out from the rest of the distribution. These are probably the
result of a number of collisions, with a larger radius after every consecutive collision, and with
less particles around to collide with, hence their isolated position. The distribution perserves
its shape, and is only roughly reduced by a constant factor (≈ 1/4). The change in shape of the
distribution is comparable with those in related studies [75][76].

The distribution of semi-major axes shows a decrease especially at larger axes. This corre-
sponds with figure 9(g), where a decrease in overall semi-major axes is seen. At smaller axes,
barely any decrease is seen in the distribution, which on its turn corresponds to figure 7. For
these values, there are too few bodies are around to collide with.

16

(a) (b)

(c) (d)

Figure 8: The distribution of some important orbital parameters, plotted at the start of the
simulation (blue) and after no collisions were left in the collision list (orange). System started
with N = 10.000 and ended with N = 5.963. Displayed are the distributions of (a) the
eccentricity with binsize 14, (b) the inclination with binsize 63, (c) the body radius with
binsize 58, and (d) the semi-major axis with binsize 60.

In order to understand how the system behaves and how it changes after every consecutive
collision figure 9 is portrayed how the averages and standard deviations change after the col-
lisions. Note; the x-axis does not display the time but the index of every collision. To see the
same parameters set out over time, regard figure 10. The eccentricity together with the inclina-
tion, gradually but steadily declines over time. The average body radius is more or less constant
in the beginning, then declines rapidly, followed by a steep growth. The average semi-major
axis increases with a constant rate for the first few collisions, and then exponentially decreases
for the following collisions. All standard deviations have increased from their initial value. The
standard deviation of the eccentricity first shows a steady decrease, but increases considerately
by certain jumps, relating to the high eccentricities that can manifest from certain merges as
seen in figure 7. The standard deviation of the inclination stays almost the same when consider-
ing the scale of the graph. The standard deviation of the body radius as well as the semi major
axis seem to gradually increase, The overall growth of the bodies in the system (as depicted in
figure 8(c)) accounts for the increase in standard deviation of the body radius, and the ’flatten-
ing’ of the semi-major axis distribution from figure 8(d) accounts for the increase in standard
deviation of the semi-major axis. The shapes of the average inclination graph and the average
body radius graph suggest that collisions take place in a ’three-stage-rocket’ sequence, split up
in; the first 2200 collisions, then from 2200 up to 3700, and then the last collisions after 3700.

2the standard deviation of ϵ is given by
√

⟨ϵ2⟩ − ⟨ϵ⟩2

17

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: The averages and standard deviations of some important orbital parameters calcu-
lated after all of the 4037 collisions. System started with N = 10.000. (a) shows the average
eccentricity ⟨ϵ⟩ after every collision, (b) the standard deviation2of ϵ, (c) the average inclination
⟨I⟩, (d) the standard deviation of I , (e) the average body radius ⟨s⟩, (f) the standard deviation
of s, (g) the average semi-major axis ⟨a⟩, and (h) the standard deviation of a. All values are
plotted against collision index.

18

For the first stage: The almost constant average body radius graph and average semi-major
axis graph suggest that collisions happen quite randomly in the system, regardless of size or or-
bital radius. Ergo, collisions happen rather uniformly throughout the disk regardless of specific
parameters. Presumably a little bit more collisions occur between bodies with smaller orbits,
hence the small increase in semi-major axis.

Then for the second stage: The system is a little bit more empty due to the number of
bodies that have merged in the first stage. Now only larger bodies collide, since they have a
larger probability of colliding. These events can be seen in the steep decline in average body
radius. The less steep decline of the average inclination suggests that the large bodies colliding
already have collided a few times already, with a less prominent damping effect as result.

When considering the last stage, the shape of the graph in 9(g) has to be noted: Bodies
with large semi-major axes are colliding in this stage. These collisions take an extremely long
time to occur. This information resonates with that which is seen on the graphs in this figure.
A steep decline in inclination relates to a larger angle between the orbital planes of the two
colliding bodies, hence a smaller dt’s in (22) hence a smaller probability of colliding. Also,
larger inclination means that the body spends more time in rarefied regions of the disc. The
steep increase in body radius insinuates that the smaller bodies in the system finally collided
with each other. And the ever so steep decrease in semi-major axis suggests that the small
bodies far from the central body with the largest orbital time finally coincided with each other.

19

(a) (b)

(c) (d)

(e) (f)

Figure 10: The averages some important orbital parameters plotted against a logarithmic time
scale. The (a) average eccentricity ⟨ϵ⟩, (b) average inclination ⟨I⟩, (c) average body radius ⟨s⟩,
and (d) average semi-major axis ⟨a⟩ are plotted against a logarithmic timescale. For reference
(e) the number of particles N over time and (d) the distribution of collision time with binsize
50 (Note: log-scaled) are also displayed. The system started with N = 10.000.

Figure 10 portrays the same information as figure 9 but with different scaling. For reference
the number of particles over time is also displayed. To some degree, the average eccentricity (a)
and inclination (b) decline with the same shape as the number of particles (e), with the exception
around 1Myear to 10Myear for the inclination. This, together with the concomitant decline in
average body radius suggests a period of collisions with particles that have previously collided
a few times already. Figure (e) and (f) are different representations of the same information.

When comparing the average body radius to the collision time distribution, some insights
can be made. From the start the average body radius is rather constant and only starts to drop
significantly around 1 Myears The distribution of collision time shows an exponential increase
up until 1 Myears (logical consequence of logarithmic scale). This together with figure 22(c)
makes a parallel to the first stage of the process as described on previous pages, where a random

20

collision happen quite uniformly throughout the disk. Stage two would be between 1 Myears
and 4 Myears, regarding the shape of both figure 10(c) and 10(f). Then the last stage starting
from 4 Myears, sweeping a substantial amount of particles with a small body radius. From
time from 1 Myears to 10 Myears, the average semi-major is in decline. This resonates with
asteroid belts diameters decreasing over large timescales [77][78], as well as the phenomenon
of migration of planetary objects [79].

So far the results shown had been produced by a system of N = 10.000 starting particles.
To check the consistency of the system as well as the behaviour of the system for smaller
starting particles, the simulation was run multiple times for N = 5.000. The results of these
runs are illustrated in figure 12.

The systems shows very similar behaviour compared to the N = 10.000 displayed in fig-
ure 9 and 10. Averages of eccentricity, inclination and semi-major axis are increasing over
time, and the standard deviations of the inclination, body radius, and semi-major axis are also
increasing.

Differences with respect to the N = 10.000-system are the standard deviation of the ec-
centricity and the average body radius. The standard deviation of the eccentricity in figure 12
shows an overall decreasing behaviour among all 5 runs, but continues to express the same
jumping behaviour as in figure 9(b). The average body radius exhibits an overall increase in
value. The drop seen in figure 9(c) is almost nonexistent in the five runs showcased here. Hence
it can be extrapolated that the second stage, characterised by large body merges, is less promi-
nently dominant in the previously described three-stage process. Because of a lower number
of starting particles, there are fewer collisions, causing less growth for the larger bodies, and
hence a lower probability of merging with particles with nearby apoapses. However, the last
stage, characterised by small body merges and long collision times, remains strongly present.
This causes the average body radius to go up in the last stage, resulting in an overall larger body
radius throughout the system.

4.1.2. Planetary formation

Figure 11: The largest 10 bodies and their growth plotted over collision index (left) and plotted
over a logarithmic timescale (right). The system started with N = 10.000.

In order to gain insight on whether the model was able to produce significantly large plan-
etary objects, the model kept an eye on the 10 largest bodies. In figure 11 the growth of the
10 largest bodies are displayed to portray their development during the simulation. It can be

21

seen that even though the average body radius of the system decreased, the largest objects
all increased a substantial amount, starting around 1.5 × 105 km and reaching body radius of
2.3× 105 for the 10th largest body and the largest body 3.2× 105 km. As portrayed, large bod-
ies are accountable of merging with a lot of smaller bodies, depicted by small jumps in body
radius, but substantial growth is mostly caused by two larger bodies merging, depicted by the
larger jumps. Both phenomena have appeared in similar studies where it is hypothesised that
larger planetesimals grow faster than small ones [3] [75][80]. The small merges happen more
frequent in the beginning, while the most significant large merges are the last few merges that
happen [81]. After 10 Myears none of the 10 largest bodies are involved in a collision. This
again is analogous to the third stage of the described process, representing a long period where
only smaller bodies collide. The shape of the figure matches those in similar studies [82].

The number of particles leaving the system because condition (32) was not satisfied, was
monitored in all of the simulations that were run in this research. The only occasions this came
about was in cases of extremely large body radii simulations, shown in figure 21. In all other
merging events the resulting particle stayed in orbit around the central mass.

22

(a) (b)

(c) (d)

Figure 12: For 5 different runs some important orbital parameters are portrayed. The sub-
figures show the average and standard deviation of (a) the eccentricity ϵ, (b) the inclination I ,
(c) the body radius s, (d) the semi-major a, all plotted against a log-scaled time axis. All five
runs started with N = 5.000 bodies.

4.2. Results of the method
Now the performance of the algorithm will be analysed, going over the number of checks
performed by the sweep and prune filter, the size of the collision pair list and the run time of
different parts of the algorithm. The different parts of the algorithm that are studied are (1)
the creation and sorting of the particle list, (2) the initialisation of the system, including the
creation and sorting of the particle list, the creation of the collision pair list and the creation of
the time-ranked collision list, (3) the main loop, starting after the initialisation until the end of

23

the simulation, consisting of merging pairs, placing new particle at right place in particle list,
calculating new collision pairs with the new particle and calculating the collision times, and
repeating this process until the time-ranked collision list is empty, and (4) the entire simulation.

4.2.1. Number of checks and pairs

As described in the method, the algorithm checks during the initialisation whether two particles
are a candidate for collision via a process called sweep and prune. It then checks if the MOID
of two particles is small enough for a collision to take place, and if so the pair is added to the
collision list.

Figure 13: Outcomes of different components of the algorithm plotted for a range of starting
particles N = 1...1000. The orange dots are the number of pairs in the collision pair list after
initialisation, the dotted line through the data represents the fit given by y = 9.93 × 10−5 ±
4.8 × 10−7x2. The red dots are the number of apoapsis checks done for the sweep en prune
routine. The black dotted line going through the red points is given by y = 0.1281 ± 2 ×
10−3x2. The solid line is given by y = 1/2 ∗ x2 and is added for comparison, and represents
the total number of theoretical pairs.

To understand how the number of checks, as well as how the size of the collision pair list
behave and develop under an increasing number of starting bodies N , the model is run for
varying N . The number of checks and the size of the pairlist are extracted after the initialisa-
tion. The collected data is fitted and the results are shown in figure 13 on a log-log scale. The
black solid line is given by y = 1/2 ∗ x2 and represents the total number of theoretical pairs
given by, in big O notation, O(N2/2), and is added so that comparisons to the data can be made.

The number of pairs in the collision pair list after the initialisation (orange in figure 13)
increases exponentially. The fit used in the figure was y = ax2 and gave a result of a =
9.93 × 10−5 ± 4.8 × 10−7. The data was also fitted to y = axb which gave a result of a =
9.3× 10−5 ± 1.5× 10−5 and b = 2.010± 2.4× 10−2. This gives enough ground to believe that

24

the size of the collision pair list is proportional to N2, i.e. #pairs ∝ N2. Now to understand
where this growth rate comes from a number of test were conducted.

Figure 14: Plotted are the number of pairs in the collision pair list at the end of the initialisation
for different values of body radii, shown on a log-log scale. The model is run several times. In
each run, the number of starting bodies is N = 1000, the distribution of the semi-major axis is
a = 10·AU · 3

√
ξ with ξ = [0, 1] uniform, and every particle has the same body radius. The size

of this body radius is varied over all runs with the range s = 10ξsAU with ξs = [−9,−1.5]
uniform. The fitted line has function y = axb with slope a = 8.484 × 105 ± 5.5 × 103 and
power b = 0.987± 0.002

To check whether the number of pairs is proportional to the body radius, the model was
run several times for varying body radius s. In each run, the number of starting bodies is
N = 1000, the distribution of the semi-major axis is a = 10 ·AU · 3

√
ξ with ξ = [0, 1] uniform,

and every particle has the same body radius. The size of this body radius varied over all runs
with the range s = 10ξsAU with ξs = [−9,−1.5] uniform. Plotted are the number of pairs in
the collision pair list at the end of the initialisation for different values of body radii. The fitted
line has function y = axb with slope a = 8.484×105±5.5×103 and power b = 0.987±0.002.
The data was fitted once more to y = ax which gave a result of a = 8.9266×105±7.7×102 By
keeping N the same an varying the body radius, there is enough ground to assume #pairs ∝ s

In order to determine if the number of pairs is influenced by the inclination of the orbits in
the system, the simulation was run for different values of inclination. In each run, all the orbits
of the particles had the same inclination. In figure 15 the number of pairs in the collision pair
list at the end of the initialisation is plotted against of different values of inclination. The value
of this inclination was changed with each run with the range I = 10ξI with ξI = [−5, 0 uniform.
For every run of the model the number of starting bodies is N = 500, the distribution of the
semi-major axis is equal to a = 3

√
(a3+ − a3−)ξ + a3− with ξ = [0, 1] a uniform distribution, as

described in section 3.1.1. The body radius is distributed by s = 10ξsAU with ξs = [−4,−2.5]
uniform. Results are shown in figure 15 on a double logarithmic scale. The data exhibits a
decreasing slope in the middle of the figure, flattening out on the sides. The orange line is the
data fitted between I = [0.003, 0.1] with the function y = axb, which gave a result of a = 53±3
and b = −0.73 ± 0.01. To grasp the shape of the curvature, a function was manually fitted to
the data. The resulting function lead to y = a/(bxc + d) + 140, because as well as for low as
for high inclination the curve must flatten. Filling in the values a = 40, b = 2, c = 0.896 and

25

Figure 15: Plotted are the number of pairs in the collision pair list at the end of the initialisation
for different values of Inclination, shown on a log-log scale. The model is run several times.
In each run, the number of starting bodies is N = 500, the distribution of the semi-major
axis a is as described in section 3.1.1, the body radius is distributed with s = 10ξs with
ξs = [−4,−2.5] uniform, and every particle has the same inclination I of its orbit. The
inclination is varied over all runs with the range I = 10ξI with ξI = [−5, 0]. The orange line
is the data fitted between I = [0.003, 0.1] with the function y = axb, which gave a result of
a = 53 ± 3 and b = −0.73 ± 0.01. The dotted line is the function y = a/(bxc + d) + 140,
with fitting result a = 40 ± 8 × 106, b = 2 ± 4 × 105, c = 0.896 ± 1.8 × 10−2 and
d = 6× 10−4 ± 1× 102.

d = 6× 10−4 the curve visually follows the data. In the caption of figure 15 the fitted results of
this function are written. The uncertainties of which are too high to draw conclusions, except
for the power on x, which is c = 0.896 ± 1.8 × 10−2. Considering this result and that of the
orange fit, it is suspected that between bends of the curve the the size of the collision pair list
is inversely proportional to the inclination, i.e. #pairs ∝ 1/I .

To research the influence of the eccentricity on the size of the pair list, the model is again
run multiple times, this time varying the eccentricity with every run. The number of starting
bodies wasN = 500, body radius was distributed with s = 10ξs with ξs = [−4,−2.5], and the
eccentricity ranged from ϵ = 0...0.5. Results are portrayed in figure 16, where the number of
pairs in the collision pair list is plotted against the eccentricity of the system. The data appears
to be linear and when a fitting to y = a + bxc was executed the outcome was a = 145 ± 7,
b = 1107± 27, c = 1.025± 0.04.

The number of apoapsis checks done by the sweep and prune filter to determine whether
two orbits overlap, is displayed in red in figure 13. Using y = axb for the fitting of the data
the parameter resulted in a = 0.132 ± 0.005 and b = 1.996 ± 0.006, already hinting at a at a
y = ax2 correlation, which when used for fitting gave a = 0.1281±2×10−3 which is displayed
in the black dotted line. From this it can be concluded that the growth factor on y = ax2 is
close to 0.128. This is a significant decrease when comparing this sweep and prune method to
a method of checking all pairs with brute force, which scales with O(N2/2). The sweep and
prune method only checks 25.6%± 0.2% of all possible pairs.

The peri- to apoapsis interval in 10, where the sweep and prune filter depends on, is con-
structed semi-major axis a, the eccentricity ϵ and the body radius s of a particle, where the

26

Figure 16: Plotted are the number of pairs in the collision pair list at the end of the initialisation
for different values of eccentricity. The model is run several times. In each run, the number
of starting bodies is N = 500, the distribution of the semi-major axis a is as described in
section 3.1.1, the body radius is distributed with s = 10ξs with ξs = [−4,−2.5] uniform,
and every particle has the same eccentricity ϵ for its orbit. The eccentricity is varied over all
runs with values ranging from ϵ = [0, 0.5]. The orange line is the data fitted with the function
y = a+ bxc, which gave a result of a = 145± 7, b = 1107± 27, c = 1.025± 0.04.

eccentricity and body radius make up for the spread of the interval. Since a >> s, the influ-
ence of the eccentricity ϵ should be significant. To quantize this influence, the model is run for
different values of eccentricity, similar to figure 16. The parameters chosen were N = 3000,
s = 10ξs with ξs = [−4,−2.5], the distribution of the semi-major axis a and inclination I is as
described in section 3.1.1. All particles in the system were set to have equal orbital eccentricity.
The eccentricity per run varied with range ϵ = 0...0.63. The results are shown in figure 17. On
the left is the data is exhibited for eccentricities up until 0.0025 and on the right for eccentric-
ities for over 0.6. The small eccentricity ϵ < 0.1, the number of checks appears to be linearly
proportional to the eccentricity. For larger eccentricities, the curve flattens towards the maxi-
mum possible pairs N2/2, implying that the filter is no longer beneficial. The data was fitted to
the function y = a+ bxc, which gave a result of a = 5954± 47, b = 2.667× 106 ± 6.2× 104,
and c = 0.986±5×10−3. For an eccentricity of ϵ = 0.05 the data in the figure indicates to have
done a little bit over 1 × 106 checks, which is about a quarter of the maximum possible pairs.
This resonates with what is mentioned above about figure 16, where the average eccentricity
was ⟨ϵ⟩ = 0.05 and gave rise to a checking efficiency of 25.6%± 0.2%.

4.2.2. Run time

To obtain a better judgement of how the computation time is influenced by the number of
bodies, the model was run multiple times for different number of starting particles. The results
are showcased in figure 18. To understand which components of the algorithm are responsible
for the total running time, various components and their share of the computation time are
displayed.

In figure 18 the exponential growth of the computation time can be observed. The creation
and the sorting of the particle list takes very little to almost none of the total running time.
The run time of the main loop has a very short computation time for for small N , but growth

27

Figure 17: Plotted are the number of checks done by the sweep and prune filter for different
values of eccentricity. Left are the eccentricities ϵ = 0...0.0025, and right is zoomed out with
eccentricities ϵ = 0...0.6. The model is run several times. In each run, the number of starting
bodies is N = 3000, the distribution of the semi-major axis a and inclination I is as described
in section 3.1.1, the body radius is distributed with s = 10ξs with ξs = [−4,−2.5] uniform,
and every particle has the same eccentricity ϵ for its orbit. The eccentricity is varied over all
runs with values ranging from ϵ = [0, 0.6]. The orange line is the data fitted with the function
y = a + bxc, which gave a result of a = 5954 ± 47, b = 2.667 × 106 ± 6.2 × 104, and
c = 0.986± 5× 10−3.

substantially to about one third of the total run time. Most of the total run time is caused by
the initialisation of the model. In the first half being responsible for almost all- but then by
N = 1.000 still about two thirds of the total computation time.

To comprehend the curvature of the growth of the computation times, the data has been
fitted and the results have been displayed in figure 19. All the data was fitted the the function
y = axb to find the power by which the run time increases by N . the The creation and sorting of
the particle list was fitted this function with the resulting values a = 5.919×10−5±9.0×10−7

and b = 1.0633 ± 2.2 × 10−3. These results hint at a linear increase of the run time for the
creation and sorting of the particle list #pairs ∝ N , however b > 1. The the creation of
the particle list has a time complexity of O(N) and the algorithm uses Quick Sort for sorting
by apoapsis which has a time complexity of O(N log(N)) [83]. This last term is likely the
reason why b > 1. The function y = ax log(x) + bx was also fitted and gave a result of
a = 1.272× 10−5 ± 4.4× 10−8 and b = 5.34× 10−5 ± 1.2× 10−6.

The results of the y = axb fit of the initialisation gave back a = 4.22× 10−5 ± 2.0× 10−6

and b = 1.980 ± 7.2 × 10−3, hinting at a relation #pairs ∝ N2. Hypothesised is that the
initialisation of the system would increase with y = αN2 log(αN2) [5], with alpha = s/a,
the average body radius over the average semi-major axis. When this function was fitted, the
resulting value was α = 2.85× 10−5± 1× 10−7. When dividing the averages the outcome was
⟨s⟩/⟨a⟩ = 1.57× 10−5 having the same order of magnitude.

The function y = axb was also fitted to the main loop and the total run time of the entire
algorithm in figure 19. The outcome of the fit to the main loop was a = 7.6×10−8±1.6×10−8

and b = 2.792± 3.1× 10−2, and for the entire algorithm the outcome was a = 1.372× 10−5 ±
9.4×10−7 and b = 2.199±1.0×10−2. To further research the growth of the computation time,
the model was run for even larger N . Results are shown in figure 20. Here the fit gave back
values of a = 3.4 × 10−9 ± 2.3 × 10−9, b = 2.834 ± 7.6 × 10−2, suggesting a faster increase

28

Figure 18: The computation time of different aspects of the algorithm are plotted against the
number of starting particles. The total computation time until the end of the simulation is
plotted in green x. The run time of the initialisation is plotted in blue o. the run time of the
main loop is plotted in red □. The run time of the creation and sorting of the particle list is
plotted in orange +. On the left the exponential growth of the run time can be seen. On the
right the same data is plotted on a double logarithmic scale.

in computation time per N than the fit in figure 19. The data for larger N was also fitted to
y = ax2+bx4, giving a result of a = 3.30×10−6±2.7×10−7, b = 4.15×10−14±3.4×10−15. It
is plausible that the total computation time actually increases by a time complexity of O)(N4),
but because of its small growth factor is only a manifest addition for very large number of
starting particles N > 10.000.

For the purpose of understanding how the total run time is dependant of the body radius of
particles in the system, the model was run for varying s. The results are visualized in figure 21.
The total computation time is plotted against the body radius. The number of starting bodies
was N = 2000 and the eccentricity was distributed by ϵ = [0, 10−9] uniform. The body radius
of every particle in the system was set to be equal, and varied with every run of the model.
The The blue line is the data fitted with the function y = a + bxc, which gave a result of
a = −1.0± 0.4, b = 7.2× 10−3 ± 1.8× 10−3, c = 0.905± 0.026. Here a could be the small
offset of the computation time when there are little to no collisions, and c being the power of
which the computation time scales with s. Considering that the runtime was proportional to
N2 = 4.000.000, the impact the body radius on the total computation time could be regarded
as significant. The curve of the data eventually flattens around 400 seconds, where almost all
bodies have collided with each other. This gives evidence for a maximal computation time of
the Keplerian method of N-body system simulations.

In addition, the number of particles leaving the system is also shown in figure 21. This is
the result of condition (32) not being satisfied after the merging of two particles. All cases are
the result of a collision with the central mass.

29

Figure 19: Run time is plotted against the number of starting particles. All data is fitted
with the function y = axb in this figure. Shown is the data of the run time of (orange) the
creation and sorting of the particle list with fit result a = 5.919 × 10−5 ± 9.0 × 10−7 and
b = 1.0633 ± 2.2 × 10−3, (blue) the initialisation, consisting of the creation and sorting
of the particle list, and the creation and sorting the time-ranked collision list with fit result
a = 4.22× 10−5 ± 2.0× 10−6 and b = 1.980± 7.2× 10−3, (red) the main loop, consisting
of merging pairs, placing new particle at right place in particle list, calculating new collision
pairs with the new particle and calculating the collision times, and repeating this process until
the time-ranked collision list is empty, with a resulting fit of a = 7.6 × 10−8 ± 1.6 × 10−8

and b = 2.792 ± 3.1 × 10−2, and (green) the computation time for the entire algorithm with
a resulting fit of a = 1.378 × 10−5 ± 9.4 × 10−7 and b = 2.199 ± 1.0 × 10−2. Parameters
are distributed as described in section 3.1.1, with averages ⟨ϵ⟩ ≈ 0.05, ⟨I⟩ ≈ 0.067, ⟨s⟩ ≈
16000km, and ⟨a⟩ ≈ 7.51AU.

30

Figure 20: Plotted is the total computation time versus the number of starting particles N .
Eccentricity was ϵ = 0 and body radius was distributed by s = 10ξsAU with ξs = [−8,−4] a
uniform distribution. The dotted line fitted function y = axb with values a = 3.4 × 10−9 ±
2.3× 10−9, b = 2.834± 7.6× 10−2.

Figure 21: Plotted in green is the total computation time for one run of the algorithm against
the body radius of the particles in the system, in blue its fitted line, and in black the number
of collisions with the central mass. The model is run several times. In each run, the number
of starting bodies is N = 2000, the distribution of the semi-major axis a and the inclination I
are as described in section 3.1.1, the eccentricity is distributed by ϵ = [0, 10−9] uniform, and
every particle in the system has an equal body radius. The body radius is varied with each run
by s = 10−6...10−2. The blue line is the data fitted with the function y = a + bxc, which
gave a result of a = −1.0± 0.4, b = 7.2× 10−3 ± 1.8× 10−3, c = 0.905± 0.026.

31

5. Discussion
In this section the results and foremost limitations and imperfections of the Keplerian model
studied in this research will be discussed, accompanied by recommendations for future research
in this field of study.

The results could have been affected by errors induced by the computer program. Small
uncertainties in machine precision could accumulate to become large errors in the produced
results. Also, the coded computer program may contain unforeseen errors that influence the
calculations. However, the results produced by the code were analysed and showed to be reli-
able and consistent outcomes.

The number of pairs as well as the total computation time showed to be proportional to N2

or even higher orders, which induces a less efficient method than the octree code with a time
complexity of O(N4/3 log(N)). However, this method proved to be dependent of eccentricity,
body radius, and inclination, in which this method differentiates itself from other methods.
Because the body radius for planetesimals is very small compared to their semi major axis, the
run time stays remarkably low for N < 2000. The influence of these parameters for higher
orders of N is hypothesised in [5] and could results in a preference for the Keplerian method.
Future research could include these higher orders of starting particles.

In the model it was chosen to uniformly distribute the bodies throughout the disk. But in
studies it it hypothesised that non-uniformity is necessary to create planetesimals [47]. The
body radius of the particles in the system was independently distributed described in section
3.1.1, but is observed to be inversely proportional to the particle’s semi major axis [84]. The
eccentricity and the semi-major axis are also distributed independently of each other, while ob-
served celestial systems show correlations [85]. The simulations in this research were run with
a relatively small number of particles N ≤ 10.000, which is considered very small considering
there are at least 1 million observed asteroids in the solar system [86]. Increasing the number
of starting particles would offer this research a more accurate description of the formation of
planetary system via Keplerian models. The tests on the computation time would also be more
interesting with a higher N .

Every collision in the simulation was assumed to be inelastic, so calculations for in a simple
merger were used. This however does not portray reality for bodies with radii s > 103km.
Oblique collisions transfer orbital angular momentum into planetary spin, combined with the
fact that fragmentation occurs, indicate that the simple mergers method for these collisions is
not desirable [68]. A recommendation for future research would be to add a spin parameter
to the list of parameters for each particle. Other consequences of collision could be one or a
combination of bouncing, erosion, fragmentation, or mass transfer [87].

The model did not incorporate mutual gravitational interaction between the particles, which
in fact produce large effects on the trajectory of the particles. For further research it may be rec-
ommended to include gravitational scattering of nearby passages. These could be modelled as
elastic collisions. Other influential disk interaction that were not included in the model include
but are not limited to disk turbulence [88], radiative transfer [89], gravitational perturbation
[90], magnetic disk wind [91], planetary migration and eccentric bending [92].

The orbits of the particles are also assumed to be stationary, i.e. the argument of periapsis ϖ
is chosen to be constant. In reality the orbits of celestial bodies are found to be non-stationary,
and actually rotate by a phenomenon called apsidal precession [6]. This precession is caused
by a combination of different factors [44], all of which are not monitored in this research’s

32

algorithm. Although the precession rate of planets in our solar system are of the order of
magnitude of ∼ 105 years, it is occasionally observed to be a small number of days in rare
cases of exoplanets [45]. In addition, the formation of planetary systems takes multiple Myears
to develop. In future research this precession could be included as a particle parameter, but
because of its dependence on fluctuating external factors this would be shorthand solution. The
neglection of the apsidal precession may be considered as the Achilles’ heel of the Keplerian
model.

33

6. Conclusion
The aim of this research was to create an effective collision detection model for a simplified
protoplanetary disk system using Kepler systems and analyse the results of the model to check
the reliability of this simulation method, i.e. if the quality of the results are trustworthy, per-
forming consistently well, and can be depended on to be accurate. In addition, the method had
to be computationally efficient, having to reach time complexities below that of other methods
in similar studies i.e. tree code, which has a time complexity of O(N4/3 log(N)).

To keep track of the every body in the system is computationally exhaustive as the number
of particles increase. For an N-body system this would result in simulating N2 interactions.
In Keplerian models simplifies N-body systems by describing them in a few orbital parameters
and neglecting the small effects of interparticle interaction and timestep determination. This
method is hypothesised to have a total computation time of N2ϵ + (N4s3)/(Ia3) [5]. Where
the power of N is greater than in the tree code, but because of it’s body radius s dependency it
could be considered as the faster method.

It was preferred to keep the model simple, so the algorithm could be better tested, rather
than to go for a more realistic model. Various realizations of N-body systems were modelled
using Kepler orbits and their orbital elements. In the initialisation the parameters were picked
from distribution to form a triangular torus disk with a uniform particle distribution. For the
pair list initialisation, the peri- and apoapsis of each particle were checked to perform a sweep
and prune filter, where after all possible collision pairs are calculated using the minimum orbit
intersection distance, and lastly determining the collision time for each collision and sorting
them in a time-ranked collision list. In the main loop of the algorithm takes the top two particles
from the collision list, merges them in the particle list, creating a new body in the particle list
and updates the collision list. Various parameters are stored during the simulation.

The model showed behaviour of that of other simulation studies, as well as observational
data. Worthy of note are the shape of the decreasing total number of particles in the system over
time [70], the damping effect of the eccentricity and the inclination [72], the graduate shape
transformation of the eccentricity distribution to that of an asteroid belt [74], the transition of
the orbits in the model to move towards a critical eccentricity of 0.02 [55][73], the preservation
of shape of the body radius distribution of the system [75][76], the decrease in average semi-
major axis over large timescales [77][78], the number of small bodies colliding with only a few
large bodies [75][80], and the collisions between two large bodies responsible for the growth
of the largest bodies [81].

It found that the model encountered three stages of collisions. The first stage being one
where collisions happen rather uniformly throughout the disk, regardless of body radius or
semi-major axis. The averages of these two parameters stay about the same value during this
stage, only the average semi-major increases a little, implying a little more collisions with
bodies with smaller orbits. The second stage is dominated by bodies that already collided
before and hence have larger radii, giving them higher probabilities of colliding again. The
third and last stage is characterised by bodies with large semi-major axes and small body radius.
In this last stage the average body radius of the system increases significantly because of these
small body collisions. The first stage takes place during the first 1 Myears of the simulation, the
second stage between 1 Myears up until 10 Myears, and after 10 Myears the third stage starts.

The decomposition of the performance of the algorithm gave the following results: The
number of checks performed by the sweep and prune filter as well as the number of pairs in

34

the collision pair list after initialisation is exponentially proportional to the number of starting
bodies of the system, so #checks ∝ N2 and #pairs ∝ N2. For a system with N = 3.000, the
number of checks performed by the sweep and prune filter was proportional to the eccentricity
of the system for small eccentricities ϵ < 0.1 and when fitted showed a result of #checks ∝ ϵ.
For larger eccentricities the number of checks flattens towards the total possible pairs N2/2.
The total number of pairs in the collision pair list created in the initialisation of the system
appeared to be proportional to the body radius s of the system as well as the eccentricity ϵ and
inversely proportional to I , so #pairs ∝ s, #pairs ∝ 1/I , and #pairs ∝ ϵ.

Finally , the computation time of different parts of the algorithm plotted against the number
of starting particles N = 1...1.000, and the results were analysed. All data is fitted with the
function y = axb. It was found that the run time of the creation and sorting of the particle list
showed to be proportional to N , the initialisation, consisting of the creation and sorting of the
particle list, and the creation and sorting the time-ranked collision list to be proportional to N2,
the main loop, consisting of merging pairs, placing new particle at right place in particle list,
calculating new collision pairs with the new particle and calculating the collision times, and
repeating this process until the time-ranked collision list is empty to be roughly proportional
to N2.8, and the computation time for the entire algorithm to be also roughly N2.8. The last of
these results imply a proportionality of a higher power.

The relationship between body radius and run time of the entire algorithm was analysed
while the eccentricity was kept small (ϵ < 10−9) and N = 2.000. The data was fitted to
y = a+bxc and a gave result of a = −1.0±0.4, b = 7.2×10−3±1.8×10−3, c = 0.905±0.026.
So for N < 10.000, the computation time is therefore linearly proportional to the body radius,
runtime ∝ s and could be considered as a significant influence to the run time.

To conclude this research, the Keplerian model could be used to model N-body systems
for collision detection because of its behavioural resemblance to obserable astrophysical sys-
tems. The computation time of the Keplerian system scales with a higher order per N than
for instance the three code algorithm, but has showed to be influenced by orbital parameters
in which this method differentiates itself from other simulation methods, with a remarkable
influence on the total computation time by the body radius s of the system, as well as the ec-
centricity ϵ and inclination I . More research could be done for higher orders of N to better
mimic reality as well as providing more insight on the proportionality of the computation time.
Recommendations to the algorithm consist of adding planetary spin as a particle parameter, and
methods to incorporate apsidal precession in a competent manner.

35

Bibliography
[1] Viktor Sergeevich Safronov. Evolution of the protoplanetary cloud and formation of the

earth and the planets. 1972.

[2] WR Ward. Planetary accretion. Completing the Inventory of the solar system, 107:337–
361, 1996.

[3] Eiichiro Kokubo, Junko Kominami, and Shigeru Ida. Formation of terrestrial planets
from protoplanets. i. statistics of basic dynamical properties. The Astrophysical Journal,
642(2):1131, 2006.

[4] Donald Meagher. Geometric modeling using octree encoding. Computer graphics and
image processing, 19(2):129–147, 1982.

[5] Visser P M. Collision detection for n-body kepler systems. Astronomy & Astrophysics,
submitted 2022.

[6] Carl D Murray and Stanley F Dermott. Solar system dynamics. Cambridge university
press, 1999.

[7] Wikipedia contributors. Orbital elements, 2021. [Online; accessed 14-June-2022].

[8] David A Vallado. Fundamentals of astrodynamics and applications, volume 12. Springer
Science & Business Media, 2001.

[9] H Stroh. Swedenborg’s position in the history of philosophy. In Atti del IV Congresso
Internazionale di Filosofia, volume 2, pages 290–296, 1911.

[10] Emanuel Swedenborg. Emanuelis Swedenborgii Opera philisophica et mineralia, vol-
ume 1. 1734.

[11] Immanuel Kant. Allgemeine Naturgeschichte und Theorie des Himmels, nach Newtonis-
chen Grundsätzen abgehandelt. 1755.

[12] T Birnstiel, CP Dullemond, and F Brauer. Gas-and dust evolution in protoplanetary disks.
Astronomy & Astrophysics, 513:A79, 2010.

[13] Shrinivas R Kulkarni and J Jeff Hester. Discovery of a nebula around psr1957+ 20. Na-
ture, 335(6193):801–803, 1988.

[14] CL Brogan, LM Pérez, TR Hunter, WRF Dent, AS Hales, RE Hills, S Corder, EB Foma-
lont, C Vlahakis, Y Asaki, et al. The 2014 alma long baseline campaign: first results from
high angular resolution observations toward the hl tau region. The Astrophysical journal
letters, 808(1):L3, 2015.

[15] Jane S Greaves. Disks around stars and the growth of planetary systems. Science,
307(5706):68–71, 2005.

[16] Thierry Montmerle, Jean-Charles Augereau, Marc Chaussidon, Mathieu Gounelle,
Bernard Marty, and Alessandro Morbidelli. 3. solar system formation and early evolu-
tion: the first 100 million years. Earth, Moon, and Planets, 98(1):39–95, 2006.

36

[17] Jonathan P Williams and Lucas A Cieza. Protoplanetary disks and their evolution. arXiv
preprint arXiv:1103.0556, 2011.

[18] Lee Hartmann. Accretion processes in star formation, volume 32. Cambridge University
Press, 2000.

[19] Philip J Armitage. Dynamics of protoplanetary disks. arXiv preprint arXiv:1011.1496,
2010.

[20] Leonardo Testi, Tilman Birnstiel, Luca Ricci, Sean M. Andrews, Juergen Blum, John M.
Carpenter, Carsten Dominik, Andrea Isella, Antonella Natta, Jonathan P. Williams, and
David J. Wilner. Dust evolution in protoplanetary disks. arXiv: Solar and Stellar Astro-
physics, pages 2205–2220, 2018.

[21] Sanson Tsun Sum Poon. Formation and dynamical evolution of planetary systems. PhD
thesis, Queen Mary University of London, 2021.

[22] Christer Ericson. Real-time collision detection. Crc Press, 2004.

[23] Isaac Newton and David Gregory. A NEW MOST ACCURATE THEORY OF THE
MOON’S MOTION;...: And Publ. in Latin by David Gregory. Baldwin, 1702.

[24] Henri Poincaré. Les méthodes nouvelles de la mécanique céleste, volume 3. Gauthier-
Villars, 1899.

[25] Gustavo Gargioni, David Alexandre, Marco Peterson, and Kevin Schroeder. Multiple
asteroid retrieval mission from lunar orbital platform-gateway using reusable spacecrafts.
pages 1–13, 03 2019.

[26] Ming Lin and Stefan Gottschalk. Collision detection between geometric models: A sur-
vey. In Proc. of IMA conference on mathematics of surfaces, volume 1, page 31. Citeseer,
1998.

[27] Yann Alibert, Frédéric Carron, Andrea Fortier, Samuel Pfyffer, Willy Benz, Christoph
Mordasini, and David Swoboda. Theoretical models of planetary system formation: mass
vs. semi-major axis. Astronomy & Astrophysics, 558:A109, 2013.

[28] Michiel Lambrechts, Alessandro Morbidelli, Seth A Jacobson, Anders Johansen, Bertram
Bitsch, Andre Izidoro, and Sean N Raymond. Formation of planetary systems by pebble
accretion and migration-how the radial pebble flux determines a terrestrial-planet or super-
earth growth mode. Astronomy & Astrophysics, 627:A83, 2019.

[29] William K Hartmann and Donald R Davis. Satellite-sized planetesimals and lunar origin.
Icarus, 24(4):504–515, 1975.

[30] Walter Dehnen and Justin I Read. N-body simulations of gravitational dynamics. The
European Physical Journal Plus, 126(5):1–28, 2011.

[31] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

37

[32] Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm. nature,
324(6096):446–449, 1986.

[33] Takuya Ohtani and Toru Tsuribe. Growth of a protostar and a young circumstellar disk
with a high mass-accretion rate onto the disk. Publications of the Astronomical Society of
Japan, 65(4), 2013.

[34] W Kapferer, C Sluka, S Schindler, C Ferrari, and B Ziegler. The effect of ram pres-
sure on the star formation, mass distribution and morphology of galaxies. Astronomy &
Astrophysics, 499(1):87–102, 2009.

[35] Johannes Kepler. Astronomia nova..., seu physica coelestis, tradita commentariis de
motibus stellae martis. Astronomia nova.

[36] Johannes Kepler. Harmonices mundi (frankfurt, 1619). Book II (English translation by
EJ Aiton, AM Duncan, and JV Field, American Philosophical Society, 1997).

[37] Lasunncty at the English Wikipedia. Diagram illustrating and explaining various terms in
relation to orbits of celestial bodies., 2007. [Online; accessed 14-June-2022].

[38] Marc Murison. A practical method for solving the kepler equation. 11 2006.

[39] Herbert Goldstein, Ch Poole, and J Safko. Classical mechanics addison-wesley, volume
426. 1980.

[40] Albert Einstein. The field equations of gravitation. Sitzungsber. Preuss. Akad. Wiss. Berlin
(Math. Phys.), 1915:844–847, 1915.

[41] Theodore Eugene Sterne. Apsidal motion in binary stars. Monthly Notices of the Royal
Astronomical Society, 99:451–462, 1939.

[42] Yoshihide Kozai. Secular perturbations of asteroids with high inclination and eccentricity.
The Astronomical Journal, 67:591–598, 1962.

[43] Jordi Miralda-Escudé. Orbital perturbations of transiting planets: a possible method to
measure stellar quadrupoles and to detect earth-mass planets. The Astrophysical Journal,
564(2):1019, 2002.

[44] David M Kipping. The transits of extrasolar planets with moons. Springer Science &
Business Media, 2011.

[45] Darin Ragozzine and Aaron S Wolf. Probing the interiors of very hot jupiters using transit
light curves. The Astrophysical Journal, 698(2):1778, 2009.

[46] C Thalmann. Imaging of a transitional disk gap in reflected light thalmann, c.; grady,
ca; goto, m.; wisniewski, jp; janson, m.; henning, t.; honda, m.; mulders, gd; min, m.;
fukagawa, m.

[47] Taichi Uyama. Direct Imaging and Characterizations of. PhD thesis, School of Science,
The University of Tokyo, 2018.

38

[48] Eric E Mamajek. Initial conditions of planet formation: lifetimes of primordial disks. In
AIP Conference Proceedings, volume 1158, pages 3–10. American Institute of Physics,
2009.

[49] James E Pringle. Accretion discs in astrophysics. Annual review of astronomy and astro-
physics, 19:137–162, 1981.

[50] Anusha Kalyaan, Steven J Desch, and Nikhil Monga. External photoevaporation of the
solar nebula. ii. effects on disk structure and evolution with non-uniform turbulent vis-
cosity due to the magnetorotational instability. The Astrophysical Journal, 815(2):112,
2015.

[51] Lee Hartmann, Nuria Calvet, Erik Gullbring, and Paola D’Alessio. Accretion and the
evolution of t tauri disks. The Astrophysical Journal, 495(1):385, 1998.

[52] Andrea Isella, Leonardo Testi, and Antonella Natta. Large dust grains in the inner region
of circumstellar disks. Astronomy & Astrophysics, 451(3):951–959, 2006.

[53] CP Dullemond and JD Monnier. The inner regions of protoplanetary disks. arXiv preprint
arXiv:1006.3485, 2010.

[54] Natalia Dzyurkevich, Neal J Turner, Thomas Henning, and Wilhelm Kley. Magnetized
accretion and dead zones in protostellar disks. The Astrophysical Journal, 765(2):114,
2013.

[55] Henrik Eklund and Frédéric S Masset. Evolution of eccentricity and inclination of hot
protoplanets embedded in radiative discs. Monthly Notices of the Royal Astronomical
Society, 469(1):206–217, 2017.

[56] Bertram Bitsch, Trifon Trifonov, and Andre Izidoro. The eccentricity distribution of giant
planets and their relation to super-earths in the pebble accretion scenario. Astronomy &
Astrophysics, 643:A66, 2020.

[57] Alibert, Y., Carron, F., Fortier, A., Pfyffer, S., Benz, W., Mordasini, C., and Swoboda,
D. Theoretical models of planetary system formation: mass vs. semi-major axis. A&A,
558:A109, 2013.

[58] Felix R Hoots, Linda L Crawford, and Ronald L Roehrich. An analytic method to de-
termine future close approaches between satellites. Celestial mechanics, 33(2):143–158,
1984.

[59] Ernst Julius Öpik. Collision probabilities with the planets and the distribution of inter-
planetary matter. In Proceedings of the Royal Irish Academy. Section A: Mathematical
and Physical Sciences, volume 54, pages 165–199. JSTOR, 1951.

[60] Jonathan D Cohen, Ming C Lin, Dinesh Manocha, and Madhav Ponamgi. I-collide: An
interactive and exact collision detection system for large-scale environments. In Proceed-
ings of the 1995 symposium on Interactive 3D graphics, pages 189–ff, 1995.

[61] Andrea Milani and Giovanni Gronchi. Theory of orbit determination. Cambridge Univer-
sity Press, 2010.

39

[62] SP Manley, F Migliorini, and ME Bailey. An algorithm for determining collision prob-
abilities between small solar system bodies. Astronomy and Astrophysics Supplement
Series, 133(3):437–444, 1998.

[63] Hiroshi Kinoshita and Hiroshi Nakai. Motions of the perihelions of neptune and pluto.
Celestial Mechanics, 34(1):203–217, 1984.

[64] Andrew M Rockett et al. Continued fractions. World Scientific, 1992.

[65] Murray Bremner. Lattice basis reduction. CRC Press New York, 2011.

[66] Natasa Sirotic and Andrina Zazkis. Irrational numbers: The gap between formal and
intuitive knowledge. Educational Studies in Mathematics, 65(1):49–76, 2007.

[67] Aron Shouten. Collision detection using continued fractions, 2022.

[68] Craig Agnor and Erik Asphaug. Accretion efficiency during planetary collisions. The
Astrophysical Journal, 613(2):L157, 2004.

[69] Paul Cresswell and Richard P Nelson. On the evolution of multiple protoplanets embed-
ded in a protostellar disc. Astronomy & Astrophysics, 450(2):833–853, 2006.

[70] John CB Papaloizou and John D Larwood. On the orbital evolution and growth of proto-
planets embedded in a gaseous disc. Monthly Notices of the Royal Astronomical Society,
315(4):823–833, 2000.

[71] Huan YA Meng, Kate YL Su, George H Rieke, Wiphu Rujopakarn, Gordon Myers,
Michael Cook, Emery Erdelyi, Chris Maloney, James McMath, Gerald Persha, et al. Plan-
etary collisions outside the solar system: Time domain characterization of extreme debris
disks. The Astrophysical Journal, 805(1):77, 2015.

[72] M Nagasawa, DNC Lin, and E Thommes. Dynamical shake-up of planetary systems. i.
embryo trapping and induced collisions by the sweeping secular resonance and embryo-
disk tidal interaction. The Astrophysical Journal, 635(1):578, 2005.

[73] Bertram Bitsch and Wilhelm Kley. Orbital evolution of eccentric planets in radiative discs.
Astronomy & Astrophysics, 523:A30, 2010.

[74] Sean N Raymond and David Nesvorny. Origin and dynamical evolution of the asteroid
belt. arXiv preprint arXiv:2012.07932, 2020.

[75] Anders Johansen, Mordecai-Mark Mac Low, Pedro Lacerda, and Martin Bizzarro. Growth
of asteroids, planetary embryos, and kuiper belt objects by chondrule accretion. Science
Advances, 1(3):e1500109, 2015.

[76] Stephen J Kortenkamp, George W Wetherill, and Satoshi Inaba. Runaway growth of
planetary embryos facilitated by massive bodies in a protoplanetary disk. Science,
293(5532):1127–1129, 2001.

[77] William F Bottke Jr, Daniel D Durda, David Nesvornỳ, Robert Jedicke, Alessandro Mor-
bidelli, David Vokrouhlickỳ, and Harold F Levison. Linking the collisional history of the
main asteroid belt to its dynamical excitation and depletion. Icarus, 179(1):63–94, 2005.

40

[78] Matthew S Clement, Sean N Raymond, and Nathan A Kaib. Excitation and depletion of
the asteroid belt in the early instability scenario. The Astronomical Journal, 157(1):38,
2019.

[79] S Ida, DNC Lin, and M Nagasawa. Toward a deterministic model of planetary formation.
vii. eccentricity distribution of gas giants. The Astrophysical Journal, 775(1):42, 2013.

[80] Alessandro Morbidelli, William F Bottke, David Nesvornỳ, and Harold F Levison. Aster-
oids were born big. Icarus, 204(2):558–573, 2009.

[81] Adrián Brunini and Omar G Benvenuto. On oligarchic growth of planets in protoplanetary
disks. Icarus, 194(2):800–810, 2008.

[82] Zoë M Leinhardt and Derek C Richardson. Planetesimals to protoplanets. i. effect of
fragmentation on terrestrial planet formation. The Astrophysical Journal, 625(1):427,
2005.

[83] Diwakar Gupta NumPy. https://numpy.org/doc/stable/reference/
generated/numpy.sort.html. consulted 11 augustus 2022.

[84] Guillaume Laibe, J-F Gonzalez, Laure Fouchet, and Sarah T Maddison. Sph simulations
of grain growth in protoplanetary disks. Astronomy & Astrophysics, 487(1):265–270,
2008.

[85] Soko Matsumura, Edward W Thommes, Sourav Chatterjee, and Frederic A Rasio. Unsta-
ble planetary systems emerging out of gas disks. The Astrophysical Journal, 714(1):194,
2010.

[86] NASA. https://solarsystem.nasa.gov/
asteroids-comets-and-meteors/asteroids/in-depth/. consulted
15 August 2022.

[87] T Birnstiel, M Fang, and A Johansen. Dust evolution and the formation of planetesimals.
Space Science Reviews, 205(1):41–75, 2016.

[88] Hiroshi Kobayashi, Hidekazu Tanaka, and Satoshi Okuzumi. From planetesimals to plan-
ets in turbulent protoplanetary disks. i. onset of runaway growth. The Astrophysical Jour-
nal, 817(2):105, 2016.

[89] Nicholas P Ballering and Josh A Eisner. Protoplanetary disk masses from radiative trans-
fer modeling: A case study in taurus. The Astronomical Journal, 157(4):144, 2019.

[90] Tatsuya Okamura and Hiroshi Kobayashi. The growth of protoplanets via the accretion
of small bodies in disks perturbed by the planetary gravity. The Astrophysical Journal,
916(2):109, 2021.

[91] Sanemichi Z Takahashi and Takayuki Muto. Structure formation in a young protoplane-
tary disk by a magnetic disk wind. The Astrophysical Journal, 865(2):102, 2018.

[92] Hidekazu Tanaka, Taku Takeuchi, and William R Ward. Three-dimensional interaction
between a planet and an isothermal gaseous disk. i. corotation and lindblad torques and
planet migration. The Astrophysical Journal, 565(2):1257, 2002.

41

https://numpy.org/doc/stable/reference/generated/numpy.sort.html
https://numpy.org/doc/stable/reference/generated/numpy.sort.html
https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/in-depth/
https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/in-depth/

7. Appendix

7.1. Derivations
The further one gets from the sun, the more space there is to be occupied. And because we
simulate in a 3d model, the probability of picking a semi-major axis a is P (a) = ca2. Normalize
the function to obtain c:

1 =

∫ a+

a−

P (a)da −→ c =
3

a3+ − a3−
(34)

a+ and a− being the maximum and minimum value of a. Set the probability density function
equal to a random uniform number ξ.

f(a) =

∫ a

a−

P (a′)da′ =
a3 − a3−
a3+ − a3−

= ξ (35)

Then a becomes
a = 3

√
(a3+ − a3−)ξ + a3− (36)

The probability for picking the inclination I is P (I) = c sin(I). Normalize to obtain c

1 =

∫ Imax

0

P (I)dI −→ c =
1

1− cos(Imax)
(37)

Set the probability density function equal to a random uniform number ξ.

f(I) =

∫ I

0

P (I ′)dI ′ =
cos(I)− cos(Imax)

1− cos(Imax)
= ξ (38)

Then I becomes
I = arccos(ξ[1− cos(Imax)] + cos(Imax)) (39)

42

7.2. Code

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import math

4 import random

5 import scipy.misc

6 import scipy.special

7 import scipy.stats

8 import os

9 from scipy.optimize import curve_fit

10 import time

11
12 G = 6.67428e-11

13 M = 1.98847e30

14 AU = 1.495978707e11

15 S = 0.00465047*AU

16 MJ = 1.898e27

17 SJ = 0.000477895*AU

18 year = 60*60*24*365

19
20 def R(a,b,c):

21 return np.array([[np.cos(a)*np.cos(b)-np.sin(a)*np.sin(b)*np.cos(c),-np.cos(a)*np.sin(b)-np.sin(a)*np.cos(b)*np.cos(c)⌋
,np.sin(a)*np.sin(c)],↪→

22 [np.sin(a)*np.cos(b)+np.cos(a)*np.sin(b)*np.cos(c),-np.sin(a)*np.sin(b)+np.cos(a)*np.cos(b)*np.cos(c),⌋
-np.cos(a)*np.sin(c)],↪→

23 [np.sin(b)*np.sin(c),np.cos(b)*np.sin(c),np.cos(c)]])

24
25 def gen(N):

26 arr = np.array([])

27 for n in range(N):

28 a,s = np.cbrt(random.uniform(0,1)*(10**3-1**3)+1**3)*AU,10**(random.uniform(-7,-3))*AU

29 I = np.arccos(random.uniform(0,1)*(1-np.cos(0.1))+np.cos(0.1))

30 e,m,wbar,W,E = random.uniform(0,0.1),(s/SJ)**3*MJ,random.uniform(0,2*np.pi),random.uniform(0,2*np.pi),random.unifo⌋
rm(0,2*np.pi)↪→

31 r0,w = np.matmul(R(wbar,W,I),np.array([a-np.cos(E)*e/a,np.sqrt(1-e**2)*a*np.sin(E),0])), np.sqrt(G*M/a**3)

32 Lbar, ebar = m*w*a**2*np.sqrt(1-e**2)*R(wbar,W,I)[2], e*R(wbar,W,I)[0]

33 arr = np.append(arr,[0,a,e,s,m,r0,Lbar,ebar,w,I])

34 arr = arr.reshape(N,10)

35 return arr[(arr[:, 1]-arr[:, 1]*arr[:,2]-arr[:,3]).argsort()]

36
37
38 def r_colision(p1,p2):

39 Kbar = np.cross(p1[6],p2[6])

40 K = np.sqrt(np.dot(Kbar,Kbar))

41 l1 = np.dot(p1[6],p1[6])/(G*M*p1[4]**2)

42 l2 = np.dot(p2[6],p2[6])/(G*M*p2[4]**2)

43 rbar1 = np.array([Kbar*l1/(K+np.dot(p1[7],Kbar)),Kbar*l1/(-K+np.dot(p1[7],Kbar))])

44 rbar2 = np.array([Kbar*l2/(K+np.dot(p2[7],Kbar)),Kbar*l2/(-K+np.dot(p2[7],Kbar))])

45 r1 = np.array([np.sqrt(np.dot(rbar1[0],rbar1[0])),np.sqrt(np.dot(rbar1[1],rbar1[1]))])

46 r2 = np.array([np.sqrt(np.dot(rbar2[0],rbar2[0])),np.sqrt(np.dot(rbar2[1],rbar2[1]))])

47 vbar1 = np.array([np.cross(p1[6]/(p1[4]*l1),p1[7]+rbar1[0]/r1[0]),np.cross(p1[6]/(p1[4]*l1),p1[7]+rbar1[1]/r1[1])])

48 vbar2 = np.array([np.cross(p2[6]/(p2[4]*l2),p2[7]+rbar2[0]/r2[0]),np.cross(p2[6]/(p2[4]*l2),p2[7]+rbar2[1]/r2[1])])

49 d = rbar2 - rbar1

50 worbit = np.array([np.cross(vbar1[0],vbar2[0]),np.cross(vbar1[1],vbar2[1])])

51 wsq = np.array([np.dot(worbit[0],worbit[0]),np.dot(worbit[1],worbit[1])])

52 rcol1 = np.array([rbar1[0] + (np.dot(d[0],np.cross(vbar2[0],worbit[0])/wsq[0]))*vbar1[0],rbar1[1] +

(np.dot(d[1],np.cross(vbar2[1],worbit[1])/wsq[1]))*vbar1[1]])↪→
53 rcol2 = np.array([rbar2[0] + (np.dot(d[0],np.cross(vbar1[0],worbit[0])/wsq[0]))*vbar2[0],rbar2[1] +

(np.dot(d[1],np.cross(vbar1[1],worbit[1])/wsq[1]))*vbar2[1]])↪→
54 dcol = np.array([np.sqrt(np.dot(rcol2[0]-rcol1[0],rcol2[0]-rcol1[0])),np.sqrt(np.dot(rcol2[1]-rcol1[1],rcol2[1]-rcol1[⌋

1]))])↪→
55 arr = np.array([])

56 if dcol[0] < p1[3]+p2[3]:

57 arr = np.append(arr, [dcol[0],rcol1[0],rcol2[0],vbar1[0],vbar2[0]])

58 if dcol[1] < p1[3]+p2[3]:

59 arr = np.append(arr, [dcol[1],rcol1[1],rcol2[1],vbar1[1],vbar2[1]])

60 if dcol[0] < p1[3]+p2[3] or dcol[1] < p1[3]+p2[3]:

61 return arr.reshape(int(len(arr)/5),5)

62
63 def pairlist(sys):

64 arr = np.array([])

65 for i in range(len(sys)):

66 for j in range(i+1,len(sys)):

67 if sys[i][1]+sys[i][1]*sys[i][2]+sys[i][3] >= sys[j][1]-sys[j][1]*sys[j][2]-sys[j][3]:

43

68 k = r_colision(sys[i],sys[j])

69 if type(k) != type(None):

70 for x in k:

71 arr = np.append(arr, [i,j,x])

72 else:

73 break

74 return arr.reshape(int(len(arr)/3),3)

75
76 def newpairs(new,nsys,x):

77 a =list(range(len(nsys)))

78 a.remove(x)

79 arr = np.array([])

80 for i in a:

81 if new[1]+new[1]*new[2]+new[3]>=nsys[i][1]-nsys[i][1]*nsys[i][2]-nsys[i][3]:

82 k = r_colision(new,nsys[i])

83 if type(k) != type(None):

84 for xi in k:

85 arr = np.append(arr, [x,i,xi])

86 return arr.reshape(int(len(arr)/3),3)

87
88 def t_colision(sys, cl):

89 arr = np.array([],dtype=object)

90 for i,j,k in cl:

91 e1sq, e2sq = np.dot(sys[i][7],sys[i][7]), np.dot(sys[j][7],sys[j][7])

92 r1,r2 = np.sqrt(np.dot(k[1],k[1])),np.sqrt(np.dot(k[2],k[2]))

93 z1 = np.dot(k[1]/sys[i][1]-1j*(r1*k[3]/(sys[i][1]**2*sys[i][8])),(sys[i][5]-sys[i][7]*np.dot(sys[i][7],sys[i][5]))⌋
/(sys[i][1]-e1sq*sys[i][1])+sys[i][7])+(np.dot(sys[i][5],sys[i][7]))/sys[i][1]+e1sq↪→

94 z2 = np.dot(k[2]/sys[j][1]-1j*(r2*k[4]/(sys[j][1]**2*sys[j][8])),(sys[j][5]-sys[j][7]*np.dot(sys[j][7],sys[j][5]))⌋
/(sys[j][1]-e2sq*sys[j][1])+sys[j][7])+(np.dot(sys[j][5],sys[j][7]))/sys[j][1]+e2sq↪→

95 DE1, DE2 = np.angle(z1)%(2*np.pi), np.angle(z2)%(2*np.pi)

96 t11 = sys[i][0]+DE1/sys[i][8]-np.dot(np.cross(sys[i][7],k[1]-sys[i][5])/(1-e1sq),sys[i][6]/(G*M*sys[i][4]))

97 t21 = sys[j][0]+DE2/sys[j][8]-np.dot(np.cross(sys[j][7],k[2]-sys[j][5])/(1-e2sq),sys[j][6]/(G*M*sys[j][4]))

98 ubar, wsq = k[4]-k[3], np.dot(np.cross(k[3],k[4]),np.cross(k[3],k[4]))

99 delta = 1/np.abs(t11-t21)*np.sqrt(np.dot(ubar,ubar)*((sys[i][3]+sys[j][3])**2-k[0]**2)/wsq)

100 q0,q1,k0,k1 = 2*np.pi/(sys[i][8]*np.abs(t11-t21)),2*np.pi/(sys[j][8]*np.abs(t11-t21)),1,0

101 q,alpha,ks,n= np.array([q0,q1]),np.array([]),np.array([k0,k1]),0

102 while n <=8:

103 q, alpha, ks = np.append(q,[0,0]), np.append(alpha, [0,0]), np.append(ks, [0,0])

104 alpha[2*n] = np.floor(q[2*n]/q[2*n+1])

105 q[2*n+2] = q[2*n]-alpha[2*n]*q[2*n+1]

106 if q[2*n+2] == 0:

107 print('iets')

108 break

109 ks[2*n+2] = ks[2*n] -alpha[2*n]*ks[2*n+1]

110 alpha[2*n+1] = np.floor(q[2*n+1]/q[2*n+2])

111 q[2*n+3] = q[2*n+1]-alpha[2*n+1]*q[2*n+2]

112 if q[2*n+3] == 0:

113 print('niets')

114 break

115 ks[2*n+3] = ks[2*n+1] -alpha[2*n+1]*ks[2*n+2]

116 xmax = np.floor((1+delta)/q[2*n+2])+1

117 if xmax > 1000000:

118 break

119 x = np.arange(np.ceil((1-delta)/q[2*n]),xmax,1)

120 y = np.maximum(np.zeros(len(x)), np.ceil(q[2*n]*x/q[2*n+1]-(1+delta)/q[2*n+1]))

121 for xi in range(len(x)):

122 if x[xi]*q[2*n]-y[xi]*q[2*n+1] > 1- delta:

123 sol = x[xi]*ks[2*n]-y[xi]*ks[2*n+1]

124 tnew = t11+2*np.pi*sol/sys[i][8]

125 arr = np.append(arr,[i,j,tnew,k[1:]])

126 n = 10

127 break

128 n=n+1

129 arr = arr.reshape(int(len(arr)/4),4)

130 return arr[(arr[:,2]).argsort()]

131
132 def colision(sys,tl):

133 i,j,t,k = tl[0]

134 removed = tl[~(tl[:,0] == i),:]

135 removed = removed[~(removed[:,1] == i),:]

136 removed = removed[~(removed[:,0] == j),:]

137 removed = removed[~(removed[:,1] == j),:]

138 for ii in range(len(removed)):

139 if removed[ii][0]>= i:

140 removed[ii][0] = removed[ii][0]-1

141 if removed[ii][0] >= j:

142 removed[ii][0] = removed[ii][0]-1

143 if removed[ii][1]>= i:

44

144 removed[ii][1] = removed[ii][1]-1

145 if removed[ii][1] >= j:

146 removed[ii][1] = removed[ii][1]-1

147 s = (sys[i][3]**3+sys[j][3]**3)**(1/3)

148 m = sys[i][4]+sys[j][4]

149 rbar = (sys[i][4]*k[0]+sys[j][4]*k[1])/m

150 v = (sys[i][4]*k[2]+sys[j][4]*k[3])/m

151 L = sys[i][6]+sys[j][6]

152 l = np.dot(L,L)/(G*M*m**2)

153 r = np.sqrt(np.dot(rbar,rbar))

154 ebar = np.cross(v,L)/(G*M*m)-rbar/r

155 e = np.sqrt(np.dot(ebar,ebar))

156 if l>(1+e)*S and e < 1:

157 a = l/(1-e**2)

158 w = np.sqrt(G*M/(a**3))

159 I = np.arccos(L[2]/(m*w*a**2*np.sqrt(1-e**2)))

160 new = np.array([t,a,e,s,m,rbar,L,ebar,w,I])

161 nsys = np.delete(sys,[i,j],axis=0)

162 nsys = np.append(nsys,[t,a,e,s,m,rbar,L,ebar,w,I])

163 nsys = nsys.reshape(int(len(nsys)/10),10)

164 x = np.where((nsys[:, 1]-nsys[:, 1]*nsys[:,2]-nsys[:,3]).argsort() == len(nsys)-1)

165 #print("x = "+str(int(x[0])))

166 nsys = nsys[(nsys[:, 1]-nsys[:, 1]*nsys[:,2]-nsys[:,3]).argsort()]

167 ncl = newpairs(new,nsys,int(x[0]))

168 ntl = t_colision(nsys,ncl)

169 for ii in range(len(removed)):

170 if removed[ii][0]>= int(x[0]):

171 removed[ii][0] = removed[ii][0] + 1

172 if removed[ii][1]>= int(x[0]):

173 removed[ii][1] = removed[ii][1] + 1

174 merged = np.append(removed,ntl)

175 merged = merged.reshape(int(len(merged)/4),4)

176 arr = merged[(merged[:,2]).argsort()]

177 return nsys,arr

178 else:

179 print('byebye')

180 nsys = np.delete(sys,[i,j],axis=0)

181 print(len(nsys))

182 return nsys,removed

183
184 def mainloop(sys):

185 n = 1

186 nsys = sys

187 CL = np.array([])

188 Nt = np.array([])

189 cl = pairlist(sys)

190 tl = t_colision(sys,cl)

191 waardes = np.array([np.average(nsys[:,1]),np.average(nsys[:,2]),np.average(nsys[:,3]),np.average(nsys[:,9]),np.std(nsy⌋
s[:,1]),np.std(nsys[:,2]),np.std(nsys[:,3]),np.std(nsys[:,9]),nsys[nsys[:,3].argsort()][:,3][-10:]])↪→

192 while 1>0:

193 if len(tl) == 0 :

194 break

195 CL = np.append(CL,tl[0])

196 Nt = np.append(Nt,len(nsys))

197 nsys,tl = colision(nsys,tl)

198 n= n+1

199 waardes =

np.append(waardes,[np.average(nsys[:,1]),np.average(nsys[:,2]),np.average(nsys[:,3]),np.average(nsys[:,9]),np.⌋
std(nsys[:,1]),np.std(nsys[:,2]),np.std(nsys[:,3]),np.std(nsys[:,9]),nsys[nsys[:,3].argsort()][:,3][-10:]])

↪→
↪→

200 CL = CL.reshape(int(len(CL)/4),4)

201 waardes = waardes.reshape(int(len(waardes)/9),9)

202 return nsys, CL, Nt, waardes

45

	Introduction
	Literature
	Protoplanetary Disks and the Formation of Planetary Systems
	Collision Detection
	Kepler Orbit

	Experimental Method
	The initialization of the algorithm
	Initialization, N-body system
	Initialization, collision pairs
	Initialization, time of collision

	Creating a new particle from a merger.
	The Main loop of the algorithm

	Results and Discussion
	Results of the simulation
	Keplerian parameters
	Planetary formation

	Results of the method
	Number of checks and pairs
	Run time

	Discussion
	Conclusion
	Bibliography
	Appendix
	Appendix
	Derivations
	Code

