
 
 

Delft University of Technology

Autoscaling: Minimising Immersion Disruption in Motion Cueing Using Model Predictive
Control

Jain, V.; Lazcano, Andrea Michelle Rios; Happee, R.; Shyrokau, B.

DOI
10.82157/dsa/2025/18
Publication date
2025
Document Version
Final published version
Published in
Proceedings of the Driving Simulation Conferences

Citation (APA)
Jain, V., Lazcano, A. M. R., Happee, R., & Shyrokau, B. (2025). Autoscaling: Minimising Immersion
Disruption in Motion Cueing Using Model Predictive Control. In Proceedings of the Driving Simulation
Conferences (Vol. 10, pp. 147-154). Driving Simulation Association. https://doi.org/10.82157/dsa/2025/18

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.82157/dsa/2025/18
https://doi.org/10.82157/dsa/2025/18


DSC 2025 EuropeXR Jain et al.

Autoscaling: Minimising Immersion Disruption in
Motion Cueing Using Model Predictive Control

Vishrut Jain1, Andrea Lazcano2, Riender Happee1, Barys Shyrokau1

(1) Cognitive Robotics Department (CoR), Faculty of Mechanical Engineering, Delft University of Technology,
2628 CD, Delft, The Netherlands, e-mail: {V.J.Jain, R.Happee, B.Shyrokau}@tudelft.nl
(2) Toyota Motor Europe, Zaventem, Belgium, e-mail: Andrea.Lazcano@toyota-europe.com

Abstract - Driving simulators aim to replicate real-world vehicle experiences by recreating accelerations acting
on occupants using a combination of translational accelerations and tilt-coordination. Due to space constraints,
translational accelerations alone are insufficient, and platform tilting generates additional gravitational forces to
enhance realism. However, ensuring the tilt motion remains imperceptible is critical to maintaining immersion.
Model Predictive Control-based motion cueing algorithms demonstrate superior specific force tracking and platform
workspace utilization. Despite these benefits, MPC algorithms can exhibit pre-positioning, a phenomenon where
the platform tilts prematurely in anticipation of future motion, causing perceptible false cues that disrupt immersion.
This phenomenon is particularly noticeable in tilt-coordination due to sustained specific forces.
This work proposes a solution to mitigate pre-positioning by introducing a dynamic scaling factor for tilt-
coordination. By scaling down the reference signal for tilt coordination, it stays within the simulator’s tilt angle
and tilt-rate capabilities, and platform tilt rates are kept below human perception thresholds. The scaling factor is
derived from two key parameters: the maximum specific force generated by platform tilt and the tilt rate perception
threshold. The reference for specific force is unscaled to optimally use the translational workspace.
This approach enhances driving simulator realism by minimizing the perceptibility of pre-positioning while optimiz-
ing specific force recreation. Subjective evaluations also indicate improved immersion, illustrating the effectiveness
of the scenario-adaptive Autoscaling MCA.

Keywords: Motion cueing algorithm, Human-in-the-loop assessment, Pre-positioning, Model predictive control,
Automated driving
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Introduction
Driving simulators play a crucial role in replicating
real-world driving experiences by providing visual,
auditory, vestibular, and haptic cues (Shyrokau, et al.,
2018). A key aspect of realism in driving simulation
is motion cueing, which is achieved through repro-
duction of specific forces. Motion cueing algorithms
(MCAs) synchronize platform motion with visual stim-
uli, ensuring a coherent, immersive experience.
MCAs simulate the vehicle dynamics by replicating
the accelerations and forces experienced by occu-
pants. However, due to the physical constraints of
simulators such as limited motion space, realistic
accelerations cannot be generated through transla-
tional movement alone. Thus, simulators employ a
combination of translational accelerations and tilt-
coordination, where platform tilting induces additional
gravitational forces. This technique helps recreate
the specific forces acting on an occupant’s head,
mimicking the perception of real-world driving. The
classical approach uses tilt-coordination for low-
frequency accelerations and platform translation for

high-frequency accelerations (Seehof, Durak, and
Duda, 2014; Stratulat, et al., 2011).

A key challenge is keeping platform rotations imper-
ceptible, as exceeding human perception thresholds
disrupts immersion and makes specific forces feel
unnatural. Thus, tilt rates must remain below percep-
tible limits.

Recent advancements in motion cueing, particularly
through model predictive control (MPC)-based algo-
rithms, have improved the fidelity of driving simula-
tions (Bruschetta, Maran, and Beghi, 2016; Khusro,
et al., 2020; Lamprecht, et al., 2021). These al-
gorithms predict future platform motion and opti-
mise specific force tracking while accounting for plat-
form workspace constraints. Despite their advan-
tages, MPC-based algorithms are not flawless. The
predictive nature of these algorithms can lead to pre-
positioning, where the platform moves prematurely in
anticipation of future motion. This is particularly dis-
turbing in transitions from steady state driving to dy-
namic manoeuvres where in steady state the slight-
est motion is noticeable. While the specific force can
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remain zero, the constituent components of the spe-
cific force arising from translational acceleration and
tilt-coordination can be non-zero, resulting in per-
ceptible platform motion. In a subjective assessment
of a frequency-splitting MPC-based cueing algorithm
(Jain, et al., 2023), 7 out of 38 participants reported
these premature movements as false cues. This phe-
nomenon is also reported in some other works (de-
scribed as ”velocity buffering”) (Biemelt, et al., 2021;
Grottoli, et al., 2019). However, due to the objective
nature of these studies, no comment on subjective
feedback is made in these works.

In moving-base driving simulators, it is a common
trend to scale down the reference accelerations by
a factor of 0.2 to 0.6 to better fit the available
workspace (Bellem, et al., 2017; Lamprecht, et al.,
2021). Scenario-specific scaling factors are typically
used to precondition the reference signal and opti-
mise tracking within the simulator’s physical limits.
The quality of the driving simulation heavily depends
on this factor. In MPC-based MCAs, the scaling fac-
tor is generally kept constant throughout the simula-
tion, requiring a conservative choice that suits the en-
tire scenario rather than optimizing for different sec-
tions. This paper addresses the challenge of pre-
positioning by proposing a method to dynamically ad-
just the scaling factor for tilt-coordination based on
the simulator capabilities. By ensuring that platform
tilt remains within human perception thresholds, pre-
positioning is minimized, enhancing the realism and
immersion of the driving experience, while eliminat-
ing the need for scaling factor tuning for every sce-
nario.

Methodology
Figure 1 presents the proposed algorithm’s structure,
where the MPC receives two separate references: for
tilt coordination and for total specific force. This en-
sures that a reproducible component of the specific
force is provided to tilt coordination as a reference,
preventing premature platform movements.

The MPC controls four degrees of freedom (DoFs)
of the platform motion, with vehicular roll and pitch
assumed to be negligible for the vehicle dynamics.
Hence the applied platform pitch and roll serve only
to recreate vehicle acceleration through tilt coordina-
tion. However, if available, vehicle pitch and roll data
can be directly incorporated into the rotational chan-
nels as additional input. Additionally, since yaw does
not affect the specific force generation, the yaw con-
troller can be decoupled from the MPC. Thus, the
yaw motion is managed separately using a simple
washout filter to avoid additional computational ex-
pense.

References for the Algorithm
Reference for Tilt Coordination
The algorithm aims to prevent platform pre-
positioning by addressing its root cause in MPC: an-
ticipatory motion triggered when required accelera-
tions exceed what can be achieved within tilt rate lim-
its. Unable to generate the desired force in time, the
platform moves early, resulting in unrealistic specific
force cues. This issue is mitigated by providing the
tilt coordination with a reference signal that can be

accurately followed while staying within the tilt-rate
limit. Thus, the tilt-coordination receives a scaled-
down low-pass vehicle acceleration data as a refer-
ence.
To enforce strict reference tracking, a high penalty is
applied to the tilt coordination term in the objective
function, preventing tilt components from compromis-
ing the accurate recreation of the total specific force.

Dynamic Scaling Factor Design
To ensure accurate reference signal recreation, the
required specific force and its rate of change must
be less than or equal to the simulator’s potential.
Two scaling factors are derived, based on maximum
achievable tilt angle and maximum rate change of tilt
angle.
The first scaling factor, kθ, is based on the maximum
tilt angle, ensuring the reference specific force re-
mains within the platform’s tilt coordination capability:

max |fspec,ref | ≤ max|g sin(θtilt)| (1)

kθ = | g sin(θlim|)
max |fspec,ref

| (2)

where ’θlim’ is the maximum platform tilt angle.
The second scaling factor, kω , is derived from the tilt
rate constraint to prevent false cues.

max |ḟ spec, ref | ≤ max |ωtiltg cos(θtilt)| (3)
here, the maximum value of ’cos(θtilt)’ is 1, and the
tilt rate is limited to the perception threshold, ωthd,
(3◦/s). The scaling factor is thus given by:

kω ≤ ωthd
g

max ḟspec,ref

(4)

k = min(kθ, kω, 1) (5)

where k is the dynamic scaling factor that scales
down the reference signal for the tilt coordination. In
this work, for the choice of scaling factor the refer-
ence signal within the MPC prediction horizon is con-
sidered.

Reference for Total Specific Force
In this work, unscaled vehicular accelerations are
used as the reference for total specific force. Given
that tilt coordination has a separate reference, the
MPC reproduces the remaining specific force solely
through translational accelerations. This ensures op-
timal use of translational space while employing tilt
coordination to enhance realism by complementing
specific force reproduction through translational mo-
tion.

Hexapod dynamics
The motion of the hexapod platform is defined in
a state space form to facilitate implementation in
the MPC. The base states include hexapod posi-
tion (shex) and angular orientation (θhex). These base
states are added to the state-space model with the
relation

ẋhex = Ahexxhex + Bhexuhex (6)
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Figure 1: Structure of the five-DoF Autoscaling MCA

where the state vector, xhex, comprises of the posi-
tion, shex, translational velocity, vhex, angular orien-
tation, θhex, and angular velocity, ωhex, of the hexa-
pod and the input vector, uhex, comprises of trans-
lational acceleration, ahex and angular acceleration,
αhex. The matrix Ahex and Bhex represent the dou-
ble integrator system of the inputs, adapted from
(Qazani, et al., 2019).

As the algorithm is designed for both longitudinal and
lateral degrees of freedom, each state comprises of
components in x and y directions (roll and pitch for
orientation). In this study, positive values correspond
to forward, left, and upward orientations along the x,
y, and z axes, with counterclockwise rotations indi-
cated as positive.

Objective Function
The objective function structure is similar to that
of the frequency-splitting algorithm in (Jain, et al.,
2023), but with changes in output terms and refer-
ences. Instead of using total specific force, transla-
tional motion and tilt coordination as output terms,
this algorithm includes only tilt coordination and total
specific force.

Jc = [(Y (xk, uk) − Ŷk)T WY (Y (xk, uk) − Ŷk)︸ ︷︷ ︸
output terms

+ (Xk − X̂k)T WX(Xk − X̂k)︸ ︷︷ ︸
state terms

+ JT
k WJJk︸ ︷︷ ︸

jerk terms

+ (Uk)T WU (Uk)︸ ︷︷ ︸
input terms

+ δT wδδ︸ ︷︷ ︸
slack term

] (7)

Y (xk, uk) = [fspec Gloc] (8)
WY = [wf,spec wG,loc] (9)
Jk = [jtrans jang] WJ = [wj,trans wj,ang](10)

Penalising jerk in the cost function of an MPC-based
MCA is a well established practice to reduce oscilla-
tions in the specific force. We approximate jerk us-
ing the acceleration change over time-steps divided
by the time-step j(k) = a(k)−a(k−1)

T s . This approach
avoids the need to add jerk as a system state, reduc-
ing computational complexity. The state term (xk−x̂k)
introduces ’washout’ by bringing the platform back to
its neutral position x̂k. The input term (Uk) penalises
high input values.

In Equation 7, the user defined (tunable) parameters
are the weighting matrices WY , WU , WX and wδ. WX

Table 1: Limits for the simulator and the used MPC limits

Quantity Platform physical limit Defined MPC limit
θhex ±30deg ±20deg
vhex ±7.2m/s ±7.2m/s
ahex ±9.81m/s2 ±9.81m/s2

shex ±0.5m ±0.3m

is a diagonal matrix with weights corresponding to
the states being its diagonal elements. The washout
weights ws and wθ are time varying and are defined
in a later subsection.

The slack variable, δ, represents the deviation of
the tilt-rate from the soft constraint limit (perception
threshold).

Platform Constraints
Unlike a real vehicle, a driving simulator is restricted
to a maximum displacement and maximum tilt an-
gle, specific to the simulator used. This work uses
the workspace limitations of Delft Advanced Vehicle
Simulator (DAVSi).

DAVSi is a 6-DoF moving-based driving simulator
(Khusro, et al., 2020), capable of generating accel-
eration up to 1 g in all directions and can simulate
motions up to the frequency of 10 Hz. The consid-
ered limits of the platform motion are given in Table 1.
As the algorithm includes yaw washout as a separate
controller, conservative limits are chosen for transla-
tional and rotational displacement. Additionally, the
soft constraint used to define the tilt-rate perception
limit is formulated as

−ωthd ≤ ωhex + δ

ωhex − δ ≤ ωthd

0 ≤ δ (11)

where ωthd is the perception threshold limit (3 deg/s).
δ is a positive slack variable which is penalised in the
cost function to keep its value low. Hence, the tilt-rate
soft constraint limit is allowed to be violated, however,
any violation of the constraint is penalised, to min-
imise it.

Workspace management
The MPC considers these constraints over the pre-
diction horizon to optimally use the workspace and
generate realistic motion. Two additional strategies

Stuttgart, 24-26 Sep 2025 -149-



Autoscaling: Minimising Immersion Disruption in Motion Cueing
Using Model Predictive Control DSC 2025 EuropeXR

are employed here for effective workspace manage-
ment: washout and dynamic constraints.
Washout: The simulator platform has the maximum
potential of recreating the specific forces at its neu-
tral position. To ensure the platform remains near its
neutral position, we penalize its states in the cost
function. In this work, we use non-linear weights
(based on the platform orientation and position) for
the washout instead of constant weights. This allows
a single non-linear setting for all scenarios rather
than tuning the washout weights for each scenario.
The non-linear weights are defined as

ws = k1

k2 ∗ (|shex| − slim)2 + ∆ (12)

wθ = k3

k2 ∗ (|θhex| − θlim)2 + ∆ (13)

where k1, k2 and k3 define the shape of the weight
function, slim and θlim are the defined limits for the
platform for displacement and tilt angle. ∆ (here 0.01)
is a small value added to the denominator to avoid
singularity. The selected values are k1 = 1, k2 = 50
and k3 = 0.1, these values were manually tuned to
ensure that the penalisation is low near the neutral
position, while high, close to the platform limits.
Dynamic constraints: In this study, we incorporate dy-
namic bounds on the platform position and orienta-
tion via the constraints proposed in (Fang and Ke-
meny, 2012), as ’braking constraints’. The formula-
tion of the constraints is

shex,min ≤ sdy ≤ shex,max (14)
θhex,min ≤ θdy ≤ θhex,max (15)

sdy = shex + cvvhexTdy,s + 0.5cuahex,tranT 2
dy,s(16)

θdy = θhex + cwωhexTdy,θ + 0.5cuahex,rotT
2
dy,θ(17)

where, cv = 1, cw = 1, cu = 0.45, Tdy,θ = 0.5,
Tdy,p = 2.5 and sp, θp limits are 0.3 m and 20 deg re-
spectively. These values were adopted from (Munir,
et al., 2017).

Yaw Channel
The fifth DoF, yaw, is controlled separately using
a parallel washout channel, ensuring reduced com-
putational complexity. The first-order high-pass filter
used for this purpose is given as

HP = s

s + 2πνyaw
(18)

where νyaw is the cutoff frequency for the high pass
filter. In this work, we use the value of 0.0159 Hz for
this cutoff frequency.

Weight settings
To ensure a fair comparison the penalisation weights
on tilt angle, translational displacement, translational
jerk, angular jerk and slack variable are kept the
same as used in (Jain, et al., 2023). As the output
terms vary in the cost terms of the two MCAs, the
weights for these terms also change. In the Autoscal-
ing MCA priority is given to the tilt-coordination to
follow its reference accurately, hence the weight for

tilt-coordination reference tracking is selected to be
5 times higher than for specific force tracking (the
weight used for specific force tracking is unity). How-
ever, as the tilt-coordination is forced to begin at the
onset of the manoeuvres, pre-positioning in the trans-
lational workspace can be observed by the occupant
of the simulator. To resolve this, the translational ve-
locity of the platform is penalised. Varying the velocity
penalty from 0 to 1 shows an insignificant difference.
However, a penalty of 10 resulted in an improved so-
lution, with reduced pre-positioning and limited ad-
verse effect on the rendered profile.

Yaw washout
The tuning parameter for the yaw washout was the
cut-off frequency of the washout filter. The cut-off
frequency for the yaw washout was varied between
0.0159 Hz (0.1 rad/s) to 0.1592 Hz (1 rad/s).

Since human perception is primarily sensitive to rota-
tional velocities, the selection of the cut-off frequency
is chosen based on desirable rotational velocity track-
ing. It is also essential to ensure that the yaw angle
remains within acceptable limits (20 deg for this work).
Based on these considerations, a cut-off frequency of
0.0159 Hz is chosen for this study.

Benchmarking
As pre-positioning was identified to occur with the
subjective validation of the frequency splitting algo-
rithm (Jain, et al., 2023), it is chosen as the bench-
mark for this study.

Scenario description
To compare the realism and immersion of the algo-
rithm in the driving simulator, real-vehicle driving data
from an experiment conducted by our group at the
Valkenburg track was utilised (Papaioannou, et al.,
2023). Given the experiment’s duration, specific sec-
tions were chosen for this study, including multi-turns
with acceleration and braking, a slalom maneuver,
and a lane-change maneuver, capturing a variety of
naturalistic driving scenarios.

The total scenario duration was deliberately limited
to 110 seconds to minimize the risk of simulator sick-
ness and potential bias in the study.

Fidelity criteria
In this paper, the algorithm is evaluated both sub-
jectively and objectively. For the objective compari-
son, the shape similarity, root mean squared of the
specific force and the timing of the initiation of the
tilt-coordination compared to the onset of the vehi-
cle maneuvers is considered. On the other hand, for
subjective assessment the participants were asked
to rate the realism of the ride based on realism of
cornering and braking, the amount of unnatural in-
stances/false cues observed during the ride and are
asked for any instance of pre-positioning observed.

Human-in-the-loop evaluation
This section describes the human-in-the-loop driv-
ing simulator experiment and its subjective evalua-
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tion. Perceived driving simulator fidelity was evalu-
ated from the perspective of passive users, represen-
tative of users of automated vehicles. In pilot studies,
we even aimed to evaluate perceived fidelity with the
eyes off the road using a tablet for a non-driving task.
However, with vision limited to the vehicle interior, the
MCAs were not perceived as representative of driv-
ing. This was resolved by adding exterior vision and
instructing participants to observe the road.

Experimental procedure
All participants gave their informed consent prior to
participating. The Human Research Ethics Commit-
tee of TU Delft, The Netherlands, approved the ex-
periment protocol under application number 3965.

In total, 8 participants from the pool of students
and employees of TU Delft participated in the study
(mean age: 25.5, std: 2.5 years, 3 females, 5 males).
All participants were subjected to both the proposed
algorithm and frequency splitting drives sequentially
within one session, to compare the subjective evalu-
ation of the realism and feel of the MCAs.

Before the experiment, the participants underwent
a concise briefing session to familiarise themselves
with the questionnaire and to understand the objec-
tive of the experiment. During the experiment, two-
way communication was established between the ex-
perimenter and the participant via bluetooth head-
phones and microphones.

The visualisation was projected onto a screen in front
of the simulator, with side windows and windshield
partially covered to block peripheral views and elimi-
nate cues revealing platform motion. Dynamic visual
compensation adjusted the projection to match the
platform’s movements, ensuring the visuals stayed
aligned with the motion felt by the participants de-
spite the screen being outside the cockpit.

Following the briefing, participants underwent a se-
ries of six two-minute drives in fully automated mode
with minimal time between drives to facilitate a clear
comparison. After each drive, participants completed
an absolute grading questionnaire to assess various
aspects of the driving experience. These questions
can be found in Table 4. To ensure fair comparison,
the sequence of algorithms was varied for different
participants, maintaining either the pattern (A B A B
A B) or (B A B A B A).

The first round for each algorithm aimed to immerse
participants in the simulation environment and was
not graded. Participants provided ratings in a 5-point
scale for the second and third rounds based on the
provided questionnaire. At the end of the experiment,
the participants were asked to fill in a comparative
questionnaire.

Results and discussion
This section presents the results of both objective
and subjective evaluations of the two algorithms, fol-
lowed by an analysis of the findings.

Objective evaluation
Specific force tracking
Figure 2 and Figure 3 show the comparison between
the profiles rendered through the Autoscaling MCA
and the benchmarking frequency-splitting algorithm
for real driving data. It is worth mentioning that the
Autoscaling MCA receives unscaled vehicle accel-
erations, whereas the frequency-splitting algorithm
used a reference scaled down by a factor of 0.3 for
longitudinal acceleration and 0.4 for lateral accelera-
tion. The reference signal presented in Figure 2 and
Figure 3 corresponds to the reference chosen for the
frequency splitting algorithm, where coincidentally,
the rendered profiles via the two algorithms have a
similar magnitude.
For the frequency-splitting algorithm, the RMSE of
the longitudinal specific force tracking is 0.0466 while
for the lateral tracking it is 0.1943. On the other hand,
for the Autoscaling MCA the RMSEs for longitudi-
nal and lateral specific force tracking are 0.1210 and
0.2459 respectively.
Additionally, the shape similarity factors for the ren-
dered profiles were analysed. For the longitudinal di-
rection, the shape similarity factor is 0.9787 for the
frequency-splitting algorithm and 0.9312 for the Au-
toscaling MCA. Similarly, for the lateral direction, the
frequency-splitting algorithm achieves a shape simi-
larity coefficient of 0.9519, whereas the Autoscaling
MCA yields 0.9208.

Workspace utilisation
A comparison of workspace utilisation, based on
profiles generated by the Autoscaling MCA and the
benchmarking frequency-splitting algorithm, is pre-
sented in Table 3. The Autoscaling MCA utilises the
translational workspace more, while the frequency-
splitting algorithm exhibits higher usage of the ro-
tational workspace. Although both algorithms re-
spect the tilt-rate perception threshold, the FS MCA
achieves higher platform tilts by initiating tilt earlier,
causing pre-positioning, whereas Autoscaling MCA
avoids this by reducing the reference specific force,
eliminating the need for early motion.

Pre-positioning
In Figure 2, it can be observed that, for the Autoscal-
ing MCA the translational accelerations generate a
higher component of specific force compared to the
frequency splitting MCA. Additionally, the onsets of
the manoeuvres are also at the correct instances,
however, due to the gradually varying and continu-
ous nature of longitudinal acceleration, this difference
is not distinctly observed. On the other hand, it can
be observed in Figure 3, that for lateral motion, the
frequency-splitting algorithm exhibits pre-positioning
within the rotational workspace at various instances
to prepare for future motion. In contrast, the Au-
toscaling MCA significantly reduces pre-positioning.
The motion onset in the Autoscaling MCA occurs
at the correct instances, with a higher contribution
from translational motion compared to the frequency-
splitting algorithm.

Subjective evaluation
This subsection compares the two algorithms based
on the conducted experiment. Table 4 presents the

Stuttgart, 24-26 Sep 2025 -151-



Autoscaling: Minimising Immersion Disruption in Motion Cueing
Using Model Predictive Control DSC 2025 EuropeXR

0 20 40 60 80 100 120
-2

-1

0

1

S
p

e
c
if
ic

 f
o

rc
e

[m
/s

2
]

Reference

Frequency-splitting MCA

Autoscaling MCA

0 20 40 60 80 100 120
-2

-1

0

1

T
rn

s
la

ti
o

n
a

l

c
o

m
p

o
n

e
n

t 
[m

/s
2
]

0 20 40 60 80 100 120

Time [s]

-2

-1

0

1

T
ilt

 c
o

o
rd

in
a

ti
o

n

[m
/s

2
]

Figure 2: Comparison of the response of Autoscaling and Frequency-splitting MCAs: longitudinal acceleration.

Figure 3: Comparison of the response of Autoscaling and Frequency-splitting MCAs: lateral acceleration.

obtained responses in detail, including their statistical
significance.

Coherence of the motion with the video
The Autoscaling MCA received an average rating of
3.75 out of 5 (75% realism), while the frequency-
splitting algorithm scored 3.25 (65% realism). Both
algorithms provided a coherent ride experience rela-
tive to the video, with no statistically significant differ-
ence between them.

Post-experiment verbal feedback indicated that the
limiting factor in perceived coherence was the video
quality, rather than the platform’s motion.

Cornering realism

The Autoscaling MCA received an average rating
of 4.0 out of 5, with a median of 4.0, whereas the
frequency-splitting algorithm was rated 3.0 on aver-
age, with a median of 3.0. A statistically significant
difference was observed between the ratings, indicat-
ing a preference for the Autoscaling MCA in terms of
cornering realism.

Participants reported instances of pre-positioning
in the frequency-splitting algorithm during post-
experiment verbal feedback, which may have influ-
enced its lower realism rating.

Table 2: Tracking Performance for the two algorithms

Algorithm
Performance

Specific force tracking Shape similarity factor
RMSE long. RMSE lat. RMSE tot. long. lat.

[m/s2] [m/s2] [m/s2] [-] [-]
Autoscaling MCA 0.1210 0.2459 0.2740 0.9312 0.9208

Frequency-splitting MCA 0.0466 0.1943 0.1998 0.9787 0.9519
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Table 3: Workspace utilisation for the two algorithms

Algorithm
Workspace utilisation

RMS displacement RMS velocity RMS angular displacement RMS angular velocity
[m] [m/s] [deg] [deg/s]

Autoscaling MCA 0.0423 0.0770 2.2339 1.8113
Frequency-splitting MCA 0.0334 0.0682 2.6181 2.0091

Table 4: Subjective evaluation and statistical analysis (on a scale from 0-5)

Criterion Algorithm All data
mean std. median p-value significance

How closely did the ride’s motion correspond to the video? AU 3.75 0.71 4 0.0796 NoFS 3.38 0.52 3

How close did the cornering feel compared to a real car? AU 4 0.76 4 0.0072 YesFS 3 0.53 3

How realistic did the deceleration feel compared to a real vehicle drive? AU 3.5 0.53 3.5 0.1705 NoFS 3.75 0.46 4

Aggressiveness of Section 1 : multi-turn AU 3.75 0.46 4 0.0750 NoFS 3.125 0.64 3

Aggressiveness of Section 2 : slalom AU 2.5 0.76 2 0.5983 NoFS 2.625 0.52 3

Aggressiveness of Section 3 : lane change AU 2.75 0.46 3 0.0112 YesFS 2.125 0.35 2

Was the ride disorienting or sickening? AU 2 0.89 2 0.3506 NoFS 1.75 0.76 2

Were there any unnatural motions that did not match real driving? AU 2.25 0.46 2 0.0025 YesFS 3 0.76 3

Realism of braking
The Autoscaling MCA received an average rat-
ing of 3.5 (median: 3.5), while the frequency-
splitting algorithm scored 3.75 (median: 4). How-
ever, the difference was not statistically signifi-
cant. In post-experiment feedback, participants found
the frequency-splitting algorithm more comfortable,
whereas the Autoscaling MCA felt abrupt during ac-
celeration and braking.

Overall realism
In the comparative questionnaire, 7 out of 8 partici-
pants found the Autoscaling MCA more realistic over-
all, showing a clear preference for its motion cueing.

Aggressiveness
The Autoscaling MCA was rated more aggressive in
the first and third sections, while the second section
scored higher for the frequency-splitting algorithm.
However, statistical significance was found only in the
third section, preventing a general conclusion on the
Autoscaling MCA’s aggressiveness, especially given
its dynamic scaling. Detailed statistics are provided
in Table 4.

Despite this, 6 out of 8 participants in the compara-
tive questionnaire perceived the Autoscaling MCA as
more aggressive overall.

Sickness
After the 2-minute ride, participants rated the algo-
rithms on their sickening or disorienting effects. The
Autoscaling MCA received an average rating of 2,
while the frequency-splitting MCA scored 1.75, with
both medians at 2. This indicates no significant dif-
ference in the motion profiles’ sickening effects.

Unnatural motion/ false cues
The Autoscaling MCA received an average rating of
2.25 (median: 2), while the frequency-splitting MCA

scored 3.0 (median: 3). This statistically significant
difference suggests that the Autoscaling MCA gener-
ates fewer false cues.

In the comparative questionnaire, seven participants
reported more false cues with the frequency-splitting
MCA, while one found the Autoscaling MCA to pro-
duce higher unnatural motions.

Additionally, six out of eight participants observed
pre-positioning in the frequency-splitting algorithm,
whereas only one reported it in the Autoscaling MCA,
occurring during a single corner.

Discussion
The Autoscaling MCA aims at eliminating two major
issues encountered in MPC-based MCAs, one be-
ing pre-positioning, where the platform prepares it-
self for the future motion, moving prematurely. The
second issue being the necessity to scale down the
reference signal to precondition it for desirable recre-
ation of specific scenarios. The performance of tra-
ditional MCAs depends highly on the precondition-
ing (scaling) parameters. In this work, we present the
Autoscaling MCA which automatically derives a time
varying scaling factor for the tilt coordination refer-
ence.

As shown in Figure 3, the Autoscaling MCA reduces
roll pre-positioning in lateral motion, though it does
not eliminate it entirely. This is due to total spe-
cific force error minimization in the objective func-
tion. A higher penalty on tilt coordination improves
adherence to the reference, leading to reduced pre-
positioning, as the platform produces dynamically
scaled-down accelerations via tilt coordination.

The scaling factor is determined based on the plat-
form’s capability to reproduce the maximum specific
force via tilt coordination, while ensuring that the re-
sulting rotational velocity remains within human per-
ception thresholds. In this context, the maximum al-
lowable tilt rate governs the maximum rate of change
of specific force, thereby playing a critical role in
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defining the scaling factor. This ensures the simulator
always has the potential to generate the scaled-down
reference for tilt coordination, maximising the simula-
tor’s potential in recreating specific forces. Since the
platform can always achieve its reference tilt coor-
dination, premature tilting is avoided, reducing pre-
positioning.
Referencing tilt coordination and total specific force
ensures that the algorithm tracks the scaled-down tilt
reference while using translational motion to recre-
ate the remaining specific force. This is evident in
workspace utilization, where the Autoscaling MCA
relies less on tilt workspace and more on transla-
tional workspace compared to the frequency-splitting
algorithm. As a result, tilt coordination serves as
a supporting mechanism for generating higher spe-
cific forces rather than being the primary contributor.
Studies have shown that translational motion has a
greater impact on realism than tilt coordination (Het-
tinger and Riccio, 1992; Jamson, 2010).
Based on the objective performance indicators, how-
ever close, the frequency splitting algorithm showed
a better performance, with higher shape similarity
and lower RMSE for the specific force tracking. Both
the algorithms achieved high values for their per-
formance, however the objective KPIs indicated fre-
quency splitting algorithm to perform better. How-
ever, these KPIs are based on the total specific force,
combining tilt coordination and translational accel-
erations. Thus, conflicting motions in translational
workspace and tilt coordination may create a motion
that does not correspond to the actual specific force.
One such case is when the tilt and translational com-
ponents cancel each other to create a zero net spe-
cific force. This corresponds to the no motion case,
however, the opposite motions of tilt and translation
can still be picked up by the participant.
Hence, in this work, the tilt coordination is treated as
a separate reference with higher penalisation, and
the rest of the specific force is left for the translational
motion to generate. The reference on tilt coordina-
tion is scaled down rather than that on the transla-
tion motion, as tilt produces sustained forces on the
occupant’s head, thus a premature motion creates a
sustained acceleration perception which is probable
to be perceived more than a pre-positioning motion
in translational workspace.

Conclusion
In this work, an Autoscaling MCA framework for an
MPC-based MCA is developed, enabling automatic
and adaptive scaling of vehicular accelerations or ref-
erence specific force. This approach minimizes the
need for aggressive downscaling, thereby preserving
motion fidelity.
The dynamic scaling factor ensures reference track-
ing without prematurely tilting the platform, gener-
ating the demanded specific force, reducing pre-
positioning.
Human-in-the-loop evaluation demonstrated that
87.5% of participants (7 out of 8) perceived the Au-
toscaling MCA as more realistic, with only one partic-
ipant noticing platform pre-positioning compared to
six participants for the frequency-splitting algorithm.
Interestingly, this preference occurred despite the
frequency-splitting approach exhibiting lower RMSE

in specific force and higher shape correlation factors.
This highlights the influence of additional perceptual
aspects-such as the timing of platform motion onset,
which are not adequately captured by conventional
objective metrics.
The Autoscaling MCA also utilizes translational
workspace more effectively and relies less on tilt co-
ordination, enhancing realism by replicating vehicle-
like translational accelerations.
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Krems, J. F., 2017. Can we study autonomous driving comfort
in moving-base driving simulators? A validation study. Human
factors, 59(3), pp. 442–456.
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