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ABSTRACT

Rankings are simply orderings given to a set of elements; They
are a widely used mathematical object in information retrieval.
This creates the need for some means of comparing them. Rank
Similarity Measures are used exactly for this. They constitute
a large research area where many different such measures are
defined. A ranking may possibly contain ties. This in turn raises
the question of what these ties represent and how to treat them
in the calculation of a measure. The treatment of ties in current
theory is approached with the 𝑎 and 𝑏 variants of the measures.
Both 𝑎 and 𝑏 stem from a statistical approach to ties; they consider
tied elements to represent uncertainty about their real order in
the ranking. There is, however, a different interpretation of what
ties could represent, namely that the tied elements really occur at
the same place in the ranking, that is, there is no intrinsic order
in which they should appear. This has been considered in one of
the nonconjoint measures and has been coined the w-variant after
Webber et al. In this work, we consider the problem of defining
this very variant for a family of three commonly used ranking
similarity measures, these being 𝜏  defined by Kendall, 𝜏𝐴𝑃  de-
fined by Yilmaz et al., and 𝜏ℎ defined by Vigna. We approach this
problem by establishing what the variant should represent and
defining a set of axioms that any definition of w has to follow.
Thereafter, we show that there is only one definition which can
possibly satisfy these, with a small exception. We show that this
definition coincides with the distance considered by Kemeny in
1959. We use this to create a definition of the w-variant for all
three of the measures. Likewise, we investigate the behaviour
of this new variant in relation to the existing 𝑎 and 𝑏 variants.
Moreover, we identify the shortcomings of our definition and
evaluate it on real world data. Finally, we lay the groundwork
for rigorously proving parts of our definition and other measures
which may consider ties to represent occurrence at the same rank.
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1   INTRODUCTION

A ranking is an assignment of an order to some predefined set of
elements. Figure 1 contains an example of such a ranking on 5
elements.

1st ranking 𝐵 𝐶 𝐴 𝐸 𝐷

2nd ranking 𝐶 𝐴 𝐸 𝐷 𝐵

Figure 1: Two example rankings. With elements: {𝐴,𝐵,…}
Rankings are an important part of today’s world of data. Just one
example of these, that almost everyone interacts with daily are
search engines, but rankings represent much more than that as
identified in [1], [9]. From athletics to research institutes - these
are a ubiquitous part of how we rationalize information about
many topics.

To have the ability to propose changes or improvements in
ranking algorithms, one needs some quantification of similarity
between their outputs. This presents the need for comparisons
between rankings.

1.1   Similarity measures and definitions

Similarity measures, sometimes referred to as rank correlation

measures¹, attempt to address exactly this. They serve as a mea-
sure of ‘closeness’ or ‘similarity’ between rankings.

There is no one objective approach to defining such a measure.
Existing approaches are, however, classified based on their prop-
erties into categories. Weighted measures are ones which put
more importance on some parts of the ranking than others. Mean-
while, unweighted measures consider all places in the ranking to
have the same impact on the result. We say that a measure is
conjoint if, for the calculation of its score, we have to present the
entire ranking on all elements. Nonconjoint measures on the other
hand can compare partial rankings, where only some top part of
the raking is seen. One could imagine a comparison of first page
results from two search engines, some of them may overlap and
some may not but, neither ranks all the web pages on the internet.

One of the first similarity measures was defined by Spearman
[10] and coined 𝜌, while another by Kendall [5] and coined 𝜏 .
𝜏  is widely used today and is a conjoint unweighted similarity
measure.

Yilmaz et al. [17] introduced 𝜏𝐴𝑃  - a conjoint weighted measure
based on 𝜏 . It puts more importance on differences closer to the
top of the ranking. Building on this work Vigna [12] introduced
𝜏ℎ which produces a score given an arbitrary weighting scheme,
and is a superset of both 𝜏  and 𝜏𝐴𝑃 . In the context of this work
it is also important to mention one nonconjoint measure, namely
Rank-Biased Overlap (RBO) introduced by Webber et al. [15].

These measures, given two rankings, are meant to return a
value between −1 and 1. 1 means perfect agreement between
the rankings and −1 means that they are negatively correlated

¹Although talking about correlation, depending on what is being
compared, may not always make sense.
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(perfect disagreement). As an example of this, the score for
the rankings of Figure  1 is 𝜌(1st, 2nd) = 0, 𝜏(1st, 2nd) = 0.2,
𝜏𝐴𝑃 (1st, 2nd) ≈ −0.042, 𝜏𝐴𝑃 (2st, 1nd) = 0.5.

In this work to denote rankings we will use ⟨⟩, for example:
1st from Figure 1 becomes ⟨𝐵,𝐶,𝐴,𝐸,𝐷⟩, 𝐵 occupies the first
place, 𝐶 the second, and so on. Note that the choice of the letters
𝐴,𝐵,… is completely arbitrary, there is just a need for some way
to identify the elements common to both of the rankings being
compared. In fact we will iterate on these letters as if they were
elements of ℕ.

Our focus will be 𝜏 , 𝜏𝐴𝑃 , and 𝜏ℎ. These are some of the simplest
and most deployed measures and we endeavor to define our
contribution in terms of these.

1.2   Tied elements

Ties may appear in a ranking. A tie is a situation when two dis-
tinct elements are ranked at the same place. Ties will be denoted
by [], so for example: ⟨[𝐵,𝐶],𝐷, [𝐴,𝐸, 𝐹 ]⟩ - the first two and last
three elements are tied.

Let 𝑅𝑛 be the set of all possible rankings of length 𝑛 without
ties. Whereas, the set of all rankings of length 𝑛 possibly including
ties will be denoted by �̂�𝑛. This also gives: 𝑅𝑛 ⊂ �̂�𝑛

A key question that Pearson first identified², is how to interpret
ties when comparing rankings, and how they should influence
the final score of the ranking. For conjoint rankings two widely
adopted approaches exist to this end, they will referred to as
variants.

Unlike other works referenced before, to avoid confusion be-
tween the different measures, variants, and parameters, we will
denote the variant, as in [2], by a superscript. So for example: the
𝑎 variant of 𝜏𝐴𝑃  will be denoted by 𝜏𝑎

𝐴𝑃 .

1.2.1   The meaning of ties

These two widely adopted approaches have been described in
the original work of Kendall [5]. Kendall assumes that tied items
represent some kind of uncertainty about the actual order of the
elements. In other words, during the comparison, we assume that
the tied elements have a certain objective order but the creator of
the ranking was not able to set it and hence the measure does not
have access to it. Both of the variants which are introduced here
stem from this base interpretation. This assumption is crucial for
the contribution in this work.

These two variants are, as shown by [11]:
a) Based on the work of Woodbury [16], [6] identifies 𝜏𝑎, it is

the value of 𝜏  averaged over all permutations of the tied items.
So in other words each possible uncertain ordering is weighed
equally.

b) Based on the work of “Student” [18], [6] identifies 𝜏𝑏, which
is similar to 𝜏𝑎 but with the denominator of the original
adjusted to still reach the extreme values for fully concordant
or discordant rankings which contain ties.

1.2.2   A new meaning of ties

In the process of introducing RBO Webber et al. [15] con-
sider its behaviour, when the ranking includes ties. Before
the modification to the agreement function of RBO they
argue about the interpretation of ties for the definition:

«Ties may be handled by assuming that, if t items

are tied for ranks 𝑑 to 𝑑 + (𝑡 − 1), they all occur at

rank 𝑑. To support this, we modify the definition…»

²“Student” makes this claim in [18].

Moreover, as seen in [11], even Kendall [6] mentions this inter-
pretation of ties, however, he never expands on it further.

What can be observed here is that the assumption from Sec-
tion  1.2.1 may not be necessary to consider ties. Indeed if we
instead assume that ties represent items which are meant to be
exactly at the same rank, we arrive at a new variant.

As an illustration, one could imagine an ice skating competition
and two distinct juries each awarding a discrete amount of points
to the participants based on their form, speed, etc. At the end of
the competition these will produce two rankings of the partici-
pants, but what if two participants are tied? How do we compare
the output of these juries? The 𝑎 and 𝑏 variants are not useful
in this case, since both of them assume that there is an inherent
order to the tied participants, whereas in our case the ‘tying’ of
participants itself provides information on their relationship.

Urbano & Marrero [11], after defining 𝜏𝑎
𝐴𝑃 , 𝜏𝑏

𝐴𝑃 ,
go further and clearly identify the gap in knowledge:

«For future work we will consider a third scenario

that Kendall […] mentioned implicitly but did not

consider explicitly […] he assumed that a tie was

given when the observer was unable to discern a

difference, but it may be the case that the tied

elements are in fact equal in the true ranking.»

Corsi & Urbano [2] reiterate the arguments of Webber et al.
[15] and their definition, identify this as a new variant, and coin
it the w-variant after Weber. This way they provide a definition
of RBOw.

To the best of our knowledge this variant has not been consid-
ered in any work in terms of conjoint rankings, and hence leads
us to the question:

How can the w-variant be defined for conjoint
measures, specifically 𝜏 , 𝜏𝐴𝑃 , and 𝜏ℎ?

2   APPROACH AND DESCRIPTION

Two different approaches were identified in regards of creating
the definition for w.

2.1   RBO-based

Webber et al. [15] and Corsi & Urbano [2] define RBO𝑎, RBO𝑏,
and RBOw. To define RBO𝑎 the interpretation of 𝜏𝑎 was used,
analogous steps were taken for RBO𝑏. Would it be possible to
define 𝜏w based upon RBOw? This would essentially reverse the
direction taken in [2] for RBO𝑎.

In the end this approach was deemed inadequate. Both the defi-
nitions and behaviour of RBOw differ so significantly from all 𝜏
measures that no easy mapping or parallel can be created. RBOw,
as a whole inherently gives more significance to items which are
higher in the ranking. 𝜏  is completely unweighted. RBOw, in its
agreement function, is based on the intersection of sets for a given
prefix of the ranking. This makes it inadequate for defining 𝜏 ,
which considers pairs of items instead.

In this case even the interpretation of ties in conjoint rankings
is not clear.

2.2   Axiomatic

Instead we consider a different approach, one where we stipulate
how 𝜏w should behave, what it should represent by choosing
a set of axioms. Thereafter, we continue and create a definition
which fits all of our axioms. We will further see that the axioms
lead to a specific solution.
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2.2.1   Background on 𝜏  and its variants

Kendall defines 𝜏  over 𝑅𝑛 in terms of concordant and discordant

pairs. A pair is concordant when two elements appear in the same
order in both rankings, and vice-versa for discordant pairs:

𝜏(𝑙, 𝑟) =
∑𝑖<𝑗 sgn(𝑙𝑖 − 𝑙𝑗)sgn(𝑟𝑖 − 𝑟𝑗)

𝐷
(1)

With a certain scaling factor 𝐷 = 𝑛(𝑛−1)
2  which ensures that the

result always falls in [−1, 1].
𝑙𝑖 represents the rank (from 1 to 𝑛) of element 𝑖 in ranking 𝑙.

For example if we have rankings 𝑙 = ⟨𝐴,𝐵,𝐶⟩ and 𝑟 = ⟨𝐵,𝐴,𝐶⟩
the pair (𝐴,𝐵), is discordant with respect to 𝑙, 𝑟 and hence it will
count as: sgn(1 − 2)sgn(2 − 1) = −1 in the summation.

We will refer to the function sgn(𝑙𝑖 − 𝑙𝑗)sgn(𝑟𝑖 − 𝑟𝑗) as
𝑔𝑙,𝑟(𝑖, 𝑗). This function, given two elements, tells us if and how
much they agree between the two rankings 𝑙 and 𝑟. 𝜏  can now be
written as:

𝜏(𝑙, 𝑟) =
∑𝑖<𝑗 𝑔𝑙,𝑟(𝑖, 𝑗)

𝐷
= 𝑁

𝐷
(2)

𝜏𝑎 can be represented by the same Equation  1, however it is
defined over �̂�𝑛. This means that 𝑔𝑎

𝑙,𝑟(𝑖, 𝑗), is the same as 𝑔𝑙,𝑟(𝑖, 𝑗),
but immediately returns 0 if the pair is tied in either ranking. We
define 𝑁𝑎 analogously. It just so happens that this definition is
the average value of 𝜏  across all permutations.

Moreover, in 𝜏𝑏, we have 𝑔𝑏
𝑙,𝑟(𝑖, 𝑗) = 𝑔𝑎

𝑙,𝑟(𝑖, 𝑗), but the denomi-
nator is a value dependent on the raking. We will elaborate on
this further when talking about 𝜏ℎ.

There is a common theme in these definitions, all of them
consist of a numerator which is the measure of similarity, and a
denominator which is a way to scale this measure to the required
range.

2.2.2   The interpretations of 𝜏

𝜏  has many interpretations, the amount of concordant and discor-
dant pairs is just one of them. Yilmaz et al. [17] present 𝜏  as an
expectation of a random variable, this being that a random pick
of two elements is concordant.

More importantly, the numerator³ of 𝜏  can also be used to
define a metric space over the set 𝑅𝑛 by a slight modification
[7]. To create a distance function⁴ from 𝜏  we have to consider
that distance is a non-negative measure of dissimilarity, hence we
have to first negate 𝑁  to −𝑁  and then add 1. This will give us a
distance between 𝑙 and 𝑟 as required:

𝑑𝜏(𝑙, 𝑟) = 1 − 𝑁 = 𝑛(𝑛 − 1)
2

− ∑
𝑖<𝑗

𝑔𝑙,𝑟(𝑖, 𝑗) (3)

= ∑
𝑖<𝑗

1 − 𝑔𝑙,𝑟(𝑖, 𝑗) = ∑
𝑖<𝑗

𝑑𝑙,𝑟(𝑖, 𝑗) (4)

The new function 𝑑𝑙,𝑟(𝑖, 𝑗) is just negated and ‘shifted’ by 1: for
a concordant pair it returns 0 and for a discordant pair it returns
2. The distance interpretation is central to our approach.

2.2.3   The usefulness of 𝜏ℎ and introduction to 𝜏𝐴𝑃

Vigna [12] introduces a weighted variant of 𝜏 , which is now
referred to as 𝜏ℎ. This variant besides the two rankings requires
a weighting scheme. It stems from a dot product interpretation of

³The denominator does not matter here, it just scales the whole distance
space. This is akin to choosing a unit of measure.

⁴We will denote the distance function based on 𝜏  as 𝑑𝜏 .

the numerator of 𝜏 . Therefore first a dot product is defined⁵ for
any 𝑙, 𝑟 ∈ 𝑅𝑛:

𝑙 ⋆𝑤 𝑟 = ∑
𝑖<𝑗

𝑔𝑙,𝑟(𝑖, 𝑗)𝑤𝑙,𝑟(𝑖, 𝑗) (5)

The function 𝑤 is the weighting function. For a pair of items it
determines their contribution to the result. This function may
depend on the rankings themselves⁶.

Thereafter, a ‘norm’ is introduced, and 𝜏ℎ is defined as:
‖𝑥‖𝑤 = √𝑥 ⋆𝑤 𝑥 (6)

𝜏ℎ,𝑤(𝑙, 𝑟) = 𝑙 ⋆𝑤 𝑟
‖𝑙‖𝑤 ⋅ ‖𝑟‖𝑤

=
𝑁ℎ,𝑤

𝐷ℎ,𝑤
(7)

We observe: If 𝑤𝑙,𝑟(𝑖, 𝑗) = 1 is chosen this just becomes 𝜏 , since
𝐷ℎ,1 will be exactly 𝐷 and 𝑁ℎ,1 = 𝑁 .

Yilmaz et al. [17] introduce 𝜏𝐴𝑃 . While the original definition
stems from the probabilistic interpretation of 𝜏 , for the purposes
of this work we note that 𝜏𝐴𝑃 (𝑙, 𝑟) is exactly 𝜏ℎ,𝑤(𝑙, 𝑟) with
𝑤𝑙,𝑟(𝑖, 𝑗) = 1

max(𝑙𝑖,𝑙𝑗)−1 . As seen from the weighting function 𝜏𝐴𝑃

is asymmetric and weighs items based on their position in one
of the rankings, here we chose 𝑙 to be the ranking upon which
weights are based but this is arbitrary.

We have learned that 𝜏  and 𝜏𝐴𝑃  can both be defined by a certain
choice of weighting in 𝜏ℎ. We will leverage this very fact to
provide a definition for 𝜏w

ℎ  which can then be easily appropriated
in order to produce 𝜏w

𝐴𝑃 .
To this end we have to first investigate the behaviour of 𝜏ℎ in

the presence of ties: 𝑔𝑙,𝑟(𝑖, 𝑗) in Equation 5 is replaced by 𝑔𝑎
𝑙,𝑟(𝑖, 𝑗).

The numerator stays the same as both 𝜏𝑎 and 𝜏𝑏 for 𝑤(𝑖, 𝑗) = 1,
and the denominator is the same as in 𝜏𝑏. We will not focus on
𝐷ℎ,𝑤 since it is not central to this work.

2.2.4   Final method

The definition of 𝜏w will be based on the distance interpretation
of 𝜏 . In particular, note that 1 − 𝑁𝑎 is not a valid distance for �̂�𝑛,
as will be shown later.

We claim: To treat tied items as really occurring at the same
place the numerator of 𝜏w must result in a metric for �̂�𝑛. This
ensures that a valid distance is assigned to any pair of rankings
with ties, and as such ties are taken into account accordingly as
distinct entities.

We will use this very fact to define a distance metric 𝑑𝜏w and
from it arrive at 𝜏w. The axiomatic approach continues as follows:
1. A set of axioms which describe the behaviour of 𝑑𝜏w (the

distance metric based on 𝑁w), and 𝜏w, will be chosen.
2. 𝑑𝜏w will be defined based on those axioms, and we will show

that the definition is both necessary and sufficient.
3. 𝜏w will be defined based on 𝑑𝜏w and the axioms from 1.
4. 𝜏w

ℎ  will be defined as a weighted variant of 𝜏w, just like [12].
5. 𝜏w

𝐴𝑃  will follow immediately from 𝜏w
ℎ .

2.2.5   Kemeny distance

Before proceeding with the method, we mention a contribution
which is the base of our approach to the axioms and 𝑑𝜏w.

The very question of a distance metric on rankings with ties
has already been investigated by Kemeny [4]. At the end of his
1959 article a definition for distance function on �̂�𝑛 is provided.
Further, Kemeny uses an approach where the choice of axioms
leads to a specific solution.

⁵In [12] this operation is written as ⟨𝑥, 𝑦⟩, to avoid confusion with
rankings here we use ⋆.

⁶This is expressed by 𝜌 in the original work.
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Kemeny does not provide proofs for the necessity or sufficiency
of the axioms stating that they have been omitted. Moreover,
Kemeny does not consider this distance in the context of a simi-
larity measure.

Our approach to defining 𝑑𝜏w builds on that of Kemeny and
we adopt conditions 1 to 3 in our axioms as 1 to 3 (reordered),
with the exception that we reject the notion of betweenness from
condition 1 and instead introduce stipulations which make sense
in the context of a correlation measure.

To ease the comprehension of the next section we will not
reference Kemeny [4] in each of the axioms which stem from his
conditions. We want to stress that [4] had significant impact on
these choices as well as the idea behind the axiomatic approach.
This work can be seen as an extension of that into the world of
similarity measures.

3   THE AXIOMS AND THE DEFINITION

We will start with the axioms concerning the distance measure.
This follows immediately from our claim:

Axiom 1. 𝑑𝜏w(𝑙, 𝑟) should be a valid distance function for the

metric space over �̂�𝑛.

From the definition of a metric space [3] we can expand this:
Axiom 1.1. 𝑑𝜏w(𝑙, 𝑟) ≥ 0 for all 𝑙, 𝑟.

Axiom 1.2. 𝑑𝜏w(𝑙, 𝑟) = 0 if and only if 𝑙 = 𝑟.

Axiom 1.3. 𝑑𝜏w(𝑙, 𝑟) = 𝑑𝜏w(𝑟, 𝑙).
Axiom 1.4. 𝑑𝜏w(𝑥, 𝑧) ≤ 𝑑𝜏w(𝑥, 𝑦) + 𝑑𝜏w(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧.

Just like in 𝜏 , the identities of the elements should not influence
the final result:

Axiom 2. Given two rankings 𝑙 and 𝑟 if in both of them we pick

two elements and exchange their places creating 𝑙′ and 𝑟′, we have:

𝑑𝜏w(𝑙, 𝑟) = 𝑑𝜏w(𝑙′, 𝑟′).
The definition of our distance must be restricted⁷ to resemble

that of 𝑑𝜏 . It should only depend on the relative ordering of pairs
of items.

Axiom 3. 𝑑𝜏w(𝑙, 𝑟) = ∑𝑖<𝑗 𝑑
w
𝑙,𝑟(𝑖, 𝑗). Where 𝑑w

𝑙,𝑟(𝑖, 𝑗) is some

real function dependent only on sgn(𝑙𝑖 − 𝑙𝑗) and sgn(𝑟𝑖 − 𝑟𝑗).

We must establish whether fully discordant elements or a tie
mismatch leads to a higher distance between two rankings. Logi-
cally, a tie mismatch should result in a smaller penalty in the
similarity measure than a full discordance:

Axiom 4. 𝑑𝜏w(⟨𝐴,𝐵⟩, ⟨𝐵,𝐴⟩) ≥ 𝑑𝜏w(⟨𝐴,𝐵⟩, ⟨[𝐴,𝐵]⟩)
Now let us consider the behaviour of 𝜏w. First we define the

numerator:
Axiom 5. Let 𝑚 be the maximal possible value of 𝑑𝜏w(𝑙, 𝑟). We

have: 𝑁w = 𝑚
2 − 𝑑𝜏w(𝑙, 𝑟).

The denominator should scale the numerator to the appropriate
range of [−1, 1].

Axiom 6. 𝜏w(𝑙, 𝑟) = 𝑁w

𝐷w , with 𝐷w such that:

1. For any 𝑙 and 𝑟, 𝜏w(𝑙, 𝑟) ∈ [−1, 1]
2. For any 𝑥, 𝜏w(𝑥, 𝑥) = 1.

As with 𝜏𝑎 and 𝜏𝑏, in the absence of ties 𝜏w should equal 𝜏 .
Axiom 7. If 𝑙, 𝑟 ∈ 𝑅𝑛 then 𝜏w(𝑙, 𝑟) = 𝜏(𝑙, 𝑟).
Finally, correlation measures like 𝜏  are expected to return 0 if

the rankings are uncorrelated. In other words for two rankings
chosen uniformly at random we should expect a 0.

Axiom 8. Define two independent variables 𝐿 and 𝑅 where for all

𝑥 ∈ �̂�𝑛 we have Pr[𝐿 = 𝑥] = Pr[𝑅 = 𝑥] = 1
|�̂�𝑛| . Now it should be

the case that: 𝔼[𝜏w(𝐿,𝑅)] = 0.

⁷This axiom sounds very specific but it is equivalent to the more general
Condition 3 of [4] combined with Axiom 2. In fact Axiom 2 is weaker
version of Axiom 3. Both are included for completeness.

3.1   Arriving at the definition by necessity

All of the axioms are defined as things that the w variant must
satisfy. We will see that they lead to a certain necessary definition.

From Axiom 3 we know that we need to have:

𝑑𝜏w = ∑
𝑖<𝑗

𝑑w
𝑙,𝑟(𝑖, 𝑗) (8)

Can we define the function 𝑑w
𝑙,𝑟(𝑖, 𝑗) such that all the other axioms

are satisfied? As a first step consider just using 𝑑𝑎
𝑙,𝑟(𝑖, 𝑗) to arrive

the same definition as 𝑑𝜏𝑎.
Claim: 𝑑𝜏𝑎 violates axioms.
Proof: Consider the ranking 𝑥 = ⟨[𝐴,𝐵]⟩. Now: 𝑑𝜏𝑎(𝑥, 𝑥) = 1

but 𝑥 = 𝑥, which violates Axiom 1.2. ■
We can represent 𝑑w

𝑙,𝑟(𝑖, 𝑗) as a decision table (Table 1), where
for a certain combination of relative rankings a given value is
output. Meanwhile, 𝑑𝑎

𝑙,𝑟(𝑖, 𝑗) can be represented as Table 2. This
covers all possible definitions of 𝑑w pursuant to Axiom 3.

Here ‘<’ denotes that sgn(𝑥𝑖 − 𝑥𝑗) = −1 in the given ranking,
‘=’ that the elements are tied etc.

𝑟
𝑙

< = >

< 𝛼 𝛽 𝛾

= 𝛿 𝜀 𝜁

> 𝜇 𝜃 𝜆

Table 1: 𝑑w
𝑙,𝑟(𝑖, 𝑗)

𝑟
𝑙

< = >

< 0 1 2

= 1 1 1

> 2 1 0

Table 2: 𝑑𝑎
𝑙,𝑟(𝑖, 𝑗)

Claim: All values in Table  1 must be non-negative under the
given axioms.

Proof: Assume for the sake of contradiction that one of the val-
ues is negative. Without loss of generality let that be 𝛽. Produce
two rankings 𝑙, 𝑟 of size 2 which make 𝑑w

𝑙,𝑟(𝐴,𝐵) output that
value. For example for 𝛽, these would be 𝑙 = ⟨𝐴,𝐵⟩, 𝑟 = ⟨[𝐴,𝐵]⟩.
Now 𝑑𝜏w(𝑙, 𝑟) = 𝛽 but 𝛽 < 0, this violates Axiom 1.1. ■

Claim: 𝛼, 𝜀, 𝜆 must be 0 under the given axioms.
Proof: Assume for the sake of contradiction that one of 𝛼, 𝜀, 𝜆 is

non-zero. Consider the ranking: 𝑥 = ⟨𝐶,𝐴, [𝐵,𝐷]⟩. 𝑑𝜏w(𝑥, 𝑥) =
3𝛼 + 2𝜆 + 𝜀, from the assumption this gives 𝑑𝜏w(𝑥, 𝑥) > 0, since
all vales are non-negative, and violates Axiom 1.2. ■

Claim: 𝜇 = 𝛾 under the given axioms.
Proof: 𝑑𝜏w(⟨𝐴,𝐵⟩, ⟨𝐵,𝐴⟩) = 𝛾 = 𝑑𝜏w(⟨𝐵,𝐴⟩, ⟨𝐴,𝐵⟩) = 𝜇 by

Axiom 1.3 ■
Claim: 𝛿 = 𝛽 = 𝜃 = 𝜁 under the given axioms.
Proof: 𝑑𝜏w(⟨[𝐴,𝐵]⟩, ⟨𝐴,𝐵⟩) = 𝛿 = 𝑑𝜏w(⟨𝐴,𝐵⟩, ⟨[𝐴,𝐵]⟩) =

𝛽 and 𝑑𝜏w(⟨[𝐴,𝐵]⟩, ⟨𝐵,𝐴⟩) = 𝜁 = 𝑑𝜏w(⟨𝐵,𝐴⟩, ⟨[𝐴,𝐵]⟩) =
𝜃 by Axiom 1.3. Moreover, 𝑑𝜏w(⟨[𝐴,𝐵]⟩, ⟨𝐴,𝐵⟩) = 𝛿 =
𝑑𝜏w(⟨[𝐵,𝐴]⟩, ⟨𝐵,𝐴⟩) = 𝜁 by Axiom 2. ■

We will now rename the variables in Table 1 to Table 3, consid-
ering the above claims.

𝑟
𝑙

< = >

< 0 𝛽 𝛼

= 𝛽 0 𝛽

> 𝛼 𝛽 0

Table 3: 𝑑w
𝑙,𝑟(𝑖, 𝑗)

It is important to note that the actual values of 𝛼 and 𝛽 do not
matter since this just scales the whole distance metric which will
be scaled back by 𝐷w. What is now left to do is to is to establish
the relationship between 𝛼 and 𝛽. We continue by inferring some
constraints on 𝛼𝛽  from Axiom 1.4.
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If the rankings chosen in Appendix A are used, we immediately
get 𝛼𝛽 ≤ 2 since Axiom 1.4 has to be true for all rankings.

Claim: 𝛼𝛽 ≥ 1 under the given axioms.
Axiom 4: 𝑑𝜏w(⟨𝐴,𝐵⟩, ⟨𝐵,𝐴⟩) ≥ 𝑑𝜏w(⟨𝐴,𝐵⟩, ⟨[𝐴,𝐵]⟩) this is

simply: 𝛼 ≥ 𝛽 ⇒ 𝛼
𝛽 ≥ 1 ■

At this point we mention that 𝛼𝛽  will be concretely determined
by Axiom 8. We postpone using Axiom 8 to empirically decide the
value of 𝛼𝛽  to the very end. However, we now show that any value
1 ≤ 𝛼

𝛽 ≤ 2 satisfies all the other axioms. Therefore for now:

𝑑w
𝑙,𝑟(𝑖, 𝑗) =

{x
y
xz𝛼 if sgn(𝑙𝑖 − 𝑟𝑖)sgn(𝑙𝑗 − 𝑟𝑗) = −1

𝛽 if sgn(𝑙𝑖 − 𝑟𝑖) = 0 xor sgn(𝑙𝑗 − 𝑟𝑗) = 0
0 otherwise

With:

1 ≤ 𝛼
𝛽

≤ 2 (9)

3.2   Sufficiency

It was shown that this is how 𝑑𝜏w must be defined, now the other
direction is shown. Namely, that this definition satisfies all axioms
pertaining to the distance function.

Claim: 𝑑𝜏w
𝑙,𝑟(𝑖, 𝑗) satisfies Axiom 1.

Proof Axiom 1.1: All entries in Table 3 are non-negative, the sum
of non-negative values in non-negative.

Proof Axiom 1.2: 𝑑𝜏w(𝑙, 𝑙) = 0 trivially. For the other direction,
consider that 𝑑𝜏w(𝑙, 𝑟) = 0 only if all the elements of the sum for
all pairs are 0 since there are no negative values in Table 3. Since
each pair of elements is in the same relationship in both rankings
𝑙 = 𝑟 necessarily.

Proof Axiom 1.3: Table 3 is symmetric along the diagonal.
Proof Axiom 1.4: We will show that this axiom holds for each

possible pair of elements. With this we will be able to sum the
inequalities and show the axiom holds for the distance. In Appen-
dix A we show that for any elements 𝑖, 𝑗 the following is true:

∀𝑥,𝑦,𝑧 𝑑w
𝑥,𝑧(𝑖, 𝑗) ≤ 𝑑w

𝑥,𝑦(𝑖, 𝑗) + 𝑑w
𝑦,𝑧(𝑖, 𝑗) (10)

We can now sum Equation 10 over all pairs of elements 𝑖 < 𝑗:

∀𝑥,𝑦,𝑧 ∑
𝑖<𝑗

𝑑w
𝑥,𝑧(𝑖, 𝑗) ≤ ∑

𝑖<𝑗
(𝑑w

𝑥,𝑦(𝑖, 𝑗) + 𝑑w
𝑦,𝑧(𝑖, 𝑗)) (11)

∀𝑥,𝑦,𝑧 ∑
𝑖<𝑗

𝑑w
𝑥,𝑧(𝑖, 𝑗) ≤ ∑

𝑖<𝑗
𝑑w
𝑥,𝑦(𝑖, 𝑗) + ∑

𝑖<𝑗
𝑑w
𝑦,𝑧(𝑖, 𝑗) (12)

𝑑𝜏w(𝑥, 𝑧) ≤ 𝑑𝜏w(𝑥, 𝑦) + 𝑑𝜏w(𝑦, 𝑧) (13)
As required. ■

Claim: 𝑑w
𝑙,𝑟(𝑖, 𝑗) satisfies Axioms 2,3.

Proof Axiom 2: Table 3 is symmetric along the horizontal, verti-
cal, and both diagonal axes. Exchanging two elements in a pair is
equivalent to reflecting them along one of these axes in the table.■

Axiom 3 follows immediately from the definition.

3.3   𝜏w

Armed with 𝑑𝜏w we can define 𝑁𝑤.
To use Axiom 5 we have to determine the maximal possible

value of 𝑑𝜏w. Since 𝑑𝜏w is a sum of non-negative terms, it will be
the maximal value of 𝑑w

𝑙,𝑟(𝑖, 𝑗), which is 𝛼 since 𝛼 ≥ 𝛽, accounted
for 𝑛(𝑛−1)

2  times since this is the amount of pairs 𝑖 < 𝑗. Contin-
uing with Axiom 5:

𝑁w =
𝛼𝑛(𝑛−1)

2
2

− 𝑑𝜏w(𝑙, 𝑟) (14)

𝑁w = (𝑛(𝑛 − 1)
2

)𝛼
2

− ∑
𝑖<𝑗

𝑑w
𝑙,𝑟(𝑖, 𝑗) (15)

𝑁w = ∑
𝑖<𝑗

𝛼
2

− 𝑑w
𝑙,𝑟(𝑖, 𝑗) = ∑

𝑖<𝑗
𝑔w
𝑙,𝑟(𝑖, 𝑗) (16)

This leads to 𝑔w
𝑙,𝑟(𝑖, 𝑗) being Table  4, in contrast to 𝑔𝑎

𝑙,𝑟(𝑖, 𝑗)
(Table 5) from 𝜏𝑎.

𝑟
𝑙

< = >

< 𝛼
2

𝛼
2 − 𝛽 −𝛼

2

= 𝛼
2 − 𝛽 𝛼

2
𝛼
2 − 𝛽

> −𝛼
2

𝛼
2 − 𝛽 𝛼

2

Table 4: 𝑔w
𝑙,𝑟(𝑖, 𝑗)

𝑟
𝑙

< = >

< 1 0 −1

= 0 0 0

> −1 0 1

Table 5: 𝑔𝑎
𝑙,𝑟(𝑖, 𝑗)

Next, in Axiom 6 we define the denominator. Looking back at the
definition of 𝜏ℎ in our case 𝑁w can serve as the ‘⋆’ operator. This
choice indeed satisfies the constraints of Axiom 6. The crucial
observation here is that, the norm is a square root of the sum of
the values on the diagonal of Table 4 over all pairs. Ties or no ties,
in the case of 𝐷w this value will always be:

𝐷w = (√𝑛(𝑛 − 1)
2

𝛼
2
)

2

= 𝛼𝑛(𝑛 − 1)
4

(17)

Without loss of generality we can pick any value for 𝛼, since 𝐷w

removes its contribution to the result. To simplify we pick 𝛼 = 2.
This gives us an almost final definition for 𝜏w:

𝜏w(𝑙, 𝑟) =
∑𝑖<𝑗 𝑔

w
𝑙,𝑟(𝑖, 𝑗)

𝑛(𝑛−1)
2

(18)

Where:

𝑔w
𝑙,𝑟(𝑖, 𝑗) =

𝑟
𝑙

< = >

< 1 1 − 𝛽 −1

= 1 − 𝛽 1 1 − 𝛽

> −1 1 − 𝛽 1

(19)

And from Equation 9:
𝛽 ≤ 2 ≤ 2𝛽 ⇒ 𝛽 ∈ [1, 2] (20)

Axiom 7 is instantly satisfied since the corners of Table  4 and
Table 5 agree.

The only degree of freedom left in the definition now is the
choice of 𝛽. Let us tackle this problem next.

3.4   Independent rankings

We have approached both the necessity and sufficiency of the
previous axioms quite rigorously. However, for Axiom 8 we were
unable to find a discrete or general solution for an arbitrary 𝑛.
The value of 𝛽 which satisfies Axiom 8 is different for example
between 𝑛 = 2 and 𝑛 = 3. Therefore a definition fully conform-
ing to it without introducing dependence on the length of the
ranking is simply impossible.

Instead, we consider an empirical approach where 𝛽 is explic-
itly found for small 𝑛 and its value for larger 𝑛 is extrapolated.
This evaluation shows that the values of 𝛽 for different 𝑛 differ
by a relatively small amount and the results show a convergent
tendency. We will use this extrapolation to approximate the
(assumed) convergence value and choose 𝛽 as such.

We can express Axiom 8, for a particular 𝑛:

𝔼[𝜏w(𝐿,𝑅)] = ∑
𝑙,𝑟∈�̂�𝑛

𝜏w(𝑙, 𝑟)Pr[𝐿 = 𝑙]Pr[𝑅 = 𝑟] (21)
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= 1
|�̂�𝑛|2

∑
𝑙,𝑟∈�̂�𝑛

𝑁w

𝐷w
= 0 (22)

⇒ 1
|�̂�𝑛|2 𝐷w

∑
𝑙,𝑟∈�̂�𝑛

(∑
𝑖<𝑗

𝑔w
𝑙,𝑟(𝑖, 𝑗)) = 0 (23)

⇒ ∑
𝑙,𝑟∈�̂�𝑛

(∑
𝑖<𝑗

𝑔w
𝑙,𝑟(𝑖, 𝑗)) = 0 (24)

3.4.1   Empirical experiment

All elements of �̂�𝑛 were generated for 𝑛 from 2 to 7, while
ensuring that there are no duplicates. Thereafter, the incidence
of each type of pair was counted across all rankings. All of these
concrete values can be found in Appendix B. With the incidence
values and Equation 24 we can calculate the value of 𝛽 which
would satisfy Axiom 8 for each length.

ℎ(𝑥)
Actual value
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Figure 2: The value of 𝛽 satisfying Axiom 8 versus 𝑛.

In Figure 2 the function ℎ(𝑥) = 0.356( 1
𝑥−0.576) + 1 was included

as an extrapolation of the data points into larger values of 𝑛.
ℎ(𝑥) converges to 1. All the values of 𝛽 are very close to 1 and

(seemingly) converge to it. This prompts our final choice, which
is: 𝛽 = 1. This is motivated by Axiom 3 which prevents depen-
dence on the length of the ranking, and the convergence value
observed above. The implications of 𝛽 = 1 are twofold:
1. 𝜏w will be slightly biased for small values of 𝑛.
2. This results in a definition of 𝑑𝜏w which is exactly the same as

the aforementioned Kemeny distance.
To reiterate: Axiom 8 cannot be fully satisfied, therefore as a
tradeoff we choose a value of 𝛽 which satisfies Axiom 8 when
𝑛 → ∞.

To tackle the first point: It is important to establish the exact
amount of this bias this choice results in. Figure  3 shows 𝜏w

as slightly positively biased, for very short rankings. In reality,
rankings above the size of 4 will almost always be the ones
considered, the bias for those should be very small and hence we
believe this provides a strong base for fixing the value of 𝛽 at 1.

2 3 4 5 6 7
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0.08

0.10

2 3 4 5 6 7
Length of the ranking 𝑛

0.02

0.04

0.06

0.08

0.10

𝔼[
𝜏w

(𝐿
,𝑅

)]

Figure 3: Bias of 𝜏w for small 𝑛.

In relation to the second point: The set of axioms chosen here, the
ones which logically state how w  should behave, can be mostly
found equivalent to Kemenys’ constraints. We however rejected
the constraint of betweenness⁸, which was not examined in this
work. This in essence gave us the degree of freedom which is the
choice of 𝛽. Instead we constrain 𝛽 using the behaviours which
are desired for similarity measures, not distance metrics (Axiom

8). Even with this key difference in treating ties, the surprising
(but necessary) result is a definition which resembles exactly the
result of Kemeny. That is: without considering the exact value of
𝛽 but our choice of 𝛽 = 1.

With this we conclude that given our axioms we are lead to the
final definition of 𝜏w:

𝜏w(𝑙, 𝑟) =
∑𝑖<𝑗 𝑔

w
𝑙,𝑟(𝑖, 𝑗)

𝑛(𝑛−1)
2

(25)

Where:

𝑔w
𝑙,𝑟(𝑖, 𝑗) =

{x
y
xz1 if sgn(𝑙𝑖 − 𝑟𝑖) = sgn(𝑙𝑗 − 𝑟𝑗)

−1 if sgn(𝑙𝑖 − 𝑟𝑖)sgn(𝑙𝑗 − 𝑟𝑗) = −1
0 otherwise

(26)

Which differs from 𝜏𝑎 only in regard that when the two elements
are tied in both rankings 𝑔w

𝑙,𝑟(𝑖, 𝑗) returns 1.

3.5   Weighted measures

Just as discussed in Section 2.2.3, the definition of the operator ⋆𝑤
for w is now straightforward, since it follows from 𝑔w

𝑙,𝑟(𝑖, 𝑗).

𝑙 ⋆w
𝑤 𝑟 = ∑

𝑖<𝑗
𝑔w
𝑙,𝑟(𝑖, 𝑗)𝑤𝑙,𝑟(𝑖, 𝑗) (27)

𝜏w
ℎ  is therefore:

𝜏w
ℎ,𝑤(𝑙, 𝑟) = 𝑙 ⋆w

𝑤 𝑟
‖𝑙‖w

𝑤 ⋅ ‖𝑟‖w
𝑤

(28)

=
∑𝑖<𝑗 𝑔

w
𝑙,𝑟(𝑖, 𝑗)𝑤𝑙,𝑟(𝑖, 𝑗)

√∑𝑖<𝑗 𝑔
w
𝑙,𝑙(𝑖, 𝑗)𝑤𝑙,𝑙(𝑖, 𝑗)√∑𝑖<𝑗 𝑔

w
𝑟,𝑟(𝑖, 𝑗)𝑤𝑟,𝑟(𝑖, 𝑗)

(29)

=
∑𝑖<𝑗 𝑔

w
𝑙,𝑟(𝑖, 𝑗)𝑤𝑙,𝑟(𝑖, 𝑗)

√∑𝑖<𝑗(𝑤𝑙,𝑙(𝑖, 𝑗)) ⋅ ∑𝑖<𝑗 𝑤𝑟,𝑟(𝑖, 𝑗)
(30)

By 𝑤𝑙,𝑟(𝑖, 𝑗) = 1
max(𝑙𝑖,𝑙𝑗)−1  this leads⁹ immediately to 𝜏w

𝐴𝑃 :

𝜏w
𝐴𝑃 (𝑙, 𝑟) =

∑𝑖<𝑗 𝑔
w
𝑙,𝑟(𝑖, 𝑗) 1

max(𝑙𝑖,𝑙𝑗)−1

√∑𝑖<𝑗(
1

max(𝑙𝑖,𝑙𝑗)−1) ⋅ ∑𝑖<𝑗
1

max(𝑟𝑖,𝑟𝑗)−1

(31)

The choice of the weight function also influences the considera-
tions of the previous section. The bias will change depending on
the weight function since the weighting changes contributions
of each pair of rankings to Equation 23. We cannot evaluate the
bias for an arbitrary weight function, but Appendix C includes
the results for 𝜏w

𝐴𝑃  where the weight function is defined.

4   RESPONSIBLE RESEARCH

This work did not collect or process any data about people or
groups of people, directly or indirectly. The definition of 𝜏w has no
direct societal consequences, it is a proposal in a fully theoretical
sense. We believe however that it can be helpful in the field of
information retrieval and expand on this further in Section 5.3.
This in turn could allow for more accurate ranking systems and,
in the long term, benefit society.

⁸Part of Condition 1 of [4].
⁹See also: Appendix D.
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The results are not without flaws and we investigate their
shortcomings further and offer a critical look in Section 5.

We want to reiterate the impact of Kemeny [4], this cannot be
understated. Our work differs in one significant choice pertaining
to the selection of core axioms of the distance measure. We still
arrive at essentially the same result as Kemeny.

In order to ensure the reproducability and complete trans-
parency of our results, all code is open source and available. This
guarantees that the considerations of Section 3.4.1 and Section 5
are verifiable. The code can be found in a version control repos-
itory at: https://codeberg.org/mgazeel/tau_w.

5   DISCUSSION

In this section our definition will be examined again, some toy
examples will be provided, and most importantly we try to iden-
tify the shortcomings of our approach to the w-variant.

5.1   Negative correlation with ties

The resulting measures behave as required for a lot of cases due
to our choice of axioms. For example rankings which are the
same, or in other words perfectly positively correlated, yield a
correlation of exactly 1 with all three measures. This is a direct
result of Axiom 6.

𝜏w(⟨𝐴,𝐵,𝐶,𝐷,𝐸⟩
⟨𝐴,𝐵,𝐶,𝐷,𝐸⟩

) = 1 𝜏w(⟨𝐴, [𝐵,𝐶]𝐷,𝐸⟩
⟨𝐴, [𝐵,𝐶]𝐷,𝐸⟩

) = 1

Moreover, due to Axiom 8, for unrelated rankings or ones picked
uniformly at random from all the possible rankings we are guar-
anteed to expect a value close to 0. However, none of the axioms
consider the other end of the range: perfect negative correlation.
For rankings without ties this works as intended¹⁰. But what if
ties are considered?

𝜏w(⟨𝐴,𝐵,𝐶,𝐷,𝐸⟩
⟨𝐸,𝐷,𝐶,𝐵,𝐴⟩

) = −1 𝜏w(⟨𝐴, [𝐵,𝐶]𝐷,𝐸⟩
⟨𝐸,𝐷, [𝐵,𝐶]𝐴⟩

) = −0.8

But we would expect the result to be the −1 for both of these
rankings with the w-variant! This is a problem which cannot be
resolved by adding any axioms since 𝜏w is unique for our set of
axioms. Furthermore, this problem cannot be resolved by a simple
modification to the denominator 𝐷w, even if we consider 𝐷w to
be dependent on the structure of ties (like in 𝜏𝑏). We cannot reach
both: −1 for the pair presented above while also keeping the result
1 for the identity comparison with ties. This is because 𝐷w can
only scale the numerator and the tie structure in both of these
comparisons is the same.

Pursuant to the reasons above, this behaviour is accepted as a
shortcoming of our definition. Its resolution is left to future work.

5.2   Comparison with 𝑎 and 𝑏
As a point of comparison we utilize synthetic data generated
with the simulator courtesy of Corsi & Urbano [2]. To observe a
meaningful difference between w  and the other variants a very
high proportion of ties is required. This is a part of the definition,
but the extent to which ties must be prevalent in the ranking may
be too high.

An indirect result of Axiom 7 is that the less ties ties are in the
rankings the more similar 𝜏w becomes to 𝜏 .

Figure 4 and Figure 5 are runs of the two measures over rank-
ings 𝑛 = 20 using a high prevalence of ties (frac_ties¹¹ ≈ 0.95)
and a low prevalence of ties (frac_ties ≈ 0.3).

¹⁰because of Axiom 7.
¹¹An argument to the generation code originally published in [2].

In the comparison against 𝜏𝑏 we can observe, that for rankings
where 𝜏𝑏 returns a highly uncorrelated judgment, 𝜏w tends to
show more correlation. Furthermore this effect does not occur on
the right-hand side of the graph. We believe this to be a direct
result of the considerations in Section 5.1.

In both comparisons we see a large amount of points in the
upper part where 𝜏𝑎 = 0 or 𝜏𝑏 = 0. This is a result of the fact
that both of these measures return 0 if any of the rankings is
completely tied. Our measure is the only one that can handle
this case and attempt to perform a comparison. However, all the
results for such a comparison return values higher than 0 which
may be unwanted.

−1.0 −0.5 0.0 0.5 1.0
𝜏𝑎(𝑙, 𝑟)

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

𝜏w
(𝑙
,𝑟

)

𝜏𝑎(𝑙, 𝑟) vs 𝜏w(𝑙, 𝑟)

−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0
𝜏𝑏(𝑙, 𝑟)

𝜏𝑏(𝑙, 𝑟) vs 𝜏w(𝑙, 𝑟)

Figure 4: Comparison using synthetic data, ties high.
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−0.8
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−0.4
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0.8
1.0

𝜏w
(𝑙
,𝑟

)

𝜏𝑎(𝑙, 𝑟) vs 𝜏w(𝑙, 𝑟)

−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0
𝜏𝑏(𝑙, 𝑟)

𝜏𝑏(𝑙, 𝑟) vs 𝜏w(𝑙, 𝑟)

Figure 5: Comparison using synthetic data, ties low.

Finally, to showcase that a real difference between the three
variants exists. We use real world data. In Figure 6 we provide the
results of comparisons on data from TREC 2014 concerning Web
Ad Hoc systems [13] comparing all combinations of topics.

−0.5 0.0 0.5 1.0
𝜏𝑎(𝑙, 𝑟)

−0.6

−0.4
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0.0

0.2

0.4

0.6

0.8

1.0

𝜏w
(𝑙
,𝑟

)

𝜏𝑎(𝑙, 𝑟) vs 𝜏w(𝑙, 𝑟)

−0.5 0.0 0.5 1.0−0.5 0.0 0.5 1.0
𝜏𝑏(𝑙, 𝑟)

𝜏𝑏(𝑙, 𝑟) vs 𝜏w(𝑙, 𝑟)

Figure 6: Comparison using data from TREC 2014 evaluation.
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5.3   Usefulness in real world datasets

When evaluating the correlation between rankings of real re-
trieval systems, 𝜏  is used in a specific way. Voorhees et al. [14]
provide a description of this approach and evaluate their results
using it on the TREC-8 Ad Hoc data. Systems are ranked by
their mean performance according to some score (for example
𝑃@10). Afterwards, 𝜏  (or 𝜏𝑏) is used to calculate the similarity
between mean rankings of systems - this allows us to measure the
similarity of two scores. This similarity between the means is the
number reported in works, but for the end user, it may not reflect
the actual performance of a system on a topic. A more informative
metric would be the correlation not between the mean rankings
but rankings for that particular topic of interest. This, however, is
too many values to report. Yet, possibly the mean of correlations
of system rankings instead of the correlation of mean rankings
would be a better indicator of performance.

The individual rankings of systems on a topic contain a high
amount of ties¹². In the case of metrics such as 𝑃@10, 𝑃@20 the
ties between two systems in a topic essentially mean the exact
same performance, not uncertainty in ranking them. This would
require a correlation measure which treats ties not as uncertainty
but occurrence at the same rank. This is exactly what 𝜏w is
designed for.

Whereas the mean ranking of system does not contain a high
incidence of ties. This makes the choice of variant have much less
impact on the result.
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Figure 7: Comparison of computed correlation for TREC 2014.

Figure 7 shows the two aforementioned evaluation methods be-
tween different scores. The key insight this provides is that on
real world data, such as the results of TREC, calculating the mean
of correlations over topic rankings can return lower scores. This
is paramount. It points at the possibility that calculating correla-
tion over the mean scores may be overestimating the actual
performance for end users.

6   CONCLUSION

The premise of the w variant was introduced. A distance based
interpretation of this premise was shown, and thereafter we
defined logical axioms about the desired behaviour of 𝜏w.

We have shown that our definition of 𝑑𝜏w upon these axioms
is unique, with the exception of Axiom 8 which was approached
empirically. If a different definition were to be considered, the
choice of these axioms must be challenged, changed, and rationale
for this must be provided.

¹²In the context of the TREC 2014 dataset.

Finally, we also arrive at 𝜏w
𝐴𝑃  and 𝜏w

ℎ  using the same reasoning
that was used by Vigna [12] to define 𝜏ℎ originally.

The relationship between these definitions and the widely used
variants 𝑎 and 𝑏 has been investigated on real and synthetic data.
Furthermore, we provide results which show that our method
may be useful in evaluating system performance in information
retrieval.

We conclude by saying that our final results can be found in
Equation 25 in the case of 𝜏w, Equation 31 for 𝜏w

𝐴𝑃 , Equation 30
for 𝜏w

ℎ .

6.1   Future work

The most important problems to consider are the findings of
Section  5.1. When negatively correlated rankings with ties are
compared, the current formulation of 𝐷w is not able to scale the
numerator to −1. From the discussion it is clear the a simple
reformulation of 𝐷w is not sufficient. One way of addressing this
problem is by both ‘offsetting’ the numerator and modifying the
denominator. This would however violate the premises of Axiom

8 which is a central part of 𝜏w. We believe that this problem may
be addressed by ‘splitting’ the scaling of the numerator. That is:
introducing a different 𝐷w dependent on the result of 𝑁w being
negative or positive. These could be coined 𝐷w

−  and 𝐷w
+  and have

to be carefully chosen based on the rankings being compared.
This way only Axiom 6 has to modified. This needs much further
investigation. Sadly, due to the time constraints imposed on this
thesis we were unable to conduct it.

Another area worth expanding are the findings of Section 3.4.
Especially, it may be possible to find a rigorous proof that the
value of 𝛽 does indeed converge to 1. If that fails, we have also
considered uniformly sampling from �̂�𝑛. A preliminary investi-
gation points to this being a hard problem, but if an efficient
algorithm could be found for it, it may be possible to probabilis-
tically calculate the values for much higher 𝑛.

Another question which is left unanswered is the w variant
in the context of different similarity measures. This concerns in
particular Spearman [10], since it is another widely used measure.

Finally, as discussed, the choice of axioms can also be chal-
lenged, or possibly the approach of basing the definition on that
of RBOw which was rejected in this work could be investigated.
This may lead to different results as to the definition.
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APPENDICES

A CASE ANALYSIS

When proving Axiom 1.4, we will show that for any configuration
of elements:

∀𝑥,𝑦,𝑧 𝑑w
𝑥,𝑧(𝑖, 𝑗) ≤ 𝑑w

𝑥,𝑦(𝑖, 𝑗) + 𝑑w
𝑦,𝑧(𝑖, 𝑗)

Below we include all possible configurations of a pair between
three rankings of size 2, as well as the concrete values of the
above inequality in each case. Symmetric configurations are not
considered.

𝑥 𝑦 𝑧

𝐴 𝐴 𝐴

𝐵 𝐵 𝐵

0 ≤ 0 + 0

𝑥 𝑦 𝑧

𝐴 𝐵 𝐴

𝐵 𝐴 𝐵

0 ≤ 2𝛼

𝑥 𝑦 𝑧

𝐴 ⎴𝐴 𝐴

𝐵 𝐵⎵ 𝐵

0 ≤ 2𝛽

𝑥 𝑦 𝑧

𝐴 𝐴 𝐵

𝐵 𝐵 𝐴

0 ≤ 0

𝑥 𝑦 𝑧

𝐴 𝐵 𝐵

𝐵 𝐴 𝐴

0 ≤ 0

𝑥 𝑦 𝑧

𝐴 ⎴𝐴 𝐵

𝐵 𝐵⎵ 𝐴

𝛼 ≤ 2𝛽

𝑥 𝑦 𝑧

𝐴 𝐴 ⎴𝐴

𝐵 𝐵 𝐵⎵

0 ≤ 0

𝑥 𝑦 𝑧

𝐴 𝐵 ⎴𝐴

𝐵 𝐴 𝐵⎵

0 ≤ 𝛼

𝑥 𝑦 𝑧

𝐴 ⎴𝐴 ⎴𝐴

𝐵 𝐵⎵ 𝐵⎵

0 ≤ 0

B PREVALENCE OF PAIRS OF RELATIONS

Here we provide an exhaustive list of the prevalences found in all
rankings, with ties, of a given size.

𝑟
𝑙

< = >

< 1 1 1

= 1 1 1

> 1 1 1

Table 6: Prevalence for �̂�2

𝑟
𝑙

< = >

< 75 45 75

= 45 27 45

> 75 45 75

Table 7: Prevalence for �̂�3

𝑟
𝑙

< = >

< 5766 2418 5766

= 2418 1014 2418

> 5766 2418 5766

Table 8: Prevalence for �̂�4

𝑟
𝑙

< = >

< 542890 174750 542890

= 174750 56250 174750

> 542890 174750 542890

Table 9: Prevalence for �̂�5

𝑟
𝑙

< = >

< 64335615 16806165 64335615

= 16806165 4390215 16806165

> 64335615 16806165 64335615

Table 10: Prevalence for �̂�6

𝑟
𝑙

< = >

< 9531963525 2095197615 9531963525

= 2095197615 460540269 2095197615

> 9531963525 2095197615 9531963525

Table 11: Prevalence for �̂�7
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C THE BIAS OF 𝜏w
𝐴𝑃  AND HYPERBOLIC 𝜏w

ℎ

We also investigate the bias of 𝜏w
ℎ,𝑤 when the weighting function

is an additive hyperbolic function as defined by Vigna [12]. We
will refer to this as 𝜏w

ℎ,ℎ.

Bias of 𝜏w
𝐴𝑃

Bias of 𝜏w
ℎ,ℎ

2 3 4 5 6 7
Length of the ranking 𝑛

0.02

0.04

0.06

0.08

0.10

𝔼[
𝜏w 𝐴

𝑃
(𝐿

,𝑅
)]

Figure 8: Bias for small 𝑛.

𝑛 𝔼[𝜏w(𝐿,𝑅)] 𝔼[𝜏w
𝐴𝑃 (𝐿,𝑅)] 𝔼[𝜏w

ℎ,ℎ(𝐿,𝑅)]

2 0.1 0.1 0.1

3 0.0533 0.0577 0.0620

4 0.0300 0.0352 0.0395

5 0.0192 0.0240 0.0283

6 0.0133 0.0175 0.0220

7 0.0098 0.0135 0.0179

Table 12: Comparison of approximate bias between 𝜏w, 𝜏w
𝐴𝑃 , 𝜏w

ℎ,ℎ.

D NOTES ABOUT THE DENOMINATOR OF 𝜏w
𝐴𝑃

The denominator in the definition of 𝜏w
𝐴𝑃  (Equation 31) can be

simplified in the absence of ties. To recall:

𝐷w
𝐴𝑃 =

√
££
¤

∑
𝑖<𝑗

( 1
max(𝑙𝑖, 𝑙𝑗) − 1

) ⋅ ∑
𝑖<𝑗

1
max(𝑟𝑖, 𝑟𝑗) − 1

If we consider rankings without ties, each rank in 𝑟 and 𝑙 appears
exactly once meaning that in each of the sums we have the pairs:

Pair Contribution

(𝑙𝑖 = 2, 𝑙𝑗 = 1) or vice-versa 1
max(2,1)−1 = 1

1

Total contribution of 𝑙𝑖 = 2 1

(𝑙𝑖 = 3, 𝑙𝑗 = 1) or vice-versa 1
max(3,1)−1 = 1

2

(𝑙𝑖 = 3, 𝑙𝑗 = 2) or vice-versa 1
max(3,2)−1 = 1

2

Total contribution of 𝑙𝑖 = 3 1

⋮ ⋮

The total value of the sum will therefore be:

𝐷w
𝐴𝑃 = √(𝑛 − 1)(𝑛 − 1) = (𝑛 − 1)

This appendix is included for the sake of completeness, and the
above analysis breaks down for rankings which do contain ties
since the contribution changes based on the rankings of tied
items.
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