
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://sps.ewi.tudelft.nl/

SPS-2024-00

M.Sc. Thesis

Advanced Digital Signal Processing for
Probabilistic Constellation Shaping and

Partial Response Signaling

Chenrui Xu B.Sc.





Advanced Digital Signal Processing for Probabilistic
Constellation Shaping and Partial Response

Signaling

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Chenrui Xu B.Sc.
born in Chengdu, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Institute of Electromagnetic Fields
Department of Information Technology and Electrical Engineering
Federal Institute of Technology Zurich



Delft University of Technology

Copyright © 2024 Circuits and Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Advanced Digital Signal Processing for Probabilistic Constellation
Shaping and Partial Response Signaling” by Chenrui Xu B.Sc. in partial
fulfillment of the requirements for the degree of Master of Science.

Dated: July 25th, 2024

Chairman:
prof.dr.ir. G.J.T. Leus

Advisors:
prof.dr.ir. G.J.T. Leus

prof.dr. Juerg Leuthold

Committee Members:
prof.dr. Juerg Leuthold

prof.dr.ir. G.J.M. Janssen



iv



Abstract

Pursuing higher communication rates is a perpetual goal, especially in today’s age of in-
formation explosion. To increase line rate without extending the optical and electrical
bandwidth, advanced modulation formats such as probabilistic constellation shaping
(PCS) and partial response signaling (PRS) have been researched. PCS offers up to
1.53 dB sensitivity gains by modifying the uniform distribution of transmitted sym-
bols into the Maxwell-Boltzmann distribution to approximate a Gaussian distribution;
PRS, also known as faster-than-Nyquist signaling, increases the symbol rate beyond the
ideal Nyquist bandwidth limit by introducing controlled inter-symbol interference (ISI).
However, when applied to PCS-enabled or PRS-enabled systems, digital signal process-
ing (DSP) algorithms developed for conventional QAM with uniform probabilities and
free ISIs often perform poorly, degrading the expected gain.

To maximize the benefits of PCS and PRS, thereby enhancing the performance
of single-carrier coherent communication systems, this thesis focuses on addressing
the problem of optimal degradation in the carrier recovery stage. In coherent optical
communication systems, carrier recovery is a crucial DSP subsystem that compensates
for time-varying carrier frequency offset and phase noise caused by both lasers at the
transmitter and receiver.

We first propose a carrier recovery scheme using generalized maximum likelihood
estimation with negligible pilot overhead (approximately 0.2%) in the context of PCS.
Through simulations and 100GBaud experiments with PCS-64QAM, our proposed
scheme doubles computational efficiency, provides better estimation accuracy, and ex-
hibits greater stability, leading to up to 0.25 dB sensitivity gain compared to other
algorithms. We also determine the practical optimal shaping factors of PCS-64QAM
for different SNR intervals to guide future experimental work.

Additionally, in a popular PRS scheme, Tomlinson-Harashima precoding combined
with polybinary shaping (THP+Polybinary), we compare two 2M modulo formats and
investigate their impact on carrier recovery. Based on simulations and 96GBaud ex-
periments with THP+Polybinary-16QAM, our carrier recovery scheme enhances both
accuracy and stability, effectively mitigating issues caused by zero symbols and residual
ISIs.

With its superior overall performance, the proposed carrier recovery scheme is a
competitive algorithm for addressing carrier imperfections in both PCS-enabled and
PRS-enabled high-speed coherent optical communications. For the future, modifying
the timing recovery algorithm and the blind equalization algorithm to suit PCS/PRS
systems is prioritized to maximize PCS/PRS gains. Given the vast amount of com-
munication data, machine learning-based DSP algorithms also present an interesting
avenue for future research.
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Introduction 1
1.1 Motivation

The increasing demand for cloud services such as augmented and virtual reality, ar-
tificial intelligence, and video streaming is driving standards for optical interconnects
to increase line rates from 400Gbit/s to 800Gbit/s and 1.6Tbit/s [1, 2]. This need
to boost channel data rates within fiber optic networks without extending the optical
and electrical bandwidth has spurred research into achieving greater spectral efficiency
through advanced modulation formats based on digital coherent systems. Among these,
probabilistic constellation shaping (PCS) and partial response signaling (PRS) have
gained significant attention. PCS offers fine-grained rate adaptability and sensitivity
gains (up to 1.53 dB) [3], while PRS, also known as faster-than-Nyquist (FTN) signaling
[4], increases the symbol rate beyond the ideal Nyquist bandwidth limit. These tech-
niques have been key enablers for several recent record-setting optical fiber coherent
communications [5, 6] and [7, 8, 9].

PCS optimizes channel capacity by modifying the a priori probability distribution
of constellation symbols using a Maxwell-Boltzmann (MB) distribution to approximate
a Gaussian distribution. This approach is grounded in Shannon’s insight that a symbol
source with the continuous Gaussian distribution reaches the highest information ca-
pacity of the additive white Gaussian noise (AWGN) channel when the perfect forward
error correction (FEC) is used [10]. However, when applied to PCS-QAM, digital sig-
nal processing (DSP) demodulation algorithms developed for conventional QAM with
uniform symbol probabilities often perform poorly due to the non-uniform distribution
of transmitted symbols and their statistical characterization as close to Gaussian noise
[11, 12].

PRS, on the other hand, is a spectral pulse shaping technique that significantly
reduces the analog signal bandwidth below the Nyquist rate by introducing controlled
inter-symbol interference (ISI) [13]. A well-known example of PRS is duobinary mod-
ulation, which can be achieved using a delay-and-add (1 + Z−1) digital filter. By
intentionally introducing the known ISI (1 + Z−1), the number of amplitude levels is
increased and the 3 dB bandwidth of the resulting signal is ideally reduced to half
[14]. Despite considerable research attention on FTN or PRS systems, most studies
have focused on asymptotic or practical throughput, with few addressing synchroniza-
tion issues such as timing, polarization, phase, and frequency recovery at the receiver
[4, 15, 16]. However, the artificial ISI introduced by PRS signaling challenges standard
DSP algorithms whose signal model is free-ISI [17, 18, 15].

In coherent optical communication systems, carrier recovery is a crucial DSP sub-
system that compensates for time-varying carrier frequency offset and phase noise at
the coherent receiver [19]. However, the application of PCS and/or PRS degrades con-
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ventional carrier recovery algorithms due to non-uniformly distributed symbols and
introduced ISI. For example, under moderate or strong shaping conditions of PCS,
the reduction in high modulus and diagonal constellation points deteriorates the per-
formance of the widely-used 4th power FFT algorithm for carrier frequency recovery
[20, 21]. Similarly, the non-uniform symbol distribution violates the uniformity assump-
tion of the widely-used blind phase search algorithm, leading to incorrect detection and
performance loss in carrier phase recovery [22, 23, 24]. The performance degradation
resulting from carrier recovery can even outweigh the potential benefits of these ad-
vanced shaping techniques [22], highlighting the importance of developing advanced
carrier recovery algorithms.

Furthermore, in the popular PRS scheme, Tomlinson-Harashima precoding (THP)
combined with polybinary shaping, the implementation of the 2M modulo operation
is noteworthy and somewhat controversial. Some researchers [25, 26, 27] use the 2M
modulo operation in a half-closed and half-open format, [–M, M), while others [28, 8,
29, 30] adhere to the fully closed format, [-M, M]. Both groups cite Tomlinson [31] and
Harashima [32], stating their 2M modulo operation format without further explanation.

1.2 Research Statement

To maximize the benefits of PCS and PRS, thereby enhancing the performance of
single-carrier coherent communication systems, this thesis specifically addresses the
problem of optimal degradation in the carrier recovery stage.

We first proposed a carrier recovery scheme using generalized maximum likelihood
(GML) estimation with negligible pilot overhead (approximately 0.2% %) in the PCS
context. This scheme incorporates dual-stage pilot-based GML phase recovery and in-
tegrates pilot-based frequency recovery, ensuring efficient utilization of pilot symbols.
Compared to other algorithms, our proposed scheme, tested through simulation and
practical experiments with PCS-64QAM, doubles computational efficiency, provides
better estimation accuracy, and exhibits better stability, particularly in high shaping
factors and low SNR regions, leading to up to 0.25 dB sensitivity gain. According to
the experiment results, we also noted the mismatch between simulation and exper-
iments, and determined the practically optimal shaping factors of PCS for different
SNR intervals to guide future experimental work.

Additionally, in the context of THP+Polybinary shaping, we compared two
2M modulo formats: [-M, M] and [-M, M). Our simulation results show that
THP+Polybinary with a [-M, M] 2M modulo introduces less PRS shaping loss (im-
proving sensitivity at the transmitter), resulting in higher peak-to-average-power ratio
(PAPR, which potentially increases non-linearity) after the square-root-raised-cosine
(SRRC) pulse shaping, and exhibits a slightly higher 99% bandwidth compared to a
2M modulo with an output range of [-M, M). Furthermore, we investigated their im-
pact on carrier recovery: the excessive zero symbols in the [-M, M) format, which lack
phase information, present a challenge for carrier phase recovery. However, our car-
rier recovery scheme can accommodate non-uniform distributions in THP+Polybinary
shaping, enhancing both accuracy and stability and effectively mitigating issues caused
by zero symbols. Based on the practical experiment, we further verified that regardless
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of which 2M Modulo format is used for the PRS system, our scheme can efficiently and
accurately recover the carrier, and outperform other schemes.

1.3 Outline

This report is organized as follows:
Chapter 2 - ’Background’ introduces the general coherent optic-fiber communica-

tion system, particularly the digital signal processing steps required to compensate for
system imperfections. It also covers the concepts related to channel capacity and in-
formation rates as system metrics. Additionally, the background of PCS and PRS is
provided, including principles and existing DSP challenges.

Chapter 3 - ’Carrier Frequency and Phase Recovery’ reviews the literature related
to carrier recovery of PCS-QAM and presents the widely used signal model. It then
elaborates on the proposed carrier recovery scheme with detailed principles and includes
MATLAB simulations and practical experiments to demonstrate the improvements and
remaining challenges. Further, it analyzes the experiments to provide insights and
practical optimal shaping factors of PCS-64QAM for different SNR intervals to guide
future experimental work. A summary is provided at the end.

Chapter 4 - ’Migration to Partial Response Signaling’ introduces the related works
on carrier recovery of PRS/FTN and discusses the 2M modulo operation formats. It
compares these formats through three simulation scenarios: only channel noise, brick-
wall bandwidth limitation, and carrier imperfections. It further tests various carrier
recovery schemes in practical experiments with various formats. The chapter concludes
with a discussion of the results and a summary.

Chapter 5 - ’Summary’ concludes the thesis and proposes potential directions for
future work.

3
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Background 2
2.1 Coherent Optic-Fiber Communication System

In ultra-high-speed optical transport, coherent detection and digital signal processing
(DSP) play crucial roles in enhancing receiver performance and effectively compensating
for channel or system impairments. As depicted in Figure 2.1, a coherent optic-fiber
communication link comprises various DSP stages and physical devices.

Figure 2.1: A Coherent Optical-Fiber Link with Single Carrier and Single Polarization: On
the transmitter side, a complex modulated signal is generated by an arbitrary waveform
generator (AWG) with digital signal processing (DSP) and is mixed onto a single optical
carrier (fc = 1550 nm) generated by a Tx Laser through a single-polarization (SP) in-phase
and quadrature (IQ) modulator. The signal is then transmitted over an optical fiber channel
consisting of standard single-mode fibers and optical amplifiers. On the receiver side, the
optical coherent receiver mixes the noisy and distorted optical signal with a single optical
carrier (fc = 1550 nm) generated by an Rx Laser to recover the baseband data signal. Finally,
the digital signal is fed into a digital sampling oscilloscope (DSO) and assessed by standard
offline DSP.

Since the focus of this report is not on the physical devices, we will concentrate on
the digital signal processing steps required to recover information transmitted over an
optical link.

As illustrated in Figure 2.1, DSP techniques are employed at both the transmitter
and receiver. However, the Tx DSP is relatively simple, typically encompassing chan-
nel coding with forward-error correction, M-QAM symbol mapping, and pulse shaping
using a square-root-raised-cosine (SRRC) filter. In contrast, the Rx DSP is more com-
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plex due to the need to address the imperfections of the entire link, comprising several
stages as follows [33]:

(a) Chromatic Dispersion Compensation: Labeled as ”Dispersion Comp.” in Figure
2.1, this is the first step implemented at the receiver when transmitting signals over
several kilometers of optical fiber [34]. The major contribution to chromatic disper-
sion originates from the group velocity dispersion (GVD) of fiber propagation, which
induces a linear, frequency-dependent group delay on the signal. This causes different
spectral components to propagate at varying speeds through the fiber, leading to pulse
broadening and hindering timing recovery.

(b) Deskew and Orthogonalization: Labeled as ”Deskew & Ortho.” in Figure 2.1,
these processes compensate for imperfections caused by the coherent receiver. Deskew
detects and cancels in-phase and quadrature (IQ) time-skew, resulting from different
physical path lengths of the balanced photo-detectors for the in-phase and quadra-
ture channels. Orthogonalization corrects the non-orthogonal IQ channels due to the
non-ideal 90◦ hybrid. Correcting these non-idealities allows the IQ components to be
combined into a complex signal sample.

(c) Matched Filtering: This stage usually uses the SRRC filter to maximize the
signal-to-noise ratio (SNR) in the presence of additive white Gaussian noise and to
meet the Nyquist ISI condition for ideal ISI-free detection.

(d) Timing Recovery: Also known as timing synchronization, this step estimates
timing error and shifts the sampling point to the symbol center. This is necessary
because the digital-to-analog converter (DAC) at the transmitter and the analog-to-
digital converter (ADC) at the receiver operate with different clock oscillators and
varying clock jitters.

(e) Blind Equalization: Initially used for polarization demultiplexing and channel
equalization in dual-polarization communication, this process addresses the non-flat
channel response and variations in the polarization state, ensuring the receiver axis
for two polarizations aligns with the transmitter axis. In single-polarization systems,
where polarization is fixed, the blind equalizer serves as a coarse channel equalizer,
transparent to frequency offset and phase noise of the optical carrier.

(f) Carrier Recovery: This stage compensates for frequency offset and phase noise
between the transmitter and receiver lasers due to frequency mismatches and fluctu-
ations caused by non-zero laser linewidth. Although the correction of both offsets is
generally summarized under the term carrier recovery, they require separate correc-
tions, since frequency offset changes slowly, while phase noise changes rapidly. More
details are discussed in Section 3.

(g) LMS Equalization: Another equalizer is employed to rectify residual linear im-
pairments and filter noise, further maximizing the SNR. This is typically achieved using
a decision-directed (DD) or data-aided (DA) least-mean-square (LMS) equalizer.

(h-i) Symbol Demapping and Decoding: The final two stages involve demapping the
complex symbols back into binary bits and decoding the binary sequence to retrieve
the transmitted information.

In this report, the primary focus is on the carrier recovery stage. Given the stabil-
ity of the single-carrier single-polarization coherent optic-fiber link, where the channel
response and polarization state are relatively constant and imperfections related to the
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coherent receiver are fixed, chromatic dispersion compensation, deskew, orthogonal-
ization, and blind equalization require only one-time estimation. Conversely, timing
recovery and carrier recovery necessitate continuous estimation and compensation due
to their time-varying nature. Furthermore, considering the probabilistic constellation
shaping (introduced in Section 2.3) and partial response signaling (introduced in Sec-
tion 2.4), the challenges associated with the carrier recovery stage become even more
significant.

2.2 Channel Capacity and Information Rates

To evaluate the efficacy of a communication system or link, key metrics include chan-
nel capacity (exemplified by the Shannon limit [10]) and information rates such as
the achievable information rate (AIR) and the net information rate (NIR) are widely
utilized.

In short, these three metrics are based on multiplying the symbol transmission
rate by the average information sent per symbol. However, the ways to calculate the
information per symbol are different and will be explained separately in the subsequent
sections.

2.2.1 Shannon Limit and Mutual Information

The channel capacity of a communication system represents the ideal maximum infor-
mation rate, measured in bits, that can be reliably transmitted from the transmitter
to the receiver without errors.

According to the well-known Shannon–Hartley theorem [10], the channel capacity,
also known as Shannon capacity or Shannon limit, labeled as CSL (in bits/second), is
defined as,

CSL = Rsym ·MI (2.1)

whereRsym refers to the transmitted symbol rate, whose maximum is double the channel
bandwidth, Rsym ≤ 2 ·B, with the Nyquist sampling and the free inter-symbol interfer-
ence (ISI), while MI refers to the mutual information of the transmitted symbols and
can be calculated with the signal-to-noise ratio (SNR), MI = 1

2
log2(1 + SNR).

Indeed, the channel capacity can be rewritten as,

CSL = B · log2(1 + SNR) , with SNR =
PX

PN

(2.2)

where B means the bandwidth, such as 3 dB bandwidth or 99% bandwidth of the
transmission channel or the communication link, and SNR means the signal-to-noise
ratio, which is dividing the average power of the received signal PX by the average noise
power PN taken within a channel of the bandwidth.

To derive this formula, Shannon used two key assumptions (A1, A2) and three key
concepts (C1, C2, C3):

A1: The transmitted symbols are time-discrete, amplitude-continuous, independent
(memoryless), and Gaussian distributed with a mean value around zero, X ∼ N (0, σ2

X).
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A2: The channel noise is additive in amplitude, white (a flat power spectral density),
and Gaussian distributed with a mean value around zero, N ∼ N (0, σ2

N).
So, the received symbols Y after the transmitted symbols passing the noisy channel

can be represented as,
Y = X +N ∼ N (0, σ2

X + σ2
N) (2.3)

C1: The information content of a random variable can be described by the Shannon
entropy, which measures the variable-associated uncertainty. Taking the transmitted
symbols as an example,

Hs(X) =

∫ ∞

−∞
p(x) log2

1

p(x)
dx, with

∫ ∞

−∞
p(x) dx = 1. (2.4)

where p(x) is the shortcut of pX(x), meaning the probability density function of the
amplitude-continuous random variable X with X ∼ N (0, σ2

X), as mentioned in as-
sumption A1.

C2: The transmitted information over a channel can be described by the mutual
informationMI (in bits/symbol) of the transmitted random variableX and the received
random variable Y , which is defined as,

MI(X;Y ) =

∫ ∞

−∞

∫ ∞

−∞
p(x, y) log2

p(x, y)

p(x)p(y)
dx dy = Hs(Y )−Hs(Y |X) (2.5)

Considering formulas (2.3) and (2.4),

Hs(Y ) =

∫ ∞

−∞
p(y) log2

1

p(y)
dy =

1

2
log2

(
2πe[σ2

X + σ2
N ]
)

(2.6)

Hs(Y |X) = Hs(N) =

∫ ∞

−∞
p(n) log2

1

p(n)
dn =

1

2
log2

(
2πeσ2

N

)
(2.7)

Thus, the mutual information of the transmitted symbols X and the received sym-
bols Y can be rewritten as,

MI(X;Y ) = Hs(Y )−Hs(N) =
1

2
log2

(
1 +

σ2
X

σ2
N

)
(2.8)

C3: If a channel has a bandwidth B, then the narrowest pulse that can be transmit-
ted over this channel without the inter-symbol interference must have duration T = 1

2B
,

based on the Nyquist–Shannon sampling theorem.
Thus, the ideal maximum information rate (bits/second) is the production of the

mutual information (bits/symbol) and the fasted symbol rate (symbol/second), which
is described by this formula,

CSL =
1

T
·MI(X;Y ) = 2B · 1

2
log2

(
1 +

σ2
X

σ2
N

)
(2.9)

Given the Gaussian distribution of transmitted symbolsX and channel noise N with
zero means, their variance equates to their average power, denoted as σ2

X/N = PX/N ,

leading to (2.2).
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However, in typical communication systems, the transmitted symbol follows an
amplitude-discrete uniform distribution, posing two significant challenges: 1. It vio-
lates assumption A1, resulting in a performance gap between the theoretical Shannon
limit and real-world systems, which makes approaching the Shannon limit an eternal
topic of research 2. This uniform distribution complicates the calculation of mutual
information MI, especially for the high-dimensional symbols, as the probability distri-
bution calculation becomes more intricate than the simple Gaussian distribution.

To mitigate these issues, probabilistic constellation shaping is introduced to narrow
the performance gap, as elaborated in Section 2.3. Additionally, in practical scenarios,
Monte Carlo estimation is employed to compute an approximation of the theoretical
mutual information, as shown in the following.

Through Monte Carlo estimation, (2.5) undergoes a transformation, partially sub-
stituting frequency for probability, resulting in:

MI =
1

Ns

Ns∑
i=1

p(yi|xi)

p(yi)
, where p(yi) =

∑
x∈X

p(yi|x)p(x) (2.10)

where xi and yi, with i = 1, ..., Ns, denote the transmitted and received sequences,
each of length Ns, respectively. p(yi|xi) and p(yi|x) represent the conditional density
functions, following Gaussian distributions determined by the channel noise N . Mean-
while, p(x) represents the probability mass function of the transmitted symbols, as X
is amplitude-discrete in practical systems.

2.2.2 Achievable Information Rate and Generalized MI

As elucidated in the previous subsection, mutual information serves as a symbol-level
metric, evaluating system performance on a per-symbol basis, with the Shannon limit
representing the upper bound of the transmitted information rate under strict assump-
tions. However, in digital communication links, the information source is typically
represented by a binary 01-bit stream, and the ideal upper bound is impractical for
real-world applications. Consequently, assessing the quality of transmitting binary in-
formation rather than symbols and evaluating the achievable information rate hold
greater relevance.

Accounting for the demapping stage of the receiver, a single symbol error may
propagate into multiple-bit errors, termed the suboptimality of bit-interleaved coded
modulation (BICM) decoders [35]. This effect, not adequately captured by mutual
information, causes the necessity for assessing information content at the bit level. To
address this, generalized mutual information (GMI) is computed based on (2.5) and
Monte Carlo estimation, utilizing soft decisions of received symbols [36].

GMI =Hs(X)−Hb(X|Y )

≈
∑
x∈X

p(x) log2
1

p(x)
+

1

Ns

Ns∑
i=1

m∑
k=1

log2

∑
x∈Xbi,k

p(yi|x)p(x)∑
x∈X p(yi|x)p(x)

(2.11)
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where Hs(·) represents Shannon entropy at the symbol level, while Hb(·) pertains to
the bit level, m denotes the number of bits used to represent each transmitted symbol
X, bi,k ∈ 0, 1 denotes the kth bit of the ith transmit symbol, and Xbi,k signifies the
set of transmitted symbols with a kth bit value of bi,k. Notably, some researchers [37]
have employed bit-wise log-likelihood ratio (LLR) to estimate GMI, yielding the same
results as (2.11).

The calculation of the achievable information rate (AIR) mirrors (2.2) and accounts
for potential overhead from non-information time-domain or frequency-domain pilots,
defined as [6]:

CAIR = Rsym ·GMI · (1−OH), with OH =
Npilot

Ns

(2.12)

where, CAIR denotes the achievable information rate, Rsym represents the transmitted
symbol rate, and OH signifies the overhead, e.g. calculated as the ratio of the number
of pilot symbols Npilot to the total number of symbols in the transmitted sequence Ns,
if time-domain pilots are used.

When compared to the Shannon limit and mutual information, the achievable in-
formation rate and generalized information better represent the information of interest
in real-world scenarios.

2.2.3 Net Information Rate and Normalized GMI

As known, channel coding and decoding play pivotal roles in modern communication
systems owing to their significant coding gain, yet they are typically overlooked in the
calculation of the achievable information rate. To better reflect the performance of
real communication systems, the concept of net information rate is introduced, which
accounts for forward error correction (FEC) and its associated coding rate:

CNet = Rsym · [Hs − (1−Rc)m] · (1−OH) (2.13)

where CNet denotes the net information rate, Rc represents the coding rate based on
the employed FEC scheme, and the remaining variables retain the same definitions as
in (2.12).

However, implementing the most suitable feedforward error correction scheme dur-
ing the experiments is both crucial and complex. Therefore, researchers often resort to
pre-FEC metrics such as bit error ratio (BER) and normalized generalized mutual in-
formation (NGMI) to predict post-FEC performance and coding rate, thereby reducing
the complexity of the experiment [38].

In optical communication systems, typical requirements on the bit error ratio (BER)
after forward error correction (FEC) is less than 10−15 [36]. Initially, pre-FEC BER
is examined to predict the performance of a hard-decision (HD) FEC. However, for
advanced soft-decision (SD) FEC schemes like low-density parity-check (LDPC) codes
with SD, the chosen modulation formats influence post-FEC BER prediction based on
pre-FEC BER. With the incorporation of SD-FEC, relying solely on pre-FEC BER for
prediction purposes becomes inaccurate.

Among various information-theoretic measures, the NGMI is particularly useful and
has been shown to make the most robust prediction of the post-FEC BER for various
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constellation sizes if the underlying system employs uniform square QAM [37]. Actually,
for the non-uniform square QAM, e.g. probabilistic constellation shaping, the NGMI
is still robust but the calculation way is modified, as shown in the next section.

The NGMI is the maximum number of information bits per transmitted bit and is
calculated by normalizing the GMI with the number of bits m used to represent one
transmitted symbol,

NGMI =
GMI

m
, with 0 ≤ NGMI ≤ 1 (2.14)

Note that the coding rate of a binary FEC code has the same physical implication
as NGMI, quantifying the number of information bits per transmitted bit. Hence, an
ideal binary FEC code of rate Rc ensures error-free decoding if the channel quality
satisfies NGMI ≥ Rc. For instance, if pre-FEC constellation data yields an NGMI of
0.85, it suggests that an ideal rate-0.85 code (equating to about 18% FEC overhead)
would likely yield error-free post-FEC results.

2.3 Probabilistic Constellation Shaping

Probabilistic constellation shaping (PCS) has emerged as a pivotal enabler in numerous
recent record-setting optical fiber communication experiments, primarily due to its fine-
grained rate adaptability and energy efficiency gains [3]. Its significance stems from
Shannon’s seminal insight that a continuous Gaussian source distribution achieves the
maximum capacity of the additive white Gaussian noise (AWGN) channel when ideal
forward error correction (FEC) is assumed. This idea is elaborated in the previous
section 2.2.1, particularly assumption A1.

Although the idea of optimizing channel capacity by modifying the a priori prob-
ability distribution of constellation symbols using a Gaussian distribution is straight-
forward, its practical implementation has been challenging. This requires mapping
uniformly distributed input bits to an output symbol sequence that follows a specific
normal distribution, and its inverse process. These challenges persisted until 2015 when
Georg Böcherer introduced constant composition distribution matching (CCDM) [39]
and probabilistic amplitude shaping (PAS) [40].

2.3.1 Shaping Gap and Shaping Gain

According to Shannon, maximum mutual information is achieved when the transmitted
symbol distribution matches the channel noise distribution, which is white Gaussian.
In conventional modulation formats, the constellation of transmitted symbols is uni-
formly distributed, resulting in a mismatch with the Gaussian noise distribution and a
consequent capacity loss, known as the 1.53 dB ”shaping gap.”

For example, in conventional QAM, symbols are transmitted with equal probability
regardless of their amplitude or power, as shown in Figure 2.3(a). This uniform distri-
bution leads to inefficiency, as power is ”wasted” on transmitting too many high-power
symbols. With the same power budget or SNR, it is more efficient to transmit fewer
high-power symbols and increase the distance between symbols. As shown in Figure
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2.2, if scaling the RMS circle of Figure 2.2(b) to the same value of Figure 2.2(a), the
distance between different transmitted constellation points in the PCS case is larger
than that of the uniform case.

PCS addresses this inefficiency by shaping transmitted symbols to an exponen-
tial distribution that approximates the Gaussian noise distribution, thereby optimizing
channel capacity. As shown in Figure 2.3(b), PCS-QAM symbols occur with different
probabilities: low-power symbols are sent more frequently, while high-power symbols
are sent less often. Ideally, this approximate Gaussian distribution achieves the ulti-
mate shaping gain of πe

6
≈ 1.53 dB over conventional modulation formats [41].

The ”shaping gap” or the ultimate shaping gain of 1.53 dB can be derived as the
difference between the average power of a uniform distribution over an interval and
that of a Gaussian distribution with the same differential entropy [42], as follows:

The uniformly distributed symbol source Xu is bounded by ±b and assumed to have
infinitely many constellation points, which are not discrete but continuous,

p(xu) =
1

2b
, with − b ≤ xu ≤ b (2.15)

The resulting average power Pu and the source entropy Hs(Xu) are calculated as,

Pu =

∫ b

−b

x2
up(xu) dx =

b2

3
and Hs(Xu) =

∫ b

−b

1

2b
log2 (2b) dx = log2 (2b) (2.16)

For the PCS case, the exponentially distributed symbol source Xe is assumed to
ultimately approximate the ideal normal distribution, Xe ∼ N (0, σ2) which means,

Pe = σ2 and Hs(Xe) =
1

2
log2

(
2πeσ2

)
(2.17)

To simplify the comparison, these two entropies can be further rewritten as,

Hs(Xu) =
1

2
log2 (12 · Pu) and Hs(Xe) =

1

2
log2 (2πe · Pe) (2.18)

Assuming the two sources have the same entropy, Hs(Xu) = Hs(Xe), then the
difference between the two average powers can be distributed as,

Pu

Pe

=
2πe

12
= 1.4233 = 1.5329 dB (2.19)

Thus, a source using a conventional QAM modulation format with uniformly dis-
tributed symbols requires 1.53 dB more power than a source using normally distributed
symbols for the same entropy. PCS approximates a normally distributed source and
therefore has the energy efficiency gain and overcomes the 1.53 dB shaping gap. As-
suming the constant noisy power, PCS-QAM requires a lower SNR than conventional
QAM to achieve a given entropy, which makes PCS-QAM more noise tolerant. In other
words, PCS-QAM has higher entropy and sends more information bits than uniform-
QAM with the given SNR.
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The good noise tolerance with the PCS can be graphically understood by comparing
the two sub-figures in Figure 2.2, where the constellation diagrams of the Uniform-
16QAM and the PCS-16QAM have the same constellation central points (xr+ jxi with
xr/i ∈ ±1,±3,±5) and the same noise level (25 dB SNR), but the PCS-16QAM shows
the lower RMS value and the lower noise-induced spreading of constellation points,
which means the better noise tolerance.

Figure 2.2: Constellation Diagrams: (a) Uniform-16QAM with an entropy of 4.0,bits/symbol
and (b) PCS-16QAM with an entropy of 3.0 bits/symbol at a noise level of 25 dB, where the
root mean square (RMS) values of the transmitted symbols are indicated, and the intensity
of the dot color correlates with the density of points, with brighter shades representing higher
densities.

Figure 2.3: Probability Distributions: (a) PCS-64QAM with an entropy of 6.0 bits/symbol
and a shaping factor of 0 (equivalent to Uniform-64QAM), and (b) PCS-64QAM with an
entropy of 5.4 bits/symbol and a shaping factor of 0.0436.
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2.3.2 Maxwell-Boltzmann distribution

The Maxwell-Boltzmann (MB) distribution, a widely used discrete exponential distri-
bution, approximates the ideal continuous normal distribution. It is crucial to narrow
the gap toward the Shannon limit and provide flexible data rates.

Given the transmitted QAM symbol set X, the probability of a constellation point
x ∈ X is generated according to the Maxwell–Boltzmann (MB) [43],

p(x) =
e−λx2∑
x∈X e−λx2 , with λ ≥ 0 (2.20)

which is the maximum entropy distribution for X under an average-power constraint.
Here, λ is the shaping factor that controls the exact shape of this distribution.

Different shaping parameters λ result in different probability mass functions p(x) and
different Shannon entropies. Specifically, when λ = 0, the MB distribution degenerates
to a uniform distribution with entropy Hs(X) = m bits per symbol. As the shaping
factor increases λ > 0, the entropy decreases 0 < Hs(X) < m, enabling rate adaptation
with reduced average symbol power. Ideally, with various integers m and arbitrary
decimal λ, any entropy value is implemented, which means an arbitrary data rate
adaption.

Although issues like finite numerical precision and quantization error can occur,
PCS with the MB distribution offers significantly more options for fine-tuning entropy
compared to conventional modulation formats, where only integer values are possible.

2.3.3 Probabilistic Amplitude Shaping

To transform independent and Bernoulli(1/2) distributed binary bits into a sequence
of transmitted symbols with an MB distribution, and vice versa on the receiving end,
a distribution matcher and dematcher are required. Constant composition distribution
matching (CCDM) [39] is the most widely used technique for this purpose. CCDM
is a fixed-to-fixed length, invertible, and low-complexity encoder and decoder based
on constant composition and arithmetic coding processes. While well-known, channel
coding, such as FEC, is essential in advanced communication systems as it provides
significant coding gains, often up to 10 dB. However, combining distribution coding
(also known as shaping) and channel coding presents challenges.

Performing coding after shaping at the transmitter distorts the shaped symbol dis-
tribution since FEC parity bits are typically not shaped. Conversely, performing coding
before shaping can lead to error bursts when de-shaping erroneously received symbols
at the receiver [3]. To address this issue, probabilistic amplitude shaping (PAS) [40]
has been proposed. PAS utilizes CCDM to shape the amplitude of the transmitted
symbols while using LDPC codes to encode the sign of the transmitted symbols.

Although the detailed mechanics of CCDM and PAS are beyond the scope of this
thesis, interested readers are encouraged to refer to the cited literature for more in-
formation. The crucial point is that the distribution (de)matcher is compatible with
FEC, and CCDM achieves the entropy of the desired distribution asymptotically as
block length increases. Additionally, it has been shown that the NGMI is a reliable
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predictor of FEC performance for PCS QAM [36]. The NGMI formula, adjusted from
the original (2.14), is given by:

NGMI = 1− Hs

m
+

GMI

m
(2.21)

where Hs is the entropy of the transmitted symbols after constellation shaping and m
is the number of bits representing each transmitted symbol. For uniformly distributed
symbols, Hs = m, then NGMI = GMI

m
. The term Hs

m
is referred to the shaping rate

caused by the distribution matcher. The calculation of the GMI still follows (2.11),
but the prior probability is non-uniform and follows (2.20).

Using this modified NGMI formula, the post-PAS performance can be predicted
from pre-PAS results, as elaborated in the previous subsection 2.2.3. This means that
symbols with the desired distribution can be directly generated at the transmitter and
directly demapped at the receiver, eliminating the need for a complex PAS scheme.

2.3.4 Existing DSP Challenges

Digital signal processing (DSP) demodulation algorithms developed for conventional
QAM with uniform symbol probabilities often perform poorly when applied to PCS-
QAM [11]. This issue arises despite the constellation points of PCS being placed on
the rectilinear grid of a square QAM template, which should facilitate coherent DSP
by leveraging robust state-of-the-art square-QAM algorithms in contrast to geometric
constellation shaping [3].

The DSP challenges encountered with PCS-QAM can be broadly classified into two
categories: the degeneration of the optimal solution and the non-convergence problem:

1. Due to the non-uniform distribution of transmitted symbols, the original optimal
solution, which does not consider prior probabilities, may degrade into a suboptimal
one. This degradation can be severe, potentially leading to complete failure when the
shaping factor λ is relatively large. This issue is prevalent in decision-directed DSP
methods, including the suboptimal radius selection in the radius-directed equalizer
(RDE) [44] during the polarization demultiplexing (pol-demux) stage, and the subop-
timal symbol detection in the blind phase search (BPS) [22] during the carrier recovery
stage.

2. Due to approximately Gaussian distributed symbols, some blind DSP methods
fail to converge or provide incorrect results, since a blind separation of Gaussian sources
is an intricate problem [12]. This is observed in different ways, including a flattened cost
function or kurtosis problems in the constant modulus algorithm (CMA) [45] during the
pol-demux stage, and a smooth S-curve in the modified Gardner timing error detector
[46] during the timing recovery stage.

This thesis will specifically focus on addressing the problem of optimal degrada-
tion in the carrier recovery stage, as discussed in Section 3 since carrier recovery is
the most critical and influential issue for single-carrier coherent communication where
polarization de-multiplexing is not needed.
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2.4 Partial Response Signaling

Partial response signaling (PRS) [13], also known as correlative level coding and faster-
than-Nyquist signaling [4], is a spectral pulse shaping technique that reduces the analog
signal bandwidth significantly below the Nyquist rate by introducing inter-symbol in-
terference (ISI). This technique allows for an increased transmission data rate despite
the strict analog bandwidth limitations imposed by factors such as the limited sam-
pling rate of the DAC, bandwidth-restricted channels, or the concatenation of multiple
wavelength selective switches (WSS) [47].

A well-known example of PRS is duobinary modulation [14], the simplest form of
polybinary shaping, which can be achieved using a low-pass analog filter or a delay-
and-add (1 + Z−1) digital filter. By intentionally introducing the known ISI 1 + Z−1

and increasing the number of amplitude levels, the 3 dB bandwidth of the resulting
signal is reduced to half the original ideally. This reduction mitigates the effects of
narrow filtering bandwidth limits, equalization-enhanced noise [48], and crosstalk in
wavelength-division-multiplexed (WDM) systems [49]. Furthermore, the introduced
and known ISI can be effectively canceled using various methods such as maximum-
likelihood sequence equalization (MLSE) with the Viterbi algorithm [50], decision feed-
back equalizers (DFE) [51], and transmitter-side precoding with receiver-side modulo
decoding, also known as Tomlinson-Harashima precoding (THP) [31, 52].

Figure 2.4: (a) Normalized power spectrum of the 160GBaud noisy signal with a 25 dB SNR
and a 256 GSa/s sampling rate, utilizing various pulse shaping methods (blue: SRRC with
zero roll-off factor, red: duobinary, yellow: tribinary). Corresponding constellation diagrams:
(b) SRRC, (c) duobinary, and (d) tribinary.
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2.4.1 Polybinary Shaping and Tomlinson-Harashima Precoding

As the most accessible PRS technique, polybinary shaping comprises a finite impulse
response (FIR) filter, (1 + Z−1)n with the order n ∈ N, followed by conventional pulse
shaping methods, such as the rectangular Nyquist shaping [49] or the SRRC pulse
shaping with a small roll-off factor [53]. Figure 2.4(a) illustrates that as the order n of
polybinary shaping increases from 0 to 2, the normalized power spectrum of the trans-
mitted signal decreases, with the 99% bandwidth reducing from 79.3GHz to 66.1GHz
to 55.2GHz. The corresponding constellation diagrams for SRRC with β = 0, poly-
binary with n = 1 (duobinary), and polybinary with n = 2 (tribinary) are shown
in Figure 2.4(b-d), respectively, which show that the number of constellation points
increases with the order n and the occurrence of constellation points becomes non-
uniform, similar to the PCS shown in Figure 2.2. Based on the amplitude levels of
the M-PAM case discussed in [54], the total number of constellation points of M-QAM
symbols with Polybianry is given by:

Npoly = [2n · (
√
M − 1) + 1]2 (2.22)

To effectively use polybinary shaping, a method is needed to address the ISI in-
troduced by the designed FIR filter or to decode the polybinary-shaped symbols back
to their original form. To mitigate the FIR filter’s impact at the symbol level, the
maximum-a-posteriori (MAP) sequence detection scheme was developed and investi-
gated in [55]. This scheme leverages the correlation patterns between neighboring
symbols to mitigate the ISI penalty. While MAP sequence detection offers superior
performance, its practical application is limited due to its significant implementation
complexity [56]. An alternative solution, maximum likelihood sequence estimation
(MLSE), has become a widely adopted approach. MLSE provides comparable per-
formance by searching for the minimum Euclidean distance path using the Viterbi
algorithm, rather than employing the exhaustive search required by the MAP scheme.
This approach maintains relatively low computational complexity for low modulation
levels but becomes unbearable for higher modulation levels. In addition, MLSE is in-
compatible with SD-FEC because it only provides conventional hard decision values
at its output, thereby limiting the potential performance benefits of SD-FEC [56, 57].
Given the limitations of both MLSE and MAP detection schemes, decision feedback
equalization (DFE) emerges as a more suitable alternative. DFE employs a feedback
equalizer with detected symbols at the receiver [51]. However, DFE is susceptible to
error propagation (EP), where previous detection errors influence current equalization
results due to the feedback loop.

To address these challenges, Tomlinson-Harashima precoding (THP), proposed in
the 1970s, has been revisited. It employs an infinite impulse response (IIR) filter, the
direct inverse of the polybinary shaping filter, at the transmitter to avoid EP effects
and channel noise while effectively mitigating ISI caused by polybinary shaping. This
comes at the cost of two additional 2M modulo operations: one at the transmitter to
control the IIR filter’s output and another to enable memoryless symbol-based decoding
at the receiver. The abbreviated system architecture of polybinary shaping with THP
is shown in Figure 2.5, and the implementation details will be discussed in Chapter 4.
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Despite its benefits, THP is not without drawbacks, including ”shaping loss” (the
average power increase due to THP) and ”modulo loss” (the extra error caused by
the 2M modulo operation with noise at the receiver), as well as an increased peak-
to-average power ratio (PAPR) of the transmitted signals. These issues are further
elaborated in Chapter 4. Nevertheless, researchers have made significant efforts to
improve THP and enhance its attractiveness. For instance, [58] introduced a modulo
size factor to balance the shaping loss and modulo loss; [30] employed a reduced-state
version of the symbol-level MAP equalization based on the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [59] to replace the 2M modulo operation at the receiver, thereby
reducing modulo loss; and [56] utilized a soft demapper [60] with improved accuracy in
log-likelihood ratio (LLR) computation for decoding.

Figure 2.5: The simplified flowchart combining THP with Polybianry

2.4.2 Existing DSP Challenges

Although polybinary shaping and THP are not new theories and have had many
successful applications—including conventional intensity modulation direct detection
(IM/DD) systems [54, 61], self-coherent detection (SCD) systems [25], and WDM-
QAM systems [49, 47]—there is a tacit agreement to overlook the DSP implementation
scheme for the receiver [4, 15, 16].

However, the DSP challenges caused by polybinary shaping and THP cannot be
hidden. Taking the timing recovery stage as an example, when SRRC pulse shaping
with a roll-off factor close to 0 and an oversampling rate close to 1 complex sample
per symbol, the widely used modified Gardner algorithm fails. In addition to clock
recovery, when utilizing polybinary shaping with THP in a coherent communication
system, carrier recovery is also crucial due to its time-varying nature. The time-varying
envelope of the carrier introduced by FTN signaling makes carrier frequency recovery
(CFR) in FTN systems more challenging than in Nyquist systems [4]. Additionally,
intentional ISI in FTN systems causes the transmitted symbol to deviate from the
original constellation point, causing most carrier phase recovery (CPR) methods for
Nyquist systems ineffective [16].

To address frequency offset and phase noise in FTN systems, several frequency
domain pilot tones-based methods have been proposed [17, 62]. However, these methods
significantly increase system complexity and reduce spectrum utilization. Given that
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the transmitted constellation diagram of polybinary shaping exhibits a non-uniform
distribution similar to PCS, we have attempted to extend efficient carrier recovery
methods from the PCS case to effectively solve the carrier recovery problem for QAM
symbols with polybinary shaping and THP, as discussed in Chapter 4.
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Carrier Frequency and Phase
Recovery 3
3.1 Literature Review

For uniform M-QAM, various schemes have been proposed to estimate and compen-
sate for frequency offset and phase noise, either separately or jointly. Viterbi-Viterbi
phase estimation (VVPE) and its partition-based variants [63, 64, 65] are proposed
for estimating both frequency offset and phase noise due to their low computational
complexity, but they provide relatively low accuracy. For more stable and accurate
estimation, fast Fourier transforms (FFT) are employed for frequency offset estimation
(FOE) following the 4th power operation (4th power FFT) [66]. Despite its effective-
ness, this method has significant computational complexity due to the large FFT block
size. For robust carrier phase tracking and recovery (CPR), blind phase search (BPS)
and its multistage variants [67, 68, 69, 70] are used to balance implementation com-
plexity and performance, especially for high-order modulation formats. To avoid the
inevitable phase ambiguity issue of all blind CPRs, pilot symbols are regularly embed-
ded within the signal frame as an absolute phase reference, leading to the widespread
adoption of pilot-based CPR [71, 72]. To minimize pilot overhead while maintaining
tracking accuracy, a dual-stage pilot-BPS scheme [73] has been proposed with less than
2% overhead, where the first stage performs coarse phase estimation using pilot-based
phase estimation, followed by a second stage of fine estimation using BPS.

However, in the PCS-MQAM system, the aforementioned algorithms degrade sig-
nificantly or even fail. The reduction in the proportion of high-amplitude constellation
points with π

4
+ k · π

2
(k = 0, 1, 2, 3) modulation phase under moderate or strong shap-

ing conditions of PCS deteriorates the performance of the conventional 4th power FFT
algorithm [20, 21]. To address this, the radius-directed (RD) 4th power FFT algorithm
based on optimized QPSK-selection [20, 21, 43] and the generalized circular harmonic
expansion (GCHE) algorithm based on maximum likelihood weighting [20] have been
studied. These methods require prior knowledge of symbol-level SNR, and the maxi-
mum likelihood-based calculations and the increased block size further increase compu-
tational complexity. In contrast, pilot-based FOE has regained attention [74, 75] due
to its modulation independence, low computational complexity, and relative precision,
although with a pilot overhead of approximately 2% - 7%.

Meanwhile, the non-uniform distribution of transmitted symbols breaks the uniform
assumption used in most decision-based algorithms, such as VVPE and BPS, leading
to incorrect detection/selection and performance loss at the CPR stage [22, 23, 24].
Considering the prior distribution of transmitted symbols, modified Viterbi-Viterbi
and maximum likelihood (V&V+ML) phase estimators [23, 76] have been proposed as
low-complexity methods, but they are still not better than conventional BPS with large
block size. Furthermore, CPR methods based on Kullback-Leibler divergence (KLD)

21



[77, 78] and maximum probability-directed blind phase search (MPD-BPS) [24] have
been proposed to enhance conventional BPS performance. Note that the basic idea
of KLD and MPD-BPS is the same as utilizing maximum likelihood estimation and
considering the prior distribution of PCS symbols when calculating the probability of
the received symbols. Although their increased computational complexity is mitigated
by precalculation and look-up table methods [78] and only considering the near-most
four constellation points [24], the large number of test phases required for accurate
phase estimates still demands significant computational time.

Furthermore, the impact of non-linear phase noise tends to increase with increasing
kurtosis (µ4) of the transmitted signal, as discussed in [19]. This suggests that higher
shaping factors of PCS could lead to more pronounced phase noise effects and higher
penalties. Even worse, PCS can increase the occurrence of cycle slips (CS) [75]. The
maximum occurrence of CS is observed at the optimal shaping factor that maximizes
mutual information for a given AWGN channel [79]. However, blind CPR algorithms
generally cannot recover from CS on their own [80]. Therefore, to address CS and
ensure robust recovery, a dual-stage pilot-based CPR scheme for PCS was studied at
[75] at the cost of 3.1% overhead.

Thus, considering that pilot symbols are needed to maximize PCS gain by avoiding
CS, that the high overhead reduces the overall information rate, and that advanced
blind CFR and CPR methods have significantly increased complexity, it is meaningful
to explore methods to minimize overhead [81] while maximizing the utility of pilots to
enhance performance and reduce computational complexity.

3.2 Problem Formulation

On the receiver side, the digitized samples obtained after optical-to-electrical and
analog-to-digital conversion are processed through the DSP chain for signal recovery,
as elaborated in Section 2.1. After timing recovery and blind channel equalization, the
received symbol yi can be expressed as [75]:

yi = xi · ej(2π∆fTsym·i+φi) + ηi, i = 0, 1, . . . , Ns − 1 (3.1)

where xi = rie
jϕi ∈ X is the transmitted complex symbol, e.g., PCS-MQAM symbols,

drawn from an alphabet of sizeM with a priori probability p(x) ∼ MB(λ), ηi represents
the amplified spontaneous emission (ASE) noise [82], which is modeled as a complex
Gaussian random variable with zero mean and variance σ2

η, and Ns refers to the total
length of the received sequence. Here, ∆f denotes the frequency offset between the
transmitter (Tx) and receiver (Rx) lasers, which exhibits relatively slow changes over
time. Tsym is the symbol period, and φi is the random phase noise, following the discrete
Wiener process:

φi = φ0 +
i∑

k=1

γk, with γ ∼ N (0, 2πLwTsym) (3.2)

where φ0 is the initial phase noise, γk is a Gaussian random variable with zero mean
and variance σ2

γ = 2πLwTsym, and Lw represents the combined linewidth, given by the
sum of the linewidths of the transmitter and local oscillator lasers.
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The task of carrier frequency recovery (CFR) is to estimate ∆f and compensate for
the constant phase rotation it introduces between consecutive symbols. Simultaneously,
the carrier phase recovery (CPR) algorithm aims to estimate and compensate for phase
noise φi, and sometimes also compensates for the residual frequency offset.

3.3 A Pilot-Based Carrier Recovery Scheme with Generalized
Maximum Likelihood Estimation

Compared to the blind algorithm, the pilot-based (or data-aided) algorithm offers supe-
rior accuracy, lower complexity, and is modulation-independent. However, it introduces
pilot overhead, such as 3.03% [24] 3.1% [75] and 6.25% [83], which reduces the achiev-
able information rate. In contrast, for carrier phase recovery, blind algorithms cannot
effectively handle cycle slips due to the 4th-order rotational symmetry of the square
QAM constellation [80]. The periodically inserted pilot-based cycle slip check is cru-
cial for maintaining consistent performance. Therefore, since the use of pilot symbols
is unavoidable, it is meaningful to explore methods to minimize overhead [81] while
maximizing the utility of pilots to enhance performance and reduce computational
complexity.

In this section, a pilot-based carrier recovery scheme with generalized maximum
likelihood (GML) estimation is proposed, featuring a dual-stage phase estimation (a
pilot-based coarse estimation and a fine estimation with GML) to reduce the com-
plexity of blind estimation and increase the accuracy of the low-overhead pilot-based
estimation. To further effectively utilize the pilot sequence, a pilot-based frequency
estimation is implemented, which is more accurate and computationally efficient than
other blind CFR methods. The flowchart of the entire scheme is shown in Figure 3.1.

Figure 3.1: The flowchart of the pilot-based carrier frequency and phase recovery scheme

3.3.1 The Pilot-Based Frequency Recovery

The pilot-based frequency recovery, labeled as ’Pilot-CFR’ in Figure 3.1, utilizes pilot
symbols periodically inserted into the transmitted data sequence to remove the mod-
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ulation phase ϕ by producing the received pilot with the conjugate transmitted pilots
and then searching the spectrum peak of the production results to predict the frequency
offset. It has the advantage of being modulation-independent and thus transparent to
the amount of shaping applied to the constellation.

As shown in Figure 3.1, the block-wise received symbol sequence yn consists of many
data symbols which are yi,n at i = 1, . . . , Lp−1, Lp+1, . . . , Lb−1 and Np+1 inserted pi-
lot symbols, which are yi,n at i = 0, Lp, . . . , NpLp (where NpLp =: Lb, and Lb+1 is the
total symbol length of each block) for the nth block of the received sequence. In other
words, every pilot symbol is followed by Lp−1 data symbols, which means the overhead
caused by the periodically inserted pilots is OH = 1

Lp
. After block-wise synchronization

on the receiver side, the Np + 1 received pilots can be extracted and we can construct
a received pilot sequence, pr,n = [y0,n , yLp,n , . . . , yNpLp,n]

T , while the corresponding

transmitted pilot in the complex conjugated format is p∗
t,n = [x∗

0,n , x
∗
Lp,n

, . . . , x∗
NpLp,n

]T .
Then the modulation phase is removed by multiplying pr,n by p∗

t,n. Finally, the fre-
quency offset can be estimated through a peak search on the discrete-frequency spec-
trum as:

∆f̂n = argmax
f

|
Np∑
i=0

(yiLp · x∗
iLp

)e−j2πfTsym·i| = argmax
f

|FFT{(pr,n ⊙ p∗
t,n);NFFT}| (3.3)

where ∆f̂n means the estimated frequency offset for the nth block of the received
sequence, given by the peak of the frequency spectrum, (·)∗ represents the complex-
conjugate operation, Tsym means the symbol duration time, ⊙ refers to the element-wise
product, and NFFT refers to the discrete frequency points of the fast Fourier transform
(FFT). To increase estimation precision, the FFT in this formula can be calculated
with NFFT > Np and zero-padding [84]. The estimation range for this method is

[−Rsym

2Lp
; Rsym

2Lp
], with a resolution of Rsym

LpNFFT
and the symbol rate Rsym = 1

Tsym
. In addition,

if the NFFT > Np is unbearable, a frequency domain interpolation [82] can be done with

the ∆f̂n|NFFT=Np to achieve relatively good accuracy with less computational complexity
increase. However, compared to blind frequency recovery algorithms, the pilot-based
method requires at least an order of magnitude smaller NFFT, significantly reducing
computational time.

In particular, (3.3) accounts for the impact of Gaussian channel noise ηi and Wiener-
process phase noise φi as the noise floor in peak search processes with large block
sizes. These types of noise, characterized by their random nature and lack of specific
frequency offsets, contribute to an approximately white spectrum. When these noises
exhibit significant variance, they create a noise floor that can disrupt the peak search,
leading to low search accuracy and even incorrect peak identification when the peak
amplitude is small. However, with a relatively large block size and typically sufficient
SNR of pilots, the noise floor can usually be overcome.

With the block-wisely estimated frequency offset, ∆f̂n, the frequency compensation
is then performed as follows:

zi,n = yi,n·e−j(2π∆f̂nTsym·i) = xi·ej(2π∆fres,nTsym·i+φi,n)+η
′

i, with ∆fres,n = ∆f−∆f̂n (3.4)
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where (·)i,n means the ith symbol in the nth block, zi,n is the received symbol after
the carrier frequency recovery and is subsequently fed into the carrier phase recovery,
∆fres,n means the residual frequency offset which is quite small but exists in practice,
and η

′
i,n is the corresponding Gaussian noise.

Considering that the frequency offset is not constant but slowly varies in practice,
carrier frequency recovery is generally performed block by block. In each block of the
received symbols, the frequency offset estimation is shown as (3.3), but (3.4) needs to be
modified to ensure the continuous phase change over time with the various block-wisely
estimated frequency offset,

zi,n = yi,n · e−j(2π∆f̂nTsym·i+θn−1) (3.5)

where (·)i,n means the ith symbol in the nth block, and θn−1 is the accumulated phases
until the last block,

θn−1 =
n−1∑
k=0

2π∆f̂kTsym(NpLp + 1) (3.6)

with ∆f̂0 initialized to zero
In addition, the implementation of the periodically inserted pilot symbol has mul-

tiple choices [72], including the innermost pilot symbols (±1 + ±1j), the outermost
pilot symbols (±7+±7j when M = 64), and the pilot symbols with the average power
(±

√
Pave + ±

√
Pavej). Each of these pilots has its own advantages and disadvantages.

However, to simplify the implementation, no real pilots are transmitted. Instead, after
time alignment between the transmitted and received sequences, an arbitrary fraction
of the received symbols can be replaced by their corresponding transmitted symbols,
thus treated as pilots during off-line processing [85].

3.3.2 Dual-Stage Pilot-Based GML Phase Recovery

For our dual-stage pilot-based GML phase recovery, labeled as ’Dual-CPR’ in Figure
3.1, the pilot-based phase estimation is applied in the first stage to obtain a coarse
estimation of the received constellation. Then the coarse estimated phase is fed to the
GML phase estimator as the center of the search range, employed in the second stage.
Finally, the fine estimated result is used to compensate the received symbol after the
previous frequency compensation.

It is interesting to note that the use of the pilot-based algorithm in the first stage
not only performs the coarse phase estimation to reduce the search range of the second
stage, as usual [86], but also provides the absolute phase reference to the blind algorithm
in the second stage [73]. This enables the GML phase estimator at the second stage to
immunize the phase ambiguity issue (cycle slips).

3.3.2.1 Pilot-based Phase Estimation

After the frequency recovery, the frequency offset is almost compensated (although
some residual offset may remain, it can be treated as additional phase noise and ad-
dressed by phase recovery). Thus, assuming that the carrier frequency recovery almost
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compensates for the frequency offset, only the laser phase noise and AWGN are left
over. As a result, (3.1) can be block-wisely simplified as,

zi,n = xi,n · ejφi,n + ηi,n, i = 0, 1, . . . , NpLp (3.7)

where xi,n = ri,ne
jϕi,n ∈ X represents the transmitted complex symbol with a priori

probability p(x) ∼ MB(λ), φi,n denotes the laser phase noise, which is defined in (3.2),
and ηi,n represents the ASE noise, in the nth block.

In addition, based on (3.2), the relationship between neighboring phase noises can
be described as,

φi,n = φi−1,n + γi,n, with γ ∼ N (0, 2πLwTsym) (3.8)

where γ is a Gaussian random variable with zero mean and variance σ2
γ = 2πLwTsym.

This indicates that the phase noise varies in magnitude and depends on the combined
linewidth Lw and the symbol rate Tsym. In the modern optical communication system,
Lw is typically in the kHz range, while Tsym is in the GHz−1 range, resulting in very
small changes between adjacent phase noise values, such that φi−1,n ≈ φi,n ≈ φi+1,n.

Thus, carrier phase recovery is performed element by element using a centrosym-
metric sliding window with a step length of 1 and a window size of Nw+1, rather than
on a block-by-block basis. In other words, assuming that the phase noise is a constant
unknown variable rather than a Wiener-process variable within each sliding window,
the carrier phase estimation for each symbol relies on the Nw/2 symbols on its left side
and the another Nw/2 symbols on its right side.

To be specific, the pilot-based phase estimation, labeled as ’Pilot-CPR’ in Figure
3.1, first extracts and constructs the received pilot sequence after frequency compensa-
tion, p

′
r,n = [z0,n, zLp,n, . . . , zNpLp,n]

T and multiplies it by the complex conjugate of the

transmitted pilot sequence pt,n = [x0,n, xLp,n, . . . , xNpLp,n]
T to remove the modulation

phase. Usually, a sliding-average filter with moderate window size is then used to sup-
press Gaussian noise at the symbol level [75] before extracting the phase, since taking
the angle of the average in the symbol level gives the maximum likelihood estimation
(MLE) [76, 87] of the laser phase when the modulation influence is removed. This
process can be simplify distributed as:

φ̂o·Lp,n =arg

 o+Ncoa
w /2∑

k=o−Ncoa
w /2

zk·Lp,n · x∗
k·Lp,n

 , with o = 0, 1, . . . , Np (3.9)

= arg

 o+Ncoa
w /2∑

k=o−Ncoa
w /2

r2k·Lp,n · e
jφk·Lp,n +

o+Ncoa
w /2∑

k=o−Ncoa
w /2

η
′

k·Lp,n


≈ arg

ejφo·Lp,n

o+Ncoa
w /2∑

k=o−Ncoa
w /2

r2k·Lp,n

 = φo·Lp,n

where φ̂o·Lp,n refers to the estimated phase noise of the oth received pilot symbol (the
(o ·Lpth received symbol) in the nth block, arg(·) denotes the mathematical operation
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of taking the angle (or phase), N coa
w is the window size used in the pilot-based coarse

phase estimation, η
′

k·Lp,n
represents the corresponding term related to Gaussian noise,

and φk·Lp,n ≈ φo·Lp,n is assumed for k = o − N coa
w /2, . . . , o + N coa

w /2. Notably, this
estimation can span across blocks: when o + N coa

w /2 > Np and o − N coa
w /2 < 0, the

pilots in (n−1)th block and (n+1)th block are utilized.

However, inspired by [65] and [88], and considering the Wiener process of laser phase
noise, which has a symmetric and decreasing correlation over time, a sliding-Hamming
window is utilized in our implementation:

φ̂o·Lp,n = arg

 o+Ncoa
w /2∑

k=o−Ncoa
w /2

ck · zk·Lp,n · x∗
k·Lp,n

 , with o = 0, 1, . . . , Np (3.10)

where ck means the coefficient of the origin-symmetric Hamming window, which equals
1 around the center and smoothly decreases towards both sides, N coa

w equals to the
window size minus 1, which increases with decreasing SNR to enhance Gaussian noise
suppression.

Usually, while larger block sizes in either the sliding-average window or the sliding-
hamming window can enhance noise tolerance and stabilize performance, they may also
result in excessive averaging of the phase noise. This over-averaging can lead to under-
compensated laser phase noise and performance loss. Balancing the tradeoff between
noise suppression and phase estimation is challenging, especially when both the channel
noise level and laser phase noise level are high. In practice, the optimal window size
is typically determined through parameter scanning rather than modeling due to the
complexity of the actual system. Additionally, considering that this is a pilot-based
coarse phase estimation, the primary focus is on providing a reliable estimate rather
than a highly accurate result, so a relatively large block size is suggested.

After estimating the phase noise for each pilot symbol, φ̂i,n at i = 0, Lp, . . . , NpLp,
a simple interpolation procedure is used to coarsely estimate the phase of the payload
symbols located between the pilots, φ̂i,n at i = 1, . . . , Lp − 1, Lp + 1, . . . , NpLp − 1.
This procedure usually consists of a simple π unwrapping operation (shifts the phase
by adding multiples of ±2π until the jump between adjacent phases is less than π, to
ensure the phase continuous) and a first-order (linear) interpolation. But even simpler
approaches such as the zero order hold can be considered to further reduce computa-
tional complexity [73]. Finally, the coarsely estimated phase φ̂coa,n = [φ̂0, φ̂1, . . .]

T is fed
into the subsequent GML-based blind phase search to do a more accurate estimation.

One of the main advantages of phase recovery techniques based on pilot symbols is
their robustness against cycle slips [73] since the estimated phase is directly calculated
with the true transmitted pilots and the unambiguous range of [−π, π) without the
influence of the π

2
rotational self-symmetry caused by the square MQAM constellation.

However, this robustness comes at the expense of additional transmission overhead,
OH = 1

Lp
. With the assistance of the subsequent second stage, the overhead of this

pilot-based method to achieve coarse estimation is quite low.
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3.3.2.2 GML-based Blind Phase Search

The maximum likelihood (ML) estimator is a widely used method for blind phase
estimation with uniform constellations, commonly known as the blind phase search
(BPS) algorithm [89] for carrier phase recovery. To differentiate our method from the
conventional BPS, we refer to our ML phase estimator, which incorporates the prior
distribution of PCS-QAM symbols, as the generalized ML (GML) phase estimator.
This approach extends the assumption of a uniform distribution to accommodate any
distribution, particularly the exponential distribution MB(λ).

With the robust but coarse estimated phase noise from the ”Pilot-CPR” stage, the
GML-based blind phase search, labeled ”GML-CPR” in Figure 3.1, utilizes almost the
same phase search structure as the well-known BPS. However, ”GML-CPR” utilizes the
φ̂i,coa,n (the i-th element of φ̂coa,n) as the search center and generalizes the conventional
ML estimator by considering the non-uniformly distributed symbols p(x) ∼ MB(λ)
instead of assuming a uniform distribution.

Following the signal model shown in (3.7), the likelihood p(zn|φn) of the laser phase
vector φn = [φ0,n, φ1,n, . . . , φLb,n]

T (where Lb = NpLp) with the received sequence after
frequency compensation zn = [z0,n, z1,n, . . . , zLb,n]

T can be derived as [89],

p(zn|φn) =

Lb∏
i=0

p(zi,n|φi,n)p(φi,n|φi−1,n) (3.11)

with p(zi,n|φi,n) =
M∑

m=1

1

πσ2
η

exp (−|zi,n − xme
jφi,n|2

σ2
η

)p(xm)

p(φi,n|φi−1,n) =
1

πσ2
γ

exp (−|φi,n − φi−1,n|2

σ2
γ

) (3.12)

where p(zi,n|φi,n) is the complex Gaussian distribution function which considers all
possible constellation points and their prior probability p(xm), and p(φi,n|φi−1,n) refers
to the transition probability of two consecutive laser phases, got from (3.2) or (3.8).

Similarly to the previous pilot-based phase estimation, we consider it with a cen-
trosymmetric sliding window whose step length is 1 and window length is Nfin

w . The
maximum likelihood estimator for the ith laser phase noise of the n-th block can be
given by:

φ̂i,n = argmax
φi,n

∫
. . .

∫
p(z|φ) dφ

i−Nfin
w
2

,n
. . . dφi−1,ndφi+1,n . . . dφ

i+
Nfin
w
2

,n
(3.13)

with p(z|φ) = p(y
i−Nfin

w
2

,n
, . . . , y

i+
Nfin
w
2

,n
|φ

i−Nfin
w
2

,n
, . . . , φ

i+
Nfin
w
2

,n
) and i = 0, 1, . . . , Lb

where the cross-block estimation is allowable: when i+Nfin
w /2 > Lb and i−Nfin

w /2 < 0,
symbols in (n−1)th block and (n+1)th block are utilized.

The computation of this high-dimensional integral is hard, but it can be relaxed by
assuming a constant phase φ̃i,n = φi−Nfin

w /2,n = . . . = φi+Nfin
w /2,n, which means the phase

noise is a constant and unknown parameter instead of a Weiner-process variable over
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the observing window,

φ̂i,n =argmax
φ̃i,n

Nfin
w /2∏

k=−Nfin
w /2

p(zi+k,n|φ̃i,n)p(φ̃i,n|φ̃i,n)

=argmax
φ̃i,n

Nfin
w /2∑

k=−Nfin
w /2

log [p(zi+k|φ̃i,n) · 1] , with i = 0, 1, . . . , Lb (3.14)

=argmax
φ̃i,n

Nfin
w /2∑

k=−Nfin
w /2

log

[
M∑

m=1

exp (−|zi+k,n − xme
jφ̃i,n|2

σ2
η

) exp(−λx2
m)

]
(3.15)

where the normalization terms 1
πσ2

η
and

∑
xm∈X e−λx2

m are constant and thus ignored,

and in theory, the search range of the variable φ̃i,n is [−π
4
, π
4
] since the constellation of

the square MQAM is π
2
rationally self-symmetric. Note that, the phase noise estimation

is element-wise instead of block-wise to increase the phase noise tracking.
One simple way to solve this optimization problem is utilizing the gradient descent

with multiple iterations [77], but it shows low linewidth and noise tolerance. Another
way is to follow the highly parallel computing architecture of the conventional BPS
with finite discrete test phases to achieve the suitable resolution and best performance,

φ̃i,n ∈ φtes with φv,tes = φ̂c +
B

V
· v, v = −V

2
, . . . , 0, . . . ,

V

2
(3.16)

where φv,tes is the element of φtes, φ̂c is the center of the phase search range, which
is usually set to zero, but in our case, φ̂c = φ̂i,coa,n, the coarsely estimated phase fed
from the previous pilot-based phase estimation, B is the phase search range, which is
usually π

2
but can be reduced e,g, π

4
, due to the robust pilot-based phase estimation, V

refers to the total number of test phases, which is usually set at a relatively high value
for high modulation order but can be reduced with the reduced phase search range or
kept large to increase the search resolution.

Furthermore, since storage space is sufficient for offline processing, the term
p(zi+k|φ̃i,n) in (3.14) can be precalculated and restored in a lookup table to speed up
the phase search process [78]. Note that different from [73], the π

2
unwrapping operation

on the estimated phase is abandoned to avoid cycle slips [90] in our implementation.
Finally, the final phase compensation is done by producing the received symbol after

carrier frequency recovery zi with the fine estimated phase φ̂i,fin,n:

x̂i,n = zi,n · e−jφ̂i,fin,n (3.17)

where φ̂i,fin,n is the finely estimated phase obtained using (3.14) and (3.16), which
utilizes the previous coarse estimation from (3.10) as the search center.

3.4 Simulation and Experimentation

To verify the proposed carrier recovery scheme can deal with the carrier frequency
offset and phase noise in the PCS scenarios, the MATLAB simulation and the practical
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experiment are separately implemented: the simulation is in the symbol level and
only considers the modeled carrier imperfection with the idea AWGN channel, while
the experiment with the real devices considering the whole practical communication
system. Our ultimate goal is to apply the proposed scheme to PCS-enabled optical
communication, thereby maximizing the benefits of PCS to achieve record-rate single-
carrier coherent optical communication.

3.4.1 MATLAB Simulation

Figure 3.2: Simulation Setup: A 160GBaud PCS-64QAM symbol sequence with 10 × 220

symbols is directly generated, followed by the addition of various levels of AWGN, a 100MHz
carrier frequency offset (FO), and laser phase noise (PN) modeled from a laser with a 400 kHz
linewidth. After carrier frequency recovery (CFR), the normalized mean square error (NMSE)
between the actual FO and estimated FO is calculated. The mean absolute error (MAE) and
the generalized mutual information (GMI) are subsequently calculated following carrier phase
recovery (CPR)

According to Kulmer et al. [2], a 160GBaud uniform-64QAM demonstrated achiev-
able data rates of 774Gbit/s (approximately 160GSymbol/s · 4.84 bits/symbol) in
a single-carrier back-to-back experiment. Despite Almonacil et al. [6] showcasing a
demonstration beyond 185GBaud PCS-64QAM, higher symbol rates can alleviate the
carrier recovery problem [72], as increasing the symbol rate results in less phase noise
change for a fixed frequency offset and combined laser linewidth. Hence, MATLAB
simulation employed the 160GBaud PCS-64QAM as a test example. Furthermore,
considering a frequency offset of around 50MHz in most experiments and a combined
linewidth of less than 200 kHz for commercial lasers, the simulation utilized a 100MHz
frequency offset and 400 kHz combined linewidth to ensure an adequate working range.
To concentrate on the carrier offset and recovery stage, a simplified DSP flowchart was
implemented and depicted in Figure 3.2.

With a fixed frequency offset (FO) of 100MHz, the performance of various carrier
frequency recovery (CFR) algorithms can be effectively compared using the normalized
mean square error (NMSE) metric [20]:

NMSE =
1

Nb

Nb∑
n=1

|∆f̂n −∆f |2

R2
sym

(3.18)

where Nb is the number of blocks in the whole sequence, ∆f̂n represents the estimated
FO of the nth block, ∆f denotes the actual FO (set at 100MHz for our simulation),
and Rsym corresponds to the symbol rate (set at 160GBaud in our scenario). While
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achieving complete compensation of the actual FO might not be feasible, an NMSE
value in the order of 10−9 is satisfactory [20]. Residual phase changes induced by the
remaining FO can subsequently be addressed by the subsequent carrier phase recovery
(CPR) stage.

Furthermore, in evaluating the performance of CPR schemes, the mean absolute
error (MAE) between the estimated phase and the actual phase noise is calculated,

MAE =
1

Ns

Ns∑
i=1

|φ̂i,fin − φi,res| (3.19)

where Ns is the number of symbols in the whole sequence, φ̂i,fin refers to the finely
estimated phase based on various CPRs, and φi,res denotes the phase noise combining
the original phase noise φi shown in (3.1) and the phase noise caused by the resid-
ual frequency offset after the CFR stage. In addition to MAE, generalized mutual
information (GMI) is commonly employed as a comprehensive metric for comparing
CPR performance as it encapsulates both phase error and achievable information rate,
especially when the actual phase noise is unknown in the experiment.

Additionally, the computational complexity of an algorithm is also a crucial perfor-
mance measure. To simplify theoretical analysis and provide an intuitive representation,
we used MATLAB CPU time to display the computational complexity of each method.

For a comprehensive examination of performance, the SNR value of the AWGN
channel varies from 10 dB to 16 dB, and the shaping factor of the PCS-64QAM varies
from 0 to 0.1, which almost covers the recommended range of PCS-64QAM use in
theory [75, 91]. To ensure the robustness of our findings, each simulation generates 220

symbols, with the entire process repeated 10 times. The reported results represent the
average outcomes obtained from these 10 repetitions.

3.4.1.1 CFRs Comparison

To ensure fair comparisons, we set the CFR block size to a medium size of 214 while con-
figuring the pilot overhead of ’Pilot-FFT’ to the lowest permissible value, 1

512
(ensuring

160×109

2×512
> 100× 106), allowing for the use of 32 pilot symbols per block.

Figure 3.3 shows that ’Pilot-FFT’ outperforms the other methods and demonstrates
robustness against changes in SNR and shaping factor, albeit with a slight overhead of
0.2%. Conversely, ’GCHE’ exhibits comparable robustness and performance without
overhead, but its computational complexity and reliance on a look-up table may be
prohibitive. Importantly, the pilot symbols used in ’Pilot-FFT’ can be repurposed for
subsequent carrier phase recovery (CPR) to coarsely estimate phase noise and mitigate
cycle slips, thus making ’Pilot-FFT’ a more promising approach.

3.4.1.2 CPRs Comparison

Figure 3.4 shows the phase recovery stage simulation results. Notably, all CPRs are
simulated with the same configuration of SNRs and shaping factors. The slight x-axis
offset in Figure 3.4(a,c) was intentionally added during the drawing to make it easier
to see the details. In addition, to ensure a fair comparison, all CPRs are applied to
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Figure 3.3: NMSE Curves after CFR: (a) With the shaping factor fixed at 0.032 (leading
to 5.63 bits/symbol entropy), the SNR is swept from 10 dB to 19 dB in 1 dB intervals. (b)
With the SNR fixed at 14 dB, the shaping factor varies from 0 to 0.1 in 0.01 increments, where
’Pilot-FFT’ (purple diamond) is the pilot-based frequency recovery discussed in Section 3.3.1,
’4PFFT’ (blue cross) refers to the conventional 4th power method [66], and ’RD-4PFFT’
(orange circle) and ’GCHE’ (yellow square) are two other advanced blind methods [20].

the symbol sequence post ’Pilot-FFT’ CFR, with separate grid searches conducted to
optimize the block size for each method, from 27 to 212.

As shown in Figure 3.4(a,c), each CPR has six data points along the y-axis, rep-
resenting the results for six different block sizes. According to Figure 3.4(a,c), ’Pilot-
GML’ consistently achieves the lowest MAE across all SNR cases and shaping factors,
benefiting from the better search resolution (much smaller search range for the second
GML-based stage), compared with others methods. To be specific, at the 0.05 shaping
factor of Figure 3.4(a), ’Pilot-GML’ has up to 2 degrees less MAE than others. Addi-
tionally, the six points of ”Pilot-GML” in almost every SNR or shaping factor are much
closer to each other, compared with those of other methods. It means that ’Pilot-GML’
is less sensitive to block size changes and shows relatively good estimation even with
suboptimal block size. In contrast, the other three blind methods, especially ’BPS’,
are block size sensitive and even fail (MAE ≈ 90◦) with some unsuitable block sizes,
as shown at λ ≈ 0.05 in Figure 3.4(a) and at SNR ≈ 12 dB in Figure 3.4(c). These
large MAEs are mainly caused by cycle slips, as shown in Figure 3.5. Indeed, carefully
tuning the block size can help to avoid cycle slips, but it wastes a lot of time and
computational resources, and is only feasible for offline processing. Thus, ’Pilot-GML’
has a much more robust cycle-slip tolerance and is insensitive to block size due to the
help of pilots, leaving the more accessible and versatile.

With the optimal block size, the net GMI (defined as the overhead times the GMI)
of each CPR is calculated and is shown in Figure 3.4(b,d). From an overall perspective,
GML-based methods, such as ’GML’, ’MPD’, and ’Pilot-GML’ outperform the conven-
tional BPS under all scenarios, especially in low to moderate shaping factors (<0.05)
and low SNRs (<12 dB). Additionally, the net GMI gap between ’AWGN’ and CPRs is
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Figure 3.4: Results after Various CPRs: (a,b) With the SNR fixed at 13 dB, the shaping
factor roughly varies from 0 to 0.1. (c,d) With the shaping factor fixed at 0.0338 (leading to
5.6 bits/symbol entropy), the SNR is varied from 10 dB to 16 dB in 1 dB increments, while (a,c)
MAE results with various block sizes and (b,d) net GMI results with the optimal block size,
where ’BPS’ (blue circle) represents conventional CPR methods [67], ’GML’ (orange square)
indicates the single-stage blind GML method without any pilots, ’MPD’ (yellow diamond)
denotes the up-to-date advanced CPR method [24], ’Pilot-GML’ (purple hexagon) represents
the proposed dual-stage pilot-based GML method discussed in Section 3.3.2, ’AWGN’ (green
cross) signifies the achievable GMI without carrier imperfections, ’Shannon Limit’ (black line)
represents the ideal Shannon limit calculated with log2(1 + SNR).

significant, especially in moderate shaping factors as shown in Figure 3.4(b), and low
SNRs as shown in Figure 3.4(d), which means the increased residual phase noise. This
trend is identical to the results shown in Figure 3.4(a,c).

The gap in the low-SNR range shown in Figure 3.4(d) can be explained as follows:
as SNR decreases, the AWGN level increases, complicating the balance between AWGN
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Figure 3.5: An Example of Cycle Slips: The blue line represents estimated phases from
CPR algorithms without cycle slips while the orange line denotes that with two-cycle slips,
manifesting as π

2 phase shifts. For square QAM formats, blind phase estimates are limited
between −π

4 and π
4 , phase unwrapped (used to add multiples of π

2 to the estimated phase
to the difference between two consecutive estimates is always less than a certain threshold
and extend the phase range to cover (−π, π]) can add or subtract incorrect multiples of π

2 in
scenarios of high additive and phase noise, causing constellation rotations called cycle slips
(CSs), which can generate catastrophic error bursts [90].

and laser phase noise, leading to higher residual phase noise (MAE) and lower GMI.
In addition, the gap between ’Pilot-GML’ and ’AWGN’ when applying a moderate
shaping factor of 0.02 to 0.05, shown in Figure 3.4(b), indicates that residual phase
noise is relatively large and influenced by the shaping factor. Some researchers [79,
75] argue that this is caused by the additional phase noise introduced by PCS with
optimal shaping factors (which obtain the almost maximum GMI in theory), reducing
the practical shaping gain of PCS. As a result, they suggested to apply the practical
optimal shaping factor 0.05, instead of the theoretical optimal shaping factor 0.04 to
obtain the maximum GMI. However, their conclusions are based on simulations and
experiments, strictly speaking, the theoretical explanations are yet to be explored in
the future. Despite the imperfections in carrier phase recovery with the theoretical
optimal PCS, we still obtain a 0.27(= 4.29−4.02) bits/symbol GMI gain through PCS,
by comparing the 4.29 GMI at λ = 0.05 and the 4.02 GMI at λ = 0.

Furthermore, compared with ’BPS’, ’Pilot-GML’ shows improvements, such as an
around 0.025 bits/symbol GMI increase at the 0.015 shaping factor of Figure 3.4(b) and
an around 0.2 dB sensitivity gain at 10 dB SNR of Figure 3.4(d). Notably, the expected
significant degradation of ’BPS’ due to the oversight of the non-uniform distribution is
not obvious, which can be explained by the average effect of the large block size [22].
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When the block size of ’BPS’ is large enough, the correct symbol detection dominates,
and the influence of wrong symbol detection in the PCS cases can be ignored. However,
the too-large block size will over-average the phase noise and cause estimation errors.
This tradeoff makes ’BPS’ quite sensitive to the block size, which aligns with the
observation shown in Figure 3.4(a,c).

Additionally, according to Figure 3.4(b), ’Pilot-GML’ has slightly worse net GMI
when the shaping factor is small (λ < 0.04) and large (λ > 0.07) compared with ’GML’
and ’MPD’. This is because, although ’Pilot-GML’ has overall better estimation accu-
racy, when the phase error is small enough (e.g., around the minimum phase distance

3.18◦ = ∠(1+7i)−∠(1+5i)
π×180◦

between neighboring constellation points of 64QAM), the better
estimation accuracy does not translate into notable GMI gains. As a result, the 0.2%
pilot overhead of ’Pilot-GML’ slightly exceeds the obtained GMI gain, causing a net
GMI loss. However, this small loss can be almost ignored, and ’Pilot-GML’ shows
better performance than ’MPD’ in low SNRs, as shown in Figure 3.4(d).

Thus, ’Pilot-GML’ is the most stable method, exhibiting resilience against cycle
slips in all scenarios with any block size, having the best phase estimation accuracy,
and achieving almost the best GMI compared to the other three methods with the
optimal block size.

3.4.1.3 CPU Time Comparison

Note that CFR and CPR block sizes influence the computational cost; hence, we fixed
the CFR block size at 214 and the CPR block size at 211, nearly optimal parameters for
medium SNR and medium shaping factor. Table 3.1 and Table 3.2 present the average
CPU time required for each method, normalized by the number of symbols across the
entire set of simulation cases. Although there may be minor machine errors in the
value, the general trend is evident.

As shown in Table 3.1, ’Pilot-FFT’ has the lowest CPU Time, benefiting from the
lower FFT points used by ’Pilot-FFT’ (NFFT = 212), and only costs around 40% CPU
time of the other two methods (NFFT = 214).

Based on Table 3.2, ’Pilot-GML’ has the lowest CPU time while ’MPD’ has the
highest. Compared with ’BPS’, around three times the computation cost of ’MPD’
is caused by the probability calculation of the four most neighboring constellation
points. Although ’GML’ and ’Pilot-GML’ consider the whole 64 constellation points
instead of the nearest four, the on-site calculation is greatly accelerated by applying
the precalculation and look-up tables. In addition, compared with ’GML’, the further
CPU time decrease of ’Pilot-GML’ is caused by employing fewer test angles with a
smaller search range in its second stage (46 and π/4 in ’Pilot-GML’ instead of 81 and
π/2 in ’GML’).

Thus, despite the pilot introducing a slight overhead of 1/512 for ’Pilot-FFT’ and
’Pilot-GML’, it significantly reduces computational complexity, saving at least half the
computation time, compared with other blind methods.
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Table 3.1: CPU Time Comparison of Frequency Recovery Methods
Frequency Recovery Methods 4PFFT GCHE Pilot-FFT

CPU Time (seconds/symbol) 1.46E-07 1.56E-07 6.02E-08

Table 3.2: CPU Time Comparison of Phase Recovery Methods
Phase Recovery Methods BPS GML MPD Pilot-GML

CPU Time (seconds/symbol) 5.10E-06 4.08E-06 1.63E-05 2.42E-06

3.4.1.4 Summary

In summary, compared with the widely-used conventional methods (’4PFFT’ and
’BPS’) and the state-of-art methods (’RD-4PFFT’, ’GCHE’, and ’MPD’), ’Pilot-FFT’
and ’Pilot-GML’ demonstrate the best stability within the simulation scenarios and
exhibit superior overall performance (the highest estimation accuracy and the lowest
computational cost), supporting the proposed ’Pilot-FFT + Pilot-GML’ scheme as a
promising approach for experimental implementation.

In addition, even with the optimal parameters and the best balance achievable, the
residual phase noise can increase with the decreased SNR or when the applied shaping
factor approaches the theoretical near-optimal shaping factors.

3.4.2 Experimental Verification

Following the MATLAB simulation, the experimental verification of the complete com-
munication link using real devices, as opposed to ideal models, is crucial.

3.4.2.1 Experimental Setups

To test that the proposed pilot-based GML carrier recovery scheme is usable in real
optic-fiber communication scenarios with PCS and to verify the advantages of PCS
technology, we build the experimental setup, as shown in Figure 3.6.

Note that ’VOA1’ and ’EDFA2,’ placed at the beginning of the AWGN channel as
shown in Figure 3.6, are used to introduce various levels of ASE noise to the transmitted
signal. ASE noise, originating from the amplifier, is typically modeled as additive white
Gaussian noise. Generally, a higher amplifier gain results in higher noise levels. With a
fixed output power of the optical signal after ’EDFA2,’ a lower output power of the data
signal after ’VOA1’ necessitates a higher amplifier gain, thereby increasing the noise
level. Consequently, by decreasing the output power of ’VOA1’ through increased
attenuation, the ASE noise is augmented, leading to a decrease in SNR. Additionally,
’BPF2’ is used to suppress out-of-band noise after ’EDFA2,’ and ’VOA2’ ensures that
the signal power fed into the receiver remains constant. In our experiment, the output
power of ’VOA1’ is sweeping from -35 dBm to -20 dBm while the output power of
’VOA2’ is fixed at 0 dBm.

For the transmitter DSP, instead of implementing the PAS structure with a coder
and distribution matcher, 100GBaud symbol sequences with various shaped Maxwell-
Boltzmann (MB) distributions (shaping factor λ from 0 to 0.08 with intervals about
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Figure 3.6: Experimental Configuration of the Coherent Transmission Link: In the transmit-
ter (Tx), a complex modulated signal is first generated by a 128GSa/s arbitrary waveform
generator (AWG) with digital signal processing (Tx DSP). Through an in-phase and quadra-
ture (IQ) Mach-Zehnder modulator (MZM) with a 55GHz 3 dB bandwidth, the modulated
signal is mixed onto a single optical carrier that is generated by a continuous wave laser (Tx
Laser) with 1550 nm carrier frequency and 100 kHz linewidth. The passband signal is then
amplified by an erbium-doped fiber amplifier (EDFA1) with a 4 dB noise figure (NF) and
filtered using a 3 nm band-pass filter (BPF1) to remove out-of-band noise. After the Tx, the
transmitted signal passes through an AWGN channel with amplified spontaneous emission
(ASE) noise, which includes two variable optical attenuators (VOA1 and VOA2), a 4 dB NF
EDFA (EDFA2), and a 3 nm BPF (BPF2). On the receiver side, a polarization controller
(PC) first aligns the polarization state of the optical signal. Then this signal is downconverted
to the baseband in the optical coherent receiver, which consists of a continuous wave laser
(Rx Laser) with 1550 nm carrier frequency and 100 kHz linewidth, a 90◦ hybrid structure,
and two pairs of balanced photodetectors (BPD) with > 70GHz 3 dB bandwidth. Finally,
the digital signal is obtained using a 160 GSa/s digital sampling oscilloscope (DSO) and is
analyzed by offline digital signal processing (Rx DSP).

0.05) are directly generated. These sequences are then pulse-shaped using a 0.5 roll-
off factor SRRC filter. On the receiver side, the DSP setup is similar to the receiver
DSP shown in Figure 2.1, but without chromatic dispersion compensation and LMS
equalizer. The optical fiber used in this experiment is only a few meters long, rendering
the chromatic dispersion stage negligible. The LMS equalizer is omitted to facilitate a
focused comparison of various carrier recovery schemes, as it consistently compensates
for linear imperfections. The LMS equalizer could interfere with observations on carrier
recovery, particularly when a data-directed LMS equalizer is employed.

Specifically, the Rx skew, determined by the coherent receiver, needs to be esti-
mated only once at the beginning through grid search. After this, resampling with a
shifted sinc function is used for deskew. The Gram-Schmidt orthogonalization method
[92] is then employed to correct the non-ideal 90◦ phase difference between I and Q
components. Following this, an SRRC filter with a 0.5 roll-off factor is applied for
matched filtering. For timing recovery, the modified Godard algorithm [93] is utilized.
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After timing recovery, a 2-sample-per-symbol resampling is performed to enable the
T/2-spaced equalizer [94] to compensate for both linear distortions and residual timing
offsets. A 1× 1 feed-forward T/2-spaced equalizer is then used for the blind equaliza-
tion stage, where the filter coefficients are trained using a constant modulus algorithm
(CMA) and radius-directed equalization (RDE) with a steepest gradient descent cost
function [95]. Next, the proposed carrier recovery scheme, along with state-of-the-art
carrier frequency and phase recovery algorithms, is implemented for fair comparison.
After resampling to one sample per symbol, the recovered symbols are then mapped
back to the binary string, and the estimated SNR, GMI, and other figures of merit are
evaluated.

Notably, besides carrier recovery methods, conventional algorithms in other DSP
stages face several challenges when applied to PCS, as discussed in Section 2.3.4. These
challenges include a smooth S-curve in the modified Gardner timing error detector
[46] during the timing recovery stage, a flattened cost function or kurtosis issues in
the constant modulus algorithm (CMA) [45], and suboptimal radius selection in the
radius-directed equalizer (RDE) [44] for blind equalization stage. Since our primary
focus is on carrier recovery, yet these challenges are unavoidable, we have adopted
the following interim solutions: increasing the block size used in the timing recovery
algorithm to 219, which ensures convergence but may reduce accuracy; and pre-training
the blind equalizers (CMA and RDE) with uniform 64-QAM symbols, which assumes
that the ’states’ (e.g., channel response, polarization state, residual imperfections) of the
entire system remain relatively time-invariant and potentially reduce the equalization
performance. Although these solutions are suboptimal and temporary, they allow us
to initially verify the proposed carrier recovery scheme in real experiments.

3.4.2.2 Results and Discussion

Given the time-varying, unpredictable, and coupled nature of actual frequency offset
and phase noise in the experiments, using NMSE and MAE to evaluate the results
separately is infeasible. Therefore, we directly use GMI or net GMI, defined as the
overhead times the GMI, as the performance indicator to evaluate our proposed scheme,
labeled as ’Pilot-FFT + Pilot-GML’, as a whole.

In addition, we choose the following carrier recovery schemes as the reference: 1. The
best conventional carrier recovery scheme, labeled ’4PFFT+BPS’, consists of the 4th
power FFT [66] for CFR and the conventional BPS [70] for CPR. 2. The state-of-the-art
carrier recovery scheme, labeled ’GCHE+GML’, consists of the best-known PCS CFR
[20] and the best-known PCS CPR. (According to Figure 3.3, ’GCHE’ performs much
better than ’RD-4PFFT’. Meanwhile, although ’MPD’ [24] is the latest publication,
’GML’ has better accuracy in theory and simulation as shown in Figure 3.4, and achieves
much higher computational efficiency as shown in Table 3.2, with the help of look-
up tables [77, 78].) 3. The standard VVPE-based carrier recovery with 100% pilot
overhead, labeled ’Full-Pilot’, to show the upper limit of the ideal carrier recovery.

Furthermore, to obtain the highest performance in different SNRs and various
shaping factors with each carrier recovery scheme, we used grid scanning to opti-
mize parameters such as block size and pilot rate: 214, 215, 216 block sizes for CFRs;
27, 28, 29, 210, 211, 212 block sizes for CPRs; 1/256, 1/512, 1/1024 pilot overhead for
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’Pilot-FFT+Pilot-GML’.

3.4.2.3 Two Representative Cases

Figure 3.7: GMI comparison of ’4PFFT+BPS’ (blue cross), ’GCHE+GML’ (red circle),
and ’Pilot-FFT+Pilot-GML’ (yellow square): (a) with a shaping factor of 0.045 (leading to
5.38 bits/symbol entropy) across various estimated SNR values, and (b) with approximately
11.4 dB SNR across various shaping factors, where the moderate parameter configuration is
applied (the CFR block size is 215, the CPR block size is 210, and ’Pilot-FFT+Pilot-GML’ has
a 1/512 overhead). ’Full-Pilot’ (purple diamond) indicates fully supervised CFR and CPR,
assuming all transmitted symbols are pilots, representing ideal performance. ’Estimated SNR’
refers to the reference SNR calculated based on standard uniform-QAM transmission.

Figure 3.7 shows two representative cases, with the same style as the MATLAB
simulation, to better analyze the experimental results.

Figure 3.7(a) shows that ’4PFFT+BPS’ and ’GCHE+GML’ fail at low SNRs with
medium shaping factor 0.045, whereas ’Pilot-FFT+Pilot-GML’ remains stable with
negligible pilot overhead 1/512. The increased gap between ’Full-Pilot’ and ’Pilot-
FFT+Pilot-GML’ with decreasing SNR indicates that residual phase noise increases
with the noise level, which is consistent with the trend shown in Figure 3.4 (c,d).

Figure 3.7(b) shows all methods experience an unexpected drop (about 0.1 to
0.2 bits/symbol GMI decrease) in performance, at medium shaping factors around
0.045, which even ’Full-Pilot’ cannot avoid. Ideally, the GMI curve of fixed SNR with
various shaping factors is concave as shown in Figure 3.4(b), even with the influence of
increased phase noises when the shaping factor approaches the theoretical optimal, as
discussed in Section 3.4.1.2. In addition, the performance drop caused by cycle slips is
quite huge and can be avoided with pilots. Eliminating additional phase noise intro-
duced by the optimal shaping factor and cycle slips, some possible reasons for this drop
are the inaccurate timing recovery, the suboptimal blind equalization, and nonlinear
phase noise [19] introduced by the nonlinear Schrödinger equation of optical fibers [96].
The exact reasons need further study, such as the implementation of modified timing
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recovery and blind equalization, and deeper insights into optical fiber non-linearity,
which is beyond the scope of this thesis.

Even without maximizing performance due to this unexpected drop, PCS QAM
already shows an increase in GMI around 0.22 bits/symbol than the uniform QAM,
by comparing the GMI value at the shaping factor of 0.06 and that at 0. Meanwhile,
although this unexpected drop cannot be completely eliminated, ’GCHE+GML’ and
’Pilot-FFT+Pilot-GML’ mitigate this drop better than ’4PFFT+BPS’ by accounting
for the non-uniform distribution of PCS symbols. However, in terms of the maximum
GMI when SNR =11.4 dB, the difference between these four schemes is ignorable, since
they have almost the same performance at the shaping factor of around 0.06.

Thus, based on Figure 3.7, in addition to the ideal ’Full-Pilot’, ’Pilot-FFT+Pilot-
GML’ shows the best performance in all SNR cases, especially in the low SNR range,
and in all shaping factors, especially the moderate shaping factor. However, this per-
formance advantage does not translate to a significant GMI increase in terms of the
maximum GMI for a fixed SNR scenario.

3.4.2.4 Comprehensive Performance Comparisons

Given the time-consuming nature of optimizing parameters for practical applications,
we averaged the net GMI value from the first five optimal parameter configurations
of each scheme to obtain a comprehensive performance measure, demonstrating both
recovery ability and suboptimal parameter tolerance.

Figure 3.8 shows that ’PCS-Pilot-FFT+Pilot-GML’ achieves the best average net
GMI, especially in the low SNR range, demonstrating stronger stability and less sensi-
tivity to parameter variations compared to the other schemes, which is consistent with
the trend shown in Figure 3.4.

Furthermore, comparing ’PCS-4PFFT+BPS’ with ’Uniform-4PFFT+BPS’ reveals
a clear PCS-enabled gain of about 0.17 bits/symbol GMI increase or about 0.6 dB sen-
sitivity gain across SNR values from 9.45 dB to 15 dB. Although this 0.6 dB gain is less
than the claimed 1.53 dB gain, ’PCS-4PFFT+BPS’ is much closer to the ideal ’Shan-
non Limit’ than that of ’Uniform-4PFFT+BPS’ and increases the achievable channel
capacity. With the proposed carrier recovery scheme, ’PCS-Pilot-FFT+Pilot-GML’,
the PCS-enabled gain is optimized, especially in the low SNR range (e.g., at 9.45 dB,
Pilot-FFT + Pilot-GML adds around 0.1 bits/symbol GMI increase or 0.25 dB sensi-
tivity gain), resulting in a total 0.85 dB gain, aligning with the gain shown in Fig-
ure 5 of [97]. Notably, even compared with the state-of-art carrier recovery scheme
’PCS-GCHE+GML’, our proposed scheme has 0.07 bit/symbol GMI increase or 0.2 dB
sensitivity gain.

In addition, we observed that the gap between ’PCS-Pilot-FFT+Pilot-GML’ and
’Shannon Limit’ increases as the SNR increases. This is due to the limitation of using
PCS-64QAM, whose GMI gain first increases and then decreases with SNR from low
to high, in theory [97, 91]. Higher-order modulations like PCS-144QAM [83] and PCS-
256QAM [22] are recommended for higher SNRs to provide the expected high shaping
gain.
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Figure 3.8: Averaged net GMI comparison of ’PCS-4PFFT+BPS’ (yellow cross), ’PCS-
GCHE+GML’ (purple circle), and ’PCS-Pilot-FFT+Pilot-GML’ (green square) with their
optimal shaping factors. ’Uniform-4PFFT+BPS’ (yellow dashed line) is the uniform 64QAM
case, as the reference to provide the GMI baseline and estimated SNRs. ’Shannon Limit’ (red
solid line) is the GMI upper bound calculated with log2(1 + SNR).

3.4.2.5 Optimal Shaping Factors

Identifying the optimal shaping factor in different SNR ranges is crucial for utiliz-
ing PCS to achieve record-rate single-carrier coherent optical communication, and is
difficult because the actual system is much more complex than just carrier recovery.
Usually, the practical optimal shaping factors are obtained by experiments, which are
related to the physical link and the DSP setup, as discussed in Section 3.4.2.3.

Figure 3.9 shows that practical optimal shaping factors differ significantly from the-
oretical ones, which is caused by several reasons. For ’4PFFT+BPS’, a shaping factor
around 0.025 is consistently optimal, as high shaping factors and low SNRs can cause
the blind 4th power FFT-based scheme to fail (as shown in Figure 3.3), and BPS shows
performance degradation due to neglecting the MB distributions of transmitted sym-
bols. For ’GCHE+GML’ and ’Pilot-FFT+Pilot+GML’, performance degrades with
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medium shaping factors (around 0.045), and the practical optimal shaping factor is
around 0.025 for high SNRs and around 0.07 for low SNRs. In addition to the high
phase noise caused by PCS itself when the shaping factor approaches the theoretical
optimum, as shown in Figure 3.7(b), inaccurate timing recovery and suboptimal blind
equalization potentially have negative influences. Some researchers [12] argue that the
exponential distribution of PCS-QAM with some specific shaping factors becomes much
closer to Gaussian, which is expected to maximize channel capacity but causes a prob-
lem for blind DSP since Gaussian signal and Gaussian noise have similar statistical
characteristics, making their blind separation or recovery a well-known intricate prob-
lem. Additionally, the increasing fluctuation of the instantaneous power and nonlinear
phase noise [19] associated with moderate and high shaping factors can also influence
the practical optimal shaping factor.

This mismatch between the theoretical and the practical shaping factor of PCS-
QAM is noticed and studied in [98, 75], which proposes ’shaping factor detuning’ to
avoid PCS-gain loss based on the experiment results. Although it is not migratable and
cumbersome to practice, a potential direction for future research to further improve the
PCS gain.

Figure 3.9: Optimal Shaping Factor Curves: ’Ideal AWGN’ (red dashed line) denotes ideal
AWGN simulation without any carrier imperfections, while practical experiments with three
different carrier recovery schemes: ’4PFFT+BPS’ (red cross), ’GCHE+GML’ (yellow circle),
’Pilot-FFT+Pilot-GML’ (purple square).
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3.5 Summary

In this section, we first present the challenges (e.g., non-uniform distribution, enhanced
cycle slips) and existing solutions (e.g., 4PFFT, GCHE, BPS, and MPD) for the carrier
frequency and phase recovery of the digital coherent receiver in PCS application sce-
narios. Considering the stability and simplicity of pilot-based algorithms, albeit with
high overhead and weak tracking ability, and the high accuracy but complexity and
ambiguity of blind GML schemes, we proposed and introduced a pilot-based carrier
recovery scheme using generalized maximum likelihood estimation, ’Pilot-FFT+Pilot-
GML’. This scheme not only incorporates dual-stage pilot-based GML phase recovery
but also integrates pilot-based frequency recovery, ensuring efficient utilization of pi-
lot symbols. Then, we compared it with other algorithms in MATLAB simulation,
showing better estimation accuracy, higher stability, greater tolerance of suboptimal
parameters, and doubled computational efficiency. Further practical experiments using
a 100GBaud single-carrier coherent optical communication link show that the proposed
scheme has more stable and superior overall performance, particularly in moderate and
high shaping factors and low SNR regions. Up to 0.27 bits/symbol GMI increase is
obtained by applying PCS-64QAM and the proposed carrier recovery scheme, which is
around 0.1 bits/symbol more than that with either the state-of-art or the conventional
carrier recovery schemes. Finally, we provide the optimal practical shaping factor for
different SNR intervals to guide future experimental work.
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Migration to Partial Response
Signaling 4
The proposed pilot-and-GML-based carrier recovery scheme can effectively handle MB-
distributed PCS symbols and can be extended to accommodate other techniques re-
sulting in non-uniformly distributed symbols. Examples of such techniques include
Polybinary shaping and Tomlinson-Harashima precoding (THP), which are types of
partial response signaling (PRS) [13], also known as faster-than-Nyquist (FTN) signal-
ing [4]. The mixed or separate utilization of Polybinary and THP shows promise for
use in both IM/DD systems [54, 61] and coherent systems [7, 8, 9], aiming to achieve
record performance in optical communication systems.

4.1 Literature Review

Despite the considerable attention FTN and PRS systems have received, much of the
research has focused on the asymptotic or practical throughput of FTN systems, with
only a few studies addressing the synchronization issues, such as timing, phase, and
frequency recovery at the receiver [4, 15, 16]. In addition, the inter-symbol interference
(ISI) introduced by artificial FTN or PRS signaling makes standard CPR algorithms
(e.g., VVPE and BPS) inadequate for FTN or PRS communication systems [17, 18].
However, carrier frequency and phase recovery remain essential for coherent communi-
cation systems.

To enhance CFR performance in FTN signaling, Liang et al. [99] proposed initial-
izing the frequency offset as the FFT peak of received data and employing the Newton
method to iteratively minimize the non-linear least squares error for fine frequency off-
set estimation. Kim et al. [100] presented a maximum-likelihood (ML) FOE for FTN
transmission systems by minimizing the mean square error (MSE) of the frequency off-
set estimator with pilot blocks. Both methods exhibit theoretical analysis and relatively
good simulation results, but no experimental verification.

For highly accurate carrier phase estimation, pilot-based estimators are predomi-
nantly used in FTN systems [4], whereas non-data-aided approaches, which rely on
ISI-free observations, are relatively unsuitable for FTN signals [15]. A few optical
(frequency)-domain pilot-based CPRs [62, 17] have been designed for FTN wavelength-
division-multiplexing (WDM) communication systems. These systems can integrate
the pilot tone and the FTN signal over different frequency points, which is not feasible
for single-carrier systems due to the increased device complexity. Additionally, a mod-
ified Viterbi-Viterbi phase estimation scheme has been proposed [18], which weighs the
estimation equation with the ISI variance, but the calculation method was not provided.

Focusing on THP-enabled coherent systems, the transmitted symbols possess
squared constellations as shown in [28, 101] that are more regular and squared com-
pared to the general FTN technique, allowing the reuse of some carrier recovery algo-
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rithms designed for Nyquist QAM symbols. A decision-directed ML phase estimator
[95] is employed in a single-sideband self-coherent detection (SSB SCD) THP-based
system [25]. In this context, self-coherent detection with adjacent moments results in
negligible carrier frequency offset and relatively small phase noise. Consequently, the
received symbol affected by phase noise remains concentrated within the vicinity of the
transmitted symbol, ensuring that decisions made without phase rotation are relatively
accurate. This is in contrast to general coherent systems, where such methods can-
not be directly applied [19]. Furthermore, a pilot-based VVPE is utilized for carrier
phase recovery in >100GBaud 16QAM THP-based coherent systems [8, 30, 9], with
approximately 2% overhead, which remains relatively high.

In the case of the (THP+)Polybinary-enabled PRS coherent system, we observed
that the constellation diagrams of the transmitted symbols are not only regularly
squared but also exhibit non-uniform occurrence, as the noisy polybinary constella-
tions shown in Figure 2.4(c) and Figure 2.4(d). This suggests that GML estimation
can be utilized by considering the prior distribution of the transmitted symbols to
improve carrier recovery performance, similar to our approach with PCS. According
to [54], the symbol prior distribution with precoded polybinary shaping can be de-
rived through algebraic or numerical methods. Therefore, by incorporating this new
non-uniform distribution, the carrier recovery scheme we proposed for the PCS case
can be extended. This extension promises to solve the carrier recovery problem in the
THP+Polybinary scenario with high accuracy and strong stability, while also reducing
computational cost and overhead.

4.2 Problem Formulation

To comprehensively address classic THP and polybinary shaping while simplifying im-
plementation, we consider the THP+polybinary shaping scheme. In this scheme, the
THP coefficient is the inverse of the polybinary coefficient to mitigate PRS-induced
ISI, and a 2M modulo operation is performed to de-precoding before symbol demap-
ping [25, 61], as illustrated in Figure 2.5.

On the receiver side, after timing recovery and blind channel equalization, the re-
ceived symbol yi can be expressed:

yi = ẋi · ej(2π∆fTsym·i+φi) + ηi, i = 0, 1, ..., Ns − 1 (4.1)

where ẋi represents the transmitted symbols after THP precoding and Polybinary shap-
ing, which can be recovered to the expected uniform symbols xi using a 2M modulo
operation, and the rest remains consistent with (3.1). In other words, the same sig-
nal model is used as discussed in Section 3.2 for the carrier recovery stage, with the
symbol distribution of ẋi being non-uniform due to the THP+Polybinary structure but
differing from the shaping-factor-controlled MB distribution.

Thus, the practical prior distribution of THP+duobinary-shaped symbols p(ẋm)
needs to replace the term p(xm) in (3.12). In other words, we need to replace exp(λx2

m)
in PCS cases shown in (3.15) to extend the proposed carrier recovery scheme. A simple
way to obtain the prior distribution of THP+polybinary shaping is directly utilizing
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the bivariate histogram histogram2 at the transmitter. It also can be derived through
algebraic or numerical methods [54].

Beyond carrier recovery, the implementation of the 2M modulo operation is note-
worthy and somewhat controversial: should it be half-open and half-closed as [−M,M),
or fully closed as [−M,M ]?

According to Tomlinson [31], the 2M-modulo operation is fully closed: if the input is
greater than M, M is subtracted an integral number of times until it is less than M; if the
input is less than —M, M is added an integral number of times until it is greater than
−M . This closed range aligns with the description in (13) of Harashima’s paper [32].
However, recent researchers [25, 26, 27] have used the 2M modulo operation in a half-
closed and half-open format, [–M, M), while others [28, 8, 29, 30] have adhered to the
fully closed format, [-M, M]. Notably, both groups cite Tomlinson [31] and Harashima
[32], and state their 2M modulo operation format without further explanation.

In the context of THP+polybinary shaping, we will compare these two formats and
investigate their further influence on carrier recovery.

4.3 Two 2M Modulo Operation Formats

Figure 4.1: Graphs Illustrating 2M Modulo Operations: (a) The output range is [-M, M],
and (b) the output range is [-M, M), where the x-axis represents the input values, while the
y-axis represents the output values.

The implementation of the Tomlinson-Harashima preceded polybinary shaping
(THP + Polybinary) as illustrated in Figure 2.5 relies fundamentally on the 2M modulo
operation. This operation has two formats based on the output range: [–M, M] and
[-M, M). Their intuitive mathematical representations are depicted in Figure 4.1.

Figure 4.1(a) directly translates the description from Tomlinson [31]: if the input
is greater than M, M is subtracted an integral number of times until it is less than
M; if the input is less than —M, M is added an integral number of times until it is
greater than -M. This results in a perfectly centrosymmetric function. While Figure
4.1(b) illustrates an alternative approach: the input x is first shifted by +M, then
the remainder after division by 2M is computed, and finally, +M is subtracted, y =
mod(x + M, 2M) − M , producing an asymmetric function. Indeed, the symmetry of
the 2M modulo operation significantly influences the symmetry of the constellation
diagrams’ position and distribution after shaping in both THP with integer coefficients
and THP+polybinary shaping.

47



Consider 16QAM with THP+duobinary (1+Z−1) shaping as an example, illustrated
in Figure 4.2. Figure 4.2(a) demonstrates that the constellation with the [−M,M ] for-
mat is symmetric about the origin, featuring 8 × 8 constellation points. In contrast,
the constellation with the [−M,M) format is symmetric about the (−1; 1) point and
contains 7×7 constellation points. In essence, THP+duobinary with [−M,M ] reshapes
the original 16QAM into 64QAM but without increasing entropy through constellation
occurrence shaping, as depicted in Figure 4.2(b). However, the probability distribu-
tion shown in Figure 4.2(c) reveals that THP+duobinary with [−M,M) introduces a
non-zero mean, (−1;−1), which wastes the resolution of the DAC at the transmitter, in-
creases non-linearity, and is incompatible with balanced photodetectors at the receiver
in optical-fiber communication systems. To address this, an additional bias equal to the
mean is subtracted from the symbols after THP+duobinary with [−M,M). Nonethe-
less, after bias compensation, symbols at the origin lacking phase information dominate,
potentially causing carrier recovery challenges at the coherent receiver.

Figure 4.2: (a) Constellation diagrams of the THP+Duobinary shaped 16QAM symbols
with two types of 2M modulo operations: [−M,M ] (blue circles) and [−M,M) (red crosses),
and their corresponding probability distributions: (b) with [−M,M ] and (c) with [−M,M).

4.4 Simulation-Based Comparison

To further comprehensively compare the differences, advantages, and disadvantages of
the two 2M modulo operations, we designed the simulation shown in Figure 4.3. The
complex baseband signal is transmitted through the simulation channel and processed
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with a 256GSa/s sampling rate at both the transmitter and the receiver, while the
symbol rate varies, controlled by the oversampling factor of ’SRRC’. Additionally, three
simulation channels are considered: (1) with various AWGNs, (2) with fixed brick-wall
bandwidth limitation and various AWGNs, and (3) with various AWGNs and fixed
carrier imperfections.

Figure 4.3: A Block Diagram of the Simulation Configuration: xi, ẋi, x̂i, ˆ̇xi are uniform
M-QAM symbols, THP+Polybinary symbols, and their estimated counterparts, respectively.
P (Z) refers to the polybinary shaping, ’SRRC’ denotes the pulse shaping by square root
raised cosine with a 0.1 roll-off factor and various oversampling factors, ’AWGN’ is channel
noise controlled by the SNR value, ’LPF’ is a high-order low pass filter providing a brick-wall
bandwidth limitation, ’CR’ is the carrier recovery scheme to handle carrier frequency offset
and laser phase noise, and ’LMSE’ is the least-mean-square equalizer to enhance signal quality
further.

4.4.1 Only Channel Noise

In the simulation with only channel noise, the 160GBaud uniform M-QAM symbols
and their THP+Polybianry shaped symbols are separately generated at the transmit-
ter, then SRRC pulse shaping and passing through AWGN channel where the SNR
varyies from 10 dB to 19 dB with 1 dB intervals, then received with SRRC filter and
LMS equalizer, and additional 2M modulo is implemented for THP+Polybianry shaped
symbols. In order not to lose generality, we simulated the duobinary P (Z) = 1 + Z−1

and tribinry P (Z) = 1+2Z−1+Z−2, and based on 4QAM, 16QAM, 64QAM, although
currently only 16QAM is widely used [8, 30, 9] in single-carrier coherent systems.

Table 4.1 provides a detailed comparison of various modulation formats across dif-
ferent M-QAM values (4, 16, and 64). The term ’Uniform’ refers to symbols without
THP and Polybinary shaping and serves as a baseline. ’Duobinary [-M, M]’ indicates a
2M modulo with an output range of [-M, M] and P (Z) = 1+Z−1, while ’Tribinary [-M,
M)’ indicates a 2M modulo with an output range of [-M, M) and P (Z) = 1+2Z−1+Z−2.
The ’Levels’ column represents the constellation levels, ’Pave’ denotes the average power
of the transmitted symbols, and ’LPRS’ indicates the sensitivity loss due to PRS, defined
as LPRS = 10 log10(P

PRS
ave /PUni

ave ). This shaping loss, as opposed to PCS shaping gain,
arises from the additional average power required to transmit the same information
bits, leading to lower noise tolerance and receiver sensitivity. ’PAPR’ is the peak-to-
average-power ratio of the transmitted signals post-SRRC filtering, indicative of the
related nonlinearity, while ’Bandwidth’ refers to the 99% energy bandwidth, defined as
the frequency range containing 99% of the power of the transmitted analog signal.

The results in Table 4.1 demonstrate that compared to the uniform M-QAM, the
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Table 4.1: Tx-side Comparisons of Various Modulation Formats based on Different M-QAMs.
Modulation Format Levels Pave LPRS PAPR Bandwidth (GHz)

M=4

Uniform 2 × 2 2.00 0.00 2.19 81.54
Duobinary [-M,M] 4 × 4 4.00 3.01 2.37 69.13
Duobinary [-M,M) 3 × 3 4.00 3.01 1.74 65.32
Tribinary [-M,M] 6 × 6 10.00 6.99 2.52 59.07
Tribinary [-M,M) 6 × 6 14.00 8.45 2.13 53.36

M=16

Uniform 4 × 4 10.00 0.00 2.58 81.54
Duobinary [-M,M] 8 × 8 18.00 2.55 2.47 67.55
Duobinary [-M,M) 7 × 7 20.01 3.01 2.22 65.31
Tribinary [-M,M] 16 × 16 56.00 7.48 2.92 55.85
Tribinary [-M,M) 14 × 14 62.01 7.92 2.47 54.03

M=64

Uniform 8 × 8 42.01 0.00 2.72 81.54
Duobinary [-M,M] 16 × 16 77.99 2.69 2.53 66.53
Duobinary [-M,M) 15 × 15 84.00 3.01 2.42 65.32
Tribinary [-M,M] 32 × 32 239.96 7.57 2.79 54.97
Tribinary [-M,M) 30 × 30 253.97 7.82 2.60 54.17

THP+Polybinary introduces additional constellation levels and increases the average
power of the transmitted symbols, resulting in sensitivity loss but providing bandwidth
suppression. Duobinary strikes a balance between uniform and tribinary formats, with
moderate increases in constellation levels and PRS loss, and a moderate decrease in
bandwidth. The 2M modulo with [-M, M] output range results in higher constellation
levels, lower average power (indicating more frequent occurrence of low-amplitude sym-
bols), less PRS loss, but a larger peak-to-average ratio, and slightly larger bandwidth
compared to [-M, M) output range. The gaps in PRS loss, PAPR, and bandwidth
between [-M, M] and [-M, M) decrease as M increases from 4 to 16 and 64.

Figure 4.4: Rx-side Comparisons after the LMS Equalizer: (a) GMI and (b) Estimated SNR
of various modulation formats based on different M-QAMs with various AWGN setting SNRs.
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Figure 4.4 provides a detailed comparison of various modulation formats across dif-
ferent SNR settings of AWGN. GMI is computed using the recovered symbols after the
2M modulo operation, while the estimated SNR is determined after the LMS equaliza-
tion but before the 2M modulo operation since the 2M modulo operation is non-linear
and disrupts the Gaussian noise characteristics. As shown in Figure 4.4(a), sensitivity
loss is evident. In general, higher shaping orders (with ’Uniform’ as order 0, ’Duobi-
nary’ as order 1, and ’Tribinary’ as order 2) correspond to higher sensitivity losses,
consistent with the trend observed in Table 4.1. Specifically, the sensitivity loss at the
receiver is comprised of a constant PRS shaping loss at Tx and an increased modulo
loss [28, 102] at Rx as the SNR decreases. For example, for ’64QAM Duo-[-M, M]’ (light
blue cross) and ’64QAM Uniform’ (light yellow hexagon), the sensitivity loss when GMI
≈ 4.9 bits/symbol is 2.8 dB (19 dB for ’64QAM Duo-[-M, M]’ compared to 16.2 dB for
’64QAM Uniform’), whereas the sensitivity loss when GMI ≈ 3.5 bits/symbol increases
to 3.6 dB (14.6 dB for ’64QAM Duo-[-M, M]’ compared to 11 dB for ’64QAM Uniform’).
The loss due to [-M, M] and Duobinary at the transmitter is 2.69 dB, and the additional
0.91 dB loss is attributed to errors from the 2M modulo operation with noisy inputs
[28]. Furthermore, Figure 4.4(b) illustrates the SNR gain resulting from the suppressed
bandwidth of PRS, which positively correlates to the experienced noise level. For in-
stance, when comparing ’Uniform’ and ’Duobinary’, at a setting SNR of 18 dB, the
estimated SNR of ’Duobinary’ is approximately 0.3 dB higher than that of ’Uniform’.
At a setting SNR of 11 dB, the estimated SNR of ’Duobinary’ is around 0.6 dB higher
than that of ’Uniform’. Generally, lower-setting SNRs introduce more Gaussian noise
into the transmitted signal across the entire spectrum. With the aid of SRRC-matched
filtering and a symbol-level LMS equalizer, the lower the bandwidth of the transmitted
signal, the higher the in-band signal quality and the estimated SNR.

It further shows us that modulo loss is a problem, even mitigating the gain from
the bandwidth suppression in the only AWGN case. Utilizing maximum-likelihood
sequence equalization (MLSE) with the Viterbi algorithm [50] is a possible approach,
but future implementations will need to significantly simplify its complex computations
and incorporate soft information recovery.

4.4.2 With Brick-Wall Bandwidth Limitation

Suppressed bandwidth is a well-known advantage of the PRS technique and is further
investigated with a brick-wall bandwidth limitation. As shown in part (2) of Figure 4.3,
a low-pass filter (LPF) is used before the AWGN, emulating the bandwidth limitation
of arbitrary waveform generators (AWG) and/or IQ modulators at the transmitter in
single-carrier optical communication. (If the bandwidth limitation of the entire link
occurs at the Tx, the AWGN should be placed before the LPF.)

In our simulation, the LPF is implemented using a low-pass Butterworth filter with
an 80GHz 3 dB bandwidth and a 20th order to ensure a rapid frequency response drop.
The symbol rate varies from 144GBaud, 176GBaud, and 208GBaud, with correspond-
ing FTN rates of -10%, 10%, and 30%, respectively, which are defined as the rate of
Nyquist bandwidth over system bandwidth minus 1 [25].

Based on the results shown in Figure 4.5, the gain of PRS is further observed. The
uniform QAM (’16QAM Uniform’ with green hexagons and ’64QAM Uniform’ with
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Figure 4.5: Comparisons after the LMS Equalizer: (a) GMI and (d) Estimated SNR at the
144GBaud symbol rate, (b) GMI and (e) Estimated SNR at the 176GBaud symbol rate, and
(c) GMI and (f) Estimated SNR at the 208GBaud symbol rate of various modulation formats
based on different M-QAM with various AWGN setting SNRs.

light blue triangles) is quite sensitive to the symbol rate increase due to the increased
analog bandwidth. The higher the symbol rate, the lower the estimated SNR after the
LMS equalizer, and the lower the GMI. In contrast, benefiting from the suppressed
bandwidth, PRS-enabled QAM is insensitive to the symbol rate increase and shows
significantly better GMI values at high symbol rates exceeding the Nyquist limitation.
Compared with ’Duo-[-M,M)’ (16QAM with yellow squares and 64QAM with purple
diamonds), ’Duo-[-M, M]’ (16QAM with navy blue crosses and 64QAM with orange
circles) achieves higher GMI at the 144GBaud and 176GBaud symbol rates but lower
GMI at 208GBaud. This is because, when the bandwidth is below the limitation,
shaping loss dominates, and [-M, M] with lower shaping loss outperforms [-M, M).
However, in the 208GBaud case, the bandwidth limitation dominates, and [-M, M)
with slightly lower bandwidth outperforms [-M, M].
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4.4.3 With Carrier Imperfection

To further analyze the carrier recovery challenges of the THP+Polybinary with two
types of 2M modulo operations, we introduced carrier imperfections into our simulation,
as shown in (3) of Figure 4.3. The simulation settings for carrier imperfections were
similar to those used in the PCS simulation depicted in Figure 3.2, utilizing a 100MHz
frequency offset and a 400 kHz combined linewidth.

The THP+duobinary-shaped 16QAM has 64 constellation points for the range [-M,
M] and 49 constellation points for the range [-M, M), distributed non-uniformly, simi-
lar to PCS-64QAM. Consequently, we adopted the carrier recovery stage settings from
PCS-64QAM: the CFR block size was 214 and the pilot overhead was 1/512. Addition-
ally, the CPR block size was set to a medium value of 211. However, since the symbol
distribution of the THP+duobinary-shaped 16QAM is different from that of PCS-
64QAM despite the trend being similar, we utilized bivariate histogram histogram2 to
obtain the practical prior distribution of THP+duobinary-shaped 16QAM as shown in
Figure 4.2(b) and Figure 4.2(c) and replace the term p(xm) of (3.12) with the obtained
distribution instead of the exp(λx2

m) in PCS cases shown in (3.15). In addition to the
direct histogram way, the prior distribution of THP+polybinary shaping can be derived
through algebraic or numerical methods [54].

Figure 4.6: (a) NMSE comparisons after carrier frequency recovery and (b) Net GMI com-
parisons after carrier recovery of various modulation formats based on 16QAM with various
AWGN setting SNRs.

Figure 4.6(a) demonstrates that the carrier frequency recovery achieves good per-
formance, with normalized mean square errors (NMSE) of less than 10−9. This per-
formance is attributed to the dominant innermost QPSK points for the range [-M, M]
and the large number of constellation points along the axes for the range [-M, M).

Meanwhile, Figure 4.6(b) shows that the [-M, M] format achieves higher GMI than
the [-M, M) format under the same carrier recovery scheme. Specifically, the ’Pilot-
FFT+Pilot-GML’ method demonstrates greater stability in low SNR conditions com-
pared to ’GCHE+GML’, and both methods outperform ’4PF+BPS’. It is noteworthy
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that the carrier recovery for ’Duo-[-M, M) 4PF+BPS’ fails. Considering that the NM-
SEs for these three carrier frequency recovery methods is close to each other and all
are smaller than 10−9, the failure of ’Duo-[-M, M) 4PF+BPS’ in high SNR conditions
can be attributed to the excessive zero symbols in ’Duo-[-M, M)’, which lack phase in-
formation. On the other hand, ’Duo-[-M, M) GCHE+GML’ performs well in moderate
and high SNR ranges, and ’Duo-[-M, M) Pilot-FFT+Pilot-GML’ works effectively in all
scenarios. This indicates that GML-based carrier phase recovery is more robust, as it
accounts for the non-uniform distribution and directly calculates probabilities instead
of making symbol detection to mitigate the challenges posed by zero symbols.

4.5 Experimental Verification

Following the MATLAB simulation, the experimental verification of the complete com-
munication link using real devices, as opposed to ideal models, is crucial. Due to time
constraints, we only focus on testing the extended pilot-based GML carrier recovery
scheme in real optical fiber communication scenarios with PRS and various SNRs.

4.5.1 Experimental Setups

The experimental setup is largely similar to that of PCS, discussed in Section 3.4.2.1 and
illustrated in Figure 3.6. However, due to equipment availability, 100GHz 3 dB band-
width BPDs replace the 70GHz BPDs, and a 256GSa/s DSO replaces the 160GSa/s
DSO. It means the bandwidth limitation of the whole link is located at the transmitter:
the first limitation is the 55GHz 3 dB bandwidth of IQ MZM and the second limitation
is the 65GHz 10 dB bandwidth of AWG.

Additionally, for the transmitter DSP, 96GBaud 16QAM symbol sequences with
various symbol rates are generated and fed to the THP + Polybinary shaping filter,
as shown in the left part of Figure 4.3, to produce the PRS symbol sequences. These
sequences are then pulse-shaped using a 0.5 roll-off factor (ROF) SRRC filter. Although
a small ROF, such as 0.1, is typical, we found that the timing recovery algorithm we
have tends to fail to converge under these conditions, even with a block size of 219.
Therefore, we increased the ROF to 0.5 to ensure convergence. On the receiver side,
the DSP setup remains almost identical to the Rx DSP for PCS cases, as introduced in
Section 3.4.2.1. Similarly, a flattened cost function or kurtosis issues in the CMA and
suboptimal radius selection in the RDE cause the algorithm not to converge for blind
equalization of PRS sequences. As a result, the pre-trained blind equalizer based on the
uniform 16QAM symbols is used. However, PRS 16QAM has less analog bandwidth
than that of the uniform, so the pre-trained blind equalizer overcompensates for the
high-frequency part and is suboptimal. Thus, a 1× 1 feed-forward equalizer based on
a data-aided least-mean-square algorithm is deployed to further compensate for the
residual ISI and residual linear imperfections, after the carrier recovery, as shown in
Figure 2.1.
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4.5.2 Results and Discussion

Figure 4.7 demonstrates that the proposed carrier recovery scheme, ’Pilot-FFT+Pilot-
GML’, achieves slightly better GMI than ’GCHE+GML’ and significantly outperforms
’4PFFT+BPS’ in terms of both performance and robustness across various modulation
formats and various SNRs.

Figure 4.7: Net GMI comparisons after carrier recovery and LMS equalization of various
modulation formats based on 16QAM with different reference SNRs, where reference SNRs
are the estimated SNRs obtained with uniform 16-QAMs and ’4PFFT+BPS’, and parameters
of each scheme is optimized with grid scanning as before.

Contrary to the simulation results, the ’4PFFT+BPS’ scheme performs poorly in
the experiment, often failing completely or exhibiting significant GMI loss, even with
the ’[-M, M]’ format. Although the experiment case has fewer carrier imperfections,
such as a <50MHz frequency offset and a <200 kHz combined linewidth, it is more
complex and includes many other imperfections than MATLAB simulations, which
can cause this discrepancy. For instance, residual ISI caused by the suboptimal blind
equalizer can further compromise the already vulnerable ML symbol detection of the
conventional BPS in the PRS case. In contrast, the GML-based BPS demonstrates
better ISI tolerance by directly calculating probabilities considering the non-uniform
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distribution, instead of relying on ML symbol detection.
Furthermore, Figure 4.7 also indicates that the [-M, M] format achieves higher GMI

than the [-M, M) format when using the same carrier recovery scheme. Specifically,
’Duo-[-M, M] Pilot-FFT+Pilot-GML’ exhibits approximately 0.4 dB sensitivity gain
over ’Duo-[-M, M)’, although this advantage diminishes at higher reference SNRs, such
as 15 dB. This trend is consistent with the findings shown in Figure 4.6 (b). The
sensitivity gains observed in the low SNR range can be attributed to the lower average
power Pave (or lower PRS loss LPRS) of transmitted symbols after THP+Duobinary
shaping with the [-M, M] 2M modulo operation, compared to the [-M, M) 2M modulo
operation. As presented in Table 4.1, when M = 16, the ’Duobinary [-M, M]’ format
has a PRS loss of 2.55 dB, while the ’Duobinary [-M, M)’ format has a PRS loss of
3.01 dB, resulting in approximately 0.5 dB sensitivity gain for the ’Duobinary [-M, M]’
symbols.

4.6 Summary

In summary, THP+Polybinary (e.g., duobinary and tribinary) with a 2M modulo,
which has an output range of [-M, M], introduces less PRS shaping loss (improving
sensitivity at the transmitter), results in higher PAPR after SRRC pulse shaping, and
exhibits a slightly higher 99% bandwidth compared to a 2M modulo with an output
range of [-M, M). However, these differences diminish as M increases (e.g., from 4 to
16 to 64). Moreover, due to further reduced bandwidth, the [-M, M) range demon-
strates slightly better performance under bandwidth limitations and achieves a higher
estimated SNR after the LMS equalizer compared to the [-M, M] range.

Additionally, although THP+Polybinary QAM shows much better signal quality
compared to uniform QAM when the symbol rate exceeds the bandwidth limitation,
the modulo loss caused by the 2M modulo operation at the receiver is significant and
weakens the advantages of PRS. Therefore, employing MLSE with the memory-limited
Viterbi algorithm and soft-information recovery to replace the 2M modulo operation at
the receiver is a promising approach to enhance performance in future implementations.

Furthermore, the excessive zero symbols in the [-M, M) range, which lack phase in-
formation, and the residual ISI of the suboptimal blind equalization present a challenge
for carrier phase recovery and invalidate the conventional BPS in both simulation and
experiment. However, extending the GML-based carrier recovery scheme to accommo-
date non-uniform distributions in THP+polybinary shaping enhances both accuracy
and stability, effectively mitigating the issues caused by zero symbols and residual ISIs.
Thus, regardless of which 2M modulo format is used for the PRS system, our carrier
recovery scheme can efficiently and accurately recover the carrier.
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Summary 5
5.1 Conclusion

In conclusion, this thesis proposed a carrier recovery scheme, ’Pilot-FFT+Pilot-GML’,
which combines pilot-based frequency recovery with dual-stage pilot-based GML phase
recovery to address performance degradation in conventional carrier recovery methods
when advanced shaping techniques such as PCS or PRS are applied.

Initially, we introduced this scheme in the PCS context and compared it with con-
ventional and state-of-the-art methods using PCS-64QAM symbols in MATLAB sim-
ulations and a 100GBaud single-carrier communication experiment. Despite a 0.2%
pilot overhead, our proposed scheme demonstrated superior robustness, achieving suc-
cessful carrier recovery in all test scenarios, excellent immunity to cycle slips, and high
tolerance to suboptimal parameters. It also showed the best frequency and phase es-
timation accuracy, with an order of magnitude less NMSE, two degrees less MSE, and
double the computational efficiency compared to other schemes. Experimentally, the
proposed scheme resulted in a significant GMI increase of 0.1 bits/symbol or a 0.25 dB
sensitivity gain compared to conventional carrier recovery, leading to an optimized PCS
gain of up to 0.27 bits/symbol GMI increase or 0.85 dB sensitivity gain compared to
the uniform case.

Furthermore, we extended the proposed scheme to the PRS context. According to
MATLAB simulations and a 96GBaud single-carrier communication experiment, the
extended scheme successfully recovered the carrier of Tomlinson-Harashima precoded
polybinary shaping signals in all scenarios. Our scheme remained effective even in the
presence of zero-phased symbols caused by 2M modulo operations with non-origin sym-
metry and residual ISI from suboptimal blind equalization, which typically challenge
conventional BPS methods for carrier phase recovery.

Therefore, with its superior performance, robustness, and computational efficiency,
our proposed carrier recovery scheme, ’Pilot-FFT+Pilot-GML’, using generalized max-
imum likelihood estimation and extremely low overhead, is a competitive algorithm
for addressing carrier imperfections in either PCS-enabled or PRS-enabled high-speed
coherent optical communications.

5.2 Future Work

Based on our results, we identified that the current timing estimators and blind equaliz-
ers are insufficient for either PCS-enabled or PRS-enabled experiments and need mod-
ification. To further maximize the PCS gain and achieve faster-than-Nyquist rates,
the next step is to enhance the timing recovery algorithm and the blind equalization
algorithm to accommodate symbols with non-uniform distributions. Prioritizing pilot-
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based timing recovery and blind equalization methods is crucial, as pilot symbols used
in the recovery stage can be shared to reduce overhead, in addition to the inherent
advantages of these methods. Recent research has also identified these issues and made
progress in addressing them [103, 45, 44].

Additionally, the increased nonlinear phase noise from the nonlinear optical fiber due
to fluctuating instantaneous power or high PAPR in either PCS-enabled or PRS-enabled
transmission needs further investigation. Although some researchers consider all such
noise as Wiener-process variables in the signal model, distinguishing between classic
phase noise, PCS-introduced phase noise, and nonlinear phase noise could provide
more effective strategies. A precise and simple signaling model is essential for effective
signal processing.

Moreover, during Rx signal processing, it is challenging to completely eliminate sys-
tem imperfections, especially with limited signal quality, resulting in residual or coupled
imperfections. To simplify signal models, researchers often separately model these im-
perfections, assuming perfect performance in previous stages, which mismatches with
practical scenarios and causes performance loss. However, overly complex signal mod-
els are impractical. Given the vast amount of data in communications, machine learn-
ing, with its excellent data learning capabilities, has the potential to bypass the need
for specific signal models and enhance DSP. Machine-learning-based DSP algorithms
have already improved adaptive equalization [104], non-linearity mitigation [105], and
symbol demapping [106], demonstrating both performance and on-site computational
efficiency. Machine-learning-based carrier recovery presents a promising area for future
research.
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Blind Phase Search based on
Regularized Maximum
Likelihood Detection A
A.1 Principle of RML detection and RML-based BPS

Following the derivation in Section 3.3.2.2, we assume a constant phase φ̃i,n =
φi−Nfin

w /2,n = . . . = φi+Nfin
w /2,n, meaning that the phase noise is a constant and un-

known parameter rather than a Wiener-process variable over the observation window.
Thus, the maximum likelihood estimator for the ith laser phase noise of the nth block
is given by:

φ̂i,n = argmax
φ̃i,n

Nfin
w /2∑

k=−Nfin
w /2

log

[
M∑

m=1

exp

(
−|zi+k,n − xme

jφ̃i,n|2

σ2
η

)
exp

(
−λx2

m

)]
(A.1)

where the normalization terms 1
πσ2

η
and

∑
x∈X e−λx2

are constant and thus ignored.

Here, Nfin
w denotes the window length of this centrosymmetric sliding window.

To speed up the complex computation of (A.1), which significantly increases with
M , Section 3.3.2.2 precomputes the term p(zi+k|φ̃i,n) and stores their values in look-
up tables, following the approach of [77], while [24] considered only the four most
likely points identified by the ML detection based on uniform assumption. In addition,
considering only the constellation symbol with the highest likelihood is a common
simplification approach, as seen in conventional BPS [89]. However, in the PCS case,
maximum-a-posterior (MAP) detection instead of ML detection should be employed:

x̃i+k,n = argmin
xm∈X

(
|zi+k,ne

−jφ̃i,n − xm|2 + σ2
η · λx2

m

)
(A.2)

where x̃i+k,n ∈ X represents the constellation symbol with the highest likelihood among
these M symbols. Consequently, (A.1) can be further written as:

φ̂i,n ≈ argmin
φ̃i,n

Nfin
w /2∑

k=−Nfin
w /2

(
|zi+k,n − x̃i+k,ne

jφ̃i,n|2 + σ2
η · λx̃2

i+k,n

)
(A.3)

Given that this simplified phase estimator is based on MAP detection with a discrete
feasible region, grid search with finite discrete test phases is utilized as shown in (3.16).
After figuring out the estimated phases, the final phase compensation is performed as
indicated in (3.17).

For uniform symbols in conventional QAM cases, the second term of (A.2) can be
omitted, transforming MAP detection into ML detection, which selects the symbol
that minimizes the Euclidean distance between the transmitted and received symbol.

59



Similarly, the second term of (A.3) can also be dropped, resulting in conventional BPS.
For PCS cases, however, the second term, which is related to the noise power and prior
probabilities, cannot be disregarded and should be viewed as a regularization term.
Theoretically, this implies that ML detection and BPS are non-optimal, necessitating
the use of MAP detection and GML-based BPS for PCS scenarios.

However, the computation of MAP detection in (A.2) is complex and more complex
with increasing M for higher modulation levels. In general, symbol-by-symbol MAP
detection is a non-deterministic polynomial (NP-hard) problem, potentially requiring
M − 1 comparisons based on (A.2). According to [107], for higher-order PCS-QAM
modulation formats, only four comparisons with the surrounding constellation symbols
are required: the four nearest symbols according to the regular boundary under ML
detection are identified, followed by MAP detection among these four symbols incorpo-
rating prior probability and noise power information. This approach is also employed
in ’MPD-BPS’ proposed in [24]. In contrast to their approach, this thesis simplified
MAP detection further by incorporating convex optimization tips.

Based on (A.2), we first relax the solution space of this optimization problem from
the discrete set xm ∈ X to the continuous set of complex number xm ∈ C, which can
be expressed as:

x̃
′

i+k,n = argmin
xm∈C

(
|zi+k,ne

−jφ̃i,n − xm|2 + σ2
η · λx2

m

)
(A.4)

where x̃
′

i+k,n represents the solution to the relaxed problem, which is a standard convex
optimization problem and can be solved by setting the first-order derivative to zero:

−2(zi+k,ne
−jφ̃i,n − xm) + σ2

η · λ2xm = 0 ⇒ x̃
′

i+k,n =
zi+k,ne

−jφ̃i,n

1 + σ2
η · λ

(A.5)

Since this is the solution to the relaxed problem, finding the solution to the original
problem requires re-restricting it to the discrete set xm and selecting the nearest feasible
solution:

x̃i+k,n = argmin
xm∈X

|xm − x̃
′

i+k,n|2 = argmin
xm∈X

|xm − zi+k,ne
−jφ̃i,n

1 + σ2
η · λ

|2 (A.6)

This can be solved using two separate log2(
√
M) comparisons with the fixed bound-

aries: one for the in-phase component and the other for the quadrature component,
similar to conventional ML detection, but with the boundary values modified by pro-
ducing 1 + σ2

η · λ. We term this new method ’regularized maximum likelihood’ (RML)
detection. The results of this new detection can be utilized in (A.3) to further estimate
the phase noise, leading to the RML-based BPS.

Theoretically, RML detection is nearly equivalent to MAP detection but without a
significant increase in computational complexity, maintaining the same level of complex-
ity as ML detection. Considering the prior probability of PCS symbols, the RML-based
BPS is expected to provide better phase estimation but with identical computational
complexity as the conventional BPS. However, due to the approximation in (A.3),
RML-based BPS may exhibit slightly worse performance compared to GML-based BPS
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Figure A.1: A Block Diagram of the Simulation Configuration

shown in Section 3.3.2.2, particularly at lower SNRs where detection-directed RML-
based BPS shows less accuracy, resulting in worse performance than GML-based BPS,
which directly incorporates probability without any symbol detection.

A.2 MATLAB Simulation

To further illustrate the advantages and disadvantages of RML detection and RML-
based BPS, the following numerical simulations are conducted. And, the simulation
setup is shown in Figure A.1: Simulation (1) compares ML, RML, and MAP symbol
detection methods with the symbol error rate (SER), while simulation (2) compares
conventional BPS, RML-based BPS, and GML-based BPS with GMI.

In addition, two representative scenarios are selected for simulation to highlight their
differences rather than provide a comprehensive analysis: A. The transmitted 64QAM-
PCS symbol has a shaping factor of 0.0511 (leading to 5.25 bits/symbol Entropy) and
passes through an AWGN channel with SNR values varying from 10 dB to 16 dB. B.
The transmitted PCS symbol has a shaping factor roughly varying from 0 to 0.1 and
passes through an AWGN channel with an SNR of 12 dB.

Notably, to ensure the reliability of the simulation, 220 random symbols are trans-
mitted at a time and the simulation is repeated 10 times for each configuration.

A.2.1 Comparison of Three Symbol Detection Methods

In this subsection, we compare the performance of three symbol detection methods:
ML detection, RML detection, and MAP detection. In addition to SER, the MATLAB
CPU time is used to demonstrate the computational efficiency differences among the
detection methods.

Figure A.2 illustrates the SER differences among the three detection methods in the
two simulation cases. In Figure A.2(a), it is observed that as the SNR decreases, the
SER gap between ’MAP’ and ’ML’ increases, while the novel method ’RML’ consistently
performs at the same level as ’MAP’. Notably, ’MAP’ and ’RML’ demonstrate an SNR
sensitivity gain of approximately 0.4 dB at an SNR of 10 dB compared with ’ML’. If
considering that one symbol error may cause more than one-bit error, especially for
low SNR cases, the sensitivity gain could be higher in the bit level. Meanwhile, Figure
A.2(b) shows that as the shaping factor increases, all SER curves drop but the SER
gap between ’MAP’ and ’ML’ increases, while ’RML’ remains equivalent to ’MAP’.
Therefore, in terms of detection capability, ’RML’ is nearly identical to ’MAP’ and
significantly outperforms ’ML’, particularly under low SNR and high shaping factor
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Figure A.2: SER Curves for Various Detection Methods: (a) With the shaping factor fixed at
0.0511, the SNR is varied from 10 dB to 16 dB. (b) With the SNR fixed at 12 dB, the shaping
factor is varied approximately from 0 to 0.1. ’MAP’ (blue cross) denotes the MAP symbol
detection, ’ML’ (orange circle) represents the conventional ML symbol detection, and ’RML’
(yellow square) indicates the novel detection method.

conditions. Notably, the SER drop is caused by the fixed constellation distance with the
decreased average power when the shaping factor increases and the entropy decreases.

Table A.1: CPU Time Comparison of Three Detection Methods
Detection Methods MAP ML RML

CPU Time (seconds/symbol) 6.00E-07 7.70E-08 7.80E-08

Table A.1 presents the average CPU time required for each detection method, nor-
malized by the number of detected symbols across the entire set of simulation cases.
Although there may be minor machine errors on the value, the general trend is evident.
Based on Table A.1, ’RML’ requires approximately the same computational time as the
’ML’ method, which is about 0.13 times that of ’MAP’, indicating that ’RML’ offers
significantly better computational efficiency compared to ’MAP’.

Thus, based on MATLAB simulations, ’RML’ combines the performance advantage
of ’MAP’ with the computational efficiency of ’ML’, making it an ideal method for
symbol detection in PCS application scenarios.

A.2.2 Comparison of Three Phase Recovery Methods

In this subsection, we compare the performance of three blind phase recovery methods:
the conventional, RML-based, and GML-based. The comparisons focus on the overall
performance including GMI and CPU time, with the optimal window size (sweeping
from 28 to 211).

Figure A.3 (a) illustrates that ’GML’ outperforms others, especially at low SNR,
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Figure A.3: GMI Curves for Various Phase Recovery Methods: (a) With the shaping factor
fixed at 0.0511, the SNR is varied from 10 dB to 16 dB. (b) With the SNR fixed at 12 dB,
the shaping factor is varied approximately from 0 to 0.1. ’BPS’ (blue cross) represents the
conventional BPS, ’GML’ (orange circle) denotes the GML-based BPS (Section 3.3.2.2), and
’RML’ (yellow square) indicates the new BPS (A.3) based on RML detection.

and ’RML’ is better than BPS at 11 dB SNR but more unstable and failed at 10 dB
due to cycle slips. While Figure A.3 (b) shows that ’GML’ outperforms others with
all shaping factors, especially 0.02 < λ < 0.06, and ’RML’ is better than ’BPS’ with
the moderate shaping factors (0.04 < λ < 0.08), but worse with low shaping factor.
Notably, the non-detection-directed GML-based phase recovery is even better than the
conventional detection-directed BPS in the uniform case (λ = 0).

Table A.2: CPU Time Comparison of Three Phase Recovery Methods
Phase Recovery Methods BPS GML RML

CPU Time (seconds/symbol) 1.62E-05 1.10E-05 1.75E-05

Table A.2 indicates that ’GML’ with a look-up table saves 40% CPU time and shows
better computational efficiency than others, while ’BPS’ and ’RML’ are similar to each
other.

Thus, RML-based BPS has no advantage compared with GML-based BPS and
shows a slight advantage over conventional BPS when the moderate shaping factor and
relatively low SNR are applied.

A.3 Summary

In summary, although the RML detection method combines the performance advantage
of MAP detection with the computational efficiency of ML detection, the RML-based
phase recovery shows no advantage. Conversely, the GML-based phase recovery with
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the help of look-up tables shows both superior performance and computational effi-
ciency. Thus, RML detection is an ideal method for symbol detection, but RML-based
phase recovery is not recommended in PCS application scenarios.
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qam transmission with improved tolerance to cascaded roadm filtering penalty,”
in 2018 European Conference on Optical Communication (ECOC), pp. 1–3, 2018.

[48] D. Che and X. Chen, “Faster-than-nyquist signaling up to 300-gbd pam-4 and
570-gbd ook suitable for co-packaged optics,” in 2021 European Conference on
Optical Communication (ECOC), pp. 1–4, 2021.

[49] K. Igarashi, T. Tsuritani, and I. Morita, “Polybinary shaping for highly-spectral-
efficient super-nyquist wdm qam signals,” Journal of Lightwave Technology,
vol. 34, no. 8, pp. 1724–1731, 2016.

68



[50] G. Forney, “Maximum-likelihood sequence estimation of digital sequences in the
presence of intersymbol interference,” IEEE Transactions on Information Theory,
vol. 18, no. 3, pp. 363–378, 1972.

[51] J. Fickers, A. Ghazisaeidi, M. Salsi, G. Charlet, P. Emplit, and F. Horlin,
“Decision-feedback equalization of bandwidth-constrained n-wdm coherent op-
tical communication systems,” Journal of Lightwave Technology, vol. 31, no. 10,
pp. 1529–1537, 2013.

[52] H. Harashima and H. Miyakawa, “Matched-transmission technique for channels
with intersymbol interference,” IEEE Transactions on Communications, vol. 20,
no. 4, pp. 774–780, 1972.

[53] Y. Zhu, Q. Zhuge, and W. Hu, “Comparison of polybinary shaping and tomlinson
harashima precoding under brick-wall bandwidth constraint,” in European Con-
ference on Optical Communication (ECOC) 2022, p. We5.50, Optica Publishing
Group, 2022.

[54] M. G. Saber, R. Gutiérrez-Castrejón, Z. Xing, M. S. Alam, E. El-Fiky, D. E.
Ceballos-Herrera, F. Cavaliere, G. Vall-Llosera, S. Lessard, and D. V. Plant,
“Demonstration of 108 gb/s duo-binary pam-8 transmission and the probabilistic
modeling of db-pam-m ber,” IEEE Photonics Journal, vol. 13, no. 1, pp. 1–14,
2021.

[55] Y. Cai, J. Cai, C. Davidson, D. Foursa, A. Lucero, O. Sinkin, A. Pilipetskii,
G. Mohs, and N. S. Bergano, “High spectral efficiency long-haul transmission with
pre-filtering and maximum a posteriori probability detection,” in 36th European
Conference and Exhibition on Optical Communication, pp. 1–3, IEEE, 2010.

[56] D. Chang, O. Omomukuyo, O. Dobre, R. Venkatesan, and P. Gillard, “A faster-
than-nyquist pdm-16qam scheme enabled by tomlinson-harashima precoding,” in
2015 17th International Conference on Transparent Optical Networks (ICTON),
pp. 1–4, IEEE, 2015.

[57] Z. Jia, Y. Cai, H.-C. Chien, and J. Yu, “Performance comparison of spectrum-
narrowing equalizations with maximum likelihood sequence estimation and soft-
decision output,” Optics Express, vol. 22, no. 5, pp. 6047–6059, 2014.

[58] E. C. Peh and Y.-C. Liang, “Power and modulo loss tradeoff with expanded
soft demapper for ldpc coded gmd-thp mimo systems,” IEEE Transactions on
Wireless Communications, vol. 8, no. 2, pp. 714–724, 2009.

[59] C. M. Vithanage, C. Andrieu, and R. J. Piechocki, “Novel reduced-state bcjr
algorithms,” IEEE transactions on communications, vol. 55, no. 6, pp. 1144–
1152, 2007.

[60] S. Kinjo, “An efficient soft demapper for tomlinson-harashima precoded systems,”
IEICE Communications Express, vol. 4, no. 3, pp. 89–94, 2015.

69



[61] Q. Hu and R. Borkowski, “510 gbit/s net bitrate im/dd link enabled by 200 gbd
precoded duooctonary (1+ d)-pam-8 modulation with memoryless decoding,” in
49th European Conference on Optical Communications (ECOC 2023), vol. 2023,
pp. 1698–1701, IET, 2023.

[62] D. Pan, C. Li, Y. Feng, and X. Zhang, “An effective carrier phase estimation
scheme in faster than nyquist wdm transmission system,” Photonic Network Com-
munications, vol. 32, pp. 253–258, 2016.

[63] D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection
of optical quadrature phase-shift keying signals with carrier phase estimation,”
Journal of lightwave technology, vol. 24, no. 1, p. 12, 2006.

[64] Y. Li, M.-W. Wu, X. Du, T. Song, and P.-Y. Kam, “A refinement to the viterbi-
viterbi carrier phase estimator and an extension to the case with a wiener carrier
phase process,” IEEE access, vol. 7, pp. 78170–78184, 2019.

[65] V. Rozental, D. Kong, B. Corcoran, D. Mello, and A. J. Lowery, “Filtered car-
rier phase estimator for high-order qam optical systems,” Journal of Lightwave
Technology, vol. 36, no. 14, pp. 2980–2993, 2018.

[66] J. Xiao, J. Feng, J. Han, W. Li, R. Hu, Q. Yang, and S. Yu, “Low complexity
fft-based frequency offset estimation for m-qam coherent optical systems,” IEEE
Photonics Technology Letters, vol. 27, no. 13, pp. 1371–1374, 2015.

[67] T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver
concept with feedforward carrier recovery for m-qam constellations,” Journal of
Lightwave Technology, vol. 27, no. 8, pp. 989–999, 2009.

[68] X. Zhou, “An improved feed-forward carrier recovery algorithm for coherent re-
ceivers with m-qam modulation format,” IEEE Photonics Technology Letters,
vol. 22, no. 14, pp. 1051–1053, 2010.

[69] J. Li, L. Li, Z. Tao, T. Hoshida, and J. C. Rasmussen, “Laser-linewidth-tolerant
feed-forward carrier phase estimator with reduced complexity for qam,” Journal
of Lightwave Technology, vol. 29, no. 16, pp. 2358–2364, 2011.

[70] X. Zhou, K. Zhong, Y. Gao, C. Lu, A. P. T. Lau, and K. Long, “Modulation-
format-independent blind phase search algorithm for coherent optical square m-
qam systems,” Optics Express, vol. 22, no. 20, pp. 24044–24054, 2014.

[71] Q. Zhuge, M. Morsy-Osman, X. Xu, M. E. Mousa-Pasandi, M. Chagnon, Z. A.
El-Sahn, and D. V. Plant, “Pilot-aided carrier phase recovery for m-qam using
superscalar parallelization based pll,” Optics express, vol. 20, no. 17, pp. 19599–
19609, 2012.

[72] F. P. Guiomar, M. S. Neves, A. Lorences-Riesgo, C. S. Martins, S. Mumtaz,
Y. Frignac, G. Charlet, and P. P. Monteiro, “Recent advances in carrier phase
recovery algorithms,” in 2023 Optical Fiber Communications Conference and Ex-
hibition (OFC), pp. 1–3, IEEE, 2023.

70



[73] C. S. Martins, F. P. Guiomar, and A. N. Pinto, “Hardware optimization of dual-
stage carrier-phase recovery for coherent optical receivers,” OSA Continuum,
vol. 4, no. 12, pp. 3157–3175, 2021.

[74] M. P. Yankov, E. P. da Silva, F. Da Ros, and D. Zibar, “Experimental anal-
ysis of pilot-based equalization for probabilistically shaped wdm systems with
256qam/1024qam,” in Optical Fiber Communication Conference, pp. W2A–48,
Optica Publishing Group, 2017.

[75] F. A. Barbosa, S. M. Rossi, and D. A. A. Mello, “Phase and frequency recov-
ery algorithms for probabilistically shaped transmission,” Journal of Lightwave
Technology, vol. 38, no. 7, pp. 1827–1835, 2020.

[76] G. Di Rosa and A. Richter, “Low complexity blind carrier phase recovery for prob-
abilistically shaped qam,” IEEE Photonics Technology Letters, vol. 32, no. 17,
pp. 1109–1112, 2020.

[77] J. Zhao, “Format-transparent phase estimation based on kl divergence in coherent
optical systems,” Optics Express, vol. 28, no. 14, pp. 20016–20031, 2020.

[78] J. Zhao and L.-K. Chen, “Carrier phase recovery based on kl divergence in prob-
abilistically shaped coherent systems,” Journal of Lightwave Technology, vol. 39,
no. 9, pp. 2684–2695, 2021.

[79] F. A. Barbosa, D. A. Mello, and J. D. Reis, “On the impact of probabilistic
shaping on the cycle slip occurrence,” in Latin America Optics and Photonics
Conference, pp. Tu5E–2, Optica Publishing Group, 2018.

[80] J. C. M. Diniz, Q. Fan, S. M. Ranzini, F. N. Khan, F. Da Ros, D. Zibar, and
A. P. T. Lau, “Low-complexity carrier phase recovery based on principal com-
ponent analysis for square-qam modulation formats,” Optics Express, vol. 27,
no. 11, pp. 15617–15626, 2019.

[81] S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted decision-aided
maximum-likelihood phase estimation in coherent optical phase-modulated sys-
tems with nonlinear phase noise,” IEEE Photonics Technology Letters, vol. 22,
no. 6, pp. 380–382, 2010.

[82] J. Han, W. Li, J. Xiao, J. Feng, Q. Yang, and S. Yu, “Frequency offset estima-
tion with multi-steps interpolation for coherent optical systems,” IEEE Photonics
Technology Letters, vol. 27, no. 19, pp. 2011–2014, 2015.

[83] Q. Zhang and C. Shu, “Optimum constellation size for probabilistically shaped
signals in the presence of laser phase noise,” Journal of Lightwave Technology,
vol. 40, no. 4, pp. 947–953, 2021.

[84] D. Zhao, L. Xi, X. Tang, W. Zhang, Y. Qiao, and X. Zhang, “Digital pilot aided
carrier frequency offset estimation for coherent optical transmission systems,”
Optics express, vol. 23, no. 19, pp. 24822–24832, 2015.

71



[85] A. Ghazisaeidi, I. F. de Jauregui Ruiz, R. Rios-Müller, L. Schmalen, P. Tran,
P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, et al., “Advanced
c+ l-band transoceanic transmission systems based on probabilistically shaped
pdm-64qam,” Journal of Lightwave Technology, vol. 35, no. 7, pp. 1291–1299,
2017.
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