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efficient road health monitoring via
FBG sensor network
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Navid Hasheminejad1, Nizar Lajnef4, Wim Van den bergh1

and David Hernando1

Abstract
Structural health monitoring (SHM) of infrastructure using sensor networks presents significant challenges, particularly
for linear structures that require extensive coverage of critical hotspots. Among the various sensing technologies, opti-
cal fiber sensors have recently gained attention as a promising solution for distributed and long-span monitoring due to
their ability to provide a high density of sensing points. However, the vast amounts of data generated by these sensors
create substantial challenges in data handling, processing, management, and analysis. These challenges are further intensi-
fied under random loading and unknown conditions, where discerning patterns becomes particularly difficult. To address
these issues, this study proposes a probabilistic-based framework for generating a health indicator (HI) through cumula-
tive loading-time analysis of sensor data. The method reduces data dimensionality by calculating cumulative loading time
within predefined windows and strain levels, thereby extracting meaningful features by fitting a cumulative distribution
function. These features are then used to construct sensor-specific distributions, and Kullback–Leibler divergence is
employed to monitor shifts between a trained baseline distribution and the current distribution. This produces the HI,
enabling quantitative tracking of distribution shifts caused by structural changes or long-term anomalies. The proposed
approach was validated through experimental fatigue tests, in which strain sensors monitored responses during fatigue
progression. Results demonstrated the method’s effectiveness in detecting and localizing damage in two scenarios: when
damage occurred directly at sensor locations and when it occurred nearby. Furthermore, the method was evaluated
using both healthy-state field data and synthetic damage data generated from a fiber Bragg grating sensor network
embedded in a roadway. This real-world scenario, characterized by random and unknown-magnitude loading, further
validated the method’s robustness and applicability. Overall, the results demonstrate the potential of the proposed
framework for practical deployment in SHM systems, offering efficient monitoring using large-scale sensor networks.

Keywords
Health indicator, data dimensionality reduction, fiber Bragg grating, optical fiber sensors, cumulative loading-time analy-
sis, road health monitoring

Introduction

Emerging sensor technologies are playing a pivotal role
in advancing structural health monitoring (SHM) sys-
tems, offering unprecedented capabilities for real-time
monitoring of infrastructure such as roads, bridges,
buildings, and dams. These sensors, including fiber
optic,1–4 piezoelectric,5–8 accelerometer,9–11 acoustic
emission,12–15 ultrasonics,16,17 sensor networks, among
others,18 enable continuous collection of large datasets
that reflect the health and performance of structures
over time. In recent years, optical fiber sensors have
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emerged as a promising technology in the field of
SHM, owing to their ability to provide either quasi-
distributed sensing—through fiber Bragg gratings
(FBGs)—or fully distributed sensing using distributed
optical fiber technologies. These capabilities enable
continuous or point-specific monitoring across large-
scale structures with high precision and reliability.19–22

These sensors also enable the precise measurement of
strain, temperature, and other physical parameters with
multiplexing capability and immunity to electromag-
netic fields.23–25 Their ability to offer real-time, high-
resolution data makes them invaluable for detecting
localized issues and potential failures in infrastructure.
However, the widespread deployment of optical fiber
sensors introduces significant challenges in monitoring,
processing, and analyzing these large datasets. In addi-
tion to computational demands, integrating such het-
erogeneous sensor data into existing infrastructure or
pavement management systems remains a critical hur-
dle, as many current systems are not designed to handle
the volume, complexity, and variety of SHM data. This
underscores the need for standardized data formats,
interoperability guidelines, and unified interpretation
frameworks to enable seamless data exchange and inte-
gration across platforms and regions.26,27

The distributed nature of optical fiber sensors leads
to complex data sets, necessitating sophisticated algo-
rithms and advanced data management techniques to
ensure the effective extraction of meaningful insights.28

Therefore, efficient data handling methods are essential
to prevent information overload and ensure that valu-
able data can be quickly analyzed for timely decision-
making in structural maintenance and repair.

To address these challenges, data reduction tech-
niques can be employed to manage the large volumes
of data generated by sensors. Data reduction methods
aim to reduce the data size by eliminating unnecessary
information while preserving essential features,
enabling more efficient processing and analysis.
Approaches such as dimensionality reduction help sim-
plify complex datasets by reducing the number of vari-
ables, thereby minimizing computational load. This
approach contributes to faster processing times and
more effective management of sensor data, facilitating
real-time analysis and decision-making.

Different studies have proposed and implemented
various data reduction approaches for this purpose,
such as random projection,29 robust multidimensional
scaling,30 principal component analysis,31 and
t-distributed stochastic neighbor embedding,32 among
others. Another approach, proposed by several stud-
ies,33–37 is based on cumulative measurement and prob-
abilistic theory. The main advantage of this method is
that it relies on relative variations in the response dis-
tribution, eliminating the need to measure damage

directly. Moreover, since most damage propagation
mechanisms—such as fatigue and cracking—occur
incrementally with small-scale changes that accumulate
over time and exhibit nonlinear progression, this
method is particularly beneficial and has been vali-
dated for piezoelectric and strain gauge (SG) sensor
data.33–37 The final output of this method is response
distributions over time, which can be compared to
detect potential damage initiation. However, in a
deployed network with numerous sensors, tracking all
distributions across the network becomes challenging.
To address this issue, this study explores how these dis-
tributions can be transformed into a health indicator
(HI), a simplified representation that facilitates the
simultaneous monitoring of trends and patterns across
a large number of sensors. The HI is a key feature in
SHM as it reflects the health status of the system or
structure and provides actionable insights. Although
HIs can be constructed using various methods, they
must meet three critical characteristics: detectability,38

ensuring that damage can be detected; separability,38

allowing distinction between healthy and damaged
states; and trendability,39 enabling the clear observa-
tion of gradual changes over time.40 The construction
of a suitable HI is a critical step before predicting the
remaining useful life of a system using a prognostic
model.41,42 Identifying the most effective and optimal
HI based on different methods remains a prominent
research focus in the field of SHM.

The primary objective of this study is to develop a
probabilistic-based framework that adopts Kullback–
Leibler (KL) divergence within a cumulative loading
time analysis for transforming the large volume of data
collected from FBG sensor networks into meaningful
and sensitive HIs that reflect changes in structural
health. Cumulative loading-time analysis was chosen
as it is well suited for real-world conditions where load-
ing is random; KL divergence was selected because it
quantifies differences between two probability distribu-
tions in a way that is sensitive to shifts in mean values
and changes in variability. The HIs are intended to
capture variations in sensor data caused by material or
structural changes, such as fatigue, occurring either at
the sensor location or in its vicinity. This study builds
upon our previous work on a different test track that
focused on preprocessing and local anomaly detec-
tion43 as a necessary step prior to the development of
health indices in this research. Here, the main focus is
on the global analysis of SHM data, aiming to identify
long-term changes or anomalies that indicate structural
deterioration rather than local data analysis. By adapt-
ing KL divergence within a cumulative loading-time
framework, the proposed methodology produces scal-
able and efficient HIs, uniquely enabling data compres-
sion for large sensor networks and long-term trend
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detection for structural deterioration. By leveraging
these HIs, the framework aims to enable the simulta-
neous snapshot monitoring of large-scale sensor net-
works, support real-time detection and assessment of
structural damage, and inform timely maintenance
decisions, ultimately laying the foundation for a scal-
able monitoring system for road infrastructure.

Methodology

The overall framework employed in this study is based
on cumulative loading-time measurement and prob-
ability theory.33–37 This approach consists of a systema-
tic sequence of six key steps, which are depicted in
Figure 1. First, data are collected, preprocessed, and
segmented into windows containing the same number
of data points (step 1). Next, the cumulative loading
time is calculated at predefined levels for each window
in a cumulative manner, capturing the strain

accumulation over time (step 2). Then, for each win-
dow, a cumulative time histogram is constructed, and a
cumulative distribution function (CDF) is fitted to the
data to represent the distribution of cumulative loading
over time. Previous studies have demonstrated that the
best CDF for this purpose is the Gaussian function,33,34

expressed as follows:

FGaussian eð Þ=
A

2
1� erf

e� m

s
ffiffiffi
2
p

� �� �
ð1Þ

Here, A is the summation of all cumulative time events,
and s and m are the standard deviation and mean of
the CDF, respectively (step 3). Following that, key sta-
tistical features m and s are extracted from the fitted
CDF of each window, capturing changes in the strain
distribution that reflect gradual alterations in struc-
tural behavior. Since these parameters can fluctuate
under variable loading conditions, a median filter is

Figure 1. Methodology of constructing HI. HI: health indicator.
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used to smooth m and s, reducing abnormal deviations
and minimizing the influence of non-Gaussian noise in
the data (step 4). Subsequently, a probability density
function (PDF), parameterized by the extracted m and
s, is constructed for each window, which offers a prob-
abilistic representation of the structural health status
and potential long-term anomalies (step 5). A baseline
PDF is first constructed from strain data correspond-
ing to the confirmed healthy (or relatively healthy)
state of the structure. This baseline should include var-
iations in environmental and loading conditions to
serve as a reliable reference for monitoring; this is par-
ticularly important with temperature- and loading
time-dependent materials, such as asphalt. A certain
percentage (i.e., 20%) of the healthy-state data from
each sensor is reserved for this purpose, and all subse-
quent monitoring windows are benchmarked against
this baseline. In addition to these steps, this study
introduces a novel method based on distribution drift
monitoring (DDM) to construct a HI (step 6). Given
the challenges of tracking distribution drift over time
across multiple sensors, this approach enables the
simultaneous comparative monitoring of large sensor
networks within a single plot. The constructed HI facil-
itates the detection of damage and potential long-term
anomalies in SHM data from large civil infrastructure.
This unified visualization supports efficient and scal-
able assessment of structural health over time.

There are several methods for data DDM, with one
of the most effective being the KL divergence,44 also
known as relative entropy. KL divergence serves as a
statistical measure to quantify the dissimilarity between
two probability, offering higher sensitivity compared
to alternative DDM measures (e.g., Wasserstein dis-
tance and Jensen–Shannon divergence). This property
makes it particularly useful for the early detection of
distribution shifts or variations. The KL divergence
between two Gaussian distributions P;N (m1,s

2
1) and

Q;N (m2,s2
2) can be derived from its general definition

as follows44:

DKL(PQ) =

ð‘

�‘

P(x)log
P(x)

Q(x)
dx ð2Þ

By substituting the distributions P and Q into Equation
(2) and simplifying, the final expression for the KL
divergence is obtained as follows45:

DKL(PkQ) = log
s2(i)

s1

+
s2

1 + m1 � m2(i)ð Þ2

2s2(i)2
� 1

2
ð3Þ

Here, m1 and s1 correspond to the trained baseline dis-
tribution P, while m2(i) and s2(i) correspond to the
current distribution Q(i). In this study, a portion of the
data collected during the healthy state of a structure is

used to train a baseline distribution P, representing
the undamaged condition. At each subsequent time i, a
new distribution Q(i) is fitted to the updated data (next
windows). The KL divergence between the trained
baseline P and the current distribution Q(i) is then cal-
culated as the HI:

HI= DKL(PkQ(i)) ð4Þ

In this study, no fixed or adaptive threshold was
applied to the HI. Nonetheless, threshold determina-
tion for failure detection is considered an important
future step.

Experimental measurement and
validation

To validate the proposed HI for damage detection and
localization, an experimental fatigue test was con-
ducted using the four-point bending test under load-
controlled conditions in a climate chamber. This test
setup was selected because it enables measuring a fairly
uniform strain field in the central area of the sample
and allows introduction of temperature variations. In
this study, the temperature was intentionally varied in
a random manner during testing to simulate in situ
environmental conditions more realistically. For this
test, three beam samples with dimensions 60 3 60
3 400 mm were fabricated, and foil SGs were installed
on the bottom side of the samples within a shallow
groove (10 mm wide, 4 mm deep) to prevent interfer-
ence of sensor wires with the supports (see Figure 2).
The sensors were placed in the region between the two
internal supports, where the strain distribution is uni-
form, and the likelihood of damage occurrence is the
highest. In the first test, three SGs with a length of
10 mm were used. To cover a larger area, an additional
longer SG with a length of 20 mm was incorporated in
the subsequent two tests.

Figure 3 illustrates the configuration of the SGs,
their numbering, and the location of the cracks after
the fatigue tests. The crack in sample 1 occurred out-
side the region covered by the installed sensors. In sam-
ple 2, the crack propagated beneath SG 3, damaging
it. For sample 3, the crack initiated directly beneath
SG 1.

During the test, strain responses were sampled at
500 Hz using an EDX-10 compact recording system
and processed with the DCS-100A software. Figure 4
illustrates the SG responses during the fatigue test for
each sample, along with the corresponding temperature
variations. As can be seen, some variations in the
responses are observed, which can be attributed to ran-
dom temperature fluctuations imposed during the test.
This variability is important for evaluating the
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robustness of the proposed HI under conditions similar
to in situ environments. For sample 1, because of the
development of damage cracking outside the sensing

area, strain responses from all SGs (SG1, SG2, SG3)
exhibit a decreasing trend. In sample 2, crack propaga-
tion beneath SG3 led to an increasing strain response

Figure 2. Setup for four-point bending fatigue test: (a) schematic of specimen with installed sensors and (b) dynamic testing system
with data acquisition.

Figure 3. Location of installed SGs along with propagated crack after fatigue tests on three different samples. SG: strain gauge.
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in SG3, which eventually rendered the sensor nonfunc-
tional. In contrast, a decreasing strain trend was
observed in the other sensors (SG1, SG2, SG4). For
sample 3, as the crack initiated beneath sensor 1 (SG1),
an increasing strain trend was observed in SG1, while
the other sensors (SG2, SG3, SG4) exhibited a decreas-
ing trend.

As a result, these responses demonstrate that an
effective HI must be not only sensitive to trends in the
data but also capable of identifying damage both at the
sensing location and in its vicinity. This is crucial, as
damage is more likely to occur in the vicinity of the sen-
sing location rather than directly at it. Therefore, focus-
ing on the vicinity region is critical for accurate damage
detection. The experimental laboratory tests were
halted when stiffness dropped by 90%, limiting the
ability to monitor strain responses further. However,
strain levels are expected to remain relatively low com-
pared to historical values. In addition, changes due to
environmental effects may be mistaken for damage.
However, it is important to note that the impact of
environmental factors, such as temperature, on strain
responses is typically reversible, whereas strain changes
caused by damage are irreversible. This irreversibility
in data variation highlights the distinction between
environmental effects and damage-induced changes in
response. It is also valuable to monitor temperature
fluctuations alongside HIs for better accuracy. If the
HI and temperature variations follow the same trend, it
can be inferred that the structure remains healthy.
Conversely, if a deviation between the two trends is
observed, damage may be propagating within the
structure.

As shown in Figure 4, there is a noticeable differ-
ence in the strain response amplitude across all sam-
ples. To quantify these differences, the mean amplitude
for each sensor was calculated over a short segment at
the beginning of the test, when the sample was in a
healthy state. The results of this analysis are presented
in Figure 5. This observation reflects real-world condi-
tions, where even under the same load and with sensors

Figure 4. SG responses during fatigue tests and corresponding
temperature variations for each sample. SG: strain gauge.

Figure 5. Comparison of mean amplitude of each sensor for
all samples (during healthy stage).
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installed in the same region, variability in strain
response amplitude can still occur due to the inherently
heterogeneous nature of asphalt mixtures. Another sig-
nificant factor contributing to this variability is the
bonding quality between the SGs and the specimen.
Differences in the adhesive layer’s uniformity and
bonding strength can lead to variations in strain trans-
fer, even when sensors are located in the same region
of the material. As a result, only the trend of variation
among the sensors and their relative differences can be
meaningfully compared, rather than their absolute
values.

Before applying the framework, it is important to
note that the robustness and responsiveness of the pro-
posed HI depend on two key parameters: the strain
level interval in the cumulative loading-time analysis
and the window size used for segmentation. To evalu-
ate their impact, a sensitivity study was conducted on
laboratory test data (sample 3, SG1).

The strain level interval controls the resolution at
which cumulative strain loading is quantified. Smaller
intervals (e.g., 1 or 5 microstrain (me)) make the HI
highly sensitive to short-term and reversible changes,
such as fluctuations caused by environmental varia-
tions or loading randomness. However, this comes at
the cost of increased computational effort and a higher
risk of misinterpreting temporary or non-damage-
related fluctuations as structural deterioration. Larger
intervals (e.g., 15 or 20 me) reduce sensitivity but
increase robustness and computational efficiency, as
small-scale fluctuations are smoothed out. As shown in
Figure 6(a), increasing the strain level interval progres-
sively reduces the short-term sensitivity of the HI,
while making the trend more stable and representative
of long-term changes. Based on this trade-off, an inter-
val of 10 me was selected in this study, providing a bal-
ance between sensitivity to structural deterioration and
robustness against environmental variability.

The window size determines the number of data-
points in each segment used to construct cumulative
histograms. Smaller windows (e.g., 500 datapoints)
provide higher temporal resolution, since the HI is
updated more frequently, allowing faster detection of
changes. However, the use of smaller windows requires
processing a larger number of segments to cover the
same monitoring duration, which increases computa-
tional demand. In contrast, larger windows (e.g., 6000
datapoints) update the HI less frequently, which
improves statistical stability and computational effi-
ciency but delays damage detection. As shown in
Figure 6(b), all tested window sizes (500, 1000, 2000,
4000, and 6000) successfully captured the same damage
event. However, because the total signal length is fixed,
the number of windows varies with the chosen window
size. This difference in segmentation explains why the

detection point appears at different window indices,
even though the underlying damage event is the same.
Notably, the HI remained stable across all cases, with
no excessive fluctuations even at small window sizes,
confirming the robustness of the cumulative histogram
approach. Based on this analysis, a window size of
2000 datapoints was selected, as it offered a good bal-
ance between early sensitivity, computational effi-
ciency, and statistical robustness.

Figure 7 illustrates the HI generated for each sample
and SG sensor. For each signal, 20% of the segments
were used to establish trained baseline distributions
(at healthy status). As shown in Figure 3, cracks
occurred beneath SG3 in sample 2 and beneath SG1
in sample 3. A rapid and significant increase in HI
can be observed in Figure 7. This highlights
the robustness and sensitivity of the proposed HI
methodology in detecting and localizing damage.
Importantly, the approach eliminates the need for long-
term storage of raw data.

Figure 6. Sensitivity analysis of the HI for sample 3, SG1: (a)
effect of strain level interval and (b) effect of window size. HI:
health indicator; SG: strain gauge.
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For all sensors in sample 1, as well as the sensors
near the crack in samples 2 and 3, a minor increase in
HI can be observed. However, if the test had been con-
tinued, HI would likely have shown a steeper increase.
This conclusion is supported by Equation (3), consider-
ing that both the mean and standard deviation of the
distribution are expected to decrease under such condi-
tions. Another important consideration is that changes
in strain levels occur more slowly when the sensor is

located far from the crack compared to when it is
placed close to the crack. This is because the strain
field dissipates with distance from the crack, leading to
a delayed response in detecting cracks initiated near
the sensor. Consequently, cracks forming far from the
sensor may take longer to be detected. Furthermore,
the accuracy and sensitivity of detection are influenced
by the distance between the crack and the sensor.

Application to field data

In this phase, the system was evaluated using healthy-
state field data and synthetic damage data generated
from those measurements collected from one of the
three test tracks constructed at the Port of Antwerp-
Bruges. More details about the three test tracks can be
found in the study by Hernando et al.46 The test track
consisted of two sections (1 and 2) with different
asphalt mixtures, each further divided into four subsec-
tions (A, B, C, D) at different depths or positions
within the lane. In each subsection, a network of FBG
sensors was installed according to the configuration
illustrated in Figure 8.

As shown in Figure 8, each subsection contains a
fiber network with 32 FBG sensors positioned in both
transverse and longitudinal directions to monitor the
strain and temperature of each layer. Unfortunately,
some FBG sensors in each subsection became nonfunc-
tional due to damage sustained during the construction
of the test track. The list of operational FBG sensors is
provided in Table 1. Strain data from the test
track were collected using an eight-channel, 2000 Hz
FBG-Scan 708D optical interrogator (FBGS
Technologies GmbH, Jena, Germany) connected to the
FBG fibers, with a sampling frequency of 100 Hz. The
ILLumiSense v2.3.5.5 software (FBGS Technologies
GmbH, Jena, Germany) was utilized to convert wave-
length shifts into strain and temperature data. To
enable continuous monitoring, solar panels and a wind
turbine were installed to provide a sustainable power
source. The collected data were continuously trans-
mitted to an on-site industrial computer, where they
were compressed to about 2% of the original volume.
The compressed files were then transferred to a data
center equipped with a network-attached storage sys-
tem and decompressed for offline analysis. This work-
flow is time-consuming and requires both substantial
storage and bandwidth, posing a significant challenge
for large-scale monitoring with sensor networks. These
constraints highlight the importance of developing fra-
meworks, such as the proposed HI, that can compress
SHM data efficiently while still preserving the essential
information needed for structural assessment.

After the installation of all equipment, a continuous
monitoring campaign was launched, running from

Figure 7. HIs for each sensor installed on samples: (a) sample
1, (b) sample 2, and (c) sample 3. HI: health indicator.
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April 28, 2024, to October 17, 2024, with a sampling
frequency of 100 Hz. Based on prior continuous moni-
toring conducted on a simpler test track, an FBG sen-
sor network-based monitoring system was developed.
This system automates daily data management and pre-
processing, incorporating advanced signal processing
techniques augmented by a multi-sensor data fusion
approach to minimize data variability at each time step
i, as expressed by the following equation43:

Fdata ið Þ=FBGj ið Þ where j = argmax FBGj ið Þ
�� ��

1<j<p
ð5Þ

Here, p is the number of FBG sensors that are fused.
Prior to fusion, each strain signal was preprocessed to

remove temperature-induced strain using wavelet

decomposition, as described in our previous study.43

This process separates the low-frequency (thermal) and

high-frequency (traffic load-induced) components,

retaining only the latter for subsequent HI computa-

tion. In the current study, this process was implemen-

ted on a more complex test track, supported by the HI

developed as part of this research. The fused sensors

are listed in Table 2, where it is noted that all FBG sen-

sors in the same lateral direction were fused as summar-

ized in Table 2. A flowchart of the system is provided

in Figure 9. The system’s final output consists of HIs

for each section, which are further consolidated for

each subsection.

Figure 8. Monitoring test track for pavement monitoring using FBG sensor network. FBG: fiber Bragg grating.

Table 1. List of operational FBG sensors after deployment.

Section Subsection Operational FBG sensors

1 A 1–17
1 B All
1 C 1–7, 28–32
1 D All
2 A 1–7, 27–32
2 B 20–32
2 C 27–32
2 D All

FBG: fiber Bragg grating.

Table 2. List of fused FBG sensors group.

Fused group FBG sensors in group

F1 FBG1, FBG2, FBG3, FBG4, FBG5, FBG6, FBG7
F2 FBG8, FBG9, FBG10, FBG11, FBG12
F3 FBG28, FBG29, FBG30, FBG31, FBG32
F4 FBG13, FBG22, FBG23
F5 FBG14, FBG21, FBG24
F6 FBG15, FBG20, FBG25
F7 FBG16, FBG19, FBG26
F8 FBG17, FBG18, FBG27

FBG: fiber Bragg grating.

Golmohammadi et al. 9



Since the HI magnitude is influenced by the proxim-
ity of the sensor to the damaged area, the proposed
multi-sensor fusion step mitigates this limitation by
combining measurements from sensors within the same
lateral direction, ensuring that the closest affected sen-
sors contribute most strongly to the HI.

In this study, only positive (tension) traffic load-
induced strain was considered. Figure 10 illustrates the
HI generated for each subsection based on data from the
operational sensors. Similarly, 20% of each FBG data
was used for training to construct a trained baseline
PDF, representing the healthy state as newly constructed
pavement, while the variations in HI shown in Figure 10
correspond to the remaining 80% of the FBG data.

As shown in Figure 10, the data from the network
can be efficiently tracked collectively. Depending on
the number of datapoints collected, the number of win-
dows varies, which consequently affects the length of
the HI. For each subsection, it is clear which datasets
exhibit the most significant variations relative to the
training data and which ones remain smooth, display-
ing only minor fluctuations.

Overall, the data indicate that despite some fluctua-
tions, no irrecoverable or significant changes are present,
suggesting that the pavement remains in good condition.
The observed variations are primarily attributed to exter-
nal factors, such as environmental effects and loading
conditions, which influence changes in the HIs during the
monitoring campaign. Notably, certain prominent peaks
in the HI data warrant further discussion. For instance,
peaks are observed in F1–D of section 2. Detailed analy-
sis revealed that these long-term anomalies correspond to
instances when a vehicle was parked over the sensors, as
evidenced by distinct patterns in the data shown in
Figure 11. Additionally, significant changes in strain lev-
els, likely caused by increased loading or temperature,
may also contribute to these peaks over time. This is fur-
ther illustrated in Figure 11. It is important to note that
although thermal strain was removed during preproces-
sing, traffic load-induced strain remains indirectly influ-
enced by temperature because the asphalt mixtures are
temperature-dependent. Consequently, variations in tem-
perature can alter strain levels and, depending on their
intensity, affect the HI trend.

Figure 9. General architecture of the probabilistic-based monitoring system using an FBG sensor network, where p is the number
of subsections, n is the number of FBG sensors in each subsection, m is the number of datasets after preprocessing and fusion, and k
is the number of sections. FBG: fiber Bragg grating.
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These findings underscore the inherent randomness
of field data, which is influenced by various parameters
that impact HIs. Understanding these potential exter-
nal influences is essential for interpreting the observed
trends.

To confirm that the developed HI can effectively
detect damage even in real-world random conditions,
one dataset from section 1 (F3–B) was randomly
selected to generate synthetic damage data. In the first
scenario (see Figure 12(a)), it was assumed that

Figure 10. HIs for each section: (a) section 1 and (b) section 2 (Fi–j, where i represents the fused group number and j denotes the
subsection label). HI: health indicator.

Figure 11. FBG data recorded from F1–D of section 2 that shows the parked vehicles’ parent and overall strain level change. FBG:
fiber Bragg grating.
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damage propagated at the sensor location, resulting in
an increase in the overall strain levels recorded by the
sensor over time. For this scenario, the initial recorded
signal was amplified by factors of 1.5, 2, and 2.5. In
the second scenario (see Figure 12(b)), introduced for
greater robustness, it was assumed that damage propa-
gated in the vicinity of the sensor location, leading to a
decrease in the overall strain levels recorded by the sen-
sor. In this case, the signal was scaled down by factors
of 0.6, 0.5, and 0.4.

The proposed methodology was applied to the syn-
thetic damage data to generate HIs for both scenarios.
Figure 13 demonstrates the evolutionary trend of HIs,
reflecting significant variations in strain data. In sce-
nario 1, where strain levels increase due to simulated
damage propagation at the sensor location, HI exhibits
a consistent upward trend. Similarly, in scenario 2,
where strain levels decrease due to damage propaga-
tion near the sensor, HI also follows an increasing
trend, highlighting its ability to capture both strain
amplification and reduction effects associated with
damage progression.

This study further suggests that defining a fixed or
universal threshold for HIs to detect damage is not

feasible due to the inherently random and variable
nature of field data. Instead, a more robust and reliable
approach involves fitting a curve to the HIs over time to
capture their underlying evolutionary trends. By analyz-
ing the rate of change of HIs and identifying significant
deviations from the baseline trend, it becomes possible
to detect early signs of damage. This method leverages
the temporal dynamics of HIs, providing a data-driven
way to account for randomness while improving the sen-
sitivity and reliability of damage detection.

Conclusions

This study introduces a probabilistic-based framework
for constructing HI using FBG sensor networks for
road infrastructure health monitoring. By leveraging
cumulative loading-time analysis, probability theory,
and KL divergence, the proposed approach effectively
transforms large-scale sensor data into meaningful indi-
cators capable of detecting and localizing structural
damage. The key findings of this study are as follows:

1. Experimental results from four-point bending fati-
gue tests revealed that damage propagation in

Figure 12. Generated synthetic FBG data for section 1—F3–B to accomplish this objective: (a) scenario 1: synthetic damage at the
sensor location and (b) scenario 2: synthetic damage in the vicinity of the sensor. FBG: fiber Bragg grating.
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materials affected the response of sensors both at
the damage location and in its vicinity. The severity
of this effect depended on the distance between the
damage and the sensor, emphasizing the need for
an HI sensitive to both direct and nearby damage.

2. Due to factors such as material heterogeneity,
bonding conditions, and aggregate distribution,
sensors placed in regions of uniform strain exhib-
ited differing strain responses, underscoring the
importance of analyzing relative trends rather than
absolute values.

3. Sensitivity analysis showed that smaller strain level
intervals and windows detected changes faster but
were more variable, while larger ones were more
stable but slower. Choosing the right parameters
helps balance early detection with reliable long-
term monitoring.

4. The methodology was successfully implemented on
field data from an FBG sensor network in a long-
term monitoring campaign. This demonstrated its
feasibility for real-world deployment, even in com-
plex and stochastic field environments.

5. Both experimental and synthetic damage data gen-
erated from healthy-state field data analyses indi-
cated that HIs are influenced by damage as well as
environmental effects and operational long-term
anomalies, such as parked vehicles and loading
conditions. Interpreting HIs in the presence of
these factors is necessary, as such variability
reflects the stochastic nature of real-world
applications.

Because of the significant data reduction achieved by
converting raw data into a line-type HI, the proposed

methodology has the potential to become a scalable
and efficient framework for monitoring large sensor
networks. By adapting KL divergence within a cumu-
lative loading-time framework, the proposed approach
uniquely enables data compression while capturing
long-term deterioration trends, both of which are criti-
cal for road infrastructure applications. Moreover,
while demonstrated here using both FBG and SG sen-
sors, the framework is general and could be extended
to other sensing technologies (e.g., piezoelectric sen-
sors). Future research should focus on refining the HI
framework, integrating advanced machine learning
techniques, and adapting the methodology to other
sensor types and infrastructures.
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