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Role of CFD

Analysis

Design (Direct and Inverse Approach)

Optimization
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Nonlinear Equations

Discretization yields a system of nonlinear equations

Nonlinear-GS (or Jacobi)

Newton’s Method (Inexact NM)

Full Approximation Scheme (Multigrid)

Picard - (governing equations one-by-one )
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Nonlinear Solver
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Newton’s Method

Used to linearize the non-linear system of equations.

1 J(xk)∆xk+1 = −f (xk)

2 xk+1 = xk + ∆xk+1

3 Jij = ∂fi
∂xj

Quadratically convergent from good starting guesses.

Not globally convergent

Requires the solution of the linear steps
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Krylov Methods and Preconditioners

Following linear Krylov sub-space solvers are used.

BiCGSTAB (Bi-conjugate Gradient Stabilized)

GMRES (Generalized Minimal Residual)

Combined with the preconditioners

Jacobi

SGS (Symmetric Gauss-Seidel)

ILU(l) (Incomplete LU decomposition)
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Matrix-free algorithms

Using directional differencing the Jacobian matrix vector
multiplications are carried out using only the f vector.

Jv =
f (x + ǫv) − f (x)

ǫ
(1)

where
ǫ = σ1/2/‖x‖[8] (2)

if ‖x‖ = 0, the result of the matrix vector product is set identically
to zero.
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Matrix-free algorithms

Advantages:

Low memory requirement

Faster matrix vector multiplications

Suitable for using storage schemes and some preconditioners
such as Jacobi, SGS.

Disadvantages:

Preconditioners requiring J explicitly can not be used (ILU).

Bülent Düz September 15, 2009 in Delft 9/41



Outline Motivation Numerical Tools Details of the Analysis Results and Discussion Future Works References

Compressed Storage Schemes

CCS (Compressed Column Storage):

Value vector: Stores the subsequent non-zeros of the matrix
rows.

Row indicator: Stores the row indexes of the elements in the
value vector.

Column pointer: Stores the locations in the value vector that
start a column.
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Grid Generation - 2D

The Winslow Equations

g22
∂2x

∂ξ2
− 2g12

∂2x

∂ξ∂η
+ g11

∂2x

∂η2
= −g

(

P
∂x

∂ξ
+ Q

∂x

∂η

)

(3)

g22
∂2y

∂ξ2
− 2g12

∂2y

∂ξ∂η
+ g11

∂2y

∂η2
= −g

(

P
∂y

∂ξ
+ Q

∂y

∂η

)

(4)

where g = g11g22 − g12g12 and P(ξ, η), Q(ξ, η) are suitably selected control functions.
A set of possible control functions was proposed by Thompson, Thames, and and Mastin (The TTM Method):

P (ξ, η) = −
N
∑
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an
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e
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2
] 1
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∑
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∑
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e
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2
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Domain Decomposition Methods

The idea: Divide the problem into regions and solve them
separately instead of dealing with it as a whole.
Advantages:

Geometrical simplicity

Application of different modeling equations For example;
Navier Stoke’s at the objects proximity and Euler at the other
regions

Gain in computation speed with parallel processing

 

Figure: Splitting of the domain for geometrical simplicity
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External Flow: Flow Past an Airfoil

Figure: Seperate domains

Figure: Overlapping of the domains
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Overlapping Domains

From the cartesian domain to the inner by simple interpolation

From the inner domain to the cartesian by bilinear
interpolation

Repeat the process until the convergence is achieved

Figure: Adaptive grid
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Advantages

No grid generation in the cartesian domain

Dealing with complex geometries is easier

Solving the equations for the cartesian and inner domain
separately (parallel computing)

Calculation of the flow at different angle of attacks

Figure: Different angle of attack
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Internal Flow: Flow Between Turbomachinery Blades

Shock waves

Turbulent boundary layers and wakes

Complex geometry

Figure: Problem domains (3D-2D)
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Flow Between Turbomachinery Blades

Figure: Controlling grid density
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Flow Between Turbomachinery Blades

Figure: Controlling grid density
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Flow Between Turbomachinery Blades

Figure: Problem domains in 3D
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Formulations and Assumptions

Stream Function-Vorticity formulation (2D)

Velocity-Vorticity formulation (2D - 3D)

Steady and incompressible (2D - 3D)

Finite difference discretization (2D - 3D)
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Governing Equations in 2D

Stream function - Vorticity:

∇2Ψ + Ω = 0 (7)

∇2Ω − Re

[

∂Ψ

∂y

∂Ω

∂x
−

∂Ψ

∂x

∂Ω

∂y

]

= 0 (8)

Velocity - Vorticity:

∂2u

∂x2
+

∂2u

∂y2
= −

∂Ω

∂y
(9)

∂2v

∂x2
+

∂2v

∂y2
=

∂Ω
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(10)

u
∂Ω
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+ v

∂Ω

∂y
=

1

Re

(

∂2Ω

∂x2
+

∂2Ω

∂y2

)

(11)
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Coordinate Transformation

Figure: From Physical to Computational
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Transformed Form of The Governing Equations in 2D

Stream Function Equation
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Vorticity Transport Equation
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Governing Equations in 3D

Equations for the velocity components in vector form:

∇2ū = −∇̄ × Ω̄ (14)

The three-component vorticity transport equation,:

(

ū.∇̄
)

Ω̄ −
(

Ω̄.∇̄
)

ū −
1

Re
∇2Ω̄ = 0 (15)
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Boundary conditions

Figure: Boundary conditions
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Flow Past an Airfoil

(a) Stream function contours (b) Vorticity contours

Figure: Flow Past an Airfoil (Re=50)
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Flow Past an Airfoil

(a) Stream function contours (b) Vorticity contours

Figure: Flow Past an Airfoil (Re=50)
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Stream function contours

(a) Re=100 (b) Re=500

Figure: Stream function contours
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Vorticity contours

(a) Re=100 (b) Re=500

Figure: Vorticity contours
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Streamtrace contours

(a) Streamtrace contours (b) Streamtrace contours

Figure: Velocity-Vorticity Approach
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Streamtrace contours

(a) Streamtrace contours (b) Streamtrace contours

Figure: Velocity-Vorticity Approach
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Vorticity contours

(a) Vorticity contours (b) Vorticity contours

Figure: Velocity-Vorticity Approach
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Vorticity contours

(a) Vorticity contours (b) Vorticity contours

Figure: Velocity-Vorticity Approach
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Streamtrace contours

(a) Streamtrace contours (b) Streamtrace contours

Figure: Velocity-Vorticity Approach
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Streamtrace contours

(a) Vorticity contours (b) Vorticity contours

Figure: Velocity-Vorticity Approach
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Performance

Figure: Typical non-linear convergence history for Re=100
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Comparison of the Solvers and the Preconditioners

Figure: Comparison of the Solvers and the Preconditioners
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Comparison of the Solvers and the Preconditioners

Implementation of an effective preconditioner is crucial.

Jacobi does not have a major effect on the convergence
pattern.

BiCGSTAB has a more stable pattern than GMRES and is the
fastest solver by means of iteration steps and computation
time.

GMRES is the most stable solver, enables a continuous
residual reduction.

In GMRES the computational work increases linearly with the
iteration⇒ Restartable GMRES(m)
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Fluid-Structure Interaction

The idea:

Extract grid points on the blade surface from ANSYS to an
aerodynamic code

Generate grid, execute fluid analysis and achieve the velocity,
vorticity and pressure fields

Transfer pressure values to ANSYS, execute solid analysis and
acquire displacements

With storing displacements from ANSYS, finish first step of
FSI

By using displacements from ANSYS, update geometry and
start second step
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Future Works

Parallel Computing

Nonlinear Preconditioning

Multigrid/Multilevel Techniques
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Thank You...
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Non-linear & Linear Preconditioning

(a) Newton iterations (b) PIN iterations

Figure: Nonlinear residual history for the flow problem with different
Reynolds number [7]

Bülent Düz September 15, 2009 in Delft 42/41



Outline Motivation Numerical Tools Details of the Analysis Results and Discussion Future Works References

Solid Analysis

Figure: Blade mesh in ANSYS (3D-2D)

Hexahedral - Quadrilateral

MMB: Linear - Elastic - Isotropic
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Deformation Under Aerodynamic Loads

(a) x-component of displace-
ment

(b) y-component of displace-
ment

Figure: Solid Analysis
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Deformation Under Aerodynamic Loads

(a) Deformed shape with unde-
formed edge

(b) Vector plot of translation

Figure: Solid Analysis
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Transformation Terms

α =
(

∂x
∂η

)2
+
(

∂y
∂η

)2

β =
(

∂x
∂ξ

)2
+
(

∂y
∂ξ

)2

γ = ∂x
∂ξ

∂x
∂η + ∂y

∂ξ
∂y
∂η

J = ∂x
∂ξ

∂y
∂η − ∂y

∂ξ
∂x
∂η

(16)
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Governing Equations in 3D

x-component of velocity :

∇2u =
∂Ωy

∂z
−

∂Ωz

∂y
(17)

y-component of velocity :

∇2v =
∂Ωz

∂x
−

∂Ωx

∂z
(18)

z-component of velocity :

∇2w =
∂Ωx

∂y
−

∂Ωy

∂x
(19)

vorticity transport :

∇. (uΩ) − (Ω.∇) u −
1

Re
∇2Ω = 0 (20)
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Coordinate Transformation

The chain rule of partial differentiation

1 ∂
∂x

= ξx
∂
∂ξ

+ ηx
∂
∂η

+ ζx
∂
∂ζ

2 ∂
∂y

= ξy
∂
∂ξ

+ ηy
∂
∂η

+ ζy
∂
∂ζ

3 ∂
∂z

= ξz
∂
∂ξ

+ ηz
∂
∂η

+ ζz
∂
∂ζ

J = ∂(ξ,η,ζ)
∂(x ,y ,z)
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Streamtrace contours

(a) Streamtrace contours (b) Vorticity contours

Figure: Velocity-Vorticity Approach
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Preconditioning and Matrix-free Approach

P−1
L J(x̄)v̄ = P−1

L

f̄ (x̄ + P−1
R ȳ) − f̄ (x̄)

ε
= z̄ (21)

PRǫv̄ = ȳ (22)

PLz̄ = Jv̄ (23)
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Comparison of the Solvers and the Preconditioners

Table: Comparison of the solvers and preconditioners by means of
iteration number and computation time

Method # of iterations per Time
Newton Step (average) (sec.)

Jacobi-BiCGSTAB 490.5 25.7

SGS-BiCGSTAB 108.8 23.1

ILU(6)-BiCGSTAB 16.2 187.8

Jacobi-GMRES(100) 313.6 26.1

SGS-GMRES(100) 97.7 22.7

ILU(6)-GMRES(100) 12.5 182.14
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Coordinate Transformation

Second derivative of an arbitrary variable in the transformed form

∂2u

∂x2
=

∂u

∂ξ

∂2ξ

∂x2
+

∂u

∂η

∂2η

∂x2
+

∂u

∂ζ

∂2ζ

∂x2
+

∂2u

∂ξ2

(

∂ξ

∂x

)2

+
∂2u

∂η2

(

∂η

∂x

)2

+
∂2u

∂ζ2

(

∂ζ

∂x

)2

+ 2
∂2u

∂ξ∂η

∂ξ

∂x

∂η

∂x
+ 2

∂2u

∂ξ∂ζ

∂ξ

∂x

∂ζ

∂x
+ 2

∂2u

∂ζ∂η

∂ζ

∂x

∂η

∂x
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Blade Shape

Figure: Blade geometry
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Effect of Reynolds Number

(a) Re=100 (b) Re=300

Figure: Pressure distribution

Bülent Düz September 15, 2009 in Delft 54/41



Outline Motivation Numerical Tools Details of the Analysis Results and Discussion Future Works References

Effects of Reynolds Number

(a) Re=100 (b) Re=300

Figure: Pressure distribution
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Effects of Reynolds Number

Pressure distribution
distribution character ⇒ slightly
values ⇒ extensively

Vortex generation (bottom surface of upper blade)
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