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Motivation

Role of CFD

m Analysis
m Design (Direct and Inverse Approach)

m Optimization
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Numerical Tools
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Nonlinear Equations

Discretization yields a system of nonlinear equations
Nonlinear-GS (or Jacobi)

Newton's Method (Inexact NM)

Full Approximation Scheme (Multigrid)

Picard - (governing equations one-by-one )
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Numerical Tools

0O@00000

Nonlinear Solver

Nonlinear Problem

S [rs | [ asen |
‘linearproblem‘ 3—7,,<{ NMWGS,RK‘ P ning
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Numerical Tools
[e]e] lelele]e}

Newton's Method

Used to linearize the non-linear system of equations.
J(X)AxKE = —f(xK)
B xkt1 = xk 4 Axktl
Jij = O,

9%

m Quadratically convergent from good starting guesses.
m Not globally convergent

m Requires the solution of the linear steps
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Numerical Tools
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Krylov Methods and Preconditioners

Following linear Krylov sub-space solvers are used.
m BiCGSTAB (Bi-conjugate Gradient Stabilized)
m GMRES (Generalized Minimal Residual)
Combined with the preconditioners
m Jacobi
m SGS (Symmetric Gauss-Seidel)
m ILU(l) (Incomplete LU decomposition)
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Numerical Tools
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Matrix-free algorithms

Using directional differencing the Jacobian matrix vector
multiplications are carried out using only the f vector.

f(x+ev)—f(x)

Jv = ; (1)
where
e=a"?/|x|[8] ()
if [|[x|| = 0, the result of the matrix vector product is set identically
to zero.
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Numerical Tools
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Matrix-free algorithms

Advantages:
m Low memory requirement
m Faster matrix vector multiplications
m Suitable for using storage schemes and some preconditioners
such as Jacobi, SGS.
Disadvantages:
m Preconditioners requiring J explicitly can not be used (ILU).
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Numerical Tools
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Compressed Storage Schemes

CCS (Compressed Column Storage):

m Value vector: Stores the subsequent non-zeros of the matrix
rOows.

m Row indicator: Stores the row indexes of the elements in the
value vector.

m Column pointer: Stores the locations in the value vector that
start a column.
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Details of the Analysis
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2D

Grid Generation

The Winslow Equations

%x ) 82 N 9%x ( > o ax> )
822 ez 812 2eon 11 o g o¢ on
9%y 82 8%y Ay Ay
— —282—— + — =—g|P—=+ Q—) 4
&2 9¢2 812 2eom g1 o g( o¢ o (4)
where g = g11822 — g12812 and P(&,n), Q(&, n) are suitably selected control functions.
A set of possible control functions was proposed by Thompson, Thames, and and Mastin (The TTM Method):
2 2 1
P& n) = Z an &n) —cnle—¢nl Z by &7 8 —di[(e=€)*+(n—m)?] 2 ®)
— &nl =1 & - El\
N (= ) —ail(e—e 2] B
Q(EJI):—Zan e*CnW*TIn Zb i i n—mn; (6)
=1 =l pat 7]*771‘
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Details of the Analysis
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Domain Decomposition Methods

The idea: Divide the problem into regions and solve them
separately instead of dealing with it as a whole.
Advantages:

m Geometrical simplicity

m Application of different modeling equations For example;
Navier Stoke's at the objects proximity and Euler at the other
regions

m Gain in computation speed with parallel processing

Figure: Splitting of the domain for geometrical simplicity
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Details of the Analysis
00®000000000000

External Flow: Flow Past an Airfoil

Figure: Overlapping of the domains fﬂj
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Details of the Analysis
000@00000000000

Overlapping Domains

m From the cartesian domain to the inner by simple interpolation

m From the inner domain to the cartesian by bilinear
interpolation

m Repeat the process until the convergence is achieved

8 8
6 61
> 4 4;
2 2;
o s 6 - % g 6 i

Figure: Adaptive grid
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Details of the Analysis
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Advantages

m No grid generation in the cartesian domain
m Dealing with complex geometries is easier

m Solving the equations for the cartesian and inner domain
separately (parallel computing)

m Calculation of the flow at different angle of attacks

Figure: Different angle of attack
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Details of the Analysis
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Internal Flow: Flow Between Turbomachinery Blades

m Shock waves
m Turbulent boundary layers and wakes
m Complex geometry

=\

Figure: Problem domains (3D-2D) f
]
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Figure: Controlling grid density
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Details of the Analysis
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Formulations and Assumptions

m Stream Function-Vorticity formulation (2D)
m Velocity-Vorticity formulation (2D - 3D)

m Steady and incompressible (2D - 3D)

m Finite difference discretization (2D - 3D)
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Details of the Analysis
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Governing Equations in 2D

Stream function - Vorticity:

VW +Q=0 (7)
ovoQ oV oQ
2
VAL~ Re [8y Ox  Ox 8y} 0 ()

Velocity - Vorticity:

Pu  0%u 15,9

a2 " T oy ©)
0’v  9%v  0Q
F + 8—)/2 = 5 (10)
@ +v aQ 1 62_9 + 62_9 (11)
Y ox dy ~ Re \ 0x2 dy?
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Details of the Analysis
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Coordinate Transformation

§= &(xy.z)
n=n(xy.2)
s §=4(xy.2)
o = Computational
Domain
| nToe
//’. -
&= &xy)
n=n(xy)
Physical |——uoug Computational
Domain Domain
L —————— |

Figure: From Physical to Computational
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Details of the Analysis
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Transformed Form of The Governing Equations in 2D

Stream Function Equation
i 9%x 9%x 9%x ax [ 82 92 92
—a+—p-2 vy - — —ya+—yﬁ—2 y'y
87] 8{ o€2 an? dEOn o€ \ 9¢€2 an? o0&

Y 8%y 8%y % oy 8%x 8%x 8%x
+ — at+ —p—-2 ol at —pB -2 Y
o0& 8&2 an? o0& 13 8&2 an? dEOn

82 %y 8
+ 20 T s —waf _Aq
oe2 o2 oedn
(12)
Vorticity Transport Equation
oY 8QJ<8X dy dy 8)() oY 90 (Bx Oy Oy Bx)
e— —J| —— - —— e— —J —— - — —
on 9 & On ¢ On ¢ On on 9¢ on 9¢
o9 [ 8y [ 8°x %x %x ox [ 82 22 2%y
i 4 a+ —pB—-2 v - — —yoz+—yﬁ—2 ¥
on | 9 8{2 an? o0& a¢ \ a¢2 an? o0&
Lo a9 [ ax 8%y - aZy[3 ) 8%y ay 8x o aZXﬁ ) 8x
o0& 8{2 an? o0& v 8&2 an? OEdn v
2%Q 8%Q 829
+ —Ja+ — -2 Jvy
o¢? an? 9¢on
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Details of the Analysis
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Governing Equations in 3D

Equations for the velocity components in vector form:
Vii=-VxQ (14)

The three-component vorticity transport equation,:

(8.9)0 - (29) - V22 =0 (15)
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Details of the Analysis
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Boundary conditions

u=1
v=0
w=0 B
Q,=0
Q=0
Q=0
\ Ox Ox
_ ow
u=0 o="" F_y
v=0 Qy:() v Ox
w=0 Q. o 51—0 69‘:0
TET B x Ox
Figure: Boundary conditions ﬂ'u’
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Results and Discussion
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Flow Past an Airfoil

(a) Stream function contours (b) Vorticity contours

Figure: Flow Past an Airfoil (Re=50)
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Results and Discussion
0®000000000000

Flow Past an Airfoil

(a) Stream function contours (b) Vorticity contours

Figure: Flow Past an Airfoil (Re=50)
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Results and Discussion
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Stream function contours
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(a) Re=100 (b) Re=500
Figure: Stream function contours ﬁ'lj
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Results and Discussion
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Vorticity contours
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Figure: Vorticity contours fnj
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Results and Discussion
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Streamtrace contours

(a) Streamtrace contours (b) Streamtrace contours

Figure: Velocity-Vorticity Approach
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Results and Discussion
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Streamtrace contours

(a) Streamtrace contours (b) Streamtrace contours

Figure: Velocity-Vorticity Approach ﬁ'lj
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Results and Discussion
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Vorticity contours

(a) Vorticity contours (b) Vorticity contours

Figure: Velocity-Vorticity Approach
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Results and Discussion
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Vorticity contours

(a) Vorticity contours (b) Vorticity contours

Figure: Velocity-Vorticity Approach
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Results and Discussion
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Streamtrace contours

(a) Streamtrace contours (b) Streamtrace contours

Figure: Velocity-Vorticity Approach ﬁ.lj
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(a) Vorticity contours  (b) Vorticity contours

Figure: Velocity-Vorticity Approach fﬂj
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Results and Discussion
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Performance

107 |

3]
# of iterations

Figure: Typical non-linear convergence history for Re=100 f
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Results and Discussion
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Comparison of the Solvers and the Preconditioners

——BICGSTAB - ILU(6)
BICGSTAB - SGS

, ——GMRES - ILU(6)

———GMRES - JACOBI

——GMRES - SGS

——BICGSTAB - JACOBI

Log (Norm of linear residual))
L

107 I | L | | | | | 1 |
0 50 100 150 200 250 300 350 400 450 500

Number of iterations at a Newton step

Figure: Comparison of the Solvers and the Preconditioners
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Results and Discussion
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Comparison of the Solvers and the Preconditioners

m Implementation of an effective preconditioner is crucial.
m Jacobi does not have a major effect on the convergence
pattern.

m BiCGSTAB has a more stable pattern than GMRES and is the
fastest solver by means of iteration steps and computation
time.

m GMRES is the most stable solver, enables a continuous
residual reduction.

m In GMRES the computational work increases linearly with the
iteration=- Restartable GMRES(m)
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Results and Discussion
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Fluid-Structure Interaction

The idea:

m Extract grid points on the blade surface from ANSYS to an
aerodynamic code

m Generate grid, execute fluid analysis and achieve the velocity,
vorticity and pressure fields

m Transfer pressure values to ANSYS, execute solid analysis and
acquire displacements

m With storing displacements from ANSYS, finish first step of
FSI

m By using displacements from ANSYS, update geometry and
start second step
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Future Works
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Future Works

m Parallel Computing
m Nonlinear Preconditioning
m Multigrid/Multilevel Techniques
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Non-linear & Linear Preconditioning

Res104
Res1022

I
Newon teratans

(a) Newton iterations

EXE

E I )
PN ratons

(b) PIN iterations

Figure: Nonlinear residual history for the flow problem with different

Reynolds number [7]
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Solid Analysis

Figure: Blade mesh in ANSYS (3D-2D)

m Hexahedral - Quadrilateral

m MMB: Linear - Elastic - Isotropic
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Deformation Under Aerodynamic Loads

Biilent Diiz

(a) x-component of displace- (b) y-component of displace-
ment ment

Figure: Solid Analysis
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Deformation Under Aerodynamic Loads
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(a) Deformed shape with unde- (b) Vector plot of translation
formed edge

Figure: Solid Analysis
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Transformation Terms
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Governing Equations in 3D

x-component of velocity :

12)9) o002
2 y z
=—— 17
V<u g 2y (17)
y-component of velocity :
00 00
2 z X
Vev = e 5y (18)
z-component of velocity :
00 02
2 x y
= - —= 1
Vew dy o (19)
vorticity transport :
1
(u2) = (Q. - —VQ=
V. (uQ2) — (2.V)u Rev 0 QO)FﬂI
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Coordinate Transformation

m The chain rule of partial differentiation
ERRPN I R 1
,9% :fya%‘f'nya% +Cya%
D B

s J = d&ng)

A(x,y,z)
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Streamtrace contours

(a) Streamtrace contours (b) Vorticity contours

Figure: Velocity-Vorticity Approach fﬂj
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Preconditioning and Matrix-free Approach

P lu(x)v =Pt . =z (21)
PRGV = )_/ (22)
P z=Jv (23)
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Comparison of the Solvers and the Preconditioners

Table: Comparison of the solvers and preconditioners by means of
iteration number and computation time

Method # of iterations per Time
Newton Step (average) | (sec.)
Jacobi-BiCGSTAB 490.5 25.7
SGS-BiCGSTAB 108.8 23.1
ILU(6)-BiCGSTAB 16.2 187.8
Jacobi-GMRES(100) 313.6 26.1
SGS-GMRES(100) 97.7 22.7
ILU(6)-GMRES(100) 125 182.14
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Coordinate Transformation

Second derivative of an arbitrary variable in the transformed form
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Blade Shape

Figure: Blade geometry
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Effect of Reynolds Number
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(a) Re=100 (b) Re=300

Figure: Pressure distribution
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Effects of Reynolds Number

LT - Upper surface of the biade Pressure distibution onthe upper surface
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(a) Re=100 (b) Re=300

Figure: Pressure distribution
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Effects of Reynolds Number

m Pressure distribution
distribution character = slightly
values = extensively
m Vortex generation (bottom surface of upper blade)
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