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Abstract
We consider the problem of orienting a given, undirected graph into a (directed) acyclic graph
such that the in-degree of each vertex v is in a prescribed list λ(v). Variants of this problem have
been studied for a long time and with various applications, but mostly without the requirement
for acyclicity. Without this requirement, the problem is closely related to the classical General
Factor problem, which is known to be NP-hard in general, but polynomial-time solvable if no
list λ(v) contains large “gaps” [Cornuéjols, J. Comb. Theory B, 1988]. In contrast, we show that
deciding if an acyclic orientation exists is NP-hard even in the absence of such “gaps”.

On the positive side, we design parameterized algorithms for various, natural parameterizations
of the acyclic orientation problem. A special case of the orientation problem with degree constraints
recently came up in the context of reconstructing evolutionary histories (that is, phylogenetic
networks). This phylogenetic setting imposes additional structure onto the problem that can be
exploited algorithmically, allowing us to show fixed-parameter tractability when parameterized by
either the treewidth of G (a smaller parameter than the frequently employed “level”), by the number
of vertices v for which |λ(v)| ≥ 2, by the number of vertices v for which the highest value in λ(v) is at
least 2. While the latter result can be extended to the general degree-constraint acyclic orientation
problem, we show that the former cannot unless FPT=W[1].
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19:2 Finding Degree-Constrained Acyclic Orientations

1 Introduction

The de-facto standard approach to reconstructing phylogenetic trees from genomic data
employs heuristic local-search in the space of all rooted evolutionary trees [5]. The success of
this method is highly impacted by the choice of neighborhood (as one would expect from a
local-search approach), and existing research in this direction is vast [10, 17, 18, 2]. Recently,
efforts have been made to use this technique to reconstruct phylogenetic networks, thereby
supporting reticulate/hybridizing evolution. As a possible neighborhood of a rooted network
N , Molloy et al. [15] proposed to consider all reorientations of (subnetworks of) N . The
question whether a given undirected graph has a valid orientation into a phylogenetic network
and the enumeration of such networks are fundamental computational problems in this
context. We model these problems as the search for acyclic orientations of a given undirected
graph, such that the in-degree of each vertex v is in a prescribed list λ(v).

The problem of orienting a given undirected graph G, subject to certain degree-related
constraints, has been long studied with various applications [8, 6, 7], but mostly without
the requirement for acyclicity. Without this requirement, the problem is closely related to
the classical General Factor problem, introduced by Lovász [12, 13], which asks for an
(undirected) subgraph of G satisfying the given degree constraints. Cornuéjols [4] showed that
General Factor is polynomial-time solvable if the maximum gap size1 is at most one, and
NP-hard otherwise, even if the maximum degree in the input graph is three. Both of these
results can be easily transferred to the problem of finding (possibly cyclic) degree-constrained
orientations (to reduce General Factors to the orientation problem, subdivide each edge
of the input graph G with a vertex v with λ(v) = {0, 2}; in the other direction, subdivide
each edge with a vertex v with λ(v) = {1}, see Theorem 5). Deciding whether there is an
acyclic orientation constraint by specific lower bounds f(v) for the in-degree of each vertex v

(that is, λ(v) = {f(v), f(v) + 1, . . .}) has been shown to be NP-hard, even if f(v) ∈ {0, 1} for
all but one vertex [11]. A generalization of the problem with weighted edges and allowing
edge and vertex deletions to satisfy prescribed weight-constraints has been considered by
Mathieson and Szeider [14], showing parameterized results with respect to the number of
deleted elements and the maximum integer in any of the given lists.

The phylogenetic setting, which is the main motivation for our work, imposes structure on
the allowed in-degree lists. Indeed, phylogenetic networks (which, for the purpose of this work,
are rooted directed acyclic graphs) are made up of four types of vertices: (1) the (unique) root,
with in-degree zero, (2) leaves with out-degree zero and in-degree one, (3) tree-nodes with in-
degree one, and (4) reticulations with out-degree one. Thus, if the input network is orientable
into a phylogenetic network, all vertices v but one must satisfy λ(v) ⊆ {1, deg(v) − 1}. Most
commonly, phylogenetic networks are “binary”, that is, all nodes of type (3) and (4) have
degree (that is, in-degree plus out-degree) three, in which case λ(v) ⊆ {1, 2} and no vertex
can be of type (3) and (4) at the same time. While these lists do not have gaps, we cannot use
General Factor to solve this case, since phylogenetic networks must be acyclic. Bulteau
et al. [3] showed a polynomial-time algorithm that computes an orientation of a given
undirected graph of maximum degree 3 into a (binary) network and proved NP-hardness if
the input graph has degree ≥ 5, leaving open the degree-4 case. If the in-degree of every
vertex v is fixed, that is, |λ(v)| = 1 for all vertices v, an algorithm of Huber et al. [9] can
produce an orientation in linear time. The authors also considered the problem of orienting a

1 The gap size is the maximum size of any “gap” appearing in λ(v) for any vertex v, that is, maxv,i{λv
i+1 −

λv
i − 1} when taking λ(v) = {λv

1 < λv
2 < . . . }.
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given undirected graph in such a way, that the resulting network falls in one of various classes
of binary phylogenetic networks. They showed fixed-parameter tractability with respect to
the “level”2 of the input graph.

Our contributions

We analyze the parameterized complexity of the aforementioned degree-constraint orientation
problems. When cyclic orientations are permitted, the polynomial-time algorithm for
General Factor [4] can be applied; this approach can be extended to show fixed-parameter
tractability for the parameter “combined number of gaps of size ≥ 2 in all degree lists”.
Interestingly, such a result is unlikely for the case of acyclic orientations. While this follows
already from the known NP-hardness proof for acyclic orientations [11], we strengthen the
result to maintain NP-hardness for gapless inputs even for the phylogenetic version on input
graphs of maximum degree three.

Since phylogenetic networks can be expected to be tree-like, algorithms for graphs of
low treewidth are attractive for this application. We show that the phylogenetic version
of the orientation problem can be solved in O(8tw · tw! · tw2 ·n) time on n-vertex graphs
of treewidth tw. For the cyclic and acyclic orientation problems with unrestricted λ, this
approach yields running times of O(q2 tw · tw2 ·n) and O(q2 tw · tw! · tw2 ·n) time, where q is
the maximum allowed in-degree. We justify adding the second parameter q by proving that
the problems with unrestricted λ are W[1]-hard with respect to the treewidth alone.

A general observation for phylogenetic networks is that the number of reticulation events
is small compared to the overall size of the phylogeny. This means that we expect to see
only few vertices v whose list λ(v) contains numbers greater than one. We call these vertices
“potential reticulations” and show that a corresponding acyclic orientation of an n-vertex
graph with r potential reticulations can be computed in O(2r · r · n2 + n2 · q) time.

Motivated by the observation that the acyclic orientation problem is linear-time solvable
if every degree list λ(v) contains just a single entry [9], we say that a vertex v is hazy if
|λ(v)| > 1 and develop an algorithm computing a corresponding acyclic orientation of a
graph with m edges and h hazy vertices in O(2h · h · m) time.

2 Preliminaries

We use the notations [a, b] := {a, a + 1, . . . , b}, [n] := [1, n], and [n]0 := [0, n]. By default,
graphs are assumed to be simple and undirected. For a vertex or edge x of a graph
G = (V (G), E(G)), G − x denotes the graph obtained from G by deleting said vertex or
edge. The induced subgraph G[V ′] is obtained from G by deleting all vertices in V (G) \ V ′.
An orientation of G is a directed graph G→ with the same vertex set V (G→) = V (G), such
that its arc set A(G→) includes for every edge {v, w} ∈ E(G) exactly one of the arcs (v, w),
(w, v). A directed graph G→ is acyclic if it contains no directed cycle. A total order σ of
the vertices of G→ is a topological order if (v, w) ∈ A(G→) implies v <σ w for all vertices
v, w; in this case we write σ ∈ Top(G→). Every total order σ of V (G) induces an acyclic
orientation of G for which σ is a topological order. The notation A <σ B means that a <σ b

for all a ∈ A, b ∈ B.

2 The level of an undirected graph is the maximum over all biconnected components of the size of a
smallest feedback edge set in that biconnected component.

IPEC 2023
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Figure 1 (a) shows the “copy gadget” used in the proof of Lemma 3. The vertices are annotated
with their degree lists λ. (b) and (c) show the only two acyclic λ-abiding orientations of (a).

We denote the set of neighbors of v in an (undirected) graph G by NG(v), the degree
by degG(v) := |NG(v)|, the in-degree in G→ by deg−

G→(v) and the out-degree by deg+
G→(v).

A vertex v is a source in a directed graph G→ if deg−
G→(v) = 0. If clear from context, the

subscripts may be omitted. The Degree-Constrained Orientation problem is defined
as follows.

Degree-Constrained Orientation (DCO)
Input: A graph G = (V, E), and a function λ : V → 2N.
Question: Is there an orientation of G such that deg−(v) ∈ λ(v) for each v ∈ V ?

A feasible solution of an instance of DCO is called λ-abiding orientation. The variant of DCO
where only acyclic orientations are allowed is denoted Degree-Constrained Acyclic
Orientation (DCAO). When writing each set λ(v) as λ(v) =: {λv

1 < λv
2 < . . . }, we say that

λ(v) has a k-gap at position i if λv
i+1 −λv

i > k for k ≥ 1. Finally, we consider a special case of
the DCAO problem that arises in phylogenetics: In Phylogenetic Degree-Constrained
Orientation (PDCO), we have

a unique root vertex r with λ(r) = {0},
a non-empty λ(v) ⊆ {1, degG(v) − 1} for each vertex v ̸= r with degG(v) > 1, and
λ(v) = {1} for each vertex v ̸= r with degG(v) = 1 (called leaves).

If the input graph is disconnected, we can solve the problem on each connected component
individually. Feasible λ-abiding solutions of the connected components can easily be combined
to a solution for the entire graph. Therefore, throughout the paper we assume that the input
graph G is connected.

3 NP-Hardness of PDCO

Recall that we can decide in polynomial time whether a graph of maximum degree three
can be oriented into a phylogenetic network [3]. Essentially, this requires that all vertices v

(except the root and the leaves) have λ(v) = {1, deg(v) − 1}. We show that, if λ(v) is only
required to be a subset of {1, deg(v) − 1}, the problem becomes NP-hard. In particular, we
reduce the NP-hard [16] Monotone Exact 1 in 3 SAT (MX3SAT) to PDCO. In this
problem, the input is a CNF-formula Φ without negations where each clause contains at
most three literals and the question is whether there is an assignment of the variables such
that in each clause exactly one variable is assigned true.

Our reduction makes use of a “copy gadget” allowing us to multiply the information
whether a variable is set to true or false. Each such gadget consists of five degree-3 vertices
as shown in Figure 1(a). We refer to the three edges leaving any such gadget as its top
edge and its two bottom edges, where the top edge is the one attached to the vertex v with
λ(v) = {1, 2}. It is not difficult to verify that the only two possible acyclic orientations
of the copy gadget are the ones shown in Figure 1(b) and (c). This implies the following
observation.
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▶ Observation 1. Let (G, λ) be an input for the DCO problem such that G contains a copy
of the gadget as an induced subgraph. Let G→ be a λ-abiding acyclic orientation of G. Then,
all bottom edges are oriented towards the gadget in G→ if and only if the top edge is oriented
away from the gadget in G→.

▶ Construction 2. Let Φ be an instance of Monotone Exact 1 in 3 SAT with n

variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. For each variable xi, let ri ∈ [m] be
the number of occurrences of xi in Φ, let ρi : [ri] → [m] be an arbitrary total order of the
indices of clauses that contain xi and let Xi := {Cρi(1), . . . , Cρi(ri)} be the set of clauses that
contain xi.

We construct from Φ an instance (G, λ) of PDCO as follows. For each variable xi, we add
a vertex vi with λ(vi) = {1, 2} and, for each clause Cj , we add a vertex wj with λ(wj) = {1}.
For each variable xi we add ri − 1 many copy gadgets to G in the following way: The first
copy gadget of xi connects with its top edge to the vertex vi. The top edge of any subsequent
copy gadget of xi is identified with the right bottom edge of the previous copy gadget. The left
bottom edge of the j-th copy gadget of xi attaches to the clause vertex wρi(j) belonging to the
j-th clause Cρi(j) in Xi. In this way, we create a chain of ri − 1 many copy gadgets, where
the last one connects with its two bottom edges to the clause vertices wρi(ri−1) and wρi(ri) of
the last two clauses in Xi. In the corner case that ri = 1, we attach vi directly to wρi(1).

To ensure that there is a unique root, we add a vertex u0 with λ(u0) = {0} and vertices ui

with λ(ui) = {1} for all i ∈ [n] and we add the edges {ui, ui+1} for all 0 ≤ i ≤ n − 1, as
well as {ui, vi} for all i ∈ [n]. Finally, for each degree-2 vertex z in the construction, add a
private neighbor ℓz with λ(ℓz) = {1}.

Note that the definition of λ for the variable vertices simulates the two possible states of
the variable and, for the clause vertices, it forces exactly one variable in the clause to be
true. Further, note that the vertex u0 and all ℓz have degree one and all variable vertices vi,
all vertices ui and all vertices of a copy gadget have degree three. Note also that each
clause Cj in Φ contains exactly three variables and, thus, the corresponding clause vertex wj

is connected to exactly three copy gadgets. Hence, every vertex in G has degree at most
three. Finally, note that λ has no gaps of any size.

▶ Lemma 3. Let Φ be an instance of MX3SAT and let (G, λ) be the instance of PDCO
constructed by Construction 2 for Φ. Then, Φ is satisfiable if and only if G has a λ-abiding
acyclic orientation.

Proof. “⇒”: Suppose that Φ has a satisfying assignment β : {x1, x2, . . . , xn} → {true, false}.
We can construct a λ-abiding acyclic orientation G→

β for (G, λ) as follows:
The edge {u0, u1} is oriented towards u1.
For each i ∈ [n], the edge {z, ℓz} for each ℓz is oriented towards ℓz and the edges {ui, vi}
and {ui, ui+1} are directed away from ui.
For each variable xi with β(xi) = false, the edge between vi and the first copy gadget of xi

is oriented towards vi. Further, each copy gadget of xi is oriented as shown in Figure 1(c),
implying that the edge between any such copy gadgets and any clause vertex wj of a
clause Cj containing xi is oriented away from wj .
Analogously, for each variable xi with β(xi) = true, the edge between vi and the first
copy gadget of xi is oriented away from vi. Further, each copy gadget of xi is oriented as
shown in Figure 1(b), implying that the edge between any such copy gadgets and any
clause vertex wj of a clause Cj containing xi is oriented towards wj .

IPEC 2023



19:6 Finding Degree-Constrained Acyclic Orientations

Since each clause Cj contains exactly one variable that is assigned true by β, exactly one
of the edges incident to wj is oriented towards wj in G→

β , fulfilling the given in-degree list
of wj . One can verify that G→

β satisfies all in-degree lists of all vertices in copy-gadgets
(see Figure 1) as well as the in-degree lists of all ui, vi, and all ℓz. Moreover, G→

β is acyclic
since (a) each copy gadget is oriented in an acyclic way, (b) no directed cycle can contain
both bottom arcs of any copy gadget, and (c) no directed cycle can contain any vi due to
the orientation of the edges {ui, vi} for all i ∈ [n]. Therefore, G→

β is a λ-abiding acyclic
orientation and (G, λ) is a yes-instance.

“⇐”: Suppose that G has a λ-abiding acyclic orientation G→. We define a truth
assignment β : {x1, x2, . . . , xn} → {true, false} as follows for each variable xi:

β(xi) :=
{

false if vi has an arc incoming from the first copy gadget of xi in G→

true otherwise.

By construction of G, for each variable xi, all edges between copy gadgets of xi and clause
vertices are oriented the same way as the edge between vi and the first copy gadget of xi

in G→ (the edge incident with vi is oriented away from vi if and only if the edges between
the copy gadgets of xi and the clause vertices are oriented away from their copy gadget).
Thus, for each variable xi, we have β(xi) = true if and only if, for each clause Cj ∈ Xi, the
edge between wj and the corresponding copy gadget of xi is oriented towards wj . Since G→

is a solution, each clause vertex wj has exactly one incoming arc in G→, with the other
edges oriented away from wj . Thus, the assignment β satisfies every clause of Φ exactly once,
implying that Φ is a yes-instance. ◀

Since PDCO is a special case of DCAO, the previous reduction implies the following.

▶ Corollary 4. PDCO and DCAO are NP-hard, even if the maximum degree is 3 and the
instance contains no gaps.

4 Parameterized Algorithms

4.1 Number of gaps
▶ Theorem 5. DCO can be solved in polynomial time, when the instance does not contain
2-gaps.

Proof. Let G be any graph and λ : V (G) → 2N. We obtain G′ from G by subdividing every
edge e once with a new vertex γe of degree 2. Extend λ to V (G′) by assigning λ(γe) = 1 for
every vertex γe ∈ V (G′) \ V (G). By a result of Cornuéjols [4], we can in polynomial time
find a subgraph G′′ of G′ with degG′′(v) ∈ λ(v) for each v ∈ V (G′).

Note that, for any e = {v, w} ∈ E(G), the subgraph G′′ contains exactly one of the
edges {v, γe}, {w, γe}. We use this to define an orientation of G, by directing e = {v, w}
towards w if and only if {w, γe} ∈ E(G′′). It is easy to verify that this orientation satisfies
deg−(v) = degG′′(v) for every vertex v ∈ V (G) and is thus a solution for an instance of
DCO. ◀

A simple branching algorithm gives us the following result in regards to the total number
of 2-gaps appearing in all λ(v) combined, which we denote by gaps2.

▶ Theorem 6. DCO can be solved in 2gaps2 · nO(1) time on n-vertex graphs.
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Proof. Let (G, λ) be any given instance. For any vertex v let k be the number of 2-gaps
in λ(v). Note that λ(v) can be partitioned into k + 1 subsets, none of which has any 2-gaps.
By restricting λ(v) to one of these subsets for every vertex v, we obtain a polynomial-time
solvable subproblem according to Theorem 5. As there are at most 2gaps2 such subproblems,
the claimed time bound follows. ◀

4.2 Treewidth
▶ Theorem 7. Let an n-vertex graph G be given together with a tree decomposition of
width tw. Let further maxλ = maxv∈V (G) max λ(v) be the maximum admitted in-degree.
Then the instance (G, λ) of

DCO can be solved in O
(
(maxλ)2 tw · tw2 ·n

)
time.

DCAO can be solved in O
(
(maxλ)2 tw · tw! · tw2 ·n

)
time;

PDCO can be solved in O
(
8tw · tw! · tw2 ·n

)
time;

Theorem 7 follows directly from the following lemma, which we prove by a dynamic program-
ming approach. This proof is deferred to a long version of this paper.

▶ Lemma 8. Let an n-vertex graph G be given together with a tree decomposition of width tw.
Let d1, d2 ∈ N with λ(v) ⊆ [d1]0 ∪ [deg(v) − d2, deg(v)] for each vertex v. Then the instance
(G, λ) of

DCO can be solved in O
(
(d1 + d2 + 2)2tw · tw2 · n

)
time;

DCAO can be solved in O
(
(d1 + d2 + 2)2tw · tw! · tw2 · n

)
time.

4.3 Number of hazy vertices
We say a vertex v is settled if |λ(v)| = 1 and hazy otherwise. We denote by h the number of
hazy vertices. If every vertex is settled, DCAO (not necessarily connected) can be solved
in O(m) time by repeatedly picking a vertex v with λ(v) = {0}, deleting it from the graph
and subtracting 1 from each of its neighbors’ desired in-degrees until we reach a trivial
instance with a) λ(v) ̸= {0} for each vertex v or b) G only contains a single vertex v with
λ(v) = {0}. Consequently, PDCO can be solved in O(2h · m) time since every hazy vertex
admits only two possible in-degrees.

In the following, we want to show that DCAO too is fixed-parameter tractable with
respect to h. To this end, let (G, λ) be an instance of DCAO and let H and S be the set of
hazy and settled vertices, respectively. For s ∈ S, we will not distinguish between λ(s) and
its only element for the sake of brevity.

We define the closure A(X) of a set X ⊆ H as the smallest superset of X that contains
every vertex v ∈ S with |NG(v)∩A(X)| ≥ λ(v). Observe that the closure can be computed in
O(n+m) time: As long as there remains a vertex v ∈ X ∪{s ∈ S | λ(s) = 0}, add v to A(X),
decrement λ(w) for all w ∈ NG(v) ∩ S, and delete v. Note that this also implies that A(X)
is uniquely defined.

▶ Observation 9. Let X ⊆ H. The closure A(X) can be computed in O(n + m) time.

A subset X of H is called feasible if there exists an order σ of the vertices such that
A(X) <σ V (G) \ A(X) and the orientation G→ induced by σ satisfies deg−

G→(v) ∈ λ(v) for
all v ∈ A(X). The order σ is then called a feasible order of X. If we know which subsets
of H are feasible, then we can solve DCAO as shown by the following lemma.

▶ Lemma 10. (G, λ) is a yes-instance of DCAO if and only if H is a feasible subset of the
hazy vertices H and A(H) = V (G).

IPEC 2023
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p u z w

X
A(X)

Z

Figure 2 Illustration of the proof of Lemma 11. Vertices are ordered left to right according to σ.

Proof. Let G→ be a λ-abiding acyclic orientation of G. Suppose for contradiction that
Q := V (G) \ A(H) ̸= ∅. By definition of the closure, every vertex of Q must have at least
one incoming edge from another vertex in Q. Thus, the induced subgraph G→[Q] does not
contain a source, and hence must contain a cycle. This proves A(H) = V (G) and thus also
that H is a feasible subset. The reverse implication is immediate. ◀

We compute the feasible subsets by dynamic programming, based on the following lemma.

▶ Lemma 11. Let X ∪ {p} be a feasible subset of hazy vertices H and σ a feasible order of
X∪{p} with induced orientation G→. If X <σ {p}, then X has a feasible order σ′ ∈ Top(G→)
with A(X) <σ′ {p} <σ′ V (G) \ (A(X) ∪ {p}).

Proof. Figure 2 illustrates this proof.
Let G→ be the orientation induced by σ. Let z ∈ A(X) be chosen σ-minimal with p <σ z.

If no such z exists, then we are done since σ is a feasible order of X, then. Since X <σ {p},
we cannot have z ∈ X. Therefore z ∈ S = V (G) \ H and |NG(z) ∩ A(X)| ≥ λ(z) holds. Since
V<p := {v ∈ V | v <σ p} ⊆ A(X ∪ {p}), any vertex v ∈ V<p must have deg−

G→(v) ∈ λ(v).
This implies V<p ⊆ A(X).

Now let Z be the connected component of G[A(X) \ V<p] containing z. We claim
that G→ directs no edge from V \ A(X) to Z. Hence we may modify σ by moving Z in front
of p without affecting the induced orientation G→.

To prove the claim, assume for contradiction that G→ contains an arc (u, w) with
p ≤σ u <σ z and w ∈ Z. Then define A′ := A(X) \ Z≥w where Z≥w = {v ∈ Z | v ≥σ

w}. Observe that no vertex v in A′ has an incoming edge from Z≥w ⊆ V \ A′. Hence,
|NG(v) ∩ A′| = |NG(v) ∩ V<p| < deg−

G→(v) = λ(v). This means that A′ contradicts the
minimality of A(X).

Therefore, Z can be moved in front of p in the topological order. If this is followed by
repeating the above steps as long as some valid choice of z exists, we eventually obtain σ′ as
claimed. ◀

▶ Theorem 12. DCAO can be solved in O(2h · h · m) time on an m-edge graph with h hazy
vertices.

Proof. Let (G, λ) be a given DCAO-instance and let H be the set of hazy vertices. Using the
Iverson bracket notation3, we define a dynamic programming table T [X] := [X is feasible].
By Lemma 10 and Observation 9, the answer to the input instance can be computed in
linear time from T [H]. Because A(∅) contains no hazy vertices, we can check in linear time
whether there is a λ-abiding orientation of G[A(∅)] as outlined in the beginning of this
section. This yields T [∅].

It remains to compute T [X] recursively for any nonempty X ⊆ H. To this end, we iterate
over all p ∈ X. Define X ′ := X \ {p} and µ := |NG(p) ∩ A(X ′)|. If T [X ′] ̸= 1 or µ /∈ λ(p)
then continue with the next choice of p. Otherwise we temporarily replace λ(p) by µ and

3 For a proposition P , [P ] is defined to be 1 if P holds and 0 otherwise.
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orient all edges between A(X ′) and V (G) \ A(X ′) away from A(X ′). We then check in linear
time whether this orientation can be extended to a λ-abiding orientation of G[A(X) \ A(X ′)].
If this is the case, we set T [X] = 1. Otherwise, after trying all choices of p, we set T [X] = 0.

To see that this algorithm computes T [X] correctly, suppose first that we end up
with T [X] = 1. Since T [X ′] = 1, by induction there is a feasible order σ′ of X ′. Take also
a topological order σ′′ of the constructed orientation of G[A(X) \ A(X ′)]. Produce a new
order σ of V (G) by first taking A(X ′) in the order given by σ′, followed by A(X) \ A(X ′)
in the order given by σ′′, and finally all remaining vertices in an arbitrary order. It is not
difficult to check that σ is a feasible order of X.

Now suppose conversely that X has a feasible order σ with induced orientation G→ of G.
By Lemma 11, there is some choice of p for which X ′ has a feasible order σ′ ∈ Top(G→)
which puts p immediately after A(X ′). In particular, deg−

G→(p) = |NG(p) ∩ A(X ′)| and
T [X ′] = 1 by induction. Hence, the iteration which considers p will produce T [X] = 1.

With regards to the running time, there are clearly 2h entries to compute. For each choice
of p we only need O(m) time. This gives O(2h · h · m) time overall. ◀

4.4 Potential Reticulations
Throughout this section, let (G, λ) be an instance of DCAO and let R be the set of potential
reticulations of G, that is, R := {v ∈ V | max λ(v) ≥ 2}. Consequently, λ(w) ⊆ {0, 1} for
each w ∈ V (G) \ R. This lets us assume that G − R is acyclic as, otherwise, no λ-abiding
orientation can by acyclic. Thus, we call every connected component T in G − R a tree. For
any v ∈ R, let T (v) denote the set of trees containing neighbors of v in G and, for any tree
T , let T −1(T ) denote the set of vertices v ∈ R with T ∈ T (v). Further, let T0(v) denote the
set of trees in T (v) that contain vertices v with 0 ∈ λ(v).

While parameterizing with the number of potential reticulations is particularly motivated
for the phylogenetic version of the orientation problem, the algorithm from Section 4.3 can
be used to solve PDCO if |R| is small since, in the phylogenetic setting, all hazy vertices are
potential reticulations. Therefore, we will focus on the DCAO problem here. Our algorithm
for solving DCAO first applies a series of reduction rules to simplify the instance and allow
us to draw important observations. We then proceed with a dynamic programming over
subsets of the set R, running in O∗(2|R|) time.

▶ Lemma 13. Let T be a tree in G. Let G→ be an acyclic orientation of G with deg−
G→(v) ∈

λ(v) for each v ∈ V (T ). Let σ ∈ Top(G→) and let rT be the minimum of V (T ) with respect
to σ. In G→,

(i) either rT is a source or rT has a unique parent v ∈ R,
(ii) each vertex v ∈ V (T ) with v ̸= rT has a unique parent u and u ∈ V (T ),
(iii) for each vertex v ∈ V (T ), there is a directed rT -v-path, and
(iv) if any vertex v ∈ V (T ) has an incoming arc (u, v) with u ∈ R, then v = rT and

u <σ V (T ), and
(v) for each u, v ∈ T −1(T ) with u <σ v, all edges between T and v are oriented towards v.

Proof. (i): Suppose rT is not a source in G→. Since rT is minimum with respect to σ, it
has a parent in R. Moreover, rT cannot have two parents in G→ since λ(rT ) ⊆ {0, 1} and
deg−

G→(rT ) ∈ λ(rT ).
(ii): Assume towards a contradiction that T contains a vertex v ̸= rT with no parent

in V (T ). Since T is a tree, it contains |V (T )| − 1 edges and, thus, the sum of in-degrees
in G→[V (T )] is |V (T )| − 1. Since rT and v both have in-degree 0 in G→[V (T )], the
pidgeonhole principle implies that there is a vertex w with in-degree at least two in G→[V (T )],
contradicting deg−

G→(w) ∈ λ(w).
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(iii): This follows immediately from (ii) and the fact that T is acyclic even in G.
(iv): v = rT follows from (i) and (ii) and u <σ V (T ) then follows from (iii).
(v): Assume towards a contradiction that there is an arc (v, w) in G→ with w ∈ V (T ).

By (iv), w is the root of T , so u <σ v <σ w ≤σ V (T ). However, since u ∈ T −1(T ), there is
also an arc (u, w′) in G→ with w′ ∈ V (T ), contradicting (iv). ◀

In the following, we call the vertex rT described in Lemma 13 the root of T in G→.

▶ Reduction Rule 14. If G contains some v with λ(v) = ∅, then return “no”.

▶ Reduction Rule 15. Let u ∈ V be a vertex with λ(u) = {0}. For each neighbor v of u,
decrement all numbers in λ(v) and delete u.

Note that all trees T that do not contain a vertex v with 0 ∈ λ(v) have to receive an
incoming arc from a vertex in R. If this vertex is unique for some T , then we can already
orient this edge.

▶ Reduction Rule 16. Let T be a tree in G such that 0 /∈ λ(v) for all v ∈ V (T ). If
T −1(T ) = ∅, then return “no”. If there is some u with T −1(T ) = {u} and |NG(u)∩V (T )| = 1,
then remove T from G.

▶ Reduction Rule 17. Let T be a tree in G and let u ∈ R. Let XT (u) denote the set of edges
between u and T and let ℓ := |XT (u)| ≥ 2. Then remove all edges in XT (u) and decrease all
numbers in λ(u) by ℓ.

Correctness of Reduction Rule 17. We show that, in any λ-abiding orientation G→ of G,
all edges of XT (u) are directed towards u. Towards a contradiction, assume that some G→

contains the arc (u, v) for some v ∈ V (T ). By Lemma 13(iv), v is the root of T in G→ and
v ≤σ T for all topological orders σ of G→. But then, all edges in XT (u) are oriented away
from u in G→, contradicting Lemma 13(iv). ◀

In the following, we assume that G is reduced with respect to the reduction rules presented
so far. In particular, for each v ∈ R and each T ∈ T (v), there is a single edge between v and
T in G and each tree T either contains a vertex u with 0 ∈ λ(u) or has at least two vertices
in T −1(T ).

Dynamic programming on the subsets of R. Next, we describe a dynamic program
that can decide whether an acyclic λ-abiding orientation exists for G. As usual, it can be
augmented to actually construct such an orientation. Our dynamic programming table DP
stores DP[Q] = 1 for Q ⊆ R if and only if there is an acyclic orientation G→ of G such that
(a) deg−

G→(v) ∈ λ(v) for all v ∈ V \ (R \ Q) and (b) the vertices of Q preceed the vertices
of R \Q in some topological order of G→. Let us remark that ∅ fulfills the conditions (a) and
(b), so DP[∅] = 1. Further, if DP[R] = 1, then G admits an acyclic λ-abiding orientation.

In the following, let Q ⊆ R and suppose that G admits an acyclic λ-abiding orientation
G→ with a topological order σ satisfying Q <σ R \ Q, that is, all vertices of Q preceed all
other vertices of R in σ. Let v be the maximum of Q with respect to σ, let T ∈ T (v) and let
e be the edge in G between v and T . If T ∈ T (u) for some u <σ v then, by Lemma 13(v), e

must be directed towards v in G→. Otherwise e may or may not be directed towards v in
G→. Any vertex v whose list λ(v) does not contradict this will be considered as a possible
choice for a “last vertex of Q” in the dynamic program.
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▶ Definition 18. Let Q ⊆ R and let v ∈ Q. Let αQ(v) := {T ∈ T (v) | T −1(T ) ∩ Q ̸= {v}}
be the set of trees that have an edge to v but also to another vertex in Q, and let NQ(v) :=
N(v) ∩ Q. If λ(v) contains a number z with |αQ(v)| ≤ z − |NQ(v)| ≤ |T (v)|, we call v

eligible with respect to Q.

The computation of DP[Q] is then given by the following recursion:

DP[Q] :=


1 if Q = ∅
1 if Q contains some v that is eligible wrt. Q and DP[Q \ {v}] = 1
0 otherwise.

▶ Lemma 19. Let Q ⊆ R. The definition of DP[Q] matches its semantics, that is, DP[Q] = 1
if and only if there is an acyclic orientation G→ of G such that
(a) deg−

G→(v) ∈ λ(v) for all v ∈ V \ (R \ Q) and
(b) the vertices of Q preceed the vertices of R \ Q in some topological order of G→.

Proof. First, note that the lemma holds for Q = ∅. Thus, by induction, suppose that the
lemma holds for all Q′ with |Q′| = |Q| − 1.

“⇒”: Let DP[Q] = 1, that is, Q contains some v that is eligible with respect to Q and
DP[Q′] = 1 where Q′ := Q \ {v}. By induction hypothesis, there is some orientation G→′

of G such that deg−
G→′(u) ∈ λ(u) for all u ∈ V \ (R \ Q′) and the vertices of Q′ precede the

vertices of R \ Q′ in some topological order σ of G→′. Further, since v is eligible with respect
to Q, there is some t ∈ N with |αQ(v)| ≤ t ≤ |T (v)| and |NQ(v)| + t ∈ λ(v). Hence, there is
a size-t set X with αQ(v) ⊆ X ⊆ T (v).

Now, we modify G→′ into a new orientation G→ as follows: First, for each T ∈ X \ αQ(v),
pick any vertex w ∈ V (T ) with 0 ∈ λ(w) and orient all edges incident with a vertex in T

away from w. Note that w exists since G is reduced with respect to Reduction Rule 16 and
due to condition (b). The orientation is well-defined since T is a tree. Also note that the
in-degrees of vertices in Q′ remain unchanged since no vertex of Q′ is adjacent to any vertex
in such a T (since T /∈ αQ(v)). Second, orient all edges between v and vertices w ∈ R \ Q

away from v.
Since no vertex in Q′ has become a descendant of v and no vertex in R \ Q has become an

ancestor of v, we conclude that there is a topological order π of G→ with Q′ <π v <π R \ Q.
This implies condition (b). Further, as all vertices in Q′ preceed v in π and v has exactly
one arc incoming from each T ∈ X , we conclude that deg−

G→(v) = |NQ′(v)| + t ∈ λ(v). This
implies condition (a).

“⇐”: Let G→ be an acyclic orientation of G with topological order σ such that conditions
(a) and (b) are satisfied. Let v be the maximum with respect to σ of Q and let P denote the
set of parents of v in G→. Clearly, we have P ∩ Q = NQ(v). Further, by Lemma 13(iv), all
edges between v and trees in αQ(v) are oriented towards v in G→. Thus, |NQ(v)|+ |αQ(v)| ≤
deg−

G→(v) ≤ |NQ(v)| + |T (v)|. By condition (a), we have deg−
G→(v) ∈ λ(v), implying that

v is eligible with respect to Q. Further, since condition (a) holds for Q, it also holds
for Q′ := Q \ {v} and, since v has been chosen as the maximum of Q with respect to σ,
condition (b) also holds for Q′. By induction hypothesis, DP[Q′] = 1, implying DP[Q] = 1
by definition of DP[Q]. ◀
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Running Time. For the running time, first note that the reduction rules can be exhaustively
applied in O((n + m) · maxλ) time. Second, for any set Q ⊆ R and vertex v ∈ Q, eligibility
of v with respect to Q can be checked in O(degG(v) · |Q|) with a linear-time preprocessing
to determine |T (v)| for each v and T −1(T ) for each T . Thus, in total, the table can be
computed in O(2|R| · |R| · m + (n + m) · maxλ) time.

▶ Theorem 20. DCAO can be solved in O(2|R| · |R| · m + (n + m) · maxλ) time.

5 Hardness with respect to treewidth

By Theorem 7, DCAO and DCO are XP with respect to treewidth. In this section, we
prove also a corresponding negative result. Both, DCO and DCAO, are W[1]-hard with
respect to treewidth.

▶ Theorem 21. DCO is W[1]-hard with respect to treewidth.

Proof. We reduce from Matching with Lower and Upper Quotas (MLQ) which
is known to be W[1]-hard with respect to treewidth [1, Thm. 6]. An instance of MLQ
consists of a bipartite graph G = (A ·∪ B, E), an integer k ∈ N, and lower and upper
quotas ℓ, u : B → N. A solution to this MLQ instance is any subgraph F of G with
|E(F )| ≥ k such that every vertex in V (F ) ∩ A has degree 1 and every vertex v ∈ V (F ) ∩ B

has degree degF (v) ∈ [ℓ(v), u(v)].
We construct a graph D = (V (G) ·∪ {⋆}, E′) from G by connecting vertex ⋆ to every

vertex in A. Define λ : V (D) → 2N by

λ(⋆) := {0, . . . , |A| − k},

λ(a) := {degD(a) − 1} ∀a ∈ A,

λ(b) := {0} ∪ [ℓ(b), u(b)] ∀b ∈ B.

Note that tw(D) ≤ tw(G) + 1 since D − {⋆} = G. We claim that (D, λ) is a yes-instance
of DCO if and only if (G, k, ℓ, u) is a yes-instance of MLQ.

“⇒”: Let α be an orientation of G such that every vertex v ∈ V (D) has deg−(v) ∈ λ(v).
Then we define F to be the subgraph of G induced by those edges that are directed from A

towards B. Clearly, this subgraph satisfies degF (b) ∈ [ℓ(b), u(b)] for each b ∈ B and
degF (a) = 1 for each a ∈ A. Also, since every a ∈ A has a single outwards-directed edge,
and at most |A| − k of these must be directed towards ⋆, there are at least k edges in F .

“⇐”: Let F be a solution to MLQ. Then we construct an orientation of D by orienting
each edge in A × B towards B if and only if that edge is contained in F . Furthermore, we
orient each edge {⋆, a} with a ∈ A towards a if and only if a ∈ V (F ). Clearly, our assumption
on F then gives deg−(b) ∈ λ(b) for every b ∈ B. Each vertex a ∈ A has deg+(a) = 1, either
because of an edge to B (if a ∈ V (F )), or because of an edge towards ⋆ (if a /∈ V (F )); thus
deg−(a) ∈ λ(a). Finally, deg−(⋆) = |A \ V (F )| ≤ |A| − k. This concludes the proof. ◀

▶ Theorem 22. DCAO is W[1]-hard with respect to treewidth.

Proof. We reduce from an DCO instance (G, λ). To this end, subdivide each edge of G

twice, and set λ′(v) = {0, 2} for the newly created degree-2 vertices. Let G′ be the resulting
graph and λ′(v) = λ(v) for all v ∈ V (G). It is easy to see that there is a natural bijection
between the λ-abiding orientations of G and the λ′-abiding orientations of G′. Since any
λ′-abiding orientation of G′ must be acyclic and tw(G′) = tw(G), this proves the claim. ◀
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6 Conclusion

We analyzed three variants of graph orientation within the framework of parameterized
complexity. With PDCO and DCAO, two of these variants require that a solution is acyclic.
The requirement of acyclicity is hardly considered in literature but arises naturally when
building up of phylogenetic networks.

We showed that PDCO and DCAO are NP-hard even if the maximum degree of the
input graph is three and the potential in-degrees are consecutive. On the positive side, we
established FPT-algorithms for DCAO and PDCO with respect to the number of vertices
which have more than one option as in-degree, and with respect to the number of vertices
having potentially two incoming edges.

Even though DCO and DCAO are W[1]-hard when parameterized by the treewidth, all
three problems are solvable in polynomial time if the input graph has constant treewidth.
Therefore it is natural to ask whether DCO, DCAO or PDCO can be solved in polynomial
time on graph classes more general than graphs with constant treewidth, such as planar
graphs. To strengthen the result that DCO is FPT when parameterized by the total number
of 2-gaps, it would be good to investigate whether DCO is FPT with respect to the number
of vertices having a 2-gap, or a new parameter h-gap-index where the h-gap-index, similar
to the h-vertex-index, is the smallest number h such that at least h vertices have at least h

2-gaps.
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