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Abstract
When not in service, trains are parked and ser-
viced at shunting yards. The Train Unit Shunt-
ing Problem (TUSP), an NP-hard problem, en-
compasses the challenge of planning movements
and tasks in shunting yards. A feasible shunting
plan serves as a solution to the TUSP. Current au-
tomated planning tools utilized to assist human
planners in this computationally heavy planning
task are not able to distinguish inherent patterns in
input train data, as opposed to humans. This paper
aims to address this technological gap by examin-
ing whether valuable patterns could be extracted
from shunting plan data, consisting of solutions
to the TUSP. More specifically, it is mainly con-
cerned with the automatic detection of whether a
solution to the TUSP is a week or a weekend day.
Therefore, the data is examined for the presence
of several groups of patterns. Moreover, binary
classification is performed on the data. The exper-
iments conducted in this study suggest the pres-
ence of valuable patterns in the data, which could
be leveraged to design specialized heuristics for
automated planning models tailored to generate
shunting plans for weekdays and weekends.

1 Introduction
The trains in the Netherlands serve over a million people
daily. During peak hours, most of the carriages are in use to
serve the passenger demand. However, at night and off-peak
hours, the surplus of trains needs to be parked and serviced
(maintenance, cleaning) occasionally. This happens at so-
called shunting yards, which are locations with many tracks,
usually near big train stations. An example of a railway hub,
consisting of a station and its nearby shunting yard is shown
in Figure 1.

Figure 1: Railway hub in Amersfoort.

Planning movements and tasks on these shunting yards
is a major challenge. The problem of finding a feasible
shunting plan containing the operations to route trains be-
tween a station and shunting yard, assign the parking tracks,
and schedule the servicing tasks is commonly known as the
Train Unit Shunting Problem (TUSP) [1]. It consists of
the following components: matching arriving to departing
train compositions, combining and splitting train units, park-
ing incoming train units, routing train units to their allocated
tracks, and scheduling of the service actions to be performed
on train units. These are all NP-hard problems which, in
combination, lead to a computationally extremely difficult
problem.

Currently, most of the planning is still done manually by
humans, which is a sensitive, time-consuming task that is

prone to errors [2]. Moreover, the utilization of the shunt-
ing yards is constantly growing due to an increasing rolling
stock, and because the capacity of the shunting yard is not
increasing due to a lack of physical space. Therefore, many
researchers have raised the need to develop automated plan-
ning tools to help human planners [1–4]. However, current
existing models are not able to distinguish valuable patterns
in the data, as opposed to human planners [2]. The aim of
this paper is to examine train data for patterns that could be
utilized in the automated planning process. This data con-
tains train positions for different timestamps, which can be
combined to reconstruct the routes of individual trains. To-
gether, these routes construct a solution to the Train Unit
Shunting Problem.

More specifically, this paper aims to answer the following
research question: How to automatically detect whether a
solution to the Train Unit Shunting Problem is a week or
a weekend day? Current automated planning models, such
as the local search algorithm proposed in [4] that is utilized
by the Nederlandse Spoorwegen (NS), take as main input a
timetable with arrival and departure time of trains and a de-
scription of the infrastructural layout of the shunting yard.
However, they do not take into account any additional in-
formation about the respective day they are used to create
a plan for. This means that they utilize the same heuristic
for generating shunting plans for both week and weekend
days. To address this gap, this paper concentrates on exam-
ining train data for valuable patterns over week and weekend
days. Such patterns could be helpful in designing separate
planning heuristics that are optimized specifically for week
or weekend days. The main research sub-questions that this
paper aims to answer are:

• What is the distribution of the number of parked trains
in a shunting yard during a week/weekend day?

• What types of trains are parked most often during a
week/weekend day?

• What tracks are most used for shunting during a
week/weekend day?

• For each type of train, what tracks are most used for
shunting this type during a week/weekend day?

Paper Structure
This paper has the following structure: Section 2 provides
the background of the research. Section 3 presents the
methodology followed in this paper. Section 4 shows the
experimental setup and the obtained results. In Section 5,
the ethical aspects of the research are discussed. Section 6
summarizes and discusses the findings of the research, as
well as proposes future improvements. Finally, a conclusion
is presented in Section 7.

2 Background
This section aims to present the background that is needed to
understand the experiment procedure followed in this paper.
First, a more in-depth formal introduction to the Train Unit
Shunting Problem is presented. Next, the dataset used in
this paper is described in detail. There follows a discussion
about the frameworks and tools utilized within the experi-
mental part of the research. Finally, there is a description of
the methods used in the experiment.

2.1 Introduction to the Train Unit Shunting
Problem

The problem considered in this paper is the Train Unit
Shunting Problem with Service Scheduling (TUSPwSS) de-
scribed in [4], which is an extension of the original Train
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Unit Shunting Problem (TUSP) formulated in [5]. Through-
out this paper, this problem will be referred to as the TUSP
for simplicity.

The TUSP takes as input a timetable detailing the arrivals
and departures of trains and a description of the infrastruc-
tural layout of the shunting yard, along with a set of re-
sources as well as the service activities of each train unit
that need to be completed before it leaves the service site
[4]. The goal of the TUSP is to determine whether a viable
shunting plan can be established. The problem consists of
the following five components:

• Matching: Assigning arriving train units to unique po-
sitions in departing trains that match the required com-
position.

• Combining and Splitting: Trains might need to be
split and combined to form the desired matching. Train
units are classified by a type and a sub-type. Units of
the same type can be combined: a train is a sequence of
one or more train units. More information about types
and sub-types at NS can be found in Appendix A.

• Parking: When not moving, trains should be parked
in the shunting yard on a track that meets the capac-
ity requirements of the corresponding train. Trains are
permitted to relocate during their time in the shunting
yard.

• Routing: A path over the infrastructure for each train
movement. Train collisions or crossings are not al-
lowed in a feasible shunting plan.

• Service scheduling: Service activities should be com-
pleted before the departure of the corresponding train.
Service activities take place at service sides including a
set of resources, such as cleaning resources or mainte-
nance crews [4]. Each resource is restricted to operat-
ing on trains parked on designated tracks.

2.2 Description of the Dataset
The data considered in this paper is provided by ProRail and
contains information about NS trains only. The data con-
sists of train positions for different timestamps, collected
from seven railway hubs throughout the Netherlands over a
ten-month period, from May 2023 to February 2024. These
train positions over time can be combined to reconstruct the
routes of individual trains. Together, these routes form a so-
lution to the TUSP. More information about the dataset can
be found in Appendix B.

Since the raw data is obtained from inaccurate GPS track-
ers, ProRail has additionally provided a processed version
of the data, where trains are projected on a path and cor-
rected to belong to the same path. This makes the data more
accurate and easier to work with.

The position of a train unit contains, among others, the
track where the train unit is at the time of the sample. There-
fore, ProRail maintains an additional dataset that contains all
tracks part of all seven railway hubs, as well as information
about each track such as area, type, length, etc. This enables
filtering only the tracks that are part of a certain railway hub
under consideration.

2.3 Frameworks and Tools
The data utilized in this study is owned by ProRail and
stored in a private container on Microsoft Azure 1. It is com-
posed of multiple datasets for each month from May 2023
to February 2024 for each shunting yard, stored in parquet

1https://azure.microsoft.com/en-us

files. Moreover, ProRail provides a private Python reposi-
tory containing methods for data manipulation and visual-
ization. The data is accessed and processed using analysis
and manipulation tools such as pandas 2 and polars 3.

2.4 Methods
The main research question considered in this paper exam-
ines the problem of detecting whether a solution to the TUSP
is a week or a weekend day. This can be viewed as a clas-
sification task, where a solution is classified as one of two
labels: weekday or weekend day. Therefore, here are pre-
sented several binary classification methods that are utilized
in the experiment described in Section 3, along with their
advantages and disadvantages.

Logistic Regression
Logistic regression is a supervised classification machine
learning model. It is good for making predictions where the
output variable is categorical. It is especially well suited for
binary classification tasks, such as the presence or absence
of disease [6]. A more in-depth overview of the logistic re-
gression model and its usage can be found in [7].

The main advantage of the logistic regression method is
that it is easy to implement and interpret, yet efficient in
training. Additionally, it makes no assumptions about the
distributions of classes in feature space. Moreover, it can
interpret model coefficients as indicators of feature impor-
tance.

However, logistic regression has several disadvantages. It
assumes linearity between the dependent and independent
variables, which limits its ability to capture complex rela-
tionships. Consequently, it is unsuitable for solving nonlin-
ear problems due to its inherently linear decision surface.

Support Vector Machine
Support Vector Machine (SVM) is a supervised algorithm
that works best in classification problems, especially with
small but complex datasets. In the context of binary classi-
fication, SVM tries to find a hyperplane that best separates
the two classes, according to a predefined heuristic. There
are two types of SVM: linear and nonlinear. Linear SVM
is used when the data is perfectly linearly separable. In the
case of binary classification, this means that the data points
can be classified into two classes using a single straight line.
Conversely, a nonlinear SVM is used when the data is not
linearly separable. More detailed information on SVM can
be found in [8] and [9].

The SVM method offers several advantages. It is effective
in handling high-dimensional data and generally performs
well with small datasets. Additionally, it can model nonlin-
ear decision boundaries by mapping the data into a higher-
dimensional space where it becomes linearly separable.

However, the main disadvantage of the method is that it
can be sensitive to the choice of parameters, such as the reg-
ularization parameter. Thus, it can be difficult to determine
the optimal parameter values for a given dataset.

Random Forest
Random forest is a machine learning algorithm that com-
bines the output of multiple decision trees to produce a sin-
gle outcome. It is good for handling complex datasets and
mitigating overfitting and works well for both classification
and regression tasks. Detailed information about the random
forest algorithm can be found in [10].

The advantages of this approach include its ability to
model complex, nonlinear relationships between features

2https://pandas.pydata.org/
3https://pola.rs/

2

https://azure.microsoft.com/en-us
https://pandas.pydata.org/
https://pola.rs/


and target variables, achieving high accuracy. Additionally,
it provides valuable insights into the importance of each fea-
ture in the data.

However, the random forest method has several disadvan-
tages. It can suffer from overfitting when the model captures
noise in the training data and can be computationally expen-
sive, particularly with large datasets.

3 Methodology
The aim of this section is to set up the methodology used
to approach the main research question. This research paper
follows an experimental procedure whose aim is to answer
the research sub-questions. It consists of three steps: data
preprocessing, examining the data for patterns, and binary
classification of solutions to the TUSP.

3.1 Data Preprocessing
As already mentioned, the data used in this paper consists of
train unit positions for different timestamps. These positions
could be combined to reconstruct the routes of individual
train units. Together, these routes constitute a solution to the
TUSP. Therefore, as a data preprocessing step, the team had
to implement a data structure that represents such a solution.
More information about the solution data structure can be
found in Appendix B.2.

Apart from the train unit data, a dataset containing all the
tracks from all seven railway hubs is provided. It enables
accessing only tracks from a particular area. However, in
the experiment followed throughout this paper, a means to
access only tracks from a certain shunting yard is needed.
Therefore, a method is implemented that, given the name of
a shunting yard in a particular area, filters only the tracks
that are part of this shunting yard. By obtaining the tracks of
a single shunting yard, only train units that pass through this
shunting yard can be filtered from the whole data. This is
useful for the experiments described in the later subsections.

3.2 Pattern Extraction
Since train positions for different timestamps have been
recorded for seven shunting yards over the span of ten
months, the amount of data is considerably large. There-
fore, due to the limited amount of time, only data from a
single area and shunting yard is considered for thorough ex-
amination for patterns.

Humans are good at identifying patterns when they see
them, though, it is hard to construct a precise definition of a
pattern. In [2], it is suggested that the visual pattern recog-
nition of humans is based on innate knowledge, individual
learning, and context. In the context of shunting planning,
this paper extends this notion by formulating the following
definition of a pattern:

Definition 1. A pattern is a recurring or discernible regu-
larity, trend, or arrangement within a dataset.

In the pattern extraction part, seven random dates for each
day of the week are considered. This way, if a recurring
trend is found in these random days, it could be concluded
with a high probability that there is a strong inherent pattern
in the data. Moreover, these days are considered in groups:
the weekdays (Mon–Fri) are studied for patterns that are dif-
ferent from patterns for the weekend days (Sat–Sun). The
types of patterns that data is examined for correspond to the
four research sub-questions presented in Section 1.

Finding potential patterns in the data that differ between
week and weekend days could be helpful in designing new
heuristics for automatically creating shunting plans.

3.3 Binary Classification of TUSP Solutions
The main research question that this paper aims to answer is
how to automatically detect whether a solution to the TUSP
is a week or a weekend day. Therefore, apart from examin-
ing the data for patterns in data that differ between week and
weekend days, the research question can be viewed as a bi-
nary classification task on TUSP solutions. Therefore, this
part of the experimental procedure is concerned with con-
sidering the trade-offs between existing binary classification
methods and comparing their performance on the data. The
supervised binary classification methods considered for the
task are presented in Section 2.4.

4 Experimental Setup and Results
This section discusses the experimental setup that follows
the methodology presented in Section 3 and presents the ob-
tained results. It is divided into two parts. First, Section
4.1 discusses the extraction of patterns from the train data.
Then, Section 4.2 presents the binary classification task per-
formed on TUSP solutions.

4.1 Pattern Extraction
Due to the large amount of recorded train data and the lim-
ited amount of time, it was decided to consider only data
from a single area and shunting yard. The area chosen in
this experiment is Amersfoort, with the examined shunting
yard being Amersfoort Bokkeduinen.

The randomly generated days for each day of the week
are as follows:

• Monday: 13.11.2023

• Tuesday: 17.10.2023

• Wednesday: 20.09.2023

• Thursday: 08.06.2023

• Friday: 24.11.2023

• Saturday: 02.12.2023

• Sunday: 28.01.2024

For the purposes of this study, each day is defined as the
24-hour period from 00:00:00 to 23:59:59, thereby encom-
passing the entire time frame of the respective date.

Next, the raw train data from the Amersfoort area is fil-
tered by time for each of these randomly generated days.
Data records are considered to be part of the filtered data
if and only if the period enclosed by the TimeStart and
TimeEnd (refer to Appendix B.1) of the respective data
records overlaps with the time period defined by the chosen
day of the week. As a result, seven filtered datasets for each
day of the week are obtained, that contain raw data from the
Amersfoort area.

Then, the raw data is transformed into the solution data
structure, in order to extract for each train, its path through
the Amersfoort area. As mentioned earlier, since the data
provided by ProRail is based on GPS recordings, it is not
100% accurate. Sometimes, glitches are observed even in
the processed version of the data when visualizing it, e.g, a
train traveling on track X suddenly changes its location to a
nearby track Y for a single time frame and then appears back
on track X. Such glitches can be problematic when consider-
ing train units in a particular shunting yard at a given point in
time. To ensure that such glitches are ignored when working
with data from shunting yards, a train is considered to have
been in a shunting yard at least once during its path through
the respective area if and only if this train has traveled on a
track that is part of the shunting yard being examined for at
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least three consecutive time frames. As a result, there fol-
lows a filtering step to obtain from all trains in the Amers-
foort area during the respective day, only those that have
travelled on any track X part of the Amersfoort Bokkeduinen
shunting yard for at least three consecutive time frames.

Next, the filtered data for each day is examined for pat-
terns according to the aspects described in Section 3.2.

Distribution of the Number of Parked Train Units in the
Shunting Yard During the Day
The filtered data containing only trains passing through the
Amersfoort Bokkeduinen shunting yard during the respec-
tive day is then used to extract a distribution of the number
of parked trains in the shunting yard throughout the day.

First, the grouped path data is converted back to raw data
with positions against timestamps and is filtered to contain
only entries with a value of Opgesteld for the ActivityType
(refer to Appendix B.1). This way, positions are obtained
only for parked trains. Next, the whole day is divided into
24 time windows for each hour of the day, and for each win-
dow, the number of parked units within that window is cal-
culated. It is worth noting that a train unit could be counted
as parked over several one-hour windows in case the unit is
parked for more than an hour. Moreover, a train unit could
be counted as parked more than once in the same time win-
dow in case the same unit undergoes consecutive shunting
(parking) operations shortly after another.

Here are presented the obtained results for the distribution
of the number of parked trains in Amersfoort Bokkeduinen
over Monday and Sunday. The results for all days of the
week can be found in Appendix E.1.

Figure 2 indicates that on Monday, November 13, 2023,
the Amersfoort Bokkeduinen shunting yard experiences its
lowest occupancy during the time intervals of 07:00–09:00
and 17:00–18:00. These intervals correspond to the peak
hours. Thus, the observed minimal utilization could be
explained by the fact that during peak hours, a significant
amount of people commute to and from work. Conversely,
the shunting yard experiences higher occupancy during the
time intervals of 00:00–06:00 and 23:00–24:00, with the
highest peaks occurring between 01:00 and 05:00. This
could be explained by the fact that at night there is little
demand and, consequently, less trains scheduled for travel,
which leads to most of the trains being parked in the shunt-
ing yard. Lastly, during off-peak hours, the distribution of
the number of trains parked in the shunting yard is rather
similar.

Figure 2: Distribution of the number of parked trains in the Amers-
foort Bokkeduinen shunting yard

On the other hand, on Sunday, January 28, 2024, the dis-
tribution of the number of trains parked in the shunting yard
is relatively similar during day hours (07:00–23:00). This
could be explained by the fact that typically, in weekends,
there are no clearly identifiable peak hours when there is
high demand, probably due to people not commuting to and
from work, but rather traveling for recreational purposes.
Conversely, during night hours (00:00–07:00 and 23:00–
24:00), the shunting yard experiences higher occupancy,
with the highest peaks being between 02:00 and 05:00. Sim-
ilarly to Monday, November 13, 2023, this could be ex-
plained by the low demand during night hours.

Number of Parked Train Units per Train Unit Type
The data containing the routes of trains passing through the
Amersfoort Bokkeduinen shunting yard during the respec-
tive day is grouped by Unit Type (refer to Appendix B.1)
in order to obtain the total number of parked train units for
each unique unit type. Here are shown the results for Tues-
day and Saturday. The results for all days of the week can
be found in Appendix E.2. More information about the unit
types presented in the results is available in Appendix A.

Figure 3 suggests that on Tuesday, 17.10.2023, the ma-
jority of train units parked in the Amersfoort Bokkeduinen
shunting yard are of the SNG-III and SNG-IV types. This
could be explained by the fact SNG are Sprinter trains (refer
to Appendix A), which means that they are used for short
distances, and, consequently, they may be parked and ser-
viced more often. In contrast, the relatively small number
of parked VIRM-VI and DDZ-VI trains may be attributed
to the fact that VIRM and DDZ are Intercity trains designed
for long-distance travel, resulting in less frequent parking
and servicing.

On the other hand, on Saturday, 02.12.2023, the pre-
dominant train unit types parked in the Amersfoort Bokke-
duinen shunting yard were SNG-III, SNG-IV, and SLT-VI.
Similarly, this may be due to the fact that SNG and SLT
are Sprinter trains utilized for short-distance travel, lead-
ing to more frequent parking and servicing. Conversely,
the VIRM-IV and VIRM-VI unit types were the least rep-
resented, likely because VIRM trains are Intercity trains
intended for long-distance travel, resulting in less frequent
parking and servicing.

Figure 3: Number of parked trains per unit type in the Amersfoort
Bokkeduinen shunting yard

Number of Parked Train Units per Track
In this step, first, the list of all tracks in the Amersfoort
Bokkeduinen shunting yard is obtained. Then for each
track, each train unit passing through the shunting yard is
checked if it shunts (parks) on the respective track through-
out its journey in the Amersfoort area. Results are shown for
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Wednesday and Sunday. The results for all days of the week
can be found in Appendix E.3.

Figure 4 suggests that on Wednesday, 20.09.2023, the
most used track for parking within the Amersfoort Bokke-
duinen shunting yard is 401R. In contrast, on Sunday,
28.01.2024, tracks 399R and 401R are most used for parking
within the Amersfoort Bokkeduinen shunting yard.

Figure 4: Number of parked trains per track in the Amersfoort
Bokkeduinen shunting yard

Number of Parked Train Units over Tracks per Train
Unit Type
Using the data from Section 4.1, for each unit type, the dis-
tribution of the tracks used for parking train units of the re-
spective unit type is calculated. The data is normalized so
that the percentage proportion of the number of parked units
on a particular track is depicted. Moreover, sub-types are ag-
gregated, so that the main types are only considered. Shown
here are the results for Thursday (Figure 5) and Saturday
(Figure 6).

Figure 5: Distribution of the Number of Parked Train Units over
Tracks per Train Unit Type in the Amersfoort Bokkeduinen shunt-
ing yard - Thursday, 08.06.2023

Figure 5 suggests that on Thursday, 08.06.2023, train
units of type DDZ use only two tracks for parking, namely
395L and 361AV, which indicates a consistency in the choice
of planners to park this train type on specific tracks. For
type SLT, 50% of the train units are parked on tracks 379R
and 373R. For type ICMm-IV, almost 43% of the train units
favor track 367L, whereas the rest of the train units are simi-
larly distributed over other tracks. The remaining train types
are distributed over a bigger set of tracks and no consistency

in the choice of certain tracks for parking can be observed
from the data.

On the other hand, Figure 6 indicates that consistency in
the choice of planners for parking tracks for type VIRM can
be observed, due to the small set of tracks used for park-
ing. Moreover, for types, DDZ, ICMm, and SLT, it can
be observed that a significant part of train units are parked
on a single track (361BL, 367L, and 373R, respectively),
whereas the rest of the train units are relatively equally dis-
tributed over several other tracks. Finally, units of the rest of
the train types are relatively evenly distributed over a larger
set of tracks and, consequently, no consistency in the choice
of parking tracks can be derived from the data.

Figure 6: Distribution of the Number of Parked Train Units over
Tracks per Train Unit Type in the Amersfoort Bokkeduinen shunt-
ing yard - Saturday, 02.12.2023

4.2 Binary Classification of Solutions to the TUSP
Analogous to the pattern extraction procedure, in this part
of the experimental research data only from the Amersfoort
area is considered for obtaining solutions to the TUSP for
classification, with the Amersfoort Bokkeduinen being the
examined shunting yard.

It is worth mentioning that there is a slight change in
the setup in comparison to the pattern extraction part of the
experiment. In a discussion with a researcher at NS, they
kindly provided valuable insights about the planning proce-
dure at NS: a solution for a weekday is obtained by consider-
ing train units and their respective schedules within the time
frame between 08:00 of the same day, and 08:00 of the next
day, exclusive. The reason is that shunting yards are typ-
ically the least full around 08:00 when most of the rolling
stock is used to supply the peak passenger demand, which
serves as a clear starting point for a given day. Conversely,
a solution for a weekend day is established by considering
the time window between 08:00 on a Saturday, and 08:00
on a Monday, exclusive. This is due to the fact that planners
expect the shunting yards to experience consistent levels of
activity over the weekends. Moreover, as opposed to the
weekdays, fewer train units are used during weekends days,
which suggests that more trains are parked in the shunting
yard. It is also not uncommon that certain train units are
only used during the week and are parked over the whole
weekend until the next week. That said, planners at NS ex-
pect that less complexity is imposed on the planning process
during weekends and they prefer to consider shunting plans
for the weekend as a whole. Therefore, instead of using the
time window between 00:00:00 and 23:59:59 for each day,
solutions of the TUSP are obtained in accordance with the
aforementioned procedure proposed by NS.

5



The procedure for the data preprocessing required for this
part of the experiment is described in Appendix C. Follow-
ing this procedure, 44 solutions are obtained for each of
Mondays, Tuesdays, Wednesdays, and Thursdays, 43 solu-
tions for Fridays, and 43 solutions for weekends, resulting in
a total of 262 solutions for the Amersfoort area over the pe-
riod from May 1, 2023, to February 29, 2024. One of them
is dropped due to the presence of NaN values for some pa-
rameters. The rest of the solutions are labeled as belonging
to a week or a weekend day by adding a Day Type parameter,
that takes the values 1 (weekday) and 0 (weekend day).

Before employing the binary classification methods on
the TUSP solutions, the data is first analyzed. Figure 7
shows the distribution of the target variable, Day Type,
within the solution dataset. It can be observed that the en-
tries of class 1 (weekday) are more than the entries of class
0 (weekend day), which indicates that there is a class imbal-
ance.

Figure 7: Target variable distribution of the solution dataset.

Next, feature scaling is performed on the solution data
in order to ensure numerical stability, and prevent features
with larger scales from dominating the model, thereby im-
proving the overall model performance and interpretability.
Standardization is utilized as the scaling technique, so that
features have zero mean and unit standard deviation. The
dataset is split into a training and test dataset, containing
70% and 30% of the total data, respectively.

Next, the solutions are used as input to the binary classifi-
cation methods presented in Section 2.4. Here are presented
the results obtained by the logistic regression method. The
results for the other methods can be found in Appendix D.

Logistic Regression
A logistic regression model is created, where the class im-
balance problem in the data is addressed by adding class
weights to the model. The purpose of incorporating such
class weights is to penalize misclassifications of the minority
class by assigning it a higher weight, while correspondingly
reducing the weight for the majority class. The model’s per-
formance is further improved by performing a hyperparam-
eter optimization using the grid search algorithm. The algo-
rithm works as follows: all possible values for each hyperpa-
rameter are specified in a predefined grid. Then, the model
is trained and evaluated for each possible combination of
hyperparameters in the grid, applying the cross-validation
approach to ensure reliable results. The performance of
each model is subsequently compared, and the combination
of hyperparameters yielding the optimal performance is se-
lected.

Figure 8 shows the results of employing the logistic re-
gression model on the test dataset using the optimal hyper-
parameters. Here, F1-score is utilized as a performance met-
ric in order to address the class imbalance problem in the
dataset. It provides a harmonic mean of precision and re-
call, thereby balancing the trade-off between these two met-
rics [11]. Precision measures the accuracy of the positive
predictions, while recall assesses the ability to identify all

positive instances. In imbalanced datasets, the F1-score en-
sures that both false positives and false negatives are con-
sidered, offering a more comprehensive evaluation of the
model’s performance compared to accuracy, which can be
misleading due to the predominance of the majority class.

Figure 8: Confusion matrix and F1-score of the logistic regression
model.

Figure 8 suggests that the F1-score of the model is rel-
atively high, which indicates that the model has a well-
balanced performance, combining high precision and high
recall. Moreover, the confusion matrix shows that the ma-
jority of the test samples with label 1 are indeed classified
as class 1. Nevertheless, only half of the test samples with
label 0 are classified as class 0.

5 Responsible Research
This section describes the steps taken in order to guarantee
that the research presented in this paper is done responsibly.
First, the transparency and reproducibility of the research is
described. Next, the research integrity is discussed.

5.1 Research Reproducibility
It is essential for research to be reproducible so that future
scientists can effectively build upon the ideas of earlier gen-
erations. In order to ensure this, the code used within the
experimental part of the research is publicly available. The
files, variables, and methods have meaningful names to fur-
ther help interested readers understand the code more eas-
ily. Nevertheless, the code operates on proprietary data held
by ProRail, which means that the experiment described in
this paper could not be fully replicated without this data.
However, upon request, ProRail may provide interested re-
searchers access to the data.

Furthermore, no special technical specifications are re-
quired in order to reproduce the experiment described in this
paper.

5.2 Research Integrity
This research has investigated the presence of interesting
properties in train unit data provided by ProRail. The re-
sults obtained from the experiment could be used in the sake
of improving the automated planning process in the context
of the TUSP and making it more efficient. Nevertheless,
readers should be aware of the time limitations that deem
the results to be not directly applicable in practice without
further research.
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6 Discussion
This section is going to elaborate on the results presented in
Section 4. Section 5.1 discusses the pattern extraction part.
The results from the binary classification part are examined
in Section 5.2.

6.1 Pattern Extraction
Here the results obtained for each of the research sub-
questions are presented in more detail.

Distribution of Shunted Train Units in the Shunting
Yard During the Day
In a broader context, Figures 11–15 suggest that a similar
distribution of the number of shunted trains in the Amers-
foort Bokkeduinen shunting yard can be observed for the
weekdays Mon–Fri. This distribution is characterized by
low occupancy during peak hours, high occupancy during
night hours, and moderate, consistent occupancy during off-
peak hours. This behavior can be attributed to the fact that
weekdays are mostly working days, leading to increased
commuter activity during peak hours and minimal passenger
travel during night hours. Consequently, this pattern reflects
the typical distribution of parked trains in the shunting yard
throughout the weekdays.

Similarly, Figures 16 and 17 show a comparable distribu-
tion in the number of shunted trains over the weekend, with
high utilization during night hours and lower, consistent uti-
lization during the day. This may be attributed to increased
leisure travel during the day on weekends. Thus, this sug-
gests a pattern in the number of parked trains on weekends.

To gain further insights and identify meaningful patterns,
new research directions should be pursued. For instance, an
aspect that could be taken into account is whether a day is a
public holiday or a non-working day. The randomly drawn
dates used in the experiment are all non-holiday days by
chance. It is important to note that on non-working days and
public holidays, the distribution of parked trains throughout
the day will almost certainly differ from that on working
days, likely resembling the distributions observed on week-
end days.

Additionally, weather forecasts could be utilized to iden-
tify patterns in the distribution of parked trains. For exam-
ple, one could expect that on a rainy working day, more peo-
ple travel to and from work by train instead of cycling, which
would result in occupancy in the shunting yard during peak
hours that is lower than usual. Moreover, on a weekend day,
if the weather is bad, people are expected to travel less. Con-
versely, if the weather is good, more people are expected
to enjoy traveling. Such hypotheses could be tested against
data enriched with details about the weather forecast.

Number of Shunted Train Units per Train Unit Type
Figures 18–24 collectively show that SNG train units are
consistently the most parked type in the Amersfoort Bokke-
duinen shunting yard across all days of the week. This may
be attributed to the fact that SNG are Sprinter trains used
for short-distance travel, necessitating more frequent park-
ing and servicing. Furthermore, as indicated in Table 1 of
Appendix A, there are 205 train units of type SNG, estab-
lishing it as the most prevalent type and likely the most fre-
quently utilized. However, no patterns for the number of
parked train units of type SNG can be deduced that differ
between week and weekend days.

Moreover, the figures indicate that train units of type DDZ
are parked less frequently in the Amersfoort Bokkeduinen
shunting yard across all days of the week. This could be ex-
plained by the fact that DDZ are Intercity trains used for
long-distance travel and, therefore less frequently parked

and serviced. Moreover, according to Table 1, there are 49
train units of type DDZ, which makes it the least prevalent
type and probably less frequently utilized. It should be noted
that Figure 24 indicates the absence of DDZ-type train units
parked in the shunting yard on Sunday, January 28, 2024.

For the other train types, no general observations could
be yielded, due to the absence of regularity in the number
of parked train units of the respective type over the different
days of the week. As a consequence, no discernible patterns
in the number of shunted trains per unit type between week-
days and weekends can be identified.

In order to extract more meaningful insights from the
data, additional aspects must be taken into account, such as
the current state of the rolling stock. For practical and finan-
cial reasons, trains are not purchased all at once but rather
over different time intervals [2]. Therefore, at any point in
time, the number of train units per type may differ from the
figures presented in Table 1. Utilizing this information could
assist in identifying the reasons for the low or high numbers
of parked train units of a particular type during an observed
day.

Furthermore, rather than analyzing the number of parked
train units per unit type daily, studying the data on an hourly
basis could be advantageous. This approach could facili-
tate the identification of low-level patterns in the data, such
as specific train types being more frequently utilized dur-
ing certain times of the day, such as in the afternoon. Thus,
a pattern of the utilization of the shunting yards could be
learned from the data.

Number of Shunted Train Units per Track
In a wider perspective, Figures 25–31 indicate a consis-
tent usage of specific tracks for parking train units at
the Amersfoort Bokkeduinen shunting yard throughout the
week. Some of the most utilized tracks within this set are
401R, 361AV, 379L, 379R, 381R, and 363R. This could be
explained by the specific infrastructural layout of the Amers-
foort Bokkeduinen shunting yard 4. The layout suggests
that there are only two entry/exit tracks, making them crit-
ical bottlenecks through which every train unit must pass
upon entering or leaving. According to a researcher at NS,
who provided valuable insights for this research paper, this
is the reason why planners avoid parking train units on these
tracks, as this could lead to collisions of trains and sub-
optimal shunting plans. Consequently, the set of tracks used
for parking mentioned earlier comprises tracks exclusively
dedicated to parking and servicing, not for entering/exiting
the shunting yard. Therefore, this accounts for the similarity
in parking track selections across different days of the week.
As a result, no discernible patterns could be derived from the
observed data that are specific for week and weekend days.

Number of Shunted Train Units over Tracks per Train
Unit Type
In a broader perspective, Figures 32–38 suggest that during
the randomly drawn weekdays, train units of type DDZ are
consistently parked on a small set consisting of 2–4 tracks
within the Amersfoort Bokkeduinen shunting yard. How-
ever, on Saturday, December 2, 2023, DDZ units occupy
a larger set of six tracks, some of which are not typically
used for weekday parking. Moreover, on Sunday, January
28, 2024, no DDZ units are parked in the yard. This obser-
vation can serve as a pattern that indicates planners prefer
a specific set of tracks for parking DDZ units on weekdays,
whereas on weekends, there is less adherence to a fixed pat-
tern, possibly due to the availability of a higher number of

4https://sporenplan.nl/ provides detailed information about the
track plans and layouts of shunting yards in the Netherlands.
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less busy tracks. This preference aligns with the nature of
DDZ trains used for long-distance travel, which are parked
less frequently and likely benefit from longer-term park-
ing on quieter tracks during weekdays. Conversely, during
weekends, when generally fewer trains are utilized, plan-
ners may distribute the DDZ train units more freely within
the less busy shunting yard.

Additionally, VIRM train units are typically parked on a
subset of 2–5 tracks, both on weekdays and weekends. Sim-
ilar to DDZ trains, this is likely because VIRM trains, used
for Intercity travel, are parked less frequently and require
longer-term parking on specific, less busy tracks within the
shunting yard.

In contrast, train units of other types are typically parked
on a larger variety of tracks, both on weekdays and week-
ends. For Sprinter trains like SLT and SNG, this could be
due to their frequent use for short-distance travel, resulting
in more regular parking needs. Therefore, planners likely
assign these train units to any available parking track that
can accommodate them without disrupting other operations,
while ensuring a feasible shunting plan. Overall, there are
no clear patterns observed for train types other than DDZ
that distinguish between weekdays and weekends.

Conclusions
The methodology employed for pattern extraction focused
on seven randomly selected days from a ten-month dataset
due to its extensive volume. While this approach reveals
the presence or absence of examined patterns, it does not
definitively establish their presence or absence in the entire
dataset. Therefore, general conclusions about the existence
or nonexistence of patterns in the whole data require further
analysis.

The proposed recommendations aim to enhance the auto-
mated planning process for shunting operations. Currently,
automated planning models primarily rely on a timetable de-
tailing train arrival and departure times, along with the lay-
out of the shunting yard infrastructure. However, incorpo-
rating additional factors such as weather forecasts and holi-
day schedules could enable the models to employ more tai-
lored heuristics for week and weekend days. This approach
would optimize shunting plans to better align with passenger
demand and improve the efficiency of rolling stock utiliza-
tion. Moreover, to effectively predict and schedule servicing
tasks for different train types, a deeper analysis of shunting
yard utilization patterns based on comprehensive data across
various days and times is essential. Therefore, a thorough
examination of the entire dataset is crucial to identify and
validate any recurring patterns in the distribution of shunted
train units across tracks.

6.2 Binary Classification of Solutions to the TUSP
The results of the binary classification of solutions to the
TUSP, presented in Figures 8–10, demonstrate that the mod-
els effectively classify weekday solutions, while achieving
high F1-scores that indicate balanced performance in terms
of precision and recall. However, they do not consistently
achieve accurate classification of weekend solutions.

The logistic regression model’s imperfect performance
may stem from its assumption of linearity, which is inade-
quate for capturing the likely non-linear relationships in the
high-dimensional data used in this experiment. The support
vector machine model may underperform due to class im-
balance and a small number of training samples, as well as
potential overlap in target classes. Lastly, the random forest
model’s poor performance could be attributed to noise in the
data from inaccurate GPS trackers, reducing its generaliza-
tion ability.

The original data representing train paths through the
Amersfoort area is extensively modified to serve as input
for the binary classification models used in this experiment.
This modification includes averaging each train unit’s path
and aggregating all train units into a single record, which
diminishes variability and obscures finer details and poten-
tially meaningful patterns. Additionally, the data is only
augmented with one extra feature: the number of parked
trains in the Amersfoort Bokkeduinen shunting yard at each
timestamp. To gain further insights, it would be beneficial
to extract and utilize more complex features in the binary
classification problem.

In summary, Figures 8–10 show that the models used for
binary classification of TUSP solutions achieve balanced
performance and accurately classify many test samples, de-
spite limited data optimization and preprocessing. This sug-
gests that the data contains intrinsic patterns distinguish-
ing weekday from weekend solutions. Enhanced perfor-
mance could be achieved with more thorough preprocess-
ing, data optimization, and advanced classification meth-
ods. These improvements could inform real automated plan-
ning by incorporating data-driven patterns and developing
distinct heuristics for weekdays and weekends, optimizing
shunting plans.

6.3 Finishing Words
The results presented from the pattern extraction and binary
classification experiments are based on a limited dataset due
to time constraints, focusing specifically on the Amersfoort
area and the Amersfoort Bokkeduinen shunting yard. It is
crucial to recognize that outcomes could vary significantly
for different areas and shunting yards due to factors such as
infrastructural layout, area traffic, and geographic distinc-
tions. Therefore, separate analyses for various locations and
shunting yards are essential.

As detailed in Section 5, the experimental methodology
employed in this study ensures reproducibility. Hence, sim-
ilar experiments can be conducted for any area and shunting
yard of interest. The resulting insights can be leveraged to
enhance the automated shunting process in respective areas
by refining model heuristics tailored specifically to each lo-
cation.

7 Conclusions and Future Work
In this paper, realization data containing train unit positions
for different timestamps is examined for the existence of
valuable patterns that could be applied in the optimization of
the automated planning process in the context of the Train
Unit Shunting Problem (TUSP). First, a detailed introduc-
tion to the TUSP is given, as well as a description of the uti-
lized data. Then, the data is analyzed for the presence of spe-
cific patterns that could be helpful to differentiate whether
a solution to the TUSP obtained from the data belongs to
a week or a weekend day. It is discovered that, with high
probability, there exists a pattern in the distribution of the
number of parked trains in a specific shunting yard that dif-
fers between week and weekend days. This pattern serves
as a potential property that could help differentiate TUSP
solutions and possibly design specific planning heuristics
that are tailored for generating plans for different types of
days. Moreover, solutions to the TUSP are extracted from
the data, and several binary classification methods are uti-
lized to categorize them as either weekday or weekend day
solutions. The results indicate that the employed methods
achieve good performance, which suggests the presence of
underlying patterns in the data that facilitate the distinction
between weekday and weekend solutions to the TUSP.
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Future work might need to further examine the data in
more detail in order to prove or disprove the findings pre-
sented in this paper. While in this experiment only the pro-
vided data has been utilized, subsequent research might con-
sider using supplementary data, such as the weather forecast
for a given day or whether it is a public holiday or a non-
working day. This could provide further insights into the
data and help in designing new heuristics for the automated
planning process.
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A Trains at NS
The rolling stock at NS consists of many different types of
trains designed for various types of travel [2]. These types
can be divided into Intercity and Sprinter trains. Sprinter
trains are used for shorter distances and stop at smaller sta-
tions. Intercity trains are long-distance trains that typically
connect larger cities and do not stop at smaller stations. The
types of trains considered in this paper, as well as their re-
spective number of trainsets are presented in Table 1. The
information is obtained from the NS Annual Report 2023.

Train Type Number of
Trainsets

Sprinter trains:
SLT 131
SNG 205

Total Sprinter 336
Intercity trains:

VIRM 175
ICMm 115
DDZ 49

Total Intercity 339
Total 675

Table 1: Number of trainsets per unit type at NS as of 31 December
2023.

Train types are further classified into sub-types. Units of
the same type can be combined: a train is a sequence of
one or more train units. The sub-type indicates the number
of carriages in the train [4]. For example, the SLT-IV and
SLT-VI consist of four and six carriages, respectively.

B Details of the Dataset
B.1 Parameters in the Data
A single entry in the data consists of numerous parameters.
The most important ones are presented here:

• Area: The area where the position is sampled. It
can be one of Amersfoort, Arnhem Goederen, Arnhem
West, Carthesiusweg, Dordrecht, Hoofddorp, and Wa-
tergraafsmeer.

• Unit Number: The unique number of the respective
train unit.

• GroupIdHash: This parameter uniquely represents the
time when a specific train unit enters the respective area
where a position sample is taken. The GroupIdHash of
a train unit remains the same over the whole route of
the train unit through the area.

• Moving: Whether the train unit is moving.

• ActivityType: The type of activity that the train unit
is in at the respective timestamp. The most important
types are entry (when a train unit enters an area), exit
(when a train unit exits an area), Short Stop (train unit
not moving for less than 30 min), and Opgesteld (train
unit not moving for more than 30 min). Throughout
this paper, a train unit having an ActivityType value of
Opgesteld will be called parked or shunted. Activity-
Type is also related to the Moving parameter.

• TimeStart: The date and time when the train unit has
started a respective activity.

• TimeEnd: The date and time when the train unit has
finished a respective activity.
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• Unit Type: The specific type of a train unit. At NS, this
could be one of DDZ-IV, DDZ-VI, E1700, ICMm-III,
ICMm-IV, SLT-IV, SLT-VI, SNG-III, SNG-IV, VIRM-
IV, and VIRM-VI. Due to imperfections in the data,
certain train units have an unidentified unit type, de-
noted as ”Onbekend” (Dutch for ”unknown”). More
information about the train fleet at NS can be found in
Appendix A.

B.2 Solution Data Structure

The team had to perform preprocessing of the raw data in
order to implement a data structure representing a solution
to the TUSP. First, the data was grouped by GroupIdHash,
in order to group all the positions of a train unit within the
respective area, throughout its whole path over that area. As
a result, the obtained data structure contains for each train
unit GroupIdHash, the unit’s Unit Number, Unit Type, and
a list of positions for different timestamps in the respective
area, or, in other words, the route of the train unit. Together,
the routes of all trains form a solution of the TUSP.

C Data Preprocessing for the Binary
Classification Experiment

As mentioned in Section 2.3, the raw data provided by Pro-
Rail consists of multiple datasets for each month from May
2023 to February 2024. Consequently, the initial step in-
volves merging these datasets to obtain the data for the entire
ten-month period. Next, the data is enhanced with an addi-
tional parameter: for each entry, the number of parked trains
in a specific shunting yard (here Amersfoort Bokkeduinen is
considered) at the time corresponding to the entry’s times-
tamp is recorded.

Some of the parameters in the raw data have non-
numerical values, which imposes a problem for the classi-
fication task. Such parameters are ActivityType, UnitType,
Moving, etc. (refer to Appendix B for more information
about these parameters). Therefore, a preprocessing step is
done where a numerical encoding for these parameters is
performed, and non-numerical values are converted to nu-
merical according to this encoding.

Then, the data is filtered by time according to the proce-
dure described in Section 4.2, in order to obtain frames of
raw data needed for the construction of solutions for each
weekday and weekend. Each frame of data is transformed
into the solution data structure so that for each train unit, its
path is extracted within the time window defined by the data
frame. Together, the paths of all train units form a solution
of the TUSP for the respective time window, be it a weekday
or a whole weekend.

A train unit path consists of multiple positions for differ-
ent timestamps, as well as additional data such as the track,
type of activity, direction, etc. Thus, such a path is repre-
sented as a collection of entries. However, for the purposes
of the research, the representation of such paths needs to be
simplified in order to be suitable for the classification task.
Thus, instead of taking the whole path of a train unit, only
the averaged values of all path parameters are considered.

At this point, for each weekday or weekend, a solution
is obtained that contains, among other parameters, its aver-
aged path. Nevertheless, a more compact representation of
a solution is needed, so that it can be fed into a classification
model as a standalone object. Therefore, the average value
of all entries of a solution collection is taken to represent the
solution itself.

D Additional Results of Binary Classification
on Solutions to the TUSP

Support Vector Machine (SVM)
An SVM model is created and grid search is employed, simi-
larly to the logistic regression model, in order to find the best
set of hyperparameters for optimal performance on the test
data. Again, the F1-score performance metric is utilized in
order to address the class imbalance problem in the dataset.

Figure 9 demonstrates that the SVM model attains a high
F1-score, indicative of well-balanced performance with both
high precision and high recall. The confusion matrix reveals
that the majority of the test samples from class 1 are cor-
rectly classified. However, a significant portion of the sam-
ples from class 0 are misclassified as class 1.

Figure 9: Confusion matrix and F1-score of the support vector ma-
chine model.

Random Forest
A random forest model is fit on the training data and hyper-
parameter tuning is performed using the grid search algo-
rithm. The class imbalance problem is addressed by utiliz-
ing the F1-score as a performance metric for the model.

Figure 10 shows that the model reaches a high F1-score
that indicates well-balanced performance with high preci-
sion and high recall. Furthermore, the confusion matrix sug-
gests that all of the test samples of class 1 are correctly clas-
sified. Nevertheless, the majority of the class 0 samples are
misclassified as class 1.

Figure 10: Confusion matrix and F1-score of the random forest
model.
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E Additional Figures of the Pattern
Extraction Part

E.1 Distribution of parked Train Units in the
Shunting Yard During the Day

Figure 11: Distribution of the number of parked trains in the
Amersfoort Bokkeduinen shunting yard - Monday, 13.11.2023

Figure 12: Distribution of the number of parked trains in the
Amersfoort Bokkeduinen shunting yard - Tuesday, 17.10.2023

Figure 13: Distribution of the number of parked trains in the
Amersfoort Bokkeduinen shunting yard - Wednesday, 20.09.2023

Figure 14: Distribution of the number of parked trains in the
Amersfoort Bokkeduinen shunting yard - Thursday, 08.06.2023

Figure 15: Distribution of the number of parked trains in the
Amersfoort Bokkeduinen shunting yard - Friday, 24.11.2023

Figure 16: Distribution of the number of parked trains in the
Amersfoort Bokkeduinen shunting yard - Saturday, 02.12.2023
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Figure 17: Distribution of the number of parked trains in the
Amersfoort Bokkeduinen shunting yard - Sunday, 28.01.2024

E.2 Number of parked Train Units per Train
Unit Type

Figure 18: Number of parked Train Units per Train Unit Type in
the Amersfoort Bokkeduinen shunting yard - Monday, 13.11.2023

Figure 19: Number of parked Train Units per Train Unit Type in
the Amersfoort Bokkeduinen shunting yard - Tuesday, 17.10.2023

Figure 20: Number of parked Train Units per Train Unit Type in the
Amersfoort Bokkeduinen shunting yard - Wednesday, 20.09.2023

Figure 21: Number of parked Train Units per Train Unit Type in
the Amersfoort Bokkeduinen shunting yard - Thursday, 08.06.2023

Figure 22: Number of parked Train Units per Train Unit Type in
the Amersfoort Bokkeduinen shunting yard - Friday, 24.11.2023
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Figure 23: Number of parked Train Units per Train Unit Type in
the Amersfoort Bokkeduinen shunting yard - Saturday, 02.12.2023

Figure 24: Number of parked Train Units per Train Unit Type in
the Amersfoort Bokkeduinen shunting yard - Sunday, 28.01.2024

E.3 Number of parked Train Units per Track

Figure 25: Number of parked Train Units per Track in the Amers-
foort Bokkeduinen shunting yard - Monday, 13.11.2023

Figure 26: Number of parked Train Units per Track in the Amers-
foort Bokkeduinen shunting yard - Tuesday, 17.10.2023

Figure 27: Number of parked Train Units per Track in the Amers-
foort Bokkeduinen shunting yard - Wednesday, 20.09.2023

Figure 28: Number of parked Train Units per Track in the Amers-
foort Bokkeduinen shunting yard - Thursday, 08.06.2023
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Figure 29: Number of parked Train Units per Track in the Amers-
foort Bokkeduinen shunting yard - Friday, 24.11.2023

Figure 30: Number of parked Train Units per Track in the Amers-
foort Bokkeduinen shunting yard - Saturday, 02.12.2023

Figure 31: Number of parked Train Units per Track in the Amers-
foort Bokkeduinen shunting yard - Sunday, 28.01.2024

E.4 Distribution of the Number of Parked Train
Units over Tracks per Train Unit Type

Figure 32: Distribution of the Number of parked Train Units over
Tracks per Train Unit Type in the Amersfoort Bokkeduinen shunt-
ing yard - Monday, 13.11.2023

Figure 33: Distribution of the Number of parked Train Units over
Tracks per Train Unit Type in the Amersfoort Bokkeduinen shunt-
ing yard - Tuesday, 17.10.2023

Figure 34: Distribution of the Number of parked Train Units over
Tracks per Train Unit Type in the Amersfoort Bokkeduinen shunt-
ing yard - Wednesday, 20.09.2023
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Figure 35: Distribution of the Number of parked Train Units over
Tracks per Train Unit Type in the Amersfoort Bokkeduinen shunt-
ing yard - Thursday, 08.06.2023

Figure 36: Distribution of the Number of parked Train Units over
Tracks per Train Unit Type in the Amersfoort Bokkeduinen shunt-
ing yard - Friday, 24.11.2023

Figure 37: Distribution of the Number of parked Train Units over
Tracks per Train Unit Type in the Amersfoort Bokkeduinen shunt-
ing yard - Saturday, 02.12.2023

Figure 38: Distribution of the Number of parked Train Units over
Tracks per Train Unit Type in the Amersfoort Bokkeduinen shunt-
ing yard - Sunday, 28.01.2024
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