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A new elastic model for ground coupling of geophones with spikes
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ABSTRACT

Ground coupling are terms that describe the transfer
from seismic ground motion to the motion of a geophone.
In previous models, ground coupling was mainly consid-
ered as a disk lying on top of a half-space, not consider-
ing the fact that in current practice geophones are spiked
and are buried for optimal response. In this paper we intro-
duce a new model that captures the spike added to the geo-
phone and models the effect of geophone burial. The geo-
phone is modeled as a rigid, movable cylinder embedded in
a half-space near or at the surface. The coupling problem is
then tackled by a scattering approach using the elastic form
of reciprocity; we consider the vertical component only.
The main feature in the coupling function is a resonance

whose location and shape depend on the different param-
eters of the geophone and the soil. In accordance with
previous models, adding mass reduces the frequency of res-
onance. However, we show that pure mass loading assump-
tion is too restrictive for standard geophones. Our new
model shows that increasing the spike radius and length
decreases the frequency of resonance and the resonance
is more peaked. Furthermore, burying the geophone de-
creases the frequency of resonance, but when one takes
into account that the soil at depth is more compact, then
the behavior is as observed in practice — namely, an in-
crease in frequency of resonance. As for the properties of
the soil, the shear-wave velocity has the largest effect; when
increased, it shifts the frequency of resonance to the high-
frequency end as desired.

INTRODUCTION

Accurate measurements of seismic motions in soil are often
required in seismic exploration and earthquake studies as well
as in mine blasting operations. Natural sources (e.g., earth-
quakes) or forced sources (e.g., dynamite) are the origin of this
ground motion. Measuring devices are designed to produce
an output that is linearly proportional to a quantity related to
the ground motion in their immediate vicinity. In land seismic
surveys for exploration and monitoring, geophones are used.
They produce a voltage proportional to the particle velocity
of the ground.

In practice, the transfer function from the particle velocity
of the ground to the output voltage of the geophone is never
constant. First, the geophone itself has a transfer function that
generally dampens the signal below the resonance frequency
of the coil. Second, the transfer of the seismic motion from the
ground to the geophone, an exchange commonly called geo-
phone ground coupling, is not perfect and therefore distorts
the signal. Ground-coupling issues may play a prominent role
in seismic exploration and monitoring when high-resolution
seismic techniques are considered — the focus of this paper.
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In some cases, the frequencies of interest can exceed 1000 Hz.
In the band above 100 Hz, the effect of the geophone cou-
pling conditions is significant, as is shown in Krohn (1984) and
Drijkoningen (2000) and as we discuss in this paper.

The ideal sensor measures ground motion (or a related
quantity). One problem is that the presence of the measuring
device itself disturbs the incoming wavefield, thus influencing
the ground motion. A second problem is that the measured
quantity is strongly influenced by the contact conditions be-
tween the device and the ground. When the spike is not in
good contact with the earth, the coupling behavior is domi-
nated by the mass of the geophone (via contact pressure) and
can appropriately be called weight coupling.

In this paper, we focus on spike-shear coupling, which as-
sumes the spike is in good contact with the soil and couples the
geophone to the ground (Drijkoningen, 2000). In most publi-
cations on modeling geophone ground coupling, the geophone
is modeled as a cylinder lying atop a half-space (Lamer, 1970;
Hoover and O’Brien, 1980). While this is applicable for geo-
phones in land streamers or lying on the seafloor, in most sur-
veys the spike of the geophone furnishes the coupling between
the geophone and the ground, and this must be taken into
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account in modeling. Tan (1987) was the first author to do this.
The quantitative effect for the acoustic approximation, not re-
ally valid for land seismics, is given by Vos et al. (1999).

A very general definition is used for ground coupling. When
a wave arrives at the surface of the ground, the movement is
represented by v̂gr(ω) when no measuring device is present.
When the geophone or measuring device is present, the move-
ment is represented by v̂geo(ω). The relationship between
these two movements is the transfer function, called the cou-
pling coefficient C:

C(ω) = v̂geo(ω)
v̂gr(ω)

. (1)

When three components are measured, different components
of the coupling can be considered. Thus, the coupling coeffi-
cient generally can be written as

Cij (ω) = v̂
geo
i (ω)
v̂

gr
j (ω)

, (2)

with i, j ∈ {1, 2, 3}; v̂
geo
i (ω) the ith component of the geo-

phone, assuming a perfect geophone-ground contact, and
v̂

gr
j (ω) the j th component of the velocity of the ground in the

absence of the geophone. The cases for one-component geo-
phones are the factors Cij for i = j ; this implies off-diagional
terms are negligible.

Since the contact area of the geophone to the ground is
mainly achieved by the spike, the geophone is modeled as
a spike only. This differs from the model of a cylinder lying
on the earth’s surface used in previous studies (Lamer, 1970;
Hoover and O’Brien, 1980).

Our discussion begins with basic equations describing wave
motion; thereafter, the Green’s functions are shown for free
space and the elastic half-space. The latter is used in the elas-
tic (Betti-Rayleigh) reciprocity theorem that gives a velocity
boundary-integral equation for a scatterer in an elastic half-
space. The discussion then investigates a rigid, cylindrical scat-
terer measuring the vertical wave motion as a model for a one-
component vertical geophone. In the final expressions, only
1D integrations need be performed numerically. A particular
item in these integrations is the presence of the Rayleigh pole,
dealt with separately using Cauchy’s theorem. Then, numeri-
cal results are shown for typical geophone configurations. The
final section presents the conclusions.

BASIC ELASTIC EQUATIONS

To locate a point in space, Cartesian coordinates x, y, and z
are used, which in this order form a right-handed system with
the z-axis pointing downward into the earth. The state of a
point in an elastic medium is described in the frequency do-
main by the particle velocity vector v̂i(x, ω) and stress tensor
τ̂ij (x, ω) at that particular point; we assume a time dependence
of f̂ (ω) exp(iωt) of all quantities, where the caret over a quan-
tity denotes the frequency domain.

The basic equations describing wave motion are given by
Newton’s second law, the equation of motion:

−∂q τ̂qk + iωρv̂k = f̂k, (3)

in which ρ is the mass density and fk is the volume source
density of external forces. The deformation equation is

Cijpq∂pv̂q − iωτ̂ij = 0, (4)

where no source term is assumed to be present and where elas-
tic, isotropic, homogeneous media are assumed, i.e.,

Cijpq = λδij δpq + µ(δipδjq + δiqδjp), (5)

where λ and µ are the Lamé parameters.

FREE-SPACE GREEN’S FUNCTIONS

We want to quantify the scattering from the spike; there-
fore, the Green’s functions for the free-space and half-space
are needed. Let us first define ĜP and ĜS , the free-space
Green’s functions for the P- and S-waves:

{ĜP , ĜS}(x) = 1
4π |x| {exp(−iω|x|/cP ), exp(−iω|x|/cS)}
for |x| �= 0, (6)

where cP and cS are the wavespeeds of the P- and S-waves,
respectively, i.e., cP = [(λ + 2µ)/ρ]1/2 and cS = (µ/ρ)1/2.

Then, the basic solution for the particle velocity from a
point source is (de Hoop, 1995)

v̂r(x, ω) = iωρ−1f̂k(ω)Ĝrk(x, ω), (7)

where

Ĝrk = c−2
S ĜSδrk − ω−2∂r∂k(ĜP − ĜS). (8)

Green’s functions define a linear relationship between a
point source and the wavefield quantities resulting from this
point source; thus, they act as response functions. Expressing
this leads to the following definition:

{v̂p, τ̂pq}(x|xR) = f̂k(ω){�̂pk, Ĝpqk}(x|xR). (9)

Comparing this definition with equations 7 and 4, the Green’s
function for particle velocity �̂pk and for stress Ĝpqk can be
reconized as

{�̂pk, Ĝpqk}(x|xR) = ρ−1{iωĜpk, Cpqnr∂nĜrk}(x|xR).

(10)

HALF-SPACE GREEN’S FUNCTIONS

Referring to the definition for free space (equation 9), a
similar definition for the half-space Green’s functions is intro-
duced:{

v̂H
p , τ̂H

pq

}
(x|xR) = f̂k(ω)

{
�̂H

pk, Ĝ
H
pqk)

}
(x|xR). (11)

The superscript H indicates these Green’s functions apply to
a half space.

The next logical step, as in the acoustic case, would be to ex-
press Green’s functions for the half-space in terms of Green’s
functions for free space. However, in the elastic case we must
decompose the wavefield into its different components, P- and
S-waves. This is a problem solved for a half-space [see, for ex-
ample, Aki and Richards (1980) and de Hoop and Van der
Hijden (1985)]. The relevant expressions are given in App-
endix A. However, since the expressions are derived in the

Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



New Model for Ground-Coupling Geophones Q11

spatial Fourier-transformed domain, an inverse transforma-
tion must be performed.

CONTRASTING DOMAIN IN HALF-SPACE

A cylindrical spike planted vertically at the earth’s surface
obviously may be considered a scattering subdomain, where
the scatterer is embedded in a background solid. The object
of bounded support Dscat has known elastodynamic properties
differing from those of the embedding material. The scatterer
is elastodynamically irradiated by the given surface sources on
∂Dsource, located outside the scattering domain. The resulting
wavefield can be decomposed into two wavefields;

1) the incident wavefield, i.e., the wavefield that would exist
in the entire configuration if the object showed no contrast
with respect to its embedding material or the half-space
wavefield;

2) the scattered wavefield, i.e., the wavefield resulting from
an equivalent contrast surface source distribution located
on ∂Dscat. This represents the mathematical image of the
reflection of the incident waves at the scattering surface.

Because of the linearity of the basic elastodynamic equa-
tions, the total wavefield is the sum of the incident wavefield
and the scattered wavefield. For the particle velocities and the
dynamic stresses, these are expressed by, respectively,

v̂tot
k (x) = v̂H

k (x) + v̂scat
k (x) (12)

and

τ̂ tot
pq (x) = τ̂ H

pq(x) + τ̂ scat
pq (x). (13)

We assume that the geophone at the point of observation xR is
situated on the scattering surface. The incident field may then
be written

−
∫

x∈∂Dscat

[
ĜH

pqk(x|xR)v̂H
p (x) − �̂H

pk(x|xR)τ̂ H
pq(x)

]
νqdA

= 1
2
v̂H

k (xR) when xR ∈ ∂Dscat. (14)

The scattered wavefield may then be written∫
x∈∂Dscat

[
ĜH

pqk(x|xR)v̂scat
p (x) − �̂H

pk(x|xR)τ̂ scat
pq (x)

]
νqdA

= 1
2
v̂scat

k (xR) when xR ∈ ∂Dscat. (15)

Subtracting equations 14 from 15 results in∫
x∈∂Dscat

[
ĜH

pqk(x|xR)v̂tot
p (x) − �̂H

pk(x|xR)τ̂ tot
pq (x)

]
νqdA

= 1
2
v̂tot

k (xR) − v̂H
k (xR) when xR ∈ ∂Dscat. (16)

COUPLING COEFFICIENT FOR
RIGID MOVABLE CYLINDER

The role of the scatterer is played by the geophone spike
because in practical situations it is much more rigid than its
surroundings. In modeling, we assume this object is perfectly

rigid. This permits the assumption of a constant particle veloc-
ity within the object equal to V̂ tot

p . The object is then movable.
In the model, the contact between the spike and the ground
is assumed to be firm. The consequence of this is a constant
velocity of the ground particles along the object’s surface. To
satisfy the requirement of finding a relationship between the
geophone motion and the motion of the ground with no geo-
phone present, equation 16 is needed. Since V̂ tot

p is constant, it
can be taken outside the integral. Equation 16 then becomes

1
2
V̂ tot

k (xR) = v̂H
k (xR) + V̂ tot

p (xR)

×
∫

x∈∂Dscat

ĜH
pqk(x|xR)νqdA

−
∫

x∈∂Dscat

�̂H
pk(x|xR)τ̂ tot

pq (x)νqdA. (17)

In the other integral with τ̂ tot
pq , none of the terms is constant.

To place the term τ̂ tot
pq outside the integral, which is necessary

if we are to define a coupling coefficient, the equation of mo-
tion for the geophone itself must be solved by directly inte-
grating the equation of motion 3 over the volume occupied by
the geophone spike, i.e.,∫

x∈∂D

τ̂pqνqdA = iωV̂p

∫
x∈D

ρgeodV, (18)

in which ρgeo is the density of the geophone spike.
We can now assume that a solution exists for the stress as a

function of the spatially constant velocity V̂3:

τ̂33 = iωρgeozV̂
tot

3 , (19)

τ̂pq = 0 for {p, q} �= {3, 3}. (20)

These are strong assumptions, and this is not a unique solu-
tion. That this is one solution can be seen by substituting it in
equation 18 and applying Gauss’ divergence theorem. These
assumptions require that we consider vertical motion of the
geophone only as the vertical component of P- or S-waves.

Here, we introduce the geometry of a cylindrical spike. The
definition of the sizes of the cylinder and the coordinate axes
are depicted in Figure 1. The scattering surface ∂Dscat of the
cylinder is divided into three parts: a top (∂Dtop), a mantle
(∂Dman), and a bottom (∂Dbot).

Now let us return to the solution for the stress (equa-
tions 19 and 20) and the last integral in equation 17 for the
vertical component (k = 3). At the mantle of the cylinder, the
vertical component of the normal to the cylinder is zero. At
the top and bottom they are not zero, but there the stress is
constant according to equation 19. As a result, the total field
for the vertical component becomes

1
2
V̂ tot

3 (xR) = v̂H
3 (xR) + V̂ tot

3 (xR)

×
[∫

x∈∂Dscat

ĜH
3q3(x|xR)νqdA + iωρgeoh1

×
∫

x∈∂Dtop

�̂H
33(x|xR)dA

− iωρgeoh2

∫
x∈∂Dbot

�̂H
33(x|xR)dA

]
, (21)

Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Q12 Drijkoningen et al.

where h1 and h2 are the depths of the top and bottom of the
cylinder (see Figure 1), respectively, and we take into account
that the normals ν3 are in opposite directions. In this expres-
sion, a mass-loading term can be recognized: In the case that
the top of the cylinder is at the surface (h1 = 0), the term
ρgeoh2 can be written as M/(πR2), where M is mass and R is
the radius of the cylinder. So, if needed, an extra mass load-
ing can be included here (in accordance with Hoover and
O’Brien, 1980).

We now need to obtain a coupling coefficient, as defined in
the introduction, where the wavefield without the geophone
is the half-space field. The coupling coefficient for the vertical
component can thus be defined as

C = V̂ tot
3

v̂H
3

. (22)

Let us also split the first integral occurring in equation 21
into contributions of the top, mantle, and bottom of the cylin-
der. At the top and bottom of the cylinder, the horizontal com-
ponents of the normal are zero (and if the top is at the sur-
face, the Green’s function ĜH

3q3 vanishes because the surface is
stress free). At the mantle of the cylinder, the vertical compo-
nent of the normal to the cylinder is zero. So the first integral
in equation 21 becomes∫

x∈∂Dscat

ĜH
3q3(x|xR)νqdA

=
∫

x∈∂Dman

[
ĜH

313(x|xR)ν1 + ĜH
323(x|xR)ν2

]
dA

+
∫

x∈∂Dbot

ĜH
333(x|xR)dA

−
∫

x∈∂Dtop

ĜH
333(x|xR)dA. (23)

Thus far, the expressions for the Green’s functions of the
half-space have been general but still need to be specified.
These can be found in Appendix B. The final expressions for
a cylinder are such that the dominant terms are evaluated an-

Figure 1. Configuration of a buried cylindrical contrast.

alytically. The integral over the mantle of the cylinder is∫
x∈∂Dman

[
ĜH

313(x|xR)ν1 + ĜH
323(x|xR)ν2

]
dA

= −1
2

− iω2R

×
∫ ∞

p=0

[∫ h2

z=h1

g̃H
1 (p, z)dz − 1

2iωp

]
pJ1(ωpR)dp,

(24)

where J1 denotes the first-order Bessel function and g̃H
1 (p, z)

is given in Appendix B. The integral over z can be performed
analytically.

The integrals over the bottom of the cylinder are∫
x∈∂Dbot

ĜH
333(x|xR)dA

= 1
2

+ ωR

∫ ∞

p=0
g̃H

3 (p, z = h2)J1(ωpR)dp, (25)

where g̃H
3 (p, z) is given in Appendix B and use is made of

some characteristics of the Bessel functions. In addition,∫
x∈∂Dbot

�̂H
33(x|xR)dA

= ωR

∫ ∞

p=0
γ̃ H

3 (p, z = h2)J1(ωpR)dp, (26)

where γ̃ H
3 (p, z) is also given in Appendix B. The integrals over

the top of the cylinder are equal to the bottom, but with z =
h1, and in equation 25, the factor 1/2 is not removed from the
integrand. The last integral in equation 26 for depth h2 being
zero is equivalent to the integral in Hoover and O’Brien (1980,
their formula 13).

NUMERICAL IMPLEMENTATION

In the final expressions, each integral contains a pole so the
pole contributions must be treated carefully using Cauchy’s
residue theorem. The integrand can be written generally as a
function f (p)/R(p), where the function f (p) is the regular
part of the integral and R(p) is the function describing the
pole, known as the Rayleigh pole. Applying Cauchy’s residue
theorem then leads to∫ ∞

0

f (p)
R(p)

dp =
∫ ∞

0

f (p)R
′
(pR)(p2 − p2

R) − 2pRf (pR)R(p)
R(p)R′ (pR)(p2 − p2

R)
dp

+πj
f (pR)
R

′ (pR)
. (27)

The branch points at the slownesses of the P- and S-waves
must be treated carefully, since there the integral has (inte-
grable) singularities. This has been treated by dividing the in-
tegral into pieces, with the branch points serving as end points
for each subinterval and then integrating those using a Gaus-
sian quadrature method.

NUMERICAL RESULTS

We now show some numerical results — in particular, the
dependence of the coupling on the model’s parameters. The
results pertain to vertical components only, being the vertical
component of P- or S-waves. There are two types of results:
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Figure 2. Coupling coefficient C for different configurations at the surface (h1 = 0).
Reference soil properties: cP = 200 m/s, cS = 105 m/s, and ρ = 2 g/cm3. (a) Am-
plitude with cylinder representing spike only (solid line, h2 = 10 cm, R = 0.5 cm,
ρgeo = 2.653 g/cm3, equivalent mass = 20.84 g) and effective spike, representing
spike and geophone (dotted line, h2 = 13.3 cm, R = 1.12 cm, ρgeo = 5.044 g/cm3,
equivalent mass = 265 g). (b) Phase of configurations of (a). (c) Amplitude of Vec-
torseis element (h2 = 15.5 cm, R = 2.5 cm, ρgeo = 1.479 g/cm3, equivalent mass =
450 g). (d) Phase of configuration of (c).

Figure 3. Contributions of mass-loading term in coupling coefficient C for constant
mass and radius. Soil parameters are as for Figure 2; mass = 265 g, R = 1.12 cm, and
h1 = 0. Solid line is based on full expressions; dotted line is based on mass-loading
term only. (a) h2 = 0.04 cm and ρgeo = 16.771 g/cm3 (b) h2 = 0.08 cm and ρgeo =
8.386 g/cm3, (c) h2 = 0.12 cm and ρgeo = 5.590 g/cm3. (d) According to Hoover and
O’Brien (1980) model.

those deriving from design aspects (shapes
and sizes of geophones/spikes) and those
obtained from the effects of field use. For
design aspects, a certain range of expected
soil parameters is engaged and firmly fixed,
and the geophone parameters are then var-
ied. For field effects, it is important to know
the effect of coupling as a function of fre-
quency, because it is possible to change
only the burial depth of the geophone and
not the parameters of the soil.

Some standard configurations are consid-
ered first (see Figure 2). In the first case
(Figures 2a, 2b) the cylinder is modeled
to represent the spike only (solid curves)
and to represent the spike and the geo-
phone, including the mass-coil system with
its housing (dotted curves). For the lat-
ter case, an effective spike has been taken
whose mass and volume equal those of a
normal geophone. The coupling coefficient
becomes two when approaching frequency
zero. This results from the factor 1/2 on the
left-hand side in equation 21, which occurs
because of measurement on the scattering
surface. Note that the amplitude of the cou-
pling function shows a maximum, associ-
ated with a resonance in the system that is
observable in both the amplitude and the
phase behavior. This is expected because
a coupling frequency exists for anything
that is placed on or in the ground. When
looking at the two different cases, we can
see that the effective spike, being thicker
and heavier, reduces the frequency of reso-
nance and the resonance is more peaked. In
the second case, (Figures 2c, 2d) we model
the cylinder representing the Vectorseis el-
ements from Input/Output Inc., which has
a different shape than standard geophones
and is significantly larger. The resonance
is relatively broad. For the purposes in-
tended, i.e., frequencies 1–200 Hz, its size
hardly affects the total reponse. However,
when it is used for high-resolution survey-
ing, coupling effects need to be considered
seriously.

In Figure 3 the different contributions
to the coupling are shown, specifically fo-
cused on the effect of mass loading. Physi-
cally, the case of mass loading on the sur-
face is different from embedding a spike
in the ground. Pure mass loading intro-
duces a sag of the ground which has its own
eigenfrequency. In the case of an embed-
ded spike, this is not the only phenomenon.
This means that the full expressions as in
equation 21 are compared by taking only
the mass-loading term in square brackets
in that equation, i.e., only �̂H

33 (and h1 be-
ing zero). Figure 3 shows how important
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mass loading is, compared with the other terms. To that end,
the length and density of the cylinder are changed, but both
the mass and the radius of the cylinder are kept constant
with the parameters of the effective spike. When the length
of the spike is 4 cm as in Figure 3a, mass loading gives the

Figure 4. Effect of spike dimensions (radius and length) on amplitude of coupling
coefficient C . Parameters are as for the cylinder representing the spike only, with
the top at the surface h1 = 0 (Figure 2a) apart from (a) radius R of cylinder is
0.5 cm (solid curve), 1 cm (finely dotted curve), and 2 cm (coarsely dotted curve).
(b) Length of cylinder is 5 cm (solid curve), 10 cm (finely dotted curve), and 20 cm
(coarsely dotted curve).

Figure 5. Effect of dimensions (1/radius and 1/length) of spike on frequency for
maximum of coupling function C. Density of spike and parameters for soil are as
for the cylinder representing the spike only, with the top at the surface as in Fig-
ure 2a.

Figure 6. Effect of cylinder burial on amplitude of coupling coefficient C. Parame-
ters are the same as for the cylinder representing the spike only (Figure 2a) apart
from the length of the spike (h2 − h1) being 20 cm. (a) Value cS is constantly
105 m/s, and depth h1 is 0 cm (solid curve), 10 cm (finely dotted curve), 20 cm
(dotted curve), 30 cm (coarsely dotted curve), and 40 cm (very coarsely dotted
curve); (b) cS and depth h1 both increase cS = 105 m/s and h1 = 0 cm (solid curve),
cS = 150 m/s and h1 = 10 cm (finely dotted curve), cS = 200 m/s and h1 = 20 cm
(coarsely dotted curve), cS = 250 m/s and h1 = 30 cm (coarsely dotted curve), and
cS = 300 m/s and h1 = 40 cm (very coarsely dotted curve).

main contribution to the coupling. However, when the length
of the spike increases (and the density decreases to keep the
mass constant), the contribution of mass loading is reduced, as
seen in Figures 3b and 3c. For completeness, the response cal-
culated from the model of Hoover and O’Brien (1980) is given

in Figure 3d; this model assumes a pure
mass loading. We can observe that this
model compares well with only the mass-
loading term in our new model. A differ-
ence exists in that the response from the
model of Hoover and O’Brien is slightly
more peaked than our mass-loading term.

The next figures reflect varied parame-
ters for the new model. For the first set,
the parameters of the geophone are var-
ied while keeping the parameters of the soil
fixed. In Figure 4a, the radius of the spike
is varied. The resonance shifts to lower fre-
quencies and sharpens when the radius in-
creases. The same can be observed for the
length of the spike in Figure 4b: When
the length increases, the resonance shifts to
lower frequencies and sharpens. From Fig-
ure 4b it is unclear how this shift occurs.
Therefore, in Figure 5 the resonance fre-
quency is set out as a function of the inverse
of radius and length. This shows a mono-
tonically increasing trend; for the inverse of
the radius, it is nearly linear.

In the second set of figures, the param-
eters for field use are varied, i.e., burial
depth and soil parameters. First, we con-
sider the effect of burial depth, as shown
in Figure 6. We know from field experi-
ence that coupling improves significantly
when a geophone is buried (Krohn, 1984).
Therefore, first we model the effect of bury-
ing where we only increase burial depth.
This result, shown in Figure 6a, is the op-
posite of field observations. However, we
assume the properties of the soil do not
change with depth, while in the field the soil
is (sometimes much) more compacted at
some depth than at the surface. Shearwave
velocities can be well below 100 m/s in the
first few centimeters from the surface while
reaching a few hundred meters per second
at some decimeters’ depth. In swamp ar-
eas, spikes of more than 1 m have been used
to reach more compacted ground. There-
fore, we change both the burial depth of
the geophone and the shear-wave velocity
of the soil simultaneously (Figure 6b). The
coupling improves because the resonance
frequency becomes higher, which is now
purely an effect of improved soil conditions
at depth.

Next, the soil parameters are varied
while keeping the geophone parameters
fixed. In Figure 7a the P-wave speed is
varied from values for a dry air-filled soil
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Figure 7. Effect of soil parameters are on coupling coefficient C. Parameters are
the same as for a cylinder representing the spike only (Figure 2a) apart from (a) cP

being 200 m/s (solid curve), 500 m/s (finely dotted curve), and 1500 m/s (coarsely
dotted curve); (b) cP being 600 m/s and cS being 105 m/s (solid curve), 200 m/s
(finely dotted curve), and 300 m/s (coarsely dotted curve); (c) Lamé parameters λ
and µ being 3.59 × 107 and 2.205×107, respectively, and ρ being 1.5 g/cm3 (solid
curve), 2 g/cm3 (finely dotted curve), and 2.653 g/cm3, which is the same as spike
density (coarsely dotted curve); (d) phase of (c).

(200 m/s) to values for a fully water-saturated soil (1500 m/s).
The P-wave speed does not have a big influence on cou-
pling; little change takes place, although the P-wave speed
changes dramatically (from 200–1500 m/s). Of great impor-
tance is the S-wave speed of the soil, as seen in Figure 7b:
The higher the S-wave speed, the better the coupling. Reso-
nance takes place above 1000 Hz. This can be explained by the
integral over the mantle, which is proportional to the shear-
wave velocity of the soil. Finally, Figures 7c and 7d show the
dependence on soil density. Here, the parameters are changed
such that the Lamé parameters remain constant but not the
velocities, since the velocities still depend on the density (see
beyond equation 8). The density variation has an influence
on the amplitude of the coupling, not on the location and the
broadness (see Figure 7d) of the resonance frequency; the fre-
quency at which resonance occurs remains nearly the same.
Tan (1984) notes that the density of the spike should match
the density of the soil, but this is not sufficient to maintain a
constant coupling, as shown by the coarsely dotted curve in
Figure 7c, where the density of the soil is taken as equal to the
density of the spike.

CONCLUSIONS

We introduce a new model for geophone-ground coupling
that agrees better with seismic practice than previous mod-
els. The new model is a good representation for spike-shear
coupling, while the previous models are more representative

of pure weight coupling. The geophone is
considered as consisting only of a spike,
which is assumed to be perfectly rigid and
in good physical contact with the soil (a
slip-free model). The new model now pre-
dicts the behavior of a spike, common in
seismic exploration and monitoring. Both
mass loading and embedding are deter-
mined in its response. Further, the fre-
quency of resonance in the coupling func-
tion is inversely proportional to the radius
and length of the spike. Our new model
allows us to predict the behavior of bury-
ing the geophone at depth. Although for
a homogeneous half-space the resonance
shifts to lower frequencies when we bury
the geophone deeper, this effect is reversed
when the shear-wave velocity is increased
with depth as well. A shift of resonance to
higher frequencies that occurs from bury-
ing the geophone is often seen in practice.
With respect to soil parameters, P-wave ve-
locity has little effect on coupling, while
the effect of S-wave velocity is much more
pronounced. Density variations change the
amplitude of the coupling only, and the
coupling still shows a resonance when
the density of the spike matches the density
of the soil.

APPENDIX A

REFLECTION COEFFICIENTS AT
A STRESS-FREE INTERFACE

In the determination of the final expressions given in the
main text, the reflection coefficients at a stress-free surface —
i.e., the earth’s surface — are needed. Here they are defined
and given in the spatial Fourier domain. For the horizontal
directions, the forward Fourier transform is defined as

G̃(p1, p2) =
∫ +∞

−∞

∫ +∞

−∞
Ĝ(x, y)

× exp(+iωp1x + iωp2y)dxdy. (A-1)

where ω > 0. Incorporating this transform into the basic equa-
tions, the incident field for particle displacement uinc can be
found. When the source is located at (0, 0, zs), it is given as


ũinc
1

ũinc
2

ũinc
3


 =




p1

p2

−qP


 Ãinc

P exp[iωqP (z − zs)]

+



qSp1
p

qSp2
p

p


 Ãinc

SV exp[iωqS(z − zs)]

+



p2

−p1

0


Ãinc

SH exp[iωqS(z − zs)] (z < zs),

(A-2)
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where p stands for p = (p2
1 +p2

2)1/2 and qP,S = (1/c2
P,S −p2)1/2,

with Im{qP,S} < 0. The amplitudes of the different wavefield
constituents are determined by the nature of the source, f̃k(ω)
herein, and are functions of p1, p2, z, and ω. The total incident
wavefield consists of three wave constituents: P-, SV-, and SH-
waves.

For the reflected wavefield,




ũrefl
1

ũrefl
2

ũrefl
3


 =




p1

p2

qP


 [

R̃PP Ãinc
P exp(−iωqP zs)

+ R̃PSÃ
inc
SV exp(−iωqSz

s)
]

exp(−iωqP z)

+



qSp1
p

qSp2
p

−p


 [

R̃SP Ãinc
P exp(−iωqP zs)

+ R̃SSÃ
inc
SV exp(−iωqSz

s)
]

exp(−iωqSz)

+



p2

−p1

0


 Ãinc

SH exp[−iωqS(z + zs)], (A-3)

which now includes the reflection coefficients at the stress-free
surface yet to be determined.

The total wavefield of the half-space is the sum of the inci-
dent and the reflected wavefields, or

ũH
r = ũinc

r + ũrefl
r . (A-4)

For an incident P-wave, the different stress components can
be written as a function of Ãinc

P . The same can be done for
an incident SV-wave with Ãinc

SV . The boundary conditions at a
stress-free interface are such that all components of the sur-
face traction vanish — for this case, in the horizontal plane
z = 0, i.e.,

τ̃ H
i3 = 0 for i = 1, 2, 3 at z = 0. (A-5)

Implementing these boundary conditions results in the ex-
pressions for the reflection coefficients:

R̃PP = −R̃SS =
4p2qP qS −

(
1
c2
S

− 2p2

)2

4p2qP qS +
(

1
c2
S

− 2p2

)2 (A-6)

R̃PS =
4pqS

(
1
c2
S

− 2p2

)

4p2qP qS +
(

1
c2
S

− 2p2

)2 , (A-7)

R̃SP =
4pqP

(
1
c2
S

− 2p2

)

4p2qP qS +
(

1
c2
S

− 2p2

)2 . (A-8)

APPENDIX B

HALF-SPACE GREEN’S FUNCTIONS

In this appendix, the expressions for the half-space Green’s
functions, i.e., G̃H

pqk and �̃H
pk , are given. Only those expressions

that occur in coupling vertical geophones are used, as defined
in the main text.

The procedure is as follows: First, a spatial Fourier trans-
form of the equations governing wave motion is applied.
Next, the total field of the half-space is determined using an
incident-field part and a reflected-field part. In the expressions
of the incident and reflected fields, the amplitude coefficients
Ainc

P , Ainc
SV , and Ainc

SH are still unknown and must be determined
in terms of the forces fi . By substituting these expressions in
the total field of the half-space, the Green’s functions can be
determined.

In Appendix A, the spatial Fourier transform is defined.
The total incident wavefield for the particle displacement can
be written as

ũinc
r = ŨrkÃ

inc
k . (B-1)

In the main text, the solution for the free space in the (x, ω)
domain is determined, but here its representation in the hori-
zontal-slowness domain is needed:

ũinc
r (p1, p2, z, ω) = ρ−1G̃rk(p1, p2, z − zs, ω)f̃k(ω),

(B-2)

in which the Green’s functions G̃rk are the (p1, p2, z, ω)-do-
main expressions of equation 7 in the main text. This equation
can be combined with equation B-1 to obtain

Ãinc
k = ρ−1(Ũ−1)rkG̃rl f̃l(ω). (B-3)

This defines the amplitude coefficients in terms of fi .
These amplitude coefficients can be substituted now in the

total field of the half-space as given in equation A-4. Using
equation 11 in the main text the Green’s functions can be rec-
ognized. First, the �̃H

33 as occurring in equation 24 is

�̃H
33(p1, p2, z) = γ̃ H

3 (p, z); (B-4)

where γ̃ H
3 is given by

γ̃ H
3 = 1

2ρ
qP exp(iωqP (z − h2))+ p2

2ρqS

exp(iωqS(z−h2))

+ 1
2ρ

[−qP R̃PP exp(−iωqP (z + h2))

+pR̃SP exp(−iω(qSz + qP h2))]

+ p

2ρqS

[qP R̃PS exp(−iω(qP z + qSh2))

−pR̃SS exp(−iωqS(z + h2))]. (B-5)

Next, the values of G̃H
3q3 are determined from �̃H

33 via the
deformation equation 4 and its equivalent (p, ω)-domain ex-
pression. Then the following expressions are obtained:

G̃H
313(p1, p2, z) = p1

p
g̃H

1 (p, z), (B-6)
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G̃H
323(p1, p2, z) = p2

p
g̃H

1 (p, z), (B-7)

where g̃H
1 is given by

g̃H
1 = c2

S

2
[−2pqP exp(iωqP z) + 2pqP R̃PP exp(−iωqP z)

+ (q2
S − p2)R̃SP exp(−iωqSz)] exp(−iωqP h2)

+ c2
S

2
p

qS

[(q2
S − p2) exp(iωqSz)

− 2pqP R̃PS exp(−iωqP z)

− (
q2

S − p2)R̃SS exp(−iωqSz)] exp(−iωqSh2).

(B-8)

and

G̃H
333(p1, p2, z) = 1

2 + g̃H
3 (p, z). (B-9)

The value g̃H
3 is given by

g̃H
3 = −1

2
+

(
1
2

− p2c2
S

)

× exp(iωqP (z − h2)) + c2
Sp

2 exp(iωqS(z − h2))

+
(

1
2

− p2c2
S

)
R̃PP exp(−iωqP (z + h2))

− c2
SpqSR̃SP exp(−iω(qSz + qP h2))

− p

qS

(
1
2

− p2c2
S

)
R̃PS

× exp(−iω(qP z + qSh2))

+ c2
Sp

2R̃SS exp(−iωqS(z + h2)). (B-10)

In the calculations, the expressions of the Green’s functions
are needed in the (x, ω) domain, so the above expressions
need to be transformed back. For any Green’s function G̃ in

the (p, ω) domain, the inverse transform is

Ĝ(x, y) =
( ω

2π

)2
∫ +∞

−∞

∫ +∞

−∞
G̃(p1, p2)

× exp(−iωp1x − iωp2y)dp1dp2. (B-11)

It is more convenient to go over to polar coordinates in p1 and
p2 and also to introduce the polar coordinates for x and y via

p1 = p cos φ x = r cos ψ

p2 = p sin φ y = r sin ψ

Then the inverse transformation becomes

Ĝ′(r, ψ) =
( ω

2π

)2
∫ +∞

0

∫ 2π

0
G̃′(p, φ)

× exp[−iωpr cos(φ − ψ)]pdφdp. (B-12)

In this expression the Green’s function G̃ is now written in
terms of p and φ. For all of the Green’s functions given in
equations B4–B10, the integration suited for the cylindrical
nature of the problem can be performed.
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