

APPLICATIONS OF PRECONDITIONED NEWTON-KRYLOV METHODS

Bülent Düz

September 15, 2009 in Delft

Boğazici University - Department of Mechanical Engineering Flow Modeling & Simulation Laboratory

Bülent Düz September 15, 2009 in Delft 19 and 1/41

[Motivation](#page-2-0)

- [Numerical Tools](#page-3-0)
- [Details of the Analysis](#page-10-0)
- [Results and Discussion](#page-25-0)
- [Future Works](#page-39-0)

Analysis

Design (Direct and Inverse Approach)

Optimization

- Discretization yields a system of nonlinear equations
- **Nonlinear-GS** (or Jacobi)
- Newton's Method (Inexact NM)
- Full Approximation Scheme (Multigrid)
- Picard - (governing equations one-by-one)

Used to linearize the non-linear system of equations.

 $1 \int (x^k) \Delta x^{k+1} = -f(x^k)$ $2 x^{k+1} = x^k + \Delta x^{k+1}$ 3 $J_{ij}=\frac{\partial f_{i}}{\partial x}$

∂x^j

- **Quadratically convergent from good starting guesses.**
- Not globally convergent
- \blacksquare Requires the solution of the linear steps

Following linear Krylov sub-space solvers are used.

- BiCGSTAB (Bi-conjugate Gradient Stabilized)
- GMRES (Generalized Minimal Residual)

Combined with the preconditioners

- \blacksquare Jacobi
- SGS (Symmetric Gauss-Seidel)
- **ILU(I)** (Incomplete LU decomposition)

Using directional differencing the Jacobian matrix vector multiplications are carried out using only the f vector.

$$
J_V = \frac{f(x + \epsilon v) - f(x)}{\epsilon} \tag{1}
$$

where

$$
\epsilon = \sigma^{1/2} / \|x\| [8]
$$
 (2)

if $||x|| = 0$, the result of the matrix vector product is set identically to zero.

Advantages:

- Low memory requirement
- Faster matrix vector multiplications
- Suitable for using storage schemes and some preconditioners such as Jacobi, SGS.

Disadvantages:

Preconditioners requiring J explicitly can not be used (ILU).

CCS (Compressed Column Storage):

- Value vector: Stores the subsequent non-zeros of the matrix rows.
- **Row indicator:** Stores the row indexes of the elements in the value vector.
- Column pointer: Stores the locations in the value vector that start a column.

The Winslow Equations

$$
g_{22}\frac{\partial^2 x}{\partial \xi^2} - 2g_{12}\frac{\partial^2 x}{\partial \xi \partial \eta} + g_{11}\frac{\partial^2 x}{\partial \eta^2} = -g\left(P\frac{\partial x}{\partial \xi} + Q\frac{\partial x}{\partial \eta}\right)
$$
(3)

$$
g_{22}\frac{\partial^2 y}{\partial \xi^2} - 2g_{12}\frac{\partial^2 y}{\partial \xi \partial \eta} + g_{11}\frac{\partial^2 y}{\partial \eta^2} = -g\left(P\frac{\partial y}{\partial \xi} + Q\frac{\partial y}{\partial \eta}\right)
$$
(4)

where $g = g_{11}g_{22} - g_{12}g_{12}$ and $P(\xi, \eta)$, $Q(\xi, \eta)$ are suitably selected control functions. A set of possible control functions was proposed by Thompson, Thames, and and Mastin (The TTM Method):

$$
P(\xi,\eta) = -\sum_{n=1}^{N} a_n \frac{(\xi - \xi_n)}{|\xi - \xi_n|} e^{-c_n|\xi - \xi_n|} - \sum_{i=1}^{I} b_i \frac{(\xi - \xi_i)}{|\xi - \xi_i|} e^{-d_i \left[(\xi - \xi_i)^2 + (\eta - \eta_i)^2 \right]} \frac{1}{2}
$$
(5)

$$
Q(\xi,\eta) = -\sum_{n=1}^{N} a_n \frac{(\eta - \eta_n)}{|\eta - \eta_n|} e^{-c_n|\eta - \eta_n|} - \sum_{i=1}^{I} b_i \frac{(\eta - \eta_i)}{|\eta - \eta_i|} e^{-d_i \left[(\xi - \xi_i)^2 + (\eta - \eta_i)^2 \right]^{\frac{1}{2}}}
$$
(6)

Domain Decomposition Methods

The idea: Divide the problem into regions and solve them separately instead of dealing with it as a whole. Advantages:

- Geometrical simplicity
- **Application of different modeling equations For example;** Navier Stoke's at the objects proximity and Euler at the other regions
- Gain in computation speed with parallel processing

Figure: Splitting of the domain for geometrical simplicity

External Flow: Flow Past an Airfoil

Figure: Seperate domains

Figure: Overlapping of the domains

Bülent Düz **September 15, 2009 in Delft** 13/41

- From the cartesian domain to the inner by simple interpolation
- \blacksquare From the inner domain to the cartesian by bilinear interpolation
- Repeat the process until the convergence is achieved

Figure: Adaptive grid

- No grid generation in the cartesian domain
- Dealing with complex geometries is easier
- Solving the equations for the cartesian and inner domain separately (parallel computing)
- Calculation of the flow at different angle of attacks

Figure: Different angle of attack

Internal Flow: Flow Between Turbomachinery Blades

- **Shock waves**
- Turbulent boundary layers and wakes \sim
- Complex geometry

Figure: Problem domains (3D-2D)

Flow Between Turbomachinery Blades

Figure: Controlling grid density

<u>fils</u>

Flow Between Turbomachinery Blades

Figure: Controlling grid density

<u>fils</u>

Flow Between Turbomachinery Blades

Figure: Problem domains in 3D

Bülent Düz **September 15, 2009 in Delft** 19/41

Formulations and Assumptions

- Stream Function-Vorticity formulation (2D)
- Velocity-Vorticity formulation (2D 3D)
- Steady and incompressible (2D 3D)
- Finite difference discretization (2D 3D)

Governing Equations in 2D

Stream function - Vorticity:

$$
\nabla^2 \Psi + \Omega = 0 \tag{7}
$$
\n
$$
\rho = \rho_0 \left[\frac{\partial \Psi}{\partial \Omega} \frac{\partial \Psi}{\partial \Omega} \frac{\partial \Psi}{\partial \Omega} \right] = 0 \tag{8}
$$

$$
\nabla^2 \Omega - Re \left[\frac{\partial \Psi}{\partial y} \frac{\partial \Omega}{\partial x} - \frac{\partial \Psi}{\partial x} \frac{\partial \Omega}{\partial y} \right] = 0
$$
 (8)

Velocity - Vorticity:

$$
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\frac{\partial \Omega}{\partial y}
$$
(9)

$$
\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{\partial \Omega}{\partial x}
$$
(10)

$$
u\frac{\partial \Omega}{\partial x} + v\frac{\partial \Omega}{\partial y} = \frac{1}{\text{Re}}\left(\frac{\partial^2 \Omega}{\partial x^2} + \frac{\partial^2 \Omega}{\partial y^2}\right)
$$
(11)

Coordinate Transformation

Figure: From Physical to Computational

Transformed Form of The Governing Equations in 2D

Stream Function Equation

$$
\frac{\partial \psi}{\partial \eta} \left[\frac{\partial y}{\partial \xi} \left(\frac{\partial^2 x}{\partial \xi^2} \alpha + \frac{\partial^2 x}{\partial \eta^2} \beta - 2 \frac{\partial^2 x}{\partial \xi \partial \eta} \gamma \right) - \frac{\partial x}{\partial \xi} \left(\frac{\partial^2 y}{\partial \xi^2} \alpha + \frac{\partial^2 y}{\partial \eta^2} \beta - 2 \frac{\partial^2 y}{\partial \xi \partial \eta} \gamma \right) \right] + \frac{\partial \psi}{\partial \xi} \left[\frac{\partial x}{\partial \eta} \left(\frac{\partial^2 y}{\partial \xi^2} \alpha + \frac{\partial^2 y}{\partial \eta^2} \beta - 2 \frac{\partial^2 y}{\partial \xi \partial \eta} \gamma \right) - \frac{\partial y}{\partial \xi} \left(\frac{\partial^2 x}{\partial \xi^2} \alpha + \frac{\partial^2 x}{\partial \eta^2} \beta - 2 \frac{\partial^2 x}{\partial \xi \partial \eta} \gamma \right) \right] + \frac{\partial^2 \psi}{\partial \xi^2} J \alpha + \frac{\partial^2 \psi}{\partial \eta^2} J \beta - 2 \frac{\partial^2 \psi}{\partial \xi \partial \eta} J \gamma = -J^3 \Omega
$$
\n(12)

Vorticity Transport Equation

Re

$$
Re \frac{\partial \psi}{\partial \eta} \frac{\partial \Omega}{\partial \xi} J \left(\frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial y}{\partial \xi} \frac{\partial x}{\partial \eta} \right) + Re \frac{\partial \psi}{\partial \xi} \frac{\partial \Omega}{\partial \eta} J \left(\frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi} - \frac{\partial y}{\partial \eta} \frac{\partial x}{\partial \xi} \right) =
$$

+
$$
\frac{\partial \Omega}{\partial \eta} \left[\frac{\partial y}{\partial \xi} \left(\frac{\partial^2 x}{\partial \xi^2} \alpha + \frac{\partial^2 x}{\partial \eta^2} \beta - 2 \frac{\partial^2 x}{\partial \xi \partial \eta} \gamma \right) - \frac{\partial x}{\partial \xi} \left(\frac{\partial^2 y}{\partial \xi^2} \alpha + \frac{\partial^2 y}{\partial \eta^2} \beta - 2 \frac{\partial^2 y}{\partial \xi \partial \eta} \gamma \right) \right]
$$

+
$$
\frac{\partial \Omega}{\partial \xi} \left[\frac{\partial x}{\partial \eta} \left(\frac{\partial^2 y}{\partial \xi^2} \alpha + \frac{\partial^2 y}{\partial \eta^2} \beta - 2 \frac{\partial^2 y}{\partial \xi \partial \eta} \gamma \right) - \frac{\partial y}{\partial \eta} \left(\frac{\partial^2 x}{\partial \xi^2} \alpha + \frac{\partial^2 x}{\partial \eta^2} \beta - 2 \frac{\partial^2 x}{\partial \xi \partial \eta} \gamma \right) \right]
$$

+
$$
\frac{\partial^2 \Omega}{\partial \xi^2} J \alpha + \frac{\partial^2 \Omega}{\partial \eta^2} J \beta - 2 \frac{\partial^2 \Omega}{\partial \xi \partial \eta} J \gamma
$$

(13)

Equations for the velocity components in vector form:

$$
\nabla^2 \bar{u} = -\bar{\nabla} \times \bar{\Omega} \tag{14}
$$

The three-component vorticity transport equation,:

$$
\left(\bar{u}.\bar{\nabla}\right)\bar{\Omega} - \left(\bar{\Omega}.\bar{\nabla}\right)\bar{u} - \frac{1}{\mathrm{Re}}\nabla^2\bar{\Omega} = 0\tag{15}
$$

Boundary conditions

Figure: Boundary conditions

Figure: Flow Past an Airfoil (Re=50)

fils

(a) Stream function contours (b) Vorticity contours

Figure: Flow Past an Airfoil (Re=50)

fils

Stream function contours

Figure: Stream function contours

Vorticity contours

Figure: Vorticity contours

Streamtrace contours

fils

Streamtrace contours

Bülent Düz September 15, 2009 in Delft 31/41

₹ñJ

Vorticity contours

fils

Vorticity contours

Figure: Velocity-Vorticity Approach

fils

Streamtrace contours

(a) Streamtrace contours (b) Streamtrace contours

Figure: Velocity-Vorticity Approach

Bülent Düz September 15, 2009 in Delft 34/41

Streamtrace contours

(a) Vorticity contours (b) Vorticity contours

Figure: Velocity-Vorticity Approach

Bülent Düz September 15, 2009 in Delft 35/41

Performance

Figure: Typical non-linear convergence history for Re=100

Bülent Düz September 15, 2009 in Delft 36/41

Comparison of the Solvers and the Preconditioners

Figure: Comparison of the Solvers and the Preconditioners

Bülent Düz September 15, 2009 in Delft 37/41

Comparison of the Solvers and the Preconditioners

- **Implementation of an effective preconditioner is crucial.**
- **Jacobi does not have a major effect on the convergence** pattern.
- BiCGSTAB has a more stable pattern than GMRES and is the fastest solver by means of iteration steps and computation time.
- GMRES is the most stable solver, enables a continuous residual reduction.
- \blacksquare In GMRES the computational work increases linearly with the iteration⇒ Restartable GMRES(m)

The idea:

- Extract grid points on the blade surface from ANSYS to an aerodynamic code
- Generate grid, execute fluid analysis and achieve the velocity, vorticity and pressure fields
- Transfer pressure values to ANSYS, execute solid analysis and acquire displacements
- With storing displacements from ANSYS, finish first step of FSI
- By using displacements from ANSYS, update geometry and start second step

- **Parallel Computing**
- **Nonlinear Preconditioning**
- **Multigrid/Multilevel Techniques**

▶ Schobeiri, M., Turbomachinery Flow Physics and Dynamic Performance, Springer, 2005

Hoffman, K.A., Computational Fluid Dynamics for Enginners - Volume I, Engineering Education System, Kansas, 1997.

Saad, Y., *Iterative Methods for Sparse Linear Systems*, PWS Publishing Company, Boston, 1996.

Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and Van der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. 2nd Edition, SIAM, Philadelphia, PA, 1994.

Exercise Roache, P.J., Fundamentals of Computational Fluid Dynamics, Hermosa Pub., USA, 1998

http://www.ansys.com

Cai, X.C., Keyes, D.E., Nonlinearly preconditioned inexact Newton algorithms, SIAM J.SCI.COMPUT., Vol.24, No.1, pp.183-200

◮ Ning Qin, David K. Ludlow and Scott T. Shaw, "A matrix-free preconditioned Newton:GMRES method for unsteady NavierStokes solutions" International Journal for Numerical Methods in Fluids, Vol. 33, pp. 223248, 2000

Thank You...

Fils

Non-linear & Linear Preconditioning

Figure: Nonlinear residual history for the flow problem with different Reynolds number [\[7\]](#page-40-2)

Figure: Blade mesh in ANSYS (3D-2D)

MMB: Linear - Elastic - Isotropic

Deformation Under Aerodynamic Loads

(a) x-component of displace-(b) y-component of displacement ment

Figure: Solid Analysis

Deformation Under Aerodynamic Loads

(a) Deformed shape with unde-(b) Vector plot of translation formed edge

Figure: Solid Analysis

fi∏

Transformation Terms

$$
\alpha = \left(\frac{\partial x}{\partial \eta}\right)^2 + \left(\frac{\partial y}{\partial \eta}\right)^2
$$

$$
\beta = \left(\frac{\partial x}{\partial \xi}\right)^2 + \left(\frac{\partial y}{\partial \xi}\right)^2
$$

$$
\gamma = \frac{\partial x}{\partial \xi} \frac{\partial x}{\partial \eta} + \frac{\partial y}{\partial \xi} \frac{\partial y}{\partial \eta}
$$

$$
J = \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial y}{\partial \xi} \frac{\partial x}{\partial \eta}
$$

(16)

fils

Governing Equations in 3D

x-component of velocity :

$$
\nabla^2 u = \frac{\partial \Omega_y}{\partial z} - \frac{\partial \Omega_z}{\partial y} \tag{17}
$$

y-component of velocity :

$$
\nabla^2 v = \frac{\partial \Omega_z}{\partial x} - \frac{\partial \Omega_x}{\partial z} \tag{18}
$$

z-component of velocity :

$$
\nabla^2 w = \frac{\partial \Omega_x}{\partial y} - \frac{\partial \Omega_y}{\partial x} \tag{19}
$$

vorticity transport :

$$
\nabla. (u\Omega) - (\Omega.\nabla) u - \frac{1}{\text{Re}} \nabla^2 \Omega = 0 \qquad (20)
$$

Coordinate Transformation

■ The chain rule of partial differentiation

1
$$
\frac{\partial}{\partial x} = \xi_x \frac{\partial}{\partial \xi} + \eta_x \frac{\partial}{\partial \eta} + \zeta_x \frac{\partial}{\partial \zeta}
$$

\n**2** $\frac{\partial}{\partial y} = \xi_y \frac{\partial}{\partial \xi} + \eta_y \frac{\partial}{\partial \eta} + \zeta_y \frac{\partial}{\partial \zeta}$
\n**3** $\frac{\partial}{\partial z} = \xi_z \frac{\partial}{\partial \xi} + \eta_z \frac{\partial}{\partial \eta} + \zeta_z \frac{\partial}{\partial \zeta}$
\n**1** $J = \frac{\partial(\xi, \eta, \zeta)}{\partial(x, y, z)}$

Streamtrace contours

fi]∫

Preconditioning and Matrix-free Approach

$$
P_L^{-1} J(\bar{x}) \bar{v} = P_L^{-1} \frac{\bar{f}(\bar{x} + P_R^{-1} \bar{y}) - \bar{f}(\bar{x})}{\varepsilon} = \bar{z}
$$
(21)

$$
P_R \epsilon \bar{v} = \bar{y}
$$
(22)

$$
P_L \bar{z} = J \bar{v}
$$
(23)

Bülent Düz Soptember 15, 2009 in Delft 50/41

Comparison of the Solvers and the Preconditioners

Table: Comparison of the solvers and preconditioners by means of iteration number and computation time

Coordinate Transformation

Second derivative of an arbitrary variable in the transformed form

$$
\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial \xi} \frac{\partial^2 \xi}{\partial x^2} + \frac{\partial u}{\partial \eta} \frac{\partial^2 \eta}{\partial x^2} + \frac{\partial u}{\partial \zeta} \frac{\partial^2 \zeta}{\partial x^2} + \frac{\partial^2 u}{\partial \xi^2} \left(\frac{\partial \xi}{\partial x}\right)^2 + \frac{\partial^2 u}{\partial \eta^2} \left(\frac{\partial \eta}{\partial x}\right)^2
$$

$$
+ \frac{\partial^2 u}{\partial \zeta^2} \left(\frac{\partial \zeta}{\partial x}\right)^2 + 2 \frac{\partial^2 u}{\partial \xi \partial \eta} \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x} + 2 \frac{\partial^2 u}{\partial \xi \partial \zeta} \frac{\partial \xi}{\partial x} \frac{\partial \zeta}{\partial x} + 2 \frac{\partial^2 u}{\partial \zeta \partial \eta} \frac{\partial \zeta}{\partial x} \frac{\partial \eta}{\partial x}
$$

Figure: Blade geometry

Fils

Effect of Reynolds Number

Figure: Pressure distribution

Effects of Reynolds Number

Figure: Pressure distribution

Effects of Reynolds Number

- **Pressure distribution** distribution character \Rightarrow slightly values ⇒ extensively
- Vortex generation (bottom surface of upper blade)

