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Abstract
The classification of bugs in functional languages
is an understudied area, as opposed to imperative
counterparts, such as Java. This paper acts as an
initial step to cover this gap into two complemen-
tary directions. First, a dataset of 142 bugs from 10
Haskell FOSS repositories have been classified ac-
cording to two taxonomies from literature in order
to assess how well they handle the differences in
programming paradigms. Based on our bug classi-
fications, the first taxonomy has very little variance
in types of bugs, with 86% of bugs being classified
in the same category. On the other hand, the second
taxonomy showed more potential as the bugs were
more balanced between categories, but with occa-
sional difficulties in classification, as some bugs fit-
ted more than one type. Second, we performed in-
terviews with four Haskell developers about their
experience with bugs and the usefulness of these
taxonomies in practice. They argued that while
such taxonomies can prove useful, the context in
which it is being used is more important. Thus, cir-
cumstances such as the size of the project and team,
and stages of development need to be taken in con-
sideration before trying to apply any taxonomy.

1 Introduction
Bugs are an inevitable part of software development. As code
becomes larger and more complex, more bugs are introduced
[2]. In order for developers to fix these bugs, they first need
to understand them. To aid them, different types of defect
classification schemes have been proposed, each offering a
unique perspective on how bugs should be dealt with.

Bug classification of software bugs is an explored field.
One of the earliest bug classifications, developed by IBM in
1992, is the Orthogonal Defect Classification (ODC) [3]. It
was developed by the quality group from IBM as a more prac-
tical tool, to bridge the increasing gap that was forming be-
tween developers and the research into software quality. By
classifying defects based on their causes, split into 8 types,
it tried to provide fast and effective feedback to developers.
ODC represented a starting point for many researchers to de-
velop their own defect taxonomies, such as the defect catego-
rization proposed by Seaman et al. [6]. Seaman’s taxonomy
builds on the purpose of the ODC, as it was created to unify
existing categorization schemes used in multiple NASA cen-
ters and aid in future development projects. Another example,
given by Catolino et al., classifies bugs based on types rather
than causes [2], and is meant to assist in bug understanding
and triaging, but also used by the research community to fur-
ther investigate bug characteristics.

Numerous studies have been done on bugs for imperative
languages such as Java. These include bug datasets such as
ManySStuBs4J [5], which offers around 150,000 single state-
ment bug fixes, as well as the aforementioned taxonomy pro-
posed by Catolino et al. which was built on bug reports from
ecosystems like Mozilla, Apache, and Eclipse [2], a large part
of which contain projects written in Java.

Even though a lot of effort has been made to study bugs,
there seems to be a gap in the transition from imperative lan-
guages to functional ones, where little to no effort has been
done in trying to understand differences between bugs in the
two paradigms, or classify functional bugs. This gap is even
more visible in the struggles encountered by Haskell devel-
opers when debugging. Preliminary results from Huang et
al. show that developers in functional programming use sim-
ilar strategies to imperative counterparts, but that some of the
functional features, such as laziness, declarative syntax and
abstractions, often impede them [4]. Therefore, it is impor-
tant to help the Haskell community by understanding bugs
in the context of functional programming. This can be done
by exploring artifacts in order to find characteristics and po-
tential classification schemes for bugs, as well as better un-
derstanding how bugs are identified, reproduced, and fixed in
practice.

The goal of this paper is to identify the extent to which ex-
isting bug taxonomies can classify bugs in Haskell, and how
they could be adapted to better accommodate the unique fea-
tures of Haskell. The specific research questions that will be
studied are:

RQ1 What are the most common types of Haskell bugs?

RQ2 What are the limitations of existing bug taxonomies in
capturing the unique features of Haskell bugs?

RQ3 How do Haskell developers classify bugs and how is it
different from the previously discussed taxonomies?

This paper aims to help the Haskell community by making
use of the existing studies about bug classifications. This is
achieved by:

• The collection of a bug dataset of 142 bugs from 10
Haskell FOSS (free open-source software) projects;

• Analysing the usefulness of existing bug taxonomies in
Haskell;

• Collecting qualitative data from 4 Haskell developers
about their perspectives on bugs.

In this study, it was found that a large majority (86%) of
the encountered bugs were classified as Program Anomaly,
according to the taxonomy proposed by Catolino et al. How-
ever, other categories, such as Configuration and Perfor-
mance, were found to be much less common. Because of
the high number of bugs classified into a single type of bugs,
this taxonomy might be considered less applicable for offer-
ing the information required to properly triage bugs. On the
other hand, the taxonomy proposed by Seaman et al. provided
a more balanced distribution, with the largest categories being
Algorithm / Method and Logic bugs. But, this taxonomy led
to difficulties in the classification of a relatively small sample
of bugs, named complex bugs, which allowed for classifica-
tion of the same bug into multiple types. However, the inter-
viewees argued that for taxonomies to be useful, their purpose
needs to be clear. Otherwise, the large number of possibili-
ties in bug categorization can change the focus from offering
information to limiting the time available for the bugs.

The rest of the paper is structured as follows. Section
2 describes the methodology used in the study. Section 3
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presents the results, and proposes discussion points related to
the findings, limitations, and improvements for the methodol-
ogy. Section 4 explores ethical concerns of the study. Finally,
conclusions and recommendations for future works are dis-
cussed in Section 5.

2 Methodology
Figure 1 presents the main steps of the process followed in
this study. The first stage consisted of collecting bugs from
Haskell repositories. Then, they were classified based on two
distinct taxonomies. In the second stage, Haskell maintain-
ers were interviewed about their perspective on bugs in prac-
tice and the usefulness of the proposed taxonomies. Finally,
all the results gathered through this process are presented in
Section 3.

Figure 1: Overview of the workflow

Bug collection
The bug database contains 142 bugs, collected from 10
Haskell FOSS repositories. The repositories have been cho-
sen to be as diverse as possible, to avoid bias towards any
defect type. From each repository a number of 20 bugs were
collected, or the maximum available.

The bugs have been taken based on the most recent closed
issues with tags that contain the term “bug”. The issues were
ensured to relate to commits or pull requests, which have been
merged into the main branch. The code in the commits and
pull requests was checked to include bug fixes for the speci-
fied bug report. Also, we ensured that the issues reported true
bugs in the code, and we eliminated all duplicate reports in
order to not skew the results. Also, the fix of the bug needed
to include a change in at least one .hs file to ensure that they
are bugs related to Haskell. Note that they can modify other
types of files alongside the Haskell ones. Finally, the scope
of this study only covers bugs in the source code, and no bugs
related to test code have been considered, e.g. missing or fail-
ing tests.

Bug taxonomies
There is a large variety of taxonomies in literature, each with
its own perspective on bugs. One of the most used types of

classification in industry is the ODC [3]. It looks at bugs
in the context of the program structure, adding them up in 8
types. This simple categorization scheme is well documented
in literature and often being used as a starting point by re-
searchers.

Seaman et al. proposed a taxonomy built on top of ODC
[6], to unify the bug classification process within multiple
NASA centers and projects. This classification was also used
in an empirical study to test build systems done by Xia et al.
[8], showing the versatility of this taxonomy outside of the
context in which it was created.

The IEEE also proposed a standard for classifying software
defects, meant to provide a “common vocabulary” to facilitate
communication within the industry [1]. It proposes a small
number of 7 defect types, where some terms are similar to the
previously mentioned taxonomies, such as Interface, Data,
and Logic.

Catolino et al. propose a different way of classifying bugs,
which is argued in the paper to be usable in a “complementary
manner” with ODC [2], and transitively with the other two
taxonomies mentioned. It offers 9 types of bugs, including,
among others, Configuration, Performance, and Security.

This study focuses only on two of such taxonomies,
namely the one proposed by Seaman et al. [6], and the one
from Catolino et al. [2]. The first taxonomy has been cho-
sen for the adaptability of the schema, while also offering,
on top of largely used ODC, the Other category, which can
act as a flag if the rest of the categories are not able to fit the
bugs found. The second taxonomy was picked because of its
different perspective on characteristics of bugs, and the more
project general terms it uses, e.g. security and performance.
The two taxonomies, including the definitions used for each
type, can be found in Appendix B.

In order to adapt these taxonomies to the scope of the
project a few aspects need to be considered. Firstly, the taxon-
omy proposed by Seaman et al. includes defect types for re-
quirements, source code, and test plan [6], but only the source
code types have been considered for classification. Secondly,
the taxonomy proposed by Catolino et al. has a special cate-
gory for test code related issues [2], but, due to the scope of
the study being limited to source code only, this category has
not been considered.

Bug classifying
The bug dataset has been fully classified based on the two
chosen taxonomies. The most relevant category from each
of the taxonomies was the one chosen, but complex bugs,
where a clear distinction was hard to make, have been doc-
umented. Findings from the statistical analysis of the bug
classifications, alongside reflections on the usability of the
taxonomies have been used to adapt the taxonomies, before
asking for further opinions during the interviews. These
findings are discussed in the next section. The bug dataset
is available on 4TU.ResearchData at https://doi.org/10.4121/
29a6a7bc-8b45-472c-bf26-710f2a2d1a3c.

Interviews
Four open source Haskell developers took part in a semi-
structured interview. The lead questions can be found in
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Figure 2: Percentages of bugs out of 142 bugs in each of the cate-
gories from the taxonomy proposed by Catolino et al. [2]

Appendix A. Approximately 30 people were asked to par-
ticipate in the study, with a response and acceptance rate of
approximately 13% . The interviews took approximately 30
minutes and were done online. They were audio recorded
and transcribed. The participants were asked about how they
identify, understand, classify, and fix bugs in practice, as
well as what their opinion was on the proposed taxonomies.
The data gathered during the interviews was used to con-
struct a qualitative codebook, using a bottom-up approach
and the findings are described in the next section. The full
codebook can be found on 4TU.ResearchData at https://doi.
org/10.4121/29a6a7bc-8b45-472c-bf26-710f2a2d1a3c, with
an excerpt available in Appendix C.

3 Results and Discussion
This section presents the results for each of the research ques-
tions proposed in Section 1. In the latter part of this section,
a discussion is presented, which also addresses threats to va-
lidity.

RQ1 What are the most common types of Haskell bugs?
To answer this question, two taxonomies have been used to
classify bugs in Haskell FOSS repositories. This compre-
hensive classification of 142 bugs provides insights into the
frequency of the types of bugs for both taxonomies.

Figure 2 displays the percentage of bugs, out of a total of
142, for each of the bug types proposed by Catolino et al.
[2]. A predominant portion of bugs were classified as Pro-
gram Anomaly, with 122, or about 86%, out of the 142 bugs
being part of this category. The rest of the categories are
rare in comparison, with the second most frequent type being
Configuration with 7 bugs, or approximately 5%, followed by
Performance (3.6%), GUI-related (2.8%), Permission / Dep-
recation (2.1%) and Security (0.7%). None of the bugs in
the collected dataset were classified as Network or Database-
related.

Figure 3, similar to the previous taxonomy, shows the per-
centages of bugs classified, from the same dataset, according

Figure 3: Percentages of bugs out of 142 bugs in each of the cate-
gories from the taxonomy proposed by Seaman et al. [6]

to the taxonomy proposed by Seaman et al. [6]. This tax-
onomy is more balanced compared to the previous one, with
the largest category, Algorithm / Method, only consisting of
26.8%, followed closely by the Logic type with 25.4%. The
descending order of the rest of the types is as follows: Data
(13.4%), Checking (9.9%), External Interface (8.4%), Non-
functional defects (5.6%), Internal Interface (4.9%), Timing /
Optimization (4.2%) and Assignment / Initialization (1.4%).
All the bugs in the dataset have been categorized as one of the
previously mentioned types, with none in the Other category.

RQ2 What are the limitations of existing bug tax-
onomies in capturing the unique features of Haskell
bugs?

In order to understand the limitations of classifying Haskell
bugs using these taxonomies, we first need to see how bugs
in Haskell differ from ones in imperative languages. For the
taxonomy by Catolino et al., we compare our findings with
the original study, which mostly considers Java bugs [2]. In
Figure 4 we show the differences per bug type. For the tax-
onomy by Seaman et al., because the frequency of bugs is not
clearly stated in the original paper, we compare our results to
the ones from Xia et al., which looks into Java, C, and C++
bugs from software build systems [8]. This comparison can
be seen in Figure 5.

Both taxonomies show significant differences from the
other studies. A large increase can be seen in the first tax-
onomy in Program Anomaly bugs, which are almost double
in this study. All the other types are smaller in the current
study, with Configuration and GUI-related showing a differ-
ence of about 10% and 15% respectively. The rest of the
types, present less variations, with at most a 4% difference,
with Performance having the same frequency. In the second
taxonomy, Algorithm / Method shows a large increase of over
20%, while Logic increases with about 7%. A large decrease
can be seen in External Interface, with a difference of more
than 10%, and in Assignment / Initialisation with a decrease
of 7%. The rest of the categories show a relatively small dif-
ference of less than 5%. Compared to our study, all types
of bugs, from both taxonomies appeared, including Network,
Database-related, and Other. It is important to note that the
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Figure 4: Differences in percentages of bug categories between cur-
rent study and study by Catolino et al. [2]

Figure 5: Differences in percentages of bug categories between cur-
rent study and study by Xia et al. [8]

study from Catolino et al. also classified Testcode bugs [2],
which was not considered in this study, and it was kept in the
comparison for completeness . Similarly, Xia et al. added a
class for Configuration bugs [8], which does not appear in the
taxonomy we used.

Difficulties in the classification process, alongside the
comparison presented above have revealed some limitations
when using such taxonomies in Haskell.

First, there is a large portion of bugs being classified as
Program Anomaly in the taxonomy proposed by Catolino et
al. [2]. Similar to our findings, Program Anomaly was also
found to be much more frequent in the original study, with a
percentage of 41% compared to the second most common cat-
egory, GUI-related issues, which accounted for 17% [2]. This
large variation in the proportions of types suggests that not a
big enough distinction is made within this type. Thus, not
enough information would be available for developers classi-
fying a bug in this category. As the purpose of this taxonomy
is to help in bug triage, this type should be split into several,
smaller types, that would each then offer more valuable in-
sights.

Second, some bugs exhibited characteristics that could fit
into multiple types within the taxonomy proposed by Seaman

Figure 6: Venn diagram showing the number of bugs per type in-
cluding the overlapping types of the complex bugs. The numbers in
the intersections indicate how many bugs, out of their chosen cate-
gory (indicated by the abbreviation), could be assigned to the rest of
the overlapping types.

et al. [6]. Because of their difficulty in classification, we
named them “complex bugs”. There is a total of 12 complex
bugs. Figure 6 is a Venn diagram showing the relations be-
tween the types of these complex bugs. As all the bugs were
allowed to be classified into only one type, the most repre-
sentative class had to be chosen. The diagram displays the
number of bugs in each category below the category name.
In each intersection, the diagram shows the number of bugs,
out of their chosen category, that could also be classified into
other categories within that intersection. For example, out of
8 Non-functional bugs, one of them could also be classified
as Checking. Similarly, out of 14 Checking bugs, one could
also fit in the Non-functional category. Even though there
are 2 types of bugs that cover 7 out of the 12 bugs, namely
Checking and Algorithm / Method, no clear pattern seems to
emerge in the relationships between categories. Thus, no gen-
eral method could be identified, and they had to be classified
on a case-by-case basis.

Also, some of these types are greatly reduced in Haskell,
which was also remarked by some of the interviewees. For
example, the Assignment / Initialisation type is only found in
2 bugs from the dataset, which is 1.4% compared to around
8% as found by Xia et al. [8]. While this category empha-
sizes issues related to mutable states, in Haskell, such bugs
are not possible due to the language’s immutable bindings.
Thus, leaving the only bugs that can fit into this category be-
ing related to wrong bindings, or to changes in function sig-
natures.

Lastly, the explanations of the bug types were found to be
slightly ambiguous and not mutually exclusive. This might
be a potential cause for the existence of complex bugs.

4



RQ3 How do Haskell developers classify bugs and how
is it different from the previously discussed taxonomies?
To find out how bugs are treated in practice, we performed
interviews with four Haskell developers. An excerpt of the
codebook created from the interviews can be found in Ap-
pendix C.

Several types of bugs were a common trend between the
interviews. The most common types mentioned include per-
formance bugs, requirements issues, logic problems, wrong
understanding of the problem, interface problems, and vali-
dation issues. Most of the participants argued that the most
difficult bugs to solve are memory leaks, usually related to the
laziness of Haskell. P1 stated that these bugs are the “trade
off” when using Haskell, as trying to inspect the state of the
program is “changing the laziness behaviour”, as explained
by P3.

While the bugs mentioned seem to form a pattern, the in-
terviewees could not agree on what the most frequent types of
bugs encountered are. This was found to be very dependent
on the projects and experience of the participants. The views
were split on logic bugs, wrong understanding of the problem,
problems with external interactions, and performance bugs.
Also, while one interviewee stated that performance bugs are
the most common type they have to fix, others mentioned that
they never had to deal with issues related to this.

In practice, bug classifications seem to happen rarely, half
of the interviewees agreed that they do not use any sort of
categorization of bugs. The other half also stated the same
at first but changed their minds throughout the discussion.
One of the interviewees stated that they use priorities, e.g.
safety critical, and labels with the location in the code, such
as Backend and Dashboard. Also, P1 remarked that they use
bug classification implicitly when discussing about bugs, for
example by mentioning memory leaks.

When asked about the usability of the taxonomies, all the
interviewees agreed that they need to be modified before
they can prove useful. Some of the interviewees argued that
the taxonomies are focused on “procedural languages” (P3),
and “java-like programs” (P4), missing relevant features of
strictly typed languages such as Haskell. Also, P1 argued
that certain types, such as Assignment / Initialisation, are
greatly reduced in Haskell. Some suggestions to improve the
taxonomies include adding types, such as modeling issue or
misunderstood requirements; splitting up types for better in-
formation, such as GUI being split into stylistic issues and
impacting user flow; and removing types, for example, the
Data type. Also, it was argued that classification is a time in-
tensive process, which might not provide helpful for smaller
teams, or for projects that have very tight deadlines.

While the taxonomies require modifications, and certain
considerations, the participants found such taxonomies to be
promising in practice. They argued taxonomies could prove
useful for documenting, bug triage, developing steps to avoid
frequent types of bugs in the future, and guiding hiring deci-
sions.

Discussion Based on our results, the taxonomy proposed
by Seaman et al. seems to be better suited when being used
on Haskell bugs, while the one proposed by Catolino et al.

does not make a big enough distinction between types to be
helpful in bug triage. However, these findings are subject to
certain threats to validity, which are discussed below.

Although these findings can mostly be attributed to the dif-
ferences in the programming languages, there is the risk that
the differences in results come from the different usages of
the languages. However, this risk is diminished by having
a diverse set of Haskell projects, that overlap in usage with
projects written in imperative languages. For example, Ca-
bal, which is one of the repositories used in this study, is a
build system, similar domain as the projects considered by
Xia et al. [8].

In the classification step, some adjustments had to be made
to encompass some of the bugs found. None of the reposi-
tories chosen have a graphical user interface, however, there
were still bugs related to the user interface. As these bugs
would not match in any of the other categories presented by
Catolino et al., the graphical component was considered in
this study an optional requirement instead, and the bugs were
classified as such.

There is no known ground truth to the classification of bugs
and there are multiple factors that have hindered the process.
For example, the lack of standardization in the documenta-
tion and bug reports, made understanding and classification
of bugs harder. Similarly, the defect types chosen for the
complex bugs could have slightly skewed the results. All as-
sumptions made throughout this study were documented to
ensure the process remains as objective and as reproducible as
possible. However, certain limitations, such as limited time,
relatively small dataset, and the small number of perspectives
that were used in classifying, have to be acknowledged and
ultimately, a larger study focusing on increasing the number
of classifications is necessary.

While the comparisons in figures 4 and 5 can be representa-
tive of how the frequency of bugs changes between types, the
actual numbers might be slightly different. One of the main
reasons is the inclusion of the types that were not present in
this study, namely Testcode and Configuration. By including
them, the percentages of the other types of bugs are slightly
lower than they would be otherwise. However, the results
were taken as found in the studies mentioned, to ensure ob-
jectivity and completeness.

The percentage of bugs classified as Program Anomaly in
this study is almost twice as large as the percentage reported
by Catolino et al. The large discrepancy between the findings
of the two papers might be partially attributed to the method-
ology of the study and the way the bugs were chosen. For
example, because the focus of the study is only on Haskell
bugs, the bug fixes had to touch upon at least one .hs file.
However, by doing this, multiple bugs in a repository might
be missed, such as configuration bugs which often appear in
.yml files instead of .hs ones. To get a full understanding of
how bugs in other parts of the code relate to the types of bugs
found in Haskell, further study is required. Also, this can be
a starting point to look at bugs in repositories that are consti-
tuted of other programming languages in addition to Haskell
and how bugs might be correlated between the different lan-
guages.

The lack of Database-related and Network bugs might also,
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in addition to the reasoning given above, be attributed to the
choice of repositories. Even though the repositories were
picked with diversity in mind, none of the repositories chosen
ended up having bugs related to these types. Due to the lim-
ited time-frame of this project, investigation into this was not
possible, but further research could touch upon more types of
repositories to get a better understanding of missed types of
bugs. This future search is also made promising by claims
made by some of the interviewees, who argued that they have
come across plenty of bugs in these categories.

Similar to the bug classification, in order to identify what
the most encountered type of bugs are, a larger number of
developers is required. This is especially true when the fre-
quency of bugs encountered by an individual is greatly im-
pacted by the area of their expertise and the projects they
work on. While some participants argued that Database re-
lated issues are less likely to appear in practice, others stated
that they happen quite often.

For a taxonomy to prove useful to a developer, they first
need to identify their needs and objectives. There is a great
number of taxonomies proposed in literature, and each of
them can be modified in numerous different ways to better re-
flect what one individual encounters in practice. As P2 stated,
one needs to find “the purpose of organizing or classifying
[...] otherwise there are too many options”.

Finally, this study only focused on bugs present in source
code. But as mentioned by multiple interviewees, a large
number of bugs are present in the modeling and requirements
stages. Thus, researching a broader view of the projects
would benefit the community by understanding how bugs
look like throughout all the steps of development, from re-
quirements to test code.

4 Responsible Research
To ensure the integrity of this study, multiple (ethical) aspects
had to be considered during the research period.

Firstly, the data collected was ensured to be FAIR [7], to
assist in the reproducibility of the study.

Findable: This is ensured by sharing the collected data on
4TU.ResearchData.

Accessible: Similarly, by storing the data on
4TU.ResearchData in a public way, accessible data is
ensured.

Interoperable: To ensure this, the data is shared in formats
that allow for easy and unrestricted usage. The bug
database is stored in a CSV format, and the codebook
in a PDF file.

Reusable: This is ensured by the accompanying documen-
tation, which describes the collection of data, as well
as the structures of the bug database and the codebook.
For example, the bug database contains the following
data: bug name, repository it was taken from, as well as
a link to the bug report, the classification based on the
Catolino et al. taxonomy [2], and the Seaman et al. one
[6], and notes that explain the decision. The documen-
tation also explains the types that each of the two tax-
onomies present. The codebook contains themes, codes,

and their description as well as examples and partial fit
examples taken from the interviews.

Secondly, the interviews pose ethical concerns due to
higher risks for the participants. These risks have been con-
sidered and mitigated to the best of our ability. Some exam-
ple risks are data breach (of potentially sensitive data), which
is mainly handled by storing the data securely with access
only to the study team, and re-identification, which is a risk
minimized by deleting all sensitive data and ensuring that all
quotes taken from the interviews are anonymized.

The interviews have been audio recorded and transcribed.
Because these pose a high risk of re-identification of the par-
ticipants, these were stored in a secure OneDrive file in a MS
Teams channel with access only to the study team. After the
transcripts were checked for correctness, the recordings were
deleted to minimize the risks from a potential data breach.
The transcripts were used to create an anonymized qualita-
tive codebook, with quotes and insights, that were ensured
to not contain potentially sensitive data. After the study, the
transcripts were deleted for similar reasons to the deletion of
the recordings. The codebook was also stored in the same se-
cure OneDrive, Teams channel with the rest of the data. Also,
all contact details have been deleted with the deletion of the
rest of the data collected in the interview.

The interviewees were gathered through private networks,
to minimise the risk of identification. They were informed
about what was expected from them and what will happen to
the collected data. They signed an informed consent form,
which is stored in a private Project Drive with access only to
the study team. They were informed that they could with-
draw at any moment, until the creation of the codebook,
and any data collected until then would be deleted. This
is due to the anonymity of the codebook, as identifying the
data collected from a specific participant is no longer possi-
ble. They also gave their consent to the codebook contain-
ing anonymized quotes and for it to be publicly available on
4TU.ResearchData.

The data management plan and the risks posed by the in-
terviews, which have been described above, have been re-
viewed by the TU Delft Electrical Engineering, Mathemat-
ics and Computer Science faculty Data Steward, as well as
approved by the Human Research Ethics Committee of TU
Delft.

5 Conclusions and Future Work
This paper is meant to be a starting point in understand-
ing how bugs differ between functional programming and
the more explored imperative languages, such as Java. For
this, two bug taxonomies have been used to classify 142 bugs
from 10 Haskell FOSS repositories, in order to understand
what types of bugs appear most in Haskell, and if such tax-
onomies are capable of handling functional languages while
also being useful to Haskell developers. The vast majority of
bugs were classified as Program Anomaly bugs, which also
suggests a limitation to this taxonomy that is not capable of
offering all the information necessary for developers to ef-
fectively perform bug triaging. The other taxonomy offers
a more balanced classification in the types, with the major-
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ity of bugs being either classified as Algorithm / Method or
as Logic. However, some bugs were identified as complex,
as they could be part of multiple types. Four Haskell devel-
opers expressed their experience with bugs and offered their
opinions on the usefulness of these taxonomies. While they
identified some key areas where these taxonomies can be use-
ful such as triage, documentation and management decisions,
bug categorizations need to be chosen and adapted to the spe-
cific needs of the team and project.

Future work could perform bug classification on a larger
scale to assess the limitations of this paper. Thus, allowing
more people to classify a larger set of bugs from more projects
would allow for better modeling of the bugs found in Haskell
projects. Also, it would enable a better comparison with bugs
from non functional languages. Additionally, it can extend
the research to test code and requirements, which can create
a better overview of the types of bugs in the overall projects.
Future studies could also gather the perspectives of more de-
velopers to better understand the processes employed when
debugging. P1 argued that it is a “hurdle” to use debugging
tooling as you need experience to be able to identify the prob-
lem. Thus, research could help fit these types of tools better
to the developers’ needs. Finally, all the findings from this
paper and from any future work can be combined and used
to improve on the taxonomies proposed to make them better
fitted to the wild Haskell bugs.
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A Interview Questions
The interviews were semi-structured and mostly followed the questions below. It is important to mention that sometimes the
questions were altered, or their order changed, or extra questions were asked based on the flow of the conversation.

Bugs in practice
1. What is usually the first reaction when you encounter a bug?
2. Do you have a general method for locating bugs? If not, can you walk me through how you were able to locate the last

bug you encountered?
3. Do you have a general method for fixing bugs? If not, can you walk me through how you were able to fix the last bug you

encountered?
4. What are the most common types of bugs you have encountered?
5. What are the types of bugs you spend the most time on?
6. What are the most tricky types of bugs you had to deal with?
7. Do you use any classification for bugs in your projects?
8. Do you ever push buggy code intentionally?

Opinions on the taxonomies
1. What category of each of the two taxonomies presented do you think will appear most often? How about the least?
2. Do you think there is a category that will not appear at all?
3. Do you think there are bugs that won’t be able to be classified by these taxonomies?
4. Do you think that these taxonomies can be useful in practice?
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B Bug taxonomies

Table B.1: Bug types proposed by Catolino et al. [2].

Defect Type Definition
Configuration issue Bugs concerned with building configuration files. Most are problems with:

(i) external libraries that should be updated or fixed;
(ii) wrong directory or file paths in xml or manifest artifacts.

Network issue Bugs having connection or server issues, due to network problems, unexpected server
shutdowns, or communication protocols that are not properly used within the source
code.

Database-related issue Bugs that report problems with the connection between the main application and a
database. Note that bugs in SQL statements are also part of this category.

GUI-related issue Bugs occurring within the Graphical User Interface (GUI) of a software project, such
as stylistic errors (layouts, padding, buttons), and unexpected failures appearing to the
user.

Performance issue Bugs that report performance issues, including memory overuse, energy leaks, and
methods causing endless loops.

Permission / Deprecation issue Bugs related to:
(i) the presence, modification, or removal of deprecated method calls or APIs;
(ii) unused API permissions.

Security issue Problems related to vulnerabilities in the system.
Program Anomaly issue Bugs concerned with specific circumstances that appear when enhancing existing

source code, such as exceptions, return values, issues in logic.

Table B.2: Bug types proposed by Seaman et al. [6].

Defect Type Definition
Algorithm / Method An error in the sequence or set of steps used to solve a particular problem or computa-

tion, including mistakes in computations, incorrect implementation of algorithms, or
calls to an inappropriate function for the algorithm being implemented.

Assignment / Initialization A variable or data item that is assigned a value incorrectly or is not initialized properly
or where the initialization scenario is mishandled (e.g., incorrect publish or subscribe,
incorrect opening of file, etc.).

Checking Inadequate checking for potential error conditions, or an inappropriate response is
specified for error conditions.

Data Error in specifying or manipulating data items, incorrectly defined data structure,
pointer or memory allocation errors, or incorrect type conversions.

External Interface Errors in the user interface (including usability problems) or the interfaces with other
systems.

Internal Interface Errors in the interfaces between system components, including mismatched calling
sequences and incorrect opening, reading, writing or closing of files and databases.

Logic Incorrect logical conditions on if, case or loop blocks, including incorrect boundary
conditions (”off by one” errors are an example) being applied, or incorrect expression
(e.g., incorrect use of parentheses in a mathematical expression).

Non-Functional Defects Includes non-compliance with standards, failure to meet non-functional requirements
such as portability and performance constraints, and lack of clarity of the design or
code to the reader both in the comments and the code itself.

Timing / optimization Errors that will cause timing (e.g., potential race conditions) or performance problems
(e.g., unnecessarily slow implementation of an algorithm).

Other Anything that does not fit any of the above categories that is logged during an inspec-
tion of a design artifact or source code.
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C Excerpt Codebook

Table C.1: Excerpt from the codebook created from the interviews with the Haskell developers.

Theme Code Explanation Examples Partial-fit Examples

Bugs in
practice Bug types

Types of bugs
mentioned by the
interviewees or
used by them in
practice

• Performance
• Memory / Space leaks
• Logic bugs
• Wrong understanding of the

problem
• Type errors (not caught by

compiler)
• Parsing bugs (bugs happening

when parsing data to get it in
the application)

• Validation issues
• Regression
• External Interaction
• Name shadowing

(accidentally used a variable
from higher up and not the
current state)

• Requirement and environment
bugs (wrong assumptions
about the environment the
code is running in)

• Expectations of the behaviour
of an API

• Type Tetris (someone picked a
function which seemed to fit
the complicated types they
needed, but it does something
completely wrong)

• IO runtime errors
• Security relevant
• Compile time errors

• Wrong variable
• Wrong type
• Forgot one edge case
• Not working how you expect

it
• Wrong thing you

implemented
• Missing stuff
• String conversion that didn’t

work
• Something out of scope of the

Haskell type system
• Interactions with the other

programs other file formats
other interfaces and that’s
where it’s the most easy to
make mistakes

• Haskell type safety erodes at
the edges

Continued on next page
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Theme Code Explanation Examples Partial-fit Examples

Bugs in
practice

Bug classi-
fications

Different ways of
classifying a bug
explained by the
interviewees

• No classification system
• Implicit classification
• Classification by importance
• Safety critical
• Classification based on

location of bug (e.g. server,
dashboard)

• Easy vs tricky bugs (based on
time spent)

• Treat bugs mostly with the
same diligence and priority

• Flexible way of combining
bug tags.

• Naming such as refactoring,
or feature.

Taxonomies Suggestions

Suggestions
given to improve
the taxonomies,
e.g. adding types.

• Adding the Misunderstanding
requirements type

• Splitting GUI into style
related and impacting user
flow.

• Splitting Program Anomaly
because the kind of logic error
is very important

• Database-related is redundant
because problems with
connection are actually
network issues and a bug in
SQL is an issue with Logic.

• Separation between validation
and proper program logic.

• Data type is redundant as it is
not big enough in Haskell

• Separation of non-functional
defects in the taxonomy by
Seaman et al. in a similar way
to how Catolino et al. does, so
permissions and performance.

• Adding the modeling issues
type. This includes both
writing the model and also
implementing something that
fits the model.

• Logic bugs sounds very broad
• Hard to identify differences

between Assignment /
Initialization and Checking

• Strange separation between
Logic and Algorithm /
Method

• Taxonomies are more relevant
at the later stages of a project
when moving from the
prototype to an actual
production system

• Network issues are part of
Configuration issues but on
the network stack.

Continued on next page
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Theme Code Explanation Examples Partial-fit Examples

Taxonomies Usefulness

How useful the
interviewees
perceive the
taxonomies

• Only some categorizations
help

• Multiple bugs in a category
allow for creation of steps that
help avoid that category in the
future

• Taxonomy proposed by
Catolino et al. is more useful
than the one by Seaman et al.

• No usefulness in
programming, but it is in
research.

• Great for documenting
• Identify areas where a

developer (team) needs to
learn more.

• Change from gut feeling
debugging to classification
guided

• Useful for bug triage.
• Useful in larger projects and

teams, but take too much time
for smaller ones.

• Helpful for hiring purposes.
• Indicators for better tests
• Identify purpose of using such

a taxonomy, before choosing
it. Otherwise there’s just too
many options to choose from
and becomes unhelpful.

• People lack a vocabulary
when discussing about bugs.

• Taxonomies are for
procedural languages, such as
for Java-like programs.

• Taxonomies lack elements
from strictly type languages,
like Haskell.
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