Outline
 Motivation
 Numerical Tools
 Details of the Analysis
 Results and Discussion
 Future Works
 References

APPLICATIONS OF PRECONDITIONED NEWTON-KRYLOV METHODS

Bülent Düz

September 15, 2009 in Delft

Boğaziçi University - Department of Mechanical Engineering Flow Modeling & Simulation Laboratory

Bülent Düz

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works	References

1 Motivation

- 2 Numerical Tools
- **3** Details of the Analysis
- 4 Results and Discussion
- 5 Future Works

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works ○	References
Role	of CF	D				

Analysis

Design (Direct and Inverse Approach)

Optimization

Outline	Motivation	Numerical Tools ●000000	Details of the Analysis	Results and Discussion	Future Works ○	References
Non	linear E	quations				

- Discretization yields a system of nonlinear equations
- Nonlinear-GS (or Jacobi)
- Newton's Method (Inexact NM)
- Full Approximation Scheme (Multigrid)
- Picard (governing equations one-by-one)

Used to linearize the non-linear system of equations.

- 1 $J(x^{k})\Delta x^{k+1} = -f(x^{k})$ 2 $x^{k+1} = x^{k} + \Delta x^{k+1}$
- 3 $J_{ij} = \frac{\partial f_i}{\partial x_j}$
 - Quadratically convergent from good starting guesses.
 - Not globally convergent
 - Requires the solution of the linear steps

Following linear Krylov sub-space solvers are used.

- BiCGSTAB (Bi-conjugate Gradient Stabilized)
- GMRES (Generalized Minimal Residual)

Combined with the preconditioners

- Jacobi
- SGS (Symmetric Gauss-Seidel)
- ILU(I) (Incomplete LU decomposition)

Using directional differencing the Jacobian matrix vector multiplications are carried out using only the f vector.

$$Jv = \frac{f(x + \epsilon v) - f(x)}{\epsilon}$$
(1)

where

$$\epsilon = \sigma^{1/2} / \|\mathbf{x}\|[\mathbf{8}] \tag{2}$$

if ||x|| = 0, the result of the matrix vector product is set identically to zero.

Outline	Motivation	Numerical Tools 00000●0	Details of the Analysis	Results and Discussion	Future Works	References
Mat	rix-free	algorithn	าร			

Advantages:

- Low memory requirement
- Faster matrix vector multiplications
- Suitable for using storage schemes and some preconditioners such as Jacobi, SGS.

Disadvantages:

Preconditioners requiring J explicitly can not be used (ILU).

Compressed Storage Schemes

CCS (Compressed Column Storage):

- Value vector: Stores the subsequent non-zeros of the matrix rows.
- Row indicator: Stores the row indexes of the elements in the value vector.
- Column pointer: Stores the locations in the value vector that start a column.

Grid Generation - 2D

The Winslow Equations

$$g_{22}\frac{\partial^2 x}{\partial \xi^2} - 2g_{12}\frac{\partial^2 x}{\partial \xi \partial \eta} + g_{11}\frac{\partial^2 x}{\partial \eta^2} = -g\left(P\frac{\partial x}{\partial \xi} + Q\frac{\partial x}{\partial \eta}\right)$$
(3)

$$g_{22}\frac{\partial^2 y}{\partial \xi^2} - 2g_{12}\frac{\partial^2 y}{\partial \xi \partial \eta} + g_{11}\frac{\partial^2 y}{\partial \eta^2} = -g\left(P\frac{\partial y}{\partial \xi} + Q\frac{\partial y}{\partial \eta}\right) \tag{4}$$

where $g = g_{11}g_{22} - g_{12}g_{12}$ and $P(\xi, \eta)$, $Q(\xi, \eta)$ are suitably selected *control functions*. A set of possible control functions was proposed by *Thompson*, *Thames*, and *and Mastin* (The *TTM Method*):

$$P(\xi,\eta) = -\sum_{n=1}^{N} a_n \frac{(\xi - \xi_n)}{|\xi - \xi_n|} e^{-c_n |\xi - \xi_n|} - \sum_{i=1}^{I} b_i \frac{(\xi - \xi_i)}{|\xi - \xi_i|} e^{-d_i \left[(\xi - \xi_i)^2 + (\eta - \eta_i)^2\right]^{\frac{1}{2}}}$$
(5)

$$Q(\xi,\eta) = -\sum_{n=1}^{N} a_n \frac{(\eta - \eta_n)}{|\eta - \eta_n|} e^{-c_n |\eta - \eta_n|} - \sum_{i=1}^{I} b_i \frac{(\eta - \eta_i)}{|\eta - \eta_i|} e^{-d_i \left[(\xi - \xi_i)^2 + (\eta - \eta_i)^2 \right]^{\frac{1}{2}}}$$
(6)

Domain Decomposition Methods

The idea: Divide the problem into regions and solve them separately instead of dealing with it as a whole. Advantages:

- Geometrical simplicity
- Application of different modeling equations For example; Navier Stoke's at the objects proximity and Euler at the other regions
- Gain in computation speed with parallel processing

Figure: Splitting of the domain for geometrical simplicity

 Outline
 Motivation
 Numerical Tools
 Details of the Analysis
 Results and Discussion
 Future Works
 References

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

External Flow: Flow Past an Airfoil

Figure: Seperate domains

Figure: Overlapping of the domains

13/41

- From the cartesian domain to the inner by simple interpolation
- From the inner domain to the cartesian by bilinear interpolation
- Repeat the process until the convergence is achieved

Figure: Adaptive grid

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works O	References
Adva	antages	5				

- No grid generation in the cartesian domain
- Dealing with complex geometries is easier
- Solving the equations for the cartesian and inner domain separately (parallel computing)
- Calculation of the flow at different angle of attacks

Figure: Different angle of attack

 Outline
 Motivation
 Numerical Tools
 Details of the Analysis
 Results and Discussion
 Future Works
 References

Internal Flow: Flow Between Turbomachinery Blades

- Shock waves
- Turbulent boundary layers and wakes
- Complex geometry

Figure: Problem domains (3D-2D)

Flow Between Turbomachinery Blades

Figure: Controlling grid density

₽IJ

Flow Between Turbomachinery Blades

Figure: Controlling grid density

₽IJ

Flow Between Turbomachinery Blades

Figure: Problem domains in 3D

Formulations and Assumptions

- Stream Function-Vorticity formulation (2D)
- Velocity-Vorticity formulation (2D 3D)
- Steady and incompressible (2D 3D)
- Finite difference discretization (2D 3D)

Governing Equations in 2D

Stream function - Vorticity:

$$\nabla^{2}\Psi + \Omega = 0$$
(7)
$$\nabla^{2}\Omega - Re\left[\frac{\partial\Psi}{\partial y}\frac{\partial\Omega}{\partial x} - \frac{\partial\Psi}{\partial x}\frac{\partial\Omega}{\partial y}\right] = 0$$
(8)

Velocity - Vorticity:

 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\frac{\partial \Omega}{\partial y}$ (9) $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{\partial \Omega}{\partial x}$ (10) $u\frac{\partial \Omega}{\partial x} + v\frac{\partial \Omega}{\partial y} = \frac{1}{\text{Re}} \left(\frac{\partial^2 \Omega}{\partial x^2} + \frac{\partial^2 \Omega}{\partial y^2}\right)$ (11)

Coordinate Transformation

Figure: From Physical to Computational

₽IJ

Outline Motivation

Numerical Tools

Details of the Analysis

Results and Discussion

Future Works References

Transformed Form of The Governing Equations in 2D

Stream Function Equation

$$\frac{\partial \psi}{\partial \eta} \left[\frac{\partial y}{\partial \xi} \left(\frac{\partial^2 x}{\partial \xi^2} \alpha + \frac{\partial^2 x}{\partial \eta^2} \beta - 2 \frac{\partial^2 x}{\partial \xi \partial \eta} \gamma \right) - \frac{\partial x}{\partial \xi} \left(\frac{\partial^2 y}{\partial \xi^2} \alpha + \frac{\partial^2 y}{\partial \eta^2} \beta - 2 \frac{\partial^2 y}{\partial \xi \partial \eta} \gamma \right) \right] + \frac{\partial \psi}{\partial \xi} \left[\frac{\partial x}{\partial \eta} \left(\frac{\partial^2 y}{\partial \xi^2} \alpha + \frac{\partial^2 y}{\partial \eta^2} \beta - 2 \frac{\partial^2 y}{\partial \xi \partial \eta} \gamma \right) - \frac{\partial y}{\partial \xi} \left(\frac{\partial^2 x}{\partial \xi^2} \alpha + \frac{\partial^2 x}{\partial \eta^2} \beta - 2 \frac{\partial^2 x}{\partial \xi \partial \eta} \gamma \right) \right] + \frac{\partial^2 \psi}{\partial \xi^2} J \alpha + \frac{\partial^2 \psi}{\partial \eta^2} J \beta - 2 \frac{\partial^2 \psi}{\partial \xi \partial \eta} J \gamma = -J^3 \Omega$$
(12)

Vorticity Transport Equation

$$\begin{aligned} \operatorname{Re} \frac{\partial \psi}{\partial \eta} \frac{\partial \Omega}{\partial \xi} J \left(\frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial y}{\partial \xi} \frac{\partial x}{\partial \eta} \right) + \operatorname{Re} \frac{\partial \psi}{\partial \xi} \frac{\partial \Omega}{\partial \eta} J \left(\frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi} - \frac{\partial y}{\partial \eta} \frac{\partial x}{\partial \xi} \right) = \\ &+ \frac{\partial \Omega}{\partial \eta} \left[\frac{\partial y}{\partial \xi} \left(\frac{\partial^2 x}{\partial \xi^2} \alpha + \frac{\partial^2 x}{\partial \eta^2} \beta - 2 \frac{\partial^2 x}{\partial \xi \partial \eta} \gamma \right) - \frac{\partial x}{\partial \xi} \left(\frac{\partial^2 y}{\partial \xi^2} \alpha + \frac{\partial^2 y}{\partial \eta^2} \beta - 2 \frac{\partial^2 y}{\partial \xi \partial \eta} \gamma \right) \right] \\ &+ \frac{\partial \Omega}{\partial \xi} \left[\frac{\partial x}{\partial \eta} \left(\frac{\partial^2 y}{\partial \xi^2} \alpha + \frac{\partial^2 y}{\partial \eta^2} \beta - 2 \frac{\partial^2 y}{\partial \xi \partial \eta} \gamma \right) - \frac{\partial y}{\partial \eta} \left(\frac{\partial^2 x}{\partial \xi^2} \alpha + \frac{\partial^2 x}{\partial \eta^2} \beta - 2 \frac{\partial^2 x}{\partial \xi \partial \eta} \gamma \right) \right] \\ &+ \frac{\partial^2 \Omega}{\partial \xi^2} J \alpha + \frac{\partial^2 \Omega}{\partial \eta^2} J \beta - 2 \frac{\partial^2 \Omega}{\partial \xi \partial \eta} J \gamma \end{aligned}$$

(13)

Equations for the velocity components in vector form:

$$\nabla^2 \bar{u} = -\bar{\nabla} \times \bar{\Omega} \tag{14}$$

The three-component vorticity transport equation,:

$$(\bar{u}.\bar{\nabla})\,\bar{\Omega} - (\bar{\Omega}.\bar{\nabla})\,\bar{u} - \frac{1}{\mathrm{Re}}\nabla^2\bar{\Omega} = 0$$
 (15)

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works	References
			000000000000000			

Boundary conditions

Figure: Boundary conditions

 Outline
 Motivation
 Numerical Tools
 Details of the Analysis
 Results and Discussion
 Future Works
 References

 CL
 D
 A : C : I
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

(a) Stream function contours

(b) Vorticity contours

Figure: Flow Past an Airfoil (Re=50)

fil∫

 Outline
 Motivation
 Numerical Tools
 Details of the Analysis
 Results and Discussion
 Future Works
 References

 CL
 D
 A : C : I
 C
 C
 C
 C
 C

Flow Past an Airfoil

Figure: Flow Past an Airfoil (Re=50)

fil∫

Stream function contours

Figure: Stream function contours

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works	References
		0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		

Vorticity contours

Figure: Vorticity contours

Streamtrace contours

Bülent Düz

Streamtrace contours

Bülent Düz

September 15, 2009 in Delft

₽IJ

Outline Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works	References
			000000000000000000000000000000000000000		

Vorticity contours

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works	References
				00000000000000		

Vorticity contours

Figure: Velocity-Vorticity Approach

Outline Motivation Numerical Tools

Details of the Analysis

Results and Discussion

Future Works References

Streamtrace contours

(a) Streamtrace contours (b) Streamtrace contours

Figure: Velocity-Vorticity Approach

Outline Motivation Numerical Tools Details of the Analysis

Results and Discussion

Future Works References

Streamtrace contours

(a) Vorticity contours (b) Vorticity contours

Figure: Velocity-Vorticity Approach

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works O	References
-						

Performance

Figure: Typical non-linear convergence history for Re=100

₽IJ

Bülent Düz

Comparison of the Solvers and the Preconditioners

Figure: Comparison of the Solvers and the Preconditioners

Bülent Düz

Comparison of the Solvers and the Preconditioners

- Implementation of an effective preconditioner is crucial.
- Jacobi does not have a major effect on the convergence pattern.
- BiCGSTAB has a more stable pattern than GMRES and is the fastest solver by means of iteration steps and computation time.
- GMRES is the most stable solver, enables a continuous residual reduction.
- In GMRES the computational work increases linearly with the iteration⇒ Restartable GMRES(m)

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion ○○○○○○○○○○○○	Future Works ○	References	
Fluid	l-Struc	ture Inter	action				

The idea:

- Extract grid points on the blade surface from ANSYS to an aerodynamic code
- Generate grid, execute fluid analysis and achieve the velocity, vorticity and pressure fields
- Transfer pressure values to ANSYS, execute solid analysis and acquire displacements
- With storing displacements from ANSYS, finish first step of FSI
- By using displacements from ANSYS, update geometry and start second step

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works •	References
Futu	ire Woi	rks				

- Parallel Computing
- Nonlinear Preconditioning
- Multigrid/Multilevel Techniques

- Schobeiri, M., Turbomachinery Flow Physics and Dynamic Performance, Springer, 2005
- Hoffman, K.A., Computational Fluid Dynamics for Enginners Volume I, Engineering Education System, Kansas, 1997.
- Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.
- Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and Van der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM, Philadelphia, PA, 1994.
- Roache, P.J., Fundamentals of Computational Fluid Dynamics, Hermosa Pub., USA, 1998
- http://www.ansys.com
- Cai, X.C., Keyes, D.E., Nonlinearly preconditioned inexact Newton algorithms, SIAM J.SCI.COMPUT., Vol.24, No.1, pp.183-200
- Ning Qin, David K. Ludlow and Scott T. Shaw, "A matrix-free preconditioned Newton:GMRES method for unsteady NavierStokes solutions" International Journal for Numerical Methods in Fluids, Vol. 33, pp. 223248, 2000

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works	References

Thank You...

fil∫

Bülent Düz

Non-linear & Linear Preconditioning

Figure: Nonlinear residual history for the flow problem with different Reynolds number [7]

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works	References
Solid Analysis						

Figure: Blade mesh in ANSYS (3D-2D)

MMB: Linear - Elastic - Isotropic

 Outline
 Motivation
 Numerical Tools
 Details of the Analysis
 Results and Discussion
 Future Works
 References

 0000000
 0000000000000
 000000000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

Deformation Under Aerodynamic Loads

(a) x-component of displace- (b) y-component of displacement ment

Figure: Solid Analysis

 Outline
 Motivation
 Numerical Tools
 Details of the Analysis
 Results and Discussion
 Future Works
 References

Deformation Under Aerodynamic Loads

(a) Deformed shape with unde- (b) Vector plot of translation formed edge $% \left({{\left[{{{\bf{n}}_{\rm{s}}} \right]}_{\rm{s}}} \right)$

Figure: Solid Analysis

Transformation Terms

$$\alpha = \left(\frac{\partial x}{\partial \eta}\right)^2 + \left(\frac{\partial y}{\partial \eta}\right)^2$$
$$\beta = \left(\frac{\partial x}{\partial \xi}\right)^2 + \left(\frac{\partial y}{\partial \xi}\right)^2$$
$$\gamma = \frac{\partial x}{\partial \xi}\frac{\partial x}{\partial \eta} + \frac{\partial y}{\partial \xi}\frac{\partial y}{\partial \eta}$$
$$J = \frac{\partial x}{\partial \xi}\frac{\partial y}{\partial \eta} - \frac{\partial y}{\partial \xi}\frac{\partial x}{\partial \eta}$$

(16)

fil∫

Governing Equations in 3D

x-component of velocity :

$$\nabla^2 u = \frac{\partial \Omega_y}{\partial z} - \frac{\partial \Omega_z}{\partial y} \tag{17}$$

y-component of velocity :

$$\nabla^2 v = \frac{\partial \Omega_z}{\partial x} - \frac{\partial \Omega_x}{\partial z}$$
(18)

z-component of velocity :

$$\nabla^2 w = \frac{\partial \Omega_x}{\partial y} - \frac{\partial \Omega_y}{\partial x}$$
(19)

vorticity transport :

$$abla . (u\Omega) - (\Omega . \nabla) u - \frac{1}{\mathrm{Re}} \nabla^2 \Omega = 0$$

⁽²⁰⁾**fil**

Coordinate Transformation

The chain rule of partial differentiation

1
$$\frac{\partial}{\partial x} = \xi_x \frac{\partial}{\partial \xi} + \eta_x \frac{\partial}{\partial \eta} + \zeta_x \frac{\partial}{\partial \zeta}$$

2 $\frac{\partial}{\partial y} = \xi_y \frac{\partial}{\partial \xi} + \eta_y \frac{\partial}{\partial \eta} + \zeta_y \frac{\partial}{\partial \zeta}$
3 $\frac{\partial}{\partial z} = \xi_z \frac{\partial}{\partial \xi} + \eta_z \frac{\partial}{\partial \eta} + \zeta_z \frac{\partial}{\partial \zeta}$
4 $J = \frac{\partial(\xi, \eta, \zeta)}{\partial(x, y, z)}$

Bülent Düz

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works	References

Streamtrace contours

 Outline
 Motivation
 Numerical Tools
 Details of the Analysis
 Results and Discussion
 Future Works
 References

Preconditioning and Matrix-free Approach

$$P_{L}^{-1}J(\bar{x})\bar{v} = P_{L}^{-1}\frac{\bar{f}(\bar{x} + P_{R}^{-1}\bar{y}) - \bar{f}(\bar{x})}{\varepsilon} = \bar{z}$$
(21)
$$P_{R}\epsilon\bar{v} = \bar{y}$$
(22)
$$P_{L}\bar{z} = J\bar{v}$$
(23)

Comparison of the Solvers and the Preconditioners

Table: Comparison of the solvers and preconditioners by means of iteration number and computation time

Method	# of iterations per	Time
	Newton Step (average)	(sec.)
Jacobi-BiCGSTAB	490.5	25.7
SGS-BiCGSTAB	108.8	23.1
ILU(6)-BiCGSTAB	16.2	187.8
Jacobi-GMRES(100)	313.6	26.1
SGS-GMRES(100)	97.7	22.7
ILU(6)-GMRES(100)	12.5	182.14

Second derivative of an arbitrary variable in the transformed form

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial \xi} \frac{\partial^2 \xi}{\partial x^2} + \frac{\partial u}{\partial \eta} \frac{\partial^2 \eta}{\partial x^2} + \frac{\partial u}{\partial \zeta} \frac{\partial^2 \zeta}{\partial x^2} + \frac{\partial^2 u}{\partial \xi^2} \left(\frac{\partial \xi}{\partial x}\right)^2 + \frac{\partial^2 u}{\partial \eta^2} \left(\frac{\partial \eta}{\partial x}\right)^2 + \frac{\partial^2 u}{\partial \xi \partial \eta} \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x} + 2\frac{\partial^2 u}{\partial \xi \partial \zeta} \frac{\partial \xi}{\partial x} \frac{\partial \zeta}{\partial x} + 2\frac{\partial^2 u}{\partial \zeta \partial \eta} \frac{\partial \zeta}{\partial x} \frac{\partial \eta}{\partial x}$$

Outline	Motivation	Numerical Tools	Details of the Analysis	Results and Discussion	Future Works O	References		
Diada Chana								

Blade Shape

Figure: Blade geometry

fill

Effect of Reynolds Number

Figure: Pressure distribution

fill

Effects of Reynolds Number

Figure: Pressure distribution

Fill

 Outline
 Motivation
 Numerical Tools
 Details of the Analysis
 Results and Discussion
 Future Works
 References

Effects of Reynolds Number

- Pressure distribution distribution character ⇒ slightly values ⇒ extensively
- Vortex generation (bottom surface of upper blade)

