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We present an algebraic dynamic multilevel method for multiphase flow in heterogeneous 
fractured porous media (F-ADM), where fractures are resolved at fine scale with an 
embedded discrete modelling approach. This fine-scale discrete system employs indepen-
dent fine-scale computational grids for heterogeneous matrix and discrete fractures, which 
results in linear system sizes out of the scope of the classical simulation approaches. To 
reduce the computational costs, yet provide accurate solutions, on this highly resolved 
fine-scale mesh, F-ADM imposes independent dynamic multilevel coarse grids for both 
matrix and lower-dimensional discrete fractures. The fully-implicit discrete system is then 
mapped into this adaptive dynamic multilevel resolution for all unknowns (i.e., pressure 
and phase saturation). The dynamic resolution aims for resolving sharp fronts for the 
transport unknowns, thus constant interpolators are used to map the saturation from 
coarse to fine grids both in matrix and fractures. However, due to the global nature of 
the pressure unknowns, local multilevel basis functions for both matrix and fractures with 
flexible matrix-fracture coupling treatment are introduced for the pressure. The assembly 
of the full sets of basis functions allows for mapping the solutions up and down between 
any resolutions. Due to its adaptive multilevel resolution, F-ADM develops an automatic 
integrated framework to homogenise or explicitly represent a fracture network at a coarser 
level by selection of the multilevel coarse nodes in each sub-domain. Various test cases, 
including multiphase flow in 2D and 3D media, are studied, where only a fraction of 
the fine-scale grids is employed to obtain accurate nonlinear multiphase solutions. F-
ADM casts a promising approach for large-scale simulation of multiphase flow in fractured 
media.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Many geo-engineering applications (e.g., hydrocarbon and geothermal energy production) are driven by underground 
fluid flow in large-scale (O(103) [m]) heterogeneous fractured porous media [1]. Even at what is known as Darcy’s 
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(O(10−2) [m]) continuum scale, accurate and efficient simulation of flow through these formations remains challenging. 
This is because the simulation accuracy is often maintained with resolving the small scale heterogeneous rock properties, 
along with explicitly accounting for lower-dimensional fractures with highly contrasting properties compared with their 
hosting rock. On the other hand, the applicability of the simulation methods for real-field applications imposes a limit-
ing bound on the amount of degrees of freedom that the linear systems can contain. Expectedly, this limitation becomes 
more pronounced in presence of fractures, and when multiphase flows with complex fluid and rock physics are considered. 
Therefore, there exist high demands for advanced methods which provide accurate and efficient (i.e., real-field applicable) 
simulations for flow in fractured subsurface formations.

Multiscale Finite-Element (MsFE) [2–4] and Finite-Volume (MsFV) [5–10] methods along with Dynamic Local Grid Re-
finement (DLGR) techniques [11–19] are two classes of such advanced methods that aim to achieve accurate and efficient 
simulations by tackling different aspects of the entire complexity map. Multiscale methods have been developed to effi-
ciently solve the elliptic (or parabolic) pressure equation, which highly heterogeneous coefficients, by solving the system on 
a coarse grid while preserving the fine-scale heterogeneities. On the other hand, DLGR techniques adapt the grid resolution 
throughout the time-dependent simulation to employ a high-resolution grid where necessary (i.e., the advancing saturation 
front), and are, therefore, transport-oriented methods. The Algebraic Dynamic Multilevel (ADM) method [20] has been in-
troduced to address the multi-scale multilevel coexistence of the pressure (elliptic or parabolic) and transport (hyperbolic) 
unknowns, at the same time, within both fully implicit (FIM) and sequential (implicit and explicit) simulation frameworks. 
ADM develops a dynamic multilevel system for all unknowns, through an algebraic formulation, where the resolutions are 
connected through sets of basis functions. ADM has been recently developed for multiphase flows in heterogeneous forma-
tions, with compositional and capillary effects [21].

ADM extends the applicability of the multiscale methods to fully-implicit (stable) simulations, allows for crossing the 
scales for all unknowns with a multilevel dynamic mesh, does not require reconstruction of conservative flux field, employs 
the basis functions which are computed only at the beginning of the simulation, and does not rely on any smoothing it-
erative procedure. The development of such a dynamic multilevel scheme for fractured media has not yet been addressed, 
despite their high importance in the geo-scientific community and extensive literature for fine-scale consistent discrete rep-
resentations [22–32]. Such a dynamic multilevel approach allows for capturing explicit fractures at their relevant resolution 
while maintaining the scalability of the simulation for real-field applications.

In this work, an ADM method for simulation of multiphase flow in heterogeneous fractured porous media is developed 
(F-ADM). This is achieved by devising multilevel multiscale basis functions for embedded discrete fracture modelling (EDFM) 
approach [33–38]. More precisely, first, an EDFM fine-scale discrete system is obtained [39–41,34,42–45], which allows for 
independent grids for fractures and matrix. This makes it convenient to treat complex fracture geometries with multiple 
intersections [46,47]. Given this fine-scale discrete system, with fully implicit flow-transport coupling treatment, the F-ADM 
maps it to a dynamic multilevel nested resolution, both for the matrix and the fractures. Such a dynamic multilevel grid is 
obtained to employ fine-scale resolution only where needed (e.g., at the advancing saturation fronts).

Similar as in the fine-scale system, the ADM dynamic grid is chosen independently for matrix and fractures, based 
on a front-tracking criterion that aims to minimise the cost-accuracy trade-off. Mapping the solutions across different grid 
resolutions is performed through sequences of restriction and prolongation operators. Finite-volume restriction operators are 
employed for all unknowns to ensure mass conservation at all levels. On the other hand, different interpolation strategies 
are considered for the two main unknowns (pressure and saturation). Specifically, the devised multilevel multiscale basis 
functions are employed as pressure interpolators whereas piece-wise constant functions are used to interpolate saturation 
values, as the grid refinement strategy avoids crossing the scales at the saturation front locations.

Such a development allows for an automatic framework to explicitly or effectively represent a fracture at any coarse 
level, i.e., through the selection of the location of the coarse nodes. More precisely, if no coarse node for a fracture network 
inside a dual coarse grid is chosen, the matrix basis functions will automatically homogenise the effect of the fracture 
at the corresponding coarse scale. However, if coarse nodes are selected inside the fracture network of that dual coarse 
cell, the fractures will be explicitly represented at the corresponding coarser resolution. The accuracy and the sensitivity 
of the F-ADM to the error criterion and to the pressure basis functions are studied through a set of 2D and 3D test cases. 
The devised F-ADM strategy provides a dynamic treatment of highly fractured media, and casts a promising approach for 
real-field applications.

The rest of the paper is organised as follows. The governing equations, fine-scale discrete system and the simulation 
strategy are briefly presented in Section 2. Then, the F-ADM method for flow in porous media with embedded discrete 
fractures is described in Section 3. Numerical results are presented in Section 4. Finally, the paper is concluded in Sec-
tion 5.

2. Fine-scale equations and solution strategy

2.1. Governing equations

Mass conservation for phase α in the absence of mass-exchange between phases, capillary, and gravitational effects, in 
porous media with nfrac discrete embedded fractures reads
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Fig. 1. The independent matrix 3D grid and the fractures 2D grids are shown. Note that each domain has its own grid and that any fracture orientation can 
be considered.
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for the lower-dimensional fractures. There exist nα phases. Moreover, the superscripts m and f in Eqs. (1)–(2) indicate, 
respectively, the rock matrix and the fractures. Here, φ is the porosity of the medium, ρα , Sα , λ are, respectively, the density, 
saturation, and mobility of phase α. Moreover, λ = krα

μα
K holds, where kr , μ and K are phase relative permeability, viscosity 

and rock absolute permeability tensor, respectively. Also, qα is the phase source term (i.e., wells). Finally, Qmfi
α and Q f im

α are 
the phase flux exchanged between matrix and the i-th fracture, whereas Q f i f j

α represents the influx of phase α from j-th 
fracture to the i-th fracture. Note that mass balance enforces 

∫∫∫
V

Qmfi
α dV = − ∫∫

A fi

Q f im
α dA and 

∫∫
A fi

Q f i f j
α dA = − ∫∫

A f j

Q f j f i
α dA.

Equations (1)–(2), subject to proper initial and boundary conditions, form a well-posed system for nα unknowns, once 

the 
nα∑

α=1
Sα = 1 constraint is employed to eliminate one of the phase saturation unknowns. Here, this system of equations is 

solved for two phase flow with primary unknowns of p and S1 (from now on indicated as S).

2.2. Fine-scale discrete system

The coupled system of non-linear equations, i.e., Eqs. (1)–(2), is discretized in space with a two-point-flux-approximation 
(TPFA) finite-volume scheme in space and a backward (implicit) Euler scheme in time. Independent structured grids are 
generated for a three-dimensional (3D) porous medium and 2D fractures. An illustration is presented in Fig. 1. The advective 
TPFA flux between control volumes i and j reads

Fα,i j = ρ∗
α

k∗
rα

μ∗
α

Tij(pi − p j). (3)

Here, Tij = Aij
di j

K H
i j is the transmissibility between cells i and j. Aij is the interface area between cells i and j, dij is the 

distance between the cells centres and K H
ij is the harmonic average of the two permeabilities. The terms indicated with the 

superscript ∗ are evaluated using a phase potential upwind scheme. Following EDFM [34,46], the fluxes between a matrix 
cell i and a fracture cell j are modelled as

Fmf
α,i j = −F f m

α,i j = −ρ∗
α

k∗
rα

μ∗
α

T mf
i j (pm

i − p f
j ), (4)

where the transmissibility T mf
i j = K H

ij C Ii j . K H
ij is the harmonic average permeability between the overlapping matrix and 

fracture elements, and C Ii j is the connectivity index between them. The EDFM models the matrix-fracture connectivity as 

C Ii j = Amf
i j

〈d〉i j
where Amf

i j is the area fraction of fracture cell j overlapping with matrix cell i (see Fig. 2), and 〈d〉i j is the average 
distance between these cells [34]. Note that the recently developed projection-based formulation (pEDFM) would lead to 
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Fig. 2. Illustration of overlapping fracture and matrix cells, where the overlap section forms an irregular hexagon.

Fig. 3. Illustration of two intersecting fracture plates (left) and discrete elements (right), with the intersection lines shown in red. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

a consistent embedded formulation [46], however, since we consider highly conductive fractures the difference between 
pEDMF and EDFM is minimal.

Similarly, the flux exchange between intersecting fracture elements i (belonging to fracture f ) and j (belonging to 
fracture g) is modelled as

F f g
α,i j = −F g f

α,i j = −ρ∗
α

k∗
rα

μ∗
α

T f g
i j (p f

i − pg
j ). (5)

The transmissibility T f g
i j between the two cells is computed based on a lower dimensional connectivity index formulation. 

The intersection of 2D fracture plates is a line, as shown in Fig. 3. Each two intersecting fracture cells intersect at a line 
segment Ii j (the red line in Fig. 3 (right)) with the average distances from the intersection segment of 〈d〉 f

i Ii j
�= 〈d〉g

j Ii j
. 

Therefore, T f g
i j is calculated in a harmonic-average formulation as

T f g
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C I f
i Ii j

× C I g
jIi j

C I f
i Ii j

+ C I g
jIi j

, (6)

where, e.g., C I f
i Ii j

is the connectivity index between the 2D fracture element i and the 1D intersection segment Ii j . Thus, at 
each time-step the following system of equations is solved(
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+
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(N fk∑
j=1

F fh fk
α,i j

)
= ραq fh

α,i, ∀ i ∈ {1, ..., N fh } (8)

in each fracture h. Here, Nm and N fk are the number of cells of the matrix and of fracture k. Nn indicates the number of 
neighbouring cells (2 in 1D, 4 in 2D, 6 in 3D). Equations (7)–(8) can be written in residual form as

(rm
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for the rock matrix, and
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−
nfrac∑
k=1

(N fk∑
j=1

F fh fk
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)
, ∀ i ∈ {1, ..., N fh } (10)

for fracture fh . Let us define rn = [(rm)n, (r f1)n...(r fnfrac )n]T where (rk)n is the residual vector of medium k at time-step n. 
Similarly, pn and Sn indicate the vectors of pressure and saturation unknowns (of all media). The residual rn+1 is a non-
linear function of the primary unknowns pn+1 and Sn+1. Thus, at each time-step a Newton–Raphson method is employed 
to solve the non-linear system iteratively, i.e.

rν+1 = rν + ∂r

∂ p

∣∣∣∣ν δpν+1 + ∂r

∂ S

∣∣∣∣νδSν+1 = 0 (11)

where the superscript ν is the iteration index. Consequently, at each Newton’s iteration a linear-system Jνδxν+1 = −rν is 
solved. Here, Jν is the Jacobian matrix with δxν+1 = [δp, δS]T . Therefore, assuming two phases (w and o representing water 
and oil respectively), the linear system of equations can be written as⎛

⎜⎜⎜⎝
J mm

op J mf
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os J mf
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op J ff
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(12)

In this work, non-linear convergence is reached when the following conditions are satisfied:

||r||∞ < ε1 ∧ ||δp||∞
||p||∞ < ε2 ∧ ||δS||∞ < ε2. (13)

Here, ε1 and ε2 are user-defined tolerances.
For real-field applications, as mentioned before, the solution of this nonlinear system of equations is challenging. Next, 

the F-ADM is presented as a promising framework for resolving this challenge.

3. F-ADM method

3.1. Solution strategy

At each Newton’s iteration, F-ADM constructs an algebraically reduced system based on Eq. (12) on a multilevel grid 
which is dynamically defined at the beginning of each time-step. A schematic of F-ADM simulation is shown in Fig. 4.

As a first step, the F-ADM grid needs to be described. Sets of nm and n fi nested Cartesian grids are imposed on the 
matrix and fracture fine-scale grid cells. The level at which the fine-scale computational domain is obtained is referred to 
as l = 0. Let Nl

m be the number of grid cells in the porous matrix and Nl
fi

the number of grid cells in fracture i, both at 
level l. The coarsening ratio, γ l can therefore be defined as

γ l =
(
γ l

m, γ l
f 1, · · · , γ l

nfrac

)
=

⎛
⎝ Nl

m

Nl−1
m

,
Nl

f1

Nl−1
f

, · · · ,
Nl

fnfrac

Nl−1
f

⎞
⎠ . (14)
1 nfrac
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Fig. 4. Schematic description of F-ADM reservoir simulation.

Note that the count of coarsening levels and the coarsening ratios for the matrix and every individual fracture are indepen-
dent, which leads to a flexible framework. Therefore, the F-ADM solution grid at each time-step is constructed by combining 
grid-cells at different resolutions.

F-ADM maps the fine-scale system to the dynamic multilevel grid by applying sequences of restriction (R) and prolon-
gation (P) operators, which are constructed based on the values computed at the beginning of the simulation (Fig. 4). More 
precisely, at each iteration, the F-ADM system reads

R̂l−1
l . . . R̂0

1 J0 P̂1
0 . . . P̂l

l−1︸ ︷︷ ︸
JADM

δx̂l = − R̂l−1
l . . . R̂0

1 r0︸ ︷︷ ︸
rl

, (15)

where R̂l
l+1 is the restriction operator mapping part of the vector of solutions which are at resolution l (δx̂l) to resolution 

l + 1 (δx̂l+1). Similarly, P̂l+1
l is the prolongation operator mapping part of the entire solution vector which are at level l + 1

to level l. Once the F-ADM system is solved, the approximated solution at fine-scale resolution δx′
0 (reference fine-scale 

solution is represented as δx0) is given by

δx0 ≈ δx′
0 = P̂1

0 . . . P̂l
l−1 δxl. (16)

The F-ADM prolongation operator Pi
i−1 between every levels i and i − 1 is obtained for the entire domain, though at 

each time step only a fraction of the domain needs to go through this map, which is illustrated by P̂i
i−1 in Eq. (15). The 

prolongation operator Pi has a block structure which reads
i−1



330 M. HosseiniMehr et al. / Journal of Computational Physics 373 (2018) 324–345
Pi
i−1 =

⎛
⎜⎜⎜⎝

[(P p)i
i−1]mm

[(P p)i
i−1]mf

0 0

[(P p)i
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i
i−1]mm

0
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i
i−1] f f

⎞
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. (17)

Similarly, the restriction operator reads

Ri−1
i =

⎛
⎜⎜⎜⎝

[Ri−1
i ]m 0 0 0
0 [Ri−1

i ] f 0 0

0 0 [Ri−1
i ]m 0

0 0 0 [Ri−1
i ] f

⎞
⎟⎟⎟⎠

Ni×Ni−1

. (18)

A finite-volume restriction operator is employed in order to guarantee mass conservation as convergence is reached on 
the multilevel F-ADM grid, i.e.,

Ri−1
i (s, t) =

{
1 if cell s is inside coarser cell t,

0 otherwise.
(19)

On the other hand, the pressure and saturation blocks of the prolongation operator, (P p)i
i−1 and (P S )

i
i−1 are different 

[20] as different interpolation rules are used for each variable. In this work (P S )
i
i−1 = Ri−1

i
T

, where the superscript T

indicates the transpose operator. The (P p)i
i−1 blocks, instead, are constructed following a multilevel multiscale procedure 

for fractured media developed in this work and described in the next subsection.

3.2. Fracture multilevel multiscale basis functions

The sub-block (P p)i
i−1 in the prolongation operator interpolates the pressure from resolution i to i − 1. Here, the two-

level multiscale strategy [36] is extended to multiple levels. Even though the fine-scale pressure equation is a TPFA-based 
system, starting from coarse level 1, all the coarse-scale systems develop MPFA-based connectivities, due to the local basis 
functions. Here, the MPFA-based pressure matrix Ai−1

p , which stands as fine-scale system for level i − 1, is constructed by 
the multiscale finite-element procedure as

Ãi−1
p = (Pi−1

i−2)
T Ai−2

p Pi−1
i−2. (20)

Then, Ãi−1
p is reduced to a TPFA-based system, i.e.,

Ap
i−1 = tpf a( Ãi−1

p ), (21)

where the tpf a(•) extracts the TPFA components of the matrix (heptadiagonal matrix for 3D Cartesian grids), by considering 
the transmissibility between cells i and j equal to entry Aij of the original matrix. The algebraic multiscale procedure for 
the calculation of basis functions is now performed on this TPFA system at level i − 1 [36], in order to obtain the basis 
functions at level i, i.e., (P p)i

i−1. Note that the TPFA reduction of the MPFA multilevel system is done independently for 
each sub-domain of matrix, and individual fractures.

In addition, similar as for the two-level multiscale strategy [36], F-ADM allows for full flexibility in the choice of the 
coupling strategy at all multilevel resolutions. In general, the pressure prolongation operator of a given level i reads

(P p)i
i−1 =

[
(Pm

p )i
i−1 (P f

p )i
i−1

]
=

[
(Pmm

p )i
i−1 (Pmf

p )i
i−1

(P f m
p )i

i−1 (P f f
p )i

i−1

]
. (22)

Here, the blocks (Pm
p )i

i−1 and (P f
p )i

i−1 contain the basis functions corresponding to the matrix and fracture coarse-scale 
unknowns. Each one, e.g., (Pm

p )i
i−1, can have nonzero values inside matrix and fracture sub-domains, depending on the local 

coupling strategy. More precisely, while the fully-coupled approach leads to nonzero sub-blocks of (Pmf
p )i

i−1 and (P f m
p )i

i−1, 
the decoupled approach would lead to zero values in these local coupling sub-blocks. Fig. 5 shows a surface plot of some 
matrix and fracture basis functions at two different coarsening levels for a 2D homogeneous domain. A detailed description 
of the two-level basis function entries can be found in [36].
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Fig. 5. Example of multilevel coupled basis functions for a 2D homogeneous domain. Matrix (left column) and fracture (right column) basis functions for 
coarsening levels 1 (top row) and 2 (bottom row) are shown.

3.3. Selection of the grid resolution

At each time-step, the F-ADM solution grid is constructed by combining grid cells of the previously defined sets of 
grids both in the matrix and in the fractures. The grid resolution at time-step n + 1 is chosen based on the saturation 
map at time-step n, thus employing an explicit procedure. A semi-implicit gridding strategy [48] could also be used to 
avoid misplacement of the grid. Fig. 6 shows an example of a 3D test case with one fracture plate, for simplicity of the 
illustration. Two coarse levels are employed in the matrix along with one coarse level in the fracture. The grid selection 
method is applied independently in the matrix and in the fractures, therefore, different criteria can be set for each medium.

Since no well-functions are employed in dynamic simulations, fine-scale resolution is kept around all wells at all time.

4. Numerical results

Numerical results are presented in this section. First, the EDFM model for two-phase flow is validated, then the accuracy 
of a multilevel multiscale method for single phase flow on homogeneous and heterogeneous test cases is assessed. Finally, 
the accuracy and sensitivity of the proposed F-ADM method are investigated for both 2D and 3D domains. F-ADM results 
are compared against fine-scale simulations, used as a reference.

In all test cases, fluids and rocks are considered to be incompressible and quadratic relative permeability functions are 
used.

4.1. Test Case 1: validation of EDFM

To validate the EDFM implementation, a 2D homogeneous reservoir of 9 m × 9 m is considered as shown in Fig. 7. 
A cross-shaped fracture network is present in the middle of the domain. Each fracture segment is 5 [m] long, with a 
permeability value of 109 times higher than that of the rock matrix (Km = 2.5 · 10−13 m2 and K f = 1.3 · 10−4 m2). The 
fracture aperture is 4 · 10−2 m. Two incompressible fluid phases are considered. The reservoir has an initial saturation 
S1,init = 0.1. No flow boundary conditions are considered at the top and bottom boundaries whereas the left and right 
boundaries have fixed pressures of 2.0 · 107 Pa and 1.0 · 107 Pa, respectively. Phase 1 is injected from the left boundary 
whereas production occurs at the right.
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Fig. 6. Example of F-ADM grid selection for a 3D test case with one single planar fracture. Two coarse levels are used in matrix (l = 1, 2) and one coarse 
level is used in the fracture (l = 1). The bottom right figure shows an example of a dynamic grid.

Fig. 7. Visualization of the 2D domain with a cross-shaped fracture network at the center.

The reference solution (referred to as DNS) is obtained by imposing a 225 × 225 grid that allows to fully resolve the flow 
inside the fracture. EDFM simulations are performed with three different matrix grid resolutions of 15 × 15, 25 × 25, and 
45 × 45. The grid-cells inside the fractures are chosen to have similar dimensions as the matrix cells. The time-step size is 
10−4 day for all simulations. The pressure and saturation maps after 0.0235 [Days] are shown in Fig. 8. Note that errors 
decreases upon refinement of the EDFM solution grid.

Figs. 9a and 9b present the pressure and saturation errors as functions of the simulation time. Given a variable x (i.e., 
pressure or saturation), the error, ex , is calculated as

ex = ||xDNS−xEDFM||2||xDNS||2 . (23)
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Fig. 8. Comparison of the fully resolved DNS (left column) using 225 × 225 cells and EDFM results with different grid resolutions (left to right: 45 × 45, 
25 × 25, 15 × 15) after 0.0235 [Days]. Pressure is shown on the top, while the saturation map is illustrated in the bottom.

Fig. 9. Pressure and saturation errors of EDFM simulations with respect to the reference solution (DNS).

4.2. Test Case 2: F-ADM for single-phase flow in a 2D homogeneous fractured reservoir

Here, the accuracy of the F-ADM method for incompressible single-phase flow in fractured porous media is assessed. In 
this case, no grid adaptivity is employed and F-ADM is equivalent to a multilevel multiscale method. Thus, the objective 
of this test case is to verify the proposed multilevel interpolation strategy. A 2D fractured 75 m × 75 m reservoir with 35
fractures is considered. A 375 × 375 grid is imposed on the rock matrix. Fractures have different lengths but identical 
apertures of 5 · 10−3 m. The fracture network consists of 4420 grid cells (for a total 145045 cells). The matrix permeability 
is 10−14 m2 whereas fractures permeability is 2.08 · 10−6 m2. Two injection wells in bottom left and top left corners (pinj =
2 · 107 Pa) and two production wells in bottom right and top right corners (pprod = 1 · 107 Pa) are present.

The multilevel multiscale method is run with different number of coarse levels and coarsening ratios. Here, fully-coupled 
multiscale basis functions are considered. The error of the multiscale pressure solution (pms) with respect to the fine-scale 
pressure map (pfs) is calculated as

ep = ||pfs−pms||2||pfs||2 . (24)

The settings of each multiscale run, the pressure error (ep) and the number of degrees of freedom are presented in Table 1. 
Remark that the error is larger when a higher number of levels or larger coarsening ratios are employed. However, the order 
of magnitude of the multiscale error is the same for all multilevel multiscale settings. Moreover, the coarsening levels in 
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Table 1
Settings and errors of the multilevel multiscale runs.

Num. coarse levels γm Total DOF ep [%]

Case 1 1 5 × 5 6509 0.11
Case 2 1 25 × 25 1109 0.22
Case 3 2 5 × 5 877 0.27
Case 4 1 125 × 125 893 0.64
Case 5 3 5 × 5 661 0.98

Fig. 10. Test case 2 – comparison of the pressure distribution obtained by fine-scale simulations and F-ADM single-phase solver with enforced static 
multilevel multiscale, where the pressure is solved everywhere at the coarsest level. Top plot is the fine-scale solution. Middle row shows 1 level multiscale 
solution with γm = 25 × 25 (left) and 2 level multiscale solution with γm = 5 × 5 (right). Shown in the bottom row is 1 level multiscale solution with 
γm = 125 × 125 (left) and 3 level multiscale solution with γm = 5 × 5 (right). Note that the error norm are presented in Table 1.

matrix and fractures are independent of each other. Therefore, the maximum coarsening level in each domain (i.e., matrix 
and every individual fracture) can be different depending on its size and its number of grid cells.

The surface plots of the pressure distributions obtained with fine-scale simulations and with different multilevel multi-
scale settings are presented in Fig. 10.
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Fig. 11. Test case 3 – comparison of the pressure distribution obtained by fine-scale simulations and F-ADM single-phase solver with enforced static 
multilevel multiscale on heterogeneous domain, where the pressure is solved everywhere at the coarsest level. Shown on the top row are the permeability 
map (right) and the fine-scale solution (left). Middle row shows 1-level multiscale solution with γm = 9 × 9 (left) and 2 level multiscale solution with 
γm = 3 × 3 (right). Bottom row includes 1 level multiscale solution with γm = 27 × 27 (left) and 3 level multiscale solution with γm = 3 × 3 (right). Note 
that the error norm are presented in Table 2.

4.3. Test Case 3: F-ADM for single-phase flow in a 2D heterogeneous fractured reservoir

A heterogeneous 2D domain of 75 m × 75 m with a network of 35 fractures is considered. The matrix and fracture 
grids are 135 × 135 and 1665, respectively, resulting in 19890 total grid cells. The top right plot on Fig. 11 shows the 
heterogeneous permeability map for this test case with the minimum and maximum values of 1.3 × 10−16 m2 and 9.9 ×
10−13 m2, respectively. Wells are located and have the same constraints as in the previous test case. Different coarsening 
levels and ratios are considered.

The pressure error with respect to the reference (i.e., fine-scale solution) is calculated based on Eq. (24), which is shown 
in Table 2 for different numbers of degrees of freedom (DOF). All multiscale runs employ fully-coupled basis functions. 
As it can be seen in Table 2, for the corresponding coarsening ratios, the multilevel multiscale and the 1-level multiscale 
strategies deliver comparable results. Note that no iterations have been employed to improve the multiscale results [36].

4.4. Test Case 4: multi-phase flow in a 2D homogeneous fractured reservoir

The same fractured homogeneous reservoir presented in the previous test case is considered. The rock matrix is 
discretized with a 135 × 135 fine-scale grid and 1665 grid cells are employed for the fractures (total domain grid 
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Table 2
Settings and errors of the multilevel multiscale runs for heterogeneous test case.

Num. coarse levels γm Total DOF ep [%]

Case 1 1 3 × 3 2580 12.8
Case 2 1 9 × 9 780 12.7
Case 3 2 3 × 3 410 13.6
Case 4 1 27 × 27 580 11.0
Case 5 3 3 × 3 210 12.1

Fig. 12. Pressure plots for 2D F-ADM test case. Shown are the fine-scale solution (a), decoupled F-ADM with thresholds 0.1 (b) and 0.8 (c), and coupled 
F-ADM with thresholds 0.1 (d) and 0.8 (e), respectively.
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Fig. 13. Saturation distribution of fine-scale (a), decoupled F-ADM with thresholds 0.1 (b) and 0.8 (c), and coupled F-ADM with thresholds 0.1 (d) and 
0.8 (e), respectively.

cells: 19890). F-ADM employs 2 coarse levels with coarsening ratio of 3 in each direction both for the matrix and 
the fractures. Both decoupled and fully-coupled multiscale basis functions are considered as pressure interpolators. The 
saturation difference between neighbouring cells is used as the F-ADM coarsening criterion with four different thresh-
old values: �S = {0.1, 0.3, 0.5, 0.8}. Three equidistant injection wells (pinj = 2 · 107 Pa) and three equidistant production 
wells (pprod = 1 · 107 Pa) are present at the left and right boundaries, respectively. The total simulation time is set to 
1000 days.

Figs. 12 and 13 show the pressure and the saturation maps at the end of the simulation for fine-scale and F-ADM with 
2 different threshold values for the coarsening criterion.
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Fig. 14. Pressure and saturation errors: Fig. 14a and Fig. 14b show F-ADM error of pressure over simulation time-steps for decoupled and coupled basis 
functions approaches. Figs. 14c and 14d are plots of saturation error over simulation time-steps for decoupled and coupled approach respectively. The errors 
are calculated based on Eq. (25).

The error for pressure and saturation is calculated as

ex = ||xms−xfs||2||xfs||2 (25)

where, x is either pressure or saturation and the subscripts ms and fs indicate multiscale and fine-scale, respectively.
Figs. 14a, 14b and 14c, 14d show the F-ADM (both using decoupled and coupled basis functions) pressure and saturation 

errors at each time-step for the four values of the coarsening criterion. Figs. 15a and 15b illustrate the amount of active grid 
cells (as a percentage of the fine-scale number of cells) for each time-steps. Note that grid cells around wells are always 
kept at the fine-scale resolution. Here, 864 grid cells are kept at fine-scale resolution due to near-well refinement, which is 
4.74 percent out of the 8.61 percent of active grid cells at the first time-step. Figs. 15c and 15d provide the average pressure 
and saturation errors along with the average percentage of grid cells employed by F-ADM as functions of the coarsening 
criterion threshold value.

F-ADM results show a low sensitivity to the type of basis functions employed. Note that coupled basis functions are more 
computationally expensive and provide with a denser prolongation operator. However, in case of using static prolongation 
operators, as basis functions of all levels are computed only once at the beginning of simulation, the extra computational 
costs involved in calculation of coupled basis functions can be considered negligible.

4.5. Test Case 5: multi-phase flow in a 2D heterogeneous fractured reservoir

This test case differs from test case 4 only in permeability of matrix as it is heterogeneous. The rest of the input pa-
rameters and configurations are identical to Test Case 4. The permeability map is identical to one used in test case 3, 
with heterogeneity contrast of 7.7 × 103. The well positioning follows the same configuration (line drive with 3 equidistant 
injectors and producers). Moreover, coarsening level, coarsening ratio and coarsening criteria are the same. As for their 
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Fig. 15. Active grid cells and averaged parameters: Fig. 15a and Fig. 15b demonstrate the percentage of active grid cells for the two mentioned approaches 
respectively. The data is obtained over simulation time-steps and for four different F-ADM tolerances. Figs. 15c and 15d show the average of pressure error, 
saturation error and percentage of active grid cells over the whole simulation time for both approaches.

similar performance to decoupled approach, only the results of fully coupled basis functions are presented for pressure and 
saturation, in Figs. 16 and 17, respectively.

The F-ADM error is calculated using the same formulation as in the previous test cases, i.e. Eq. (25), and presented in 
Figs. 18a and 18b, respectively, for pressure and saturation. In addition, Fig. 18c shows the amount of active grid cells during 
the simulation for different coarsening tolerence values. Finally, Fig. 18d provides the average pressure and saturation errors 
along with the average percentage of grid cells as functions of the coarsening threshold value.

4.6. Test Case 6: multi-phase flow in a 3D homogeneous fractured reservoir

A 3D 75 m×75 m×30 m containing 26 fracture plates of different geometrical properties as shown in Fig. 19. The matrix 
is discretized with a 99 × 99 × 27 Cartesian grid for a total of 264, 627 cells. Independent 2D grids are imposed on each 
fracture plate. The grid cells in the fractures have sizes �ξ and �η such that mean(�ξ, �η) = 2 × mean(�xm, �ym, �zm). 
Here, �xm, �ym, �zm indicate the sizes of the matrix grid cells in each direction. The total number of grid cells in the 
fracture network is 2, 646 grid cells. The rock matrix permeability is 10−14 m2 whereas the fractures one is 2.08 · 10−6 m2. 
Three injection wells are present in the bottom left, middle left and top left boundary, all perforating through the whole 
thickness of the reservoir (pinj = 2 · 107 Pa). Similarly three production wells are located on the right-hand side of the 
domain (pprod = 1 · 107 Pa). The simulation time is 1000 days.

F-ADM employs 2 levels of coarsening with coarsening ratios equal to 3 in each direction. Fig. 20 shows, for example, 
the saturation distribution at time-step 15 along with the F-ADM grid employed at that time-step. The same error measures 
used for the previous test case are considered. Figs. 21a and 21b present pressure and saturation errors at each time-step 
for four different threshold values of the coarsening criterion, i.e. 0.1, 0.3, 0.5 and 0.8. The evolution of the number of 
active grid cells throughout F-ADM simulations is shown in Fig. 21c. Average pressure error, saturation error and active 
grid cells over the whole simulation time versus �S thresholds are given in Fig. 21d. In this test case, 23328 grid cells 
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Fig. 16. Pressure plots of 2D F-ADM test case (heterogeneous). Shown are fine-scale (a) and F-ADM results with thresholds of �S = 0.1 (b), 0.3 (c), 0.5 (d) 
and 0.8 (e), respectively.

near the wells are kept at fine-scale resolution that is 8.73 percent out of 10.51 percent of active grid cells at the first 
time step. An increase in threshold correlates with a decrease in size of the F-ADM system as less active grid cells are 
used.

5. Conclusions

An algebraic dynamic multilevel method for fully-implicit simulations of multiphase flow in porous media with embed-
ded discrete fractures, namely F-ADM, is presented in this work. Built on the embedded discrete fracture model (EDFM), the 
fine-scale fully implicit system was mapped into a multilevel dynamic grid, defined independently for matrix and fractures. 
This was achieved by development of the sequences of prolongation (local basis functions) operators for fractured media. 
These local multilevel basis functions were introduced after selection of the coarse nodes on both matrix and fracture sub-
domains, with flexible matrix-fracture coupling. The front-detection strategy is used to employ fine-scale grids only where 
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Fig. 17. Saturation distribution of 2D F-ADM test case (heterogeneous). Shown are fine-scale (a) and F-ADM solutions for thresholds �S = 0.1 (b), 0.3 (c), 
0.5 (d) and 0.8 (e), respectively.

needed, while multilevel multiscale grid is used elsewhere. The use of multiscale basis functions guarantees the accuracy of 
the global (pressure) unknowns where coarse grids are imposed.

Numerical results for both 2D and 3D test cases were presented to validate the EDFM fully-implicit implementation 
and investigate its accuracy. Then, the sensitivity of F-ADM to the type of pressure interpolator (i.e., with and without 
matrix-fracture coupling) and the fraction of active grid cells chosen indirectly by different threshold values was stud-
ied. The single-phase flow results show that the proposed multilevel interpolation strategy for embedded discrete fracture 
systems is accurate compared to the original 1-level multiscale finite-volume method. Multiphase flow results, with dif-
ferent amount of active dynamic grids, show that F-ADM is able to provide accurate results for flow in fractured media 
by employing only a fraction of the fine-scale grid-cells both in the rock matrix and in the fractures. It is expected 
that the greater the size of the domain, the lower the percentage of active grid cells compared to the global number of 



342 M. HosseiniMehr et al. / Journal of Computational Physics 373 (2018) 324–345
Fig. 18. F-ADM error history for pressure (a) and saturation (b) calculated based on Eq. (25) during the simulation. The percentage of active grid cells (c) 
and the average errors over simulation time (d) are also presented.

Fig. 19. Test Case 6 – reservoir geometry and fracture network.
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Fig. 20. Illustration of the F-ADM mesh at time-step 15 (left) and saturation distribution (right). Only saturation values higher than 0.5 are shown (right).

Fig. 21. F-ADM error history for pressure (a) and saturation (b) calculated based on Eq. (25) during the simulation. The percentage of active grid cells (c) 
and the average errors over simulation time (d) are also presented.

fine-scale grids. As such, F-ADM casts a promising approach for simulation of multiphase flow in real-field fractured me-
dia.
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