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Nanomechanical resonances of two-dimensional (2D) materials are sensitive
probes for condensedmatter physics, offering new insights into magnetic and
electronic phase transitions. Despite extensive research, the influence of the
spin dynamics near a phase transition on the nonlinear dynamics of 2D
membranes has remained largely unexplored. Here, we investigate nonlinear
magneto-mechanical coupling to antiferromagnetic order in suspended FePSs-
based heterostructure membranes. By monitoring the motion of these mem-
branes as a function of temperature, we observe characteristic features in both
nonlinear stiffness and damping close to the Néel temperature Ty. We account
for these experimental observations with an analytical magnetostriction
model in which these nonlinearities emerge from a coupling between
mechanical and magnetic oscillations, demonstrating that magneto-elasticity
can lead to nonlinear damping. Our findings thus provide insights into the
thermodynamics and magneto-mechanical energy dissipation mechanisms in
nanomechanical resonators due to the material’'s phase change and magnetic

order relaxation.

The mechanical properties of two-dimensional (2D) materials have
been extensively studied* due to their potential for use in a variety of
applications, such as sensing”* and energy transduction®”. Owing to
its superior sensitivity to applied forces, the motion of these mem-
branes can easily be coupled to various degrees of freedom®”, ranging
from coupling to photons®’, phonons'®*? and electrons®™, to an
interaction between multiple resonators at a distance’. Their small
mass and ultra-thin nature also makes them highly susceptible to
geometric nonlinearities”, leading to internal resonances'' and var-
ious nonlinear dissipation mechanisms®'*'*?° that can dictate their
motion dynamics at relatively small amplitudes.

Recently, there has been a growing interest in using nanomecha-
nical vibrations of 2D materials as practical nodes for inferring elastic

and thermodynamic properties of 2D membranes’. Examples include
nonlinear dynamic characterization of their elastic properties”, prob-
ing magnetic* > and electronic phase transitions>?, Among them, the
ability of these membranes to detect magnetic phase change in the
absence of an applied magnetic field*** has opened up new avenues
for developing self-sensitive magnetic nano-electromechanical
(NEMS) devices®”. This approach relies on the coupling between
the magnetic and mechanical properties of the 2D material,
which allows for highly sensitive detection of magnetisation”” and
thermodynamics of magnetic phases?”. Furthermore, since
these freestanding 2D materials are easily driven to the nonlinear
regime of mechanical motion”*¥, the comprehensive studies and
analysis of nonlinear dynamics become important given that their
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magneto-elastic interactions and microscopic dissipation pathways
are inherently intricate.

Here, we explore the effect of magneto-elastic coupling and
magnetic order on the nonlinear dynamics of antiferromagnetic
membranes made of FePS;-based heterostructures. We study the
changes in both nonlinear stiffness and nonlinear damping as a result
of the antiferromagnetic phase transition near the Néel temperature
Tn of FePS;*%, Consequently, we describe these experimental obser-
vations with a magnetostriction model, revealing and providing a
description of the magneto-mechanical dissipation mechanism as a
previously unexplored source of nonlinear damping in 2D material
membranes.

Results

In creating a freestanding membrane, we suspend a 9.5 + 0.6 nm thin
layer of FePS; over a pre-defined circular cavity with a radius r=1.5 pm
in a Si/SiO, substrate (Fig. 1). To improve the thermal conductivity of
the FePS;-based heterostructure?® and electrically contact it, we cover
the membrane with multi-layer graphene (MLG) of 2.0 + 0.7 nm
thickness which provides an excellent thermal sink***', These MLG/
FePS; heterostructure membranes are then placed in an optical closed-
cycle cryostat chamber and cooled to cryogenic temperatures. At a
specific temperature T set by the local sample heater, we inter-
ferometrically measure the amplitude of the membrane’s fundamental
mode of vibration x in response to the low-power opto-thermal
drive”*? (see Methods and Fig. 1a—c). We then fit the measured reso-
nance peak (grey-filled dots) to the linear harmonic oscillator model
(solid blue line) and extract the corresponding resonance frequency
wo(T) = 21fo(T), as shown in Fig. 1c.

Following this procedure, we measure wo(7) in the temperature
range from 52 to 150 K as shown in Fig. 1d. In the vicinity of 7~ 110 K
(vertical dashed line in Fig. 1d) the resonance frequency wo(7) exhibits
the antiferromagnetic-to-paramagnetic phase transition-related
anomaly. This becomes even more prominent in the temperature
derivative of ff,(T) (filled grey dots in Fig. 1d) - a quantity which is
related to specific heat c,(7) of the material through thermal expansion
coefficient and Gr%n(zeisen parameter”. Thus, the temperature of the
discontinuity in — % can be used as a measure of Ty at the transi-
tion from ordered to disordered magnetic state**. This is further
supported by the fact that the measured Ty also corresponds to a peak
in inverse quality factor QX(7) (see Supplementary Note 1), which is
expected to arise near the phase transition temperature'**>,

After characterising the dynamics of the membrane in the linear
regime and at a low opto-thermal driving force, we increase the drive
from O to 8 dBm to achieve higher force levels and observe features of
the nonlinear motion”. Figure 2a displays an apparent Duffing effect
measured at 7= 52 K and 8 dBm, revealing bi-stable amplitude behaviour
that depends on the direction of the frequency sweep. By further
increasing P,., we observe a corresponding decrease in responsivity of
the resonance peak, shown in Fig. 2b. This indicates the presence of
nonlinear damping in the system, which becomes apparent at high
amplitudes of motion®. We measure the amplitude of membrane
motion around wq(7) at 8 dBm of drive in the temperature range from 52
to 150 K and plot it in Fig. 2c with respect to measured w(7) in the linear
regime from Fig. 1d. Two noteworthy observations can be made: first,
the position of the resonance peak at a higher driving power is shifted to
higher frequencies near Ty, indicating a change in linear membrane
stiffness k;, corresponding to a change in the strain®; secondly, the peak
amplitude of the Duffing response and its associated frequency changes
depending on the magnetic state of the membrane with the largest
effect near Ty, indicating a change in nonlinear membrane stiffness k3"
(see Fig. 2c and Supplementary Note 2). We have also performed control
experiments on multiple samples using both optical and electrical
excitation, where an AC voltage V,. signal is applied between the Si
backgate of the chip and the conducting top layer of MLG. Since we
obtain similar results for the electrostatic drive as for optothermal drive
we conclude that the reported observations are intrinsic to the resonator
and not related to the driving mechanism (see Supplementary Note 3).

To qualitatively interpret the experimental findings as a function of
temperature, we utilize a dedicated algorithm to fit the measured non-
linear response at different temperatures in the vicinity of Ty. Our
approach involves fitting the experimental data with the Duffing-van der
Pol equation (see equation (14) in Methods and Supplementary Note 4),
as depicted in Fig. 3a. To avoid an over-parameterised fitting procedure
and reduce the uncertainty of the fit, we first extract quality factors Q(7)
and wo(7T) from the linear resonance peak at low drive levels. Next, we
extract the relative driving force F,(T) by fitting the off-resonance
response to a harmonic oscillator model. After obtaining all the linear
parameters, we obtain the Duffing term k;(T) at P,. =10 dBm (Fig. 3b)
from the slope of the backbone curve of the nonlinear frequency
response’®. Consequently, we fix this value to fit the forward frequency
sweep response, thus extracting the van der Pol-type nonlinear damping
term 7,,(T) using an optimizer algorithm (see Supplementary Note 4).
We plot the extracted nonlinear damping term in Fig. 3c for the
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Fig. 1| Membrane resonator made of MLG/FePS; heterostructure. a Schematic
of the laser interferometer measurement setup (see Methods). PD is the photo-
diode, LD - the laser diode, CM - the cold (dichroic) mirror, PBS - the polarized beam
splitter, VNA - the vector network analyzer. b Optical image of the sample. ¢ The
measured fundamental resonance peak of the membrane (filled grey dots) at opto-
thermal drive excitation power P,. = 0 dBm. The solid blue line is fit of the linear
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damped harmonic oscillator model. The inset shows the schematic of the device
cross-section. A vertical dashed line indicates extracted wo. d The resonance fre-
quency wy as a function of temperature, extracted from the fit similar to (c) (filled
blue dots). Connected grey dots are the corresponding derivative of the ff). A
vertical dashed line indicates Ty.
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Fig. 2 | Nonlinear dynamics of MLG/FePS; membrane. a The measured Duffing
response and amplitude branches of the resonance peak from Fig. 1c at higher

excitation power (P,. = 8 dBm). b The measured resonance peak responsivity, i.e.
drive power-normalized amplitude, at 8, 10 and 12 dBm for the same temperature
from (a) indicating the presence of nonlinear damping 7,,.c Left panel: Colour map
of the normalized amplitude measured as a function of temperature for backward
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frequency sweeps with respect to the linear resonance frequency wo(7) shown in
Fig. 1d. The Néel temperature Ty from Fig. 1d is indicated with a black dashed
horizontal line. Right panel: the measured frequency response around wq corre-
sponding to dashed line cuts from the left panel for P,. = 0 and 8 dBm at three
temperature points corresponding to different magnetic phases.

temperature range 52-150 K. As seen from the results of the fit to
experimental data, at a higher driving power and as the temperature
decreases, a sharp drop is observed in k;(T) at T < Ty. This feature is also
accompanied by a peak in 77,,(T) at approxnmately the same temperature.

Pronounced features in both k3(T) and 17,,(T) close to Ty shown in
Fig. 3b and c indicate the softening of nonlinear stiffness as well as a
prominent increase in the nonlinear dissipation in the anti-
ferromagnetic phase of FePS;, suggesting the magnetic origin of the
effect. Therefore, to underpin the influence of magneto-mechanical
coupling on our observations, we model the system by considering the
elastic potential energy as a function of the membrane displacement at
its centre U, and the magnetic free energy U, of FePS;, coupled via
spontaneous magnetostriction Uns”-*** (see Supplementary Note 5):

Ur=Ugy+ Uy + U= {I;x + I%x“}
@
.\ |:Um,0+ a(T; ™) 2, gﬁ} N /l,joz,-j(x)Lz},

where o;(x) is the amplitude-dependent stress tensor, L the anti-
ferromagnetic order parameter in the direction of the easy-axis of
FePS;, A; the magnetostriction tensor, Un, ¢ is the magnetic energy in
the paramagnetic state, and a, B are phenomenological positive
constants®***, By minimizing equation (1) with respect to L at a static

deformation w = 0, the ground state order parameter L, is obtained
(see Methods and Supplementary Note 5). When the membrane is in
motion and the magnetic system is out of equilibrium, the order
parameter is stress- and time-dependent as L(f) ~ Ly + L,(t). Subse-
quently, the rate at which L(¢) approaches the ground state L, (Fig. 3f)
is described by the kinetic equation®~":

de
dt

U
= 2
oL @

where t is the time and k the phenomenological kinetic coefficient,
which we assume to be temperature-independent for simplicity.

We further describe the driven coupled magneto-mechanical sys-
tem by linearizing equation (2) near Lo together with obtaining the
equation of motion associated with the generalized coordinate x. In
doing that, we define the Lagrangian £ = %mxz — Ut and use the Euler-
Lagrange equations to obtain the system of coupled dynamic equations:

i+ %w +AkLy0, =0, 3)

200(x)

mi + kyx + ks +2 “ox

=F, cos(wt) — <mw0

a +nn.x2>fc, (4)
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Fig. 3 | Temperature dependence of the nonlinear stiffness k; and nonlinear
damping ,, of a magnetostrictive membrane resonator. a Fit of the equation
(14) (orange solid lines) to the measured amplitude for forward frequency sweep
(black solid lines) and backward frequency sweeps (grey solid lines) at P,. =10 dBm
and temperature point indicated. The light blue region schematically indicates the
antiferromagnetic phase of the membrane. b Connected blue dots - the measured
k;( T), extracted from the fit similar to (a), normalized by the value at 53 K.

¢ Connected blue dots - the measured 7;,,(7), extracted from the fit similar to (a),
normalized by the value at 53 K. d and e Solid magenta lines - the nonlinear stiffness
and nonlinear damping model of equations (6) and (7) respectively at @ = wo(T)

from Fig. 1d and 7-(T) =2ka( Ty — T) from Zhou et al.*® for h = 9.5 nm, solid light
magenta lines - the model of equations (6) and (7) at the same @ = wo(7) and 7=0
(see Supplementary Note 5). The dashed light grey line in (d) - non-magnetic k5(7)
slope extracted by a linear fit to 7> 110 K region in (b). Vertical dashed orange lines
in (d) and (e) - the temperature point at which 2w,t = 1, producing a maximum in
the nonlinear damping (7). f Schematic of the magnetic free energy of the sys-
tem with un-relaxed (orange dot) and relaxed ground (blue dot) states indicated.
Magnetic sub-lattice relaxation dynamics is accompanied by a slow interlayer shear
deformation with a change in the monoclinic angle £°5** schematically indicated in
insets, which hypothetically may have the dominant contribution to 7.

where o = 0y + 0, with static 0o and dynamic g,, stress contributions, F,
the amplitude of periodic driving force, A the specific magnetostriction
coefficient of A; tensor that describes the coupling of in-plane
membrane stress to ordelr parameter in the direction of the easy axis
L and T=[2ka(Ty — T)] the magnetic relaxation time constant of

FePS; layer’>***® (see Methods and Supplementary Note 5). Typically
fast magnetic relaxations in antiferromagnets are of the order of
picoseconds®*'. However, in the case of FePS; long nanosecond-scale
relaxation times are required to relax the magnetic sub-lattice near Ty
due to the strongly coupled ordering of spins to the slow process of
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interlayer shear (Fig. 3f)***2. We hypothesise that the slow spin-shear
relaxation mechanism in FePS;***> may have the dominant contribu-
tion to the magnetic time constant 7 of equation (3), and hereinafter
consider the experimentally measured spin-shear 7(7) from the work
of Zhou et al.*® (see Supplementary Note 5). The L,, term then induces
oscillations in L, which can lag the membrane motion at sufficiently
large 7%* producing a delay in the coupled magneto-mechanical
system.

Solving the coupled system of equations (3) and (4) using the
harmonic balance method, we obtain the steady-state amplitude-fre-
quency response (see Methods and Supplementary Note 5). As a direct
consequence, when the membrane is in motion, the linear and non-
linear stiffness as well as nonlinear damping coefficients are renor-
malized by additional magnetic terms, which yield the following
steady-state equation of Duffing-van der Pol type':

. 2 2
<3Tk3 a+m(w} - wz)as> + <q;‘ﬂa§ + mgo as> w?=F, O

in which as is the steady-state amplitude, m the effective mass of the
resonator, F, the drive force amplitude, mw%zk}‘:kﬁﬂé% the
renormalized linear stiffness, k3 the renormalized nonlinear stiffness:

(6)

2EG
k;: k3_mr_431+4w212 T<T*N
ks T>Ty,
and n7%, the magnetic nonlinear damping term of van der Pol type's*’:

REG ¢ *
,ﬁ“ =J M3 * 1+40212 T< TN
M T>Ty,

@)

where k; is the non-magnetic nonlinear stiffness, n, is the non-
magnetic nonlinear damping, £ the Young's modulus and c3 the
geometric numerical factor that also depends on membrane’s Poisson
ratio”. We note that when L,, = Lo at T ~ T3, higher-order (quintic)
nonlinear terms can appear in the motion of the magnetic membrane
at high vibration amplitudes. However, in Supplementary Note 6 we
show that in our measurements at 7 = Ty the nonlinear resonance
peaks are close to the onset of nonlinearity due to high damping, i.e. in
the regime when the vibration amplitude is too low to observe the
effect from quintic terms.

Renormalization of ki and k3 leads to two important con-
sequences. First, since the magnetostriction term is quadratic in L, it
has the same functional form as the quadratic k; term in the magnetic
energy and, since k; depends on the Néel temperature, it can therefore
be considered as a renormalization of Ty (see Supplementary Note 5
for more details). Thus, strain reduces the transition temperature as
TN=Tn —M which was previously demonstrated by applying a
static external force”. Likewise, at high amplitude of oscillations, the
change of stress due to the membrane motion results in an additional
strain (see Supplementary Note 5), which can reach up to 0.03% in
similar systems* and accordingly reduce Ty of FePS; by a few
Kelvins?. This produces a corresponding change in k; and a shift of the
phase transition-related feature in wo(7) near Ty, consequently causing
the above-mentioned shift of the resonance curve with respect to wo at
a higher driving power in Fig. 2c (see Supplementary Note 5). The
contribution of the order parameter on effective linear stiffness kj o
13 is studied and described in detail in a previous work”.

Second, unlike the renormalization of k;, which is independent of
dynamics of the order parameter L, consequences for nonlinear
parameters k3 and n,, arise from the modulation of the order para-
meter. As aresult, both k3 and 17}, are functions of a characteristic delay
of the coupled dynamic system described by 7 and w. As follows from
equation (6), k; starts to decrease with 6k3 o« — ;7 when T<Ty.
The same magnetic contribution also leads to substantial nonlinear

damping 7, at T<Ty, which scales as 61} o ;77577 and peaks at
2wt ~ 1 (see Methods and Supplementary Note 5). This behaviour can
be understood intuitively: magnetostriction mediates the exchange of
the membrane’s mechanical energy with a coupled magnetic reservoir,
which can happen twice for one period of motion due to symmetrical
modulation of stress in the up-down geometry of its deflection. If
membrane oscillations are much faster than the energy exchange rate
to a coupled magnetic reservoir, i.e 2w > 1/7, there is not enough time
for it to relax and dissipate energy. On the contrary, when the oscil-
lations are at a much slower timescale 2w < 1/7, the energy exchange
follows the oscillations with a negligible delay, again resulting in
minimal dissipation*’. Thus, the nonlinear damping due to coupling to
the order parameter peaks when the relaxation delay is significant
and 2wt ~ 1.

Subsequently, we plot the derived magnetostrictive model of
equations (6) and (7) for w = wo in Fig. 3d and e, next to the measured
k3(T) and i, (T) in Fig. 3b and c. We assume the non-magnetic Duffing
constant k3 to be temperature dependent, providing the additional
background-slope in k5(T) below and above T§. As shown in Fig. 3b
with a solid magenta line, equation (6) reproduces the measured
decrease of k; in the proximity of Tj. At the same time, the same
model in Fig. 3¢ reproduces the measured peak in 17,(T) at 2wot = 1.
Notably, in a hypothetical case where 7 is sufficiently small, i.e. 7= 0 in
equations (6) and (7), the model predicts the discontinuous decrease
in k3(T) at Ty, while the magnetic contribution to r%,(T) completely
vanishes as shown in Fig. 3d-e with light magenta lines.

In discussing the physical interpretation of the origin of this
nonlinear damping, its microscopic mechanism should be envisioned
as a consequence of a nonlinear oscillator’s excited vibrational modes
scattering off its own magnetic energy reservoir'®*, This interaction
then is accompanied by the energy transfer of two oscillation quanta
(2wo) for nonlinear damping®. Importantly, a rather general form of
free energy equation and low order of the coupling term suggests that
similar effects may appear in systems with other types of non-magnetic
phase transitions, for instance, charge density wave” or coupling the
mechanical motion to an electronic energy reservoir. Interestingly, this
mechanism also finds its macroscopic similarities to magnetic internal
friction arising due to a delay in Young’s modulus relaxation near Ty
which occurs in large-scale bulk of magnetic solids***"****°. However,
the crucial distinction at the nanoscale is that it affects different
mechanical properties at twice the resonance frequency. Our analysis
predicts the observed nonlinear effect in this system appearing as a
result of modulation of the antiferromagnetic order parameter L with
dynamic strain via magnetostriction, delayed by a suggested spin-
shear relaxation 7°%** (see Fig. 3f). This is supported by a case of 1=0
eliminating all magnetic contributions to both k3 and n;.

To further support the relation to antiferromagnetic order, we
have performed control experiments in the presence of a high external
magnetic field H. As shown in Fig. 4, a suspended MLG/FePS; mem-
brane is cooled down to cryogenic temperatures by low-pressure He
exchange gas and measured in the out-of-plane H-field configuration
using an experimental procedure identical to the one described in
Fig. 1. As expected for the typical antiferromagnet, we do not find any
significant magnetic field dependence at T=10K fromH=-7to +7T,
while keeping all other parameters constant, as shown in Fig. 4a.
However, we observed a H-field dependence of nonlinear parameters
in the proximity of Ty (T=90 K, Fig. 4b), which is absent for T < Ty. As
shown in Fig. 4b, both the nonlinear stiffness k3 (as viewed through the
change of slope in the square of the amplitude) and the decrease in the
maximal amplitude point at a constant driving force (related to non-
linear damping 77%) show a clear dependence on H (see Supplemen-
tary Note 7).

Although this provides additional evidence of the magnetic nat-
ure of the effect, we note that deviations between theoretical estimates
of nonlinear stiffness and damping with experimental data, such as a
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Fig. 4 | Nonlinear dynamics of MLG/FePS; membrane in the external magnetic
field H. a The measured nonlinear resonance peak of the membrane in forward
frequency sweep as a function of H-field at T=10 K (T < Ty). Inset: Optical image of
the sample. The red label indicates the out-of-plane orientation of H-field. b The
measured nonlinear resonance peak in forward frequency sweep as a function of H-
field at T=90 K (T = Ty). The grey arrow in b indicates the decrease in amplitude
and the increase in nonlinear stiffness k;(H) at constant driving force.

sharp feature in k3(T) found near Ty in Fig. 3b, can have multiple
sources. Among these are modal interactions of non-magnetic nature
in the experiments™® that have not been accounted for in the model. In
addition, deviations near Ty may originate in the mean-field approx-
imation of Landau’s theory of phase transition, which is not an exact
description of van der Waals antiferromagnets in the critical region
and rather describes the overall temperature behaviour” (see Fig. 3).
Perhaps, some additional effects may also contribute to a part of our
observation. One such noteworthy effect is a similar relaxation due to
thermoelasticity”. Yet, the latest experiments show that thermal
relaxation time-scales in membranes of FePS; are up to two orders of
magnitude slower*® than spin-shear relaxation-related t considered in
this work for comparable sample thicknesses®. Therefore, the pre-
sence of substantial linear thermoelastic damping and the probed
nonlinear damping near Ty are not a direct consequence of each
other™°, This is further justified by the fact that magneto-mechanical
coupling and the associated relaxation mechanism does not lead to

any linear damping terms analytically (see Supplementary Note 5).
Another contribution may come from nonlinear effects, like non-
linearities in optothermal response’?, and resulting nonlinear terms
in the magnetostrictive actuation force*® that may affect the change
near the magnetic phase transition. Nevertheless, quantitatively con-
firming either of these hypotheses would require further experimental
evidence.

In conclusion, we demonstrated the nonlinear nanomechanical
coupling to antiferromagnetic order in FePS;-based heterostructure
membranes. We provide both experimental evidence and theoretical
descriptions of the mechanism responsible for the renormalization of
the nonlinear parameters. We demonstrate a previously unexplored
magneto-mechanical dissipation mechanism supported by a phe-
nomenological theory that accounts for magnetostriction, which
strongly affects the nonlinear dynamics of magnetic membranes, even
in the absence of a magnetic field, near the phase transition tem-
perature. We anticipate that our discoveries offer a new understanding
of the thermodynamics and energy dissipation mechanisms related to
magneto-mechanical interactions in 2D materials, which is important
for future studies of more intricate magnetic systems, like 2D quantum
phases and moiré magnets®, as well as the development of novel
magnetic NEMS and spintronic devices.

Methods

Sample fabrication and characterisation

We pre-pattern a diced Si/SiO, wafer with circular holes using e-beam
lithography and reactive ion etching. The holes have a radius of r = 1.5
pm and a cavity depth of 285 nm, and the SiO, layer acts as electrical
insulation between the 2D material membranes and the bottom Si
electrode. For electrostatic experiments, Pd electrodes are patterned
on top of Si/SiO, chips using a lift-off technique to establish electrical
contact with some samples. To create suspended membranes, thin
flakes of FePS; and graphite crystals are mechanically exfoliated and
transferred onto the chip using the all-dry viscoelastic stamping
method®* immediately after exfoliation. Flakes of van der Waals crys-
tals are exfoliated from high-quality synthetically grown crystals with
known stoichiometry, and deterministic stacking is performed to form
heterostructures. To prevent degradation, samples are kept in an
oxygen-free or vacuum environment directly after the fabrication.
Atomic Force Microscopy (AFM) height profile scans and inspection
are performed in tapping mode on a Bruker Dimension FastScan AFM.
We typically use cantilevers with spring constants of k.=30-40 N m™
for inspection. Error bars on reported thickness values are determined
by measuring multiple profile scans of the same flake.

Laser interferometry measurements

The sample is mounted on an x—y piezo-positioning stage inside a dry
optical 4 K cryostat Montana Instruments Cryostation s50. Tempera-
ture sweeps are carried out using a local sample heater at arate of ~3K
min™ while maintaining the chamber pressure below 10" mbar. Mea-
surements in the external magnetic field are performed using attocube
attoDRY2100 cryostat system, where the sample is cooled down to
cryogenic temperatures by low-pressure He exchange gas. During data
acquisition, the temperature is maintained constant with ~ 10 mK
stability. A power-modulated blue diode laser with a wavelength of 405
nm is used to optothermally excite the membrane’s motion, and the
resulting membrane displacement is measured using an interfero-
metric detection with a He-Ne laser beam of 632 nm. The inter-
ferometer records the interfering reflections from the membrane and
the Si electrode underneath, and the data is processed by a vector
network analyzer Rohde & Schwarz ZNB4. All measurements are con-
ducted with incident laser powers of P.oq < 8 UW and Pyjue <35 W, with
alaser spot size of 1 um. To ensure accuracy in the data acquisition, it is
verified that resonance frequency changes due to laser heating are
insignificant for all membranes for P,. <15 dBm.
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Derivation of order parameter dynamics

In the derivation of antiferromagnetic order parameter relaxation
dynamics, we follow closely the approach of Landau-Khalatnikov* and
Belov-Kataev-Levitin**”’. For simplicity, we assume the bi-axial in-plane
membrane stress 0(x) = 0, = 0y,. First, we derive o(x), assuming
X =ay cos(wyt), as’**:

E E
000)=0,+ =352 = {op + &ag}

2r2 4r2
Ec 8
+ {4—5 a? cos(Zth)} ®)
= UO + Ow(t)

where as is the steady-state amplitude, o, the pre-stress in the
membrane due to the fabrication process, gp the static and o,(t) the
dynamic stress terms. Then, we derive Lo, antiferromagnetic order
parameter ground state, by minimizing the total energy of the
magneto-mechanical system (1) with respect to L at constant bi-axial
stress g such that:

oUr 0 Up+Ups) _ 9
oL ©)

resulting in

_a(Ty-T)—Ao, _aTy—T)

B 5 (10)

Ly

where A is a specific magnetostriction coefficient of A; tensor that
describes the coupling of bi-axial in-plane membrane stress gy to order
parameter Lo in the direction of the easy axis.

Using this result we linearize the unrelaxed L as L ~ Lo + L,,, where
L, is the time- and amplitude-dependent dynamic term. When the
membrane is in motion and L is out of the equilibrium, the rate of
relaxation of L to the equilibrium Ly is set by the kinetic equation (2),
which using equation (8) leads to:

d_d,
dt ™ dt

O(Un +Up) ' a1
oL

This equation can be simplified by Taylor expansion around Lo, and
assuming L, < Lo, as follows:

di,

L 12)

=i, ~—«x[2B12L, +/1L00w(t)],

S5

which rearranges to equation (3), by taking 7= WI—T; .

Amplitude of nonlinear resonance peak
We start by solving the first-order differential equation (3) to obtain
the steady-state solution for L, in terms of 7

Ec; 1[coswt) + 21w sinRwt)] &2
4r2 (1+47202) s

Lw, s T AKLO (13)

We keep the assumption of periodic motion in the form of x = a, cos wt
and plug in the steady state solution in equation (4) such that L, =L .

Next we use the harmonic balance method to obtain the
amplitude-frequency equation (5), considering only the fundamental
harmonic wq (see Supplementary Note 5):

6 (92 4 107 4 gt (NWE=0) | Eywge?
as(16+ o )*as(— 2 *t )7

a2 (o) @3 -7 = ()

14)

where wj = L (k; +AL2 %) is the re-normalized resonance frequency,
= % the mass-normalized Duffing coefficient and £, = % the mass-
normalized nonlinear damping coefficient with k3 and g7, from
equations (6) and (7), respectively.
For further details of the derivation and fitting procedure see
Supplementary Note 5.

Data availability

All relevant data to interpret the results of this study are included in the
figures. Any additional data to this study are available from the cor-
responding authors upon request.
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