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Background & aims: Low skeletal muscle mass and density have recently been discovered as prognostic
and predictive parameters to guide interventions in various populations, including cancer patients. The
gold standard for body composition analysis in cancer patients is computed tomography (CT). To date,
the effect of contrast-enhancement on muscle composition measurements has not been established. The
aim of this study was to determine the effect of contrast-enhancement on skeletal muscle mass and
density measurements on four-phase CT studies.
Design: In this observational study, two observers measured cross-sectional skeletal muscle area cor-
rected for patients' height (skeletal muscle index [SMI]) and density (SMD) at the level of the third
lumbar vertebra on 50 randomly selected CT examinations with unenhanced, arterial, and portal-venous
phases. The levels of agreement between enhancement phases for SMI and SMD were calculated using
intra-class correlation coefficients (ICCs).
Results: Mean SMI was 42.5 (±9.9) cm2/m2 on the unenhanced phase, compared with 42.8 (±9.9) and
43.6 (±9.9) cm2/m2 for the arterial and portal-venous phase, respectively (both p < 0.01). Mean SMD was
lower for the unenhanced phase (30.9 ± 8.0 Hounsfield units [HU]) compared with the arterial
(38.0 ± 9.9 HU) and portal-venous (38.7 ± 9.2 HU) phase (both p < 0.001). No significant difference was
found between SMD in the portal-venous and arterial phase (p ¼ 0.161). The ICCs were excellent
(�0.992) for all SMIs and for SMD between the contrast-enhanced phases (0.949). The ICCs for the
unenhanced phase compared with the arterial (0.676) and portal-venous (0.665) phase were considered
fair to good.
Conclusions: Statistically significant differences in SMI were observed between different enhancement
phases. However, further work is needed to assess the clinical relevance of these small differences.
Contrast-enhancement strongly influenced SMD values. Studies using this measure should therefore use
the portal-venous phase of contrast-enhanced CT examinations.

© 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
1. Introduction

The involuntary loss of skeletal muscle mass, quality and func-
tion is considered to be a result of aging (i.e. sarcopenia), or as part
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Fig. 1. Example of skeletal muscle mass and density measurement on a contrast-
enhanced CT slice in the portal-venous phase at the level of the third lumbar
vertebra (L3). The cross-sectional skeletal muscle area of this 71-year-old woman with
a body mass index of 24.7 kg/m2 was 95.6 cm2, resulting in a skeletal muscle index of
33.1 cm2/m2. The mean skeletal muscle attenuation was 33 Hounsfield units. According
to the cut-off values of Martin et al. [24], this patient is considered to have both sar-
copenia and low skeletal muscle density.

Fig. 2. Median intraluminal aorta attenuation per contrast-enhancement phase. The
whiskers represent the interquartile range.
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patients [4,5]. Furthermore, it is associatedwith an increased risk of
postoperative complications, chemotherapy toxicity and increased
hospital expenditure [4,6e8]. Low skeletal muscle density, a mea-
sure for intramuscular adipose content, has recently been described
as a risk factor for mortality in patients with lymphoma, melanoma,
metastatic renal cell carcinoma, pancreatic carcinoma, and meta-
static gastric cancer [9e13]. Body composition measures may guide
future interventions to manage skeletal muscle wasting and to in-
crease patients' resistance towards stressors, such as surgery and
chemotherapy [14].

The gold standard and most used modality to assess body
composition is computed tomography (CT) due to its wide avail-
ability, especially in cancer patients [15e17]. Excellent inter-
observer and intra-observer agreement, as well as excellent
comparability of various commonly used software programs for
skeletal muscle mass measurement have previously been described
[18]. However, the effect of contrast-enhancement on skeletal
muscle mass and density measurements remains unclear. It is well-
known that contrast-enhancement may influence tissue attenua-
tion [19] and may consequently influence skeletal muscle mass and
density measurements. Nevertheless, various enhancement phases
have been used in studies that investigated the association between
CT-assessed skeletal muscle mass and density and outcome mea-
sures [9e12,20]. Therefore, the aim of this study was to compare
skeletal muscle mass and density measurements on CT between
different contrast-enhancement phases.

2. Materials and methods

2.1. Patients

A total of 50 patients with cancer or evaluated for liver trans-
plantation in Erasmus MC University Medical Center between
2009 and 2015 with available multiphase (unenhanced, arterial,
portal-venous) abdominal CTexaminationswere randomly selected
retrospectively. Patients with CTs on which part of the cross-
sectional skeletal muscle area was not depicted (e.g. due to
obesity) or with artefacts (e.g. due to prostheses) were excluded.
Date of birth, sex, bodyweight, and body heightwere collected from
the electronic patient files within a month of the CT- examination.
Body mass index (BMI) was calculated and patients were catego-
rized as underweight (BMI <18.5), normal weight (BMI 18.5e24.9),
overweight (BMI 25.0e29.9) or obese (BMI �30.0) according to the
World Health Organization (WHO) definitions [21]. Approval from
the local medical ethical committeewas obtained and the study has
been performed according to the 1964 Declaration of Helsinki and
its later amendments.

2.2. CT scanning protocol

All CT examinations were performed according to a standard-
ized protocol. First, an unenhanced phase was obtained. After-
wards, intravenous (IV) contrast administration in an antecubital
vein followed by saline flush of 20 ml was performed using a power
injector. The contrast material used was Visipaque 320 mgI/ml
(GE Healthcare, Cork, Ireland), adapted to a patient's body weight.
Patients with body weight <80 kg received 120 ml contrast me-
dium, whereas patients with body weight �80 kg received 150 ml
contrast medium. Phases acquired were the arterial phase, deter-
mined using a bolus-tracking technique, followed by the portal-
venous phase acquired 70 s after contrast administration. For the
arterial phase, a region of interest (ROI) was placed in the upper
abdominal aorta; when the threshold of þ100 HU was reached,
scanning started with a delay of 15 s. Estimated time after
administration of the bolus was 30e35 s for the arterial phase. The
portal-venous phase was obtained with a fixed delay of 70 s after
administration of the contrast material. Axial reconstructions were
created with a slice thickness of 3 mm in all phases. No adverse
reactions were noted during contrast administration. All images
were transferred to our local picture archiving and communication
system (PACS).

An experienced abdominal radiologist (FEJAW) confirmed the
different phases of contrast-enhancement per patient. Further-
more, the mean intraluminal attenuation (in HU) of the aorta was
measured for every phase per patient.
2.3. Skeletal muscle mass and density measurements

The cross sectional muscle area (CSMA) was measured at the
level of the third lumbar vertebra for the various contrast-
enhancement phases (i.e. unenhanced, arterial, portal-venous).
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Fig. 3. Mean skeletal muscle index per contrast-enhancement phase. The whiskers
represent the standard error of the mean. * indicates statistically significant difference.
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The selected slice was the one on which both transversal processes
were visible. Two observers (HJWS and KMV) whowere blinded for
patient characteristics performed all measurements as previously
described [22]. An in-house developed software program (FatSeg,
developed by the Biomedical Imaging Group Rotterdam of Erasmus
MC, Rotterdam, The Netherlands, using MeVisLab [Mevis Medical
Solutions, Bremen, Germany]) was used (Fig. 1). A previous study
indicated excellent comparability between this and other
frequently used software programs (i.e. sliceOmatic, OsiriX, and
ImageJ) for body composition analyses [23]. The inner and outer
contours of the CSMA (including the psoas, rectus abdominis,
transversus abdominis, internal and external abdominal oblique
muscles) were manually outlined and the tissue within the
threshold of �30 to þ150 Hounsfield units (HU) was selected.
CSMA was corrected for patients' body height squared, as is com-
mon for body composition measures, resulting in the skeletal
muscle index (SMI, cm2/m2). The mean HU value was recorded as a
measure of skeletal muscle density. Low skeletal muscle mass was
defined using previously described cut-off values: skeletal muscle
index <41 cm2/m2 for women regardless of BMI, and <43 and
<53 cm2/m2 formenwith BMI<25.0 and�25.0 kg/m2, respectively.
The definition for low skeletal muscle density was identical for men
and women: a skeletal muscle attenuation <41 for patients with
BMI <25.0 kg/m2 and <33 for patients with BMI �25.0 kg/m2 [24].
2.4. Statistical analysis

Normality of data was tested using the ShapiroeWilk test.
Continuous data are presented as median with interquartile range
(IQR) or mean with standard deviation (SD ±), depending on the
normality of distribution. Categorical data are presented as counts
with percentages. Differences between the different contrast-
enhancement phases were tested using a paired t-test or Wil-
coxon signed rank test, again depending on the normality of the
distribution of the data. The agreement between observers (i.e.
inter-observer agreement) and between contrast-enhancement
phases (i.e. inter-enhancement phase agreement) were calculated
using intra-class correlation coefficients (ICCs) with 95% confidence
intervals (CIs) using a two-way mixed single measures model with



Fig. 4. Bland Altman plots with 95% limits of agreement for the comparison of the cross sectional muscle area (SMI in cm2/m2) of the unenhanced with arterial phase (A),
unenhanced with the portal-venous phase (B) and arterial with the portal-venous phase (C). The solid black line represents the mean difference, the striped lines represent the
mean ± 1.96 standard deviations, and the red line represents the regression slope. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Cohen's k's for the assessment of low skeletal muscle mass and low skeletal muscle
density using unenhanced, arterial, and portal-venous phases on CT.

Unenhanced phase Arterial phase

Low mass Low density Low mass Low density

Arterial phase 0.959 0.400 e e

Portal-venous phase 0.920 0.266 0.879 0.680

J.L.A. van Vugt et al. / Clinical Nutrition 37 (2018) 1707e17141710
absolute agreement. Bland and Altman plots with 95% CI were
generated to investigate the agreement between contrast-
enhancement phases [25]. Linear regression was used to test for
proportional systematic bias [26]. Smallest detectable changes
(SDC), expressing the smallest detectable difference considered a
“real” change in paired measures, were calculated for both skeletal
muscle mass and density for the different contrast-enhancement
phases using the following formula:

Change½inskeletalmusclemassordensity�±
�
1:96� SEMchangeffiffiffi

k
p

�
;

in which k is the number of measurements and SEM stands for
standard error of the measurement [27]. The SEM is calculated
using the following formula:

Standard Deviation ½SD� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ICC

p
:

The agreement on sarcopenia assessment between observers
and contrast-enhancement phases was calculated using Cohen's k
coefficients. ICCs and Cohen's k's ranging from 0.00 to 0.49 were
interpreted was poor, whereas coefficients ranging from 0.50 to
0.74 and 0.75 to 1.00 were interpreted as fair to good and excellent,
respectively [28].

The average of the twomeasurements by the two observers was
used. Two-sided p-values <0.05 were considered statistically



Fig. 5. Mean skeletal muscle density per contrast-enhancement phase. The whiskers
represent the standard error of the mean. * indicates statistically significant difference.
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significant. All statistical analyses were performed using SPSS for
Windows (IBM Corp., Armonk, NY, USA), version 22.
3. Results

3.1. Patient and CT characteristics

The study cohort consisted of 23 (46%) females and 27 (54%)
males with a mean BMI of 24.2 (±4.0) kg/m2. In total, 19 (38%)
patients had a BMI �25 kg/m2 and 4 (8%) patients were considered
obese (i.e. BMI�30 kg/m2). All baseline characteristics are shown in
Supplementary Table 1. The median intraluminal attenuation of the
aorta was 41 (IQR 37e45) HU in CT images without contrast-
enhancement, 404 (IQR 320e514) HU in the arterial contrast-
enhancement phase, and 158 (IQR 143e189) HU in the venous
contrast-enhancement phase (Fig. 2). The inter-observer ICCs were
0.999 for all contrast-enhancement phases for the skeletal muscle
area, and �0.980 for the skeletal muscle density.
3.2. Skeletal muscle mass measurements

An overall difference in SMI was found between the three
contrast-enhancement phases (F(2, 98) ¼ 56.174, p < 0.001). The
mean skeletal muscle index was 42.5 ± 9.9 cm2/m2 in the unen-
hanced phase, which was significantly lower compared with the
arterial phase (42.8 ± 9.9 cm2/m2, p¼ 0.021) and the portal-venous
phase (43.6 ± 9.9 cm2/m2, p < 0.001) (Table 1, Fig. 3). A significant
difference was also observed between the arterial and portal-
venous phase (42.8 versus 43.6 cm2/m2, p < 0.001). Bland Altman
plots with 95% limits of agreement for the SMI are shown in Fig. 4.
There was no proportional systematic bias for any comparison. The
ICCs were excellent (all >0.99) for all comparisons (Table 1). Com-
parable results were found when using the cross-sectional muscle
area (CSMA, Supplementary Fig. 1). According to the cut-off values
defined by Martin et al. [24], 22 (44%) patients were considered to
have low skeletal muscle mass using unenhanced CT, compared
with 21 (42%) patients using the arterial phase and 24 (48%) pa-
tients using the portal-venous phase. This resulted in excellent
Cohen's k's of 0.959 (unenhanced versus arterial phase), 0.920
(unenhanced versus portal-venous phase), and 0.879 (arterial
versus portal-venous phase) (Table 2).

3.3. Skeletal muscle density measurements

An overall significant difference in skeletal muscle density be-
tween the three contrast-enhancement phases was found (F(1.649,
80.813) ¼ 150.167, p < 0.001). The mean skeletal muscle density
was lower in the unenhanced phase (30.9 ± 8.0 HU) comparedwith
the arterial (38.0± 9.9 HU) and portal-venous (38.7 ± 9.2 HU) phase
(both p < 0.001), but not between the two latter (38.0 versus 38.7
HU, p ¼ 0.483) (Table 1, Fig. 5). Mean skeletal muscle density did
not significantly differ between patients receiving 120 or 150 ml of
contrast medium in any contrast-enhancement phase. Bland Alt-
man plots with 95% limits of agreement for the skeletal muscle
density are shown in Fig. 6. There was a proportional systematic
bias for the comparison of the unenhanced phase with the arterial
(p ¼ 0.001) and portal-venous (p ¼ 0.007) phase, but not for the
comparison of the arterial with the portal-venous phase (p¼ 0.113).
The ICCs for the unenhanced phase compared with the arterial
(0.676) and portal-venous (0.665) phase were considered fair to
good, whereas the ICC between the arterial and portal-venous
phase was considered excellent (0.949). The SDCs for skeletal
muscle density measurements were considerably higher than for
skeletal muscle mass measurements. The mean difference in skel-
etal muscle density between the arterial and venous contrast-
enhancement phases (�0.6 HU) was within the SDC (1.90 HU)
(Table 1). According to the cut-off values defined by Martin et al.
[24], 40 (80%) patients were considered to have low skeletal muscle
density using unenhanced CT, compared with 25 (50%) patients
using the arterial phase and 19 (38%) patients using the portal-
venous phase. This resulted in Cohen's k's of 0.400 (unenhanced
versus arterial phase), 0.266 (unenhanced versus portal-venous
phase), and 0.680 (arterial versus porta-venous phase) (Table 2).

4. Discussion

This is the first study to demonstrate differences in CT-based
skeletal muscle mass and skeletal muscle density measurements
due to different stages of contrast-enhancement in multiphase CT.
Importantly, although statistically significant differences in skeletal
muscle mass were found between contrast-enhancement phases,
these could be considered as not clinically relevant in contrast with
the differences found for skeletal muscle density measurements.

The influence of CT-assessed sarcopenia on treatment outcome
has increasingly gained interest last years. Sarcopenia is associated
with increased vulnerability, postoperative complications and
mortality, chemotherapy toxicity, and overall survival [4,5].
Recently, skeletal muscle density has been identified as a prog-
nostic factor in various populations, whereas skeletal muscle mass
was not [9e12,20]. Skeletal muscle density, expressed as the mean
Hounsfield unit value of the selected skeletal muscle area, is
correlated with skeletal muscle lipid content [29]. Furthermore,
low skeletal muscle mass is associated with increased (dose-
limiting) chemotherapy toxicity [8,30e32], and may be a superior
measure to dose chemotherapy rather than body surface area
which is currently being used [33].

Particularly in cancer patients, CT is considered the gold stan-
dard to measure skeletal muscle mass and density because it is
routinely being performed (i.e. for diagnosis, treatment planning,
and treatment evaluation) and consequently widely available
[1,15,34]. CT-based assessment of skeletal muscle mass is an easy
and reliable method correlated with total body skeletal muscle
mass and known for its excellent inter- and intra-observer agree-
ment [18,35]. However, previous studies on the association



Fig. 6. Bland Altman plots with 95% limits of agreement for the comparison of the mean skeletal muscle density (SMD in Hounsfield units [HU]) of the unenhanced with arterial
phase (A), unenhanced with the portal-venous phase (B) and arterial with the portal-venous phase (C). The solid black line represents the mean difference, the striped lines
represent the mean ± 1.96 standard deviations, and the red line represents the regression slope. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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between skeletal muscle density and treatment outcome, did not
report whether unenhanced or contrast-enhanced CT images were
used to measure skeletal muscle density [9e12,20]. Results should
therefore be interpreted with caution. To increase comparability
within and between studies, based on our results, we recommend
performing measurements in portal-venous contrast-enhanced
phase CT examinations, as this phase is routinely being performed
in cancer patients. Moreover, identification of various tissues is
easier on contrast-enhanced CT examinations due to increased
attenuation differences. When previously established cut-off values
(e.g. those defined by Martin et al. [24]) are used, measuring skel-
etal muscle density on unenhanced or contrast-enhanced CT may
lead to over- or underestimating the number of patients with low
skeletal muscle density, respectively. This explains the poor
Cohen's k's for the classification of patients' skeletal muscle density
in the current study. Therefore, we recommend to at least report
the contrast-enhancement phase used to measure skeletal muscle
mass and density. Ultimately, one should seek for consensus which
contrast-enhancement phase should preferably be used.
Recently, promising results to reverse cancer-induced skeletal
muscle wasting have been described in animal studies [36].
Currently, multiple trials are being performed in humans to
investigate drugs for the treatment of cachexia [37]. However, the
general opinion is that treatment of cachexia should be multi-
modal, of which nutritional intervention is onemodality [14,38,39].
Treatment strategies may be adapted as well, depending on the
cancer-induced muscle loss. Body composition measures assessed
on CTmay guide the indication and effectiveness of these therapies.

Although all CTs used for this study have been performedwithin
a relatively short time frame (2009e2015) in one center only, the
possible use of different type of CT scanners may have led to dif-
ferences in observations between patients. Indeed, there is a dif-
ference in density measurements between different vendors.
However, all examinations included in this study were performed
on Siemens (Erlangen, Germany) CT scanners. All scanners were
calibrated daily and calibrated using a phantom monthly. Further-
more, we used identical scanning protocols for all patients,
reducing differences in measurements resulting from technique
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variation. Nevertheless, variations on these protocols may have
occurred.

Contrast distribution depends on various factors, such as cardiac
output, vascular status [40], which were unknown for the current
study population, and body weight and body lean mass. However,
one may expect that the influence of these factors on the uptake of
contrast medium by skeletal muscles of the core is minimal in rest.
Also, scanning protocols using thresholds to start scanning correct
for this. Consequently, these influences may be considered negli-
gible. After all, we did not find significant differences in mean
skeletal muscle density between patients receiving 120 ml or
150 ml of contrast medium. Furthermore, each patient formed its
reference in this study as paired t-tests were used. Moreover, the
variation in aortic intraluminal attenuation measurements in each
contrast phase was relatively small. Contrary to a previous study
[18], consecutive measures in the various contrast-enhancement
phases were not performed on identical slices, since patients'
movements and differences in breath-hold may have led to varia-
tions in the level on which measurements were performed. These
factors could, however, better be controlled for in a future pro-
spective study. Although single-slice cross-sectional areas are
strongly correlated with whole body skeletal muscle mass, this
remains an estimation only, which may introduce a potential error
of several kilograms. Inter-observer variation may have led to
measurement differences, although the inter-observer agreement
for skeletal muscle mass measurements is excellent [18] and the
mean of the two observers was used for analyses to further mini-
mize inter-observer differences.

In conclusion, significant and clinically relevant differences in
skeletal muscle density were observed between contrast-
enhancement phases, whereas significant but not clinically rele-
vant differences were found in skeletal muscle mass measure-
ments. We recommend using the portal-venous phase of contrast-
enhanced CT for studies that describe the association between
skeletal muscle density and outcome measures to improve
comparability of studies.
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