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Nonlinear dynamics and magneto-elasticity
of nanodrums near the phase transition

Makars Šiškins 1,2 , Ata Keşkekler 1, Maurits J. A. Houmes 3,
Samuel Mañas-Valero 3,4, Maciej Koperski 2,5, Eugenio Coronado 4,
Yaroslav M. Blanter 3, Herre S. J. van der Zant 3, Peter G. Steeneken 1,3 &
Farbod Alijani 1

Nanomechanical resonances of two-dimensional (2D) materials are sensitive
probes for condensedmatter physics, offering new insights into magnetic and
electronic phase transitions. Despite extensive research, the influence of the
spin dynamics near a phase transition on the nonlinear dynamics of 2D
membranes has remained largely unexplored. Here, we investigate nonlinear
magneto-mechanical coupling to antiferromagnetic order in suspendedFePS3-
based heterostructure membranes. By monitoring the motion of these mem-
branes as a function of temperature, we observe characteristic features in both
nonlinear stiffness and damping close to the Néel temperature TN.We account
for these experimental observations with an analytical magnetostriction
model in which these nonlinearities emerge from a coupling between
mechanical and magnetic oscillations, demonstrating that magneto-elasticity
can lead to nonlinear damping. Our findings thus provide insights into the
thermodynamics and magneto-mechanical energy dissipation mechanisms in
nanomechanical resonators due to the material’s phase change and magnetic
order relaxation.

The mechanical properties of two-dimensional (2D) materials have
been extensively studied1,2 due to their potential for use in a variety of
applications, such as sensing2–4 and energy transduction5–7. Owing to
its superior sensitivity to applied forces, the motion of these mem-
branes can easily be coupled to various degrees of freedom5,7, ranging
from coupling to photons8,9, phonons10–12 and electrons13–15, to an
interaction between multiple resonators at a distance12,16. Their small
mass and ultra-thin nature also makes them highly susceptible to
geometric nonlinearities17, leading to internal resonances18,19 and var-
ious nonlinear dissipation mechanisms6,10,18,20 that can dictate their
motion dynamics at relatively small amplitudes.

Recently, there has been a growing interest in using nanomecha-
nical vibrations of 2D materials as practical nodes for inferring elastic

and thermodynamic properties of 2D membranes5. Examples include
nonlinear dynamic characterization of their elastic properties17, prob-
ingmagnetic21–27 and electronic phase transitions15,21. Among them, the
ability of these membranes to detect magnetic phase change in the
absence of an applied magnetic field21,23,25 has opened up new avenues
for developing self-sensitive magnetic nano-electromechanical
(NEMS) devices5,7. This approach relies on the coupling between
the magnetic and mechanical properties of the 2D material,
which allows for highly sensitive detection of magnetisation22,27 and
thermodynamics of magnetic phases21,23. Furthermore, since
these freestanding 2D materials are easily driven to the nonlinear
regime of mechanical motion17,18, the comprehensive studies and
analysis of nonlinear dynamics become important given that their

Received: 13 October 2023

Accepted: 18 February 2025

Check for updates

1Department of Precision andMicrosystemsEngineering, Delft University of Technology,Mekelweg2,2628CDDelft, TheNetherlands. 2Institute for Functional
Intelligent Materials, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore. 3Kavli Institute of Nanoscience, Delft University of
Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. 4Instituto de Ciencia Molecular (ICMol), Universitat de València, c/Catedrático José Beltrán 2,
46980 Paterna, Spain. 5Department of Materials Science and Engineering, National University of Singapore, Singapore 117544, Singapore.

e-mail: makars@nus.edu.sg; f.alijani@tudelft.nl

Nature Communications |         (2025) 16:2177 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4295-2221
http://orcid.org/0000-0003-4295-2221
http://orcid.org/0000-0003-4295-2221
http://orcid.org/0000-0003-4295-2221
http://orcid.org/0000-0003-4295-2221
http://orcid.org/0000-0002-5789-4012
http://orcid.org/0000-0002-5789-4012
http://orcid.org/0000-0002-5789-4012
http://orcid.org/0000-0002-5789-4012
http://orcid.org/0000-0002-5789-4012
http://orcid.org/0000-0002-3160-1613
http://orcid.org/0000-0002-3160-1613
http://orcid.org/0000-0002-3160-1613
http://orcid.org/0000-0002-3160-1613
http://orcid.org/0000-0002-3160-1613
http://orcid.org/0000-0001-6319-9238
http://orcid.org/0000-0001-6319-9238
http://orcid.org/0000-0001-6319-9238
http://orcid.org/0000-0001-6319-9238
http://orcid.org/0000-0001-6319-9238
http://orcid.org/0000-0002-8301-914X
http://orcid.org/0000-0002-8301-914X
http://orcid.org/0000-0002-8301-914X
http://orcid.org/0000-0002-8301-914X
http://orcid.org/0000-0002-8301-914X
http://orcid.org/0000-0002-1848-8791
http://orcid.org/0000-0002-1848-8791
http://orcid.org/0000-0002-1848-8791
http://orcid.org/0000-0002-1848-8791
http://orcid.org/0000-0002-1848-8791
http://orcid.org/0000-0002-7956-9966
http://orcid.org/0000-0002-7956-9966
http://orcid.org/0000-0002-7956-9966
http://orcid.org/0000-0002-7956-9966
http://orcid.org/0000-0002-7956-9966
http://orcid.org/0000-0002-5385-0282
http://orcid.org/0000-0002-5385-0282
http://orcid.org/0000-0002-5385-0282
http://orcid.org/0000-0002-5385-0282
http://orcid.org/0000-0002-5385-0282
http://orcid.org/0000-0002-5764-1218
http://orcid.org/0000-0002-5764-1218
http://orcid.org/0000-0002-5764-1218
http://orcid.org/0000-0002-5764-1218
http://orcid.org/0000-0002-5764-1218
http://orcid.org/0000-0002-7439-8483
http://orcid.org/0000-0002-7439-8483
http://orcid.org/0000-0002-7439-8483
http://orcid.org/0000-0002-7439-8483
http://orcid.org/0000-0002-7439-8483
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57317-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57317-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57317-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57317-4&domain=pdf
mailto:makars@nus.edu.sg
mailto:f.alijani@tudelft.nl
www.nature.com/naturecommunications


magneto-elastic interactions and microscopic dissipation pathways
are inherently intricate.

Here, we explore the effect of magneto-elastic coupling and
magnetic order on the nonlinear dynamics of antiferromagnetic
membranes made of FePS3-based heterostructures. We study the
changes in both nonlinear stiffness and nonlinear damping as a result
of the antiferromagnetic phase transition near the Néel temperature
TN of FePS3

21,28. Consequently, we describe these experimental obser-
vations with a magnetostriction model, revealing and providing a
description of the magneto-mechanical dissipation mechanism as a
previously unexplored source of nonlinear damping in 2D material
membranes.

Results
In creating a freestanding membrane, we suspend a 9.5 ± 0.6 nm thin
layer of FePS3 over a pre-defined circular cavity with a radius r = 1.5μm
in a Si/SiO2 substrate (Fig. 1). To improve the thermal conductivity of
the FePS3-based heterostructure29 and electrically contact it, we cover
the membrane with multi-layer graphene (MLG) of 2.0 ± 0.7 nm
thickness which provides an excellent thermal sink30,31. These MLG/
FePS3 heterostructuremembranes are thenplaced in anoptical closed-
cycle cryostat chamber and cooled to cryogenic temperatures. At a
specific temperature T set by the local sample heater, we inter-
ferometricallymeasure the amplitude of themembrane’s fundamental
mode of vibration x in response to the low-power opto-thermal
drive21,32 (see Methods and Fig. 1a–c). We then fit the measured reso-
nance peak (grey-filled dots) to the linear harmonic oscillator model
(solid blue line) and extract the corresponding resonance frequency
ω0(T) = 2πf0(T), as shown in Fig. 1c.

Following this procedure, we measure ω0(T) in the temperature
range from 52 to 150 K as shown in Fig. 1d. In the vicinity of T ~ 110 K
(vertical dashed line in Fig. 1d) the resonance frequency ω0(T) exhibits
the antiferromagnetic-to-paramagnetic phase transition-related
anomaly. This becomes even more prominent in the temperature
derivative of f 20ðTÞ (filled grey dots in Fig. 1d) - a quantity which is
related to specific heat cv(T) of thematerial through thermal expansion
coefficient and Grüneisen parameter21. Thus, the temperature of the
discontinuity in � d f 20ðTÞ

dT can be used as a measure of TN at the transi-
tion from ordered to disordered magnetic state21,23. This is further
supported by the fact that themeasured TN also corresponds to a peak
in inverse quality factor Q−1(T) (see Supplementary Note 1), which is
expected to arise near the phase transition temperature16,21,23.

After characterising the dynamics of the membrane in the linear
regime and at a low opto-thermal driving force, we increase the drive
from 0 to 8 dBm to achieve higher force levels and observe features of
the nonlinear motion17. Figure 2a displays an apparent Duffing effect
measured atT = 52K and8dBm, revealing bi-stable amplitude behaviour
that depends on the direction of the frequency sweep. By further
increasing Pac, we observe a corresponding decrease in responsivity of
the resonance peak, shown in Fig. 2b. This indicates the presence of
nonlinear damping in the system, which becomes apparent at high
amplitudes of motion18. We measure the amplitude of membrane
motion aroundω0(T) at 8 dBmof drive in the temperature range from52
to 150 K and plot it in Fig. 2c with respect tomeasuredω0(T) in the linear
regime from Fig. 1d. Two noteworthy observations can be made: first,
the position of the resonance peak at a higher driving power is shifted to
higher frequencies near TN, indicating a change in linear membrane
stiffness k1, corresponding to a change in the strain21; secondly, the peak
amplitude of the Duffing response and its associated frequency changes
depending on the magnetic state of the membrane with the largest
effect near TN, indicating a change in nonlinear membrane stiffness k317

(see Fig. 2c and Supplementary Note 2). We have also performed control
experiments on multiple samples using both optical and electrical
excitation, where an AC voltage Vac signal is applied between the Si
backgate of the chip and the conducting top layer of MLG. Since we
obtain similar results for the electrostatic drive as for optothermal drive
we conclude that the reportedobservations are intrinsic to the resonator
and not related to the driving mechanism (see Supplementary Note 3).

To qualitatively interpret the experimental findings as a function of
temperature, we utilize a dedicated algorithm to fit the measured non-
linear response at different temperatures in the vicinity of TN. Our
approach involves fitting the experimental data with the Duffing-van der
Pol equation (see equation (14) in Methods and Supplementary Note 4),
as depicted in Fig. 3a. To avoid an over-parameterised fitting procedure
and reduce the uncertainty of the fit, we first extract quality factorsQ(T)
and ω0(T) from the linear resonance peak at low drive levels. Next, we
extract the relative driving force Fω(T) by fitting the off-resonance
response to a harmonic oscillator model. After obtaining all the linear
parameters, we obtain the Duffing term k*

3ðTÞ at Pac = 10 dBm (Fig. 3b)
from the slope of the backbone curve of the nonlinear frequency
response18. Consequently, we fix this value to fit the forward frequency
sweep response, thus extracting the van der Pol-type nonlinear damping
term η*

nlðTÞ using an optimizer algorithm (see Supplementary Note 4).
We plot the extracted nonlinear damping term in Fig. 3c for the
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Fig. 1 | Membrane resonator made of MLG/FePS3 heterostructure. a Schematic
of the laser interferometer measurement setup (see Methods). PD is the photo-
diode, LD - the laser diode, CM - the cold (dichroic)mirror, PBS - the polarized beam
splitter, VNA - the vector network analyzer. b Optical image of the sample. c The
measured fundamental resonance peak of themembrane (filled grey dots) at opto-
thermal drive excitation power Pac = 0 dBm. The solid blue line is fit of the linear

damped harmonic oscillator model. The inset shows the schematic of the device
cross-section. A vertical dashed line indicates extracted ω0. d The resonance fre-
quency ω0 as a function of temperature, extracted from the fit similar to (c) (filled
blue dots). Connected grey dots are the corresponding derivative of the f 20. A
vertical dashed line indicates TN.
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temperature range 52−150 K. As seen from the results of the fit to
experimental data, at a higher driving power and as the temperature
decreases, a sharp drop is observed in k*

3ðTÞ at T < TN. This feature is also
accompaniedby apeak inη*

nlðTÞ at approximately the same temperature.
Pronounced features in both k*

3ðTÞ and η*
nlðTÞ close to TN shown in

Fig. 3b and c indicate the softening of nonlinear stiffness as well as a
prominent increase in the nonlinear dissipation in the anti-
ferromagnetic phase of FePS3, suggesting the magnetic origin of the
effect. Therefore, to underpin the influence of magneto-mechanical
coupling on our observations, wemodel the systemby considering the
elastic potential energy as a function of themembranedisplacement at
its centre Uel and the magnetic free energy Um of FePS3, coupled via
spontaneous magnetostriction Ums

21,27,33 (see Supplementary Note 5):

UT =Uel +Um +Ums =
k1

2
x2 +

k3

4
x4

� �

+ Um,0 +
a T � TN

� �
2

L2 +
B
4
L4

� �
+

λijσijðxÞ
2

L2
� �

,

ð1Þ

where σij(x) is the amplitude-dependent stress tensor, L the anti-
ferromagnetic order parameter in the direction of the easy-axis of
FePS3, λij the magnetostriction tensor, Um,0 is the magnetic energy in
the paramagnetic state, and a, B are phenomenological positive
constants33,34. By minimizing equation (1) with respect to L at a static

deformation ω = 0, the ground state order parameter L0 is obtained
(see Methods and Supplementary Note 5). When the membrane is in
motion and the magnetic system is out of equilibrium, the order
parameter is stress- and time-dependent as L(t) ≃ L0 + Lω(t). Subse-
quently, the rate at which L(t) approaches the ground state L0 (Fig. 3f)
is described by the kinetic equation35–37:

dL
d t

= � κ
∂UT

∂L
, ð2Þ

where t is the time and κ the phenomenological kinetic coefficient,
which we assume to be temperature-independent for simplicity.

We further describe the driven coupled magneto-mechanical sys-
tem by linearizing equation (2) near L0 together with obtaining the
equation of motion associated with the generalized coordinate x. In
doing that, we define the Lagrangian L= 1

2m _x2 � UT and use the Euler-
Lagrange equations to obtain the systemof coupled dynamic equations:

_Lω +
Lω
τ

+ λκL0σω =0, ð3Þ

m€x + k1x + k3x
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λ
2
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where σ = σ0 + σωwith static σ0 and dynamic σω stress contributions, Fω
the amplitudeofperiodicdriving force, λ the specificmagnetostriction
coefficient of λij tensor that describes the coupling of in-plane
membrane stress to order parameter in the direction of the easy axis
L and τ = ½2κaðT *

N � TÞ��1
the magnetic relaxation time constant of

FePS3 layer
35,36,38 (see Methods and Supplementary Note 5). Typically

fast magnetic relaxations in antiferromagnets are of the order of
picoseconds39–41. However, in the case of FePS3 long nanosecond-scale
relaxation times are required to relax the magnetic sub-lattice near TN
due to the strongly coupled ordering of spins to the slow process of
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(black solid lines) and backward frequency sweeps (grey solid lines) at Pac = 10 dBm
and temperature point indicated. The light blue region schematically indicates the
antiferromagnetic phase of the membrane. b Connected blue dots - the measured
k*
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c Connected blue dots - the measured η*
nlðTÞ, extracted from the fit similar to (a),

normalized by the value at 53K.d and e Solidmagenta lines - the nonlinear stiffness
and nonlinear damping model of equations (6) and (7) respectively at ω = ω0(T)

from Fig. 1d and τ�1ðTÞ= 2κa T *
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� 	
from Zhou et al.38 for h = 9.5 nm, solid light

magenta lines - the model of equations (6) and (7) at the same ω = ω0(T) and τ = 0
(see Supplementary Note 5). The dashed light grey line in (d) - non-magnetic k3(T)
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interlayer shear (Fig. 3f)38,42. We hypothesise that the slow spin-shear
relaxation mechanism in FePS3

38,42 may have the dominant contribu-
tion to the magnetic time constant τ of equation (3), and hereinafter
consider the experimentally measured spin-shear τ(T) from the work
of Zhou et al.38 (see Supplementary Note 5). The Lω term then induces
oscillations in L, which can lag the membrane motion at sufficiently
large τ38,42 producing a delay in the coupled magneto-mechanical
system.

Solving the coupled system of equations (3) and (4) using the
harmonic balance method, we obtain the steady-state amplitude-fre-
quency response (seeMethods and Supplementary Note 5). As a direct
consequence, when the membrane is in motion, the linear and non-
linear stiffness as well as nonlinear damping coefficients are renor-
malized by additional magnetic terms, which yield the following
steady-state equation of Duffing-van der Pol type18:

3k�
3

4
a3
s +mðω2

0 � ω2Þas

� �2

+ η�
nla

3
s +

mω0

Q
as

� �2

ω2 = F2
ω, ð5Þ

in which as is the steady-state amplitude, m the effective mass of the
resonator, Fω the drive force amplitude, mω2

0 = k
�
1 = k1 + λL

2
0
Ec3
2r2 the

renormalized linear stiffness, k�
3 the renormalized nonlinear stiffness:

k�
3 =

k3 � λ2

12B
E2c23
r4

1
1 + 4ω2τ2 T <T�

N

k3 T >T�
N,

(
ð6Þ

and η�
nl the magnetic nonlinear damping term of van der Pol type18,43:

η�
nl =

ηnl +
λ2

2B
E2c23
r4

τ
1 + 4ω2τ2 T <T�

N

ηnl T >T�
N,

(
ð7Þ

where k3 is the non-magnetic nonlinear stiffness, ηnl is the non-
magnetic nonlinear damping, E the Young’s modulus and c3 the
geometric numerical factor that also depends onmembrane’s Poisson
ratio17. We note that when Lω ≈ L0 at T � T�

N, higher-order (quintic)
nonlinear terms can appear in the motion of the magnetic membrane
at high vibration amplitudes. However, in Supplementary Note 6 we
show that in our measurements at T ≈ TN the nonlinear resonance
peaks are close to the onset of nonlinearity due to high damping, i.e. in
the regime when the vibration amplitude is too low to observe the
effect from quintic terms.

Renormalization of k�
1 and k�

3 leads to two important con-
sequences. First, since the magnetostriction term is quadratic in L, it
has the same functional form as the quadratic k1 term in the magnetic
energy and, since k1 depends on the Néel temperature, it can therefore
be considered as a renormalization of TN (see Supplementary Note 5
for more details). Thus, strain reduces the transition temperature as
T�
N =TN � λijσij ðxÞ

a , which was previously demonstrated by applying a
static external force21. Likewise, at high amplitude of oscillations, the
change of stress due to the membrane motion results in an additional
strain (see Supplementary Note 5), which can reach up to 0.03% in
similar systems44 and accordingly reduce T�

N of FePS3 by a few
Kelvins21. This produces a corresponding change in k1 and a shift of the
phase transition-related feature inω0(T) nearTN, consequently causing
the above-mentioned shift of the resonance curvewith respect toω0 at
a higher driving power in Fig. 2c (see Supplementary Note 5). The
contribution of the order parameter on effective linear stiffness k�

1 /
L20 is studied and described in detail in a previous work27.

Second, unlike the renormalization of k1, which is independent of
dynamics of the order parameter L, consequences for nonlinear
parameters k3 and ηnl arise from the modulation of the order para-
meter.As a result, both k�

3 andη�
nl are functionsof a characteristicdelay

of the coupled dynamic system described by τ and ω. As follows from
equation (6), k�

3 starts to decrease with δk�
3 / � 1

1 + 4ω2τ2 when T <T�
N.

The same magnetic contribution also leads to substantial nonlinear

damping η�
nl at T <T�

N, which scales as δη�
nl / τ

1 + 4ω2τ2 and peaks at
2ωτ ≃ 1 (see Methods and Supplementary Note 5). This behaviour can
be understood intuitively: magnetostrictionmediates the exchange of
themembrane’smechanical energywith a coupledmagnetic reservoir,
which can happen twice for one period of motion due to symmetrical
modulation of stress in the up-down geometry of its deflection. If
membrane oscillations are much faster than the energy exchange rate
to a coupled magnetic reservoir, i.e 2ω ≫ 1/τ, there is not enough time
for it to relax and dissipate energy. On the contrary, when the oscil-
lations are at a much slower timescale 2ω ≪ 1/τ, the energy exchange
follows the oscillations with a negligible delay, again resulting in
minimal dissipation43. Thus, the nonlinear damping due to coupling to
the order parameter peaks when the relaxation delay is significant
and 2ωτ ≃ 1.

Subsequently, we plot the derived magnetostrictive model of
equations (6) and (7) for ω = ω0 in Fig. 3d and e, next to the measured
k�
3ðTÞ and η�

nlðTÞ in Fig. 3b and c. We assume the non-magnetic Duffing
constant k3 to be temperature dependent, providing the additional
background-slope in k�

3ðTÞ below and above T�
N. As shown in Fig. 3b

with a solid magenta line, equation (6) reproduces the measured
decrease of k�

3 in the proximity of T�
N. At the same time, the same

model in Fig. 3c reproduces the measured peak in η�
nlðTÞ at 2ω0τ = 1.

Notably, in a hypothetical case where τ is sufficiently small, i.e. τ = 0 in
equations (6) and (7), the model predicts the discontinuous decrease
in k�

3ðTÞ at T�
N, while the magnetic contribution to η�

nlðTÞ completely
vanishes as shown in Fig. 3d–e with light magenta lines.

In discussing the physical interpretation of the origin of this
nonlinear damping, its microscopic mechanism should be envisioned
as a consequence of a nonlinear oscillator’s excited vibrational modes
scattering off its own magnetic energy reservoir10,45. This interaction
then is accompanied by the energy transfer of two oscillation quanta
(2ω0) for nonlinear damping45. Importantly, a rather general form of
free energy equation and low order of the coupling term suggests that
similar effectsmay appear in systemswithother types of non-magnetic
phase transitions, for instance, charge density wave21 or coupling the
mechanicalmotion to an electronic energy reservoir. Interestingly, this
mechanism also finds its macroscopic similarities to magnetic internal
friction arising due to a delay in Young’s modulus relaxation near TN
which occurs in large-scale bulk of magnetic solids36,37,46–49. However,
the crucial distinction at the nanoscale is that it affects different
mechanical properties at twice the resonance frequency. Our analysis
predicts the observed nonlinear effect in this system appearing as a
result of modulation of the antiferromagnetic order parameter L with
dynamic strain via magnetostriction, delayed by a suggested spin-
shear relaxation τ38,42 (see Fig. 3f). This is supported by a case of λ = 0
eliminating all magnetic contributions to both k�

3 and η�
nl.

To further support the relation to antiferromagnetic order, we
have performed control experiments in the presenceof a high external
magnetic field H. As shown in Fig. 4, a suspended MLG/FePS3 mem-
brane is cooled down to cryogenic temperatures by low-pressure He
exchange gas and measured in the out-of-plane H-field configuration
using an experimental procedure identical to the one described in
Fig. 1. As expected for the typical antiferromagnet, we do not find any
significantmagnetic field dependence atT = 10 K fromH = − 7 to + 7 T,
while keeping all other parameters constant, as shown in Fig. 4a.
However, we observed a H-field dependence of nonlinear parameters
in the proximity of TN (T = 90 K, Fig. 4b), which is absent for T≪ TN. As
shown in Fig. 4b, both the nonlinear stiffness k�

3 (as viewed through the
change of slope in the square of the amplitude) and the decrease in the
maximal amplitude point at a constant driving force (related to non-
linear damping η�

nl) show a clear dependence on H (see Supplemen-
tary Note 7).

Although this provides additional evidence of the magnetic nat-
ure of the effect, wenote that deviations between theoretical estimates
of nonlinear stiffness and damping with experimental data, such as a
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sharp feature in k�
3ðTÞ found near TN in Fig. 3b, can have multiple

sources. Among these are modal interactions of non-magnetic nature
in the experiments18 that have not been accounted for in the model. In
addition, deviations near T�

N may originate in the mean-field approx-
imation of Landau’s theory of phase transition, which is not an exact
description of van der Waals antiferromagnets in the critical region
and rather describes the overall temperature behaviour27 (see Fig. 3).
Perhaps, some additional effects may also contribute to a part of our
observation. One such noteworthy effect is a similar relaxation due to
thermoelasticity21. Yet, the latest experiments show that thermal
relaxation time-scales in membranes of FePS3 are up to two orders of
magnitude slower50 than spin-shear relaxation-related τ considered in
this work for comparable sample thicknesses38. Therefore, the pre-
sence of substantial linear thermoelastic damping and the probed
nonlinear damping near TN are not a direct consequence of each
other21,50. This is further justified by the fact that magneto-mechanical
coupling and the associated relaxation mechanism does not lead to

any linear damping terms analytically (see Supplementary Note 5).
Another contribution may come from nonlinear effects, like non-
linearities in optothermal response51,52, and resulting nonlinear terms
in the magnetostrictive actuation force50 that may affect the change
near the magnetic phase transition. Nevertheless, quantitatively con-
firming either of these hypotheses would require further experimental
evidence.

In conclusion, we demonstrated the nonlinear nanomechanical
coupling to antiferromagnetic order in FePS3-based heterostructure
membranes. We provide both experimental evidence and theoretical
descriptions of the mechanism responsible for the renormalization of
the nonlinear parameters. We demonstrate a previously unexplored
magneto-mechanical dissipation mechanism supported by a phe-
nomenological theory that accounts for magnetostriction, which
strongly affects the nonlinear dynamics of magneticmembranes, even
in the absence of a magnetic field, near the phase transition tem-
perature.We anticipate that our discoveries offer a newunderstanding
of the thermodynamics and energy dissipationmechanisms related to
magneto-mechanical interactions in 2D materials, which is important
for future studies ofmore intricatemagnetic systems, like 2Dquantum
phases and moiré magnets53, as well as the development of novel
magnetic NEMS and spintronic devices.

Methods
Sample fabrication and characterisation
We pre-pattern a diced Si/SiO2 wafer with circular holes using e-beam
lithography and reactive ion etching. The holes have a radius of r = 1.5
μm and a cavity depth of 285 nm, and the SiO2 layer acts as electrical
insulation between the 2D material membranes and the bottom Si
electrode. For electrostatic experiments, Pd electrodes are patterned
on top of Si/SiO2 chips using a lift-off technique to establish electrical
contact with some samples. To create suspended membranes, thin
flakes of FePS3 and graphite crystals are mechanically exfoliated and
transferred onto the chip using the all-dry viscoelastic stamping
method54 immediately after exfoliation. Flakes of van der Waals crys-
tals are exfoliated from high-quality synthetically grown crystals with
known stoichiometry, and deterministic stacking is performed to form
heterostructures. To prevent degradation, samples are kept in an
oxygen-free or vacuum environment directly after the fabrication.
Atomic Force Microscopy (AFM) height profile scans and inspection
are performed in tappingmode on a Bruker Dimension FastScan AFM.
We typically use cantilevers with spring constants of kc = 30 − 40Nm−1

for inspection. Error bars on reported thickness values are determined
by measuring multiple profile scans of the same flake.

Laser interferometry measurements
The sample is mounted on an x−y piezo-positioning stage inside a dry
optical 4 K cryostat Montana Instruments Cryostation s50. Tempera-
ture sweeps are carried out using a local sample heater at a rate of ~ 3 K
min−1 while maintaining the chamber pressure below 10−6 mbar. Mea-
surements in the externalmagnetic field are performedusing attocube
attoDRY2100 cryostat system, where the sample is cooled down to
cryogenic temperatures by low-pressure He exchange gas. During data
acquisition, the temperature is maintained constant with ~ 10 mK
stability. A power-modulatedblue diode laserwith awavelength of 405
nm is used to optothermally excite the membrane’s motion, and the
resulting membrane displacement is measured using an interfero-
metric detection with a He-Ne laser beam of 632 nm. The inter-
ferometer records the interfering reflections from the membrane and
the Si electrode underneath, and the data is processed by a vector
network analyzer Rohde & Schwarz ZNB4. All measurements are con-
ductedwith incident laser powersofPred≤8μWand Pblue ≤ 35μW,with
a laser spot size of 1μm.To ensure accuracy in the data acquisition, it is
verified that resonance frequency changes due to laser heating are
insignificant for all membranes for Pac ≤ 15 dBm.
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Fig. 4 | Nonlinear dynamics of MLG/FePS3 membrane in the external magnetic
field H. a The measured nonlinear resonance peak of the membrane in forward
frequency sweep as a function ofH-field at T = 10 K (T≪ TN). Inset: Optical image of
the sample. The red label indicates the out-of-plane orientation of H-field. b The
measurednonlinear resonancepeak in forward frequency sweep as a function ofH-
field at T = 90 K (T ≈ TN). The grey arrow in b indicates the decrease in amplitude
and the increase in nonlinear stiffness k*

3ðHÞ at constant driving force.
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Derivation of order parameter dynamics
In the derivation of antiferromagnetic order parameter relaxation
dynamics, we follow closely the approach of Landau-Khalatnikov35 and
Belov-Kataev-Levitin36,37. For simplicity, we assume the bi-axial in-plane
membrane stress σ(x) = σxx = σyy. First, we derive σ(x), assuming
x =as cosðω0tÞ, as17,44:

σðxÞ= σp +
Ec3
2r2

x2 = σp +
Ec3
4r2

a2
s

� �

+
Ec3
4r2

a2
s cosð2ω0tÞ

� �
= σ0 + σωðtÞ

ð8Þ

where as is the steady-state amplitude, σp the pre-stress in the
membrane due to the fabrication process, σ0 the static and σω(t) the
dynamic stress terms. Then, we derive L0, antiferromagnetic order
parameter ground state, by minimizing the total energy of the
magneto-mechanical system (1) with respect to L at constant bi-axial
stress σ0 such that:

∂UT

∂L
=
∂ Um +Ums

� �
∂L

= 0, ð9Þ

resulting in

L20 =
aðTN � TÞ � λσ0

B
=
aðT�

N � TÞ
B

, ð10Þ

where λ is a specific magnetostriction coefficient of λij tensor that
describes the coupling ofbi-axial in-planemembrane stress σ0 to order
parameter L0 in the direction of the easy axis.

Using this result we linearize the unrelaxed L as L ≃ L0 + Lω, where
Lω is the time- and amplitude-dependent dynamic term. When the
membrane is in motion and L is out of the equilibrium, the rate of
relaxation of L to the equilibrium L0 is set by the kinetic equation (2),
which using equation (8) leads to:

dL
dt

=
dLω
dt

= � κ
∂ Um +Ums

� �
∂L

: ð11Þ

This equation can be simplified by Taylor expansion around L0, and
assuming Lω ≪ L0, as follows:

dLω
dt

= _Lω ’ �κ 2BL20Lω + λL0σωðtÞ
h i

, ð12Þ

which rearranges to equation (3), by taking τ = 1
2κa T�

N�TNð Þ
35.

Amplitude of nonlinear resonance peak
We start by solving the first-order differential equation (3) to obtain
the steady-state solution for Lω in terms of τ:

Lω, ss = � λκL0
Ec3
4r2

τ cosð2ωtÞ+2τω sinð2ωtÞ½ �
1 + 4τ2ω2
� � a2

s : ð13Þ

Wekeep the assumption of periodicmotion in the formof x =as cosωt
and plug in the steady state solution in equation (4) such that Lω = Lω,ss.

Next we use the harmonic balance method to obtain the
amplitude-frequency equation (5), considering only the fundamental
harmonic ω0 (see Supplementary Note 5):

a6
s

9γ2

16 + ξ2nlω
2

16

� 	
+a4

s
3γ ω2

0�ω2ð Þ
2 + ξnlω0ω

2

2Q

� 	
+

a2
s

ω0ω
Q

� 	2
+ ω2

0 � ω2
� �2� �

= Fω
m

� 	2
,

ð14Þ

where ω2
0 =

1
m ðk1 + λL

2
0
Ec3
2r2Þ is the re-normalized resonance frequency,

γ = k�
3
m the mass-normalized Duffing coefficient and ξnl =

η�
nl
m the mass-

normalized nonlinear damping coefficient with k�
3 and η�

nl from
equations (6) and (7), respectively.

For further details of the derivation and fitting procedure see
Supplementary Note 5.

Data availability
All relevant data to interpret the results of this study are included in the
figures. Any additional data to this study are available from the cor-
responding authors upon request.
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