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Summary

In order to be more competitive with conventional, polluting energy resources, the lev-
elised cost of energy (LCoE) of wind turbines has to decrease significantly [1]. A method
to achieve this goal is to reduce the amount of parts in a wind turbine and more specifically
avoid the use of expensive and failure-prone pitch systems. Using blades which passively
deform under high aerodynamic loading and effectively reduce the peak, design-driving
loads on the turbine structure might offer an interesting alternative to the pitch system.
However, the conventional material for construction of blades, glass-fibre reinforced plas-
tics, does not allow for such large deformations during normal operating conditions. Prior
to this project, a study to incorporate more flexible materials has been carried out in the
design of the current XANT-21 wind turbine in order to increase the flexibility of the
blades. However, introducing a high degree of flexibility in the wind turbine blades might
increase the risk of aeroelastic instabilities. These aeroelastic instabilities often result, in
combination with a non-linearity in the aerodynamics or structure, in limit cycle oscilla-
tions (LCOs). The need to identify the key structural parameters which play a role in
the initiation of the aeroelastic instabilities has led to the objective of this thesis:

Investigate the influence of the critical structural parameters on the onset velocity and
the behaviour of high-amplitude limit cycle oscillations of a wind turbine airfoil by

means of numerical simulations.

In order to study the effects of the critical structural parameters, two numerical models
have been developed: an engineering model with the MATLAB software package [2] and
a Reynolds Averaged Navier-Stokes (RANS) model within the OpenFOAM framework
[3]. In the former, an aerodynamic solver is coupled with a structural solver. The aerody-
namic part consists of the Risø dynamic stall model from Hansen [4] with an additional
LEV contribution to the lift from Larsen et al. [5] and the structural solver consists of the
equations of motion of a rigid 2D airfoil in two degrees of freedom. The latter numerically
solves the unsteady, incompressible Navier-Stokes (NS) equations using a finite volume
approach and performs fluid-structure interaction (FSI) simulations on a 2D airfoil.
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vi Summary

In the validation of both numerical models, their capabilities to perform aeroelastic sim-
ulations on an airfoil in an efficient, accurate and stable fashion have been assessed. The
engineering model was found to accurately reproduce the critical onset velocity at which
LCOs are observed for the first time. The RANS model is capable of accurately ob-
taining the final pitch amplitude of the LCOs as compared to experimental data, while
the capability of the engineering model to predict the final amplitude is highly sensitive
to the structural damping coefficient. The RANS model has an improved capability of
accurately describing the contribution of the leading edge vortex (LEV) which plays an
important role in the non-linearities of the flow. When both models are assessed on their
efficiency, the engineering model clearly is advantageous as a typical aeroelastic simula-
tion is of the order 20 000 faster than the RANS model. For this reason, the engineering
model was assessed to be the most suitable model to perform the parametric study on
the wind turbine airfoil and was used in the investigation of the research objective.

The parametric study is performed on a wind turbine airfoil which is located at 75% blade
radius of the XANT-21 wind turbine. The aeroelastic simulations with the engineering
model on the current airfoil design yielded the result that classical flutter would occur at
around 2 times the maximum operating relative wind speed. Afterwards, the aeroelastic
analyses have been performed on four conceptual designs of the airfoil with varying struc-
tural properties. It was assessed that two designs, which replace the material of the skin
with the new flexible material, are highly exposed to the risk of aeroelastic instabilities
resulting in LCOs. These analyses have offered valuable insight in the critical structural
parameters related to the onset of aeroelastic instabilities. A structured, parametric study
has been carried out in order to quantify the effect of these critical structural parameters.
The following parameters were found to play a significant role in the onset of aeroelastic
instabilities: the torsional stiffness, the natural frequency ratio, which is the ratio between
the heaving- and torsional natural frequency, and the location of the centre of gravity.
The heave stiffness was found to be of minor importance. Introducing a structural angle
of attack, thus artificially creating an airfoil operating close to or in stall, decreases the
critical onset velocity significantly. The onset of the instabilities seen at higher structural
angles is characterised as stall flutter and involves a different process of initiation than
seen in classical flutter: no coalescence of the frequencies in two degrees of freedom is ob-
served. Despite this difference in process of initiation, the critical structural parameters
involved are similar for both types.

In order to limit the risk of initiation of aerodynamic instabilities potentially leading to
high-amplitude LCOs in the design of an airfoil, it is recommended to limit the reduction of
torsional stiffness to 25% of the wind turbine airfoil of the XANT-21 wind turbine without
severely compromising the safety limit between operating wind speeds and critical wind
speeds. In order to increase the aeroelastic stability of the airfoil, the location of the
centre of gravity ought to be shifted as much as possible towards the leading edge. This
can be done by increasing the mass of the spar caps or by adding mass to the leading
edge.



Acknowledgements
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Chapter 1

Introduction

This introductory chapter provides the background of the thesis. Firstly, the motivation
for the subject of the thesis and its relevance is discussed in Section 1.1. Secondly, Section
1.2 presents the objective of the thesis, defines the research questions and describes the
tasks which have to be performed in order to complete the objective and find answers to
the research questions. Lastly, a detailed overview of the structure of the report is given
in Section 1.3.

1.1 Motivation

In the transition from the conventional energy resources, such as oil, coal and gas, to
renewable resources, wind energy has become a clean and promising alternative. The
levelised cost of energy (LCoE) of wind has greatly declined throughout years of research,
development and experience in constructing, maintaining and exploiting wind turbines
and wind farms according to Lantz et al. [20]. Wind turbines with ever increasing diam-
eters, aerodynamic tailoring, improved materials, better wind resource assessment and
many other inventions have led to this significant decrease. However, the future of wind
energy greatly depends on the ability and motivation of the government, industry and uni-
versities to continue to reduce costs and eventually achieve grid parity in a wide spectrum
of context and locations. Thus, in order to become more competitive with traditional
energy resources, it is of utmost importance to reduce the levelised cost of energy of
wind.

One way to approach this is to reduce the amount of parts in a wind turbine without
compromising the reliability nor the energy production of the wind turbine. For mid-size
wind turbines that want to avoid the use of expensive and failure-prone pitch systems
the ‘lure’ of compliant blades is a very attractive one: blades which passively deform
due to the high aerodynamic loads and effectively reduce the peak, design-driving loads
on the turbine structure. This passive deformation might be achieved by increasing the
flexibility of the blade by using materials with different characteristics or alternative mate-
rial lay-up. However, increasing the flexibility and modifying the material characteristics

1
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and structure layup also leads to different aeroelastic behaviour of the blade. In order
to ensure an efficient and reliable wind turbine design, great in-depth knowledge of the
aeroelastic behaviour of the blades of the wind turbine in a variety of operating conditions
should be acquired.

The field of aeroelasticity has been a topic of interest since even before the Wright broth-
ers’ first flight. In 1903, an attempt made by Professor Samuel P. Langley of the Smith-
sonian Institution to fly his monoplane resulted in a failure as described in Bisplinghoff
et al. [21]. His aircraft crashed into the Potomac River due to an aeroelastic event called
wing torsional divergence. Initially, the study on aeroelasticity was mainly focussed on
aircraft, but throughout the years it has become an important design parameter in a lot
of devices and structures: such as bridges, transmission lines and of course wind tur-
bines. The strong coupling between aerodynamics and structural dynamics may lead to
aeroelastic instabilities such as flutter. Aeroelastic instability is becoming a critical issue
in the design. With increasing rotor diameters and increased flexibility of the blades it
might occur that under certain conditions the energy from the aerodynamics added to
the system becomes so high that the blade can deform until failure.

In this thesis, the effect of creating a more flexible blade on the aeroelastic stability is
studied. This is done by studying the onset of an aeroelastic instability of a 2D airfoil
by means of a parametric study with two numerical models: an engineering model devel-
oped with the MATLAB software package [2] and a RANS model within the OpenFOAM
framework [3]. The velocity at which an aeroelastic instability is observed is called the
critical onset velocity. The engineering model implements a coupling between an aerody-
namic part and a structural solver. The aerodynamic part consists of the Risø dynamic
stall model from Hansen [4] with an additional LEV contribution to the lift from Larsen
et al. [5] and the structural solver consists of the equations of motion of a rigid 2D airfoil
in two degrees of freedom. The RANS model numerically solves the unsteady, incompress-
ible Navier-Stokes equations using a finite volume approach and performs the aeroelastic
stability analysis on a 2D airfoil by means of FSI simulations.

After both models are validated, a comparison is made in which their performances are
assessed based on accuracy, efficiency and reliability. The most suitable model is chosen to
perform the parametric study on the wind turbine airfoil from the XANT-21 wind turbine.
A parametric space is defined and the effect of varying these structural parameters on the
onset and response of the high-amplitude LCOs are investigated. The critical parameters
are identified and recommendations on a range of structural parameters without the risk
of self-excited LCOs are made.

1.2 Research Questions

This topic of the current study is related to the need to incorporate flexible blade in the
design of the XANT-21 wind turbine in order to reduce the levelised cost of energy. The
focus lies in studying the effect of using flexible blades on the aeroelastic stability. This
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has lead to the following main objective of this thesis:

Investigate the influence of the critical structural parameters on the onset velocity and
the behaviour of high-amplitude limit cycle oscillations of a wind turbine airfoil by

means of numerical simulations.

Furthermore, the ability of different numerical methods to simulate the onset and pro-
cess of flutter behaviour of an airfoil are investigated. These numerical methods include
an engineering model which combines the Risø dynamic stall model with the structural
equations of motion and RANS FSI simulations in OpenFOAM. In order to ensure a pro-
found study on this subject, the following research questions are defined and are answered
during the thesis:

1. Which numerical models are able to predict the critical onset velocity and the be-
haviour of self-exciting high-amplitude limit cycle oscillations of an airfoil?

2. Which key parameters of a wind turbine airfoil affect the critical onset velocity
leading to limit cycle oscillations?

3. How can the risk of self-exciting high-amplitude limit cycle oscillations of a wind
turbine airfoil be reduced?

The main objective of the thesis is divided in several tasks which are performed in order
to provide answers to the research questions. These tasks are listed below:

1. Design a suitable engineering model including a dynamic stall model, which is able
to numerically simulate aeroelastic behaviour of an airfoil.

2. Design a reliable, accurate and efficient RANS model in OpenFOAM which is able
to numerically simulate aeroelastic behaviour of an airfoil.

3. Validate the models with experimental data of self-exciting high-amplitude limit
cycle oscillations.

4. Compare the efficiency, reliability and accuracy of the numerical models.

5. Perform a parametric study on a wind turbine airfoil with the aim of identifying
the critical parameters which affect the self-exciting high-amplitude limit cycle os-
cillations onset and response.

1.3 Thesis Outline

This section provides an overview of the steps taken to provide answers to the research
questions in a structural way. The thesis consists of the following seven chapters:
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• Chapter 1: Provides an introduction to and the motivation for the project and
defines the thesis objective and research questions.

• Chapter 2: This chapter gives an overview of the state-of-the-art research in the
field of aeroelasticity in wind turbines and explains the relevant theories and physical
principles behind the most relevant aeroelastic instabilities for wind turbines. Based
on the findings done in the research, the methodology for the thesis is developed
and presented.

• Chapter 3: This chapter describes the aerodynamic- and structural part of the
engineering model as well as their validation. Preliminary results are presented
which offer some interesting insight in the ability of the model to predict the high-
amplitude LCOs.

• Chapter 4: Firstly, the theories behind RANS simulations including turbulence
and boundary layer are given in this chapter. Secondly, the method and results of
the grid- and time independence study are presented in order to ensure a reliable
and efficient simulation.

• Chapter 5: In this chapter, aeroelastic simulations are performed with the engineering-
and RANS model and are validated with experimental data. The two models are
compared and their ability to simulate the high-amplitude limit cycle oscillations in
an accurate, reliable and efficient manner is discussed.

• Chapter 6: This chapter deals with the parametric investigation of the wind tur-
bine airfoil. Several key parameters are varied and their influence on the onset and
behaviour of the high-amplitude limit cycle oscillations are investigated.

• Chapter 7: The conclusions drawn during the study are summarised in this final
chapter and the objective and research question are reviewed. Recommendations
for further improvement or potential continuation of the study are offered as well.



Chapter 2

Research Introduction

This chapter provides an introduction to the concepts and theories in the field of aeroe-
lasticity of wind turbines. State of the art research regarding the numerical- and experi-
mental study of aeroelasticity in general and aeroelasticity relevant for wind turbines are
revised. This research will be used to justify the chosen methodology of the project. The
chapter starts out with an introduction to the concept of aeroelasticity and how this is
related to wind turbines in Section 2.1. In Section 2.2, a more detailed explanation of
the aeroelastic instabilities relevant for wind turbines and their experimental- and nu-
merical study in literature are presented. Section 2.3 describes the physical principles
behind dynamic stall, which is an important non-linear aerodynamic phenomenon associ-
ated with aeroelastic instabilities and plays an essential role in the development of LCOs.
The methodology of the project is described in Section 2.4. To conclude this chapter,
the experiments from which the data is used for validation of the numerical models are
discussed in Section 2.5. A graphical overview of the approach of this chapter is given in
Figure 2.1.

General 
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Wind Turbine 

Aeroelasticity

Classical/ Stall 

Flutter

Dynamic 

Stall
LCOs
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Numerical Studies

Methodology 

of Project
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Figure 2.1: Research Introduction Flowchart.
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2.1 Aeroelasticity

This first section starts out with a general definition of aeroelasticity in its widest sense.
Afterwards, the different types of aeroelasticity are defined. To conclude this section, the
types of aeroelasticity relevant for wind turbines are briefly discussed.

2.1.1 Definition of Aeroelasticity

The concept of aeroelasticity can be explained as the interaction between structural,
aerodynamic and inertia forces. Aeroelasticity is defined by Bisplinghoff et al. [21] as:

”Aeroelasticity is the phenomena which exhibits appreciable reciprocal interactions (static
or dynamic) between aerodynamic forces and the deformations induced in the structure.”

Interaction of the forces means that a change of one force has an effect on the other. For
example, a change in shape implies a change in the aerodynamic forces on it. In turn,
the new aerodynamic forces impose a new structural deflection. This interacting feedback
process may lead to ’flutter’ which is a self-excited, potential destructive phenomenon,
wherein energy is added from the airflow to the structure.

2.1.2 Types of Aeroelasticity

An important distinction to be made in aeroelasticity is between static and dynamic
aeroelasticity. A clear overview of the relationship and interaction of aerodynamic, elastic
and inertial forces has been created by Collar [9] in 1946 and is called the ’Aeroelastic
Triangle’ depicted in figure 2.2.

Figure 2.2: Collar’s aeroelastic triangle from Collar [9].

The meaning of the three apexes are explained as:
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• A: The aerodynamic forces

• E: The elastic forces

• I: The inertia forces

The meaning of the letters are explained as:

• Dynamic Aeroelasticity:

B - Buffeting. High-frequency, transient vibration caused by airflow separa-
tion or shock wave oscillations from one object striking another.

F - Flutter. Dynamic instability of an elastic structure caused by a positive
feedback between a structure’s deflection and the force exerted by the flow.

Z - Dynamic Response. Transient response of structural components pro-
duced by rapidly applied loads due to gusts, landing reactions, abrupt control mo-
tions and moving shock waves.

• Static Aeroelasticity (Aerodynamic-Elastic Interaction):

D - Divergence. A static instability of a lifting surface, at a speed called
the divergence speed, where the lifting surface deflects under an aerodynamic load
such that the applied load increases in turn increasing the twisting effect on the
structure.

L - Load Distribution. Influence of elastic deformations of the structure on
the distribution of aerodynamic pressures over the structure.

R - Control Reversal. At the control reversal speed, the intended effect
of displacing a given component of the control system are completely nullified or
opposite by elastic deformations of the structure.

• Elastic-Inertia Interaction:

V - Mechanical Vibrations. A periodic process of oscillations with respect
to an equilibrium point.

• Aerodynamic-Inertia Interaction:

DS - Rigid-body Aerodynamic Stability. Represents flight dynamics.

Although the definition of the various aeroelastic types by means of connection of the
vertices and solid lines, as seen in Figure 2.2, is widely accepted, in real life applications
these precise limits are more difficult to define. Now the different types of aeroelastic
behaviour have been identified and described, the relevant types observed in wind turbine
applications are discussed.
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2.1.3 Aeroelasticity of Wind Turbines

Aeroelasticity has become a critical design consideration for wind turbines due to longer,
slender and more flexible blades. Several aerodynamic instabilities may arise during the
normal- and extreme operating conditions of the wind turbine. Wind turbines have in
general low structural damping which may become critical under certain operating con-
ditions according to Hansen et al. [22]. What increases the complexity is the fact that
the damping of composite structures varies with the ambient temperature and it degrades
over time. A review of Hansen [4] postulates that two aeroelastic instabilities are most
likely to occur for modern, commercial wind turbines: stall-induced vibrations and clas-
sical flutter, where the first is better known as stall flutter.

Both instabilities fall under the F-vertex in the Collar Diagram in Figure 2.2, which
represents the aeroelastic flutter type, and thus are a result of the interaction between
aerodynamic-, elastic- and inertia forces. The two types of instabilities are respectively
linked to stall-regulated turbines and pitch-regulated, variable-speed turbines. The blades
of stall-regulated turbines operate most of the time in separated flow conditions. The non-
linear aerodynamic nature of separated flow can lead to negative aerodynamic damping.
Pitch-regulated turbines do not operate in stall, so the risk of stall-induced vibrations
is not very likely, however at standstill and around rated wind speeds for turbines with
high-performance rotors operating close to stall it may occur. Classical flutter is a two
dimensional instability where the coupling of flapwise- and torsional blade modes may
lead to a diverging oscillating motion of the blade.

Bichiou et al. [13] states that flutter rarely has been associated with wind turbine blades,
but that it is expected that with larger and more flexible blades it becomes more relevant.
Great challenges lie ahead in modelling the coupled aerodynamic loads and structural re-
sponses in order to predict the aeroelastic response of wind turbine blades.

Now the relevant types of aeroelastic instabilities for wind turbines have been classified,
a more elaborate explanation of the concerning instabilities, classical flutter and stall
flutter, is done in the next section.

2.2 Aeroelastic Flutter

This section covers the two relevant types of aeroelastic instabilities for wind turbines,
which are: classical flutter and stall flutter. At first, in Section 2.2.1, the necessary back-
ground to understand classical flutter as well as several methods to numerically predict
classical flutter behaviour are given. Secondly, in Section 2.2.2, the aeroelastic phe-
nomenon of stall flutter is described. Finally, Section 2.2.3 describes how the onset of
these types of flutter can lead to limit cycle oscillations.
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2.2.1 Classical Flutter

Classical flutter relies on the energy transfer from the flow to the structure by coupling of
the flapwise- and torsional modes resulting in a rapid growth of the flapwise and torsional
amplitudes of motion after an external perturbation of some kind [8, 23, 24, 25]. The loss
of stability can be explained with the concept of aerodynamic damping. Increasing the
freestream velocity, U∞, results initially in an increase of aerodynamic damping. At a
certain U∞, the aerodynamic damping decreases until a Ucr is reached where the aerody-
namic damping is equal to zero. Any increase in U∞ will lead to a negative aerodynamic
damping and means that with an external perturbation, the equilibrium position is dis-
turbed and the aerodynamic forces are such that the motion is not damped. This often
leads to structural failure.

An illustrative typical flutter diagram for an airfoil is shown in Figure 2.3. The imaginary
part of p represents the frequency of the two modes and the real part of p represents the
aerodynamic damping which are both a function of the freestream velocity. Flutter occurs
in case of negative aerodynamic damping. As can be seen from the figure, the frequencies
of both modes tend to merge as the critical flutter velocity is approached. That is why
this type of flutter is often referred to as coalescence flutter.

Figure 2.3: Flutter Diagram of a typical Airfoil Section from Veilleux [8].

The fact that classical flutter is usually restricted to an oscillatory instability observed
in a potential flow as explained by Veilleux [8], implies that no non-linearities are ap-
parent in the flow or at least do not play a significant role in the physical instability.
One-degree-of-freedom classical flutter has been observed, although in general usage of
the term classical flutter refers to a two-degree-of-freedom coupling as the phase shift of
the motions are key parameters in the instability.
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Determining Classical Flutter

As the classical flutter problem is a linear problem, the mechanism of this instability
can be understood by following the explanation of Hansen [4] or the formulation from
de Breuker [26]. This method to determine the linear classical flutter speed of a 2D airfoil
with a steady aerodynamic model gives valuable insight in the mechanism behind the
classical flutter phenomenon and is therefore further explained in Appendix A. However,
it is based on a linear aerodynamic model and is therefore a too simple representation to
accurately obtain the critical onset velocity for classical flutter for a 2D airfoil.

Other methods to determine the critical onset velocity for classical flutter, also known as
the flutter point, use a more advanced representation for unsteady aerodynamics based
on the Theodorsen’s theory as described in Theodorsen [27]. These methods include the
k method and the p-k method, which assume that only harmonic aerodynamic data is
available and can predict the flutter points. Another method is the p method which is also
able to predict the response of the airfoil, but is in practice less accurate in predicting the
flutter point than the other methods. Their formulations can be found in de Breuker [26].
Politakis et al. [25] determines the flutter point by means of coupling a Blade Element
Momentum (BEM) model to a 2D structural model. This proves to be a simple, yet
effective method to obtain the flutter point and to gain in sight in the behaviour of the
airfoil.

The previous methods apply for a 2D airfoil section, but classical flutter can also be
determined on a complete wind turbine blade in 3D as has been done by Baran [24]
and Lobitz [28]. Lobitz [28] determined the flutter limit of a large wind turbine blade
using quasi-steady and unsteady aerodynamics and showed that the flutter point of the
blade using quasi-steady aerodynamics was lower than the flutter point obtained with
the unsteady aerodynamics. However, as this thesis focusses on performing a parametric
study, it is not desired to perform the analysis in 3D as it would increase the modelling
procedure and simulation time. So, the 3D study of flutter is disregarded during the
remaining part of the thesis.

Characteristics of Classical Flutter

Following the observations made in Baran [24], Lobitz [28],Hansen [4] and Veilleux [8]
about classical flutter, an overview of the characteristics and important parameters of
this aeroelastic instability is given:

• Classical flutter is a result of negative aerodynamic damping where a torsional mode
couples with a heaving mode through the aerodynamic forces.

• The concerning coupling of modes may lead to violent diverging oscillations in a
classical flutter event.

• The flow over the airfoil must be attached, ( δCl

δθ > 0), in order for classical flutter
to occur.
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• The static imbalance, S = ml, which is the mass of the airfoil multiplied with the
distance between the centre of gravity and the rotational centre, is an important
parameter in onset of flutter. When the centre of gravity lies ahead of the rotational
centre, no flutter occurs. Increasing this parameter decreases the critical flutter
speed, Ucr.

• The ratio of uncoupled natural frequencies, ωh

ωθ
, has a large impact on the onset of

flutter. When these are close to one, merging of the frequencies happens faster and
flutter occurs at lower velocities. This ratio is related to the following parameters:
kh, kθ, m & Irc as follows:

ωh

ωθ
=

√

kh/m
√

kθ/Irc
(2.1)

where kh and kθ are respectively the stiffness in heave- and torsional direction and
Irc is the mass moment of inertia around the centre of rotation.

• Increasing the pitching- and heaving structural damping, cθ and cy, helps preventing
or delaying the occurrence of flutter.

• The relative wind speed, Urel, (which for wind turbines is the magnitude of the
freestream velocity and rotational speed, Urel =

√

U2
∞ + (rΩ)2) has to be high

enough for flutter to occur. Where r [m] is the radial position of the airfoil on the
wind turbine blade and Ω [rpm] is the angular velocity of the wind turbine blade.

2.2.2 Stall Flutter

Stall flutter may be experienced in a wide variety of applications - from venetian blind
slats, air deflectors and automobile spoilers to helicopter rotors, turbomachinery blades
and wind turbine blades. Stall flutter may occur during separation of the airflow around
the structure at high angles of attack. Operating at high angles of attack may significantly
reduce the critical flutter point as observed by Halfman et al. [29]. It was first observed
during World War I at which stall flutter occurred during sharp pull-up manoeuvres of
aircrafts in combat.

The mechanism of stall flutter is clearly explained by Holierhoek [10]. Stall flutter is a
phenomenon that occurs when the flow separates from and reattaches to the surface of
the wing in a cyclic manner. A gust increases the angle of attack, as shown in Figure
2.4, while the blade is operating in stall conditions. An increase in the angle of attack in
the stall region will lead to a reduction of the aerodynamic forces acting on the airfoil.
Assuming the aerodynamic centre is located in front of the elastic axis, the smaller forces
will result in a nose down torsional deformation. This reduces the angle of attack which
in turn, as it is still operating in stall, will increase the aerodynamic forces resulting in a
cycle that may become unstable. For helicopters, this instability may occur during high
speed flight and manoeuvring. Furthermore, this aerodynamic instability should be espe-
cially taken into account for stall controlled wind turbines which operate partially in stall
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during high wind speeds. In practice this instability will result in a limit cycle oscilla-
tion in both wind turbines and helicopters due to the associated non-linear aerodynamics.

Figure 2.4: Airfoil Section subjected to a sudden Gust from Holierhoek [10].

Stall flutter may occur in partial or complete separation of the flow around an airfoil as
stated by Dowell et al. [23]. In contrary to classical flutter, which is initiated in attached
flow, the mechanism of energy transfer from the airflow to the oscillating airfoil does not
rely on elastic and/or aerodynamic coupling between two modes, nor upon a phase lag
between the aerodynamic forces and the airfoil’s displacement. For these latter effects,
the positive aerodynamic work added to a vibrating wing needs to operate in a linear
system. For stall flutter, it is essential that the aerodynamic reaction to the motion of the
airfoil/structure is non-linear and it may occur in a single degree of freedom. Some level
of coupling between the two degrees-of-freedom as well as a phase lag between the motions
may be apparent, but are not essential features of stall flutter. It is a self-excited and self-
sustaining instability where fluctuating aerodynamic loads are created by an oscillating
wing and these loads on their own maintain the oscillation by adding energy to the airfoil
and thus often lead to self-sustained limit cycle oscillations. The fluctuating aerodynamic
loads are characterised as the dynamic stall phenomenon which leads to the following
definition of stall flutter as described by Li [7]:

Stall flutter is an aeroelastic phenomenon that emerges from an energy transfer between
a fluid and an elastic system undergoing dynamic stall which may result in limit cycle-

or diverging oscillations.

Determining Stall Flutter

Contrary to classical flutter, stall flutter can not be captured in a potential aerodynamic
theory due to the non-linear characteristics involved within the concerning phenomenon.
The theories on aeroelastic behaviour do not include non-linear force prediction in case
of separation of the flow and thus are per definition not able to predict stall flutter as
stated by Razak et al. [30]. This means that stall flutter has to be studied by numerical
simulations or experimental studies. Numerical methods include solving the aerodynam-
ics by means of Computational Fluid Dynamics (CFD) simulations or by means of the
so-called semi-empirical dynamic stall models (such as the models described in Larsen
et al., Hansen et al., Leishman and Beddoes, Tran and Petot [5, 16, 31, 32]). These
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dynamic stall models provide a fast and efficient way of capturing the aerodynamics at
hand. However, these models require semi-empirical, often airfoil-dependent, coefficients
as an input which are usually obtained through experiments. Fluid-structure interaction
simulations which includes coupling between the fluid mechanics and the structure would
also provide the non-linear aerodynamics necessary for stall flutter prediction.

Experiments on a rectangular wing with a NACA 0018 profile with a plunge and pitch
degree of freedom with the aim of investigating how stall flutter is generated and to de-
termine its relationship to classical flutter have been performed by means of pressure-,
acceleration and particle image velocimetry (PIV) measurements by Razak et al. [11]. The
static angle of attack and the wind-tunnel airspeed were varied during the experiments
and the Reynolds numbers ranged from 2.6× 105 to 6.3× 105. The amplitude in pitch of
the LCOs versus the airspeed for different mean angles of attack is displayed in Figure 2.5.

Figure 2.5: Pitch Response Amplitudes versus Airspeed for several Static Angles of Attack from
Razak et al. [11]

The figure clearly shows a bifurcation, which is the intersection of two or more of a sys-
tem’s solution branches, in the responses. The intersection of a steady solution’s branch
with a branch of dynamic solutions is usually called a Hopf bifurcation which would be
the correct term in this case. At a static angle of attack of 11◦, a typical classical flut-
ter event is shown: a steady response until, at a critical air speed, the pitch- and heave
modes coalesce and the response becomes oscillatory with a rapidly growing amplitude.
Beyond the critical airspeed, the amplitudes of the oscillations tend to grow in time. In
the cases of an increase in angle of attack, the critical onset velocity becomes lower and
post-critical behaviour is very different. The growth of the amplitude of the oscillations
over an increasing air speed is slower. The frequencies in pitch and heave do not merge
and the pitch frequency is observed to be the most dominant. These self-induced LCOs
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with finite amplitude at higher mean angles of attack are classified to be due to stall flutter.

Self-sustained cyclic motions of limited amplitude of a wing caused by stall flutter have
also been experimentally observed by Li, Razak et al., Arena et al. [7, 30, 33]. They
concluded that the cyclic motion with limited amplitude was a result of non-linear be-
haviour of the aerodynamic forces on the structure and that this non-linearity was caused
by periodic separation and reattachment of the flow. In the case of permanent separation
of the flow, such as on a bluff body, the aerodynamic instability is called galloping as
postulated in Dowell et al. [23]. The experiment performed by Li [7] will be covered more
into detail in Section 2.5 as it was found to be a suitable validation case for the numerical
models. The dynamic stall phenomenon, which is the main actor in stall flutter will be
described in Section 2.3.

In 2002, Beedy et al. [34] performed a non-linear analysis of stall flutter with one of
the aforementioned dynamic stall models: the ONERA-model from Tran and Petot [32].
Their goal was to explore the non-linear aerodynamics at high angle of attack stall flutter
while attempting to develop a simple non-linear method of flutter analysis. They con-
cluded that the flutter calculations were qualitative satisfactory in predicting the velocity
and frequency of the onset of flutter of a NACA 0012. Other studies on stall flutter with
the ONERA-model on a NACA 0012 have been performed by Sarkar and Bijl [35] and
Sarkar et al. [36]. Studies on stall flutter who use different dynamic stall models include
Galvanetto et al. [37],Shao et al. [38] and Li and Fleeter [39] where the first two use the
Beddoes-Leishman model and the latter the Gormont model. Despite the fact that these
studies had different objectives and methods in studying the stall flutter phenomenon,
they clearly showed that the semi-empirical dynamic stall models are capable of numer-
ically obtaining stall flutter onset and behaviour. The majority of these studies use the
NACA 0012 airfoil as the subject of interest. No stall flutter studies on a wind turbine
airfoil with one of the semi-empirical dynamic stall have been performed yet to the au-
thor’s knowledge.

In 1989, Wu et al. [40] coupled a Navier-Stokes solver for 2D airfoils with a structural
dynamic model. They predicted stall flutter and classical flutter of a NACA 0012 and
a NACA 64A010 at a Reynolds number of ∼ 106. Stall flutter was obtained at a mean
incidence angle of 15◦. For angles equal to and lower than 10◦, no stall flutter was
encountered at any airspeed. This study has been an important confirmation that it is
possible to simulate the stall flutter phenomenon numerically with a Navier-Stokes solver.

In 2012, an attempt was made by Yabili et al. [41] to obtain similar stall flutter onset
speeds numerically with OpenFOAM as the experimental results of the NACA 0012 from
Li [7]. A solver was developed to compute large amplitude motion of two-dimensional
rigid configurations. The k-ω SST turbulence model was applied. An O-topology domain
with a 971×200 grid and a diameter of 60 times the chord was used. The lift- and moment
coefficients over time are compared with the experimental data at an airspeed of U∞ = 13
[m/s]. The results did not match exactly, however the trend, amplitude and frequency of
oscillation are very well captured. The predicted amplitude at one airspeed was in very
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good agreement with the experimental data. Unfortunately, they limited their study to
only one particular airspeed. This study shows that it is possible to predict stall flutter
behaviour by means of RANS simulations in OpenFOAM.

Summary of Stall Flutter

The several observations made by studying state-of-the-art research on the topic stall
flutter results in a summarised overview of the particular aeroelastic instability. Stall
flutter is a phenomenon where flow separation and reattachment to the surface of a wing
occurs in a continuous cyclic manner. The non-linearities involved in the stall flutter
phenomenon result in the fact that its initiation and response can not be captured by
linear potential theory as seen in classical flutter. Therefore, stall flutter must be studied
experimentally or by means of numerical simulations which can cope with non-linearities
in the aerodynamics. Several experiments have been carried out through the years on
stall flutter. However, this was mostly done on a NACA 0012 profile which in general has
different aerodynamic characteristics compared to wind turbine airfoils. No experiments
on stall flutter of a wind turbine profiled wing or blade has been performed yet. It has
been shown by Wu et al. [40] that numerical simulations of stall flutter by means of CFD
computations are possible and this would be a suitable approach to perform the parametric
study on flutter behaviour of a wind turbine airfoil. A semi-empirical dynamic stall model,
which captures the non-linearities in the aerodynamics, coupled with a structural solver
would technically also provide a method of studying the stall flutter behaviour as seen
previously in this section.

2.2.3 Limit Cycle Oscillations

After an airfoil is excited due to initiation of an aeroelastic instability, the resulting
behaviour might lead to limit cycle oscillations. Limit cycle oscillations are self-sustained
cyclic oscillations of a constant and limited amplitude according to Li [7]. A qualitative
illustration of a typical dynamically unstable system which, as a result of a perturbation,
reaches a state of self-sustained LCOs is depicted in Figure 2.6. Initially, the system
is at rest in a static equilibrium. At a certain point, the airfoil might be subjected
to an aeroelastic instability, such as classical- or stall flutter, and the stable, neutral
position of the airfoil is disturbed which results in an exponential growth in amplitude
in the transient regime. With a growing amplitude, the effect of the non-linearities in
the system becomes more significant and eventually limits the growth of the amplitude
until a constant amplitude is reached and LCOs are observed. This is denoted by the
LCO regime in the figure. As discussed before, these non-linearities may arise from large
separations of the flow and are characterised by the dynamic stall phenomenon. Other
non-linearities, such as non-linear material deformation or freeplay in control surfaces
might also limit the exponential growth of a fluttering airfoil’s amplitude of motion as
stated by Dowell et al. [23] and Arena et al. [33].
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Figure 2.6: Qualitative Illustration of the development of LCOs. Veilleux [8]

The principles behind and methods of studying the two aeroelastic instabilities relevant for
wind turbines and how this might lead to LCOs have been discussed in this section. The
next section provides an in-depth explanation of an important phenomenon associated
with the aeroelastic instabilities and LCOs: i.e. the dynamic stall phenomenon.

2.3 Dynamic Stall

A phenomenon which occurs when airfoils are subjected to pitching motions is a different
stalling behaviour than stalling at fixed angles of attack: this is called dynamic stall. In
dynamic stall, the shear layer near the leading edge rolls up to form a leading-edge vortex
which provides additional suction over the upper airfoil surface as it convects downstream.
After a temporary gain in lift and delay in stall, the LEV quickly becomes unstable and
detaches from the airfoil. This detachment yields a dramatic decrease in lift and sudden
increase in pitching moment which can lead to violent vibrations and dangerously high
loads leading to fatigue and structural failure. The process of dynamic stall is depicted
in Figure 2.7 and in Figure 2.8 obtained from Amanullah Choudhry [12] and can be
summarised as follows:

1. At the onset of rotation, the lift produced at zero angle of attack is slightly higher
for the unsteady case than during steady state operation. This is primarily due to
the effects of a starting vortex that induces additional circulation near the airfoil
leading edge.

2. As the angle of attack increases, the lift curve slope of the airfoil starts to decrease
continuously and a slight curvature is observed in the so-called linear regime of
the lift curve. This behaviour can be explained due to the apparent thickening of
the boundary layer on the suction side of the airfoil. The thickening results from
the passage of the starting vortex that leaves a region of reversed flow in its wake.
However, due to the inertia of the fluid and low pressure zones, created by the
motion of the airfoil, near the trailing edge (TE), the mean flow still follows the
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contours of the airfoil. Hence, the thickening of the boundary layer results in the
increase of apparent camber and apparent thickness of the airfoil. The combined
effect results in the slight curvature of the lift curve.

3. A sudden plateau is observed in the lift curve that, to some extent, can be considered
as partial flow separation. The plateau occurs after the starting vortex has merged
with the trailing edge vortex. Due to the expansion between the trailing edge vortex
and the airfoil, the regions of reversed flow near the trailing edge start to grow swiftly
and the separation point steadily moves towards the leading edge of the airfoil. At
the same time, a bubble region is formed near the leading edge. Instantaneously, the
majority of the flow is separated from the airfoil surface and, therefore, the slight
kink is observed.

4. With a further increase in the angle of attack, the lift curve slope is observed to
increase. The increase in the lift slope is principally due to the formation of the
LEV which appears when the reverse flow accumulation from the trailing edge finally
forces the shear layer at the leading edge to be pushed away from the airfoil surface.
This is the stage at which the primary leading edge vortex is observed which leads
to the large increase of suction pressures on the surface of the airfoil.

5. Finally the maximum lift is achieved as the LEV convects to approximately the
mid-chord of the airfoil. The maximum lift during the dynamic stall process can
attain values up to 3 times the steady-state maximum lift coefficient. However,
this substantial increase is also accompanied by an equivalent increase in the drag
presumably due to the large angle.

6. Afterwards, a sudden drop in lift coefficient is observed and the airfoil goes into a
state of deep stall. The resultant flow separation occurs due to the detachment of the
LEV and was found to be more severe compared to the steady state case. The airfoil
continues to generate lift beyond dynamic stall if pitching is continued. The post-
stall lift characteristics during the airfoil rotation are still superior compared to the
steady-state lift characters. The behaviour shows resemblance with the behaviour of
a rotating flat plate. Therefore, a pitching airfoil during post stall behaves similarly
to a pitching flat plate that exhibits a clear parabolic trend in the lift curve.

Figure 2.7: Comparison of Steady-State and Dynamic Stall Lift Curve Characteristics from
Amanullah Choudhry [12].
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Figure 2.8: Flow Topologies around an Airfoil undergoing Dynamic Stall from
Amanullah Choudhry [12]

This section has provided a qualitative description of the dynamic stall phenomenon
observed with a rapid increasing angle of attack. The substantial effect of the creation and
detachment of the LEV on the lift coefficient during a dynamically moving airfoil create
the need to accurately describe this phenomenon with numerical models. Therefore, in
studying the aeroelastic instabilities of a 2D airfoil, it is of utmost importance to use
models who are capable of simulating the dynamic stall phenomenon and the associated
force coefficients.

2.4 Methodology

This section discusses the methodology for the thesis investigation based upon the physical
concepts and experimental studies discussed earlier. As seen in literature, two aeroelastic
instabilities play a critical role in the design of wind turbine blades: classical- and stall
flutter. As the XANT-21 wind turbine is a stall controlled wind turbine, it is believed
that stall flutter is the most relevant aeroelastic instability type for the expected range
of operating conditions. However, it is believed that studying the classical flutter phe-
nomenon as well provides useful insights in the onset and behaviour of the aeroelastic
instability. Increasing the flexibility of the XANT-21 wind turbine blades has an effect
on the aeroelastic stability of the blades as critical structural parameters are modified
in the new design. In order to study the effect of the critical structural parameters of a
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wind turbine airfoil on the onset of such an aeroelastic instability and how this leads to
high-amplitude limit cycle oscillations, a numerical model which is able to perform 2D
non-linear aeroelastic simulations is required. As seen in the previous sections, the semi-
empirical dynamic stall models as well as Navier-Stokes solvers coupled with a structural
solver are able to deal with these kind of simulations. In this project, aeroelastic simula-
tions with both models are performed as their capabilities have not often been assessed
and evaluated at high-amplitude limited cycle oscillations. This section is divided in
three subsections: first the approach of the project is given, afterwards a work breakdown
structure of the project is discussed and lastly the structural modelling of a 2D airfoil
used by both numerical models are presented.

2.4.1 Approach of the Project

Two numerical models are used in the aeroelastic simulations of a 2D airfoil: an engi-
neering model which uses one of the aforementioned semi-empirical dynamic stall models
and a RANS model. Selecting a suitable dynamic stall model depends on the type of
airfoil to be studied, the semi-empirical coefficients publicly available, the accuracy and
the ease of implementation of the models. Larsen et al. [5] provides a comparison of sev-
eral dynamic stall models and concludes that only their model, the Risø model and the
Beddoes-Leishman model are capable of accurately reproducing experimental results at
fully attached flow as well as in the stall regime. The Beddoes-Leishman model, however,
needs twelve coefficients as an input compared to respectively seven and six of the first
two models. It is decided to use the semi-empirical dynamic stall model from Hansen
et al. [16] to calculate the transient aerodynamic forces in the engineering model. This
model has proven to be a simple, yet accurate model in predicting the forces in dynamic
stall of especially wind turbine airfoils. The Risø dynamic stall model is covered into more
detail in Section 3.1. The other numerical model is a RANS solver which is coupled with
a structural solver within OpenFOAM. The main reasons to perform the simulations in
OpenFOAM are that OpenFOAM is open source software (so no expensive licenses are
required), knowledge about OpenFOAM is abundant within TU Delft and solvers can be
modified to fit case specific requirements.

In order to ensure that the numerical models are capable to accurately and efficiently ob-
tain the onset of aeroelastic instabilities and the behaviour of high-amplitude limit cycle
oscillations, they have to be validated. This is done by comparison of their capabilities
with data from experiments. Two experiments have been selected as suitable datasets to
validate the models with: the stall flutter experiment from Li [7] and a classical (or also
referred to as coalescence) flutter experiment described in Veilleux [8]. The experimental
set-up and results are elaborated upon in the Section 2.5. Especially, the stall flutter
experiment provides valuable data about the force coefficients on high-amplitude cyclic
motions. However, the aeroelastic behaviour in this experiment, in hindsight, proved to
be difficult to reproduce due to the uncertainty in and lack of known structural parame-
ters. The data presented in Veilleux [8] is used to validate the aeroelastic simulations of
the two models.
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After both models are validated, a comparison is made in which their performances are
assessed based on accuracy, efficiency and reliability. The most suitable model is chosen
to perform the parametric study on the wind turbine airfoil from the XANT-21 wind tur-
bine. A parametric space is defined and the effect of varying these structural parameters
on the onset and response of the high-amplitude limit cycle oscillations are investigated.
The critical parameters are identified and recommendations on a range of structural pa-
rameters without the risk of self-excited LCOs are made.

2.4.2 Work Breakdown Structure of the Project

An overview of the tasks performed to complete the thesis is shown in a work breakdown
structure shown in Figure 2.9. The work breakdown structure shows six columns, which
correspond chronologically to Chapter 2 to Chapter 7. The first column focusses on the
available literature, attempts to provide insight in the physics at play and the project
approach is designed here. The second column deals with the design and validation
of the engineering model. The third column show the work done in order to obtain a
suitable and reliable RANS model. In the fourth column, the main task is to assess the
capabilities of the engineering- and the RANS model and provide a comparison. The
fifth column describes the tasks performed for the parametric aeroelastic study on the
wind turbine airfoil and is related to the main objective of this thesis. The last column
consists of drawing conclusions and provide recommendations for further improvement or
continuation of the research.

Figure 2.9: Work Breakdown Structure of the Project
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2.4.3 Structural Modelling of a 2D Airfoil

The wind turbine blade is simplified and modelled as a 2D cross section as shown in
Figure 2.10. The airfoil is free to move in two degrees-of-freedom; pitch around the z-axis
and heave along the y-axis. Motions in other directions or around any other axis is not
possible. The airfoil is free to rotate around the rotational centre, xrc, and the heaving
motion is applied at this specific location as well. Two artificial springs in the two degrees
of motion are attached to the rotational centre with the following properties: stiffness and
damping coefficient. The centre of gravity of the airfoil is located at xcg. It is assumed
that the lift and moment on the airfoil act in the aerodynamic centre (assumed to be
equal to the centre of pressure) which is located at quarter-chord position.

y

x

xrc
xcg

� xac

Figure 2.10: A Schematic Representation of a 2D Airfoil Section. Bichiou et al. [13]

The figure also points out the parameters of interest in the formulation of the aeroelastic
problem. These are declared here:

• U∞: Free-stream velocity

• c: Airfoil’s Chord Length

• θ: Pitch Angle

• h: Heave Displacement

• M : Moment around Aerodynamic Center

• L: Lift of Airfoil

• xac: Location at which the forces act (assumed quarter-chord)



22 Research Introduction

• xrc: Location of Center of Rotation (assumed to be equal to the elastic axis)

• xcg: Location of the Center of Gravity

• l: Distance between Center of Rotation and Center of Gravity

• ch: Damping Coefficient in Heave Direction

• cθ: Damping Coefficient in Pitch Direction

• kh: Stiffness in Heave Direction

• kθ: Stiffness in Pitch Direction

Summation of the forces and moments exerted on the airfoil lead to the general equations
of motion. The equations of motion of the airfoil in two directions are then:

mḧ+ Sθ̈ + chḣ+ khh = −L (2.2)

Sḧ+ Ircθ̈ + cθθ̇ + kθθ = M (2.3)

where S = ml cos θ is the static mass moment.

2.5 High-Amplitude LCO Experiments

This section describes the set-up and the results of the two experiments of which the
data is used to validate the numerical models with. At first, the stall flutter experiment
from Li [7] is described. Secondly, the coalescence flutter experiment from Veilleux [8] is
discussed.

2.5.1 Stall Flutter Experiment from Li [7]

In this section, the stall flutter experiment carried out by Li [7] which is used to validate
the engineering- and the RANS model. The experiment in Li [7] aimed to investigate
the stall flutter phenomenon by studying the free motion in pitch and plunge direction
and especially the onset and development of self-excited stall flutter oscillations of a
rectangular wing with a NACA 0012 profile. The free-stream wind velocity was varied
from U∞ = 0 [m/s] up to U∞ = 30.7 which corresponds to a range of Reynolds number
from Re = 0 to Re = 630 000 and Mach-numbers M = 0 to M = 0.088 (obtained
with M = U∞

a , where it is assumed that the speed of sound at standard atmosphere
temperature a = 343.6 [m/s] as shown by Dean [42])

First, the experimental set-up and the static tests results are described in this section.
Secondly, the results of the dynamic tests of the pitch-plunge wing are presented and
discussed.
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Experiment Design

The experiments were carried out in two different wind tunnels, one for the static tests
and the other for the dynamic tests, in the Goldstein Laboratory of the University of
Manchester, at Barton Aerodrome. A graphical overview of the experimental model
is given in Figure 2.11. The experimental apparatus consists of the wing, the support
mechanisms, which includes the bearings, springs and rods, and pressure sensors.

Figure 2.11: Experimental Model mounted on the Flexible Support System from Li [7].

The wing is a rectangular wing with a NACA 0012 profile with 900 [mm] span, 300 [mm]
chord which means an aspect ratio (AR) of 3 [-]. The support mechanism was designed
such to allow free motion of the wing in pitch and plunge direction. By using two pairs of
compression springs and a pair of torsion springs, the restoring force is provided and the
structural stiffness is given. The stiffness of the torsional springs were chosen such that
the wing would undergo static divergence at airspeeds around 20 [m/s]. Bearings and
bushes were used in order to minimise friction. An overview of the relevant experimental
parameters is given in Table 2.1.

Table 2.1: Experiment Structural Parameters from Li [7]

Parameter Symbol Unit Value

Chord c [m] 0.3

Span S [m] 0.9

Total Torsional Spring Stiffness kθ [Nm/rad] 13.07

Total Compression Spring Stiffness ky [N/m] 18 976

Centre of Rotation xRC [%] 38.33

Moment of Inertia around the Centre of Rotation IRC [kg ·m2] 0.31

Mass M [kg/m] 16.67

Two different sensors were used in the experiment; one to obtain the aerodynamic forces
and another to obtain the displacement and rotation. A piezoresistive pressure sensor
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is used to measure the pressure distribution, from which the aerodynamic forces are
deduced, with 18 pressure taps located around the middle section of the wing and a laser
displacement sensor measured the pitch and plunge displacement.

Initially, static tests were performed in order to obtain the static aerodynamic lift, drag
and moment and the corresponding coefficients for range of incidence angles of attack
from −39◦ to 39◦. Static experiments were carried out for 21 different velocities ranging
from U∞ = 7 [m/s] to U∞ = 27 m/s. For this thesis study data is only available at 6
different wind speeds (13,14,15,16,25 and 26) from which two wind speeds, determined
by their reliability and scope, are chosen and the corresponding lift-, drag- and moment
coefficients are shown in Figure 2.12.
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Figure 2.12: Static Lift-, Drag- and Moment Coefficients at U∞ = 13 [m/s] and U∞ = 26
[m/s] from Li [7].

The asymmetry in the force coefficient graphs clearly shows that the constructed wing
does not have the exact contour of a symmetric NACA 0012 profile. The procedure of
obtaining the shape of the wing by folding a metal sheet around several ribs resulted in
an asymmetric profiled wing. Discrepancies with other static experimental data on the
NACA 0012 have been observed as well by Li [7].

Dynamic Test Results

This section describes the dynamic test results of the pitching and plunging wing from
the experiment. An initial excitation in the form of a hand-administered moment around
the pitch axis intended to rotate the wing far beyond angles of stall was given if needed.
The measurement of the position and pressure responses always start simultaneously. The
available data from the experiment represents the dynamic results of using configuration
’Spring 2’ for the compression springs. Several representable wind speeds (3.9, 9.3 and
11.1 m/s) are chosen and the dynamic responses are displayed in Figure 2.13.

From the figures it can be seen that the excitation impulse is not equal for the different
wind speeds as it was hand-administered. At U∞ = 3.9 [m/s], the response is damped
and decays to equilibrium position. However at U∞ = 9.3 [m/s], the excitation results in
the wing performing limit cycle oscillations of amplitudes of 40◦ in pitch. The amplitude
in plunge is very low (around 5 cm) when LCOs occur and the plunge natural frequency
is not excited at all due to the high stiffness in plunge. The response of the wing is
single-modes, despite the two degrees of freedom of the system. At U∞ = 11.1 [m/s], no
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Figure 2.13: Dynamic Pitch Angle and Lift- and Moment Coefficients at different Wind Speeds
from Li [7].

external excitation is needed and the wing performs LCOs spontaneously.
An interesting thing to note is that in the low wind speed case right after the excitation
there is a small drop in Cm, but increases afterwards and lags the pitching motion by
about 90◦. However in the high wind speed cases, where LCOs occur the Cm is directly
180◦ out of phase of the pitching motion.

Bifurcation plots of the experimental pitch angles, plunge displacements, lift- and moment
coefficient are shown in Figure 2.14:
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Figure 2.14: Mean Amplitudes and Frequencies of LCOs for Different Wind Speeds from
Experiment of Li [7].

From the figure, the most important conclusion to be drawn is that for wind speeds be-
tween 9.5 and 15 [m/s], the mean amplitude of especially the pitch angle still increases
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and afterwards remains constant. Another point which is noteworthy is the fact that the
lift coefficient oscillates with a mean amplitude of around 3 [-] which is almost three times
higher than the maximum static lift coefficient. This is a clear indication of the dynamic
stall phenomenon at which the maximum instantaneous lift coefficient can significantly
exceed the maximum static lift coefficient.

Figure 2.14c and 2.14f show the pitching motion’s frequency and reduced frequency re-
spectively for different wind speed. The figures clearly show an increase in frequency and
decrease in reduced frequency with an increasing wind speed for wind speeds at which
LCOs occur. As, with increasing wind speed, the amplitude of motion remains rather
constant when LCOs are seen, the increase of energy in the fluid results in an increase in
frequency.

2.5.2 Coalescence Flutter Experiment from Veilleux [8]

Another experiment on self-excited LCOs of a NACA 0012 profiled wing has been carried
out by a research group from the Royal Military College of Canada (RMC), Kingston,
Ontario, Canada by Poirel and Mendes [14]. The wing, mounted on a pivot, was free to
move in two degrees-of-freedom. Although their aim was investigating the low-amplitude
LCOs caused by the laminar separation bubble at a limited range of transitional Reynolds
numbers (Re = 50 000 to 120 000), they observed in certain cases high-amplitude LCOs
caused by coalescence flutter whose exponentially growing amplitude is limited by flow
separation at large angles of attack. As mentioned before, a feature of coalescence flutter
is that the frequency of oscillation of both degrees-of-freedom tend to merge and this
explains the single frequency seen in the experiment. Two different heave stiffnesses were
investigated in the experiment and only the resulting pitching- and normalised heaving
amplitude and reduced frequency are publicly available. An overview of the structural
parameters is given in Chapter 5. The results are shown in Figure 2.15.
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Figure 2.15: Pitch- and Heave Amplitudes and Reduced Frequencies of LCOs as function of
Reynolds number from Experiment of Poirel and Mendes, Veilleux [14, 15].

The experiment is assessed to be very useful in validating the aeroelastic models devel-
oped as part of the thesis. Numerical FSI RANS simulations (with a Spalart-Allmaras
turbulence model) have been successfully performed by Veilleux [8] on the high-amplitude
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LCOs in the experiment from Poirel and Mendes [14]. Veilleux, Veilleux [8, 15] provides
a more clear and deeper analysis of the high-amplitudes LCOs in the experiment. That
is why in the remainder of this report, when referenced to the coalescence flutter experi-
ment, a reference to Veilleux [8] is made.
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Chapter 3

Engineering Model

In this chapter, the technical set-up of the engineering model used for aeroelastic flutter
prediction of an airfoil is described. This means that the first task defined in Section
1.2 is carried out: Task 1: Design a suitable engineering model including a dynamic
stall model, which is able to numerically simulate aeroelastic behaviour of an airfoil. The
engineering model consists of two parts: an aerodynamic part and a structural part. In
the aerodynamic part, a modified version of the Risø dynamic stall model from Hansen
et al. [16], developed at the Danish National Laboratory for Sustainable Energy, is used
for the prediction of unsteady aerodynamic loading on the airfoil undergoing arbitrary
motion in the pitch- and heave degree of freedom. The structural part consists of the
structural equations of motion to solve for the positions and velocities of the airfoil.
An iterative procedure uses aerodynamic loading to determine the airfoils position and
velocity, and then recalculates the aerodynamic loading for the new position. Section
3.1 describes the method of calculating the unsteady aerodynamic forces. Afterwards,
Section 3.2 explains how the structural equations of motion are defined. In Section 3.3,
the method of obtaining the semi-empirical constants, which serve as an important input
in the aerodynamic model, is described. Section 3.4 deals with validating the aerodynamic
model at high-amplitude oscillations. In Section 3.5, the structural part of the engineering
model is validated. Finally, a brief summary of the chapter is given in Section 3.6.

3.1 Aerodynamic Part

The Risø dynamic stall model from Hansen et al. [16] is a Beddoes-Leishman type dy-
namic stall model in state-space representation to model the unsteady loading on an airfoil
section undergoing arbitrary motion. In the Risø model, the two major adaptations from
the Beddoes-Leishman model are that no compressibility effects are taken into account
and the contribution of the leading edge vortex (LEV) to the forces and moment are
neglected. The former modification is incorporated as the model is especially designed
for the wind turbine environment which usually do not operate in Mach numbers above
0.3 and the flow is thus incompressible. The latter modification is incorporated as it is

29
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assumed that leading edge separation is not a dominating phenomenon for relatively thick
airfoils used on wind turbine blades. However, according to Larsen et al. [5], leading edge
separation does play a role in wind turbine airfoils as well as thin airfoils; especially in
high amplitude changes in the angle of attack, leading edge separation may contribute to
the lift significantly. As the experimental data is obtained with a NACA-0012 profiled
wing, which is neither a relatively thick nor a typical wind turbine profile, leading edge
separation is taken into account in the proposed model and the a comparison of both
approaches is presented in Section 3.4. Furthermore, the proposed model includes the
effects of shed vorticity from the trailing edge as well as the effects of the instationary
trailing edge separation point.

The model is created with the Matlab software package [2], partially in the Simulink-
environment. A general flowchart of the model is shown in Appendix D. A concise step-
by-step description of the calculations of the unsteady aerodynamic forces and moments
is given below. All airfoil specific coefficients or parameters are elucidated in Section 3.3.

1. With the known incoming velocity U , and the geometrical angle of attack at three-
quarter chord point of the airfoil, α3/4, the effective angle of attack, αE is calculated
as follows:

αE = α3/4(1−A1 −A2) + x1(t) + x2(t) (3.1)

where A1 and A2 are airfoil dependent coefficients and x1 and x2 are state variables
which are calculated with the following ordinary differential equation (ODE) for
i = 1, 2:

ẋi +
2U

c

(

bi +
cU̇

2U2

)

xi = biAi
2U

c
α3/4 (3.2)

where ẋi is the derivative of the first two state variables, b1 and b2 are non-
dimensional time constants, c is the chord, and U̇ is the derivative of the incoming
wind speed.

2. With the calculated effective angle of attack and the derivative of the instantaneous
angle of attack, α̇, the unsteady lift for attached flow can be calculated:

Cp
L = CL,α(αE − α0) + πc

α̇

2U
(3.3)

where the first term represents the circulatory term and the second the non-circulatory
term for attached flow. The term CL,α represents the slope of the lift curve in the
linear region of attached flow and α0 represents the angle of attack at zero lift
coefficient.
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3. According to Thwaites [43], the steady separation point on the airfoil, f st, is calcu-
lated according to the calculation of lift on a flat plate in a potential Kirchhoff flow
as function of the angle of attack:

f st =

(

2

√

Cst
L (α)

CL,α(α− α0)
− 1

)2

(3.4)

where Cst
L (α) is the steady lift curve. The separation point can only vary between 0

and 1, where at f st = 0, the flow separates at the leading edge and at f st = 1, the
flow is fully attached, as shown in Figure 3.1. A few criteria have to be introduced
in order to ensure that the separation point is correctly defined and does not reach
beyond the defined domain.

Figure 3.1: The trailing edge separation point, fst, on a flat plate defined in a potential
Kirchhoff flow. Hansen et al. [16]

4. The dynamics of the trailing edge separation are included through effectively cal-
culating the dynamic separation point, f ′′, by introducing the following two ODEs:

ẋ3 + T−1
p x3 = T−1

p Cp
L(t) (3.5)

ẋ4 + T−1
f x4 = T−1

f f ′(t) (3.6)

where x3 and x4 are two additional state variables, Tp is the time constant for the
pressure lag, Tf is a time constant for the lag in the boundary layer, f ′(t) is an
equivalent quasi-steady separation point calculated as f ′ = f st(αf ) with equation
3.4, where αf is obtained as αf = x3

CL,α
+ α0. The latter state variable is equal to

the unsteady separation point: f ′′ = x4.

5. The contribution to the lift coefficient during leading edge separation is due to a
vortex developing and detaching at the leading edge. Combined with the counter-
acting trailing edge vortex, this contribution is called, CL,v. During the dynamic
stall process, a vortex will develop at the leading edge and increase in strength as
long as it is attached or travelling over the airfoil. The vortex starts to travel as
soon as the retarded lift coefficient, which is the state variable x3, reaches a critical
normal coefficient C ′

L0,v, which is an airfoil dependent parameter:

τ̇ =
V

3c
H(x3 − C ′

L0,v) (3.7)

where τ̇ is the derivative of the travel time of the vortex along the airfoil for which
τ = 0 and τ = 1 are respectively equivalent to the time the vortex is at the leading
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edge and the trailing edge and H represents the Heaviside function. The ODE for
CL,v is shown below:

ĊL,v(t) + ω4CL,v(t) = ∆ĊL(t)H(1− τ)H(α̇) (3.8)

where ∆ĊL = Cp
L

(

1−
(
1+

√
f ′′

2

)2
)

and ω4 is a parameter related to the diminishing

effect on the leading edge vortex contribution.

6. The total unsteady lift coefficient is obtained by summation of the several contri-
butions and is calculated as follows:

Cdyn
L = CL,α(αE − α0)f

′′ + Cfs
L (αE)(1− f ′′)

︸ ︷︷ ︸

CL,TE

+ πTuα̇
︸ ︷︷ ︸

CL,NC

+CL,v
︸︷︷︸

CL,v

(3.9)

where Tu = c
2U is the added mass term.

7. The total unsteady drag coefficient is calculated with the known unsteady lift coef-
ficient:

Cdyn
D = Cst

D (αE)
︸ ︷︷ ︸

CD,St

+∆Cind
D

︸ ︷︷ ︸

CD,ind

+∆Cf ′′

D
︸ ︷︷ ︸

CD,TE

(3.10)

where Cst
D (αE) is the static drag coefficient and the other two terms are calculated

as follow:

∆Cind
D = (α− αE)C

dyn
L (3.11)

∆Cf ′′

D = (Cst
D (αE)− CD0

)





(
1−

√
f ′′

2

)2

−
(

1−
√

f st(αE)

2

)2


 (3.12)

8. Finally, the total unsteady moment coefficient is obtained:

Cdyn
M = Cst

M (αE)
︸ ︷︷ ︸

CM,St

+∆Cf ′′

M
︸ ︷︷ ︸

CM,TE

+ πTuα̇
︸ ︷︷ ︸

CM,NC

(3.13)

where Cst
M (αE) is the static moment coefficient, ∆Cf ′′

M is the unsteady moment due
to the dynamic TE separation, πc·α

4U is the added mass effect due to the pitch rate
of the airfoil and the last term represents the moment coefficient as a result of the
leading edge vortex. They are calculated as follows:

∆Cf ′′

M = Cdyn
L (ast(f ′′)− ast(f st(αE)) (3.14)
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where ast is the position of an equivalent pressure centre defined by the static lift
and moment curves:

ast =
Cst
M − CM0

Cst
L

(3.15)

Now expressions for the unsteady force- and moment coefficients are known, the cor-
responding forces, including forces in a ‘x−’and ‘y−’reference frame, and moment are
obtained as follows:

L = 0.5ρU2Cdyn
L c (3.16)

D = 0.5ρU2Cdyn
D c (3.17)

M0.25 = 0.5ρU2Cdyn
M c2 (3.18)

Fx = D cosα− L sinα (3.19)

Fy = D sinα+ L cosα (3.20)

where the lift, drag and moment around the quarter-chord point acting on the airfoil are
respectively L, D and M0.25. With all forces and moments known, their influence on the
motion of the airfoil are calculated through solving the structural equations of motion,
which is explained in the next section.

3.2 Structural Part

The equations of motion for a system with a stiffness, damping and mass subjected to an
external force have been defined in Section 2.4 and are shown in matrix notation below.
The system of second order differential equations are solved for the accelerations every
time-step with the backslash operator in Matlab.

[
m ml cos θ

ml cos θ IRC

]

︸ ︷︷ ︸

A

[
ÿ

θ̈

]

︸ ︷︷ ︸

x

=

[
Fy − cyẏ − kyy

MRC − cθθ̇ − kθθ

]

︸ ︷︷ ︸

b

(3.21)

Ax = b (3.22)

x = b\A (3.23)

A fixed time-step of ∆t = 0.001 [s] is used and the explicit fourth-order Runge-Kutta
method (ode4 in Matlab) is used to compute the model state at the next time-step. More
information about this method can be found in Butcher [44].
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3.3 Obtaining the Semi-Empirical Coefficients

The original Risø dynamic stall model only needed six airfoil dependent parameters,
but with the implementation of the leading edge separation contribution, two additional
parameters are required. In the proposed models the following parameters need to be
obtained in order to ensure an accurate simulation: b1, b2, A1, A2, Tp, Tf , ω4 and C ′

L0,v.
Bauchau [19] provides a table with values for Tp and Tf for a NACA-0012 airfoil at a
range of Mach numbers. An overview of these values are given in Table 3.1. Below, the
methods of obtaining all semi-empirical coefficients are explained:

• b1,b2,A1,A2 : These are the indicial lift response coefficients which determine the
response of an airfoil to a step input. A technique has been developed by Bergami
et al. [45] to determine these coefficients geometrically from the airfoil profile. The
coefficients depend on the geometrical angle which is made with the trailing edge
of the airfoil at three locations along the surface of the airfoil. For a thin profile in
incompressible flow, A1 +A2 ≃ 0.5 as stated by Fung [46].

• Tp : This parameter represents the time lag of the peak pressure and only depends
on the Mach number as stated by Pereira et al. [47] and can be determined if the
Mach number is known. Leishman and Beddoes [31] states that the value of Tp

is largely independent of airfoil shape. When the Tp value is extrapolated from
Table 3.1 to match the Mach-number used in the experiment, which is calculated
in Section 2.5, a value of Tp = 1.5 [-] is found.

• Tf : This parameter represents the viscous lag and is sensitive to both the profile
geometry and Mach number as stated by Mert [48]. He numerically obtained that
for a variety of airfoils, this value lies between 1.44 ≤ Tf ≤ 17.56. For the NACA-
0012 airfoil, the value for high Mach-numbers is found in Table 3.1. Extrapolating
Tf to the Mach-number in the experiment yields Tf = 5 [-]. As this extrapolation
introduces some uncertainty in the correct value of the parameter, a sensitivity
analysis has been performed. The results are presented in Appendix C and show
that modification of this parameter does not significantly change the value of lift-
and moment coefficients, but does have a small effect on the rate at which the force
coefficients change at high angles of attack. The value of Tf = 5 is assessed to be
suitable for the current simulations.

• ω4 : This is a parameter for the leading edge vortex diminishing rate and it is
concluded by Berdowski [49] that airfoil responses are not very sensitive to variance
of this parameter. The value from Berdowski [49] is taken: ω4 = 0.075 [-].

• C′
L0,v : This is the critical normal coefficient at which the leading edge vortex begins

to develop and travel along the airfoil and depends on the Mach-number. According
to Pereira et al. [47], the best method of determining this coefficient is to simply take
the maximum value of the normal force coefficient. For the NACA-0012, the value
has been determined by Leishman and Beddoes [31] and results in C ′

L0,v = 1.5[−]
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Table 3.1: Semi-Empirical Parameters for a NACA 0012 Airfoil for different Mach Numbers
from Bauchau [19]

M Tp Tf

0.30 1.7 3.0

0.40 1.8 2.5

0.50 2.0 2.2

0.60 2.5 2.0

0.70 3.0 2.0

0.75 3.3 2.0

0.80 4.3 2.0

With the methods described above, the coefficients are obtained and an overview is given
in Table 3.2.

Table 3.2: Semi-Empirical Parameters of a NACA 0012 Airfoil at moderate Reynolds Numbers.

Parameter Unit Value

b1 [−] 0.36

b2 [−] 0.05

A1 [−] 0.39

A2 [−] 0.25

Tp [−] 1.5

Tf [−] 5

ω4 [−] 0.075

C ′
L0,v [−] 1.5

3.4 Validation of the Aerodynamic Part

In this section, the aerodynamic part of the engineering model is validated against ex-
perimental results from Li [7]. A comparison is made between the original Risø dynamic
stall model, the model based on the Risø model including the leading edge separation
contribution and the experimental force coefficients at different velocities. The responses
at two different velocities are investigated: a low wind speed case at which a decaying
response is observed and high wind speed case at which LCOs occur. The aerodynamic
part is isolated from the structural part in the models and a prescribed motion similar to
the experimental motion is enforced. All computations performed with the engineering
model are done on a 2.30 GHz Intel(R) Core(TM) i7-3610QM on a single core.

3.4.1 Prescribed Motion at U∞ = 3.9 [m/s] - Decaying Case

The engineering model is forced to follow the motion response at a wind speed of U∞ = 3.9
[m/s] shown in Figure 3.2. The resulting lift- and moment coefficients are respectively
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Figure 3.2: Motion at U∞ = 3.9 [m/s] for validation of the Semi-Empirical Model from Li [7].
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Figure 3.3: Comparison of Lift- and Moment Coefficients at U∞ = 3.9 [m/s] of
Semi-Empirical Model and Experimental Results from Li [7].

shown in Figure 3.3a and 3.3b.

Comparing the lift coefficients, it can be seen that overall the maximum amplitude and
the trend at negative pitching motion are captured accurately. Including the LEV in the
model introduces an additional maximum lift at the maximum pitch angles. Especially
at negative pitch angles, the LEV-contribution seems to improve the prediction of the lift
coefficient. A drawback of the both semi-empirical models is that it shows a lag in lift
coefficient compared to the experimental results.

Regarding the moment coefficient, discrepancies are observed with the experimental data
as the predicted moment coefficient is substantially lower. Accurate prediction of the
moment coefficient with semi-empirical dynamic stall models have proven to be difficult,
but also the inaccuracies in the measurement procedure with the pressure taps in the ex-
periment contribute to this discrepancy. The latter can be seen in the results at low wind
speeds in Appendix B, where the force coefficients are overestimated in an unphysical
manner.
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3.4.2 Prescribed Motion at U∞ = 12.9 [m/s] - Oscillating Case

At a higher windspeed of U∞ = 12.9 [m/s], high-amplitude limit cycle oscillations occur
without any initial perturbation. The motion at the concerned wind speed is shown in
Figure 3.4. The corresponding force coefficients over time and angle of attack predicted
by the engineering model are shown in Figure 3.5. In the plots with the pitch angle on
the x-axis, the mean values are indicated with the solid lines and the standard deviations
are indicated with the dashed lines.
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Figure 3.4: Motion at U∞ = 12.9 [m/s] for validation of the Semi-Empirical Dynamic Stall
Model from Li [7].

From the figures on the left side, it can be seen that there is a clear difference in the
semi-empirical model with- and without the LEV contribution. The model including the
LEV-contribution very accurately captures the maxima and minima, while the model
without the LEV-contribution substantially underpredicts the lift coefficient. The reat-
tachment of the flow, after a maximum or minimum pitch angle is reached, denoted by
the smaller secondary peak is not fully described by both engineering models. However,
the general behaviour is described by a delay in the decrease of lift coefficient. The lift
coefficient plotted against the pitch angle shows that this delay results in an over- and
underestimation in respectively negative- and positive pitching motion.

Contrary to the results at U∞ = 3.9 [m/s], the moment coefficients seem to be accurately
predicted and are very similar to the experimental results at U∞ = 12.9 [m/s]. Including
the LEV-contribution results in an improved ability of the engineering model to capture
the moment coefficient peaks.

3.4.3 Conclusions of Aerodynamic Validation

The force coefficients as a result of a prescribed motion at two different velocities have been
obtained in order to judge the aerodynamic part of the engineering model. The results
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Figure 3.5: Comparison of Lift- and Moment Coefficients at U∞ = 12.9 [m/s] of
Semi-Empirical Dynamic Stall Model and Experimental Results from Li [7].

showed that in general the engineering model is able to reproduce the experimental results
to a certain extent. The increased force predication accuracy of the engineering model in
the high wind-speed case provides confidence in the ability of the engineering model to
simulate high-amplitude limit cycle oscillations. Including the LEV contribution improves
the capability of the semi-empirical model to capture the maxima and minima in force
coefficients. The aerodynamic part with the LEV contribution of the engineering model
is deemed to be sufficiently accurate to use throughout the rest of the study.

3.5 Validation of the Structural Part

This section deals with the validation of the structural part of the engineering model.
This means that aerodynamics are not taken into account and a comparison is made with
the experimental results of the decaying motion at wind-off conditions.
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3.5.1 Obtaining the unknown Structural Parameters

In order to be able to perform the structural validation, all necessary parameters shown
in Equation 3.21 have to be known. This implies the use of three parameters that were
not explicitly quantified in the experiment; the damping coefficient in pitch and heave,
and centre of gravity location. The unknown parameters are quantified in the following
two subsections.

Obtaining the Location of the Centre of Gravity

The location of the centre of gravity has not been determined in the experiment and is
therefore not available. This location mainly has an effect on the frequency and ampli-
tude of the system’s response. This is due to the fact that if the location of the centre of
gravity would coincide with the rotational centre, the term l in Equation 3.21 would be
zero and the cross-terms are eliminated from the equation.

In general, it can be assumed that the centre of gravity is located aft the rotational
centre. Similar studies and experiments take the centre of gravity at around 45% of the
chord-length in case of a NACA 0012 profile Rana et al., Le et al. [50, 51]. As the NACA
0012 wing used in the experiment does not contain any particular extremities in its mass
distribution, it is decided to assume that the location of the centre of gravity is located
at 45% of the airfoil’s chord.

Obtaining the Damping Coefficients

The damping coefficients in pitch and heave direction of an underdamped system can be
obtained by the logarithmic decrement method as explained in Inman [52]. From the
structural response in wind-off condition in the experiment, the damping ratio, ζ [-], is
obtained with:

ζ =
1

√

1 +
(

2π
ln(x0/x1)

)2
(3.24)

where x0 and x1 are the amplitudes of two consecutive peaks of the pitching- or heaving
motion. The pitch- and heave damping coefficient are then respectively obtained with:

cθ = ζθ · 2
√

IRC · kθ (3.25)

cy = ζy · 2
√

m · ky (3.26)

The wind-off responses from Li [7] in both degrees of freedom are displayed in Figure 3.6.

In general, in the case of a constant damping coefficient, a response at wind-off conditions
shows a logarithmic decaying trend. It can be clearly seen in the figures that the decay of
the pitching- and plunging signal does not show a logarithmic decaying response. From
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(d) Heave Velocity vs. Time

Figure 3.6: Pitch- and Plunge Motion and Velocity Response at Wind-off Conditions of Spring
2 Configuration of Experimental Results from Li [7].

this observation, it can be concluded that the damping coefficient is to a certain extent
non-linear.

Obtaining the damping ratios peak to peak from the pitch- and heave velocity responses,
shown in Figure 3.6, with equation 3.24 yields the non-linear damping ratio in pitch and
heave as displayed respectively in Figures 3.7c and 3.7d. Subsequently, the damping ratios
are fitted with a one-term exponential model and extrapolated:

y = aebx (3.27)

with the exponential coefficients, input and output shown in Table 3.3.
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Table 3.3: Two-term Exponential Fit Coefficients for the Damping Coefficients in Pitch and
Heave.

y x a b

ζθ̇ θ̇ [Deg/s] 0.3077 -0.006713

ζẏ ḣ [m/s] 0.2199 -3.898

The damping coefficients in pitch- and heave direction are straightforwardly obtained
with Equations 3.25 and 3.26.
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Figure 3.7: Damping- Ratios and Coefficients in Pitch and Heave of Spring 2 Configuration of
Experimental Results from Li [7].

3.5.2 Comparison with Wind-off Experimental Results

Now all parameters are known, the wind-off simulation is performed with the structural
part of the engineering model and a comparison is made with the experimental response
in order to validate the structural part of the engineering model. The airfoil was given
an initial pitching velocity similar to the one from the experiment and the response of
the airfoil is observed. The pitch- and heave responses of the numerical simulations in
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wind-off conditions for the different damping coefficient criterion are compared with the
experimental response in Figure 3.8.
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Figure 3.8: Wind-off Responses with Non-linear Damping compared to Experimental Response
from Li [7].

Comparing the pitching motion, it can be seen that the response decays in a similar way
as in the experiment: lower decay at high amplitudes and higher decay at low amplitudes
which results in similar pitch amplitudes. Regarding the heave motion, the numerical ex-
citation in heave direction is negligible compared to the experimental heave motion. This
is due to fact that the high stiffness in heave is the most decisive factor in the heaving mo-
tion refraining from excitation. However, it is believed by the author that the high heave
stiffness value given in the experiment is questionable. Reducing the damping coefficient
in heave does not improve the heave response motion. Introducing an initial heaving ve-
locity results in a high frequency heaving response not similar to the experimental heave
response. In the experiment, the heave response is purely due to the pitching motion and
oscillates at the same frequency.

From the numerical response, it clearly can be seen that the obtained frequency in pitch
is lower than the experimental ones. The theoretical undamped- and damped frequency
in pitch, fθ,u and fθ,d, are respectively calculated as follow:

fθ,u =
1

2π
·
√

kθ
IRC

(3.28)

fθ,d = fθ,u ·
√

1− ζθ (3.29)

The different frequencies in pitch are shown in Table 3.4.
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Table 3.4: Numerical and Theoretical Frequencies at Wind-Off Conditions compared to
Experimental Observed Frequency from Li [7].

f, [Hz]

fθ,exp 1.20

fθ,num 1.02

fθ,u 1.03

fθ,d 1.01

The experimentally observed frequency is around 18% higher than the theoretical- and
numerical obtained frequency. It is believed that this is caused by a supposed non-linear
stiffness in the system which has a direct effect on the frequency as indicated by Equation
3.28. For the sake of simplicity and due to the uncertainty in quantifying the non-linear
stiffness, it is decided to not take this non-linearity into account. However, care should
be taken as this might have an effect on the critical onset velocity of the LCOs.

3.5.3 Conclusions of the Structural Validation

Validating the structural part with experimental data from Li [7] has proven to be neither
easy nor straightforward. The complexity due to the non-linearities and uncertainties in
the experiment complicate the validation of the structural part. However, with the ap-
proximation of the pitching motion obtained in the previous section it is assessed that
the structural part, given accurate damping and stiffness input, works accordingly. The
heaving motion is considered to be of less importance as all responses in the experiment
are pitch dominated as stated by Li [7].

An overview of the final structural parameters of the experiment from Li [7] are given in
the Table 3.5. An indication is given whether the parameter has been quantified in the
experiment or has been obtained previously in this section.

Table 3.5: Experiment Structural Parameters from Li [7].

Parameter Symbol Unit Value Given/Obt.

Chord c [m] 0.3 Given

Span S [m] 0.9 Given

Torsional Spring Stiffness kθ [N ·m/rad] 13.07 Given

Compression Spring Stiffness ky [N/m] 18 976 Given

Centre of Rotation xRC [%] 38.33 Given

Mass M.o.I around the C.R. IRC [kg ·m2] 0.31 Given

Mass M [kg/m] 16.67 Given

Centre of Gravity xCG [%] 45 Obtained

Torsional Damping Coefficient Ct [N · s/rad] aebθ̇ · 2
√
IRCkθ Obtained

Heaving Damping Coefficient Cy [N · s/m] cedḣ · 2
√

mky Obtained



44 Engineering Model

3.6 Summary

This chapter has dealt with the first model proposed for the aeroelastic simulations of
an airfoil, i.e. the engineering model. The adapted version of the Risø semi-empirical
dynamic stall model used as the aerodynamic part and the structural part have been
discussed and validated. Completing this chapter has been equivalent to performing the
first task as defined in Chapter 1: Task 1: Design a suitable engineering model including
a dynamic stall model, which is able to numerically simulate aeroelastic behaviour of
an airfoil. The engineering model showed to be capable of numerically obtaining force
coefficients at a high-amplitude motion to a satisfactory accuracy and that including the
LEV contribution in the dynamic stall model improved this force prediction as compared
to experimental data from Li [7]. Now the engineering model has been designed and
validated, it is assessed to be suitable for the aeroelastic simulations of an airfoil which
will be performed in Chapter 5. The next chapter deals with the theory, set-up and
validation of the other proposed model for aeroelastic simulations of an airfoil: the RANS
model.



Chapter 4

RANS Model

The engineering model discussed in the previous chapter represents a model which de-
scribes the behaviour of a transient airfoil by means of a simplification and decomposition
of the physics involved in the dynamic motion. As this method does not fully capture all
physical quantities involved in the process, a deeper and broader understanding hereof can
be obtained by solving the Navier-Stokes equations by means of CFD computations. This
chapter describes such model. This is related to the second task as defined in Chapter 1:
Task 2. Design a reliable, accurate and efficient RANS model in OpenFOAM which is
able to numerically simulate aeroelastic behaviour of an airfoil. The goal of this chapter
is to provide an overview of the necessary steps taken in developing a reliable, accurate
and efficient aeroelastic RANS model within the OpenFOAM-framework. This is done
by dividing this chapter into five sections. The first section describes several fundamen-
tal theories behind numerical simulations of fluid flows by means of CFD computations.
Section 4.2 deals with a grid convergence study which is conducted in order to reduce the
spatial discretisation error and ensure spatial convergence of the grid. A temporal con-
vergence study to obtain a time-independent solution is performed in Section 4.3. Section
4.4 describes the set-up of the aeroelastic RANS model used later on. To conclude this
part, a brief overview of the chapter is given Section 4.5.

4.1 Theory

This section describes several fundamental theoretical principles behind solving the Navier-
Stokes equations by means of CFD computations. Firstly, the Navier-Stokes equations are
described. Secondly, a description of the discretisation methods within the OpenFOAM-
framework is given. Afterwards, some principles of turbulence and turbulence modelling
are explained. The last part of this section describes an important region when solving
fluid flows around an airfoil: the boundary layer.

45
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4.1.1 Navier-Stokes Equations

When applying Newton’s second law to fluid motion (conservation of momentum) to-
gether with the assumption that the stress in the fluid is the sum of a diffusing viscous
term and a pressure term, the Navier-Stokes equations arise. These non-linear partial dif-
ferential equations are able to describe the motion of fluid substances. The general form
of the equations of fluid motion for an incompressible flow consist of the incompressible
continuity equation which represents the conservation of mass:

∂u

∂x
+

∂v

∂y
= 0 (4.1)

and the incompressible Navier-Stokes equations which represent the conservation of mo-
mentum:

Inertia
︷ ︸︸ ︷

∂v

∂t
︸︷︷︸

Time Variation

+ v · ∇v
︸ ︷︷ ︸

Convection

=

Divergence of stress
︷ ︸︸ ︷

−∇p

ρ
︸ ︷︷ ︸

Pressure

+ ν∇2v
︸ ︷︷ ︸

Viscous

+ F
︸︷︷︸

External Force

(4.2)

where v is the fluid velocity, p is the fluid pressure, ρ is the fluid density, ν = µ/ρ [m2/s]
is the kinematic viscosity and F is an external force applied to the fluid. The meaning of
the different contributing terms are given underneath.
The Navier-Stokes equations can also be written in Einstein notation:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

+ fi (4.3)

Solving the Navier-Stokes equations yields the velocity- and pressure fields. When these
quantities are obtained, other quantities of interest, such as lift- and drag forces may be
found. Analytical solutions of the Navier-Stokes equations are practically non-existent as
they are highly non-linear coupled differential equations due to the quadratic non-linearity
in the convective term. That is why these equations need to be solved numerically at dis-
crete points. In the remainder of this section, the procedure of numerically solving the
Navier-Stokes equations are desribed.

4.1.2 Discretisation

In order to numerically solve the Navier-Stokes equations, a computational domain is
created which on its turn is divided into small elements. The discretisation method used
in OpenFOAM is the finite volume method (FVM) approximation. This method divides
the domain into a finite number of contiguous control volumes (CVs). Taking the integral
form of the Navier-Stokes equations over the control volume, Vc, yields the following
equation:

∫

Vc

∂ui
∂t

dV +

∫

Vc

uj
∂ui
∂xj

dV = −
∫

Vc

1

ρ

∂p

∂xj
dV +

∫

Vc

ν
∂2ui
∂x2j

dV (4.4)
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Each term can be evaluated after implementation of Gauss’ theorem and after the bound-
ary conditions are set. This theorem relates the flux of a vector field through a surface
to the behaviour of the vector inside the surface and is more extensively explained in
Jasak [53]. After the discretisation of each term has been done, the discrete form of the
Navier-Stokes equations are solved in OpenFOAM in a segregated approach where the
equations are solved in sequence [53].

Solution Algorithms

Considering the discretised form of the Navier-Stokes equations, a pressure-velocity cou-
pling is observed. Two algorithms are most popular when dealing with this inter-equation
coupling in the pressure-velocity system: the Semi-Implicit Method for Pressure-Linked
Equations-algorithm (SIMPLE) by Patankar [54] and the Pressure Implicit with Splitting
of Operators-algorithm (PISO) by Issa [55]. The so-called PIMPLE-algorithm is a hybrid
version of the PISO- and SIMPLE-algorithm. The step-by-step procedure of the algo-
rithms are described into more detail in Appendix E. A brief overview of the methods of
the different algorithms are is given below:

• SIMPLE: The SIMPLE-algorithm solves a steady-state problem iteratively which
eliminates the necessity to fully resolve the linear pressure-velocity coupling. The
momentum equation is solved and a velocity field is obtained. The pressure gradient
term is calculated using an old pressure distribution and a new pressure distribution
is obtained. With the new pressure distribution, the face fluxes are calculated.

• PISO: The PISO-algorithm is an extension of the SIMPLE-algorithm and is used
for transient flow computations. It solves the momentum equation for the velocity
field with the pressure field from the previous time step. Using the new velocity
field, a first estimate of the new pressure field is obtained by solving the pressure
equation. With the new pressure field, the velocity is corrected and the cell face
fluxes are calculated.

• PIMPLE: Works similarly as the PISO-algorithm, but with two additions: an
outer correction loop and underrelaxation of the variables.

Arbitrary Lagrangian-Eulerian Approach

OpenFOAM uses, in case of a stationary mesh, an Eulerian approach. In the Eulerian
approach, which is described in more detail in Batchelor [56], the focus lies on specific
locations in space and physical quantities of the fluid flows are measured over time when
they pass through these points. This is different from the Lagrangian approach in which
individual particles are followed in space and time. In case of a moving- or deforming
mesh, OpenFOAM implements a combination of the Eulerian- and Lagrange approach in
a so-called Arbitrary Lagrangian Eulerian-method (ALE) as explained in Donea et al. [57].
The concerning ALE-approach introduces an additional mesh velocity in the convective
term in Equation 4.4. Together with the fact that in a deforming mesh, the volume of each



48 RANS Model

particular cell changes over time leads to the following formulation of the Navier-Stokes
equation of a moving- and/or deforming mesh:

∂

∂t

∫

Vc

uidV +

∫

Vc

uj
∂(ui − um)

∂xj
dV = −

∫

Vc

1

ρ

∂p

∂xj
dV +

∫

Vc

ν
∂2ui
∂x2j

dV (4.5)

where um represents the motion of the mesh. This modification introduces a new criteria
which is called the Discrete Geometric Conservation Law (DGCL) which states that the
change of the volume of a particular cell must be equal to the volume swept by the faces
of the cell.

Time Discretisation

In order to perform transient simulations, OpenFOAM incorporates implicit time-stepping.
The implicit method finds solutions of the next time step by evaluating the current state
of the system and the next one. In equation form as formulated by Butcher [58]:

yi+1 = yi + hf(ti+1, yi+1) (4.6)

A widely used condition in mathematics is the Courant-Friedrichs-Lewy (CFL) condition
which is used in numerically solving certain partial differential equations originally for-
mulated by Courant et al. [59]. An important quantity in this condition is the Courant
number. The Courant number is a measure of the time it takes for a fluid particle to
travel through a particular cell and is defined as:

Co =
u∆t

∆x
(4.7)

where u is the velocity of the particle, ∆t is the time-step and ∆x is the length of the cell.
In explicit simulations, the condition must be fulfilled that the Courant number must
be smaller than 1. Due to the unconditionally stable nature of implicit time stepping,
implicit simulations are not constrained with the criteria that the Courant number should
be lower than 1. Ansys [60] states that typical values are Co = 2-10, but in some cases
higher values are acceptable.

4.1.3 Turbulence

Although, the Navier-Stokes equations are capable to solve turbulent flows, it is numeri-
cally extremely difficult due to the nature of turbulence. Turbulence are characterised as
an unsteady, three-dimensional, irregular, stochastic motion in which transported quanti-
ties (mass, momentum, scalar species) fluctuate in time and space as stated in Ansys [17].
In turbulent flows, unsteady vortices appear on many scales and interact with each other.
The range of scales in such flows is very large, from the smallest turbulent eddies charac-
terised by Kolmogorov microscales, to the flow features comparable with the size of the
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geometry. In turbulent flows, energy is transferred from larger eddies to smaller eddies
which is known as the ’Kolmogorov Cascade’. The large scale eddies contain most of the
energy and in the smallest eddies, turbulent energy is converted into internal energy by
viscous dissipation.

Turbulence Modelling

In order to solve for turbulence in fluid flows, several models are available. The models
with their characteristics are listed below.

• Reynolds Averaged Navier-Stokes Simulation (RANS)

– Solves time-averaged Navier-Stokes equations

– All turbulent length scales are modelled in RANS

– Various different models are available

– Computational cheap

• Large Eddy Simulation (LES)

– Solves the spatially averaged Navier-Stokes equations

– Large eddies are directly resolved, but eddies smaller than the mesh are mod-
elled

– Computational expensive

• Detached Eddy Simulation (DES)

– Hybrid method of RANS and LES

– Treats near-wall region with a RANS approach and the bulk flow with a LES
approach.

– Computational expensive

• Direct Numerical Simulation (DNS)

– Numerically solving the full unsteady Navier-Stokes equations

– Resolves the whole spectrum of scales

– No turbulence modelling is required

– Extremely computational expensive

As it is not necessary in the project to fully resolve the flow on the smallest scales and a
time-efficient solution is required, it is decided to use the RANS-approach to simulate the
turbulent flow. The method of obtaining the RANS equations from the N-S equations is
explained below.
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RANS Equations

By separating the local value of the variable into the mean and the fluctuation around
the mean, it is possible to derive the equations for the mean properties themselves. In the
RANS-method, turbulent flow can be decomposed into its time-averaged and fluctuating
quantities:

u = u+ u′ (4.8)

With this decomposition implemented in the Navier-Stokes equations from Equation 4.3,
as originally described in Reynolds [61], the full RANS-equations become:

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρf i +
∂

∂xj

[

−pδij + 2µSij − ρu′iu
′
j

]

(4.9)

where Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

is the mean rate of strain tensor, δij is the Kronecker delta

and −ρu′iu
′
j is referred to as the Reynolds stress. This is the general Reynolds Averaged

Navier-Stokes equation. These averaged equations are not closed (number of unknown
variables are greater than the number of equations) and require the introduction of tur-
bulence models.

RANS Turbulence Models

A closure problem arises due to the introduction of the non-linear Reynolds stress term in
the RANS equation. In order to close the problem and solve the equation, the turbulent
stresses are related to the mean flow by means of Boussinesq’s hypothesis:

u′iu
′
j = νt

(
∂ui
∂xj

+
∂uj
∂xi

)

− 2

3
kδij (4.10)

where k [m2/s2] represents the turbulent kinetic energy. This introduces an extra variable
called the turbulence eddy viscosity, νt [m

2/s], which has to be solved for. This is done
by using one of the turbulence models, of which the most commonly employed models in
modern engineering applications are listed below:

• Spalart-Allmaras (S-A)

• k-ǫ

• k-ω

• k-ω SST (Menter’s Shear Stress Transport)

• Reynolds stress equation model
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where ω [1/s] is the specific turbulence dissipation and ǫ [m2/s3] is the turbulence dissi-
pation. A turbulence model which is considered to be an effective and accurate is the k-ω
SST model from Menter [62]. It is a two-equation eddy-viscosity model in which the shear
stress transport (SST) formulation combines the best of two worlds. It combines the k-ω
with the k-ǫ turbulence model in a way that the k-ω-model is used in the inner region
of the boundary layer and switches to k-ǫ behaviour in the free-stream. This method
avoids the common k-ω problem that the model is too sensitive to the inlet freestream
turbulence properties. The use of k-ω in the inner region of the boundary layer ensures
that the model is valid within the viscous sub-layer and thus can be used as a low-Re
turbulence model without any extra damping functions. It is generally believed that the
k-ω SST results in relatively good solutions for the flow with a large area of separation.
Previous studies have shown that the k-ω SST turbulence model yields the best results
compared to experimental data in flows over static or dynamic airfoils ([63, 64, 65, 66, 67]).

The two-equation model, respectively for k and for ω, is formulated as follows:

∂(ρk)

∂t
+

∂(ρujk)

∂xj
= P − β∗ρωk +

∂

∂xj

[

(µ+ σkµt)
∂k

∂xj

]

(4.11)

∂(ρω)

∂t
+

∂(ρujω)

∂xj
=

γ

νt
P − β∗ρω2 +

∂

∂xj

[

(µ+ σωµt)
∂ω

∂xj

]

(4.12)

+2(1− F1)
ρσω2
ω

∂k

∂xj

∂ω

∂xj

An extensive description of all parameters found in Equation 4.11 and 4.13 is given in
Appendix F. In order to solve the RANS equations with the k-ω SST turbulence model
properly, the values of the turbulence parameters (k, ω and νt) at the boundary conditions
have to be approximated. This is done following the formulation of [68]:

kff =
3

2
U2
∞I2 (4.13)

νt
ν

= 2× 10−7 ·Re (4.14)

ωff =
kff
νt
ν · ν (4.15)

νtff =
kff
ωff

(4.16)

ωw = omegaWallFunction (4.17)

kw = kqRWallFunction (4.18)

νtw = nutWallFunction (4.19)

where the turbulence intensity, I [-], is formulated as follows I = σ
U∞

, where σ [m/s] is
the standard deviation in the freestream flow. Furthermore, the subscripts ‘w’ and ‘ff ’
denote respectively the wall- and farfield boundary condition.
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4.1.4 Boundary Layer

An important and widely studied region is the boundary layer on the airfoil. The fluid flow
around an object can be divided in two areas: one inside the boundary layer, dominated
by viscosity and creating the majority of drag experienced by the boundary body and one
outside the boundary layer, where viscosity can be neglected without significant effects
on the solution. A boundary layer can be laminar or turbulent, where the former is
characterised by its ‘smooth’ flow and the latter by swirls or ‘eddies’ in the flow. The
turbulent boundary layer can be divided into three layers as shown in Figure 4.1: the
sublayer- and buffer layer and the fully-turbulent region/log layer which together form
the inner layer of the boundary layer and the outer layer. In the sublayer, the turbulence
is suppressed by (molecular) viscosity and therefore is a thin laminar layer at which the
velocity gradient is linear. In the turbulent log layer, the velocity profile is logarithmic
and turbulence plays a major role. The outer region serves as an interim region between
the viscous sublayer and the fully turbulent layer.

Figure 4.1: Turbulent Boundary Layer. [17]

The shape of the boundary layer has an impact on the performance of an airfoil such as
lift- and drag coefficients. That is why it is important to accurately capture the correct
behaviour of the boundary layer in numerical simulations. Traditionally, there are two
methods when it comes to modelling the near-wall region. One method does not resolve
the sublayer + buffer layer region, but uses the so-called ‘wall-functions’. These are semi-
empirical formulas which determine the near wall velocity profiles. The other method
fully resolves the near-wall region. A graphical overview of these methods is given in
Figure 4.2.

Figure 4.2: Boundary Layer Wall Treatment. [18]

The right graph shows the grid structure of fully resolving the boundary layer and the
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left graph shows the usage of one cell in the inner region of the boundary layer which is
resolved by means of a wall function. Using one of these methods in numerical simulations
comes down to selecting a suitable y+-number, which is the non-dimensional wall distance.
The required cell height near the wall depends on this number:

y+ =
dy · uτ

ν
(4.20)

where dy [m] is the initial cell height and uτ [m/s] is the friction velocity near the wall.
An overview of both methods and their characteristics is given below:

• Resolving the Viscous Sublayer

– Initial cell height should be about y+ = 1

– Computational more expensive

– A low-Reynolds number turbulence model should be used

• Using a Wall Function

– Initial cell height needs to be 30 < y+ < 300

– Computational less expensive

– Uses wall function approach with high Reynolds turbulence model.

In order to obtain the initial cell height, the following steps have to be undertaken. From
the Reynolds number, the skin friction coefficient Cf [−] can be determined for external
flows following the formulation from Schlichting et al. [69].

Cf = 0.0592 ·Re−0.2 (4.21)

With the skin friction, the initial cell height is obtained with the following equation:

dy = 2 · y+c

Re
√

Cf
2

(4.22)

This equation will be used in the grid convergence study in the next section in order to
determine the height of the first cell on the airfoil. A previous study by Lof [70] has proven
that solving for a y+ < 1 yields better results in case of a steady or transient simulation
over an airfoil, especially in high angles of attack. This value will be used during the rest
of the study.
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4.2 Grid Convergence Study

In order to ensure that the solution obtained with the CFD simulations is independent of
a mesh refinement, a so called grid convergence study is performed. The mesh refinement
is done by means of decreasing the sizes of the cells throughout the whole domain. This
is done by increasing the total number of cells in the domain while keeping the domain
size constant.

The mesh of the airfoil and it’s domain are created in Pointwise [71]. In order to ensure
an accurate, robust and efficient simulation a grid convergence of the model is performed.
There are two realistic options when it comes to grid generation: an O-grid or a C-grid.
They both have their advantages and disadvantages as stated in Lutton [72]. For example:
the O-grid is superior to the C-grid in determining the pressure coefficient in the vicinity of
the leading edge in the subsonic range. However, the C-grid may capture the wake slightly
more accurate due to the high grid point concentration directly behind the airfoil. It has
been decided to use an O-grid for the mesh because of its ease of generation and application
in OpenFOAM. The grid convergence study is carried out at an angle of attack of 5◦ in
a steady simulation by means of the SIMPLE-algorithm which interchangeably iterates
over the velocity and pressure to drive the equations towards convergence. Several key
parameters are varied while others are kept constant. An overview of the key parameters
is given in table 4.1.

Table 4.1: Key Parameters for Grid Convergence Study

Parameter Symbol

Number of Grid Points on Airfoil na

Grid Point Spacing - L.E. & T.E. ds

Initial Cell Height dH

Growth Rate GR

Number of Cells N

Domain Size D

4.2.1 Initial Cell Height Determination with y+

The height of the first layer of cells, dH[m] on the airfoil is determined with the value of
the y+-number [−], chord of the airfoil, air velocity and the kinematic viscosity. The last
three parameters yield the Reynolds number. The procedure is described in Section 4.1.4.
To ensure that the y+-number remains smaller than 1 for the whole range of velocities
used in the experiment, the maximum Reynolds number is taken and used to calculate
the initial cell height. Equation 4.22 yields an initial cell height of dH = 2× 10−5[m].

4.2.2 Parameter Variation

The first step to be taken is to fix the initial cell height, dH, and the Domain Size, D.
A rule of thumb is to keep the grid point spacing towards the leading- and trailing edge
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more or less equal to the initial cell height, dH. Furthermore, another common practice
is to use a domain with a radius of around 80 times the chord length of the airfoil. The
amount of grid points on the airfoil, na, as well as the total number of cells in the domain,
N , are varied. In order to vary the total amount of cells, which are doubled each finer
grid, the growth ratio is varied. Thus, the growth ratio depends on the number of grid
points on the airfoil and the total amount of cells. This leads to the study set-up shown
in Table 4.2.

Table 4.2: Variation of Parameters in Grid Convergence Study

Parameter Unit Value

Initial Cell Height [m] 2× 10−5

Domain Radius [c] 80

No. of Grid Points on the Airfoil [-] [150 200 250 300]

Total Number of Cells [-] ≈ [10 000 20 000 40 000 80 000]

Growth Rate [-] varied

4.2.3 Grid Convergence Results

The simulations on the NACA0012 airfoil at α = 5◦ with a varying number of grid points
on the airfoil’s surface and total number of cells are performed. For every case, the criteria
is set that solution convergence must be reached. The simulations are done on a 2.5 GHz
Intel(R) Xeon(R) CPU E5-2670v2 processor on a single core. The amount of iterations
is set to 5000 and the duration of the simulation depends on the number of cells. A
typical progress towards solution convergence is depicted in Figure 4.3. The horizontal
development of the force coefficients and the residuals of the variables of interest after
around 1500 iterations together with the low values of the residuals (< 1 × 10−3) show
that the solution is converged. However, it must be said that convergence of the solution
does not necessarily mean that the solution is accurate.

(a) Force Coefficients versus Iterations (b) Residuals versus Iterations

Figure 4.3: Plots of a typical Steady-State Converged Case

An overview of the resulting lift- and moment coefficients for the various grid designs is
given in Figure 4.4
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Figure 4.4: Grid Convergence Study: Results

As can be seen from the figures, the curves for different na tend to converge in case of
the lift- and moment coefficient. Looking at the results of N = 80 000, it can be seen
that increasing the number of points on the airfoil reduces the difference in value of the
lift- and moment coefficient. The highest two number of points on the airfoil even almost
coalesce, thus negligible differences in these results are seen. With this analysis, it is
decided to use the case of na = 250 in the remaining study. The lowest number of cells,
N ≈ 10 000, yields in all cases a value which is not in line with the trend of the other
results. This result is not taken into account in the following step.

In order to decide upon the total amount of cells in the domain, N , a Richardson ex-
trapolation has been performed. More details about the theory and procedure of the
Richardson extrapolation can be found in Slater [73]. The Richardson extrapolation ex-
trapolates the output to an infinitesimal grid point spacing such that a comparison can
be made with the obtained values for the lift coefficient. An overview of the values and
percentual differences with the infinite value are shown in Figure 4.5.

The order of convergence is calculated as follows:

pc =
ln (Cl,1 − Cl,2)/(Cl,2 − Cl,3)

ln
√
2

= 0.68 (4.23)

where Cl,i is the lift coefficient for the ith grid and p is the order of convergence. The
expected convergence order, for the case where na is fixed and only the number of cells
in j direction are varied, is around pc = 1. The obtained order of convergence slightly
deviates from this value, however this might be caused by a number of factors, such as:
grid inaccuracies, turbulence modelling or imprecise grid refinement.

An overview of the computational times of the different grids is depicted in Figure 4.6.
The figure clearly shows a linear correlation between the total number of cells and the
computational time.
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Figure 4.6: Simulation Time for the different Grids for na = 250.

Taking into account the accuracy and simulation time of the obtained results and the
expected grid requirements in the transient simulations, it is decided to use the grid
with the highest number of cells, N ≈ 80 000. Figure 4.5b shows that the computed lift
coefficient is very close to the infinitesimal grid spacing value (δCl < 0.1 [%]) and it is
expected that such high accuracy would be necessary in the transient simulations. The
final mesh is designed with the following parameters:

Table 4.3: Final Mesh Set-up

Parameter Unit Value

Number of Grid Points on Airfoil [-] 250

Initial Cell Height [m] 2× 10−5

Growth Rate [-] 1.05

Domain Radius [-] 80c

Number of Cells [-] ≈ 80 000
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A graphical overview of whole domain of the mesh as well as a zoom of the airfoil in the
centre of the domain is given in Figure 4.7.

80c

Farfield BC

(a) Whole Domain (b) Zoom of Mesh

Figure 4.7: Mesh of the NACA-0012

4.3 Time Step Study

Now the grid set-up has been obtained in the previous section, a correct time step in
the transient simulations has to be decided upon. This section describes the time step
study to ensure a time step independent simulations. The mesh obtained in the previous
section is used, a sinusoidal pitching motion similar to the motion at U∞ = 12.9 [m/s] in
the stall flutter experiment and the resulting force coefficients are compared at different
time-steps. Firstly, the time step study set-up is described in this section and afterwards
the results are presented and discussed. All simulations in the time step study were run
on a 2.5 GHz Intel(R) Xeon(R) CPU E5-2670v2 processor with four cores.

4.3.1 Time Step Study Set-up

In order to ensure that the RANS model is able to show high angles of attack amplitude
oscillations in the aeroelastic study, it is necessary to perform the time step study at high
angles of attack amplitude as well. It is decided to force the NACA 0012 airfoil to undergo
a similar motion as the motion of the NACA 0012 airfoil in the stall flutter experiment
from Li [7] at U∞ = 12.9 [m/s]. The following pitching motion is enforced:

θ(t) = 44 sin

(
2π

1.26
t

)

(4.24)
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The enforced motion compared to the experimental motion is shown in Figure 4.8. The
figure clearly shows that the experimental motion is not completely sinusoidal: the max-
ima and minima in the experiment are more pointed and the pitching velocity is higher
in negative direction.
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Prescribed

Figure 4.8: Prescribed Motion at U∞ = 12.9 [m/s] for Time Step Study compared with
Experimental Motion from Li [7].

An initial estimation for the time step for transient simulations of airfoils can be obtained
in the criterion that at in the period of a vortex being shed at least 100 time-steps are
taken. The period of a shed vortex is calculated with the Strouhal -number as follows:

fv =
St · U∞

c
(4.25)

T =
1

f
(4.26)

∆t =
T

100
(4.27)

where St = 0.2 [-] is the Strouhal number, fv is the vortex shedding frequency and T is
the period of oscillation. This leads to a recommended time-step of ∆t = 1.2× 10−3 [s].
This value is simply to give an initial recommendation of the time step, further refinement
is necessary in order to acquire a time independent solution. It is decided to use the time
steps as shown in Table 4.4.

Table 4.4: Time Steps used in the Time Step Study

Parameter Value, [s]

Time Step 1, ∆t 1× 10−3

Time Step 2, ∆t 5× 10−4

Time Step 3, ∆t 2.5× 10−4

Time Step 4, ∆t 1.25× 10−4
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4.3.2 Time Step Study Results

The results of the time step study for the different time steps are shown in Figure 4.9.
Time discretisation is done with a second-order backward-differencing scheme. A compar-
ison is made with the experimental force coefficients in order to provide some preliminary
insight in the abilities of the RANS model to capture the aerodynamics at the concerning
high-amplitude oscillations. The motion of the airfoil is also included in the figures in
order to relate the force behaviour to the motion. The left figures show the force coeffi-
cients and motion over the complete simulation time and the right figures shows the force
coefficients at a single period of oscillation.
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Figure 4.9: Time Step Study Results compared to Data from Li [7]

From the lift- and moment coefficient results, no clear discrepancies among the differ-
ent time step results are apparent. Some cycle-to-cycle variation is observed in the
experimental- and numerical- results especially for the smaller time steps. These vari-
ations might be caused by the turbulent nature of the fluid flow. However, the larger
cycle-to-cycle variation at smaller time-steps also introduces the possibility that the flow
has not quite settled yet. In order to give an impression of all physical quantities, their
flow fields at a certain time are shown in Appendix G. As the simulations at all time
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steps are numerically converged, the velocity-,pressure- and turbulence fields are prop-
erly resolved and the Courant number takes acceptable values (at the highest time-step,
90% of all cells are lower than Co = 10), it can be concluded that all time steps provide
correct solutions of the fluid flow around a pitching airfoil. Therefore, it is decided that
the largest time step, ∆t = 1 × 10−3 [s], would be sufficient to perform the aeroelastic
simulations. It must be said, in hindsight, that in order to improve numerical stability
during the aeroelastic simulations, the time step might be susceptible to changes.
As the results are compared with the experimental results, a clear difference is seen in
the form of a second peak in the numerical results which value is greatly overestimates
the second peak in the experiment. This observation will be discussed in more detail in
Section 5.1.

4.4 FSI Solver Set-up

This section describes the set-up of the FSI simulations in OpenFOAM of the airfoil which
is free to move in two degrees of freedom. Initially, a rotating mesh was used for the FSI
simulations. However, due to the large displacements of cells at the outside boundaries
of the mesh, the simulations showed convergence difficulties. A solver including mesh
deformation has been developed which eliminates the large displacements at the outside
cells as the cells close to the airfoil are deformed and displaced.

The same method to obtain the motion of the airfoil as described in Section 3.2 is used in
OpenFOAM. This means that the equations of motion are solved for the acceleration of
the body in the new time-step. A schematic overview of the FSI-solver is given in Figure
4.10.

The following steps describe the solution procedure of the FSI-solver:

1. Boundary- & initial conditions, discretisation schemes, solver settings and flowfields
are initialised.

2. The first FSI-iteration is set and the fluid (u & p) in the domain is solved for by
means of RANS computations.

3. The forces acting on the airfoil are extracted and passed on to the structural solver.

4. A new position of the airfoil is obtained by solving the structural problem.

5. The mesh is deformed

6. The solution’s FSI residual is compared with the FSI residual criteria. If the criteria
is not reached, go to step 6, otherwise, go to step 8.

7. The amount of FSI iterations is compared to the maximum FSI iterations. If the
maximum iterations is not yet reached, niter = niter +1 and go to step 2, otherwise
go to step 8.
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Figure 4.10: Flowchart of the FSI-Solver.

8. If the maximum simulation time is not reached, the mesh is deformed and the
simulation procedure start over from step 2. Otherwise, the simulation is finished.

The coupling parameters of the FSI-simulations are shown in Table 4.5.

Table 4.5: FSI Coupling Properties

Parameter Symbol Value

FSI Coupling Scheme - Aitken

FSI Relaxation Factor - Initial RF0 0.9

FSI Relaxation Factor - Maximum RFmax 0.99

FSI Relaxation Factor - Minimum RFmin 0.1

FSI Residual rfsi 3× 10−4

Maximum FSI Iterations nmax 20
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4.5 Summary

This chapter has dealt with the second proposed model in the aeroelastic study of a
wind turbine airfoil: i.e. the RANS model. The completion of this chapter has lead to
performing the second task as defined in Chapter 1: Task 2. Design a reliable, accurate
and efficient RANS model in OpenFOAM which is able to numerically simulate aeroelastic
behaviour of an airfoil. The RANS model set-up and validation as well as the theoretical
principle in solving the Navier-Stokes equations by means of CFD computation have been
discussed. A grid- and time-step independence study have been carried out respectively
on a static airfoil and an airfoil pitching in a prescribed manner in order to ensure efficient
and accurate simulations. An overview of the FSI model set-up used in the aeroelastic
simulations has been provided. Now the RANS model design has been completed, the
actual aeroelastic simulations on an airfoil can be performed. This is done in the next
chapter.
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Chapter 5

Aeroelastic Simulations

Now the engineering- and RANS model have been designed in Chapter 3 and Chapter 4
and their aerodynamic- and structural parts have been validated individually, the aeroe-
lastic capabilities of both models are validated and assessed. This chapter deals with the
aeroelastic validation of the engineering- and RANS model by means of a comparison of
the results with experimental data and is equivalent to performing the third task: Task
3: Validate the models with experimental data of self-exciting high-amplitude limit cycle
oscillations. Carrying out this task will provide valuable information in answering the
first research question: 1. Which numerical models are able to predict critical onset ve-
locity and behaviour of self-exciting high-amplitude limit cycle oscillations of an airfoil?
The chapter is divided into four sections. In Section 5.1, a comparison of the aerody-
namic forces obtained with a prescribed motion with the engineering- and RANS model
in respectively Chapter 3 and 4 is made. Afterwards, in Section 5.2, both models are used
in an attempt to reproduce the stall flutter experiment results from Li [7] by means of
aeroelastic analyses. Section 5.3 deals with the validation of the aeroelastic simulations of
both models on the flutter experiment from Veilleux [8]. Lastly in Section 5.4, to conclude
this part, a discussion of the results and findings obtained in this chapter is done.

5.1 Engineering- and RANS model Prescribed Motion Com-
parison

In this section, the first direct comparison between the aerodynamic abilities of the
engineering- and the RANS model is made. The force coefficients as a result of the
prescribed motion at U∞ = 12.9 [m/s] obtained respectively in Section 3.4 and Section
4.3 are compared to the experimental data in Figure 5.1. RANS model results of the
largest time-step, ∆t = 1e−3 are used in the comparison. The left figures show the force
coefficients over several periods of oscillation, the figures in the middle show the force
coefficients over one period of oscillation and the right figures show the force coefficients
over the pitch angle. The mean with the corresponding standard deviation of the force
coefficient are respectively indicated by the solid and the dashed line.
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Figure 5.1: Force Coefficients Responses obtained with the Engineering- and RANS Model on a
prescribed Motion compared with Experimental Data from Li [7].

It can seen that there are some discrepancies between the results of the numerical models
and the experimental data. In order to be able to explain why these discrepancies exist,
the results of both numerical models are investigated more deeply. The contributions to
the different force coefficients computed in the engineering model as described in Section
3.1 are looked into in the following subsection. Afterwards, the flow behaviour of the
RANS model at different time-steps are looked into and the relation between the flow
fields and the force development is described.

5.1.1 Prescribed Motion Results of Engineering Model

This part discusses the aerodynamic capabilities of the engineering model obtained with
a prescribed motion into more detail. As explained in Chapter 3, the total, dynamic lift-
en moment coefficients consist of several contributing terms. In order to be able to assess
the ability of the engineering model to actually capture the aerodynamic forces at these
high-amplitude oscillations, it is important to understand how these contributing terms
behave over time. Figure 5.2 shows the contributions of the different terms to the lift-
and moment coefficient as respectively described by Equation 3.9 and 3.13. The lift- and
moment coefficients are indicated by the green lines, the contributing terms are indicated
with the dashed lines and the experimental data is shown in blue and is added as a
comparison.

Looking at the lift coefficient contributions, it easily can be seen that the contribution
of the non-circulatory lift coefficient, ClNC , is very small compared to the rest. The lift
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Figure 5.2: Force Coefficients Contributions obtained with Engineering Model compared with
Experimental Data from Li [7].

contribution due to the leading edge vortex, ClV , clearly shows a peak around shortly
before the maximum pitch angle. Afterwards this contribution decreases slowly as the
’artificially introduced vortex’ detaches and travels over the airfoil until the next vortex
starts to build strength. The major contribution to the lift is caused by the unsteady lift
coefficient due to the effect of TE separation, ClTE . This term greatly determines the
phase of the dynamic lift coefficient which can be seen by the ’delay’ of the lift coefficient
after maximum pitch angle is reached.
The ClTE contribution can be further divided into two terms as seen in Equation 3.9:
an attached contribution, ClTE,a, and a fully separated contribution, ClTE,fs. The con-
tributions of these terms are shown in Figure 5.3. The figure clearly shows that the two
terms contribute to the TE lift coefficient in an alternating fashion: during the attached
phase, the ClTE,a dominates the TE lift coefficient value and the ClTE,fs-contribution
is significantly lower. When the airfoil reaches higher angles of attack the ClTE,a-term
tends to go to zero and the ClTE,fs-contribution increases due to the upstream motion
of the dynamic separation point. This increase continues even after a maximum angle
of attack is reached, during the pitching down motion, until the separation point moves
away from the LE

The engineering model is capable of reproducing the general trend of the lift coefficient at
these high-amplitudes of motion. However, the dynamics of shedding the LEV and reat-
tachment of the flow afterwards, denoted by the drop in lift after the first peak and the
appearance of a second smaller lift peak in the experimental results, is not fully captured
by the engineering model.

When the contributions of the moment coefficients are compared it can be observed that
the static moment contribution, CmSt, and the non-circulatory moment contribution,
CmNC , merely determine the phase and contribute slightly to the overall value. The
peaks observed in the experiment and simulations are caused by the unsteady moment
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due to the dynamic TE separation, CmTE . These high values are caused by the fact that
CmTE is directly related to the value of the dynamic lift coefficient through Equation 3.14.

The obtained results with the engineering model on a prescribed motion provide confi-
dence that the model is able to perform aeroelastic simulations on a 2D airfoil and produce
flutter behaviour. Validation of the aeroelastic engineering model is done in Section 5.2
and Section 5.3.

5.1.2 Prescribed Motion Results of RANS Model

In this section, the aerodynamic forces obtained on a high-amplitude prescribed motion
with the RANS model are looked into. As already observed in the introductory part
of this section, the lift- and moment coefficients are, for a majority of the oscillation,
overpredicted by the RANS model. A tentative explanation is found here by means of
visualisation of the flow fields around the airfoil compared with force coefficients. This
is done in Figure 5.4. On the left, the force coefficients and pitching motion over time
are shown. The cyan coloured dot indicates the non-dimensional time, t∗ at which the
pressure-, velocity- and vorticity fields are shown on the right.

Analysing the figures, it can be seen that during the upward pitching motion, a vortex de-
velops at the leading edge and builds up strength. When the vortex reaches its maximum
strength, at t∗ = 0.12, the maximum lift coefficient is seen. At a certain point, while still
in upward pitching motion, the vortex is shed from the leading edge and a trailing edge
vortex (TEV) is being developed which lead to a rapid decline in lift coefficient as seen
at t∗ = 0.18 and t∗ = 0.23. When the maximum pitch angle is reached the lift coefficient
starts to increase as the TEV detaches. At t∗ = 0.29, after the maximum pitch angle is
reached, a second peak in lift coefficient is obtained with the RANS simulations directly
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due to the complete detachment of the TEV. Afterwards, at t∗ = 0.38, while pitching
down, a trailing edge vortex is created and the lift coefficient decreases. When the TEV
is shed from the surface of the airfoil a third, lower peak in lift coefficient is observed.
Afterwards, the airfoil reaches pitch angles in the linear region and the flow reattaches
to the surface which leads to a linear decrease of lift coefficient until the process start all
over again at negative pitch angles.
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Figure 5.4: Prescribed Motion Results obtained with the RANS Model at U∞ = 12.9 [m/s].

Figure 5.5 provides a detailed overview of the pressure- velocity- and vorticity fields
including the velocity vectors at t∗ = 0.12. In the figure, the recirculation area indicated
by the clockwise oriented arrows around an epicentre indicates the LEV.

Figure 5.5: Velocity Vector Plots on the Pressure, Velocity & Vorticity Fields at t∗ = 0.12.

From the analysis on the results obtained with the prescribed simulations with the RANS
model, the following important observations are made regarding force prediction of a
high-amplitude oscillating NACA 0012 airfoil by a RANS model:

• With an increasing pitch angle up to a first peak in lift coefficient, the RANS model
accurately predicts the lift coefficient values as seen in the experiment from Li [7].
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Values of lift coefficients around a factor 3 times greater than the static lift at similar
angles of attack due to the dynamic stall effect are observed in both results.

• Two additional peaks in lift are furthermore created by the RANS model due to sep-
aration of the TEVs. However, compared to the experimental data, their influence
on the force coefficients seem to yield an overprediction.

• The overprediction of the force coefficients might lead to a lag in the motion in the
aeroelastic simulations performed in the next two sections.

5.2 Aeroelastic Results of NACA-0012 from Li [7]

This section deals with the capability of the engineering- and RANS model to reproduce
the results from the stall flutter experiment from Li [7] by means of aeroelastic simulations.
At freestream wind speeds used in the experiment, the airfoil is given an initial pitching
velocity similar to the ones seen in the experiment. In case of the self-excitation seen in
the experiment at high velocities U∞ > 10 [m/s], both models are still given an initial
pitching velocity. For the RANS model, this is done to decrease simulation time and for
the engineering model, this is done to provide a direct comparison and because it was
found that the initial condition did not influence the resulting behaviour of the airfoil.

5.2.1 Results with original Non-Linear Damping

In this part, the structural parameters, including the non-linear damping formulation,
from Table 3.5 are used as an input in both models and the grid and time-step obtained
in Chapter 4 are used in the simulations by the RANS model.

At first a comparison is made between the models and experimental data at wind-off
conditions, U∞ = 0 [m/s]. For the engineering model, this has already been shown in
Chapter 3. However, an interesting comparison in the structural model of both numerical
models can be made now. The resulting response at wind-off conditions compared to
the experimental motion are shown in Figure 5.6. Both responses obtained numerically
show a very similar decaying motion. Comparing the numerically obtained amplitudes of
motion to the experimental one, also similar values can be seen. However, the frequency
obtained with the numerical models is lower than the experimental frequency.

Now for a variety of wind speeds, the aeroelastic simulations are performed. The results
at three distinct wind speeds, U∞ = 3.9, 12.9 and 16.3 [m/s], are shown respectively in
Figure 5.7, 5.8 and 5.9.

The results at U∞ = 3.9 [m/s] in Figure 5.7 show that the motion of the decaying response
is rather similar to the experimental data. Equal amount of oscillations are observed with
slightly underestimated pitch amplitudes. The numerically obtained lift coefficients are
similar to the experimental results in amplitude on positive pitch angles, however a de-
lay of the lift coefficient is apparent. The moment coefficient over time is substantially
underestimated by both models. The high values seen in the RANS model results at the
start of the simulation can be disregarded, these are due to the projection of the steady
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Figure 5.6: Motion Response at U∞ = 0 [m/s] obtained with Engineering- and RANS Model
compared with Experimental Data from Li [7].
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Figure 5.7: Motion Response and Force Coefficients at U∞ = 3.9 [m/s] obtained with the
Engineering- and RANS Model compared to Experimental Data from Li [7].

state solution on the starting solution of the transient simulations in OpenFOAM.
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Figure 5.8: Motion Response and Force Coefficients at U∞ = 12.9 [m/s] obtained with the
Engineering- and RANS Model compared to Experimental Data from Li [7].
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The obtained results at U∞ = 12.9 [m/s] in Figure 5.8 show a decaying motion response
for both numerical models while in the experiment, LCOs with high amplitudes are ob-
served. Despite the fact that in the first oscillation(s) high lift- and moment coefficient
values are obtained, especially with the RANS model, apparently insufficient energy is
added from the fluid to the structure to sustain the LCOs.
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Figure 5.9: Motion Response and Force Coefficients at U∞ = 16.3 [m/s] obtained with the
Engineering- and RANS Model compared to Experimental Data from Li [7].

Looking at the results obtained numerically at U∞ = 16.3 [m/s] shown in Figure 5.9,
clearly different responses of the engineering- and RANS model are observed. The engi-
neering model results show a decrease of the pitch amplitude until LCOs are obtained with
an amplitude of around θamp = 5◦. Compared to the experimental LCOs, the amplitude
is significantly smaller and the motion remains in the linear region of the force coefficient
curves. Interesting to note is that when the LCO region is reached, the frequency of oscil-
lation coincides with the experimentally observed frequency. At even higher wind speeds,
a slight increase in pitch amplitude is observed. This happens until the divergence speed
is reached at which the airfoil undergoes divergence.
The RANS model on the other hand, does not show LCOs, but shows divergence of an
oscillating motion until the simulation is aborted due to errors. Despite the fact that the
lift- and moment coefficients take very similar values as seen in the experiment, no LCOs
are produced.

Several conclusions can be drawn from reproducing the results of the experiment from
Li [7] with the two numerical models. The results of the aeroelastic simulations performed
by the RANS model showed that no LCOs are obtained in the whole range of wind speeds:
at the lower wind speeds a decaying motion is seen and at a certain wind speed the motion
of the airfoil diverges in an oscillating manner. Comparing the force coefficients with the
experimental ones, great similarity is observed, especially considering the maximum values
in the first oscillations. This introduces some doubts in the already uncertain structural
parameters used in the experiment.
Regarding the engineering model, it can be stated that at wind speeds where LCOs are
expected, not enough energy is transferred from the fluid to the structure in order to
excite the system and produce high-amplitude LCOs. The uncertain structural- and
aerodynamic damping values in the experiment might play an important role in this
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as experience has taught that the engineering model is very sensitive to the damping
coefficient in the reproduction of the results from this particular experiment. In order to
investigate the sensitivity of the engineering model to the non-linear damping values, the
non-linear damping is varied and the motion responses and force coefficients are observed
in the next section.

5.2.2 Results with adapted Non-Linear Damping

In order to improve the accuracy of reproducing the experimental results with the engi-
neering model, several structural parameters have to be reconsidered. In order to find out
whether the cause of the engineering model not producing LCOs lies in the approximation
of the non-linear structural damping, the damping is varied in this part and the aeroelastic
response is checked. It is decided to reduce the non-linear damping, as described by the
formulation shown in Table 3.5, by a factor 3 and introduce a cubic damping coefficient
at high angles of attack. The resulting motion and force coefficients responses are shown
in Figure 5.10.

The figures clearly show that with a lower non-linear damping and the cubic damping at
high angles of attack LCOs do occur at higher wind speeds. The low wind speed case, at
U∞ = 3.9 [m/s], shows that the response still decays, albeit at a lower rate. The lower
rate is a logical effect of the lower structural damping.

An overview of the most relevant results are shown in Figure 5.11. Regarding the mean
pitch amplitudes, the negative pitch amplitudes show very similar values as the exper-
imental ones. However, the positive pitch amplitudes decrease while the experimental
amplitudes increase. Looking at the frequency, it can be seen that the numerical frequen-
cies are estimated lower than the experimental ones. Furthermore it shows an opposing
trend: while the experimental frequency increases with wind speed, the numerical fre-
quency decreases. However looking at the reduced frequency in Figure 5.11c, a similar
trend of the numerical- and experimental results is observed. Only tentative explanations
are given as why these discrepancies are observed. First of all, the uncertainty in the non-
linear structural damping might play a role in the observed differences/ Furthermore, the
fact that the heave motion is not excited in both numerical models might influence the
behaviour in pitch as well. Finally, the fact that during the experiment, the windings
of the springs sometimes were touching each other leads to behaviour which can not be
captured by the numerical models.

5.2.3 Discussion

In principle, it can be concluded that the engineering model including the modified version
of the Risø dynamic stall model is able to numerically predict high-amplitude LCOs
when given a detailed quantification of the (non-linear) damping and other structural
parameters. However, this section proves that the engineering model is very sensitive to
the damping coefficient which is a critical parameter and difficult to accurately define
in these types of simulations. As the RANS model showed to be capable of accurately
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Figure 5.10: Motion Response and Force Coefficients of the Engineering Model with adapted
Non-linear Damping compared to Experimental Data from Li [7].

reproducing the forces in the first oscillations at different wind speeds, it is believed that
the aforementioned hypothesis is also true for the RANS model. In order to prove this
statement, aeroelastic simulations with the engineering- and RANS model are compared
to data from a similar experiment, described in Section 2.5, on a NACA 0012 wing in the
next section.

5.3 Aeroelastic Results of NACA-0012 from Veilleux [8]

This section deals with the aeroelastic numerical simulations of the engineering- and
RANS model compared to the results on the NACA-0012 classical flutter experiment from
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Figure 5.11: Bifurcation Diagram and Frequencies for different Wind Speeds obtained with the
Engineering Model with modified Non-linear Damping compared to Experimental Data from

Li [7].

Veilleux [8] mentioned in Section 2.5. In the experiment, an initial heaving velocity was
given to the airfoil to initiate the response at a certain (rather limited) range of freestream
wind speeds (Re = 65 000 - 85 000). In the numerical simulations a broader range of
Reynolds number (Re = 50 000 - 120 000) is used as these results can be compared with
RANS simulation from Veilleux [8] on the same experiment. This section firstly describes
the structural parameters of the experiment. Secondly, the main results of the numerical
models are compared to the data from Veilleux [8]. Afterwards, typical behaviour over
time of both numerical models for several Reynolds numbers are presented and their
performance is evaluated.

5.3.1 Structural Parameters

An overview of the structural parameters of the experimental set-up as described in
Veilleux [8] is given in Table 5.1. These parameters are given as an input in the engineering-
and RANS model to perform the aeroelastic simulations. It must be said that the heave
damping coefficient was assessed by Veilleux [8] to have some sort of non-linear behaviour,
but he concluded that introducing the non-linearity in his RANS simulations did not ef-
fect the results whatsoever. Note that several structural parameters are considered per
unit length. As in the experiment, the pitching mass did not participate in the heaving
direction and vice versa, the equations of motion as displayed in Equation 2.2 and 2.3
become:

mhḧ+ Sθ̈ + chḣ+ khh = −L (5.1)

Sḧ+ Ircθ̈ + cθθ̇ + kθθ = M (5.2)

where mh is the mass in heave direction and where S = mpl cos θ is the static mass
moment with the mass in pitch mp.

5.3.2 Aeroelastic Results Comparison

The resulting pitch- and heave amplitudes of the oscillations as well as a non-dimensionalised
frequency over the whole of Reynolds numbers compared to experimental data and RANS
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Table 5.1: Experiment Structural Parameters from Veilleux [8]

Parameter Symbol Unit Value

Chord c [m] 0.156

Span S [m] 0.61

Total Torsional Spring Stiffness kθ [Nm/rad] 0.3

Total Compression Spring Stiffness ky [N/m] 1484 & 800

Centre of Rotation xRC [%] 18.6

Centre of Gravity xCG [%] 28.6

Moment of Inertia around the C.R. IRC [kg ·m2] 0.00135

Mass - Heave mh [kg] 2.5

Mass - Pitch mp [kg] 0.77

Torsional Damping Coefficient Ct [N · s/rad] 0.002

Heaving Damping Coefficient Cy [N · s/m] 2.0

Initial Heaving Velocity Vh,0 [m/s] 0.6

simulations with the S-A turbulence model from Veilleux [8] are shown in Figure 5.12.
The non-dimensionalised frequencies in case of a decaying response is also added in order
to give an impression of its difference with a LCO motion’s frequency.

First, the results of the RANS model are looked into. It can be seen from the fig-
ure that the RANS model predicts initiation of LCOs at Re = 70 000, which is around
70 000−60 000

60 000 ≈ 8% higher than the onset Reynolds number found in the experiment. How-
ever, in the case of LCOs, the magnitude of amplitudes in pitch- and heave direction are
captured very accurately. After an initial increase of LCO amplitude with an increasing
Reynolds number, a drop in amplitude at Re = 120 000 is observed in both RANS models.
It is believed by the author that this might be caused by the fact that the LEV is shed
more rapidly. A more in-depth analysis is made in the next section.
Now, the responses of the aeroelastic simulations of the engineering model, denoted by
the red curves in Figure 5.12, are looked into. It can be seen that the same critical onset
Reynolds number, albeit with a different amplitude, is predicted by the engineering model
as in the experiment. This is considered an important characteristic, as in the parametric
study on aeroelastic behaviour of the wind turbine airfoil, the critical onset velocity is the
most critical output to be studied. Comparing the amplitude of LCOs, it is easily seen
that the engineering model tends to yield an overprediction. This overprediction becomes
especially clear in the heaving amplitude. While both RANS models predict a decrease
in heave amplitude, the engineering model’s heave amplitudes keeps on increasing. A
potential cause for this is the high sensitivity of the engineering model to the damping
coefficient as seen in the previous section together with the fact that the heaving damping
coefficient behaves in an uncertain non-linear fashion.

In order to provide some insight in the simulation times to acquire a real time response
of 10 [s] of all cases, an overview is given in Table 5.2. The aeroelastic simulation of Re
= 90 000 was performed on a different CPU than the other ones: a 2.27 GHz Intel(R)
Xeon(R) CPU E5520 on four processors. It can easily be seen that the simulation time
of the engineering model are almost negligible compared to the RANS model’s simulation
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Figure 5.12: Pitch Amplitudes of LCOs obtained with Engineering- and RANS Model
compared with Data from Thesis and Experiment from Veilleux [8].

time.

Table 5.2: Simulation Time of the Engineering- and RANS model of 10 [s] Real Time
Response.

Re Simulation Time

Engineering, [s] RANS, [s] RANS, [h]

60 000 20 193 885 54

70 000 20 509 902 142

90 000 20 919 850 256

100 000 20 602 878 167

Now a general insight has been obtained in the behaviour response of the airfoil, a more
deeper understanding of the responses predicted by the engineering- and RANS model is
obtained in the next part.
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5.3.3 Aeroelastic Responses over Time

The motion responses over time obtained with the two models at different Reynolds
numbers are shown in Figure 5.13. Unfortunately, no data is publicly available on the
motion or forces over time of the experiment from Veilleux [8].
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Figure 5.13: Pitch- and Heave Motion Responses obtained with the Engineering- and RANS
Model

Comparing the motions of the two models at Re = 60 000 and 70 000, it is seen that
they produce very similar results regarding the amplitude and frequency of motion. At
higher Reynolds numbers, the engineering model’s motion amplitudes continues to in-
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crease while the RANS model’s amplitude levels off and eventually decreases. As stated
before, this might be caused by the uncertain non-linear damping or by the fact that the
engineering model does not fully capture the physics involved in the shedding of the LEV.

Looking into the force coefficients at Re = 70 000, where the motion response obtained
with both models are quite similar, some interesting observations can be made. The lift
coefficient over time and over the pitch angle are depicted in Figure 5.14.
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Figure 5.14: Lift Coefficient Response obtained with the Engineering- and RANS Model at
Re = 70 000.

It can be seen that the lift coefficient over time obtained by the two models show similar
trends as indicated by the solid lines in Figure 5.14b. However, the maximum lift coeffi-
cients are somewhat underestimated by the engineering model and the frequency is lower
as well. It can also be seen that the RANS model shows a phase difference in lift coefficient
and pitching moment (indicated by the blue lines) while the engineering model results
show to be in-phase (indicated by the green lines). This difference in phasing is clearly
seen in Figure 5.14c, as the engineering shows a ‘sharp’ point indicating the in-phase be-
haviour, while the RANS model shows a ‘round’ development at high pitch angles. The
RANS model shows a clear decrease after the maximum pitch angles is reached after which
a smaller second peak is observed similarly to the observation made in experiment from
Li [7]. This provides an indication of the fact that the typical dynamic stall phenomenon,
characterised by the drop and the second peak in lift coefficient, occurs at these high-
amplitude LCOs as well and that the RANS model is able to capture the physics involved.

In order to provide a tentative explanation for the decrease in pitch amplitude at Re =
120 000 obtained by the RANS model, the lift coefficient is further looked into. Figure
5.15 shows the lift coefficient over the pitch angle for a range of Reynolds numbers. An
interesting difference between the results is that the slope of the lift coefficient after a
maximum lift coefficient is reached at Re = 120 000 is much steeper than at lower Reynolds
numbers. This indicates that there is a large drop in lift coefficient in a narrow range of
pitch angles, which is caused by the rapid shedding of the LEV. It is believed that this
phenomenon limits the growth of amplitude at this particular Reynolds number.
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Figure 5.15: Lift Coefficients over Pitch Angle obtained with the RANS Model at Different
Reynolds Numbers.

5.3.4 Discussion

This section dealt with the validation of the aeroelastic capabilities of the engineering-
and RANS model by means of a comparison with experimental data from Veilleux [8]. It
has been observed that both models are capable of producing high-amplitude LCOs with
their own advantages and disadvantages. The engineering model proves to be a fast and
efficient method of obtaining the critical onset wind speed accurately. However, due to
its sensitivity for certain structural parameters such as the damping coefficient combined
with uncertainty of this parameter in the experiment, the amplitude of the LCOs are
substantially overestimated at high Reynolds numbers. The RANS model shows to be
able to reproduce LCOs with very similar amplitudes seen in the experiment. However,
the critical onset Reynolds number is slightly overestimated. A major drawback of the
RANS model is its high simulation time.

5.4 Summary

This final section provides an overview of the most important observations made and
conclusions drawn in this chapter. This chapter has dealt with the validation and the
assessment of capabilities of the engineering- and RANS model to perform aeroelastic
simulations. These are related to third and fourth task as defined in Section 1.2, which
are Task 3: Validate the models with data of self-exciting high-amplitude limit cycle os-
cillations of experiment. and Task 4: Compare the efficiency, reliability and accuracy of
the numerical models. Performing both tasks in this chapter yields answers to the first
research question: 1. Which numerical models are able to predict onset and behaviour of
self-exciting high-amplitude limit cycle oscillations of an airfoil?

Aeroelastic validation of the engineering- and the RANS model has been done by means
of a comparison with data from a two experiments on a NACA0012 which showed high-
amplitude limit cycle oscillations: a stall flutter experiment from Li [7] and a coalescence
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flutter experiment from Veilleux [8]. The former was merely used to compare the aerody-
namic capabilities of both numerical models as the high uncertainty in and sensitivity of
the structural model resulted in a difficult reproduction of the aeroelastic behaviour in the
experiment. The latter experiment provided data of the final pitch- and heave amplitudes
and frequencies of a high-amplitude oscillating motion. No motion- or aerodynamic data
over time were publicly available.

The observations, conclusions, advantages and disadvantages are summarised per model
below:

• Engineering Model:

– Uses a simplified representation of the physics involved in high-amplitude os-
cillations.

– Is capable of accurately reproducing aerodynamic lift- and moment coefficients
compared to experimental data.

– Does not fully capture the effect of the detachment of the LEV and reattach-
ment of the flow on the force coefficient, but describes it with a general trend.

– Is capable of reproducing LCOs.

– Shows the same critical onset velocity of the LCOs as seen in the experiment
of Veilleux [8].

– Provides a fast and efficient way of performing aeroelastic simulations. The
simulation time is of the order of a couple of seconds.

– Overpredicts the amplitude in pitch and heave compared to experimental data
from Veilleux [8].

– Has proven to be very sensitive to the structural damping coefficient which
has a big effect on the aeroelastic response in both experiments. Especially,
in the stall flutter experiment, the onset of LCOs was affected by the struc-
tural damping coefficient. In the classical flutter experiment, the value of the
structural damping coefficient merely had an effect on the amplitude of the
LCOs.

• RANS Model:

– Does capture the full dynamics and obtains the flow fields of several physical
quantities of interest.

– Is capable of accurately reproducing aerodynamic lift- and moment coefficients
compared to experimental data.

– Does capture the creation and detachment of the LEV.

– Is capable of reproducing LCOs.

– Produces very similar pitch- and heave amplitudes of the LCOs as seen in the
experimental data in Veilleux [8].

– Shows a slightly different critical onset velocity of the LCOs as seen in the
experiment of Veilleux [8].
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– Takes substantially more time to perform aeroelastic simulations.

– Is less sensitive to the structural damping coefficient.

The most suitable model for the parametric study on the flutter behaviour of a wind
turbine airfoil in the next chapter is chosen based on these observations. As the para-
metric study requires analyses of the effect of varying a broad range of parameters on the
aeroelastic behaviour of the wind turbine airfoil, it is desired to use a fast and simple, yet
stable and accurate numerical model. For this reason, the engineering model is chosen in
the remainder of the study.
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Chapter 6

Parametric Study

In the previous chapter, the aeroelastic capabilities of the two numerical models have
been studied and compared. The most suitable model for the parametric study, which is
the engineering model, has been selected and will be used in this chapter to perform a
parametric study on the aeroelastic response of a wind turbine airfoil. This comes down to
carrying out the final task in the project defined by Task 5: Perform a parametric study
on a wind turbine airfoil with the aim of identifying the critical parameters which affect
the self-exciting high-amplitude limit cycle oscillations onset and response. By performing
this study and analysing its outcome, the second research question can be answered: 2.
Which key parameters of a wind turbine airfoil affect the critical onset velocity leading to
limit cycle oscillations?

This chapter starts out with a description of the wind turbine airfoil to be studied in
Section 6.1. Section 6.2 presents and discusses the aeroelastic study on the current design
of the wind turbine airfoil. In Section 6.3, aeroelastic simulations are carried out on
four potential, conceptual designs of the wind turbine airfoil. From the corresponding
results, preliminary conclusions are made on identifying the key parameters in the onset
of aeroelastic behaviour. These conclusions are used as an input for the methodological
and in-depth parametric study performed in Section 6.4. The effect of introducing a
structural angle of attack, in order to simulate a wind turbine airfoil operating close to or
in stall, on the aeroelastic behaviour is studied in Section 6.5. The particular section also
includes a parametric study in order to identify the key parameters that affect aeroelastic
behaviour at higher structural angles of attack. Finally, in Section 6.6, an overview of
all the observations made and conclusions drawn in this chapter is given and is used to
provide an answer to the last research question: 3. How can the risk of self-exciting
high-amplitude limit cycle oscillations of a wind turbine airfoil be reduced?.

85



86 Parametric Study

6.1 The Wind Turbine Airfoil

This section provides an overview of the structural parameters of the wind turbine airfoil
and the semi-empirical coefficient needed as an input in the engineering model. The
parametric study is performed on a wind turbine airfoil which is located at 75 % radius
on the XANT-21 wind turbine. At cut-out conditions, U∞ = 20 [m/s], and assuming an
axial induction factor of, a = 0.1 [-], the airfoil in question would experience a maximum
operating incoming velocity of Urel,op = 45.4 [m/s], equivalent to Re = 1.38×106 [-]. The
airfoil is very similar to the NREL S819 from Somers [74] and both airfoil are depicted in
Figure 6.1.
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Figure 6.1: Airfoil Contours

The static force coefficient of this particular airfoil have been obtained prior to the thesis
and can be found in Lof [70]. The semi-empirical parameters are obtained similarly to
the methods described in Section 3.3 and are shown in Table 6.1. The value of Tf is taken
from Aagaard Madsen and Rasmussen [75] which uses the value for the FFA-W3-211
which is a similar wind turbine airfoil.

Table 6.1: Semi-Empirical Parameters of the XANT-21 Airfoil.

Parameter Unit Value

b1 [−] 0.33

b2 [−] 0.05

A1 [−] 0.40

A2 [−] 0.23

Tp [−] 1.5

Tf [−] 7.0

ω4 [−] 0.075

C ′
L0,v [−] 1.3

The structural parameters of the current airfoil design are summarised in Table 6.2. The
damping coefficients have been obtained by means of the logarithmic decrement method
on wind-off tests. For simplicity a constant damping is assumed.
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Table 6.2: Structural Parameters of the XANT-21 Airfoil.

Parameter Symbol Unit Value

Chord c [m] 0.446

Total Torsional Spring Stiffness kθ [Nm/rad] 1635

Total Compression Spring Stiffness ky [N/m] 2452

Centre of Rotation xRC [%] 26.4

Centre of Gravity xCG [%] 44.0

Mass m [kg] 10.45

Moment of Inertia around the C.R. IRC [kg ·m2] 0.5

Heaving Damping Coefficient Cy [N · s/m] 0.94

Torsional Damping Coefficient Ct [N · s/rad] 0.17

Natural Frequency in Pitch fθ [Hz] 9.1

Natural Frequency in Heave fh [Hz] 2.4

Now all necessary input is known, the aeroelastic study with the engineering model can
be performed. This is done in the following sections.

6.2 Baseline Results

With the known structural parameters as described in the previous section, the pitching-
and plunging motion response as a result of varying the relative velocity, Urel, are ob-
served. The airfoil, initially at a equilibrium position at zero angle of attack, is given
an initial pitching velocity. The effect of varying the magnitude of the initial pitching
velocity is investigated as well. The results are shown in Figure 6.2.
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Figure 6.2: Pitch- and Heave Amplitudes and Reduced Frequency of LCOs of the XANT Airfoil
obtained with the Engineering Model at Three Different Initial Conditions.

The results show that at the maximum operating incoming velocity, Urel,op = 45.4 [m/s],
no LCOs occur. Self-excitation is initiated at the critical onset velocity Ucr = 87.5 [m/s],
which is 87.5

45.4 ≈ 2 times higher than the maximum operating incoming velocity, which
might be considered a very plausible observation for wind turbines as stated in Bichiou
et al. [13]. This shows that in the baseline-design, the wind turbine airfoil is not prone
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to self-excitation under normal operating conditions at zero structural angle of attack.
The graphs further show that changing the initial pitching velocity does not influence the
critical onset velocity nor the amplitude of the self-excited LCOs.

In order to be able to find the cause of the onset of LCOs at these particular wind speeds,
the frequency of the motion in pitch- and heave direction are studied more closely. Figure
6.3 shows these frequencies for a range of relative wind speeds. What is clearly seen in
the figure is that at low wind speeds, the pitch- and heave frequency are apart from each
other. When the relative wind speed is increased, the frequencies tend to converge. At
Urel = 80 [m/s], a sudden jump in the heave frequency occurs which results in a heave
frequency very close to the pitch frequency. However, no LCOs are observed yet. The
frequencies coalesce exactly at Urel = 87.5 [m/s] and from this relative wind speed on, the
frequencies remain merged and LCOs occur. Due to the coalescence of the frequencies of
the two modes and the fact that the instability occurs at a zero structural angle of attack,
thus in a linear lift coefficient region, the aeroelastic instability is classified as classical
flutter.
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Figure 6.3: Pitch- and Heave Frequency of the Decaying and Oscillating Cases versus Relative
Wind Speed of the Baseline Airfoil.

Now the aeroelastic simulations on the so called ’baseline’ airfoil have been performed
and the type of instability has been classified, an aeroelastic analysis can be performed
on four conceptual designs for the wind turbine airfoil. This is done in the next section.

6.3 Conceptual Designs

This section discusses the alternative structural designs of the XANT-21 airfoil which
use different materials or material lay-up in several parts of the structure. At first, an
overview is given of the structural designs of four concept airfoils. Afterwards, the effect
of implementing the alternative materials or lay-up in the airfoil on the critical onset
velocity, Ucr, is studied. From this study, the key parameters which influence the critical
onset velocity are identified. Due to confidentiality, some details of the designs of the
airfoil have been left out.
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6.3.1 Structural Design

The XANT-21 airfoil consists of four parts: the skin, shearweb, sparcap and a balsa wood
part. An overview of the structural parts of the XANT-21 airfoil is shown in Figure 6.4.

Figure 6.4: Structural Overview of the XANT-21 Airfoil.

Four conceptual designs with varying structural material properties and lay-up have been
proposed by XANT. An overview of the implemented changes in the design as well as the
major effects on the structural parameters are given below:

1. Skin made of +/- 45 deg ply material:
The material of the whole skin is changed to a ply of +/-45 degree ply material.
This leads to a great reduction in heaving- and torsional stiffness. The mass of the
airfoil section increases.

2. Skin made of 0-90 deg ply material:
The whole skin of the airfoil section is made of 0-90 degree ply material. This reduces
the torsional stiffness substantially. The mass of the airfoil section increases.

3. Sparcap made of flexible UD ply material:
The uni-directional (UD) sparcap material is changed to a flexible sparcap material
which mainly reduces the heaving stiffness.

4. Balsa Wood made of flexible UD ply material:
The balsa wood part is replaced with a flexible UD ply material. This results in
little change in the torsional- and heaving stiffness. However, major increases are
seen in the total mass and, mass moment of inertia, damping coefficient and the
location of the centre of gravity.

The relative differences of all structural parameters compared with the ’baseline’ airfoil
are given in Table 6.3.
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Table 6.3: Percentual Difference of Structural Parameters of the Conceptual Designs with the
Baseline XANT Airfoil.

Parameter Units Values

Baseline Design 1 Design 2 Design 3 Design 4

c [%] 0 0 0 0 0

kθ [%] 0 -45.0 -49.6 -3.6 -0.7

ky [%] 0 -28.0 -18.0 -52.0 0

xRC [%] 0 -2.4 +18.8 +1.0 +0.5

xCG [%] 0 +2.5 +2.5 -2.7 +13.6

m [%] 0 +20 +20 +7.0 +53.1

IRC [%] 0 +26.4 +3.6 -5.0 +83.0

Cy [%] 0 -20.2 -7.4 0 +23.4

Ct [%] 0 -17.6 -29.4 -5.9 +35.3

ωn,h/ωn,θ [-] 0.268 0.315 0.318 0.178 0.294

6.3.2 Results of the Conceptual Designs

Now all structural parameters of the conceptual designs are given, the aeroelastic analysis
with the engineering model can be performed and the effect of the different structural
designs on the critical onset velocity can be assessed. The results are shown in Figure 6.5
which also includes the results of the baseline airfoil.
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Figure 6.5: Pitch- and Heave Amplitudes and Reduced Frequency of LCOs of Conceptual
Designs of the XANT Airfoil.

From the figures, it can be observed that design 1 and 2 reduce the critical onset velocity
significantly, design 4 reduces the critical onset velocity moderately, while design 3 in-
creases the critical onset velocity slightly. Noteworthy is that the amplitudes of the pitch-
and heave motion almost linearly increases with the relative wind speed. An overview of
the critical onset velocities are given in Table 6.4.
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Table 6.4: Critical Onset Velocities of the Conceptual Designs compared to Baseline Design.

Design Ucr [m/s] Ucr [-]

Baseline 87.5 2.0× Urel,op

Design 1 65 1.4× Urel,op

Design 2 60 1.3× Urel,op

Design 3 95 2.1× Urel,op

Design 4 77.5 1.7× Urel,op

6.3.3 Discussion of the Results of the Conceptual Designs

It is clear that the four conceptual designs yield different critical onset velocities. This
section discusses briefly what parameters might play a significant role in the change in
aeroelastic behaviour type determined to be classical flutter.

As mentioned before, designs 1 and 2 have a substantial negative effect on the critical
onset velocity. Both designs have a significant reduction in the torsional- and heaving
stiffness. However, the heaving stiffness is significantly reduced in design 3 as well while
the critical onset velocity is not so much affected in that case. From this analysis, it can
be concluded that the heaving stiffness is of less importance than the pitching stiffness.
However, the heaving stiffness plays an important role in the frequency ratio in heave
over pitch, which is a critical parameter in classical flutter.

Looking at the results of design 4 and the change in structural parameters in Table 6.3,
it can be seen that the stiffness in both degrees of freedom are barely changed. This
means that the reduction in Ucr lies in the mass and its associated terms: location of the
centre of gravity and mass moment of inertia. Classical flutter onset is greatly affected
by the location of the centre of gravity as mentioned in Chapter 2. Although the mass
moment of inertia has a slight negative impact on the frequency ratio in heave over pitch,
it is believed that the reduction of Ucr of design 4 is associated with the relatively large
rearward shift of the centre of gravity. This theory also fits with the increase of Ucr of
design 3 as a result of the forward shift of the centre of gravity.

The next section provides some in-depth studies of systematically varying the critical
parameters and their effect on the critical onset velocity.

6.4 Parametric Study

This section presents and discusses the effect of varying the critical parameters on the
critical onset velocity. Firstly, the effect of varying the damping coefficients is discussed.
Secondly, the effect of varying the pitch- and heave stiffness on the critical onset velocity
is studied. Afterwards, a parametrisation is done with the goal to find the influence of
the mass distribution on the total mass, location of the centre of gravity and the mass
moment of inertia and the corresponding effect on the critical onset velocity.
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6.4.1 Effect of Pitch- and Heave Damping Coefficient

The effect of varying the pitch- and heave damping coefficient is found not to have any
significant effect on the critical onset velocity. This might be contradictory to the fact
that in Chapter 5, the engineering model was very sensitive to the value of the damping
coefficient. However, this observation is explained by means of Figure 6.6. The figure
shows the contributions of the separate terms at Urel = 87.5 [m/s] in the equations
of motion as formulated in Equation 2.2 and 2.3: the force-, damping- and stiffness
contribution. Both figures clearly show that the damping-term contribution indicated by
the green lines, compared to the force- and stiffness-term contributions is negligible. For
this reason, it has been decided to not perform a parametric study on the pitch- and
heave damping coefficient.
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Figure 6.6: Contributions of different Terms in the Equations of Motion in Pitch- and Heave
Direction at Urel = 87.5 [m/s].

6.4.2 Varying the Pitch- and Heave Stiffness

The effect of reducing the pitch- and heave stiffness on the critical onset velocity is shown
in Figure 6.7a as well as the resulting natural frequency ratio is shown in Figure 6.7b.
The baseline results obtained in Section 6.2 are represented in the upper-right corner in
both figures at ky = 100% and kθ = 100%. Thus, the x- and y-axes respectively represent
the percentage of the baseline heave- and pitch stiffness taken for the aeroelastic analysis.
The resulting critical onset velocity is displayed in the colorbar.

From Figure 6.7a it can be easily seen that reducing the pitch stiffness, kθ, has a significant
negative effect on the critical onset velocity. If a pitch stiffness of 50% of the original value
is taken, the critical onset velocity reduces with around ∆Ucr =

60−90
90 ≈ 33%.

A reduction in the heave stiffness, ky, yields an increase in the critical onset velocity.
At first thought, this might come across as counter-intuitive: decreasing the stiffness,
increases the flutter speed. However, this can be explained by looking at Figure 6.7b.
From the figure, it becomes clear that when the heave stiffness, ky, is reduced, the heave
natural frequency, ωh, decreases which means that the natural frequency ratio of heave
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Figure 6.7: The Effect of varying the Pitch- and Heave Stiffness on the critical onset Velocity
and Frequency Ratio.

over pitch, ωh/ωθ becomes smaller. As this ratio is smaller than 1 for the baseline airfoil,
ωh/ωθ < 1, the ratio would even more deviate from the critical ratio of ωh/ωθ = 1. Hence,
the increase of the critical flutter speed.
Also noteworthy is the fact that the decrease in heave stiffness does not affect the critical
onset velocity as much as the pitch stiffness: taking 50% of the original value of ky
increases Ucr with ∆Ucr =

65−60
60 ≈ 8%.

6.4.3 Parametrisation of the Mass Distribution

This part deals with the parametrisation of the mass and the associated parameters which
are the location of the centre of gravity and the mass moment of inertia. It is decided to
divide the total mass of the airfoil depicted in Figure 6.4 into three mass contributions:
the sparcap-, skin- and balsa wood mass contributions:

mtotal = mspar +mskin +mbalsa (6.1)

where mspar includes the mass of the shear webs. With this obtained mass distribution,
a relation with the location of the centre of gravity, xcg, and the mass moment of inertia,
Irc, can be obtained:

xcg =
mspar · xsc +mskin · xcg,skin +mbalsa · xcg,balsa

mtotal
(6.2)

Irc = mspar · (xsc − xrc)
2 +mskin · (0.75 · c− xrc)

2+

mbalsa · (xcg,balsa − xrc)
2 (6.3)

where xsc, xcg,skin and xcg,balsa are respectively the distance from the leading edge to the
spar caps, the centre of gravity of the skin and the centre of gravity of the balsa wood
part.
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It is decided to perform an initial study where the masses of the different parts are changed
independently in order to gain some insight on their corresponding effects on the critical
onset velocity. All mass-contributions are independently multiplied with a factor 2 and
the pitch- and heave stiffness are varied in a similar fashion as in the ’baseline’-airfoil
study as shown in Figure 6.7. An overview of the changes in mass and their effect on the
location of centre of gravity, mass moment of inertia and total mass is given in Table 6.5.

Table 6.5: Effect of the Mass Contributions Changes on other Structural Parameters.

Mass-part Change mtotal [%] xcg [ %] Irc [ %]

mspar × 2 +34.4 -8 +0.9

mskin × 2 +32.8 -1 +57

mbalsa × 2 +32.8 +9 +41

The resulting critical onset velocities for the different variations in mass contributions,
compared with the baseline result obtained previously, are shown in Figure 6.8. Looking
at the effect of the mass of the spar caps in Figure 6.8b, a significant increase in the
critical onset velocity is observed. Reducing the pitch stiffness with 50 % results in a
minimum critical onset velocity of Ucr = 70 compared to Ucr = 60 in the baseline case.
From Table 6.5, it can be seen that the change in the spar mass barely has an effect on
the mass moment of inertia, but merely effects the location of the centre of gravity. Thus,
it can be confirmed that a shift of the location of the centre of gravity towards the leading
edge positively effects the critical onset velocity.
Comparing the results of changing the mass of the skin with the baseline results, it can
be seen that no significant changes in critical onset velocity are apparent, albeit a small
negative effect. Noting the fact that the mass moment of inertia in this case changes
significantly yields the conclusion that the mass moment of inertia is of less importance
compared with the location of the centre of gravity in its effect on the critical onset ve-
locity.
Looking at the effect of changing the mass of the balsa wood part, it can be seen that the
critical onset velocity is largely affected in a negative way. This decrease is, based on the
conclusions stated before, largely due to the rearward shift of the location of the centre
of gravity.

6.4.4 Parametric Study of the Mass Distribution on Flutter Stability

Now a clear correlation between the mass distribution, pitch- and heave stiffness and the
critical onset velocity have been observed, a more in-depth study on the critical onset
velocity for varying parameters can be performed. The goal of this analysis is to obtain
a range of design recommendations in case a reduction of the flexibility of the airfoil is
required. The set-up, assumptions and criteria used in this analysis are listed below:

• The pitch stiffness is reduced: kθ = [50 75 100] % of original kθ.

• The sparcap mass is varied: mspar = [80:10:150] % of original mspar.



6.4 Parametric Study 95

k
y
, [%]

k
θ
, 

[%
]

50 60 70 80 90 100
50

60

70

80

90

100

U
c
r, 

[m
/s

]

60

65

70

75

80

85

90

(a) Baseline

k
y
, [%]

k
θ
, 

[%
]

50 60 70 80 90 100
50

60

70

80

90

100

U
c
r, 

[m
/s

]

60

65

70

75

80

85

90

(b) mspar × 2

k
y
, [%]

k
θ
, 

[%
]

50 60 70 80 90 100
50

60

70

80

90

100
U

c
r, 

[m
/s

]

60

65

70

75

80

85

90

(c) mskin × 2

k
y
, [%]

k
θ
, 

[%
]

50 60 70 80 90 100
50

60

70

80

90

100

U
c
r, 

[m
/s

]

60

65

70

75

80

85

90

(d) mbalsa × 2

Figure 6.8: Critical Onset Velocities for different Mass-Contributions.

• The skin mass is varied: mskin = [50:10:150] % of original mskin.

• The balsa wood mass is varied: mbalsa = [50:10:200] % of original mbalsa.

• Criteria set that Ucr ≥ 90 [m/s] must be ensured.

• Assumption is made that the heave stiffness, ky, is reduced with 25 % (taken as an
average of the four conceptual designs).

• Assumption is made that the location of the centre of rotation is fixed.

The parametric study on the flutter stability is performed with the engineering model
and the results for the different pitch stiffnesses are discussed below.

kθ = 100%:

With the same pitch stiffness as the baseline airfoil, the flutter diagram for a variety of
sparcap masses is shown in Figure 6.9. The red area in the graphs denotes a critical onset
velocity lower than Ucr = 90 [m/s] and the blue area denotes the opposite. From the
figures can be seen that, as observed before, that increasing the sparcap mass more or
less increases the stability range linearly. Increasing the mass of the skin does not have a
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large effect on the stability range. The mass of the balsa wood part plays a decisive role
in the stability of the airfoil.
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Figure 6.9: Flutter Diagram for different Mass-Combinations at kθ = 100 %.

kθ = 75%:

At a pitch stiffness of 75% of the original value, the stable area of Ucr > 90 [m/s], indicated
by the blue area, becomes significantly smaller and is only reached if the mass of the balsa
part is reduced to at least 60% of its baseline value.
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Figure 6.10: Flutter Diagram for different Mass-Combinations at kθ = 75 %.
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kθ = 50%:

If the pitch stiffness is reduced to 50% of its original value, the criteria that Ucr > 90
[m/s] is not fulfilled at all. This means that reducing the torsional stiffness with 50%, no
combination of a modification of the mass-contributions ensures a critical onset velocity
higher than 90 [m/s]. In order to increase the stability of the airfoil, mass could be added
close to the leading edge in order to bring the location of the centre of gravity more
forward.

6.5 Structural Angles of Attack Study

As at high wind speeds, stall-controlled wind turbines operate close to stall angles of
attack, the aeroelastic behaviour might be significantly different. This section deals with
studying the effect of introducing structural angles of attack on the critical onset velocity
and the behaviour of the motion in case of flutter instability. The baseline airfoil is taken as
a reference case, only the structural angle of attack is varied and the aeroelastic response
is obtained with the engineering model. Afterwards, several structural parameters are
changed in the design to obtain the critical parameters which affect the critical onset
velocity in the aeroelastic responses at higher structural angles of attack.

6.5.1 Results

In this part, the structural angle of attack is varied. The range includes angles of at-
tack in the linear- (far away and close to stall), pre-stall- and post-stall region of the
lift-coefficient curve. The resulting responses for the different structural angles of attack
are shown in Figure 6.11. The pitch angles are centred around zero by removing the value
of the static angle of attack.

The figures clearly show a correlation between the structural angle of attack and the
critical onset velocity: the flutter speed decreases with an increasing structural angle of
attack. Looking at θgeom = 5◦, which is in the linear lift-coefficient region, no difference
is observed in the onset velocity, however the amplitude of LCOs are higher than in the
baseline case. The first change in flutter speed is observed at θgeom = 10◦, which is still
in the linear region close to the pre-stall area. Increasing the structural angle of attack
to θgeom = 12.5◦ and θgeom = 15◦ even decreases the critical onset velocity further. The
latter one lies beyond the maximum static stall angle of αcl,max ≈ 14◦ and therefore has
a negative lift coefficient slope.

Looking at the heave amplitude of θgeom = 15◦ in Figure 6.11b, it can be seen that the
model predicts a relatively large amplitude heaving motion, even when the pitch motion is
barely excited. The motions and the corresponding force coefficients are shown in Figure
6.12. The figures show indeed a very low excitation in pitch (which is not categorised as
a LCO) and a high heaving amplitude motion. Looking at the force coefficients it can be
seen that the lift coefficient takes high values while the moment coefficient shows very low
values. Figure 6.12d shows the separate contributions to the lift coefficient as formulated
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Figure 6.11: Pitch- and Heave Amplitudes and Reduced Frequency of LCOs for different
Structural Angles of Attack of the Baseline Airfoil.

in Equation 3.9. The figure shows that the main contributor to the lift coefficient is the
lift coefficient due to the dynamic separation point, CL,TE , which on its turn shows a
high alternating values due to the oscillating motion of the separation point on the airfoil
as shown in Figure 6.12e. The engineering model thus predicts a separation point of the
flow which moves over the suction surface of the airfoil which leads to the oscillation of
the heave motion.

Ignoring the high heave amplitudes at low velocities at θgeom = 15◦, it can be observed in
Figure 6.11b that when the airfoil is excited, the growth and value of the heave amplitude
in the stall-region structural angles of attack cases is significantly lower than in the linear
region structural angles of attack. This might be an indication of stall flutter as this
shows that the heave motion plays a less important role in the flutter instability. In order
to confirm this hypothesis, a deeper analysis of what is actually happening is performed.

Comparing the development of the pitch amplitude over the relative wind speed at an
increasing structural angle of attack from Figure 6.11 with the stall flutter study results



6.5 Structural Angles of Attack Study 99

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

time, [s]

θ
, 

[d
e
g
]

(a) Pitch Motion vs. Time

0 2 4 6 8 10
0

0.5

1

1.5

time, [s]

h
, 

[y
/c

]

(b) Heave Motion vs. Time

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time, [s]

C
l 
&

 C
m

, 
[−

]

Cl

Cm

(c) Force Coefficients vs. Time

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
l,
 [

−
]

time, [s]

Cl

Cl
TE

Cl
NC

Cl
v

(d) Lift Coefficients Contributions
vs. Time

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

f s
,d

y
n
, 

[x
/c

]

time, [s]

(e) Dynamic Separation Point vs.
Time

Figure 6.12: Pitch- and Heave Motion, Force Coefficients and Dynamic Separation Point at
θgeom = 15◦ and Urel = 50 [m/s].

from Figure 2.5 from Razak et al. [11], similar observations are made. The growth of
pitch amplitude of the airfoil is in the case of a higher structural angle of attack lower
than at a lower structural angle of attack. Razak et al. [11] classified the lower growth as
a typical indication of stall flutter as they noticed that classical flutter behaves in a more
destructive way. The pitch amplitude development at θgeom = 12.5◦ and θgeom = 15◦

show a lower growth rate and therefore are an indication of stall flutter.

Studying the motions at the critical onset velocity of θgeom = 5◦ and θgeom = 15◦ pro-
vides some interesting information about the onset of the flutter instability process. The
pitching- and heaving motions of both structural angles of attack are shown respectively
in Figure 6.13 and Figure 6.14.

The frequencies of oscillation are displayed in the captions of the figures. When these
are compared it can be seen that the flutter instability at θgeom = 5◦ arises from the fact
that the frequencies of both motions coalesce and thus still is associated with the classical
flutter type. Looking at the motions and frequencies of the results of θgeom = 15◦, it is
seen that both modes oscillate close to their own natural frequencies as shown in Table
6.2 which means that the frequencies do not coalesce. From this observation, it can be
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Figure 6.13: Pitch- and Heave Motion at the Ucr = 87.5 m/s of θgeom = 5◦
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Figure 6.14: Pitch- and Heave Motion at the Ucr = 55 m/s of θgeom = 15◦

concluded that the type of flutter instability at the critical onset velocity at θgeom = 15◦

is not associated with classical flutter where the energy transfer from the fluid to the
structure relies on the coalescence of the frequencies.

Looking more closely at the pitch- and heave frequencies at the different structural angles
of attack for the whole range of relative wind speeds, shown in Figure 6.15, the different
types of flutter instabilities can be seen. The grey area in the figures denote that LCOs
occur. At θgeom = 0◦ and θgeom = 5◦, at the critical onset velocities, a clear coalescence
of the frequencies of both modes are obtained. At θgeom = 10◦, at the LCO onset, the
frequencies initially merge. Afterwards, however the frequency of the heave motion differs
from the pitching frequency before they merge again around the critical classical flutter
speed. At θgeom = 15◦, at low wind speeds no coalescence of the frequencies is observed
while the airfoil undergoes LCOs. This is an indication of stall flutter. Interesting to note
is that at the critical onset velocity of the baseline case, Ucr = 87.5 [m/s], the frequency
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in heave is equal to the frequency in pitch. This shows that at structural angles of attack
close to stall, above the classical flutter onset velocity coalescence of the two frequencies
occurs.

(a) θgeom = 0◦ (b) θgeom = 5◦

(c) θgeom = 10◦ (d) θgeom = 15◦

Figure 6.15: Pitch- and Heave Frequencies versus Wind Speeds at different θgeom

Now, the flutter type at structural angles of attack close to stall has been determined to
be stall flutter, it is of importance to investigate whether the same structural parameters
as in the classical flutter instability have a similar effect on the onset of the stall flutter
instability. The following two sections deal with the identification of these parameters by
means of sensitivity analyses on the critical onset velocities at higher structural angles of
attack.

6.5.2 Sensitivity Analysis of the Pitch- and Heave Stiffness

In this part, a sensitivity analysis is carried out on the pitch- and heave stiffness at different
structural angles of attack in order to check whether these parameters have similar effects
on the critical onset velocity as in the classical flutter cases. The results are displayed in
Figure 6.16.
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(a) θgeom = 0◦, (Baseline)
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(b) θgeom = 5◦
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(c) θgeom = 10◦
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(d) θgeom = 12.5◦

Figure 6.16: Critical Onset Velocity for different Pitch- and Heave Stiffness at different
Structural Angles of Attack.

Looking at the results from θgeom = 5◦ in Figure 6.16b, no significant changes are observed
in the critical onset velocity compared to the baseline results. As the initial conditions
of the airfoil still lies in the linear region of the lift coefficient curve which is far enough
from the static stall angle, the same type of instability is observed as in the baseline case.
At θgeom = 10◦, which is at the border of the linear region, the critical onset velocity is
reached at lower values than in the baseline case and it has been mentioned before, that
the lower onset is due to the occurrence of the stall flutter phenomenon. However, the
same trend regarding the effect of varying the pitch- and heave stiffness on the critical
onset velocity is seen as in the classical flutter baseline case. This shows that in both
types of flutter, the pitch- and heave stiffness have the same amount of effect on the
critical onset velocity. At θgeom = 12.5◦, which is in the non-linear, positive pre-stall
region, the critical onset velocity is dramatically reduced. Interesting to note is that for a
certain range of lower heave stiffness, the critical onset velocity is decreased, while until
now only increases in the critical onset velocity with a decreasing heave stiffness have
been observed.
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6.5.3 Sensitivity Analysis of the Mass Distribution

In this part, the influence of the mass distribution on the stability of the airfoil at θgeom =
12.5◦ is investigated following the same method as described in Section 6.4. The results
are shown in Figure 6.17 (note that the legend has a different range of values than used
before as lower critical onset velocity are reached at the concerning structural angle of
attack).
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(b) mspar × 2
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(c) mskin × 2
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(d) mbalsa × 2

Figure 6.17: Critical Onset Velocity for different Mass Distributions and varying Pitch- and
Heave Stiffness at θgeom = 12.5◦.

Comparing these results with the mass distribution study performed in Section 6.4, it can
be seen that in general similar trends are obtained:

• Increasing the mass of the spar, mspar, increases the critical onset velocity.

• Increasing the mass of the skin, mskin, decreases the critical onset velocity.

• Increasing the mass of the balsa wood part, mbalsa, decreases the critical onset
velocity substantially.

However, an additional observation is made that decreasing the heave stiffness, kh, despite
the fact that the frequency ratio decreases, sometimes leads to a decrease of the critical
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onset velocity. This is contradictory to the observations made before in the classical
flutter cases. This might be caused by the fact that at higher structural angles of attack,
initially only oscillations may be observed in heave direction and with a decrease in heave
stiffness, these oscillation are triggered at lower critical onset velocities.

6.6 Summary

The parametric study on the aeroelastic behaviour of a wind turbine airfoil performed
with the engineering model in this chapter has resulted in a completion of the final task:
Task 5: Perform a parametric study on a wind turbine airfoil with the aim of identifying
the critical parameters which affect the self-exciting high-amplitude limit cycle oscillations
onset and response. Completing this task has provided several answers to the second re-
search question: 2. Which key parameters of a wind turbine airfoil affect the critical onset
velocity leading to limit cycle oscillations?. This final section provides an overview of the
observations made and conclusions drawn in the aeroelastic study on the wind turbine
airfoil which have lead to these answers. Furthermore, these observations and conclusions
will be used in answering the third research question.

The parametric study has been carried out on the aeroelastic response of a wind turbine
airfoil. The current airfoil design at 75% radius of the XANT-21 wind turbine blade,
was taken as the reference case. The reference case showed not to be exposed to risk on
aeroelastic flutter in normal operating conditions. At high wind speeds a factor 2 above
the maximum operating wind speed, at zero structural angle of attack, classical flutter has
been observed numerically. Afterwards, the aeroelastic simulations with the engineering
model have been carried out on four conceptual structural designs of the particular airfoil.
From the results it was observed that two alternative designs, where the torsional stiffness
was drastically reduced, decreases the critical onset velocity significantly which increases
the risk on aeroelastic instabilities. These analyses provided some important insights in
the key structural parameters which play a role in the onset of aeroelastic instabilities.
A methodological approach to identify the effect of these parameters has been carried
out. Furthermore, a parametric study at higher structural angles of attack in the linear
lift coefficient region, close to stall and in stall has been performed. These studies have
lead to the identification of the following key parameters which affect the critical onset
velocity and the aeroelastic response:

• Decreasing the torsional stiffness, kθ, drastically decreases the critical onset velocity.

• A natural frequency ratio, ωh/ωθ, close to one increases the risk on aeroelastic
instabilities.

• The location of the centre of gravity, xcg, plays an important role in the onset of
LCOs: when this parameter moves towards the leading edge increases the critical
onset velocity. Its location is directly related to the mass distribution.

• In case of a zero structural angle of attack, decreasing the heaving stiffness, kh,
increased the critical onset velocity. This was merely due to natural frequency ratio
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getting closer to one. However in the case of a structural angle of attack close stall,
decreasing the heaving stiffness showed also a decrease in the critical onset velocity.
It must be said that the effect of changing the heaving stiffness was not as significant
as change the torsional stiffness.

• Higher structural angles of attack decreases the critical onset velocity and leads to
initiation of the stall flutter phenomenon.

With these critical parameters in mind, finally the third and last research question can
be answered: 3. How can the risk of self-exciting high-amplitude limit cycle oscillations
of a wind turbine airfoil be reduced?.

First of all, considering the conceptual designs of the XANT wind turbine airfoil, it is
highly recommended not to replace the material of the skin with the flexible material in
any lay-up as this will drastically increase the risk on aeroelastic instabilities. Practically,
this comes down to a recommendation to not reduce the total torsional stiffness of the
airfoil with more than 25%. Design 1 and Design 2 are classified as high risk in terms of
potential aeroelastic instabilities.

Secondly, a conclusion of the parametric study on the wind turbine airfoil was that the
distribution of the several mass contributions plays an important role in the critical onset
velocity. Increasing the mass of the sparcaps, decreasing the mass of the skin or balsa
wood moves the location of the centre of gravity forward which has a significant effect on
the aeroelastic stability of the airfoil. If this is an impractical procedure or solution, mass
can be added close to the leading edge. This will even amplify the effect on the critical
onset velocity as the distance between the leading edge and the centre of gravity is larger
than the distance to the sparcaps.

Thirdly, it is highly recommended to obtain in-depth knowledge about the structural
angles of attack at which the airfoil operates. As seen before, the operating structural
angle of attack highly affects the critical onset velocity. When these operating ranges are
studied, more can be said about the risk on self-excited aeroelastic behaviour.
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Chapter 7

Conclusions & Recommendations

This report is an outcome of the master thesis for obtaining the MSc Degree at the Delft
University of Technology and Denmark Technical University. The research subject was
based on the usage of flexible materials in a wind turbine blade and how this might affect
the aeroelastic behaviour of the blade by means of a numerical, parametric study. The
end of the project has been reached as the tasks and research questions formulated in
Chapter 1 have been covered.

This chapter discusses the main conclusions drawn during the course of work and pro-
vides recommendations for further research. The conclusions of this thesis are divided
according to the research questions and are discussed in Section 7.1. Section 7.2 provides
recommendations for improving the modelling procedures and for further research on the
topic of aeroelastic instabilities.

7.1 Conclusions

In order to provide a clear and structured method of presenting the answers to the re-
search questions, this section is divided accordingly.

1. Which numerical models are able to predict onset and behaviour of self-
exciting high-amplitude limit cycle oscillations of an airfoil?

The development, validation and aeroelastic studies with the engineering- and RANS
model have been done in order to find an answer to the first research question. A thorough
insight in their capabilities, advantages and disadvantages have been obtained during the
course of this project and the most important observations and conclusions are discussed
here.

107
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The Engineering Model

In the engineering model, an aerodynamic part is coupled with a structural solver. The
aerodynamic part consists of the Risø dynamic stall model from Hansen [4] with an
additional LEV contribution to the lift from Larsen et al. [5] and the structural solver
consists of the equations of motion of a 2D airfoil in two degrees of freedom. Conclusions
on the capabilities of the engineering model is given:

• Introducing the LEV-contribution improves the accuracy of the force prediction of
the Risø dynamic stall model at high amplitudes of motion.

• The dynamic stall model is capable of obtaining the maximum peak values and gen-
eral trend of the force coefficients in the high-amplitudes of a dynamically pitching
and plunging airfoil. However, the exact dynamics in the process of the detachment
of the LEV and reattachment of the flow afterwards is not fully captured.

• The aeroelastic engineering model is capable of predicting a self-excited instability
leading to LCOs.

• The engineering model is capable of predicting the critical onset velocity with sat-
isfactory accuracy.

• The accuracy in predicting the amplitudes of motion in pitch- and heave direction is
limited due to model not fully capturing the dynamics in the physics of the creation
and shedding of the LEV and sensitivity to the damping coefficient.

• The engineering model has proven to be a fast and efficient method to study the
effect of varying several structural parameters on the aeroelastic behaviour of the
airfoil.

The RANS Model

The aeroelastic RANS model of a 2D airfoil was created in OpenFOAM by means of
a fluid-structure interaction approach. Below, the observations made and conclusions
drawn during the analysis of the RANS model are listed:

• The RANS model with the k-ω SST turbulence model is capable to capture the
creation, growth and detachment of a LEV and TEV at high-amplitude oscillations.

• The RANS model is able to produce self-excited high-amplitude LCOs.

• A typical simulation time of 10 seconds of an aeroelastic study on an airfoil at high-
amplitudes in pitch- and heave direction with the RANS model is around 120 hours
equivalent to 5 days. This long simulation time, compared to the engineering model,
has been the most important reason to not use the RANS model in the parametric
study.
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Based on the findings made during the project, the engineering model has been chosen
as the most suitable model to use in answering the second and third research questions.

2. Which key parameters of a wind turbine airfoil affect the critical onset
velocity leading to limit cycle oscillations?

The parametric study with the aeroelastic engineering model has led to the following
conclusions:

• Decreasing the torsional stiffness, kθ, drastically decreases the critical onset velocity.
This makes the first and second conceptual designs of the wind turbine airfoil,
which replace the complete skin with a flexible material, unrealistic as the risk on
aerodynamic instabilities greatly increases.

• A natural frequency ratio, ωh/ωθ, close to one increases the risk on aeroelastic
instabilities.

• The location of the centre of gravity, xcg, plays an important role in the onset of
LCOs: when this parameter is shifted towards the leading edge, the critical onset
velocity is increased and therefore the risk on aeroelastic instability is decreased.

• Higher structural angles of attack decrease the critical onset velocity and leads to
initiation of the stall flutter phenomenon.

• The heave stiffness, kh, is considered to have less effect than the torsional stiffness
on the initiation of the aeroelastic instabilities. At structural angles of attack in
the linear lift coefficient region, decreasing this parameter even increases the critical
onset velocity of the wind turbine airfoil. At structural angles of attack close to
stall, changing the value of this parameters can either have a positive or a negative
effect on the critical onset velocity.

These conclusions are used in answering the third research question:

3. How can the risk of self-exciting high-amplitude limit cycle oscillations of
a wind turbine airfoil be reduced?

• Considering the conceptual designs of the XANT wind turbine airfoil, it is highly
recommended not to replace the material of the skin with the flexible material
in any lay-up as this will drastically increase the risk on aeroelastic instabilities.
Practically, this comes down to a recommendation to not reduce the total torsional
stiffness of the airfoil with more than 25%.

• In order to increase the aeroelastic stability of the airfoil, it is recommended to try
to shift the location of the centre of gravity as much towards the leading edge of the
airfoil. This is done by adding the mass to the leading edge of the airfoil or another
option more specifically for the XANT-airfoil would be to increase the mass of the
sparcaps and/or shear web.

• It is highly recommended to obtain in-depth knowledge about the structural an-
gles of attack at which the airfoil operates in real life. As seen before, the operating
structural angle of attack highly affects the critical onset velocity. When these oper-
ating ranges are studied, more can be said about the risk on self-excited aeroelastic
behaviour.
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7.2 Recommendations

Given the time constraints, available data and simplifications of real life situations not
every aspect of the aeroelastic behaviour of a wind turbine airfoil has been solved. This
section discusses the recommendations made for improving the modelling procedure and
for further research on the topic of aeroelasticity of flexible wind turbines and is divided
accordingly.

Numerically Modelling of Aeroelastic Behaviour of an Airfoil

As the aeroelastic behaviour of the airfoil has been studied numerically, simplifications
are inherent to modelling the actual physics of what happens in the real life case. Rec-
ommendations on how to improve capturing of the actual physics by a model, based on
observations made during this thesis, are listed below:

• In order to provide a more realistic aeroelastic study on a wind turbine airfoil, it is
recommended to incorporate the varying loads during a rotation of a wind turbine
rotor. This means including the tower shadow, turbulence and gravitational effects
into the numerical simulations.

• In order to provide a more representable model for a flexible wind turbine, it is
recommended to perform the parametric study with 3D aeroelastic tools, such as
HAWC2 [76], FAST [77], Bladed [78] or other software packages. Performing aeroe-
lastic simulations on a 2D airfoil provides a fast and easy method of acquiring insight
in the dynamic behaviour and interaction between the fluid and structure. However,
this 2D representation introduces some uncertainty compared to the real life case
as the interaction with other parts of the blade or tower and other 3D effects are
not taken into account.

• In order to improve the capability of the semi-empirical dynamic stall model to
capture the lift- and moment coefficients, it is recommended to include a formulation
which includes the shedding of the LEV and the attachment of the flow into more
detail. However, this will give rise to some great challenges as this formulation
would introduce additional airfoil dependent parameters.

• In order to improve the numerical simulations of the aeroelastic behaviour, in-depth
knowledge of the non-linear behaviour of the damping coefficient and stiffness is
required. State-of-the-art research focusses on the non-linear behaviour of certain
structures at high deflections and rotations. The non-linear behaviour often results
in an increase in structural damping and stiffness. However, no clear theory has
been developed yet about the non-linear behaviour.

• Eventually, it is desired to perform fluid-structure interaction simulations with high-
fidelity methods of solving the Navier-Stokes equations, such as DES, on a complete
wind turbine with a flexible FEM structural model. In this way, the complete
dynamics and interaction of the fluid on the structure and vice-versa can be captured
with high-fidelity in order to obtain a detailed insight in the resulting behaviour of
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the wind turbine. With the ever increasing computational speed of processors, these
simulations have become more and more feasible in the last years. However, the
computational power- and time required for such simulations still make it practically
uninteresting for most industry applications nowadays.

Further Research in the Field of Aeroelasticity

This part discusses some recommendations in further research in the field of wind turbine
aeroelasticity with the focus on a more flexible design.

• As no major aeroelastic instabilities have been observed in wind turbine applications
nor many aeroelastic experiments on wind turbines have been performed, it is diffi-
cult to validate aeroelastic codes with real life data. Therefore, it is recommended
to perform aeroelastic experiments on wind turbine blades or on the complete wind
turbine, especially considering the fact that the increasing diameters and flexibility
of the blades lead to an increase in risk on aeroelastic instabilities.

• In order to avoid jeopardizing the aeroelastic stability of the wind turbine blade
by incorporating flexible materials, other techniques than changing the material or
redistributing the mass to ensure aeroelastic stability are available. Some of these
technique are: piezo-electric trailing edge flaps, plasma actuated flow control or
boundary layer suction could offer some possibilities in controlling the dynamics of
the flow.

• Incorporating new materials in the flexible blade design and using a passively de-
forming blade might introduce some additional fatigue problems during the lifetime
of the wind turbine. In order to avoid these type of problems, in-depth knowledge
about the behaviour of the materials on the long term are required.
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Appendix A

Classical Flutter Analysis

This Appendix explains the linear method of obtaining the critical classical flutter speed
of 2D airfoil. A two-degrees-of-freedom blade section mounted on a heaving- and pitch-
ing spring as depicted in Figure 2.10 is considered. Linearisation of the aerodynamic
modelling yields:

L = qbc
δCl

δθ
(A.1)

M = eL (A.2)

where q is the dynamic pressure (q = 0.5ρU2
∞) and e is the distance from the aerodynamic

centre to the rotational centre (rotational centre aft the aerodynamic centre means a
positive e). The δCl

δα -term indicates the linearised lift-coefficient around θ = 0 which is
2π [rad−1] according to thin airfoil theory. Neglecting structural damping leads to the
following equations of motion:

mhḧ+ Sθ̈ + khh+ qbc
δCl

δθ
= 0 (A.3)

Sḧ+ Ircθ̈ + kθθ − e(qbc
δCl

δθ
) = 0 (A.4)

These set of equations can be solved by assuming solutions of the following form:

y = yept (A.5)

θ = θept (A.6)
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Solving the problems comes down to finding the value for p. If the real part of p is
positive, the system is assessed to be unstable and flutter might occur. This is done by
rearranging the problem into matrix form:

[
mhp

2 + kh Sp2 + qbc δCl

δθ

Sp2 Ircp
2 + kθ − e(qbc δCl

δθ )

] [
yept

θept

]

=

[
0
0

]

(A.7)

Non-trivial solutions require that the determinant of the coefficient matrix is zero. This
leads to the following equation:

Ap4 +Bp2 + C = 0 (A.8)

where

A = mhIrc − S2 (A.9)

B = mh

[

kθ − e

(

qbc
δCl

δθ

)]

+ khIrc − S

(

qbc
δCl

δθ

)

(A.10)

C = kh

[

kθ − e

(

qbc
δCl

δθ

)]

(A.11)

Now these terms are known, p can be obtained as follows:

p = ±

√

−B ±
√
B2 − 4AC

2A
(A.12)

Here A must be positive in order to be physically representative and C is positive when
the dynamic pressure q is smaller than the divergence dynamic pressure:

qdiv =
kθ

ebc δCl

δθ

(A.13)

As stated in Dowell et al. [23], at dynamic pressures higher than the divergence dynamic
pressure, a so-called zero-frequency flutter occurs: divergence. Physically this means that
when the critical divergence velocity is reached, the restoring moment of the pitch spring
is not able any more to overcome the aerodynamic moment. When divergence has not
reached yet (C > 0), the following four cases are considered to evaluate the stability of
the typical section:

1. B > 0 and B2 − 4AC > 0:

The values of p are purely imaginary which is associated to a neutrally stable system.

2. B > 0 and B2 − 4AC < 0:

At least one solution of p has a positive real part which is an indication of a dy-
namic unstable solid and flutter might occur. The flutter boundary is defined as
B2 − 4AC = 0.
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3. B < 0 and B2 − 4AC > 0:

This condition is only reached for relatively very high values of dynamic pressure.
In practice, the flutter boundary is reached before B < 0.

4. B < 0 and B2 − 4AC < 0:

This condition is only reached for relatively very high values of dynamic pressure.
In practice, the flutter boundary is reached before B < 0.

Analysing Case 2 further, some valuable information concerning the onset of flutter can be
extracted. An important characteristic of the flutter boundary criterion is that the static
imbalance, S = ml, must be positive or zero for flutter to occur. Furthermore, as the
distance between the centre of gravity and rotational centre is increased (l increases), the
critical flutter velocity, Ucr is reduced. This leads to the fact that the mass distribution of
an airfoil plays an important role in the onset of flutter. If the rotational centre coincides
with the centre of gravity, the onset of flutter can be predicted solely by considering
the distance between the aerodynamic centre and rotational centre, e, and the ratio of
uncoupled natural heave- and pitch frequencies:

ωh

ωθ
=

√

kh/mh
√

kθ/Irc
(A.14)

Flutter will in that case not occur when the following two criteria are met:

• The aerodynamic centre is ahead of the rotational centre (e > 0) and ωh

ωθ
> 1

• The aerodynamic centre is aft the rotational centre (e < 0) and ωh

ωθ
< 1
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Dynamic Experimental Motion and Force Coefficients for all Wind Speeds

from Li [7].

Appendix B

Dynamic Experimental Motion and
Force Coefficients for all Wind

Speeds from Li [7].
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Figure B.1: Pitch Angle and Lift- and Moment Coefficients for all Wind Speeds from Li [7]
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Appendix C

Sensitivity Analysis of the Viscous
Lag Coefficient.
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Figure C.1: Sensitivity Analysis of the Viscous Lag Coefficient, Tf , on the prescribed Motion
as explained in Section 3.3.
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Appendix D

Engineering Model Flowchart.

Figure D.1: Flowchart of the Engineering Model
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Appendix E

OpenFOAM Algorithms

In this part, the solution methods implemented in the RANS simulations are explained
following the formulations from Jasak [53].

E.1 SIMPLE-algorithm

The Semi Implicit Method for Pressure Linked Equations (SIMPLE)-algorithm is a method
which is used to solve the Navier Stokes equations iteratively in a steady-state problem.
The algorithm used in incorporating the SIMPLE loop in the CFD code is given below.

The SIMPLE Algorithm:

1. Set the boundary conditions.

2. Discretize and solve the momentum equation to calculate the velocity field.

3. Calculate the mass fluxes at the cells faces

4. Solve the pressure equation and apply under relaxation.

5. Apply correction to the mass fluxes.

6. Apply correction to the velocity field.

7. Update the boundary conditions.

8. Repeat till convergence.
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E.2 PISO-algorithm

The Pressure Implicit with Splitting of Operators (PISO)-algorithm is an extension of the
SIMPLE-algorithm. The algorithm eliminates the need for iterations, but uses a pressure-
velocity coupling calculation procedure. It involves one predictor step and two corrector
steps. The algorithm consists of the following steps:

The PISO Algorithm:

1. Set the boundary conditions.

2. Discretize and solve the momentum equation to calculate the velocity field.

3. Calculate the mass fluxes at the cells faces

4. Solve the pressure equation.

5. Apply correction to the mass fluxes at the cell faces.

6. Apply correction to the velocity field with the new pressure field.

7. Update the boundary conditions.

8. Repeat from step 2 till convergence.

9. Increase the time step and repeat from 1.

E.3 PIMPLE-algorithm

The PIMPLE-algorithm uses a hybrid method is the SIMPLE- and PISO-algorithm.

The PIMPLE Algorithm:

1. Set the boundary conditions.

2. Solve the discretized momentum equation to compute an intermediate velocity field.

3. Compute the mass fluxes at the cells faces.

4. Solve the pressure equation and apply under relaxation.

5. Correct the mass fluxes at the cell faces.

6. Correct the velocities on the basis of the new pressure field.

7. Update the boundary conditions.

8. Repeat from step 2 for the prescribed number of times.

9. Increase the time step and repeat from 1.



Appendix F

Parameters of the k-ω SST
Turbulence Model

In this Appendix, the variables used in the definitions for the k-ω SST turbulence model,
Equation 4.11 and 4.13, are defined. The formulations are taken from [79].

P = τij
∂ui
∂xj

(F.1)

τij = µt

(

2Sij −
2

3

∂uk
∂xk

∂ij

)

− 2

3
ρk∂ij (F.2)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

(F.3)

The turbulent eddy viscosity is computed from:

µt =
ρa1k

max(a1ω,ΩF2)
(F.4)

Each of the constants is a blend of an inner (1) and outer (2) constant, blended via:

φ = F1φ1 + (1− F1)φ2 (F.5)

where φ1 represents constant 1 and φ2 represents constant 2. Additional functions are
given by:

F1 = tanh(arg41) (F.6)
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arg1 = min

[

max

(
sqrt(k)

β∗ωd
,
500ν

d2ω

)

,
4ρσω2k

CDkωd2

]

(F.7)

CDkω = max

(

2ρσω2
1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)

(F.8)

F2 = tanh(arg22) (F.9)

arg2 = max

(

2
sqrt(k)

β∗ωd
,
500ν

d2ω

)

(F.10)

The constants are defined here:

γ1 =
β1
β∗ − σω1k

2

√
β∗

γ2 =
β2
β∗ − σω2k

2

√
β∗

σk1 = 0.85 σω1 = 0.5 β1 = 0.075

σk2 = 1.0 σω2 = 0.856 β2 = 0.0828

β∗ = 0.09 k = 0.41 a1 = 0.31



Appendix G

RANS Time Step Study Results.

This appendix shows the fields of the several physical quantities involved in the time step
study of the RANS simulations at one particular time. The time steps are indicated in
the lower left corner of the figures.

Figure G.1: Instantaneous Time Step Study Results: Velocity, U
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Figure G.2: Instantaneous Time Step Study Results: Pressure, p

Figure G.3: Instantaneous Time Step Study Results: Turbulent Kinetic Energy, k
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Figure G.4: Instantaneous Time Step Study Results: Turbulent Specific Dissipation, ω

Figure G.5: Instantaneous Time Step Study Results: Turbulence Eddy Viscosity, νt
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