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Abstract. This paper presents an exercise of Code Verification with two manufactured
solutions valid for 2D RANS equations supplemented either with the one-equation Spalart
& Allmaras or with the two-equation BSL k−ω turbulence model. When the manufactured
solution is applied with the eddy viscosity frozen, second order convergence behaviour is
shown. When the solution of the eddy viscosity is included, the discretization of the tur-
bulence quantities transport equations appear to influence the accuracy of the mean flow
solution. The results show that a first-order accurate solution of the turbulence quantities
transport equations may lead to first-order accurate solutions for the mean flow variables,
even if the discretization of the continuity and momentum equations is second-order accu-
rate. It also turns out that flux limiters can have an unfavourable effect on the convergence
of the results with refinement of the grid.

1 INTRODUCTION

The rapidly expanding capacity of Computational Fluid Dynamics (CFD) and the
increase of its use in practical applications created the need to establish the credibility of
the numerical results. This motivated an on-going debate about Verification & Validation
in several forums, like the AIAA,1 ERCOFTAC2 or the ITTC.3 At present, it is commonly
accepted that the first step of this process is Code Verification.4

Code Verification intends to verify that a given code solves correctly the equations
of the model by error evaluation.4 Therefore, it requires a known solution to allow the
determination of the error. The verifying process should demonstrate that the error
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tends to zero with grid refinement and that the observed order of accuracy matches the
theoretical order of the discretization techniques used in the code.

The Reynolds-Averaged Navier-Stokes (RANS) equations have no analytical solutions
and so to perform code verification in RANS solvers one has almost inevitably to apply
the Method of the Manufactured Solutions4–10 (MMS). Recently, manufactured solutions
(MS) have been proposed11,12 for wall-bounded turbulent flows including analytical func-
tions for several one and two-equation eddy-viscosity turbulence models. The first results
reported12 for these MS’s show that it is not trivial to set up a MS for the turbulence
quantities of eddy-viscosity turbulence models. However, it is clear that the turbulence
quantities transport equations must be included in the code verification process of RANS
solvers based on eddy-viscosity models. One of the advantages of the MMS in RANS
solvers is that one is able to compute the mean flow field with the manufactured eddy-
viscosity or vice-versa. Therefore, it is possible to identify the source of any unexpected
numerical behaviour of the solution.

In this paper, we have focused on the influence of the discretization techniques applied
in the turbulence quantities transport equations on the convergence of the mean flow
variables, i.e. the velocity components and the pressure. From the MS’s11,12 available, we
have selected appropriate MS’s for the Spalart & Allmaras13 one-equation model and for
the baseline (BSL) version of the k − ω two-equation model proposed by Menter.14

For the selected MS’s, three different techniques were tested in the discretization of
the convective terms of the turbulence quantities transport equations: first-order upwind
discretization and third-order upwind discretization with and without flux limiters.15

These three alternatives were tested in the finite-difference16 and finite-volume15 2-D
versions of PARNASSOS. In order to evaluate the influence of accuracy of the determi-
nation of the eddy-viscosity on the mean flow variables, we have performed three types
of exercises:

1. Calculate the mean flow field with the manufactured eddy-viscosity.

2. Calculate the eddy-viscosity with the manufactured velocity field.

3. Calculate the complete flow field.

The paper is organized in the following way: for the sake of completeness, section 2
presents the two MS’s and section 3 contains a short description of the flow solver; the
results are presented and discussed in section 4; finally, the conclusions are summarized
in section 5.
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2 MANUFACTURED SOLUTIONS

The computational domain is a square of side 0.5L with 0.5L ≤ X ≤ L and 0 ≤ Y ≤
0.5L and the proposed Reynolds number, Rn, is 106.

Rn =
U1L

ν
, (1)

where U1 is the reference velocity, L the reference length and ν the kinematic viscosity. In
non-dimensional variables, (x, y), the computational domain is given by 0.5 ≤ x ≤ 1 and
0 ≤ y ≤ 0.5, where x stands for the horizontal direction and y for the vertical direction.

The main flow variables are identical for the two turbulence models. The velocity
components in the x direction, ux, and y direction uy are given by

ux = erf(η) and uy =
1

σ
√

π

(

1 − e−η2
)

. (2)

η is a ”similarity variable”

η =
σy

x
, (3)

where is σ = 4.
The pressure coefficient (i.e. the pressure relative to twice the reference dynamic pres-

sure) is given by

Cp =
P

ρ(U1)2
= 0.5ln

(

2x − x2 + 0.25
)

ln
(

4y3 − 3y2 + 1.25
)

(4)

2.1 Spalart & Allmaras one-equation model

In the Spalart & Allmaras13 one-equation model the eddy-viscosity, νt, is given by

νt = ν̃fv1 (5)

with

fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
and cv1 = 7.1 . (6)

As discussed by Eça & Hoekstra,11 a MS for the Spalart & Allmaras model should
preferably specify the dependent variable of the model, ν̃. If instead the eddy-viscosity,
ν, is specified, the non-linearity of the damping function fv1 causes serious trouble. In
the selected MS,12 designated here by MS2, ν̃ is given by

ν̃ = ν̃maxη
2
νe

1−η2
ν , (7)

where
ην =

σνy

x
, (8)

σν = 2.5σ and ν̃max is 103ν.
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2.2 BSL k − ω two-equation model

In the two-equation BSL k − ω turbulence model the eddy-viscosity is given by

νt =
k

ω
(9)

In the selected MS,11 analytical expressions are provided for νt and k. The ω field is
derived from equation (9). What we will call here the MS4 solution specifies the following
equations for νt, k and ω:

νt = 0.25(νt)maxη
4
νe

2−η2
ν , (10)

k = kmaxη
2
νe

1−η2
ν , (11)

ω = 4
kmax

νmax

e−1η−2
ν , (12)

where (νt)max = ν̃max = 103ν.
The BSL model includes a blending function, F1, which does not have well-defined

derivatives in the complete flow field, as discussed in Eça et al.11 Therefore, for code
verification purposes, the dependency of the constants σk and σω on F1 has been removed:
σk = σω = 2.

3 FLOW SOLVER

The calculations were performed with the 2-D finite-difference16 (FD) and finite-volume15

(FV) versions of PARNASSOS. Both versions solve the steady, incompressible, RANS
equations without any transformation of the continuity equation. The main properties of
the two versions are summarized below:

• The finite-difference, FD, version discretizes the continuity and momentum equa-
tions written in Contravariant form, which is a weak conservation form. The finite-
volume, FV, version discretizes the strong conservation form of the equations.

• The FD version computes the momentum balance along the directions of the curvi-
linear coordinate system, whereas the FV version calculates the momentum balance
for its Cartesian components.

• The FD code has a fully-collocated arrangement with the unknowns and the dis-
cretization centered at the grid nodes. In the FV code unknowns are defined at the
centre of each cell.

• Both versions of the code include two layers of virtual grid nodes at each boundary
of the computational domain. These virtual grid nodes guarantee that the stencil of
the third-order schemes can be kept in the vicinity of the boundaries of the domain.

4



Eça L. and Hoekstra M.

• Both versions apply Newton linearization to the convective terms and are at least
second order accurate for all the terms of the continuity and momentum equations.
Third-order upwind discretization is applied to the convective terms.

• The linear system of equations formed by the discretized continuity and momentum
equations is in both versions solved simultaneously with GMRES17 using a coupled
ILU preconditioning.

• The solution of the turbulence quantities transport equations is uncoupled from
solving the continuity and momentum equations.

In both versions, we have tested three alternative discretizations of the convective terms
of the turbulence quantities transport equations:

• First-order upwind discretization, O1.

• Third-order upwind discretization, O3.

• Third-order upwind discretization with flux limiters,15 LIM.

The use of flux limiters (to avoid non-physical oscillatory solutions) is common practice
in CFD, but its influence on the convergence properties of the code remains obscure.
Basically, the flux limiters tested in this work blend the first and third-order discretizations
according to the local variation of the dependent variable. As discussed by Knupp &
Salari,9 this may have consequences for the convergence properties of all the flow variables.
Flux limiting thus deserves attention in this paper.

4 RESULTS

Although in some cases we have tested more than one grid set,18 in this paper we will
focus on the results obtained in a single set of Cartesian grids. These grids have equidis-
tant grid node distributions in the x direction, but in the y direction the grid is clustered
towards the bottom boundary using a one-sided stretching function,19 (stretching param-
eter 0.05).

The grid set includes 16 geometrically similar grids covering a grid refinement ratio
of 4. The finest grid has 401 × 401 grid nodes and the coarsest grid 101 × 101. There
are 19 × 19 physical locations which are common to all grids. In the FD approach, this
allows the determination of the convergence properties of local flow quantities without
interpolation.
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4.1 Monitoring the Error

Following Roache,4 the error of any flow quantity, φ, can be expressed by a power series
expansion. Retaining only the lowest order term, we have

e(φ) = φ − φms ≃ αhp
i , (13)

where the subscript ms identifies the manufactured solution, α is a constant, hi is the
typical cell size and p is the order of accuracy.

For the present grids,

hi =
1

NX
=

1

NY
.

NX and NY stand for the number of nodes in the x and y directions.
We have quantified the error in the numerical solution by monitoring both local (for

the FD approach) and global (e.g. friction force on bottom wall) quantities.18 However,in
the present paper we will restrict ourselves to the global quantities.

For a given flow quantity, φ, we have computed the Root Mean Square (RMS) of the
error of the numerical solution, which is given by:

RMS(e(φ)) =

√

√

√

√

√

NX−1
∑

i=2

NY −1
∑

j=2

(φ(j, i) − φ(j, i)ms)
2

(NX − 2)(NY − 2)
. (14)

i is the index of the node in the x direction and j is the index of the node in the y
direction.

In the results presented in the remainder of this section, the observed order of accuracy,
p, and the constant α are determined with a least squares root approach.20 The fits plotted
in the figures are obtained with the data of the 11 finest grids of each set, i.e. the grids
with at least 201×201 grid nodes, covering a grid refinement ratio of 2. However, we have
also checked the dependence of the observed order of accuracy on the selected grids. The
observed order of accuracy is estimated for different groups of grids, which must present
a grid refinement ratio between the finest and coarsest grid, ri1 = hi/h1, of at least 1.3.
This is an important check, because it indicates whether the data obtained in the finest
grids are in the so-called ‘asymptotic range’.

In all the calculations presented below the iterative error was reduced to machine
accuracy and the calculations were performed with 15-digits precision. Therefore, the
computed errors are mainly a consequence of the discretization error.

4.2 Calculation of the Flow Field with the Manufactured Eddy-viscosity

The first exercise performed was the calculation of the pressure and velocity fields with
the eddy-viscosity taken from the MS2 and MS4. In both versions of the code, the MS

6



Eça L. and Hoekstra M.

was used as a ”turbulence model”, i.e. the MS was used to determine νt at the nodes
(FD) or at the cell centre (FV).

The MS enables the choice of several types of boundary conditions. The present option
intends to reproduce the type of conditions applied in a near-wall turbulent flow. The
subscript ms identifies the MS solution. The boundary conditions applied to the horizontal
velocity component, ux, vertical velocity component, uy, and the pressure coefficient, Cp,
are:

• Bottom boundary, y = 0:

ux = (ux)ms = 0 , uy = (uy)ms = 0 .

• Inlet boundary, x = 0.5:

ux = (ux)ms , uy = (uy)ms .

• Top boundary, y = 0.5:

ux = (ux)ms , Cp = (Cp)ms = 0 .

• Outlet boundary, x = 1.:

∂ux

∂x
=

(

∂ux

∂x

)

ms

,
∂uy

∂x
=

(

∂uy

∂x

)

ms

Cp = (Cp)ms .

The ”numerical” boundary conditions required for uy at the top boundary and Cp at the
inlet and bottom boundaries were imposed using the first or second derivatives available
from the MS. In the present calculations, the virtual layers were filled-in numerically, i.e.
the dependent variables at the virtual nodes were not defined from the MS.

Figure 1 presents the convergence of the RMS of ux, uy and Cp for the MS2 and MS4
with the two versions of the code. The plots include also the convergence of the friction
resistance at the bottom, CD. The results exhibit the theoretical order of accuracy for all
the flow variables, p = 2.0, and the data are clearly in the so-called ”asymptotic range”.

4.3 Calculation of the Eddy-Viscosity with the Manufactured Velocity Field

The second test is to solve the transport equations for the turbulence quantities to
determine the eddy-viscosity with the manufactured velocity field.

In the calculations with the FD code, Dirichlet boundary conditions were applied at
the four boundaries of the computational domain for all the turbulence quantities. With
the MS, this is straightforward for the dependent variable of the one-equation model, ν̃
and the turbulence kinetic energy, k. However, ω, goes to infinity at the bottom of the
computational domain, analogous to what happens in solving a physical flow problem. In
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Figure 1: Convergence of the RMS of ux, uy and Cp and the friction resistance coefficient at the bottom,

CD, with the grid refinement. Velocity and pressure fields calculated with the manufactured eddy-viscosity

field.

order to avoid any influence of the boundary value of ω, we have fixed ω at the first two
layers of grid nodes away from the bottom (j = 2 and j = 3) using the MS.

With the FV code, we have only performed calculations for the Spalart & Allmaras
model using Dirichlet boundary conditions at the inlet, bottom and top boundaries. Neu-
mann boundary conditions were imposed at the outlet, with the first derivative of ν̃ with
respect to x taken from the MS.

For both versions of the code, we have performed calculations with three alternative
discretizations of the convective terms of the turbulence quantities transport equations:
first-order upwind, O1; third-order upwind, O3 and third-order upwind with limiters,
LIM.

Figure 2 presents the convergence of the eddy-viscosity, νt, with the O1, O3 and LIM
approaches. The data show several interesting features:

• The observed order of accuracy is close to the expected values: 1 for the O1 approach
and 2 for the O3 option. Moreover, the value of p is hardly influenced by the choice
of the group of grids used to determine p.
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• The error constant, α, is one order of magnitude larger for the first-order discretiza-
tion than for the third-order approach.

• The use of limiters makes the theoretical order of the method grid dependent. The
results with limiters exhibit an error level close to the third-order data. However,
with the increase of the grid refinement, the percentage of locations with active
limiters increases (specially for the FD code) which causes the observed deviation
from the second-order convergence. In these cases, it is impossible to perform a
reliable Richardson extrapolation.
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Figure 2: Convergence of the RMS of νt with grid refinement. Eddy-viscosity calculated with the manu-

factured velocity field. MS2≡ Spalart & Allmaras one-equation model. MS4≡ BSL k − ω two-equation

model.

4.4 Calculation of the complete flow field

The third exercise is the calculation of the complete flow field. The boundary conditions
are equivalent to the ones described above for the previous exercises. In this case, we have
applied Neumann boundary conditions at the outlet for all the turbulence quantities.

The calculation of the MS2 with the Spalart & Allmaras turbulence model is trouble-
some.12 With the O1 and LIM options, we were not able to obtain converged solutions
with either version of the code. The problem is related to the appearance of negative
turbulence quantities, which are not accepted in both versions of the code. Therefore, for
the MS2 with the Spalart & Allmaras turbulence model we present only results with the
O3 approach.

Figure 3 presents the RMS of the error of ux, uy, Cp and νt as a function of the grid
refinement for the MS2. We observe that:

• Only in exceptional cases does the RMS of the selected flow variables exhibit the
theoretical order of accuracy. Furthermore, the value of p varies with the group
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Figure 3: Convergence of the RMS of ux, uy, Cp and νt with the grid refinement. MS2 with the Spalart

& Allmaras one-equation turbulence model.

of grids selected for its determination. Therefore, the data are not in the so-called
‘asymptotic range’.

• Unlike what was seen in the two previous exercises, the convergence of the two
versions of the code is not similar:

– In both codes, the error constant, α, is larger than the value obtained in the
previous exercises for the four flow variables.

– Surprisingly, the eddy-viscosity exhibits the values of p closest to the theoretical
order of the method in both versions of the code.

– In the FD version, p is below 2 for the selected flow variables but it tends to
increase with grid refinement.

– On the other hand, the FV version leads to p above 2 while p decreases with
the grid refinement.

The different behaviour of the two versions of the code is linked to the way in which
the ν̃ transport equation is written. In the Spalart & Allmaras model,13 there is a term
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proportional to the dot product of the gradient of ν̃. In the FV version, this term is
integrated on each cell in its original form, whereas the FD version discretizes an equivalent
equation that transforms this dot product in two divergence type terms. Nevertheless, in
both versions of the code we obtain the same trend: the convergence properties of the
complete flow calculations are not equivalent to the ones obtained in the calculation of
the velocity and pressure fields with the manufactured eddy-viscosity or in the calculation
of the eddy-viscosity with the manufactured velocity field.
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Figure 4: Convergence of the RMS of ux, uy, Cp and νt with the grid refinement. MS4 with the BSL

k − ω model two-equation turbulence model.

Figure 4 shows the convergence of the RMS of ux, uy, Cp and νt with grid refinement
for the MS4 with the BSL k−ω model. The plots include the solutions of the FD version
with the O1, O3 and LIM approaches. Again, there are interesting trends in the data
plotted in figure 4:

• The convergence of ux, uy and Cp is first-order accurate for the solutions obtained
with the first-order discretization of the convective terms of the k and ω transport
equations. On the other hand, the theoretical order of accuracy is observed for the
O3 approach.

11



Eça L. and Hoekstra M.

• The error constant, α, for ux, uy and Cp is substantially larger for the O1 approach
than for the O3 option.

• As for the previous exercise, the effect of the limiters makes the code accuracy grid
dependent. However, this effect is only observed for νt. ux and Cp present the same
convergence properties for the O3 and LIM options. Only uy shows a small influence
of the different convergence behaviour of νt.
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Figure 5: Convergence of the friction resistance at the bottom, CD, with the grid refinement. MS2 with

the Spalart & Allmaras one-equation model and MS4 with the BSL k − ω two-equation model.

The convergence of CD for the MS2 and MS4 solutions with the grid refinement is
depicted in figure 5. The results confirm the trends discussed above for the main flow
variables. In the MS2, the observed order of accuracy is smaller than the theoretical value
for the FD version, whereas the FV code exhibits p larger than 2.0. In both cases, p is
dependent on the grids selected and it tends to 2.0 with the grid refinement. It is also
interesting to remark that for the MS4 the solution with limiters exhibits the theoretical
order of accuracy, p = 2.0, but a larger error constant than the solution without limiters.

5 CONCLUSIONS

The present paper presents a code verification exercise for two manufactured solutions
appropriate for the Spalart & Allmaras one-equation model and for the BSL version of the
k − ω two-equation model. Three types of exercises have been performed: calculation of
the velocity field with the manufactured eddy-viscosity; calculation of the eddy-viscosity
with the manufactured velocity field; calculation of the complete flow field.

The results show that it is important to include the turbulence model transport equa-
tions in the Code Verification process. In particular, the Spalart & Allmaras model
exhibits different convergence properties when the velocity field is taken from the man-
ufactured solution or is part of the calculation. Similarly, the convergence properties of
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the velocity and pressure fields with the manufactured eddy-viscosity are not equivalent
to what is obtained with the simultaneous solution of the turbulence model transport
equation.

Three discretization techniques were tested for the convective terms of the turbulence
quantities transport equations: first-order upwind; third-order upwind and third-order
upwind with flux limiters. Two main conclusions are drawn from the tests performed:

• A first-order accurate solution of the turbulence model transport equations may
lead to a first-order accurate solution for the velocity and pressure fields.

• The use of flux limiters makes the order of accuracy of the code grid dependent. In
the present test cases, the error of the solution with limiters is much closer to the
third-order discretization than to the first-order approach. However, error estimates
based on Richardson extrapolation do not work when the limiters are active.

The present paper illustrates the potential of the Method of the Manufactured Solutions
for code verification in turbulent flows. Moreover, it also suggests that physical realistic
solutions can be very useful for testing error estimation techniques.
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