
IMPROVEMENTS OF THE CLASSICAL SIMULATION
OF QUANTUM CIRCUITS

USING GRAPH STATES WITH LOCAL CLIFFORDS

Matthijs S.C. RIJLAARSDAM

IMPROVEMENTS OF THE CLASSICAL SIMULATION
OF QUANTUM CIRCUITS

USING GRAPH STATES WITH LOCAL CLIFFORDS

Master Thesis Computer Science
August 2020

Matthijs S.C. RIJLAARSDAM

Student number 4308417
Committee members: Associate Prof. Dr. ir. Z. Al-Ars TU Delft

Assistant Prof. Dr. D. Elkouss Coronas TU Delft, supervisor
Assistant Prof. Dr. J. Borregaard TU Delft

Daily supervisor: PhD-candidate T.J. Coopmans TU Delft

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.
Copyright © 2020 by M.S.C. Rijlaarsdam
Cover: visualization of a 100 qubit qraph state.

http://repository.tudelft.nl/

Keep an open mind. But when you do choose a path, for heaven’s sake be aware of what
you have done and the choice you have made. Don’t try to do both sides.

Richard Hamming

CONTENTS

1 Introduction 3

2 Preliminaries 7
2.1 Quantum states & gates . 7
2.2 Stabilizer states . 11
2.3 Simulation of stabilizer states . 14

2.3.1 Stabilizer tableaus . 15
2.3.2 Graph states with local Cliffords 17
2.3.3 Comparison of simulation complexity 20

3 Canonical form tableaus 21
3.1 Canonical GSLC form . 21
3.2 Converting between GSLC and canonical tableau. 23
3.3 Keeping a tableau canonical . 25

4 Faster CZs for GSLC 33
4.1 The ’CZ_ONE_Z’ procedure . 33
4.2 A novel algorithm for simulating CZ gates. 37

4.2.1 Empirical validation . 38
4.3 CZ sequence scheduler . 43

4.3.1 Empirical validation . 44

5 Operations on GSLC 49
5.1 Tracing out GSLC . 50
5.2 Calculating fidelity . 54

6 General quantum circuit simulation 59
6.1 General quantum circuit simulation . 60
6.2 Sum-over-Clifford Metropolis simulator 63
6.3 Phase-sensitive GSLC subroutine . 65
6.4 Example of a use case . 66

7 Conclusions and outlook 69

v

ACKNOWLEDGEMENTS

This thesis was created in an extraordinary time, during which it was perhaps more im-
portant than ever to receive help from others yet it was more difficult for them to give it.
I’d like to thank the people who have supported my throughout this journey, despite the
circumstances, and without whom this work would have never possible.

First, I would like to thank the people from QINC, for their help and warm welcome.
I’ve felt a part of the group from day one. I’d especially like to thank my fellow ’room-
mates’ Kenneth, Sebastian and Kaushik for their help and advice, and introducing me to
very exotic music tastes. I’d also like to thank professors Borregaard and Al-Ars for taking
the time to be a part of my committee.

My supervisor professor David Elkouss has been instrumental in guiding the direc-
tion of my thesis, prioritizing results and managing my own expectations. I really ap-
preciate his clarity and honesty, and have learned a lot from our bi-weekly feedback ses-
sions.

Perhaps most importantly, I’d like to thank my daily supervisor, PhD candidate Tim
Coopmans. Tim has gone far above and beyond what anyone can expect from a daily
supervisor. During our hours long whiteboard (and later Zoom) sessions, he has both
given me the space to explore new ideas and tempered unrealistic ambitions at the same
time. I thoroughly enjoyed working together, and really appreciate the amount of time
he has put into seeing me successfully finish my master thesis.

Last but not least, I’d like to thank my wonderful friends and family for supporting
me and providing (at times much needed) distraction.

Matthijs Rijlaarsdam
Rotterdam, August 2020

1

1
INTRODUCTION

Feynman first suggested [1] that a quantum computer (a computer based on the prin-
ciples of quantum mechanics) might be more powerful than classical computers. Intu-
itively, one can understand this idea by the fact that the size of the set of numbers neces-
sary to represent a quantum state grows exponentially with its size: there are too many
numbers to store and update classically. This suggests that quantum computers can
solve problems classical computers cannot. For instance, Shor’s algorithm [12] to fac-
tor prime numbers or Grover’s algorithm [5] for database searching provide a speedup
over the best known classical algorithms for their particular problems. Because quantum
computers can solve problems that are probably intractable for classical computers, it is
widely believed that universal quantum computers cannot be efficiently simulated on
classical computers.[47]

Despite this, the simulation of quantum computers with classical computers is of in-
terest for the development of quantum computers. It allows for the study of algorithms,
computing architectures before the advent of functional quantum computers[51]. For
example, researchers can explore an algorithm’s scaling and its robustness against noise[31],
or its behaviour on specific hardware (see e.g. [46], [28], [35]). One can evaluate the per-
formance of quantum internet protocols without having access to a functional quantum
internet [43]. Classical simulation also enables researchers to verify results obtained by
quantum computers [48]. Moreover, it gives an indication of what the computational
relation is between classical and quantum computation[24]; if a certain quantum circuit
can be efficiently simulated, it cannot provide a "quantum speedup".

An example of a class of quantum circuits that can be classically simulated is stabi-
lizer circuits. These circuits, consisting of Clifford gates and Pauli measurements, can
be simulated for thousands of qubits using the Gottesman-Knill theorem [47] [9] [17].
Despite not being universal for quantum computation, stabilizer circuits contain sev-
eral interesting and distinctly ’quantum’ behaviors. For instance, they can generate high
degrees of entanglement [22].

Additionally, stabilizer states have interesting use cases. Quantum network protocols
can for example typically be simulated using stabilizer states (e.g. [40] [52]). The verifi-

3

1

4 1. INTRODUCTION

cation of quantum computation can make use of the stabilizer formalism [48] [37]. Sta-
bilizer states are used to research the effect of noise; they contain common noise models
(the depolarizing channel and the dephasing channel). They can efficiently simulate re-
alistic quantum noise, such as decoherence, by approximating it using a method called
quantum twirling [27]. Another important use case is quantum error correction, a nec-
essary feature of fault-tolerant quantum computation, which is generally based on sta-
bilizer circuits [8][10].

Moreover, stabilizer circuits can be upgraded to universal quantum computation by
adding any non-Clifford gate to the available gate set[20]. This result allows for the sim-
ulation of general quantum circuits containing few non-Clifford gates on classical com-
puters using stabilizer states [34] [47]. Most modern quantum simulation platforms (e.g.,
[60]) include stabilizer-based simulators.

One can use different formalisms to simulate stabilizer states. One commonly used
formalism is the tableau formalism, introduced by Aaronson and Gottesman [17]. Later
work has extended this formalism by defining an algorithm for calculating the fidelity
[30] and extending it to general quantum circuits containing few non-Clifford gates [34][47].
Another formalism is the graph state with local Cliffords (’GSLC’), introduced by Anders
and Briegel [21]. This formalism is faster than tableaus in several cases, but no fidelity
algorithm or general quantum simulation extension has previously been defined.

With this thesis project, we improve the classical simulation of quantum computers
using stabilizers in the GSLC formalism. We do this in two ways: we present new al-
gorithms that speed up their simulation and extend their applicability by defining new
operations and subroutines for existing general circuit simulation using GSLC. To be pre-
cise: we present multiple new algorithms that speed up the simulation of the CZ gates,
the most computationally expensive quantum operation in GSLC formalism. We define
two new operations on GSLC that are useful when simulating stabilizer circuits: calcu-
lating fidelity (a measure of ’closeness’ between two quantum states), and tracing out
qubits (throwing away the information about the state contained in these qubits) from
a GSLC. Finally, we present a new GSLC-based subroutine for a state of the art general
quantum circuit simulation algorithm by Bravyi et al.[47] that allows for the usage of the
faster CZ algorithms. We show that the GSLC formalism can give a speedup in practical
simulation tasks by evaluating the complexity of simulating an algorithm with possible
applications on near-term quantum hardware: the quantum approximate optimization
algorithm.

The chapters of this thesis are structured around the following subjects:

• A definition of a ’canonical form’ tableau that directly corresponds to a GSLC, and
conversion algorithms between the two. GSLC written as matrices were used pre-
viously to prove properties of the GSLC algorithm[19]. We expand on this idea by
defining a ’canonical form’ of tableaus that directly corresponds to GSLC and con-
version algorithms between GSLC and canonical form tableaus.

• A new algorithm to simulate CZ gates in GSLC formalism, based on our ’canoni-
cal form’. This algorithm is faster for single CZ gates. Additionally, it improves the
run time of sequences of CZ gates. We empirically validate these claims on ran-
domly generated states. We show that while the cost of simulating a CZ gate with

1

5

the original GSLC algorithm increases per CZ applied, it does not with our novel
algorithm.

• A scheduling algorithm to schedule CZ gates in a CZ sequence, that further im-
proves simulation run time for certain sequences of CZ. We empirically validate
our performance claims on sequences of CZ.

• Definitions of two new algorithms for operations that are useful when simulating
quantum states and were previously defined on tableaus. First, a definition of trac-
ing out and representing the resulting part of the state (called ’a reduced density
matrix’) in GSLC formalism. Second, an algorithm to calculate fidelity that uses
the CZ sequence algorithm.

• A new subroutine for a recent state-of-the-art general quantum circuit simulation
algorithm by Bravyi et al.[47]. The subroutine is an extension of the GSLC formal-
ism to make it phase-sensitive. Depending on the circuit simulated, our algorithm
can provide a significant speedup compared to the original subroutine. For in-
stance, simulating a Hadamard quantum gate in the original algorithm takes time
order O(n2), where n is the number of qubits, whereas simulating this gate using
our subroutine takes Θ(1). For a typical use case n ≈ 50. Moreover, our GSLC-
based subroutine allows for the usage of our faster CZ and CZ scheduling algo-
rithms. To show the practical use of our results, we show that the set of circuits that
can be simulated faster using the GSLC-based subroutine contains interesting use
cases. In order to demonstrate this, we evaluate the complexity of simulating the
quantum approximate optimization algorithm[32]. This use case is also used by
Bravyi et al. to verify their original algorithm’s performance[47].

2
PRELIMINARIES

2.1. QUANTUM STATES & GATES
This section gives an introduction to the basic building blocks of quantum information
and operations on them: qubits and quantum gates. Its aim is to provide sufficient in-
formation to allow a non-expert reader with some technical background be able to un-
derstand this thesis. If the reader requires more information, we recommend [15].

Before delving deeper into qubits and quantum gates, we give some definitions and
notes on notation.

If z is a complex number, we can write z = a+bi where a and b are real numbers and
i is the complex unit, z∗ gives its complex conjugate:

z∗ = (a +bi)∗ = (a −bi). (2.1)

For a matrix A, A† is its adjoint matrix which can be obtained by transposing A and
subsequently taking the complex conjugate of all entries.

Definition 2.1.1. An k ×k matrix A is Hermitian if it satisfies A = A†.

Definition 2.1.2. A k ×k complex matrix A is unitary if its conjugate transpose is equal
to its inverse, i.e. A† A = A A† = I .

We will refer to the set of unitaries acting on n qubits (or equivalently of size 2n ×2n)
as U (2n).

In this thesis, we will often use Dirac notation to describe complex vectors: we write
a standing vector as |·〉 (a "ket") and its adjoint as 〈·| (a "bra"). The inner product between

two vectors
∣∣φ〉= (α0

α1

)
and

∣∣ψ〉= (β0
β1

)
can then be written as:

〈
φ

∣∣ψ〉= (α∗
0α

∗
1)

(β0
β1

)
.

Definition 2.1.3. A pure state of a qubit can be described by a complex vector |v〉 ∈ C2.
In other words, for any pure state

∣∣φ〉
:

∣∣φ〉= [
α0

α1

]
=α0 |0〉+α1 |1〉 , (2.2)

7

2

8 2. PRELIMINARIES

where α0,α1 ∈ C, |α0|2 + |α1|2 = 1 and we define |0〉 and |1〉 as the computational basis
states

(
1
0

)
and

(
0
1

)
respectively.

Given the unit length constraint, we can also parametrize a qubit using two angles

θ = [0,π) and φ = [0,2π):
∣∣ψ〉 = (cos(θ/2)

eiφsi n(θ/2)

)
. Graphically, we may then represent a qubit

as a vector on a unit 2-sphere, where the antipodal points correspond to orthogonal state
vectors.

Figure 2.1: Graphical description of a qubit
∣∣ψ〉 = (cos(θ/2)

eiφsi n(θ/2)

)
on a Bloch sphere. The angle between the z-

axis and the state vector is equal to θ, and the angle between the x-axis and the state vector is equal to φ.
Here, x̂̂x̂x = |+〉 = 1p

2
(|0〉+ |1〉 ,−x̂−x̂−x̂ = |−〉 = 1p

2
(|0〉− |1〉), ŷ̂ŷy = |i 〉 = 1p

2
(|0〉+ i |1〉) and −ŷ−ŷ−ŷ = |−i 〉 = 1p

2
(|0〉− i |1〉). As

reproduced from [54].

To represent states of multiple qubits, we need an operation called the tensor prod-
uct:

Definition 2.1.4. The tensor product of two matrices A (of dimension m ×n) and B (of
any size) is equal to:

A⊗B =

 a11B a12B · · · a1nB
...

am1B am2B · · · amnB

 (2.3)

Throughout this thesis, we will omit the tensor symbol and write the tensor product
of two vectors as a single ket for readability, e.g.: |0〉⊗ |1〉 = |01〉.

A state of two qubits we can describe as:

α00 |00〉+α01 |01〉+α10 |10〉+α11 |11〉 =


α00

α01

α10

α11

 , (2.4)

where |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. In general, any pure n-qubit state can be de-
scribed as the sum over 2n basis states:

2.1. QUANTUM STATES & GATES

2

9

Definition 2.1.5. A pure n-qubit quantum state can be described as a normalized com-
plex vector C2n

. In other words, for any n-qubit state
∣∣φ〉

:

∣∣φ〉= 2n∑
k=0

αk |k〉 , (2.5)

where αk ∈C and
∑2n

k=0 |αk |2 = 1.

A quantum state may be multiplied with a (complex) phase with length 1. These
can be parametrized as e iα, where α ∈ [0,2π). We can express a phase as a unitary in
U (1). Multiplying a quantum state with a phase yields the exact same physical state, i.e.∣∣φ〉= e iα

∣∣φ〉
. In other words, a global phase factor does not have any physical meaning.

If we want to know how ’close’ two quantum states are to each other, we can use a
measure called fidelity:

Definition 2.1.6. The fidelity between pure states
∣∣φ〉

and
∣∣ψ〉

is defined as:

|〈φ∣∣ψ〉 |2 (2.6)

Some quantum states we can write as a single tensor product, e.g. |01〉. However,
there also exist quantum states we cannot write as a single tensor product. As an ex-
ample, take the Bell state (or EPR pair) 1p

2
(|00〉+ |11〉). A quantum system might also be

a probabilistic mixture of pure states. These we can represent conveniently using the
density operator:

Definition 2.1.7. The density matrix for a quantum system with state space Cd that is
in one of a number of states

∣∣ψi
〉

with respective probability pi is defined as:

ρ =∑
i

pi
∣∣ψi

〉〈
ψi

∣∣ . (2.7)

ρ is a d ×d matrix with complex entries that satisfies:

1. ρ ≥ 0;

2. Tr(ρ) = 1.

If the rank of ρ = 1, then ρ is a pure state, otherwise it is mixed.

Here, Tr(ρ) stands for the trace of ρ, which we define as follows:

Definition 2.1.8. The trace of a matrix M ∈L (Cd ,Cd) is defined as

Tr (ρ) =∑
i
〈i |ρ |i 〉 , (2.8)

where {|i 〉} is any orthonormal basis of d-dimensional complex vector space Cd .

A reduced density matrix is the result of an operation on the density matrix of a larger
state called the ’partial trace’. Intuitively, this operation extracts the information con-
tained in a smaller part of a state from the whole state.

2

10 2. PRELIMINARIES

Definition 2.1.9. The partial trace of a density matrix. Let ρAB be a density matrix over
registers A and B , and ρA be the density matrix that describes the state of register A. Let
{|k〉}k∈K be a basis for B . Then the partial trace of ρAB over B is defined as:

TrB (ρAB) = ∑
k∈K

〈k|B ρAB |k〉B (2.9)

= ρA (2.10)

If a classical observer wants to gain some information about a quantum state, she
can measure it. Measurement is irreversible; it projects the state to a vector (dependent
on in which direction the state is measured).

Definition 2.1.10. Quantum measurements are described by a collection of measure-
ment operators {Mm}. These operators satisfy the completeness equation:∑

m
M †

m Mm = I . (2.11)

The probability p(m) of measurement outcome m when measuring state
∣∣φ〉

is:

p(m) = 〈
φ

∣∣M †
m Mm

∣∣φ〉
. (2.12)

These probabilities sum to one:∑
m

p(m) =∑
m

〈
φ

∣∣M †
m Mm

∣∣φ〉= 〈
φ

∣∣ I
∣∣φ〉= 1. (2.13)

The state of the system after measurement is:

Mm
∣∣φ〉√〈

φ
∣∣M †

m Mm
∣∣φ〉 . (2.14)

As an example, we measure qubit |+〉 = 1p
2

(|0〉+|1〉) in the z-basis (with measurement

operators M0 = |0〉〈0| and M1 = |1〉〈1|). The probability of measuring 0 is then:

p(0) = 1

2
(〈0|+〈1|) |0〉〈0|0〉〈0| (|0〉+ |1〉) = 1

2
. (2.15)

Conversely, p(1) = 0.5. The post measurement state after measuring 0 is:

|0〉〈0| 1p
2

(|0〉+ |1〉)√
1
2

= |0〉 (2.16)

Having introduced qubits, let us now introduce some of the quantum gates used in
this thesis.

Definition 2.1.11. Pauli matrices. The Pauli matrices are defined as:

X =
[

0 1
1 0

]
,Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(2.17)

The matrices are both unitary and Hermitian.

2.2. STABILIZER STATES

2

11

From these matrices, we can generate a group:

Definition 2.1.12. Pauli group. The Pauli group P1 is defined as:

P1 = 〈X ,Y , Z 〉 = {±1,±i } · {I , X ,Y , Z } (2.18)

Here, I = (
1 0
0 1

)
is the identity operator. For n-qubits, the Pauli group Pn is defined as:

Pn = {P1 ⊗P2 ⊗·· ·⊗Pn |Pi ∈P1} (2.19)

Let P ∗
n = Pn \ {I⊗n}/U (1), i.e. the group of Pauli strings with phase +1. A set of op-

erators of interest to us is called the Clifford group. The operators of dimension n in the
set of Cliffords Cn map the Pauli strings in ±P ∗

n to Pauli strings in ±P ∗
n .

Definition 2.1.13. The Clifford group Cn on n qubits is defined as: [26][25]

Cn = {V ∈U (2n)|P ∈±P ∗
n ⇒V †PV ∈±P ∗

n }/U (1). (2.20)

For single qubits, the Cliffords can be seen as rotations of the Bloch sphere that per-
mute the direction of the axes. For the x axis, there are six possibilities: ±x,±y and ±z.
After choosing one of these directions, we can still pick 4 possible directions for the z
axis, because we cannot point the z axis in the same direction as the x axis. Hence,
|C1| = 6 ·4 = 24[25].

The Clifford group is generated by a set of 3 Clifford gates, that we will use throughout
this thesis:

Definition 2.1.14. Cn = 〈H ,S,C Z 〉, where

H = 1p
2

[
1 1
1 −1

]
,S =

[
1 0
0 i

]
,C Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Throughout this thesis, we will use subscripts to indicate on what qubit a gate is ap-
plied, e.g. C Za,b means a CZ gate between qubits a and b. Here, when a gate has a control
and a target qubit, the first position will denote the control and the second the target. For
instance: C NOTa,b = HbC Za,b Hb is a control-X gate with target b. Note that the CZ gate
is symmetric, that is: C Za,b =C Zb,a .

2.2. STABILIZER STATES
Circuits containing only Clifford gates (so called "stabilizer circuits") acting on the all
zero state |0〉⊗n generate stabilizer states. These states have a number of interesting
properties that make them useful for classically simulating quantum circuits. In this
section, we we give an introduction to these stabilizer states, and how to simulate them.

For single qubits, the H and S gate can only change |0〉⊗n to any of the orthogonal
basis states (ignoring phases), as is shown in the following diagram: [58]

2

12 2. PRELIMINARIES

|0〉 |+〉

|i 〉

|−i 〉

|−〉 |1〉S
H

S S

SS

H
H

S

Figure 2.2: Graph depicting the working of single qubit Cliffords on a one qubit state.

These states are the single-qubit stabilizer states. With more qubits, we can reach
product states of these single-qubit stabilizer states, as well as entangled states such as a
Bell pair. These states share a number of interesting properties: they are always equal to a
superposition of a power of 2 bit strings, and a measurement in the z-direction produces
either deterministically 0 or 1, or non-deterministically 0 or 1 with equal probability.

For each of these single qubit stabilizer states, there is a Pauli that does not change
the state, e.g. X |+〉 = |+〉. This Pauli ’stabilizes’ the state. These stabilizers also exist for
multi-qubit stabilizer states.

Definition 2.2.1. A unitary U stabilizes a pure state
∣∣φ〉

if U
∣∣φ〉= ∣∣φ〉

. Equivalently,
∣∣ψ〉

is an eigenstate of U with eigenvalue +1.

If we have a pure n-qubit stabilizer state
∣∣φ〉

, we can make a sub-group Sφ of the
group of n-qubit Pauli operators in Pn that stabilize

∣∣φ〉
[36]. The Pauli operators in this

group commute: for two stabilizers Si ,S j , [Si ,S j] = Si S j −S j Si = 0. This group does not
include −I , as this stabilizes nothing.

As an example, we give the stabilizer group SΨ− of the 2-qubit Bell state |Ψ−〉:

|Ψ−〉 = 1p
2

(|01〉− |10〉), (2.21)

SΨ− = {I I ,−X X ,−Z Z ,Y Y }. (2.22)

Note that a group is closed under multiplication: if we have two unitaries U and V
that stabilize a state

∣∣φ〉
, then their product also stabilizes

∣∣φ〉
: UV

∣∣φ〉=U
∣∣φ〉= ∣∣φ〉

. We
can use this fact to efficiently represent Sφ by its generators.

Definition 2.2.2. The stabilizer generators S
g
φ

of generate the stabilizer group Sφ:

Sφ = 〈S g
φ
〉. (2.23)

In other words, every stabilizer in Sφ can be expressed as the product of stabilizer(s)
in S

g
φ

. For a n-qubit stabilizer group, the number of stabilizer generators needed to

represent the group is at most n[36]. Note that S
g
φ

is not unique.

2.2. STABILIZER STATES

2

13

To clarify, let us express the stabilizer group SΨ− of the 2-qubit Bell state |Ψ−〉 of our
previous example by two different generator sets:

SΨ− = 〈{−X X ,−Z Z }〉 (2.24)

= 〈{−X X ,Y Y }〉 (2.25)∣∣φ〉
is unique for the group Sφ: Sφ only stabilizes the state

∣∣φ〉
. Thus,

∣∣φ〉
is called the

stabilizer state of Sφ. In fact, it is enough that
∣∣φ〉

is stabilized by the generators of Sφ:

Definition 2.2.3. The stabilizer state of stabilizer group Sφ is defined as the state
∣∣φ〉

such that:

∀Si ∈S
g
φ

,Si
∣∣φ〉= ∣∣φ〉

. (2.26)

This allows us to efficiently represent stabilizer states: instead of storing the 2n size
state vector of a stabilizer state, we can store n generators of length n that uniquely de-
fine that state. This takes 2n +1 bit per generator to store: 2 bits for each of the Paulis,
plus 1 for the sign of the generator. Because we have n generators, we can thus store
stabilizer states using O(n2) bits. [58].

GRAPHICALLY DETERMINING STABILIZER GENERATORS

The commutation relations between the Pauli operators and Clifford operations allow us
to determine the stabilizer generators of a stabilizer circuit’s output state graphically [36]
by ’pushing through’ the stabilizers of the initial state. This is useful for understanding
and working with stabilizer circuits (and their simulation algorithms) and is therefore
repeated here. For instance, because Z H − H X = 0 → Z H = H X , a qubit that is stabi-
lized by a Z is stabilized by X after applying a Hadamard. Graphically, for the Clifford
generating set {H, S, and CZ}, we have the following relations:

X // Z
Y //−Y
Z // X

H

X // Y
Y //−X
Z // Z

S

±X //±X
•

•
// Z

±Y //±Y
•

•
// Z

±Z //±Z
•

•

Using these relations, we can determine the stabilizer generators of a circuit graphically.
As an example, we push trough the stabilizer of the first qubit of the following circuit:

|+〉 • H

|+〉 •
|0〉 • • S

|+〉 • • H

2

14 2. PRELIMINARIES

, which gives:
X //X //Z

|+〉 • H

|+〉 •
|0〉 • • S

|+〉 • • H
//

Z X

resulting in the generator Z I I X . If we continue for the other three qubits, we obtain
I X Z I , I I Z I and X I Z X . With this set of four generators, we can uniquely represent the
output state of the circuit.

2.3. SIMULATION OF STABILIZER STATES
Not only can stabilizer states be represented in an efficient way, they can also be sim-
ulated efficiently. In this section, we explain more about why this is the case, and give
two commonly used stabilizer formalism: stabilizer tableau and graph state with local
Cliffords. We finish this chapter by explaining in what applications GSLC are faster than
Tableaus.

Stabilizer circuits can be simulated efficiently on a classical computer. To be precise:

Theorem 2.3.1 (Gottesman-Knill theorem). [9] Any quantum computer performing only:

1. Clifford group gates;

2. Measurements of Pauli group operators;

3. Clifford group operations conditioned on classical bits, which may be the results of
earlier measurements;

can be perfectly simulated in polynomial time on a probabilistic classical computer.

Stabilizer circuits are not universal for quantum computing. For instance, one can
not obtain the state 1p

2
(|0〉 + (1+ i) |1〉). One would need to add an extra non-Clifford

gate to the Clifford gates to obtain an universal gate set. In fact, stabilizer circuits simu-
lation is complete for the complexity class ⊕L, which means they can be simulated using
only CNOT gates. Therefore, they are probably not even universal for classical compu-
tation [17]. However, they are enough to generate interesting quantum circuits, such as
the GHZ experiment[3] and quantum teleportation [4]. Stabilizer circuits are also com-
monly used in quantum error correction schemes, such as: [29][7]. They can generate
entanglement, which indicates that while entanglement is necessary to disallow efficient
classical simulation [16] [23], it is not sufficient[24].

So how can we efficiently simulate stabilizer states? In the following subsections,
we will introduce two simulation formalisms used in this thesis: stabilizer tableaus and
graph states with local Cliffords.

2.3. SIMULATION OF STABILIZER STATES

2

15

2.3.1. STABILIZER TABLEAUS
The first formalism we introduce is the tableau formalism. We will first introduce a con-
cept called a check matrix, before elaborating on the tableau algorithm itself.

As stated in section 2.2, we can represent stabilizer states using 2(n +1) bits. We do
this by binary representation of the generators of a state in a check matrix[15]. Here we
use the following encoding:

I = (0,0), X = (1,0),Y = (1,1), Z = (0,1). (2.27)

For a n-qubit state, we store the n generators in a matrix of n × 2n bits, that looks as
follows:  x11 · · ·x1n z11 · · ·z1n

...
...

xn1 · · ·xnn zn1 · · ·znn

 (2.28)

For a generator Gi = ±P1 · · ·Pn , bits (xi j , zi j) encode the j-th Pauli P j of that gen-
erator. We store the ± phase of the generators in a vector of length n, with one bit for
each generator. As an example, let us express the stabilizer generators {−X X ,−Z Z } of
the 2-qubit Bell state |Ψ−〉 as a check matrix and phase vector:(

1 1 0 0
0 0 1 1

)
&

(
1
1

)
(2.29)

This binary representation has a number of useful properties:

• It is an isomorphism (modulo the phase). This means that the product of two
generators is equal to the binary addition of their corresponding rows (except for
the phase). For example: Z X = i Y ⇒ (0,1)+(1,0) = (1,1). To account for the phase
we need to update the phase vector separately, but this can be done efficiently.

• Because the stabilizer group is closed under multiplication, we can binary add two
rows in the check matrix to obtain a new valid generator. This changes the gener-
ator set, but still represents the same state.

• We can swap rows, as this merely corresponds to a reordering of generators.

These properties allow us to transform the check matrix of a state to a different check
matrix that represents the same state, for instance by using Gaussian elimination.

Gottesman and Knill showed that using check matrices, stabilizer states can be sim-
ulated efficiently[9]. This is done by rules that update the check matrix and phase vector
after a Clifford gate in O(n), and using Gaussian elimination (which takes O(n3) in prac-
tice) for measurements. Aaronson and Gottesman later improved on this by introducing
stabilizer tableaus[17]. Tableaus extend check matrices by introducing an additional n
rows (thus doubling the required amount of bits for a state) containing the ’destabilizers’
of a state, which together with the stabilizer generators generate the entire Pauli group
and are used to do measurements without Gaussian elimination in O(n2).

2

16 2. PRELIMINARIES

Throughout this thesis, stabilizer tableaus will be shown not in binary form, but as
the generators they represent. We also do not depict the destabilizer rows of the tableau.
This is solely for readability: e.g. when analyzing the complexity of stabilizer simula-
tion using tableau formalism, we do also consider the cost of updating of the destablizer
rows. As an example, the stabilizer tableau (with the phase vector appended to the check
matrix) of the 2-qubit Bell |Ψ−〉 state we represent as:

1 1 0 0 1
0 0 1 1 1
0 0 1 0 0
0 1 0 0 0

=−X X
−Z Z

(2.30)

To clarify the working of these update rules (which can be understood using the
graphical technique described in 2.2), we will now give an example of simulating Clif-
ford gates on a tableau. For more detail on these updates and the measurement routine,
we refer to [17]. We start with the state |0000〉. Its tableau looks as follows:

Z I I I
I Z I I
I I Z I
I I I Z

(2.31)

When we apply a Hadamard on the second qubit, the tableau is update to the following:

Z I I I
I X I I
I I Z I
I I I Z

(2.32)

Applying a S gate to the second and fourth qubit changes the tableau into:

Z I I I
I Y I I
I I Z I
I I I Z

(2.33)

If we finally apply a CZ gate between the second and third qubit, we get:

Z I I I
I Y Z I
I I Z I
I I I Z

(2.34)

The stabilizer tableau update rules can be understood by the commutation relations
of Cliffords and the graphical method of obtaining circuit generators described in sec-
tion 2.2. The k-th row of the tableau corresponds to the stabilizer generator one gets
from ’pushing through’ the stabilizer of the k-th qubit. When we apply a gate on a qubit,
the commutation relations give us the update rule for all Paulis in the column corre-
sponding to that qubit. For instance, after we apply a Hadamard on the second qubit,
the commutation relation Z H = H X means that all Z Paulis in the second column are
changed to X .

2.3. SIMULATION OF STABILIZER STATES

2

17

2.3.2. GRAPH STATES WITH LOCAL CLIFFORDS
The second formalism we introduce is the graph state with local (or single qubit) Clif-
fords, or GSLC for short[21]. To do this, we will first introduce graph states and then
extend these with local Cliffords. After that, we will elaborate on how to simulate gates
and measurement.

Definition 2.3.1. A n-qubit graph state |G〉 is a quantum state associated with the simple
graph G = (V ,E) [21]. The |V | = n vertices correspond to the n qubits (that are all in the
|+〉 state), and the edges E correspond to CZ gates acting on the nodes they connect.
That is:

|G〉 = ∏
(a,b)∈E

C Za,b |+〉⊗|V | . (2.35)

As an example, consider the following graph:

1 2

3 4

The circuit of the corresponding graph state looks as follows:

|+〉 • • •
|+〉 • •
|+〉 • •
|+〉 •

Because the circuit in equation 2.35 only contains Clifford gates, every graph state is a
stabilizer state. Therefore, we can alternatively represent a graph state using n stabilizer
generators Ka , defined as:

Ka = Xa
∏

b∈ngbh(a)
Zb for all a ∈V. (2.36)

If we push through the stabilizers of every qubit using the method described in sec-
tion 2.2, we obtain K1 = X Z Z Z ,K2 = Z X Z I ,K3 = Z Z X I ,K4 = Z I I X , which is equal to
the definition in equation 2.36.

It has been shown that any stabilizer state can be transformed to a graph state that
is equivalent up to a tensor product of local Clifford [14] [19] [13]. Therefore, we can
represent any stabilizer state using a graph state and a tensor product of n single-qubit
Cliffords.

Definition 2.3.2. We define a GSLC
∣∣∣G ;C

〉
as:

∣∣∣G ;C
〉
=

|V |⊗
p=1

Cp
∏

(a,b)∈E
C Za,b |+〉⊗|V | (2.37)

=
|V |⊗

p=1
Cp |G〉 (2.38)

2

18 2. PRELIMINARIES

where G is a graph with sets V and E of vertices and edges respectively, and Cp is a local
Clifford on qubit p.

As an example, consider the following GSLC:

1

H

2

I

3

SH

4

S

The circuit of this GSLC looks as follows:

|+〉 • • • H

|+〉 • •
|+〉 • • H S

|+〉 • S

We can store a GSLC in space of order O(nd̄), where d̄ is the average degree of the
graph. As there are 24 local Cliffords, we can store the local Cliffords using n numbers
between 0 and 23. The graph state can be stored as an adjacency list, where we need
to store d̄ neighbours on average per node. For instance, we can store the Bell state∣∣Φ+〉= 1p

2
(|0〉+ |1〉) as:

Vertex local Clifford adjacency
1 H 2
2 I 1

We will now give an overview of how gates are simulated in the GSLC formalism. Sin-
gle qubit Cliffords can be simulated in timeΘ(1) in GSLC formalism. When one applies a
single qubit Clifford C ∈C1 (see 2.1.14) to a qubit a, we replace its local Clifford Ca with
CCa . The product of two Cliffords is also a single qubit Clifford (CCa ∈ C1), and so we
can store all possible products in a lookup table of size 24×24 = 576.

CZ gate simulation is more complicated. It involves changing the underlying graph
with an operation called a local complementation, that we will define first.

Definition 2.3.3. A local complementation of graph G = (V ,E) on vertex a updates G to
G ′ as follows:

G ′ = (V ,E∆{(b,c)|b,c ∈ ng bh(a)}). (2.39)

That is, all edges between the neighbours of a are toggled.

As an example, consider the following graph:

2.3. SIMULATION OF STABILIZER STATES

2

19

1

2

3 4

5

A local complementation on node 1 yields:

1

2

3 4

5

[19] and [18] pose that local complementations transform a graph state into one that
is equivalent up to a tensor product of local Cliffords. By updating the local Cliffords of a
GSLC after a local complementation, we can therefore obtain a different GSLC represen-
tation of the same stabilizer state. More formally:

Theorem 2.3.2. [21] A GSLC
∣∣∣G ;C

〉
is invariant under a local complementation of qubit

a followed by a right multiplication of the local Clifford Ca of qubit a with
p

i X and a
right multiplication of the local Clifford Cb of all neighbours b of a with

p−i Z .

Anders and Briegel note that all operators in the local Clifford group can be written
as a product of at most 5 of the operators

p−i X and
p

i Z , which are the Hermetian ad-
joint of the operators in 2.3.2. This allows us to reduce the local Clifford of a qubit a in
a GSLC to I by applying a sequence of local complementations on a and a randomly se-
lected swapping partner c ∈ nbg h(a). This is done in a procedure named ’remove_VOP’
(’remove vertex operator’) by Anders and Briegel. It takes as input qubits a and b and
removes the local Clifford of a by a series of local complementations using a swapping
partner not equal to b, if possible. Remove_VOP’s run time is dominated by the sequence
of local complementations and hence has time complexity O(d 2), where d is the maxi-
mum degree of the graph.

Having introduced the remove_VOP procedure, we can elaborate on how CZ gates
are simulated. A gate C Z (a,b) falls into one of the following cases:

1. The local CLiffords of both qubits are in {I , Z ,S,S†}. In this case, the CZ commutes
with the local Cliffords, and can be simulated by simply toggling edge (a,b).

2. Both qubits have neighbours, and one or both local Cliffords do not commute with
the CZ gate. Here, we use the ’remove_VOP’ procedure to reduce both local Clif-
fords to I , after which the CZ gate commutes and (a,b) can be toggled.

2

20 2. PRELIMINARIES

3. One or both qubits have no neighbours or are only connected to the other qubit
involved in the CZ. If one of the qubits does have neighbours not involved with
the CZ, we first use ’remove_VOP’ to reduce the local Clifford of that qubit to I .
Afterwards, lookup the result of the CZ gate in a lookup table called ’cphase_table’.

We will finish this section by explaining how to measure a qubit in a GSLC. If we

measure a qubit a of a GSLC
∣∣∣G ;C

〉
in the computational basis and get the measurement

result ζ, the post measurement state we obtain is equal to:

I + (−1)ζZa

2

∣∣∣G ;C
〉

, (2.40)

which we can rewrite as:

(
∏

b∈V \{a}
Cb)Ca

I + (−1)ζC †
a ZaCa

2
|G〉 . (2.41)

Because Ca is a Clifford operator, Pa = C †
a ZaCa ∈ {±Xa ,±Ya ,±Za}. In other words, to

measure qubit a of
∣∣∣G ;C

〉
in the computational basis, we measure the observable Pa

on the underlying graph state |G〉. How this underlying graph state changes has been
studied before in [18], and is repeated in detail in [21], to which we refer if the reader
wants more detail. The time complexity needed to do these updates is dominated by an
update of edges that has a complexity of order O(d 2).

2.3.3. COMPARISON OF SIMULATION COMPLEXITY
GSLC and tableaus differ in their time and space complexity, as can be seen in table 2.1.

Tableau GSLC
Single qubit Clifford O(n) Θ(1)
Two qubit gate O(n) O(d 2)
Measurement O(n2) O(d 2)
Space required O(n2) O(nd̄)

Table 2.1: Complexity comparison of the GSLC and tableau simulation formalism. Here, n is the number of
qubits, d , d̄ is the maximum and average degree of the underlying graph of the GSLC, respectively.

The simulation complexity of tableaus scale with the number of qubit simulated,
whereas the complexity of GSLC scale with the degree of the underlying graph. GSLC
formalism is faster and requires less space than tableaus for graphs with low d [21]. Note
here that the maximum degree of a state changes during simulation. A sequence of lo-
cal complementations randomly distributed over a sparse graph will on average increase
the degree of that graph, because for a sparse graph it is more likely that a local comple-
mentation toggles more edges on rather than off. Therefore, what formalism is preferred
is highly application dependent.

3
CANONICAL FORM TABLEAUS

Van den Nest, Dehaene and De Moor, use the binary picture (or check matrix/tableau, as
defined in section 2.3.1) of graph states to prove several useful theorems in [19]. These
results were later used in the paper defining the GSLC formalism by [21]. In this chap-
ter, we expand on this idea by defining a canonical form for tableaus that directly cor-
responds to a GSLC. By creating this isomorphism between both representations and
investigating how we can restore a tableau to canonical form after an operation, we can
improve on the simulation of CZ gates in GSLC form, which we will explain in a later
chapter.

[19] showed that an n-qubit stabilizer tableau can be converted to a GSLC repre-
sentation in time order O(n3) using a sort of Gaussian elimination. We present a novel
algorithm to convert a tableau to a GSLC in time order O(n2), given that the tableau is in
canonical form. We also present a straightforward way of converting a GSLC to a canon-
ical tableau.

This chapter starts by defining what a canonical GSLC form tableau is. We then give
two algorithms to convert to and from GSLC and canonical tableau form. Simulating a
CZ on a canonical tableau can make it non-canonical. To restore the canonical form, we
finalize this chapter by giving an algorithm to keep a tableau canonical after a CZ gate.
We use this algorithm to keep a tableau canonical in chapter 4 to improve the simulation
of CZ gates in GSLC formalism.

3.1. CANONICAL GSLC FORM
A tableau in canonical GSLC form directly corresponds to the tableau obtained after sim-
ulating the circuit of a GSLC. Conversely, a canonical tableau can be converted to a GSLC
without using Gaussian elimination. We will first define a canonical tableau. After that,
we will give an example.

Definition 3.1.1. A canonical GSLC form tableau is equivalent to the tableau one ob-
tains after simulating the circuit of a GSLC in tableau formalism. A n ×n tableau is in
canonical GSLC form if and only if it has the following properties:

21

3

22 3. CANONICAL FORM TABLEAUS

• At every position (i , i) for all i ∈ [0, . . . ,n), there is an operator ±Pi i ∈ {X ,Y , Z }.

• Per column j , at all positions (i , j) for all i ∈ [0, . . . ,n], i 6= j , there can be either I or
the operator Pi j ∈ {X ,Y , Z } \ {Pi i }.

• For all positions (i , j), (i , j) = I iff (j , i) = I .

We interpret the phase of a row in the tableau as the phase of the Pauli on the diagonal
that row.

Another way to interpret this definition is by the graphical method of determining
stabilizer states described in section 2.2. A tableau is in canonical GSLC form when its
row i corresponds to the stabilizer generator obtained when ’pushing through’ the sta-
bilizer of the i -th qubit trough the corresponding GSLC circuit.

Consider, for example, the following GSLC:

1

I

2

I

3

SS

4

HS

The circuit corresponding to this GSLC looks as follows:

|+〉 • •
|+〉 •
|+〉 • • S S

|+〉 • S H

If simulate this circuit in tableau formalism (or ’push through’ its stabilizers), we obtain
the following tableau:

X I Z X
I X Z I

− Z Z X I
− Z I I Y

(3.1)

This tableau is indeed in canonical form, as it has all the properties described in defini-
tion 3.1.1. Alternatively, one can quickly obtain a canonical tableau from a GSLC by first
writing down the tableau of the underlying graph state: this tableau has only X on the
diagonal, and Z at every position (i , j) and (j , i) if qubits i and j are connected through
an edge. The local Cliffords that are appended to the circuit to complete the GSLC state
then map the X and Z s in every column to some other Pauli, which can be looked up in

3.2. CONVERTING BETWEEN GSLC AND CANONICAL TABLEAU

3

23

graph 2.2. If we consider our previous example, the tableau of its underlying graph state
is equal to:

X I Z Z
I X Z I
Z Z X I
Z I I X

(3.2)

The local Clifford SS on qubit 2 then maps all Z , X operators in column 2 to Z ,−X re-
spectively. The local Clifford HS on qubit 3 maps all Z , X operators in column 3 to X ,−Y ,
thus yielding the final tableau in equation 3.1.

3.2. CONVERTING BETWEEN GSLC AND CANONICAL TABLEAU

Because canonical tableaus and GSLC directly correspond to each other, one can easily
be mapped to the other representation. In this section, we provide two algorithms for
doing so.

CANONICAL TABLEAU TO GSLC

As stated in the previous section, one can quickly obtain a canonical tableau by first
writing down the tableau of the underlying graph state and then mapping the Paulis per
column based on the local Cliffords of the qubits. The algorithm we present in this sec-
tion is based on the inverse of these steps; namely, we first determine what local Cliffords
transform the canonical tableau to a tableau corresponding to a graph state and then de-
termine the edges of the GSLC based on the result. We will first give the intuition behind
the algorithm, and then present pseudo-code.

The algorithm starts by inferring what the local Cliffords of the qubits are. We do
this by determining, per column, what Clifford transforms the Pauli on the diagonal to
+X , and the Paulis off the diagonal to +Z . The algorithm does this with a lookup table.
The local Cliffords of the GSLC are equal to the conjugate transpose of the Cliffords that
transform the column Paulis to +X and +Z . Note that here, the phase of the row of the
tableau is appended to the Pauli on the diagonal; that is, only the Paulis on the diagonal
can have a negative phase.

The algorithm proceeds to determine the edges of the GSLC by looking at non-identity
off-diagonal Paulis. The local Cliffords map the tableau of the underlying graph state to a
tableau with different Paulis per column, but they do not change the placement of iden-
tity operators. Hence, we can determine what vertices are connected by an edge in the
GSLC by looking at where there are non-I entries off-diagonal. If a off-diagonal entry
(i , j) 6= I , vertex i and j are connected by an edge.

We use the above described algorithm in a procedure called ’Canonical_tableau_to_GSLC’,
that takes as input a n ×n canonical tableau T , and yields as output a n-qubit GSLC∣∣∣G ;C

〉
. It uses a lookup table ’Cliff_(A,B)’ that returns the local Clifford C such that

C XC † = A and C ZC † = B . In pseudo-code, this yields the following algorithm:

3

24 3. CANONICAL FORM TABLEAUS

Algorithm 1 Canonical tableau to GSLC representation

procedure CANONICAL_TABLEAU_TO_GSLC(T)

Initialize
∣∣∣G ;C

〉
s.t. |V | = n,E = {;},C =⊗n

p=0 Cp = I⊗n

for all i ∈ [0 . . .n] do
A ← T (i , i)
for all j ∈ [0 . . .n] do

if T (j , i) 6= I then
B ← T (j , i)
E ← E ∪ (j , i)

Ci ← Cliff_(A,B)†

return
∣∣∣G ;C

〉
The complexity of this algorithm is O(n2), as it needs to loop through the n columns

of length n.

It must be noted that the above algorithm does not work for non-canonical tableaus,
as the rows of the tableau then do not correspond to the stabilizers obtained by pushing
them through the circuit of that state. If there are more than two different Paulis of the
group ±{X ,Y , Z } in a column, we cannot uniquely determine the local Clifford of the
corresponding qubit. Likewise, we cannot determine the edges if the diagonal Pauli is
not unique or I . As an example of this, consider the tableau corresponding to a fully
connected 4 qubit graph that has local Clifford HSSS on the first qubit:

Z Z Z Z
− Y X Z Z
− Y Z X Z
− Y Z Z X

(3.3)

Applying a CZ between the first and second qubit yields:

Z Z Z Z
X Y Z Z

− Y I X Z
− Y I Z X

(3.4)

Since this tableau is no longer in canonical form, the local Clifford on the first node and
the neighbours of the second node cannot be determined directly.

GSLC TO CANONICAL TABLEAU

We define a way to convert a GSLC to a tableau with time complexity O(max(|E |,n)),
where E is the number of edges in the graph and n the number of nodes. This procedure
is equivalent to the reverse of the algorithm to convert a canonical tableau to a GSLC.
It works as follows: for every node i , we place the Pauli C †

i XCi on position (i , i) in the
tableau (where Ci is the local Clifford of node i). Then for every edge (a,b), we place
Pauli Cb ZC †

b on (a,b) and C †
a ZCa on (b, a). The rest of the entries in the tableau are I .

Consider, for example, the following GSLC:

3.3. KEEPING A TABLEAU CANONICAL

3

25

1

HS

2

I

3

S

4

H

We start by placing the Pauli’s Ci XC †
i on the diagonal:

− Y I I I
I X I I
I I Y I
I I I Z

(3.5)

Then for every edge (a,b), we place Pauli Cb ZC †
b on (a,b) and Ca ZC †

a on (b, a):

− Y I Z X
I X I X
X I Y I
X Z I Z

(3.6)

thus yielding the canonicial tableau of the GSLC.

3.3. KEEPING A TABLEAU CANONICAL
The canonical form defined in definition 3.1.1 is not always preserved under applica-
tion of a CZ gate. In this section, we describe a procedure to restore the canonical form
of a tableau after simulating a CZ gate. It works by reasoning about how a tableau is
transformed by applying C Za,b , given the local Cliffords of qubits a and b. This section
starts by examining how local Cliffords change the working of CZs on tableaus. We then
give the algorithm’s pseudo-code, followed by an example on a tableau. The section is
finished with a formal proof of the correctness of part of the algorithm.

In order to facilitate our reasoning about the workings of CZ gates on tableaus, we
divide the set of 24 local Cliffords into 3 subsets of equal size:

Definition 3.3.1. Clifford Types Cliffords can be divided into three types, containing 8
Cliffords each:

• ’Z type’, mapping Z to ±Z

• ’H type’, mapping X to ±Z

• ’XY type’, mapping Y to ±Z

Note that swapping or multiplying the rows of a tableau does not change the state a
tableau represents, as was stated in the properties of a tableau in section 2.3.1. Because
the Paulis in the columns corresponding to qubit a and b before applying C Za,b are a
direct function of the local Cliffords of qubit a and b, we can infer the local Clifford of

3

26 3. CANONICAL FORM TABLEAUS

C XC † =
C ZC † =

X Y Z -X -Y -Z

X SHS I SSSHSSS HSSH
Y HSSS S SSHS SHSSH
Z H SH SSH SSSH
-X SHSSS SS SSSHS SSHSSH
-Y HS SSS SSHSSS SSSHSSH
-Z HSS SHSS SSHSS SSSHSS

Table 3.1: Table that classifies the 24 local Cliffords by clifford type. Green cells are Z type, yellow cells are H
type, and blue cells are XY type local Cliffords.

both qubits from the Paulis in their column, as in algorithm 1. After determining what
local Clifford is on both qubits, we can translate this to a Clifford type. Our algorithm to
restore a tableau back to canonical form after a CZ on two qubits chooses how to do so
based on the types of the local Cliffords on both qubits. We distinguish the cases (Z type,
Z type), (Z type, non Z) and (non Z, non Z):

• (Z type, Z type) When both qubits have a Z type local Clifford, the tableau stays in
canonical form after simulating a CZ gate. [21] states that on a GSLC a CZ where
both qubits have a local Clifford that maps Z to Z can be applied by simply toggling
an edge. Our results implies that this is also the case for local Cliffords that map Z
to -Z.

• (Z type, non Z) When one of the qubits has a Z type local Clifford, the tableau is
restored to canonical form by multiplying the row of the Z type qubit with the row
of the non Z qubit.

• (non Z, non Z) If neither qubit has a Z type qubit, the procedure is more involved.

The pseudo-code of the algorithm looks as follows:

3.3. KEEPING A TABLEAU CANONICAL

3

27

Algorithm 2 Restore canonical form of tableau T after C Z (a,b)

1: type a ← local Clifford type of qubit a
2: type b ← local Clifford type of qubit b
3: neighbours a ← {i |for all i 6= b s.t. T (i , a) 6= I }
4: neighbours b ← {i |for all i 6= a s.t. T (i ,b) 6= I }
5: connected ← true if T (a,b)∧T (b, a) 6= I
6: Apply C Z (a,b) on T
7: if type a is Z type then
8: row a ← row a · row b
9: else if type b is Z then

10: row b ← row a · row b
11: else
12: if type a or type b is XY type then
13: for all neighbour in neighbours a do
14: row neighbour ← row neighbour · row a

15: for all neighbour in neighbours b do
16: row neighbour ← row neighbour · row b

17: if type a is H then
18: row b ← row a · row b
19: else if type b is H then
20: row a ← row a · row b
21: else
22: for all neighbour in neighbours a do
23: row neighbour ← row neighbour · row b

24: for all neighbour in neighbours b do
25: row neighbour ← row neighbour · row a

26: if connected then
27: swap row a and b

As an example of the above algorithm, take the following tableau of a GSLC with a XY
type local Clifford on the first qubit, a H type on the third and Z type elsewhere:

X Z X Z
Y X I I
Y I Z Z
Y I X X

(3.7)

We will apply C Z1,3 on the tableau and restore it to canonical form. Before we start the
actual algorithm, we store a number of variables we need later in lines 1-5. The first qubit
has all the other qubits as neighbours, and the third qubit has the first and fourth qubit
as neighbours. The first and third qubit are connected. We then apply the CZ on the first

3

28 3. CANONICAL FORM TABLEAUS

and third qubit in line 6:

− Y Z Y Z
Y X Z I
Y I I Z
X I Y X

(3.8)

Now the tableau is not in canonical form anymore, and we need to restore it. Since the
first qubit has a local Clifford of type XY, we jump to line 14 and multiply every row of its
neighbours (except the third qubit) with the first row:

− Y Z Y Z
I Y X Z
Y I I Z

− Z Z I Y

(3.9)

We then do the same for the third qubit in line 16, multiplying the row of its neighbour
with the third row:

− Y Z Y Z
I Y X Z
Y I I Z

− X Z I X

(3.10)

Since the Clifford type of third qubit is H, the first row gets multiplied with the third in
line 20:

− I Z Y I
I Y X Z
Y I I Z

− X Z I X

(3.11)

And finally, since qubits one and three were connected, we swap their rows to restore
the tableau to canonical form in line 27.

Y I I Z
I Y X Z

− I Z Y I
− X Z I X

(3.12)

A special case of our algorithm can be found in section 4.4.3 of a paper by van den
Berg and Temme [53]. Here, the authors start with a diagonal X-matrix and a symmet-
ric Z-matrix; which is equivalent to a canonical tableau with only Z-type local Cliffords.
They then perform a C NOTa,b gate between two qubits a and b, which is equivalent to
simulating HaC Za,b Ha . This makes it equivalent to a (Z type, non Z) CZ gate. Finally,
they restore symmetry in the same way that our procedure does: by multiplying the Z
row (the source row of the CNOT) with the non Z row (the target row).

3.3. KEEPING A TABLEAU CANONICAL

3

29

CORRECTNESS PROOF OF THE (Z TYPE, Z TYPE) AND (Z TYPE, NON Z TYPE) CASES OF AL-
GORITHM 2
We give a proof of correctness of the (Z type, Z type) and (Z type, non Z) cases of algo-
rithm 2, as we base a new algorithm, algorithm 3, for simulating CZ gates on GSLC on
those two cases in the next chapter. The (non Z, non Z) cases follow similar logic, but
we omit these for brevity and because these cases are not further used in this thesis. We
divide the proof up in a number of cases, based on the Clifford type of both qubits a and
b the gate C Z (a,b) works on. Since a CZ gate is symmetric, each case holds for both
C Z (a,b) and C Z (b, a). For simplicity, we ignore phases, as they do not change the argu-
ments of our proof: from the definition of 3.1.1 these phases correspond to the phases of
the Paulis on the diagonal and hence preserve a qubits Clifford type, as can be checked
in table ??.

Proof. Because the group of stabilizer generators is closed under multiplication, swap-
ping or multiplying the rows of a tableau does not change the state a tableau represents.
Therefore, using those two operations to transform a tableau to canonical form preserves
the state of the tableau. In order to determine how to do so using those operations, we
reason from what Paulis can be in the column of a qubit with a certain Clifford type, the
properties of a canonical tableau, and the workings of a CZ gate on a tableau. For each
Clifford type, the following Paulis can be in column i corresponding to qubit i :

• Z type:

(k, i) =
{

X ∨Y if k = i

Z otherwise.

• H type:

(k, i) =
{

Z if k = i

X ∨Y otherwise.

• XY type:

(k, i) =
{

X ∨Y if k = i

X ∨Y otherwise.

The symmetry property of a canonical tableau can be defined as follows: iff (i , j) = I ,
then (j , i) = I . Since there can be only one off-diagonal Pauli, the following holds as well:

(k, i) =
{

P1 if k = i

P2 ∨ I otherwise,

where P1 and P2 are Paulis and P1 6= P2.
We define (i , j)′ and (i , j)′′ as the Pauli at position i , j after simulating a CZ, and after the
subsequent application of algorithm 2 respectively. When applying a C Z (a,b) on two
qubits in a tableau, the Paulis in column a(b) change as follows: (k, a(b))′ = (k, a(b)) · Z
iff (k,b(a)) = X ∨Y . A C Z (a,b) falls in one of the following Clifford type categories:

3

30 3. CANONICAL FORM TABLEAUS

• (Z type, Z type) Since only (a, a) and (b,b) are X or Y , simulating the CZ changes
the tableau as follows:

(a,b)′ = (a,b) ·Z (3.13)

(b, a)′ = (b, a) ·Z , (3.14)

hence preserving all the properties of a canonical tableau and requiring no correc-
tion.

• (Z type, H type) Here, applying C Z (a,b) changes the tableau as follows:

(k, a)′ = (k, a) ·Z If k 6= b and (k,b) 6= I (3.15)

(a,b)′ = (a,b) ·Z (3.16)

We bring the resulting tableau back to canonical form by multiplying row a with
row b, resulting in:

(a,k)′′ = (a,k)′ · (b,k)′ (3.17)

If k = a, we get:

(a, a)′′ =
{

(a, a) ·Z ·Z = (a, a) if (a,b) 6= I

(a, a) if (a,b) = I ,
(3.18)

since (a,b) = I iff (b, a) = I , by the symmetry of a canonical tableau. For k = b, we
get:

(a,b)′′ = (a,b) ·Z · (b,b) = (a,b) (3.19)

For all other k, we get:

(a,k)′′ =
{

(a,k) · (b,k) = (a,k) if (b,k) = I

(a,k) ·Z if (b,k) 6= I
(3.20)

Since a canonical tableau is symmetric, (b,k) 6= I iff (k,b) 6= I , and hence (k, a)′ 6= I
iff (a,k)′′ 6= I , restoring symmetry in the tableau. Because no other entries are
changed, the tableau is back in canonical form.

For example:

X X Z Z
Z Z Z I
Z X X I
Z I I X

CZ(0,1)−−−−−→
Y Y Z Z
Z Z Z I
I X X I
Z I I X

row 0 · 1−−−−−→
X X I Z
Z Z Z I
I X X I
Z I I X

(3.21)

3.3. KEEPING A TABLEAU CANONICAL

3

31

• (Z type, XY type) simulating the CZ changes the tableau as follows:

(a,b)′ = (a,b) ·Z (3.22)

(k, a)′ = (k, a) ·Z If (k,b) 6= I . (3.23)

We bring the resulting tableau back to canonical form by multiplying row a with
row b, resulting in:

(a,k)′′ = (a,k)′ · (b,k)′ (3.24)

If k = a, we get:

(a, a)′′ =
{

(a, a) ·Z · (b, a) ·Z = (a, a) ·Z if (a,b) 6= I

(a, a) · (b, a) ·Z = (a, a) ·Z if (a,b) = I ,
(3.25)

since (a,b) = I iff (b, a) = I , by the symmetry of a canonical tableau. For k = b, we
get:

(a,b)′′ = (a,b) ·Z · (b,b) (3.26)

Since (b, a)′ = (b, a) · Z , and (a,b) 6= I iff (b, a) 6= I , symmetry of the tableau is pre-
served. Since Z ·(b,b) is equal to the off-diagonal Pauli in column b, the maximum
of one other off-diagonal Pauli is preserved as well.

For all other k, our argument is the same as for the (Z type, H type) case:

(a,k)′′ =
{

(a,k) · (b,k) = (a,k) if (b,k) = I

(a,k) ·Z if (b,k) 6= I
(3.27)

Since a canonical tableau is symmetric, (b,k) 6= I iff (k,b) 6= I , and hence (k, a)′ 6= I
iff (a,k)′′ 6= I , restoring symmetry in the tableau. Because no other entries are
changed, the tableau is back in canonical form.

For example:

X I
I Y

CZ(0,1)−−−−−→ X Z
Z Y

row 1 to 0−−−−−−→ Y X
Z Y

(3.28)

4
FASTER CZS FOR GSLC

Aaronson and Gottesman introduced an efficient way to simulate stabilizer states with
the tableau formalism in [17]. Subsequently, Anders and Briegel presented a more effi-
cient way to simulate the set of stabilizer states that can be represented as sparse graph
states with local Cliffords in [21]. In this chapter, we present two contributions that im-
prove the simulation of CZ gates in GSLC formalism:

1. An algorithm for simulating single CZ gates. This algorithm is faster than the origi-
nal algorithm in all cases, except for CZ gates that commute with the local Cliffords
of the qubits they are applied on (which has run timeΘ(1)), where it is equally fast.
It also requires less local complementations than the original algorithm. This can
provide an additional speedup when simulating sequences of CZ, as CZ gates on
states with a high degree are more expensive to simulate (see section 2.3), and local
complementations on sparse graphs are likely to increase the degree of a graph.

2. An algorithm for simulating sequences of CZ by smartly scheduling and subse-
quently simulating them using our algorithm for single CZ gates. This algorithm
provides a speedup on ’concentrated’ sequences of CZ; sequences of CZ gates that
share a small number of qubits they work on, such as a star graph.

The algorithm for simulating single CZ gates is based on the ’CZ_ONE_Z’ procedure for
CZs between a Z type qubit and a non-Z type qubit (as defined in 3.3.1), that we describe
first. Afterwards, we give the full algorithm for all types of CZ, analyze its complexity,
and empirically validate its performance. The last section of this chapter describes the
sequence scheduling algorithm. We describe the algorithm and the intuition behind it,
and empirically validate its performance.

4.1. THE ’CZ_ONE_Z’ PROCEDURE
As stated in section 3.3, we can improve the simulation of single CZ gates in GSLC for-
malism by considering their workings on a canonical tableau. ’CZ_ONE_Z, an algorithm

33

4

34 4. FASTER CZS FOR GSLC

to perform a (Z type, non Z) type CZ in GSLC form, was derived in such a way. In this
section, we describe the ’CZ_ONE_Z’ procedure by first showing the reasoning used to
transform lines 1-10 of algorithm 2 to the GSLC formalism, and subsequently giving its
pseudo-code.

Algorithm 2 restores the canonical form of a tableau after a CZ on a pair of qubits
(a,b) of (Z type, non Z) respectively by multiplying row a with row b. We convert this
application of a CZ and subsequent restoring of canonical form to GSLC form. We go
over the lines of the algorithm to explain the reasoning behind them. Here, we use the
same notation for entries in the tableau representation of the state, that is: (a,b) refers to
the Pauli at row a, column b before the CZ, (a,b)′ refers to that same entry after applying
the CZ and (a,b)′′ is entry after the multiplication of row a with row b. The correctness
of all local Clifford multiplications can be understood by table ??.

• [1-20] Algorithm 2 is based on the assumption that in a canonical tableau phases
of the rows are interpreted as being placed on the diagonal (as stated in section
3.1). That is, if row a has a negative phase, (a, a) has a negative phase and all
other Paulis in row a have a positive phase. Hence, to be able to convert algorithm
2 to GSLC formalism, we need the local Cliffords qubits a and b to map Z to a
positive Pauli. If a or b’s local Cliffords does not, we multiply the local Clifford
such that it maps Z to the same Pauli but with positive phase, and X to the same
Pauli with the same phase in lines 8-13. We multiply the local Cliffords Cc of all
neighbours c of this qubit such that the phase of C c

c is multiplied with −1 in lines
14-19. Therefore, all rows in the tableau representation of the state maintain the
same phase and Paulis, and thus lines 1-20 do not change the state. We note that
the local Cliffords of the other qubits do not need to map Z to a positive Pauli in
order for our reasoning to be correct.

• [21-22] For every k 6= a ∨b s.t. (k,b) 6= I , all entries (a,k)′′ = (k, a)′ = I if (a,k) 6= I ,
or conversely (a,k)′′ = (k, a)′ 6= I if (a,k) = I (as can be seen in equations 3.16,
3.20, 3.23 and 3.27 in the proof of algorithm 2). As stated in section 3.1, if entries
(a,k) 6= I and (k, a) 6= I in a canonical tableau, there exists an edge between nodes
a and k in the corresponding GSLC. Therefore, the corresponding operation in
GSLC formalism is a toggling of all edges between the neighbours of b and qubit
a: E∆{(a,c)|c ∈ ngbh(b)}.

• [23-33] If b was a XY type qubit, a number of additional changes occur to the state:

– (b,b) was X or Y , and thus (a,b)′′ = (a,b) · Z · (b,b) = I if (a,b) 6= I , or con-
versely (a,b)′′ = Z · (b,b) 6= I if (a,b) = I (see equation 3.26). Also, (b, a)′′ =
(b, a) ·Z . Therefore, the edge between a and b is toggled in line 24.

– If the qubits were connected and±Ca XC †
a =Cb XC †

b (or equivalently in tableau
form, if ±(a, a) = (b,b)) the CZ and subsequent row multiplication of algo-
rithm 2 introduce a phase to row a. Therefore, we left-multiply the local Clif-
ford of a with SS in line 26. The same holds if the qubits were not connected
and ±Ca XC †

a 6= Cb XC †
b , in which case we left-multiply the local Clifford of a

with SS in line 28.

4.1. THE ’CZ_ONE_Z’ PROCEDURE

4

35

– (a, a)′′ = (a, a) · Z (see equation 3.25). This changes the Pauli at (a, a) from
X (Y) to Y (X). To capture the change of Pauli at (a, a) in the GSLC formalism,
we left-multiply local Clifford Ca in lines 29-32 such that we change the Pauli
C a

a from X (Y) to Y (X), but maintain its phase.

• [34-36] If b was a H type qubit and both qubits were connected, the CZ and sub-
sequent row multiplication of algorithm 2 introduce a phase to row a. In this case
we therefore multiply the local Clifford of a with SS in line 36.

• [37-38] If row b had a negative phase (i.e. if Cb XC †
b = (−X ∨−Y ∨−Z)), the phase

of row a is multiplied with −1 in the row multiplication step of algorithm 2. To
account for this, we left-multiply Ca with SS.

The pseudo-code for CZ_ONE_Z is shown in algorithm 3.

4

36 4. FASTER CZS FOR GSLC

Algorithm 3 CZ on Z type qubit a and non-Z type qubit b of GSLC
∣∣∣G ;C

〉
1: procedure CZ_ONE_Z(a, b)
2: type a← Clifford type qubit a
3: type b← Clifford type qubit b
4: neighbours a ← {i |for all i s.t. (a, i) ∈ E }
5: neighbours b ← {i |for all i s.t. (b, i) ∈ E }
6: connected ← true if (a,b) ∈ E
7: for all i ∈ {a,b} do
8: if Ci ZC †

i = (−X ∨−Y ∨−Z) then
9: if type i is XY then

10: Ci ← SSCi SS
11: else if type i is H then
12: Ci ← SSCi

13: else
14: Ci ← XCi

15: for all c in neighbours i do
16: type c← Clifford type qubit c
17: if type c is Z then
18: Cc ← SSCc

19: else
20: Cc ←Cc SS

21: for all c ∈ neighbours b \ a do
22: E ← E∆(a,c)

23: if type b is XY then
24: E ← E∆(a,b)
25: if connected and ±Ca XC †

a =Cb XC †
b then

26: C ′
a ← SSC ′

a
27: else if not connected and ±Ca XC †

a 6=Cb XC †
b then

28: C ′
a ← SSC ′

a

29: if ±Ca XC †
a =±X then

30: C ′
a ← SC ′

a
31: else
32: C ′

a ← SSSC ′
a

33: Ca ←C ′
a

34: if type b is H then
35: if connected then
36: Ca ← SSCa

37: if Cb XC †
b = (−X ∨−Y ∨−Z) then

38: Ca ← SSCa

The complexity of the algorithm is O(d), as opposed to the the O(d 2) complexity of
the original CZ algorithm by [21]. Its correctness follows from the correctness of algo-
rithm 2 and the fact that a canonical tableau directly corresponds to a GSLC state: it is

4.2. A NOVEL ALGORITHM FOR SIMULATING CZ GATES

4

37

simply a direct mapping of lines 1-10 of algorithm 2 to GSLC form.
We have implemented algorithm 3 in Python. Our code is partially based on a pub-

licly available implementation of the original GSLC algorithm [57]. In order to verify
the correctness of our implementation, we compare the simulation results of our im-
plementation of algorithm 3 with that of a Python implementation of the tableau-based
’CHP’ simulator by Aaronson and Gottesman [17]. We first generate a random GSLC
state, which we represent as a GSLC and convert to a tableau by simulating its circuit
on a tableau in the all zero state. We then simulate a random (Z type, non Z) CZ gate
on these two representations of the state using both algorithms. Afterwards, we restore
the tableau to canonical form by applying algorithm 2. Finally, we convert the resulting
GSLC to a tableau representation, and compare both tableaus. After simulating thou-
sands of random CZ gates on random states we were not able to find any non-identical
tableaus. As the probability of two independent algorithms making the same error is low,
this provides strong evidence that our implementation of 3 is correct.

4.2. A NOVEL ALGORITHM FOR SIMULATING CZ GATES
In this section, we present a novel algorithm to simulate all types of CZ gates that uses the
’CZ_ONE_Z’ procedure. It is faster for most non-commuting single CZ gates and equally
fast in all other cases, compared to the original algorithm (as can be seen in figure 4.1).
It also provides an additional speedup when simulating sequences of CZ by requiring
less local complementations, and improves the run time of ’concentrated’ sequences of
CZ. We first give intuition behind the algorithm, followed by its pseudo-code. We then
analyze its complexity.

We go over the lines of the algorithm to explain the reasoning behind them:

• [1-11] When both qubits have a Z-type local Clifford, the CZ commutes. We sim-
ulated using a toggling of the edge between qubits a and b. If the a qubit’s local
Clifford maps Z to −Z , commuting this CZ through the local Cliffords introduces
a phase on the row of the other qubit in the tableau. To account for this, we left-
multiply the local Clifford of the other qubit with SS. The correctness of this mul-
tiplication can be inferred from table ??.

• [12-15] If one of the qubits has a Z-type local Clifford, we simulate the CZ by a call
to algorithm 3.

• [16-26]When one of the qubits is only connected to the other and both qubits are
non Z type, we use the same lookup-table ’cphase_table’ as in the original algo-
rithm (as explained in subsection 2.3.2).

• [27-33] If both qubits are non-Z type, we do a series of local complementations
on the qubit with the fewest neighbours by a call to ’remove_VOP∗’, so that it has
local Clifford I (and becomes Z-type). We can then simulate the CZ by a call to
’CZ_ONE_Z’,

Because ’CZ_ONE_Z’ can simulate (Z-type, non Z) CZs faster, we would like to have
as many Z-type qubits in our state as possible. However, if a Z-type qubit is selected

4

38 4. FASTER CZS FOR GSLC

as ’swapping partner’ in the ’remove_VOP’ procedure, performing a local complementa-
tion on the qubit can change its Clifford type. This might slow down the simulation of
subsequent CZ gates. Therefore, we adjust the ’remove_VOP’ procedure from its original
definition. We name this new procedure ’remove_VOP∗’:

Definition 4.2.1. The remove_VOP∗ procedure on qubits a and b is the ’remove_VOP’
procedure as defined by [21] (see subsection 2.3.2), but where a non-Z type qubit is se-
lected from the set of neighbours of a (excluding b) as a swapping partner, if possible.

The pseudo-code for a CZ gate is shown in algorithm 4.

The complexity of algorithm 4 is dependent on the Clifford type of the qubits the CZ
is applied on:

• When both qubits have a Z-type local Clifford, the CZ is simulated using a toggling
of the edge between qubits a and b and possibly an update of the local Cliffords of
the nodes in time of order Θ(1).

• When one of the qubits has a Z-type local Clifford, the CZ is simulated using a O(d)
call to ’CZ_ONE_Z’.

• When both qubits are non Z-type, the algorithm makes a O(d 2) call to remove_VOP∗,
followed by a O(d) call to ’CZ_ONE_Z’.

• When one of the qubits is only connected to the other and both qubits are non Z
type, our algorithm is identical to the original algorithm: it makes at most 3 O(d 2)
calls to ’remove_VOP∗’, followed by a lookup in table ’cphase_table’.

We compare the complexity of algorithm 4 with the complexity of the original algorithm
by [21] described in subsection 2.3.2 for the cases where both qubits are connected to
other qubits in figure 4.1.

4.2.1. EMPIRICAL VALIDATION

We empirically validate the performance of algorithm 4 on single CZ gates and CZ se-
quences, and compare it to the performance of the original algorithm. To validate our
performance and compare it to the run time of the original algorithm, we time the sim-
ulation of CZ gates on random states in GSLC formalism using both algorithms in our
own Python implementation (partially based on the code found in [57]), on cloud-based
hardware that has up to 128 CPU cores available. The random n qubit states used are
generated by simulating a random circuit that is obtained by a method similar to that
described in [17]:

Definition 4.2.2. Procedure for generating a random circuit. For some factor β, we
choose bβnlog2(n)c random unitary gates from {C NOTa,b , Ha ,Sa}, each with probability
1/3. a and b are drawn uniformly at random from the qubits, such that a 6= b.

4.2. A NOVEL ALGORITHM FOR SIMULATING CZ GATES

4

39

Algorithm 4 Faster CZ algorithm on GSLC
∣∣∣G ;C

〉
1: procedure CZ(a, b)
2: type a← Clifford type qubit a
3: type b← Clifford type qubit b
4: neighbours a ← {i |for all i 6= b s.t. (a, i) ∈ E }
5: neighbours b ← {i |for all i 6= a s.t. (b, i) ∈ E }
6: if type a is Z & type b is Z then
7: E ← E∆(a,b)
8: if Ca ZC †

a =−Z then
9: Cb ← SSCb

10: if Cb ZC †
b =−Z then

11: Ca ← SSCa

12: else if type a is Z then
13: CZ_ONE_Z(a,b)
14: else if type b is Z then
15: CZ_ONE_Z(b,a)
16: else if neighbours a = ; or neighbours b = ; then
17: if neighbours a 6= ; then
18: remove_VOP∗(a,b)

19: neighbours b ← {i |for all i 6= a s.t. (b, i) ∈ E }
20: if neighbours b 6= ; then
21: remove_VOP∗(b,a)

22: neighbours a ← {i |for all i 6= b s.t. (a, i) ∈ E }
23: if neighbours a 6= ; then
24: remove_VOP∗(a,b)

25: edge ← true if (a,b) ∈ E else false
26: (edge, Ca , Cb) ← cphase_table[edge, Ca , Cb]
27: else
28: if |neighbours a| < |neighbours b| then
29: remove_VOP∗(a,b)
30: CZ_ONE_Z(a,b)
31: else
32: remove_VOP∗(b,a)
33: CZ_ONE_Z(b,a)

4

40 4. FASTER CZS FOR GSLC

Figure 4.1: Time complexity of simulating a CZ gate on two qubits with neighbours with the original CZ algo-
rithm by [21] and with our algorithm, per combination of Clifford type of qubits a and b. The arrows indicate
the use of the ’Remove_VOP’ procedure; in the original algorithm, it is applied twice: once for both nodes to
make the CZ gate commute with the local Cliffords. In our algorithm, it is applied only on the qubit with the
fewest neighbours, after which ’CZ_ONE_Z’ is called.

4.2. A NOVEL ALGORITHM FOR SIMULATING CZ GATES

4

41

SIMULATING SINGLE CZ GATES

We empirically validate the performance of algorithm 4 on single CZ gates and compare
it to the performance of the original algorithm. Because algorithm 4 has an equal or
lower run time complexity than the original algorithm in all cases, we expect it to be
faster when simulating random single CZ gates on random states. We test this hypothesis
by generating random states using procedure 4.2.2. For the random C Za,b gates, we draw
a and b uniformly at random from the n qubits. We then simulate a random gate on a
random state using both our algorithm and the original algorithm, and measure the time
needed.

As can be seen in figure 4.2, our algorithm achieves an average speedup of up to 9x
compared to the original algorithm when simulating random single CZ gates in our runs,
confirming our hypothesis. The relative speedup of our algorithm is larger for states with
higher β, i.e. states with higher degree. Both the absolute and relative difference in run
time increases with the number of qubits.

SIMULATING SEQUENCES OF CZ GATES

We validate our claim that algorithm 4 provides an additional speedup for sequences
of CZ empirically. We hypothesise that algorithm 4 provides an additional speedup for
sequences for two reasons.

First, because it requires less local complementations than the original algorithm.
CZ gates on states with a high degree are more expensive to simulate (see section 2.3),
and local complementations on sparse graphs are likely to increase the degree of a graph.
Therefore, the average run time of simulating a CZ on a random sparse state increases
per CZ simulated, up to some maximum. We expect this increase in run time to be less
large when using algorithm 4 compared to the original algorithm, because it uses less
local complementations.

Second, because we expect the number of Z-type qubits to increase, up to some max-
imum, with the number of CZ simulated. Because the ’REMOVE_VOP∗’ procedure at-
tempts to pick a non-Z swapping partner, it will increase the number Z-type qubits by 1
if it succeeds in picking a non-Z swapping partner. Since (Z-type, non Z) and (Z-type,
Z-type) CZ gates are less expensive to simulate, this decreases the average simulation
time of the CZ gates later in the sequence when using our algorithm.

We validate these hypotheses by timing the simulation of a random CZ sequence of
n CZ gates on a random state with n qubits in GSLC formalism using both algorithms.
The state and CZ gates in the sequence are generated in the same way as in the single CZ
experiment. We plot the average simulation time per CZ gate versus the index of the CZ
gate in the sequence, i.e. the leftmost values are the run times of the CZ gates at the start
of the sequence.

As can be seen in figure 4.3, the run time of simulating a single CZ gate with the origi-
nal algorithm indeed increases for the CZs later in the sequence. The increase is steepest
for the first number of CZ gates, before becoming more gradual. The run time of sin-
gle CZ gates in a sequence using algorithm 4 decreases slightly with every CZ simulated,
thus providing evidence our hypotheses are correct. It must be noted that this result
holds for random sequences and gates, but will not hold for every circuit simulated. E.g.
for a trivial circuit containing only commuting CZ gates, the run time of a gate will not
change with the index.

4

42 4. FASTER CZS FOR GSLC

Figure 4.2: Average simulation time of a random single CZ gate on a randomly generated state using the original
algorithm by [21] versus algorithm 4, for various number of qubits n and factorβ (as defined in definition 4.2.2).
We generate 100 pairs of a state and CZ gate to run per n and β, and show the average measured run times over
those 100 runs.

4.3. CZ SEQUENCE SCHEDULER

4

43

Figure 4.3: Average run time of simulating a single CZ gate in a sequence versus the index of the CZ gate in that
sequence, for algorithm 4 and the original CZ algorithm by [21]. Every data-point consists of the average of
1000 different sequences simulated on a different random state each.

4.3. CZ SEQUENCE SCHEDULER
In this section, we present an algorithm for scheduling sequences of CZ and subse-
quently simulating them using our algorithm for single CZ gates. This algorithm pro-
vides a speedup additional to that of our novel single CZ algorithm when simulating
concentrated CZ sequences; i.e. sequences where the CZ gates share a small number
of nodes. It does this by minimizing the number of local complementations needed to
simulate the sequence, which achieves a speedup in two ways:

1. Local complementations in the ’remove_VOP∗’ procedure (see 4.2.1) are the most
expensive step in the CZ algorithm with complexity O(d 2), where d is the maxi-
mum degree of the GSLC (as stated in subsection 2.3.2).

2. Local complementations can increase d in sparse graphs with each subsequent
local complementation, increasing the run time of the CZ gates at the end of the
sequence (as shown in the previous section).

Because CZ gates commute with each other, we can simulate the CZ gates in a se-
quence of CZs in an arbitrary order. Algorithm 3 allows us to minimize the number of
calls to ’remove_VOP∗’ (and thus the number of local complementations) when simulat-
ing a sequence by scheduling the CZs in a smart way. If multiple CZ gates in a sequence
operate on qubit a, we can call ’remove_VOP∗’ once on qubit a and then use algorithm
3 to simulate all CZ gates on qubit a. As an example: when one performs a sequence
of CZs that all originate from one qubit on a state (e.g. a star graph, such as the graph
of a GHZ state), only one call to ’remove_VOP∗’ is needed, instead of O(n) as with the
original algorithm by [21].

The scheduling algorithm presented here aims to minimize the number of calls to
’remove_VOP∗’ by greedily selecting the node a that the most CZ gates in the sequence
work on. If this node does not yet have a Z type local Clifford, ’remove_VOP∗’ is called
to change its local Clifford to I . Since now all CZs on node a have at least one Z type
Clifford, algorithm 3 can now be used to simulate all CZs on this node. We repeat this

4

44 4. FASTER CZS FOR GSLC

cycle until all CZs in the sequence have been performed. If node a is a non Z-type qubit
that does not have any neighbours, ’remove_VOP∗’ cannot be called as it needs to have
a ’swapping partner’ to do the necessary local complementations. We deal with this by
first simulating a randomly selected CZ on a from the sequence, until a has a neighbour
or no more CZs on a are left. After this, all remaining CZs on a are simulated, and the
algorithm’s cycle starts over.
The pseudo-code of the above described algorithm can be seen in algorithm 5.

Algorithm 5 Scheduling and simulating CZ sequence {C Z } on GSLC with
∣∣∣G ;C

〉
.

1: procedure CZ_SEQUENCE({C Z })
2: G ′ ← (V , {C Z })
3: while |{C Z }| > 0 do
4: a ← max

a∈V
dG ′ (a)

5: neighbours a ← {i |(a, i) ∈ E }
6: type a← Clifford type qubit a
7: if type a is not Z then
8: while dG ′ (a) > 0 and |neighbours a| = 0 do
9: b ← random b s.t. (a,b) ∈C Z

10: CZ(a,b) . Simulate the CZ gate using algorithm 4
11: {C Z } ← {C Z } \ {(a,b)}

12: if dG ′ (a) > 0 then
13: c ← random node c ∈ neighbours a
14: remove_VOP∗(a,c)

15: for all b s.t. (a,b) ∈ {C Z } do
16: CZ(a,b)
17: {C Z } ← {C Z } \ {(a,b)}

Here we define dG ′ (a) as the degree of node a in a graph that has V as nodes and {C Z }
as edges. dG ′ (a) is thus equal to the number of CZs in the sequence that are performed
on node a.

The run time of algorithm 5 is dominated by the calls to ’remove_VOP∗’ and algo-
rithm 4, both with time complexity O(d 2). Compared to naively simulating all CZ gates
in sequence {C Z } with algorithm 4, it minimizes the number of calls to ’remove_VOP∗’.
Therefore, algorithm 5 is faster for concentrated sequences. The overhead necessary to
schedule the CZ gates is relatively small compared to the simulation of the CZ gates.

4.3.1. EMPIRICAL VALIDATION

We will now present empirical results to validate our claim that CZ_SEQUENCE provides
an additional speedup to algorithm 4 when simulating concentrated sequences of CZ. All
results are obtained using a Python implementation of our algorithms, on cloud-based
hardware that has 126 CPU cores available.

To validate our claim we time the scheduling and simulation of randomly generated
CZ sequences with varying concentration on a random state.

4.3. CZ SEQUENCE SCHEDULER

4

45

(a) σ= 0 (b) σ= 0.1 (c) σ= 0.2

Figure 4.4: Randomly generated CZ sequences plotted as graphs with n = 25 nodes, nlog (n) CZ gates, and
varying sigma. Note that not all edges originate from a single node for σ = 0. Since a node cannot have more
than n −1 edges, already fully connected nodes are removed from the normal distribution, thus allowing the
edges to originate from multiple nodes.

For the generation of the random state, we use procedure 4.2.2. We generate CZ se-
quences with varying concentration with the following procedure:

Definition 4.3.1. Procedure for generating a random CZ sequence {C Z } with varying
concentration, on a quantum state with n qubits. For every C Za,b in {C Z }, we draw the
starting node a from a normal distribution with µ= n/2 and varying standard deviation
σ, truncated between [0,n). The end node b is drawn uniformly from all nodes in [0,n).
This allow us to change the concentration of the CZ gates in the sequence by changing
the standard deviation σ of the truncated normal distribution.

To clarify our procedure for generating random CZ sequences, we visualize a number
of generated random sequences in figure 4.4.

We simulate these sequences on randomly generated states and plot their simulation
time versus sigma, for different numbers of qubits n and sequence lengths |{C Z }|.

Figure 4.5 shows that there is indeed a decrease in run time for sequences with low
sigma, making simulating those sequences 2 to 3 times faster compared to less concen-
trated sequences. Algorithm 5 does not provide a significant speedup for states with a
sigma higher than 0.2n. The speedup is larger, both relatively and absolutely, for larger
sequence lengths. The speed advantage is larger for states with more qubits.

We note that for random graphs, algorithm 4 will also show similar increase perfor-
mance on concentrated sequences without scheduling the CZ gates using algorithm 5.
Algorithm 5 aims to call remove_VOP∗ on the node on which the most CZ in a sequence
work. Without the scheduling algorithm, remove_VOP∗ is called on the qubit with the
smallest number of neighbours (see lines 23-29 of algorithm 4). Because for a random
graph most nodes will have about the same amount of neighbours, algorithm 4 already
has a high probability of calling remove_VOP∗ on the node on which the most CZ in a
sequence work. However, for non-random sequences it will not, because then such a
node might have more neighbours than the other nodes the CZ in the sequence work
on. In those cases, scheduling algorithm 5 is necessary to optimize the number of local
complementations.

4

46 4. FASTER CZS FOR GSLC

Figure 4.5: Run time of simulating a random sequence of CZ gates on a random state using algorithm 5 versus
sequence concentration. Here, σ is the standard deviation of the normal distribution as defined in defini-
tion 4.4, expressed relative to the number of qubits n. As σ increases, the concentration of the CZ sequence
decreases. We run our experiment for various n and sequence size |{C Z }|. Every data-point consists of the
average of 100 runs. The random states are generated using the procedure outlined in 4.2.2, with β= 1.

4.3. CZ SEQUENCE SCHEDULER

4

47

Figure 4.6: Log of the run time of simulating a random sequence of CZ gates on a random state versus sigma
(see definition 4.3.1), as expressed relative to the number of qubits n. Both the measured run times for our
algorithm and that of the original algorithm from [21] are depicted. Here, n = 300 and the sequence simulated
contains 300 CZ gates. Every data-point consists of the average of 100 runs.

In figure 4.6 we plot the run time of our novel CZ sequence algorithm versus that of
the original algorithm of [21] when simulating sequences of CZ on a log-scale. For lower
sigma, our CZ scheduling algorithm performs more than 50 times faster in our runs.

5
OPERATIONS ON GSLC

In this chapter, we introduce two novel algorithms to perform operations that are use-
ful when simulating stabilizer circuits in GLSC form: calculating fidelity and tracing out
qubits. Fidelity is a measure of "closeness" of two quantum states. It is used, for in-
stance, to determine how close the obtained state from a (noisy) simulated circuit is to
some ideal state, as well as in algorithms for general quantum circuit simulation such as
[47]. Tracing out part of a multi qubit quantum state allow us to determine the "partial
state" associated to a subset of qubits. Intuitively, this operation extracts the information
contained in a smaller part of a state from the whole state. For example, tracing out can
be used if one simulates a large quantum network but is only interested in the state of
the qubits of two particular end-users.

Algorithms for calculating fidelity and tracing out qubits were previously introduced
for the tableau formalism by [30] and [17], respectively. In the tableau formalism, these
operations include a form of Gaussian elimination to get the tableau in some normal
form, before the actual operation can be performed. For GSLC this is not required, as the
circuit of the state is already in a normal form. The time complexity of the operations we
define here can be seen in table 5.1.

Tableau GSLC
Fidelity O(n3) O(|E | ·n2)
Tracing out k qubits O(n2) O(k)

Table 5.1: Comparison of the time complexity of various operations in tableau and GSLC formalism. For the
tableau formalism, the fidelity algorithm referenced is that described by [30]. The tracing out algorithm is that
described by [17].

This chapter begins with a section on how to trace out qubits of a GSLC and how
to represent the resulting mixed state. We then present an algorithm to calculate the
fidelity of two GSLC, followed by a proof that this algorithm can be used on two states of
different size.

49

5

50 5. OPERATIONS ON GSLC

5.1. TRACING OUT GSLC
In this section, we present a novel way to trace out GSLC and represent the resulting re-
duced density matrix. We start by deriving a lemma that describes the reduced density
matrices of graph states, followed by an extension of this lemma to one that describes re-
duced density matrices of GSLC. We finish this section by giving an example of a traced
out GSLC, how to represent it, and sketch a way to obtain such a representation.

Let the basis K be the computational basis over B . Then we can rewrite the partial
trace (definition 2.10) as:

TrB (ρAB) =
2|B |∑
k=0

〈k|ρAB |k〉 (5.1)

=
2|B |−1∑
k=0

〈0k|ρAB |0k〉+〈1k|ρAB |1k〉 , (5.2)

where |0k〉 (|1k〉) represents a tensor product of the computational basis state |0〉 (|1〉)
with some number k in binary representation. Note that this holds for any qubit; e.g.
including tensor products where the computational basis state is placed between digits
of k.

We can rewrite the definition of a graph state in ket form (equation 2.35) to a normal-
ized sum of all kets from 0 to 2|V |−1, where all kets that have an uneven number of CZs
on two qubits that are both 1 are multiplied by a factor of -1:

∏
i , j∈E

C Zi , j |+〉⊗|V | = (
1p
2

)|V | ∏
i , j∈E

C Zi , j (|0〉+ |1〉)⊗|V | (5.3)

= (
1p
2

)|V | 2|V |−1∑
k=0

∏
(i , j)∈E

C Zi , j |k〉 , (5.4)

Using this, we will now give a description of a density matrix of a graph state. In
order to facilitate our reasoning about the partial trace of such a density matrix, we will
first rewrite equation 5.4. Rewriting equation 5.4 as a summation over the 2|V | subsets K
in the powerset of V , we obtain:

(
1p
2

)|V | 2|V |−1∑
k=0

∏
(i , j)∈E

C Zi , j |k〉 (5.5)

=(
1p
2

)|V | ∑
K⊆V

∏
(i , j)∈E

C Zi , j |K 〉 , (5.6)

where |K 〉 is a ket with 1 at the position of the qubits in K , and 0 elsewhere. The CZ gate
performs a Z gate when its control qubit is |1〉. In a graph state, this means that a Z gate
is performed on a qubit j if it has a neighbour i that is |1〉. From this, we obtain the
following corollary:

5.1. TRACING OUT GSLC

5

51

Corollary 5.1.0.1 (Density matrix of a graph state). The density matrix of a graph state
|G〉 is defined as:

|G〉〈G| = ∏
(i , j)∈E

∏
(k,l)∈E

C Zi , j |+〉⊗|V | 〈+|⊗|V |C Zk,l (5.7)

Given this corollary, and the definition of the partial trace (definition 2.10), we get
the following lemma:

Lemma 5.1.1. [22] After tracing out a set of B ⊂ V qubits from a graph state |G〉, the
resulting density matrix is equal to:

TrB (|G〉〈G|) = 1

2|B |
∑

B ′⊆B

∏
(i , j)∈E

∀(i∈B ′∧ j∈A)

∏
(p,q)∈E

∀(p∈B ′∧q∈A)

Z j |A〉〈A|Zq , (5.8)

where |A〉 is a graph state equal to
∣∣V \ B , {(i , j)|for all i ∧ j ∈ (V \ B)}

〉
.

Proof. We will prove lemma 5.1.1 by induction on |B |.
Base case: let |B | = 0. Then the partial trace over b is equal to:

Tr;(|G〉〈G|) = 1

20

∑
B ′⊆;

∏
(i , j)∈E

∀(i∈B ′∧ j∈A)

∏
(p,q)∈E

∀(p∈B ′∧q∈A)

Z j |A〉〈A|Zq (5.9)

= |G〉〈G| . (5.10)

Inductive step: let lemma 5.1.1 be true for a given 0 ≤ |B | < n, with n being the number
of qubits in G . Then for |B |+1, the partial trace of G over B +ψ with ψ being some qubit
in V \ B is equal to:

TrB+ψ(|G〉〈G|) =
2|B |+1−1∑

k=0

〈0k|G〉〈G|0k〉+〈1k|G〉〈G|1k〉 (5.11)

=
2|B |∑
k=0

〈0k|G〉〈G|0k〉+〈1k|G〉〈G|1k〉 (5.12)

By equation 2.35, 〈0k|G〉 and 〈1k|G〉 are equal to:∏
(i , j)∈E

〈0k|C Zi , j |+〉⊗|V | = 1p
2

∏
(i , j)∈E
∀i∧ j 6=ψ

〈k|C Zi , j |+〉⊗|V |−1 (5.13)

= 1p
2

〈
k
∣∣G ′〉 (5.14)

∏
(i , j)∈E

〈1k|C Zi , j |+〉⊗|V | = 1p
2

∏
(ψ,p)∈E

∏
(i , j)∈E
∀i∧ j 6=ψ

〈k|ZpC Zi , j |+〉⊗|V |−1 (5.15)

= 1p
2

∏
(ψ,p)∈E

〈k|Zp
∣∣G ′〉 , (5.16)

5

52 5. OPERATIONS ON GSLC

where G ′ = (V \ψ, {(i , j) ∈ E |∀i ∧ j 6=ψ}). If we plug this into equation 5.12, we obtain:

2|B |∑
k=0

〈0k|G〉〈G|0k〉+〈1k|G〉〈G|1k〉 (5.17)

=
2|B |∑
k=0

1

2

〈
k
∣∣G ′〉〈

G ′∣∣k〉+ 1

2

∏
(ψ,p)∈E

∏
(ψ,q)∈E

〈k|Zp
∣∣G ′〉〈

G ′∣∣ Zq |k〉 (5.18)

=TrB (
1

2
{
∣∣G ′〉〈

G ′∣∣+ ∏
(ψ,p)∈E

∏
(ψ,q)∈E

Zp
∣∣G ′〉〈

G ′∣∣ Zq }) (5.19)

=TrB (
1

2|1|
∑

B ′⊆{ψ}

∏
(i , j)∈E

∀(i∈B ′∧ j∈G ′)

∏
(p,q)∈E

∀(p∈B ′∧q∈G ′)

Z j
∣∣G ′〉〈

G ′∣∣ Zq) (5.20)

=TrB (Trψ(|G〉〈G|)) (5.21)

=Trψ(TrB (|G〉〈G|)), (5.22)

that is, lemma 5.1.1 is also true for |B | + 1. Since both the base case and the inductive
step have been shown, lemma 5.1.1 holds.

The reduced density matrix of a GSLC is an extension of 5.1.1. Similar to graph states,
we start with the definition of GSLC in ket notation, as given in definition 2.37. From this,
we extend to describing density matrices of GSLC as:

Corollary 5.1.1.1 (Density matrix of a GSLC). The density matrix of a GSLC
∣∣∣G ;C

〉
is de-

fined as: ∣∣∣G ;C
〉〈

G ;C
∣∣∣= ⊗

p∈V

⊗
q∈V

∏
(i , j)∈E

∏
(k,l)∈E

CpC Zi , j |+〉⊗|V | 〈+|⊗|V |C Zk,l C †
q (5.23)

= ⊗
p∈V

⊗
q∈V

Cp |G〉〈G|C †
q . (5.24)

This definition allows us to extend 2.10 to GSLC in the following lemma.

Lemma 5.1.2. After tracing out a set of B ⊂ V qubits from a GSLC
∣∣∣G ;C

〉
, the resulting

density matrix is equal to:

TrB (
∣∣∣G ;C

〉〈
G ;C

∣∣∣) = ⊗
p∈(V \B)

⊗
q∈(V \B)

Cp TrB (|G〉〈G|)C †
q . (5.25)

Proof. We can write the density matrix of a GSLC as:⊗
p,q∈(V \B)

⊗
l ,m∈B

(Cp ⊗Cl) |G〉〈G| (Cq ⊗Cm)†. (5.26)

5.1. TRACING OUT GSLC

5

53

Using the fact that the trace is cyclic, the partial trace over B then becomes:

TrB {
⊗

p,q∈(V \B)

⊗
l ,m∈B

(Cp ⊗Cl) |G〉〈G| (Cq ⊗Cm)†} (5.27)

=TrB {
⊗

p,q∈(V \B)

⊗
l ,m∈B

(Cp ⊗ I) |G〉〈G| (Cq ⊗ I)†C †
mCl } (5.28)

=TrB {
⊗

p,q∈(V \B)
Cp |G〉〈G|C †

p } (5.29)

= ⊗
p,q∈(V \B)

Cp TrB (|G〉〈G|)C †
q . (5.30)

Thus proving lemma 5.1.2.

In other words, tracing out a qubit of a GSLC produces a mixed state that is an equal
mixture of the remaining subgraph, where the local Cliffords of the neighbours of all
possible subsets of the set of traced out qubits are right-multiplied with Z .

As an example, take the following GSLC:

1

H

2

I

3

SH

4

S

Tracing out qubits 3 and 4 gives us a state that is equal to the following mixture:

1

4

{
1

H

2

I
+ 1

H Z

2

Z

+ 1

H Z

2

I
+ 1

H

2

Z }
This mixed state can be fully represented by storing the original graph and flagging

what qubits were traced out. For our example, that would be:

Vertex local Clifford adjacency traced out
1 H 2,3,4 false
2 I 1,3 false
3 SH 1,2 true
4 S 1 true

Such a mixed state can be obtained in time O(k), where k is the number of traced out
qubits, as we only need to flag all k traced out qubits.

5

54 5. OPERATIONS ON GSLC

5.2. CALCULATING FIDELITY

In this section, we give an algorithm for calculating fidelity between two stabilizer states
that can be seen as a generalization of the fidelity algorithm for tableaus defined by [30].
We start by explaining the reasoning behind the algorithm, that applies the circuit of one
of the states to the other. We then give pseudo-code and analyze its complexity when
using the GSLC formalism to represent the stabilizer states. This is followed by heuristic
to select which state to apply the circuit of the other state on. We finalize this section
by giving a proof that our algorithm can be used to calculate fidelity between states of
different size in the GSLC formalism.

The fidelity between pure states (and therefore for stabilizer states), it is defined as
|〈φ∣∣ψ〉 |2, for two states

∣∣φ〉
and

∣∣ψ〉
.

For any circuit U consisting of unitaries, we have that:

〈
φ

∣∣ψ〉= 〈
φ

∣∣U †U
∣∣ψ〉

. (5.31)

Let us pick U such that U
∣∣φ〉= |0〉⊗n , then:

〈
φ

∣∣ψ〉= 〈0|⊗n U
∣∣ψ〉

. (5.32)

Therefore, we can calculate the fidelity between two stabilizer states |〈φ∣∣ψ〉 |2 by
calculating | 〈0|⊗n U

∣∣ψ〉 |2. This we can do by measuring every qubit of U
∣∣ψ〉

in the Z-
direction. We can terminate this algorithm early: if we measure one qubit of U

∣∣ψ〉
in

the Z basis and its outcome is deterministically equal to -1, we already know the fidelity
between U

∣∣ψ〉
and |0〉⊗n is 0 and we can return 0.

For states in GSLC form, determining the circuit that brings back a given state to the
all zero state is easy:

∣∣φ〉= n⊗
i=0

∏
(a,b)∈E

Ci C Za,b Hi |0〉⊗n (5.33)

⇒
n⊗

i=0

∏
(a,b)∈E

Hi C Za,bC †
i

∣∣φ〉= |0〉⊗n (5.34)

⇒U =
n⊗

i=0

∏
(a,b)∈E

Hi C Za,bC †
i . (5.35)

That is, U is equal to a circuit that consists of a tensor product of the Hermitian conju-
gate of the local Cliffords of

∣∣φ〉
, followed by a C Z gate for each of its edges, followed

by a Hadamard gate on each qubit. In pseudo-code, the general fidelity algorithm for
stabilizer states looks as follow:

5.2. CALCULATING FIDELITY

5

55

Algorithm 6 Fidelity between stabilizer states
∣∣φ〉

,
∣∣ψ〉

1: procedure FIDELITY(
∣∣φ〉

,
∣∣ψ〉

)
2: overlap ← 1
3: C ← Determine U such that U

∣∣φ〉= |0〉⊗n

4:
∣∣ψ′〉←U

∣∣ψ〉
5: for all k ∈ {1, ...,n} do
6: mk , deterministic ← MEASURE_+1(

∣∣ψ′〉 ,k)
7: if deterministic and mk =−1 then
8: return 0
9: else if not deterministic then

10: overlap ← overlap∗ 1p
2

return overlap 2

Here, the ’MEASURE_+1(
∣∣φ〉

,k)’ procedure measures the k − th qubit of
∣∣φ〉

and up-
dates the state as if the measurement outcome +1 was measured. It returns the measure-
ment result, and whether the result was deterministic.

The complexity of algorithm 6 is dependent on the run time of three parts: the de-
termination of U , the calculation of U

∣∣φ〉
, and the sequence of measurements. For the

tableau algorithm, [30] [41] have shown that this can be done in time complexity O(n3).
For two GSLC of n qubits of maximum degree d , the algorithm’s complexity per step is
as follows:

• When determining U , we iterate through the qubits and add a local Clifford and a
Hadamard per qubit, as well as a CZ gate per edge in the graph. Its complexity is
therefore Θ(1) ·2n +Θ(|E |φ).

• Calculating U
∣∣ψ〉

is dominated by the O(|E |φ) number of CZ gates, that are in turn
dominated by local complementations of order O(d 2

ψ). However, simulating CZ
gates can increase the degree of that graph. Therefore dψ can increase, up to the
maximum possible degree n. The resulting upper bound on this step of the algo-
rithm is therefore O(|E |φn2). We note that this bound is loose; in use practical use
cases where for instance

∣∣ψ〉
and

∣∣φ〉
are states with a high fidelity, or

∣∣ψ〉
has few

edges, dψ will not increase a lot. Because U will by definition contain a sequence
of CZ gates, we use algorithm 5 to optimize the run time of calculating U

∣∣ψ〉
.

• In the rest of the algorithm, we measure at most n qubits, which in GSLC form
takes at most O(d 2) time. Here, a measurement might also increase d . This makes
the overall complexity of this step O(n3). As with the previous step, this upper
bound can be loose in practise.

This leads to an overall complexity of the fidelity algorithm of O(|E | ·n2).
As noted above, this bound can be loose dependent on the states used to calculate

fidelity on. The practical cost of algorithm 6 is driven by the amount of edges of both
states, as well as the growth of the degree of the state the circuit is applied on. By using
our novel CZ algorithm 4 and the CZ sequence algorithm 5, we can minimize the number
of local complementations used, and therefore the degree growth.

5

56 5. OPERATIONS ON GSLC

Additionally, we can pick what state to apply circuit U on in a such a way that we
minimize the run time of algorithm 6. For instance, if we want to calculate the fidelity
between a product state

∣∣φ〉
and a GSLC with a high degree

∣∣ψ〉
, it would take time order

Θ(n) to calculate U
∣∣ψ〉

, but O(|E |ψn2) to calculate U
∣∣φ〉

(where U is the circuit of the
other state). In order to determine what state to apply U on, we use a heuristic algorithm
to calculate the costs of applying U , that we will present in the following subsection.

A HEURISTIC ALGORITHM TO ESTIMATE THE COST OF APPLYING CIRCUIT U

We estimate the cost of applying the circuit U of a GSLC
∣∣φ〉

on a GSLC
∣∣ψ〉

using our CZ
sequence algorithm as follows:

1. Make a graph G ′ = (V ′,E ′), where V ′ are all non-z type vertices of
∣∣ψ〉

, and E ′ =
{(a,b) ∈ Eφ|s.t. a,b ∈ V ′}. That is, E ′ contains all edges of

∣∣φ〉
between two qubits

that are non-z type qubits in
∣∣ψ〉

.

2. Calculate size k of the approximate vertex cover using the algorithm by Gavril and
Yannakakis [11]. The minimal vertex cover of a graph is the minimal set of vertices
that includes at least one endpoint of every edge of the graph. The approximate
vertex cover approximates this up to a factor of 2.

The total estimated cost of applying circuit U of
∣∣φ〉

on
∣∣ψ〉

is then:

k3

2
·d 2

ψ+|E |φ · (k +1)dψ, (5.36)

as we approximately need to do k local complementations that cost approximately
∑k

i=0(i dψ+
dψ)2 = k3

2 ·d 2
ψ, as every local complementation increases the degree of

∣∣ψ〉
by at most the

initial degree dψ−1. Afterwards, we still need to do |E |φ CZ gates using algorithm 3, that
has complexity order O(d). Because the k local complementations increase the degree
to at most (k +1)(dψ−1), this step takes approximately |E |φ · (k +1)dψ.

We use this heuristic algorithm to estimate the cost of applying circuit U on both
states, and simulate the option with the one with the lowest costs.

CALCULATING FIDELITY ON A REDUCED DENSITY MATRIX

We can also use algorithm 6 to calculate the fidelity between two states of different size,
or between part of large state and a smaller state. This can be useful in applications
were one is only interested in part of a larger state, for instance when one simulates
a repeater network and wants to know the fidelity between an ideal Bell pair and two
endpoints in the network. In this subsection, we will prove that algorithm 6 can be used
for this purpose. We will first define the fidelity between two states of different size,
before proving our claim.

Calculating the fidelity between a register A of a larger GSLC ρAB and a smaller state∣∣φ〉
means calculating the fidelity between the reduced density matrix of a GSLC TrB (ρAB)

and a smaller state
∣∣φ〉

. This is equal to:

5.2. CALCULATING FIDELITY

5

57

〈
φ

∣∣TrB (ρAB)
∣∣φ〉

(5.37)

=〈
φ

∣∣ ⊗
p∈(V \B)

Cp TrB (|G〉〈G|)C †
p

∣∣φ〉
(5.38)

=〈
φ

∣∣ ⊗
p∈(V \B)

Cp
1

2|B |
∑

B ′⊆B

∏
(i , j)∈E

∀(i∈B ′∧ j∈A)

∏
(p,q)∈E

∀(p∈B ′∧q∈A)

Z j |A〉〈A|ZqC †
p

∣∣φ〉
(5.39)

= 1

2|B |
∑

B ′⊆B

〈
φ

∣∣ ⊗
p∈(V \B)

Cp
∏

(i , j)∈E
∀(i∈B ′∧ j∈A)

∏
(p,q)∈E

∀(p∈B ′∧q∈A)

Z j |A〉〈A|ZqC †
p

∣∣φ〉
(5.40)

= 1

2|B |
∑

B ′⊆B

(
〈
φ

∣∣ ⊗
p∈(V \B)

Cp
∏

(i , j)∈E
∀(i∈B ′∧ j∈A)

Z j |A〉)2. (5.41)

In other words, it is equal to the squared average inner product between
∣∣φ〉

and all the
terms that make up the mixed GSLC.

Measuring a qubit a in GSLC form in the computational basis means measuring the
observable Pa = C †

a ZCa on the underlying graph state |G〉 [21] (where Ca is the local
Clifford of qubit a). When after tracing out a qubit the local Clifford of a qubit is right-
multiplied with Z , we measure P ′

a = ZaC †
a ZCa Za = ZaPa Za = ±Pa on the underlying

graph.
Since the mixed state is a summation over the power set of the traced out qubits, a

qubit’s local Clifford is right-multiplied with Z in half the states that make up the mixed
state if it has a traced-out neighbour. This means that after tracing out, a measurement
of qubit a in the measurement sequence of algorithm 6 falls into one of two cases:

• If the measurement result of Pa is non-deterministic, the measurement result P ′
a

is non-deterministic, because P ′
a =±Pa . I.e. the measurement direction stays the

same.

• If the measurement result is deterministic, the qubit has no neighbours and can
therefore not have any traced-out neighbours. Hence P ′

a = Pa

Therefore, the result of all the measurements in the measurement sequence of algo-
rithm 6 are the same after tracing out, and we can use it to calculate fidelity between a
large and a smaller state in GSLC formalism.

6
GENERAL QUANTUM CIRCUIT

SIMULATION

General quantum circuits containing few non Clifford gates can be simulated on classi-
cal computers using stabilizer states [34] [47]. In a recent result, Bravyi et al.[47] present
a simulation algorithm (the sum-over-Cliffords method) that can simulate a larger set
of non-Clifford gates and has significantly improved performance over previous state-
of-the-art. This allows for the simulation of quantum algorithms with 50 qubits and 60
non-Clifford gates on a laptop computer. It is currently implemented in Qiskit Aer, a
widely used quantum simulation platform by IBM, where it is defaulted to when simu-
lation using full state vectors becomes unfeasible [60].

The sum-over-Clifford method as proposed by [47] has a subroutine, called ’Phase-
sensitive Clifford simulator’, based on tableaus (see section 2.3.1) in a certain CH-canonical
form to simulate a large set of stabilizer circuits.
In this chapter, we further improve the performance of the results by Bravyi et al. with
a subroutine based on the results presented in the previous chapters. The subroutine
is an extension of the GSLC formalism to make it phase-sensitive. Depending on the
degree of the simulated stabilizer states, stabilizer circuits can be simulated faster using
this subroutine compared to CH-form tableaus. Additionally, our new single CZ algo-
rithm and CZ scheduling algorithm (see chapter 4) can then be used to further reduce
the simulation time. We show that the class of circuits that can be simulated faster using
our subroutine contains contains practical use cases. For this purpose, we evaluate the
simulation of a quantum algorithm: the quantum approximate optimization algorithm
(QAOA) applied to the Max E3LIN2 problem[32]. This problem was also used by Bravyi
et al. to benchmark the performance of the sum-over-Clifford method in [47].

This chapter starts with a section that gives an overview of general quantum circuit
simulation using stabilizer states. This is followed by a description of the sum-over-
Clifford Metropolis simulator by Bravyi et al. as presented in [47]. Afterwards, we present
an extension of the GSLC formalism to make it phase sensitive. This chapter concludes
with a section where we give an overview of the workings of the QAOA applied to the Max

59

6

60 6. GENERAL QUANTUM CIRCUIT SIMULATION

E3LIN2 problem and why our subroutine achieves a speedup over the original subrou-
tine.

6.1. GENERAL QUANTUM CIRCUIT SIMULATION
We start this section by exploring some earlier results regarding the computational com-
plexity of simulating general quantum circuits. We then elaborate on earlier results that
show how the stabilizer formalism can be used to efficiently simulate quantum circuits
containing a few non-Clifford gates. This section ends with a number of formal defini-
tions used later in this chapter: stabilizer rank, approximate stabilizer rank and stabilizer
extent.

Throughout this section, we will classify computational problems into complexity
classes. A complexity class is a set of problems of related complexity. These are usually
defined as the type of problems contained in that class, what computational method can
be used, and how the resources used are bounded. As an example, we formally define
two important complexity classes [59]:

Definition 6.1.1. The complexity class P is defined as the class of decision problems
solvable in polynomial time by a Turing machine.

Definition 6.1.2. The complexity class NP is defined as the class of decision problems
solvable by an nondeterministic polynomial-time Turing machine such that:

1. If the answer is "yes," at least one computation path accepts.

2. If the answer is "no," all computation paths reject.

Put in simplified terms, P contains the problems for which an efficient algorithm
exists, whereas NP contains hard problems. P is contained in NP, but it has not been
proven whether these sets are equal or not (though it is commonly assumed that P6=NP).
In fact, whether P=NP remains an important open problem in theoretical computer sci-
ence[6].

It is widely believed that universal quantum computers cannot be efficiently classi-
cally simulated. This belief can intuitively be understood by considering the space re-
quired to represent a general quantum state: without using some form of compression,
storing the state vector of a n qubit state would take exponential space of order Θ(2n).
Because of this exponential scaling, state-of-the-art simulators are limited to around 50
qubits [42].

Before we continue, we will make a distinction between two valid classical simulation
techniques[24]:

1. Strong simulation: computing the probabilities of the output measurement with
high accuracy using a classical computer.

2. Weak simulation: sampling from the output measurement distribution efficiently
using a classical computer.

6.1. GENERAL QUANTUM CIRCUIT SIMULATION

6

61

In [24], Van den Nest showed that strong simulation of certain quantum circuits is a #P-
complete problem, which is a class of problems at least as hard as NP [2]. However,
efficient weak simulation of these circuits is possible on a classical computer using a
sampling technique. Van den Nest notes that "these examples highlight that any se-
rious attempt to understand the relationship between classical and quantum computa-
tion should not rely on the notion of strong simulation". The sum-over-Cliffords method
discussed in this chapter is a weak simulation technique, that samples from a large set
of stabilizer states.

As stated by the Gottesman-Knill theorem[9] (see theorem 2.3.1), stabilizer circuits
can be simulated efficiently using a classical computer. Bravyi and Kitaev showed in [20]
that stabilizer circuits can be upgraded to universal quantum computation by adding
any non-Clifford gate to the available gate set. This gives the possibility to simulate
quantum circuits with few non-Clifford gates, for which a method was first proposed by
Aaronson and Gottesman in [17]. This method scales linearly in the number of Clifford
gates and exponentially in the number of non-Clifford gates. The practical applications
of this work were limited because of the large exponent[47].

Recent work has decreased this exponent. Garcia, Markov and Cross [30] [34] [41]
proposed simulation by ’stabilizer frame’: a decomposition of a quantum state in a su-
perposition of stabilizer states. In [47] Bravyi et al. present methods that improve on
these results in both performance and applicability, and develop a mathematical theory
of stabilizer rank (a concept we will introduce later). In this chapter, we aim to further
improve their ’sum-over-Cliffords’ method, that has state-of-the-art performance and
the new feature of being capable to simulate circuits consisting of Clifford gates and ar-
bitrary diagonal gates.

The decomposition of quantum states in a superposition of stabilizer states was for-
malized in a number of definitions and theorems. We will reproduce a number of these
here to facilitate the explanation of the sum-over-Clifford algorithm. For more back-
ground on and proof of these definitions and theorems, we refer to their original publi-
cations. The minimal number of stabilizer states needed to represent a quantum state is
called the stabilizer rank:

Definition 6.1.3. The exact stabilizer rank χ(ψ) [39] of n qubit pure state
∣∣ψ〉

is the
smallest integer k such that

∣∣ψ〉
can be written as:

∣∣ψ〉= k∑
α=1

cα
∣∣φα〉

, (6.1)

for some n qubit stabilizer states
∣∣φα〉

and some complex coefficients cα.

For all
∣∣ψ〉

, χ(ψ) ≥ 1. χ(ψ) = 1 iff
∣∣ψ〉

is a stabilizer state. The exact stabilizer rank can be
seen as a measure of computational non-classicality [47].

Closely related to this is the approximate stabilizer rank, for which we give the defi-
nition as stated in [47]:

Definition 6.1.4. The approximate stabilizer rank χδ(ψ)[38] of n qubit pure state
∣∣ψ〉

with || ∣∣ψ〉 || = 1 is the smallest integer k such that || ∣∣ψ〉− ∣∣ψ′〉 || ≤ δ for some error pa-

6

62 6. GENERAL QUANTUM CIRCUIT SIMULATION

rameter δ> 0 and some state
∣∣ψ′〉 with exact stabilizer rank k. I.e.:

|| ∣∣ψ〉− k∑
α=1

cα
∣∣φα〉 || ≤ δ (6.2)

In [47], Bravyi et al. derive an upper bound on the stabilizer rank:

Theorem 6.1.1. Upper bound on χδ[47]. Let
∣∣ψ〉

be a normalized n qubit state with a
stabilizer decomposition

∣∣ψ〉 = ∑k
α=1 cα

∣∣φα〉
where

∣∣φα〉
are normalized stabilizer states

and cα are complex coefficients. Then

χδ(ψ) ≤ 1+||c||21/δ2. (6.3)

Here ||c||1 ≡∑k
α=1 |cα|. Note that k does not have to be optimal; it can include all stabilizer

states.

This theorem allows us to simulate a state
∣∣ψ〉

up to some error δ[47]. We decompose
a state

∣∣ψ′〉 into a superposition ofχ′ ≈ δ−2||c||21 stabilizer states (such that || ∣∣ψ〉−∣∣ψ′〉 || ≤
δ). We obtain the χ′ stabilizer states

∣∣φα〉
by sampling them from the (exact) stabilizer

decomposition of
∣∣ψ〉

at random with probabilities proportional to |cα|.
∣∣ψ′〉 is then de-

fined as the superposition of the sampled χ′ states with equal weights (but possibly a dif-
ferent phase). The set of states in this superposition are stabilizer states, and can there-
fore be efficiently simulated on a classical computer, thus allowing us to simulate the cir-
cuit of

∣∣ψ〉
up to error δ on a classical computer (given that χ′ is not prohibitively large).

Note that χ grows exponentially with the number of non-Clifford gates. This should
be expected, as there exists postselective quantum circuits with a polynomial number
of non-Clifford gates that solve problems in NP[56]. This implies that non-exponential
scaling of χ with the number of non-Clifford gates would mean P=NP[47].

We will now show how to obtain the stabilizer decomposition of a general quantum
circuit by giving an example[49].

Consider the (non-Clifford) single-qubit rotation gate R(θ), that rotates a qubit by
angle θ around the Z axis:

R(θ) = e−i (θ/2)Z =
[

e−
iθ
2 0

0 e
iθ
2

]
. (6.4)

We can write this gate as a linear combination of two Cliffords:

R(θ) =
(
cos

(
θ

2

)
− sin

(
θ

2

))
· I +e−iπ/4

p
2sin

(
θ

2

)
·S. (6.5)

Such a decomposition into a sum of Cliffords allows us to write a circuit containing non-
Clifford gates as a sum over Clifford circuits. For example, we draw the following circuit
containing a non-Clifford gate:

|+〉 • R(π/8)

|+〉 • H

6.2. SUM-OVER-CLIFFORD METROPOLIS SIMULATOR

6

63

We can write this circuit as a product of Clifford and non-Clifford gates:

H1R0(π/8)C Z0,1 |++〉 . (6.6)

Using the decomposition of R(θ) into Clifford gates, we rewrite this expression into a
sum over Clifford circuits:

= (cos(π/16)− sin(π/16)) H1IC Z0,1 |++〉 (6.7)

+
(
e−iπ/4

p
2sin(π/16)

)
H1S0C Z0,1 |++〉 . (6.8)

In general, a circuit containing m rotation gates can be written as a sum over 2m

terms in this way. Having obtained such a decomposition, we are able to estimate how
many stabilizer states k are needed to δ-approximate the circuit:

χ′δ−2||c||21 = δ−2
m∏

j=1

(
cos

(
θ j

2

)
+ tan

(π
8

)
sin

(
θ j

2

))2

. (6.9)

Here, θ j is the rotation angle of the j -th rotation gate. Note that for our earlier given
example with m = 1, this estimation of χ′ is loose: for small δ, it is much higher than the
exact stabilizer rank χ= 2. However, for larger m, χ′ << χ. We sample these χ′ stabilizer
states

∣∣φα〉
(with their respective phase) from the exact decomposition with probabilities

proportional to their weights |cα|. The resulting δ-approximate state is then equal to the
sum of these states with equal weight.

The method described above can be used to decompose circuits containing different
non-Clifford gates (such as the CCZ gate) by using their respective Clifford decomposi-
tions. For more background on how these decompositions are derived, we refer to [47]
section 2.3.2. and [55].

6.2. SUM-OVER-CLIFFORD METROPOLIS SIMULATOR
This section gives an overview of the Sum-over-Clifford Metropolis simulator as intro-
duced by Bravyi et al. in [47]. It starts by giving an outline of the three steps of the al-
gorithm, and ends with an overview of the two subroutines used and their complexity.
For more details and mathematical background on these subroutines, we refer to [47]
section 4.1 and 4.2.

The Sum-over-Clifford Metropolis simulation of a quantum circuit on n qubits U
containing few non-Clifford gates can be divided into three steps:

1. Obtain a δ-approximation of U by sampling χ′ stabilizer states
∣∣φα〉

from its stabi-
lizer decomposition using the method described in section 6.1.

2. Simulate the χ′ stabilizer states using a phase-sensitive Clifford simulator based
on tableaus in a certain CH-form.

3. Simulate measuring all the qubits in the Z direction by using a heuristic Metropo-
lis Markov chain. That is, approximately sample x ∈ {0,1}n from the probability

distribution P (x) = |〈x|ψ〉|2
||ψ||2 , where ψ=U |0〉⊗n .

6

64 6. GENERAL QUANTUM CIRCUIT SIMULATION

The phase-sensitive Clifford simulator is based on previous work [30][44][24] that
shows that any n-qubit stabilizer state

∣∣φ〉
can be expressed as:∣∣φ〉=ωUCUH |s〉 , (6.10)

where ω is a complex number, UC is a block of gates from the set {S,C Z ,C NOT }, UH is
a block of H gates and s ∈ {0,1}n is a basis vector. The authors refer to this canonical
form as the (possibly not unique) CH-form of a stabilizer state. The stabilizer state is
represented using the tableau formalism, whose update rules are adjusted to account
for the phaseω. Similarly to the GSLC formalism, the complexity of simulating stabilizer
states in CH-form differs depending on the gate, as can be seen in table 6.1. The CH-
form also allows for the calculation of the inner product between the CH-form state and
a bit string |x〉 in O(n2) by a method similar to our fidelity algorithm. This is used in the
Metropolis Markov chain step.

Gate Complexity
S, CZ, CNOT O(n)
H O(n2)

Table 6.1: Complexity of simulating gates in the CH-form tableau formalism.

The heuristic Metropolis Markov chain aims to sample x ∈ {0,1}n from the probability

distribution P (x) = |〈x|ψ〉|2
||ψ||2 . Assuming the chain is in some current state x, its next state

x ′ is generated in the next Metropolis step as follows:[47]

1. Pick an integer j ∈ [n] uniformly at random and let y = x ⊕e j .

2. If P (y) ≥ P (x), set x ′ = y .

3. Otherwise generate a random bit b such that Pr (b = 1) = P (y)/P (x).

4. If b = 1, set x ′ = y . Otherwise x ′ = x.

In the above algorithm, the ratio

P (y)

P (x)
≈

∣∣∣∣∣∣
∑χ′
α=i

〈
y
∣∣φα〉

∑χ′
α=i

〈
x
∣∣φα〉

∣∣∣∣∣∣
2

(6.11)

is δ- approximated by summing the fidelities between the bit strings x, y and the χ′
stabilizer states

∣∣φα〉
sampled from the decomposition of

∣∣ψ〉
. The run time costs of

calculating the initial probability P (xi n) for some random initial state xi n is O(χ′n2), as
the O(n2) CH-form fidelity algorithm is used χ′ times to calculate the inner products〈

xi n
∣∣φα〉

. By saving some data from the previous Metropolis step, subsequent fidelity
calculations can be done in O(n), resulting in a total run time complexity of T Metropolis
steps of:

O(χ′nT)+O(χ′n2). (6.12)

6.3. PHASE-SENSITIVE GSLC SUBROUTINE

6

65

This Metropolis Markov chain algorithm has not been proven to be irreducible and its
mixing time is unknown. Hence, it should be considered a heuristic. However, the au-
thors have shown it to be capable to sample from the output distribution of non-trivial
quantum circuits accurately[47], and it is used in practise [60].

6.3. PHASE-SENSITIVE GSLC SUBROUTINE
In this section, we present a new subroutine for the sum-over-Clifford Metropolis simu-
lator. The subroutine is an extension of the GSLC formalism to make it phase-sensitive.
Depending on the circuit simulated, this can provide a significant speedup over the orig-
inal CH-tableau form subroutine in the simulation step of the sum-over-Clifford simu-
lator. For the Metropolis Markov chain step of the sum-over-Clifford algorithm, all states
in the stabilizer deposition need to be represented in CH-tableau form. We present a
simple procedure to convert the GSLC-based states to CH-tableau form. This section
starts with an explanation of the new subroutine. It ends with a short description of the
procedure to convert a GSLC state to a CH-tableau.

We first extend the GSLC formalism to account for global phases in this subsection,
i.e., we make it phase-sensitive. This extension allows for the usage of the GSLC formal-
ism with our novel CZ algorithm and CZ sequence scheduling algorithm presented in
chapter 4 to simulate the stabilizer states of the stabilizer decomposition. Compared to
the tableau based CH-form, this phase-sensitive GSLC subroutine can provide a signif-
icant speedup for certain circuits. We provide an example of such a circuit in the next
section.

As stated in subsection 2.3.2, a GSLC is defined as:∣∣∣G ;C
〉
=

|V |⊗
p=1

Cp
∏

(a,b)∈E
C Za,b |+〉⊗|V | (6.13)

=
|V |⊗

p=1
Cp |G〉 , (6.14)

where V ,E are the nodes and edges of graph G respectively, and Cp is the local Clifford
of node p. For a block of CZ gates UC Z , the following holds:

UC Z |0〉⊗n = |0〉⊗n . (6.15)

Because of this, the global phase of the underlying graph state |G〉 of a GSLC is fixed. In
other words, only the local Cliffords of the nodes of a GSLC can change its global phase.

A local Clifford can be updated in two ways in the GSLC formalism:

1. By a right- or left- multiplication with another local Clifford, which is done by a
Clifford multiplication lookup-table;

2. By a lookup to the ’cphase_table’ used in the CZ algorithm (see section 2.37).

We update the lookup table for local Clifford multiplication and the ’cphase_table’ to in-
clude the phases introduced to the local Cliffords by the Clifford multiplications and CZ
gates. To make the GSLC formalism phase-sensitive, we store the phases of the local Clif-
fords in a vector of length n containing complex numbers, one for each local Clifford. We

6

66 6. GENERAL QUANTUM CIRCUIT SIMULATION

initialize these phases to 1. When a local Clifford of qubit i is multiplied with a Clifford,
we multiply the i th entry of the phase vector with the corresponding phase entry of the
lookup table. When we simulate a CZ gate C Zi j through a lookup to the ’cphase_table’,
we multiply the phase of i with the phase of the corresponding entry of the lookup table.
The global phase of the GSLC is equal to the product of all phases in the phase vector.

To use our novel subroutine in the sum-over-Clifford simulator, we need to convert
the states represented as GSLC to CH-tableau form. The following procedure can do this
conversion of a n-qubit GSLC to a CH-tableau:

1. Initialize a CH-tableau T in the state |+〉⊗n .

2. For every edge (a,b) ∈ E , where E are the edges of the GSLC, simulate C Zab on T .

3. For every local Clifford Ci of the GSLC, simulate Ci on T .

Simulating a CZ, CNOT, or S gate in CH-tableau form takes time of order O(n), and sim-
ulating an H gate takes time of order O(n2) (see section 6.1). Because there are at most
n2 −1 edges and n local Cliffords in

∣∣φ〉
, this procedure has time complexity O(n3). This

results in a overall run-time complexity of O(χ′nT)+O(χ′n3) for T Metropolis steps. As
T >> n, this procedure gives only a small increase in the run time of the Metropolis
Markov chain compared to the original algorithm (see equation 6.12) whilst allowing for
the usage of our faster GSLC-based subroutine to simulate the states in the stabilizer
decomposition.

6.4. EXAMPLE OF A USE CASE
Our novel phase-sensitive GSLC subroutine for the sum-over-Cliffords simulator by Bravyi
et al.[47] can simulate certain circuits significantly faster compared to the CH-tableau
subroutine. Examples of these circuits are those with a lot of single-qubit Clifford gates,
those that result in GSLC with a low maximum degree, that have CZ gates that commute
with the local Cliffords of the resulting GSLC, or circuits with concentrated sequences
of CZ gates. In this section, we show that the class of circuits that can be simulated
faster using our subroutine contains practical use cases. For this purpose, we evaluate
the simulation of a quantum algorithm: the quantum approximate optimization algo-
rithm (QAOA)[32] applied to the Max E3LIN2 problem[33]. This problem was also used
by Bravyi et al. to benchmark the performance of the sum-over-Clifford method in [47].
First, we briefly discuss why the QAOA is interesting to simulate and what the E3LIN2
problem is. For more details on the E3LIN2 problem and QAOA, we refer to [33] and
[32]. Following this, we describe the circuit of the QAOA applied on the E3LIN2 problem,
and why our phase-sensitive GSLC subroutine achieves a speedup when simulating this
circuit.

The quantum approximate optimization algorithm introduced by Farhi et al. in [32]
is a hybrid quantum-classical algorithm that can be considered the emerging paradigm
for solving optimization problems using near-term quantum technology [45]. As the
name implies, it produces approximate solutions for classical combinatorial optimiza-
tion problems. Whether near-term noisy intermediate-scale quantum (NISQ) comput-
ers running QAOA will provide quantum supremacy over classical algorithms remains

6.4. EXAMPLE OF A USE CASE

6

67

an open question[45]. As such, the simulation of this algorithm to research its behaviour
is of interest, as it can guide the development of one of the most promising near-term
applications of quantum computers.

The E3LIN2 problem is an example of a classical combinatorial optimization prob-
lem QAOA can be applied on. It aims to maximize binary linear equations (LIN2) con-
taining 3 variables (E3). That is, it aims to maximize objective function

C (z) = 1

2

∑
1≤u<v<w≤n

duv w zu zv zw , (6.16)

that depends on n binary variables z1, · · · , zn ∈ {−1,1}[47]. An instance of the E3LIN2 has
a degree D is every variable zu appears in exactly D terms ±zu zv z w .

In order to explain how the QAOA generates an approximate solution to this problem,
we repeat the succinct explanation by Bravyi et al. in [47]. For more detail, we refer to
[33].

The QAOA generates an approximate solution to the E3LIN2 problem by considering
states that are obtained with the following circuit:∣∣ψβ,γ

〉= e−iβB e−iγĈ H⊗n |0〉⊗n , (6.17)

where β,γ ∈R are variational parameters, B = X1+·· ·+Xn (the so-called ’transverse field
operator’), and Ĉ is a diagonal operator obtained from C by replacing the variables zu

with Pauli operators Zu . The QAOA algorithm chooses β and γ such that it maximizes
the expected value of the objective function,

E(β,γ) = 〈
ψβ,γ

∣∣Ĉ
∣∣ψβ,γ

〉
. (6.18)

The QAOA algorithm then samples a n-bit binary string z from probability distribution
P (z) = |〈z

∣∣ψβ,γ
〉 |2 by measuring every qubit of

∣∣ψβ,γ
〉

in the Z direction. By preparing
and measuring enough samples, one can produce a string z such that C (z) ≥ E(β,γ).

To explain why our phase-sensitive GSLC subroutine can efficiently simulate the sta-
bilizer decomposition of

∣∣ψβ,γ
〉

, we consider its circuit and Clifford decomposition. We

first consider e−iγĈ . This operator consists of b(n ·D)/3c (where D is the degree of the
instance of the E3LIN2 problem and n is the number of variables/qubits) applications of
unitary U = e−iγZu Zv Zw . This unitary has the following circuit[50]:

• •
• •

RZ (2γ)

Following equation 6.5, we can decompose this unitary in a linear combination of an
identity operator and the following circuit:

• •
• •

S

6

68 6. GENERAL QUANTUM CIRCUIT SIMULATION

Note that C NOTa,b = HbC Za,b Hb . Because every qubit is involved in D unitaries, and

most CZ gates in the circuit of e−iγĈ either commute or are one (Z type, non Z) qubits,
the degree d of the simulated GSLC remains low for low D. We empirically find that the
maximum degree of the state is 2D using our novel CZ algorithm by simulating thou-
sands of random instances of the E3LIN2 problem using our GSLC subroutine. For the
D = 4 instances of the E3LIN2 problem used by Bravi et al., the maximum degree d of any
GSLC in the decomposition is therefore 8 ≈p

n, where n is the total number of qubits.
e−iβB is equivalent to a tensor product of single-qubits X rotations. This tensor prod-

uct can be decomposed using into single-qubit gates, which can be simulated in Θ(1) in
GSLC formalism.

Hence, the worst-case gate in the GSLC formalism can be simulated in O(n), and
most gates are either O(d) = O(

p
n) one Z-type CZ gates or Θ(1) single-qubit Cliffords

or commuting CZ gates. In the CH-tableau formalism, the fastest gate is O(n) (whereas
the worst-case Hadamard gate is O(n2)). Thus, our GSLC-base subroutine provides a
speedup of up to O(n) over the CH-form tableaus when simulating these QAOA circuits.
For a typical use case for the sum-over-Cliffords algorithm, n ≈ 50.

7
CONCLUSIONS AND OUTLOOK

The simulation of quantum circuits is an essential tool in the development of quantum
computers. It guides scientists in their research by allowing them to evaluate open ques-
tions such as the behavior of quantum approximate optimization algorithm under noise
in superconducting qubits[46], the number of gates and qubits needed to perform quan-
tum chemistry problems not attainable with classical computers [35] or the performance
of a new quantum internet protocol [43].

In this thesis, we have improved the simulation of quantum circuits using classi-
cal computers by presenting new algorithms for the simulation of stabilizer states using
GSLC that improve simulation run time and allow for operations to be performed. More-
over, we extended their applicability by defining a new subroutine for the simulation of
general quantum circuits.

We first defined a canonical form for stabilizer tableaus in chapter 3 that allows us
to study the simulation of GSLC by considering their tableau representation. In addi-
tion, we presented procedures to convert between GSLC and canonical tableau form,
and methods to restore canonical form after performing a CZ gate. We later used these
results on canonical form tableaus to develop procedures to faster simulate most CZ
gates in the GSLC formalism. An open question remains if our canonical form can be
used to improve other parts of the GSLC algorithm, such as the simulation of measure-
ments.

In chapter 4, we presented two improvements to the simulation of CZ gates in the
GSLC formalism. First, we gave a new method to simulate single CZ gates in the GSLC
formalism based on the procedure to restore canonical form in a tableau. This method
improves the run time of simulating single CZ gates on average up to 9 times compared
to the original algorithm by [21] in our empirical validation. It additionally improves
the run time of sequences of CZ gates by requiring less local complementations and in-
creasing the number of Z-type qubits. We validated these improvements empirically by
timing the simulation of random single CZ gates and CZ sequences on random states.
Second, we introduced a scheduling procedure for sequences of CZ gates that builds on
our single CZ algorithm. This scheduler provides an additional speedup on concentrated

69

7

70 7. CONCLUSIONS AND OUTLOOK

sequences of CZ gates. Compared to the original algorithm, this can speedup simulation
of concentrated sequences more than 50 times, which we showed by timing the simula-
tion of random CZ sequences with varying concentration. This scheduling algorithm is,
for instance, used when calculating the fidelity between two GSLC (as noted in section
5.2). All our improvements combined can significantly shorten the simulation time of
stabilizer circuits in the GSLC formalism, and thus enlarge the possible advantage ob-
tained by simulating stabilizer states using GSLC instead of tableaus.

Following our improvements of the simulation run time, we expanded the GSLC for-
malism by defining novel algorithms for operations useful when simulating quantum
circuits in chapter 5. We presented an O(k) algorithm for tracing out k qubits from a
state. We also described an algorithm for calculating fidelity. The simulation of a CZ se-
quence dominates its run time, which we speed up by using our CZ sequence scheduling
algorithm. In addition, we showed that our fidelity algorithm could be used to calculate
fidelity between a part of a large state and a smaller state.

In chapter 6, we used our previous results to develop a new subroutine for a state-of-
the-art general quantum circuit simulation algorithm by Bravyi et al.[47]. This simulator
roughly consists of two steps: the simulation of a large set of stabilizer states, followed by
simulating measurement by a Metropolis Markov chain. It is used in popular simulation
platforms like Qiskit[60] to simulate circuits containing few non-Clifford gates. Our sub-
routine is an extension of the GSLC formalism to make it phase-sensitive. This subrou-
tine can speed up the simulation of gates up to O(n2) (where n is the number of qubits)
compared to the original tableau-based subroutine. In typical use cases, n ≈ 50. It can
thus provide a significant speedup when simulating the large set of stabilizer states, de-
pending on the circuit simulated. Our subroutine also allows for the usage of our CZ
scheduling algorithm, which can further decrease the simulation time of concentrated
CZ sequences in the circuits of the large set of stabilizer states. We also presented a
simple O(n3) (where n is the number of qubits) procedure to convert a state from a
phase-sensitive GSLC representation to a CH-tableau representation. This allows us to
perform the Metropolis Markov chain step in O(χ′nT)+O(χ′n3) for T Metropolis steps
and χ′ stabilizer states. As T >> n, this procedure gives only a small increase in the run
time of the Metropolis Markov chain compared to the original algorithm’s complexity of
O(χ′nT)+O(χ′n2) whilst allowing for the usage of our faster GSLC-based subroutine to
simulate the states in the stabilizer decomposition.

We have shown that our subroutine can achieve a significant speedup on practical
use cases. That is, that the set of circuits our subroutine can simulate faster contains in-
teresting simulation tasks. As an example, we have examined the simulation complexity
of the quantum approximation optimization algorithm, an algorithm to solve combina-
torial optimization problems in near-term gate-based noisy quantum devices [46][32].
We’ve determined our subroutine can simulate the gates in these circuits up to O(n)
faster. We note that the quantum approximation optimization algorithm is also used
by Bravyi et al. to validate the performance of the original subroutine in [47].

Several open questions remain, the answers to which could further increase the prac-
tical use and speed advantage of our results. One open question is whether the circuits of
the large set of stabilizer states in the first step of the general simulation algorithm can be
compiled in such a way that it is optimized for GSLC. For instance, by compiling in such

7

71

a way that all CZ gates are placed in (concentrated) sequences. Because small variations
of this compiled circuit are simulated thousands of times, this compilation step could be
relatively expensive and still provide a speedup. A second open question we identify is
whether one can determine beforehand (in reasonable time) in what formalism to sim-
ulate a circuit. Similar procedures are currently used in practice; e.g., Qiskit contains a
rule that determines when to use stabilizer based methods instead of state vectors[60].
One could perhaps base the formalism choice on a heuristic that looks at the properties
of the circuit, such as the number and concentration of CZ gates, similar to the heuristic
procedure defined in subsection 5.2.

The new algorithms in this thesis contribute to the development of quantum com-
puters (and quantum networks), which is guided by simulation on classical hardware, as
they allow for the simulation of larger circuits and networks. By decreasing the amount
of time and resources needed to simulate quantum computers, we hope that our con-
tributions will allow researchers to make more informed design decisions and, in turn,
accelerate the development of quantum computers ever so slightly.

BIBLIOGRAPHY

[1] R. P. Feynman, “Simulating physics with computers”, Int. J. Theor. Phys, vol. 21,
no. 6/7, 1982.

[2] J. S. Provan and M. O. Ball, “The complexity of counting cuts and of computing the
probability that a graph is connected”, SIAM Journal on Computing, vol. 12, no. 4,
pp. 777–788, 1983.

[3] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell’s theorem, quantum theory,
and conceptions of the universe, 1989.

[4] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Tele-
porting an unknown quantum state via dual classical and einstein-podolsky-rosen
channels”, Physical review letters, vol. 70, no. 13, p. 1895, 1993.

[5] L. K. Grover, “A fast quantum mechanical algorithm for database search”, in Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing,
1996, pp. 212–219.

[6] M. Sipser, “Introduction to the theory of computation”, ACM Sigact News, vol. 27,
no. 1, 1996.

[7] A. Steane, “Multiple-particle interference and quantum error correction”, Proceed-
ings of the Royal Society of London. Series A: Mathematical, Physical and Engineer-
ing Sciences, vol. 452, no. 1954, pp. 2551–2577, 1996.

[8] D. Gottesman, “Stabilizer codes and quantum error correction”, arXiv preprint
quant-ph/9705052, 1997.

[9] ——, “The heisenberg representation of quantum computers”, arXiv preprint quant-
ph/9807006, 1998.

[10] ——, “Theory of fault-tolerant quantum computation”, Physical Review A, vol. 57,
no. 1, p. 127, 1998.

[11] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[12] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer”, SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

[13] D. Schlingemann, “Stabilizer codes can be realized as graph codes”, arXiv preprint
quant-ph/0111080, 2001.

[14] M. Grassl, A. Klappenecker, and M. Rotteler, “Graphs, quadratic forms, and quan-
tum codes”, in Proceedings IEEE International Symposium on Information Theory,,
IEEE, 2002, p. 45.

[15] M. A. Nielsen and I. Chuang, Quantum computation and quantum information,
2002.

73

7

74 BIBLIOGRAPHY

[16] R. Jozsa and N. Linden, “On the role of entanglement in quantum-computational
speed-up”, Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, vol. 459, no. 2036, pp. 2011–2032, 2003.

[17] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits”, Phys-
ical Review A, vol. 70, no. 5, p. 052 328, 2004.

[18] M. Hein, J. Eisert, and H. J. Briegel, “Multiparty entanglement in graph states”,
Physical Review A, vol. 69, no. 6, p. 062 311, 2004.

[19] M. Van den Nest, J. Dehaene, and B. De Moor, “Graphical description of the action
of local clifford transformations on graph states”, Physical Review A, vol. 69, no. 2,
p. 022 316, 2004.

[20] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal clifford gates
and noisy ancillas”, Physical Review A, vol. 71, no. 2, p. 022 316, 2005.

[21] S. Anders and H. J. Briegel, “Fast simulation of stabilizer circuits using a graph-
state representation”, Physical Review A, vol. 73, no. 2, p. 022 334, 2006.

[22] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest, and H.-J. Briegel, “Entangle-
ment in graph states and its applications”, arXiv preprint quant-ph/0602096, 2006.

[23] R. Jozsa, “On the simulation of quantum circuits”, arXiv preprint quant-ph/0603163,
2006.

[24] M. Nest, “Classical simulation of quantum computation, the gottesman-knill the-
orem, and slightly beyond”, arXiv preprint arXiv:0811.0898, 2008.

[25] M. Ozols, Clifford group (paper), 2008. [Online]. Available: http://home.lu.lv/
~sd20008/papers/essays/Clifford%5C%20group%5C%20[paper].pdf.

[26] ——, Clifford group (presentation), 2008. [Online]. Available: http://home.lu.
lv/~sd20008/papers/essays/Clifford%5C%20group%5C%20[presentation]
.pdf.

[27] M. Silva, E. Magesan, D. W. Kribs, and J. Emerson, “Scalable protocol for identifi-
cation of correctable codes”, Physical Review A, vol. 78, no. 1, p. 012 347, 2008.

[28] H. Neven, V. S. Denchev, G. Rose, and W. G. Macready, “Training a large scale
classifier with the quantum adiabatic algorithm”, arXiv preprint arXiv:0912.0779,
2009.

[29] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes:
Towards practical large-scale quantum computation”, Physical Review A, vol. 86,
no. 3, p. 032 324, 2012.

[30] H. J. Garcia, I. L. Markov, and A. W. Cross, “Efficient inner-product algorithm for
stabilizer states”, arXiv preprint arXiv:1210.6646, 2012.

[31] P. Gawron, J. Klamka, and R. Winiarczyk, “Noise effects in the quantum search al-
gorithm from the viewpoint of computational complexity”, International Journal
of Applied Mathematics and Computer Science, vol. 22, no. 2, pp. 493–499, 2012.

[32] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization
algorithm”, arXiv preprint arXiv:1411.4028, 2014.

http://home.lu.lv/~sd20008/papers/essays/Clifford%5C%20group%5C%20[paper].pdf
http://home.lu.lv/~sd20008/papers/essays/Clifford%5C%20group%5C%20[paper].pdf
http://home.lu.lv/~sd20008/papers/essays/Clifford%5C%20group%5C%20[presentation].pdf
http://home.lu.lv/~sd20008/papers/essays/Clifford%5C%20group%5C%20[presentation].pdf
http://home.lu.lv/~sd20008/papers/essays/Clifford%5C%20group%5C%20[presentation].pdf

BIBLIOGRAPHY

7

75

[33] ——, “A quantum approximate optimization algorithm applied to a bounded oc-
currence constraint problem”, arXiv preprint arXiv:1412.6062, 2014.

[34] H. J. Garcia and I. L. Markov, “Simulation of quantum circuits via stabilizer frames”,
IEEE Transactions on Computers, vol. 64, no. 8, pp. 2323–2336, 2014.

[35] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer, “Gate-count esti-
mates for performing quantum chemistry on small quantum computers”, Physical
Review A, vol. 90, no. 2, p. 022 305, 2014.

[36] K. Fujii, Quantum computation with topological codes: from qubit to topological
fault-tolerance. Springer, 2015, vol. 8.

[37] M. Hayashi and T. Morimae, “Verifiable measurement-only blind quantum com-
puting with stabilizer testing”, Physical review letters, vol. 115, no. 22, p. 220 502,
2015.

[38] S. Bravyi and D. Gosset, “Improved classical simulation of quantum circuits dom-
inated by clifford gates”, Physical review letters, vol. 116, no. 25, p. 250 501, 2016.

[39] S. Bravyi, G. Smith, and J. A. Smolin, “Trading classical and quantum computa-
tional resources”, Physical Review X, vol. 6, no. 2, p. 021 043, 2016.

[40] M. Epping, H. Kampermann, and D. Bruss, “Robust entanglement distribution via
quantum network coding”, New Journal of Physics, vol. 18, no. 10, p. 103 052, 2016.

[41] H. J. Garcıa, I. L. Markov, and A. W. Cross, “On the geometry of stabilizer states”,
arXiv preprint arXiv:1711.07848, 2017.

[42] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik,
E. W. Draeger, E. T. Holland, and R. Wisnieff, “Breaking the 49-qubit barrier in the
simulation of quantum circuits”, arXiv preprint arXiv:1710.05867, 2017.

[43] A. Dahlberg and S. Wehner, “Simulaqron—a simulator for developing quantum
internet software”, Quantum Science and Technology, vol. 4, no. 1, p. 015 001, 2018.

[44] D. Maslov and M. Roetteler, “Shorter stabilizer circuits via bruhat decomposition
and quantum circuit transformations”, IEEE Transactions on Information Theory,
vol. 64, no. 7, pp. 4729–4738, 2018.

[45] J. Preskill, “Quantum Computing in the NISQ era and beyond”, Quantum, vol. 2,
p. 79, Aug. 2018, ISSN: 2521-327X. DOI: 10.22331/q-2018-08-06-79. [Online].
Available: https://doi.org/10.22331/q-2018-08-06-79.

[46] M. Alam, A. Ash-Saki, and S. Ghosh, “Analysis of quantum approximate optimiza-
tion algorithm under realistic noise in superconducting qubits”, arXiv preprint
arXiv:1907.09631, 2019.

[47] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, and M. Howard, “Simula-
tion of quantum circuits by low-rank stabilizer decompositions”, Quantum, vol. 3,
p. 181, 2019.

[48] A. Gheorghiu, T. Kapourniotis, and E. Kashefi, “Verification of quantum compu-
tation: An overview of existing approaches”, Theory of computing systems, vol. 63,
no. 4, pp. 715–808, 2019.

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79

76 BIBLIOGRAPHY

[49] D. Gosset, David gosset: Simulation of quantum circuits by low-rank stabilizer de-
compositions, A talk by David Gosset on [47] at the Workshop on Noisy Intermediate-
Scale Quantum Technologies (NISQ), Day 2. NISQ was hosted June 6-7, 2019.,
2019. [Online]. Available: https://www.youtube.com/watch?v=GPe7mqx6GRQ.

[50] S. Hadfield, Quantum gate-model approaches to exact and approximate optimiza-
tion (presentation), 2019. [Online]. Available: https://ntrs.nasa.gov/citations/
20190028737.

[51] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “Quest and high performance sim-
ulation of quantum computers”, Scientific reports, vol. 9, no. 1, pp. 1–11, 2019.

[52] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution
and coin tossing”, arXiv preprint arXiv:2003.06557, 2020.

[53] E. v. d. Berg and K. Temme, “Circuit optimization of hamiltonian simulation by
simultaneous diagonalization of pauli clusters”, arXiv preprint arXiv:2003.13599,
2020.

[54] Glosser.ca, Bloch sphere, Distributed under a Creative Commons Attribution-Share
Alike 3.0 Unported license., 2020. [Online]. Available: https://upload.wikimedia.
org/wikipedia/commons/thumb/f/f4/Bloch_Sphere.svg/1000px-Bloch_
Sphere.svg.png.

[55] A. Heimendahl, F. Montealegre-Mora, F. Vallentin, and D. Gross, “Stabilizer extent
is not multiplicative”, arXiv preprint arXiv:2007.04363, 2020.

[56] C. Huang, M. Newman, and M. Szegedy, “Explicit lower bounds on strong quan-
tum simulation”, IEEE Transactions on Information Theory, 2020.

[57] A. Kelly, Libtangle/graph-state, https : / / github . com / libtangle / graph -
state, 2020.

[58] S. Aaronson, Lecture 28 of introduction to quantum information science. [Online].
Available: https://www.scottaaronson.com/qclec/28.pdf.

[59] S. Aaronson, G. Kuperberg, C. Granade, and V. Russo, Complexity zoo. [Online].
Available: https://complexityzoo.uwaterloo.ca/Complexity_Zoo.

[60] P. Calpin, The extended stabilizer simulator. [Online]. Available: https://qiskit.
org/documentation/tutorials/simulators/6_extended_stabilizer_
tutorial.html.

https://www.youtube.com/watch?v=GPe7mqx6GRQ
https://ntrs.nasa.gov/citations/20190028737
https://ntrs.nasa.gov/citations/20190028737
https://upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Bloch_Sphere.svg/1000px-Bloch_Sphere.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Bloch_Sphere.svg/1000px-Bloch_Sphere.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Bloch_Sphere.svg/1000px-Bloch_Sphere.svg.png
https://github.com/libtangle/graph-state
https://github.com/libtangle/graph-state
https://www.scottaaronson.com/qclec/28.pdf
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://qiskit.org/documentation/tutorials/simulators/6_extended_stabilizer_tutorial.html
https://qiskit.org/documentation/tutorials/simulators/6_extended_stabilizer_tutorial.html
https://qiskit.org/documentation/tutorials/simulators/6_extended_stabilizer_tutorial.html

	Introduction
	Preliminaries
	Quantum states & gates
	Stabilizer states
	Simulation of stabilizer states
	Stabilizer tableaus
	Graph states with local Cliffords
	Comparison of simulation complexity

	Canonical form tableaus
	Canonical GSLC form
	Converting between GSLC and canonical tableau
	Keeping a tableau canonical

	Faster CZs for GSLC
	The 'CZ_ONE_Z' procedure
	A novel algorithm for simulating CZ gates
	Empirical validation

	CZ sequence scheduler
	Empirical validation

	Operations on GSLC
	Tracing out GSLC
	Calculating fidelity

	General quantum circuit simulation
	General quantum circuit simulation
	Sum-over-Clifford Metropolis simulator
	Phase-sensitive GSLC subroutine
	Example of a use case

	Conclusions and outlook

