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The usage of robots replacing human tasks has become more preva-
lent. Controlling multiple of these robots can be useful in applications
such as disaster response, surveillance and exploration. This form of
control is often achieved by using geometric patterns, such as triangles,
squares, etc. Drones can employ this concept of formation control to
fly and maneuver through environments and obstacles.

In this work a distributed affine formation control algorithm is
implemented onto Crazyflie drones from Bitcraze. Ultra-wideband is
used for positioning and communication between the drones. The
implementation of the affine formation control algorithm is optimised
such that it is only executed when new information is available, to
prevent the onboard microcontroller from bottlenecking. This resulted
in the drones flying in formation successfully with an accuracy of
approximately 6.80 cm from its expected position.

Additionally, this algorithm is extended to manage cases where
unexpected missing drones could comprise the stability of the forma-
tion. The implementation uses the CMSIS library that is optimised
for matrix operations. This resulted in the drones flying in formation
successfully even in the case of an observation loss with an accuracy
of approximately 17.69 cm.

This work not only provides empirical data of experiments with
an affine formation control algorithm, but also provides a baseline im-
plementation for future research in the field of affine formation control,
which can potentially lead to noise analysis or the application affine
formation controls under different circumstances.
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Abstract

The usage of robots replacing human tasks has become more prevalent. Controlling
multiple of these robots can be useful in applications such as disaster response, surveil-
lance and exploration. This form of control is often achieved by using geometric pat-
terns, such as triangles, squares, etc. Drones can employ this concept of formation
control to fly and maneuver through environments and obstacles.

In this work a distributed affine formation control algorithm is implemented onto
Crazyflie drones from Bitcraze. Ultra-wideband is used for positioning and communica-
tion between the drones. The implementation of the affine formation control algorithm
is optimised such that it is only executed when new information is available, to prevent
the onboard microcontroller from bottlenecking. This resulted in the drones flying in
formation successfully with an accuracy of approximately 6.80 cm from its expected
position.

Additionally, this algorithm is extended to manage cases where unexpected missing
drones could comprise the stability of the formation. The implementation uses the
CMSIS library that is optimised for matrix operations. This resulted in the drones
flying in formation successfully even in the case of an observation loss with an accuracy
of approximately 17.69 cm.

This work not only provides empirical data of experiments with an affine formation
control algorithm, but also provides a baseline implementation for future research in
the field of affine formation control, which can potentially lead to noise analysis or the
application affine formation controls under different circumstances.
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Introduction

Over the past decade the usage of drones has been increasingly popular [1, 2, 3, 4, 5].
With applications varying from the logistics sector [6] to agriculture [7] and disaster re-
sponse [8]. Types of drones have also evolved varying in size, weight, types of propulsion
and level of automation [9]. Each variation of a drone can be applicable for different
use cases. The software for drones has also undergone significant advancements over
time. This evolution is evident from more robust controllers [10], to communicating
over different media [11]. The enhancement in connectivity has enabled simultaneous
real-time control and command of multiple drones, thereby facilitating the potential
for swarm operations in a systematic fashion [12]. Swarm operations are not limited
to drones and can apply to any kind of agent. This concept of multiple agents work-
ing independently to achieve a common goal is considered a distributed autonomous
system.

1.1 Distributed autonomous systems

With robots and AI becoming more prevalent in replacing human tasks a primary
way of achieving this is if these robots, or agents, work together. With distributed
autonomous systems each agent behaves independently from other agents and can adapt
to changing environments without human interventions [13] e.g., self-driving cars are
systems equipped with sensors which are used to navigate roads, detect obstacles and
make decisions without human intervention.

This form of automation can be applied in a variety of industrial and social sectors.
Replacing human tasks is potentially more time-efficient, energy-efficient and safer.
e.g., Using milking machines in the livestock to autonomously milk cows [11]. Or, Using
automated guided vehicles are used to transport up to 100,000 kg in a warehouses which
reduces the cost of labour, energy and increases safety of the human workers [15].

The distributed property of autonomous systems brings significant pros for handling
tasks. Firstly, it is less common to fail on a single node of the network. In the case of a
failing agent the system can still continue to operate [10]. Secondly, the system can be
easily scalable by adding more agents without the system needing a complete overhaul
[13]. For example, a swarm of flying drones can still operate even if one single drone
fails. Additionally, the swarm can also easily be expanded by adding more drone to the
swarm. A group of autonomous systems is more conveniently controlled in geometric
patterns than as individual operating agents [17]. For example, a swarm of drones
flying over crop fields in one straight line such that seeds or fertilizers are distributed
evenly [18]. This naturally introduces the problem of formation control.



1.2 Formation Control

Coordinating and controlling a swarm of agents effectively requires a system or algo-
rithm. For complex tasks, agents are more effective when working together. This can
be used for example in disaster response [19], exploration [20] and inspection of build-
ings and vehicles [21, 22]. To achieve them working coherent and systematically they
operate in a certain formation. Conventional formation control consist of certain key
properties. First, controlling a swarm can be done for example by a global coordinator.
This coordinator collects data from all agents, makes decisions based on this informa-
tion, and then sends coordination commands to the agents [23]. For example, a laptop
or PC, operated by a human or running an algorithm, sends instructions to a swarm
of drones on where to fly.

Additionally, formation control usually consists of two subtasks. Firstly, formation
shape control, which steers the agents to form a desired geometric pattern from any
initial position. Secondly, formation maneuver control, which steers agents as a whole
such that the centroid, orientation, scale, etc. can be changed. Different types of
formation control range from position-based to displacement-based and leader-follower-
based formation control [23, 24]. On average, depending on the type, formation control
with drones is accurate approximately between 5 to 30 cm [25, 26]. This means that
there is an average variance of 5 to 30 cm between the actual and expected position of
the drones.

Some key limitations in formation control are scalability, robustness, and environ-
mental adaptability [27]. In the case of increasing number of agents, the complexity of
coordinating and controlling the agents grows as well [28]. Robustness challenges such
as hardware failures, sensor noise, and environmental conditions cannot be completely
prevented. Instead of trying to stop them from occurring, it is more effective to develop
strategies for appropriately dealing with these scenarios [29].

Given these challenges, maintaining geometric consistency in formations is crucial.
An affine formation is defined as a formation that is able to maintain its geometric
consistency with affine transformations applied to it. For example, a formation that
rotates but maintains the same relatives distances betweens the agents throughout the
rotation. Affine formation control is particularly useful in use cases where a formation
requires transformation such as avoiding obstacles [30] or avoiding collisions in changing
environments [31].

A key characteristic of affine formation control is that the drones mainly depend
on communicating with each other in order to stay in formation. In other words,
the position of drones are required to stay observable for other drones. This implies
that if one of the drones suddenly falls out of formation, the whole formation may
collapse. Functioning and accurate localization is thus important to prevent this case
of observation loss. The effectiveness and efficiency of affine formation control depend
not only on the algorithms but also on the software and hardware used to implement
them.



1.3 Bitcraze

For the purposes of this research, drones from Bitcraze are utilised, called Crazyflie [32].
The Crazyflie 2.1, shown in Figure 1.1, is small, modular and open-source, making it
suitable for research applications.

1.3.1 Key components

The Crazyflie consist of many components such as, motors, wires and sensors. Some
key components relevant for this research are the micro-controller, radio chip and the
ultra-wideband (UWB) chip. A full list of properties and hardware specifications for
the Crazyflie can be found in appendix A.

Micro-controller

The STM32F405 is developed and manufactured by STMicroelectronics [33]. This
particular version of the micro-controller contains a Cortex-M4 core. It has a maximum
clock frequency of 168MHz and contains 192kb of SRAM. Note that the SRAM operates
faster than conventional DRAM but it requires power to retain its data [31]. Once
no more power is supplied all data stored on the SRAM is lost. Additionally, the
microcontroller contains 1Mb flash storage that is used to store the firmware of the
Crazyflie.

Radio chip

The NRF51822 is a System-on-Chip (SoC) developed and manufactured by Nordic
Semiconductors [35]. This radio chip allows for connectivity over Bluetooth Low Energy
(BLE) and 2.4GHz radio frequency. The SoC is also equipped with a Cortex-MO core,
running at a maximum clock frequency of 32MHz. Additionally, it has a 16Kb SRAM
and a 128Kb of flash storage for the firmware that handles sending and receiving signals.
It supports data rates up to 2Mbps and is mainly responsible for the communication
between the drone and the external commander. For example a joystick, a laptop or a
smartphone.

UWB chip

The DWM1000 is a UWB transceiver Integrated Chip (IC) developed and manufac-
tured by Decawave (now acquired by Qorvo) [36]. It supports bands between 3.5GHz
and 6.5GHz with data rates up to 6.8Mbps. According to the manufacturer, the
application of position estimation with this transceiver is measured to be accurate up
to 10 cm in standard deviation!. This means that the measured position is expected
to be within 10 ¢m from its actual position.

!The 10 em standard deviation is not further specified by the manufacturer. Therefore the usage of this 10
cm as a baseline when comparing the results of experiments throughout this report should be disregarded.



(a) Crazyflie 2.1 [32] (b) UWB deck for the Crazyflie [37]

Figure 1.1: Crazyflie 2.1 drone developed by BitCraze

1.3.2 Bitcraze stock firmware

The firmware on the Crazyflie is open-source, developed and maintained by Bitcraze.
This firmware is responsible for a variety of critical tasks, including Generating PWM
signals for motor control, stabilizing the drone during flight through a PID controller,
and sensor fusion, among other functions. All these tasks are managed by a real-time
operating system, FreeRTOS, which handles task scheduling, interrupt handling and
memory management [38]. FreeRTOS operates with a tick rate of 1000Hz, meaning it
checks 1000 times per second for new tasks to execute. However, the actual execution
speed of these tasks depends on the CPU clock frequency, which in this case, is a
maximum of 168MHz.

One of the positioning systems present on the Crazyflie is the Loco Positioning
System (LPS). The LPS uses an algorithm to estimate the position of the drone by
receiving information over UWB. This algorithm proposed by [39] effectively combines
the principles of Time Difference of Arrival (TDOA) and Two-Way Ranging (TWR)
to enhance positioning accuracy. In this system, the drones receive packets from UWB
devices which are fixed in place, called anchors. Simultaneously, the anchors also com-
municate with other anchors, exchanging packets and applying TWR to determine the
time offsets between their clocks, which is then communicated with the drones. This
approach eliminates the necessity for the synchronisation of clocks among the anchors
before transmitting packets to the drone. The UWB chip accuracy of 10 cm must be
taken into consideration when flying the drones and analysing results.

1.4 Goals and Overview

Combining all the aforementioned concepts, the aim of this research is to fly drones in
formation in a decentralised fashion, where each drone can determine its own direction
of flight that will engage formation. Current research has applied affine formation
control for different types of applications in simulation [10, 41]. This research aims to
explore the gap of applying affine formation control onto actual hardware by reporting
results and bringing attention to challenges that may have been previously unaddressed.
The objectives for this research can be summarised as the following



e How can an affine formation control algorithm, with observation losses, be imple-
mented onto hardware?

e What accuracies can be achieved with the affine formation control?

e What challenges arise with affine formation control in the real-world?

For these objectives, this report is structured as the following. Chapter 2 intro-
duces the notation and definitions regarding positioning which is used throughout this
research. Chapter 3 provides a detailed explanation of the concept of affine formation
control, along with the algorithm used. This is followed by the implementation of the
algorithm onto hardware and an analysis of its performance based on various experi-
ments. Chapter 4 addresses the scenario where a drone might suddenly lose connection
and fall out of formation. It describes an algorithm capable of handling such a situ-
ation, followed by its implementation on hardware and an analysis of its performance
based on various experiments. The final chapter evaluates the analyses of experiments
and presents the conclusions. The future work of this thesis is also discussed in this
chapter.






Position estimation

This chapter discusses how positions of agents can be determined and what is necessary
to achieve this. Various techniques, algorithms and hardware used in positioning are
explored and discussed. Finally, the chapter provides a detailed description of the
positioning system used in all experiments throughout this research, along with an
analysis of its performance.

2.1 Position

In multi-agent systems, precise positioning of agents is fundamental for effective co-
ordination and task execution [12]. Accurate positioning can be important in various
applications such as robotics, autonomous vehicles, and sensor networks. Here per-
formance and safety of the system depend on the ability of agents to determine their
locations relative to one another [13]. Positioning involves determining the exact lo-
cation of each agent.Positions of agent i is defined as z; € R%. Consequently, the
displacement between agents ¢ and j is defined by

Zij = Zj —Z; = [Zjl — Zil, ZJQ — Zi2y .- 7zjd — Zid]T (21)

The distance between these agents is defined as the Euclidean distance by the following
equation

d

dij = llz; — zill = | D (26 — 2x)? (2.2)

k=1

2.2 Types of ranging

The devices that ensure connectivity create an infrastructure in which information can
be exchanged between transmitters and receivers. This infrastructure can be utilised to
estimate distances between the, so called, transmitter and receiver. By mounting such
a device onto the agent and placing some devices in fixed positions (called anchors),
different algorithms and techniques can be utilised to estimate the position of the
agent. These ranging techniques are considered essential in multi-agent systems [13].
Different types of ranging can be categorised into One-Way-Ranging (OWR) and Two-
Way-Ranging (TWR).

With OWR the communication between anchors and agents is unidirectional. Con-
ventionally the anchor functions as the transmitter and the agent functions as the
receiver. Some algorithms that operate one-way are Time of Flight (ToF), Time of Ar-
rival (ToA), Received Signal Strength (RSS) and Time Difference Of Arrival (TDOA).
For most OWR algorithms is required that the clocks on transmitters and receivers are



synchronised with each other. Since with unsynchronised clocks the receiver is unable
to correctly determine how long a packet has travelled for from its transmitter [11].

TWR involves an exchange of signals between two devices. Because of this exchange
there is no need for synchronised clocks. TWR can be further categorised in One-Sided
TWR and Two-Sided TWR. One-Sided TWR requires only one round-trip exchange
of information. Whereas Two-Sided TWR requires two round-trip exchanges. This
provides higher accuracy but will consume more time and computation [15]. Some
examples of TWR algorithms are Angle Of Arrival (AOA) and Round-Trip Time of
Flight (RToF).

Using additional techniques and heuristics can further improve positioning accu-
racy. Kalman filtering and sensor fusion are often employed to enhance positioning
accuracy [10]. Additionally, a high rate of information exchange between transmitters
and receivers can also improve position accuracy. Transmitting packets at a higher rate
means executing the ranging algorithm more frequently which results in more position
estimations over time.

2.3 Connectivity

Communication and connectivity is key in estimating positions and in commanding
agents. Communication is done over a particular media which can be different depend-
ing on the use case. For example, wifi is widely used for indoor positioning since it is
widely available and offers relatively high accuracy. UWB provides precise, short-range
positioning, which is ideal for applications where high accuracy is required. RFID of-
fers high accuracy, scalability and no need of line-of-sight, often used in logistics and
inventory management. Using Bluetooth strikes a balance between range and accuracy.
Therefore, this is suitable for both indoor and outdoor positioning. Infrared is used
for short-range, line-of-sight positioning, often in controlled environments. These tech-
nologies are just a limited selection of all that allow to determine positions of agents
and facilitate coordination and navigation [17, 18]

For connectivity to function, devices must be capable of acting as both transmitters
and receivers. Each medium of connectivity requires specific types of devices. For
instance, UWB uses a UWB chip, wifi relies on specific wifi modules, and RFID operates
using tags.

2.4 TDOA

TDOA is used in several real-world use cases such as, cellular networks and GPS sys-
tems. With TDOA, arrival times of packets from pairs or transmitters are compared
with each other. Assume a scenario with anchors i and j where i,j € A, and drone
r € V in d = 3 dimensions. Anchor z; = [z;,y;, z;] and z; = [z}, y;, 2;] are transmitting
packets to drone z, = [x,, ¥y, z;]. The drone calculates the difference in time of packets
arriving from both anchors. This is TDOA generally defined as

At = Aty — Aty (2.3)



Here At,, is the difference in arrival times between two packets. And At;, is the
difference in transmission times between two packets. With this, the following equation
can be derived to estimate the position of drone r with anchor ¢ and j

2 — 2.l — llz, — 2, = eAt, (2.4)

Where ¢ is the speed of propagation of the signal in its medium, which is generally
simplified to the speed of light.

Since [z, yr, z-] are unknown, plotting this equation results in a hyperbola between
anchors ¢ and j, also called a TDOA curve. When this process is repeated for different
pairs of anchors, the intersection of the multiple curves results into the estimated posi-
tion of the drone. Figure 2.1 illustrates the TDOA curves between the pairs of anchors
and the estimated position at the intersection of these curves. In order to achieve an
accurate position estimation the following must hold |A| > d 4+ 1. The number of an-
chors determines how many TDOA curves can be plotted. In particular, |.A| anchors
W TDOA curves. In the case of less then d + 1 anchors, there are not
enough curves to form an intersection in R? [19, 50)].

results in

Anchor 3
°

Anchor 1
°

® Anchor 2

Figure 2.1: TDOA curves between 3 pairs of anchors

2.5 Loco Positioning System

The Loco Positioning System (LPS) is the positioning system integrated into the
firmware of the Crazyflie. The LPS uses UWB decks and UWB anchors for positioning,
seen in Figures 2.2a and 2.2b respectively. The algorithm used in LPS proposed by [39]
effectively combines the principles of TDOA and TWR to mitigate clock drift. Figure
2.3a illustrates how these two principles are combined in an example scenario with 2
anchors and 1 receiving drone. Anchors ¢ and j act as the transmitters while drone
r acts as the receiver. Simultaneously, packets are also exchanged between the two
anchors. Lets consider the last 3 packets (P1, P2, P3) received by the drone shown
in Figure 2.3a. For TDOA, obtaining the At,, is trivial since the drone can use its
own clock to determine the arrival time of the packets. The transmission time of the



(a) Crazyflie 2.1 with an UWB deck (b) UWB Anchor

Figure 2.2: Hardware required for the LPS

packets can also be determined since it is included in the packet data. However, since
the clocks of the anchors might not be synchronised, the transmission time has to be
corrected for this. Figure 2.3b illustrates TWR between the anchors and how the clock
difference At;; can be determined. With this information, anchor j can determine at
what time packet P2 was transmitted from anchor ¢ according to the clock of anchor
. This information is used to determine at which time packet P2 was sent according
to the clock of anchor j. This results in drone r being able to determine at what times
all the packets were transmitted. Now with the At,, and At;, being known, At can be
determined. However, this equation does not account for clock drift that might have
occurred. Therefore, the At;,; and At,,; are used to determine clock drift v, as seen
in Figure 2.3c. Here v is defined as =L and the final TDOA equation that accounts

Atgz1
for clock drift results in the following

At = Aty — (1Aly). (2.5)

This At can be used in (2.4) to determine the TDOA curve. When this process is
repeated for different pairs of anchors, the intersection of the multiple curves result
into the estimated position of the drone.

The LPS relies on transmitting packets containing data. Figure 2.4 illustrates how a
LPS packets is constructed. The key components that the LPS consist of are: a source
address, which is the ID of the drone transmitting the packet, and a payload containing
a unique packet ID and a timestamp of when the packet is transmitted.

seq
1 byte

pan | source address | destination address | payload

LPS packet 2 bytes 4 bytes 4 bytes 0~ 128 bytes

Figure 2.4: Layout of the LPS packet
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Figure 2.3: Example scenario of the LPS with last 3 packets received by drone r

2.6 Experiments with LPS

The accuracy of the LPS was tested under certain circumstances and its performance
was analysed. Recall from Section 1.3.1 that the UWB chip used on the drone and
anchors is measured to have a position accuracy of 10 cm. The experiments were
executed with hybrid mode enabled, which will be further described in the next chapter.
No other computation or algorithm is executed during the experiment on the drones,
other that the positioning estimation algorithm. This experiment only considers 2
dimensions instead of 3 dimensions. This simplification will act as a baseline for the
more complex case of 3 dimensions. The accuracy of drones were tested by placing
them on fixed positions on the ground. The drones would remain stationary for 50
seconds while their position was polled by a nearby laptop. The expected positions,
also defined as nominal positions, are defined as p; € R? and the actual positions are
defined as z; € R2. The metric used to measure the accuracy between the nominal and
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actual position is defined as the Rooted Squared Error (RSE) by the following equation

d

Ipi — 2| = Z(pzk — zir)%. (2.6)

k=1

This is also commonly referred as the euclidean distance. The RSE is derived from
Rooted Mean Square Error (RMSE) which is used to determine the mean RSE over
the duration of an experiment and is defined as

1 n
- .~ 4bg||. 2.7
LA (27)

Lot (b) RSE

(a) Trajectory
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Figure 2.5: Position estimation scatterplot and RSE of 4 stationary drones using Hybrid mode

Each drone in the trajectory plot features a confidence ellipse around its respective
position estimations. The ellipse is determined based on a 95% confidence interval as-
suming the position estimations is distributed normally. This results in far outliers not
being taken into account for the confidence ellipse. Ultimately, the ellipse illustrates the
density and position of the estimations. The red-dotted circle represents the expected
10 cm error radius around each nominal position. Therefore, the confidence ellipse can
be visually compared to this error circle to illustrate the accuracy of the positioning.
In the Figure 2.5, the ellipses representing drones 1 and 4 are significantly larger than
the expected error circle, indicating higher uncertainty in their position estimations.
Conversely, drone 3 has a small ellipse which falls within the error circle, demonstrating
accurate positioning. Meanwhile, drone 2’s ellipse is small but lies partly outside the
error circle, suggesting a slight offset and minor inaccuracy in its positioning.

12



Table 2.1: RMSE of LPS position accuracy

Drone ID Hybrid mode (m)
Drone 1 0.5185
Drone 2 0.1084
Drone 3 0.0402
Drone 4 0.6136

The observation from ellipses can be confirmed with data from the RSE plot. Table
2.1 shows the RMSE from this plot for each drone. Here it shows that drones 1 and
4 show an RMSE of 0.5185 and 0.6136 meters respectively, which is significantly more
than the expected 10 cm. Drones 2 and 3 show a RMSE of 0.1084 and 0.0402 meters
respectively.

Potential reasons for this inaccuracy could be measurement noise and systematic
errors. Measurement noise are mostly outliers caused by multipath and signal prop-
agation from not being in line of sight [51]. Since the drones were all in line of sight
with the anchors, only multipath is considered as potential measurement noise. The
edge along the positive x-axis was parallel to a solid a wall. This makes it very likely
that the UWB signal from the anchors reflected from the wall to the drones 1 and 4,
and ultimately causing the outliers [52]. Since the other sides are not surrounded by
a solid wall this explains why drones 2 and 3 are not experiencing multipath and thus
are more accurate. Systematic errors, in this experiment, are mainly software-related
issues. For example, the onboard micro-processor of the drone might not be able to
process the incoming UWB packets in time since it might be busy performing other
calculations or because there are more UWB packets incoming than it can process over
time. A more detailed experiment regarding software execution times will be discussed
in the next chapter. Additionally, since the environment of the experiments could not
be adjusted as trivially, an attempt was made to improve the software that handled the
UWRB. This improved version of the firmware and results of its respective experiments
are discussed in the next chapter.

2.7 Summary

In this chapter, the concept of positioning is defined and discussed. Different types of
ranging methods, algorithms and devices are mentioned. An description of how TDOA
estimates positions is provided, along with an explanation on how the LPS on the
Crazyflie works. The main results can be summarised as

e The LPS is a TDOA algorithm used for positioning and incorporates TWR among
anchors to correct for unsynchronised clocks.

e The observed accuracy of the LPS is approximately between 4 to 50 cm (with
hybrid mode enabled) and is worse than the promised accuracy of 10 cm by the
manufacturer of the UWB chip.
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Affine Formation Control

With positioning explained in the previous chapter it can be deployed on systems and
algorithms that rely on positioning. In this chapter, the principle of affine formations
are described along with an affine formation control algorithm. The implementation of
this algorithm consist of two versions: Hybrid mode and P2P, with one being an im-
provement over the other. With the improved implementation, several experiments are
done to analyse the improved accuracy of the positioning system and the performance
of the affine formation control algorithm.

3.1 Graph Theory

In graph theory a formation can be defined by a undirected graph G. This graph G is
represented by a set of vertices V and a set of weighted edges £. The set of vertices
V represents a set of N drones where V = [1,..., N]. An edge is defined by a pair of
vertices (i,7) where 4,5 € V. Since graph G is undirected, for each (i,7) € &, i can
exchange information with j and vice-versa, the vertices ¢ and j considered neighbours.
Each edge in & carries weight [;; and represents the stress between vertices ¢ and j.
The weight [;; can be determined by either convex optimization or solving a feasibility
problem of a linear matrix inequality [53]. All the weights are represented in a stress
matrix € RN*N a5 follows,

0, it i #jand (i,)) ¢ €
wiy = { —lij, if i # j and (i,7) € £ (3.1)

ZjeNi lij, iti=j

Figure 3.1 shows an example graph of a formation with 7 drones and its respective
stress matrix.

x x x 0.2741 —0.2741 -0.2741 0.1370  0.1370  0.0000  0.0000

x —0.2741  0.6852  0.0000 —0.5482 0.0000  0.0000  0.1370

—0.2741  0.0000  0.6852  0.0000 —0.5482 0.1370  0.0000
0.1370  —0.5482  0.0000  0.7537 —0.0685 —0.2741 0.0000
0.1370  0.0000 —0.5482 —0.0685 0.7537  0.0000 —0.2741

% x x 0.0000  0.0000  0.1370 —0.2741 0.0000  0.2741 —0.1370
0.0000  0.1370  0.0000  0.0000 —0.2741 —0.1370 0.2741

(a) Graph structure (b) Stress matrix

Figure 3.1: Example of a 7 drone formation
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3.2 Affine Formation Control

Affine formation control is a decentralised approach since communication with only
neighbours is required. This mitigates the necessity of a global coordinator and reduces
the impact of individual failures [51]. Additionally, affine formations allow its formation
to transform whereas conventional formations are usually only able to translate [55].
Therefore, it can be particularly useful in use cases where agents have to operate in a
dynamic and unpredictable environment [56].

A formation can defined as a combination of a geometric pattern of agents and
an associated graph G(V, ). In formation control, the associated graph of a nominal
formation is defined as G(V,p), where p represents the positions of drones in a spec-
ified pattern in which the agents are expected to maintain. Figure 3.2a illustrates a
formation with 4 drones starting at random positions. Eventually, these are expected
to go into their respective nominal position, shown in Figure 3.2b. After reaching the
nominal position, the drones can reach a target formation. This target formation is a
transformation from its nominal formation which might be desired in changing envi-
ronments. In order to achieve any target formation, a form of mapping is required. An
affine formation is a collection of states where the agents can reach this target forma-
tion by applying affine transformations. This implies that collinearity and the ratios of
distances are preserved [11]. Which means that agents on a line will still remain on a
line after the transformation, and also the ratios of distances between the agents will be
maintained. Some examples of affine transformations are: translation, scaling, rotation
and shearing, shown in Figure 3.3. Furthermore, it can be achieved by manoeuvring
only a subset of the agents. This subset of agents are considered leaders whereas the
remaining agents of the formation are followers. The followers will follow the leaders
while manoeuvring and do not need any knowledge about its target formation [57].

K
\3@ * X

> H XK
(a) Initial positions (b) Nominal formation

Figure 3.2: Example of a 4 drone formation

For affine formation control, universal rigidity is necessary to stabilize and converge
into a nominal formation as well as a target formation [11]. In the case that the structure
of a nominal formation is not universally rigid, an affine transformation applied to it
will not guarantee a stable target formation. Consequently, if an agent falls out of
formation, for example due to loss of connection, the formation may lose its universal
rigidity, resulting in an unstable formation and thus fail to converge.
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Figure 3.3: Transformations of a 4 drone formation

3.3 Algorithm

The algorithm proposed by [53] allows agents to converge into a predefined formation
without the need for a global coordinator. Assume the formation with G(V, ) where
Y is the set of drones and the set of neighbours of drone ¢ is defined as N;. The set
of edges is defined as & with its weights defined in stress matrix 2. Recall that the
position of drone i is defined as z; € R?, and that this is 2-dimensional which will serve
as a baseline before considering more complex 3 dimensions. The algorithm is modelled
as the following continuous system

Zi = Z wij(zi - Zj). (32)

JEN;

The algorithm is executed on each drone ¢ individually. The difference in position
between agent ¢ and its neighbour j is multiplied with its corresponding weight w;;.
This is done for all neighbours j € N; and summed together. The result z; is the
velocity that must be applied to agent ¢ to reach its nominal position. For the algorithm
to work as expected, certain properties and prerequisites must be met. Firstly, The
algorithm relies on the leader-follower strategy. This means that the target formation is
dictated by the leaders and that only the followers will employ the algorithm. For leader
selection, the selected leaders must span R?, where d is the dimension of the formation
[53]. This thus implies that there must be at least d 4+ 1 leaders. Secondly, each drone
must be able to determine the position of its neighbours z; € A;. This implies that each
drone must be able to communicate with each other in order to exchange information
about their position. Lastly, the structure of the nominal formation must be universally
rigid as mentioned in Section 3.2.

The digital control on the drone acts as a discrete time system and executes ev-
erything periodically. Thus, to match the properties of a continuous system which
the algorithm was originally designed for, the algorithm must be executed as often as
possible. Since the algorithm is designed for synchronous execution, it assumes that
all information is readily available simultaneously. However, in real-world applications
synchronous execution is unrealistic. The main cause for this is that all information
that is necessary for this algorithm may arrive at different times. If synchronous ex-
ecution is desired it will be likely that the drone has to wait for all information to

17



arrive. Once the drone has received positions from all its neighbours it can execute
the algorithm, which is then considered synchronous. Waiting for information is unde-
sired and therefore the execution of the algorithm in this report is done asynchronously
where the most recent information available is used. Conclusively, the asynchronous
implementation of the algorithm will still allow convergence of drone into formation

[58].

3.4 Implementation

The implementation of the algorithm is an extension of the original firmware that is de-
scribed in Section 1.3.2. The original firmware did not provide sufficient functionalities
for the algorithm to work. The ability of drones knowing the position of their neigh-
bour was not present and had to be implemented. This required a systemic method of
communication between the drones exchanging information on their current positions.

At first, several constants must be stored on the drone locally in arrays and matri-
ces, which are defined in lines 2-6 of Algorithm 1. The weights for the stress matrix
is done by either convex optimisation or by solving a feasibility problem of a linear
matrix inequality as mentioned in Section 3.1 prior to the implementation. Similarly,
the adjacency matrix, which defines the neighbouring drones, is defined prior to the
implementation. Secondly, (3.2) needs to be implemented along with an additional
variable for storing intermediate results. The input that is needed for the algorithm,
such as current and neighbour positions must be requested and handled prior to algo-
rithm execution. Lastly, the output from the algorithm, which is a velocity vector, must
be send to the internal flight commander of the drone, which handles all movement of
the drone. Additional functions that are called in this algorithm are handled by the
firmware are described in Table 3.1.

Algorithm 1 Affine formation control algorithm

1: Initialization

2 Define number of drones N = |V

3 Define dimension of formation d = 2

4 Allocate and fill adjacency matrix A € RV*N
5: Allocate and fill position matrix Z € RVx¢

6 Allocate and fill stress matrix @ € RNXN

7. procedure AFC(i)

8 Define z; <~ GETCURRENTPOSITION()

9 Define z; + 0 € R?

10: for j € N, do

11: Compute z; = 2; + w;;(z; — z;) > Control law (3.2)
12: end for
13: Execute SETVELOCITY (%;)

14: end procedure
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Table 3.1: Functions used in Algorithm 1

Function Parameters Description
GetCurrentPosition - Return current position of drone
SetVelocity z;: velocity vector Send velocity to flight commander
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Figure 3.4: Order of execution for Hybrid Mode

3.4.1 Hybrid mode

An experimental feature in the firmware called Hybrid Mode has the integrated feature
of communicating with other drones. It allows the drones to send packets over UWB to
each other containing information about their current location. Position information
that is received from neighbours with hybrid mode is stored locally on the drone.
Hybrid mode also provides additional features such as sending packets for TWR and
clock correction. However, these features do not provide any benefit to the purpose of
this research.

Consequently, the implementation of Algorithm 1 must be triggered by an event
in order to be executed. For every type of UWB activity, an interrupt is triggered.
This interrupt calls the UWBFEventHandler to process the UWB activity accordingly.
Algorithm 2 shows when the execution of Algorithm 1 takes place, namely at the
start of the UWBFEventHandler. This means that, for every type of UWB activity, the
algorithm is executed with the data that was present at that moment of time. After the
algorithm is finished processing, the event-handler will start processing the UWB event.
Additional functions that are called in this algorithm are handled by the firmware and
are described in Table 3.1. Figure 3.4 gives an overview of the drone executing the
algorithm and its communication with other drones and anchors.
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Algorithm 2 Affine formation control with Hybrid Mode

1: procedure UWBEVENTHANDLER(eventType)

2 Execute AFC(i) > Algorithm 1
3 if eventType = packetReceived then > Check incoming packets
4: Execute PACKETHANDLER(PACKET)

5 end if

6 Execute HYBRIDMODE() > Send position to peers
7. end procedure

Table 3.2: Functions used in Algorithm 2

Function Parameters Description

AFC i: Drone ID Run Algorithm 1

PacketHandler Packet: UWB packet Process data of UWB packet
HybridMode - Transmit position to other drones

3.4.2 P2P mode

Implementation of hybrid mode showed some shortcomings as shown in Section 2.6.
In order to address these, it was necessary to either rework or completely disable the
hybrid mode. Given that the hybrid mode provides additional features that serve no
purpose to this research, a more efficient solution was to develop the functionality of
communicating with neighbours from the ground up and disable the hybrid mode.

3.4.2.1 P2P

Peer-to-Peer (P2P) communication is a concept where, in this research, drones send
and receive information to and from other drones. The type transmission that is done
to send information to other peers is done by broadcasting. Here the transmitting drone
sends its UWB signal into its surrounding area without it being dedicated to a particular
receiver. The custom P2P packet developed for this research is integrated within the
existing LPS packet. This design choice ensured that the protocol used to handle
UWB packets required only minor adjustments, rather than a complete redesign, to
appropriately process the P2P packet. Figure 3.5 shows that the P2P packets contains
a header which can be used to distinguish this packet as a P2P packet, and it contains
coordinates of the position of the drone.

source address destination address
LPS packet

seq an payload
1 byte 2 bytes 4bytes 4bytes 0~ 128 bytes

header | x-coordinate | y-coordinate | z-coordinate

-coo
Custom P2P packet ’ 2 bytes 4 bytes 4 bytes

Figure 3.5: Layout of the P2P packet
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This version of the implementation with consist of 2 key changes compared to its
previous version. Firstly, the exchange of Hybrid Mode for the custom P2P mode.
Secondly, the execution of Algorithm 1 moved from the start of the UWBFEventHandler
to after the PacketHandler, as can been seen in Algorithm 3. This means that the
Algorithm 1 is executed only after a new P2P packet has arrived and is handled. This
ensures that the execution of this algorithm happens only when there is new position
information available about one of its neighbours. Figure 3.6 gives an overview of the
drone executing the algorithm and its communication with other drones and anchors.

Algorithm 3 Affine formation control with custom P2P packets

1: procedure UWBEVENTHANDLER(eventType)

2 if eventType = packetReceived then > Check incoming packets
3 Execute PACKETHANDLER(packet)

4 if packet = P2PPacket then

5: Execute AFC(i) > Algorithm 1
6 end if

7 end if

8 Define z; +— GETCURRENTPOSITION(i)

9: Execute SENDP2PPACKET(z;) > Send custom P2P packets
10: end procedure

Table 3.3: Functions used in Algorithm 3

Function Parameters Description

PacketHandler Packet: UWB packet  Process data of UWB packet
AFC i: Drone ID Run Algorithm 1
GetCurrentPosition - Return current position of drone

SendP2PPacket z;: Position of drone i Transmit position to other drones

3.5 Experimental setup

For analysing the performance of the algorithm a sequence of tests were carried out.
This required a hardware and software to be set up. First, an enclosed environment
in which the drone can fly safely, shown in Figure 3.7a. Secondly, each of the drones
require an UWB deck for the positioning system and P2P communication. Additionally,
the positioning system also requires UWB anchors which act as reference points. Two
anchors are placed on each vertical pole of the cage 0.25 m and 2.0 m from the ground
respectively. Figure 3.7b shows a schematic drawing of the cage, the anchors are marked
in blue.

After implementation the code needs to be compiled, build and flashed onto the
drones. Each drone will then also be assigned an unique ID. The drones are connected
with a 300mAh battery, switched on and placed at random positions on the ground
inside the cage. Commanding the drone is done by using a laptop executing a python
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script. This script sends instructions and commands over 2.4GHz radio to the drones.
Figure 3.8 illustrates the different types of communication that occur during an exper-
iment. The anchors transmit TDOA packets to the drones for position estimation over
UWB. The drones transmit and receive position data from each other over UWB. The

4m

(b) Schematic drawing of cage

Figure 3.7: Set up of cage

laptop transmits instructions and commands to the drones over 2.4GHz radio.

In order to test the performance of the algorithm, the 4 drone formation seen in
Figure 3.3a is used. The drone are placed on the ground inside the cage at random
positions. Afterwards, all drones are commanded to take off and hover in the air. A
command is then sent to all drones to engage formation, either by using the algorithm

for the followers or by flying to their respective nominal positions for the leaders.
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Figure 3.8: Schematic of the experimental setup with TDOA (blue), P2P (green), and radio
(grey) signals

3.6 Results

3.6.1 LPS accuracy

The experiment conducted in Section 2.6 was done again but with the P2P imple-
mentation. However, here the drones were mirrored in position along the y-axis. Thus,
compared to the original experiment drone 1 and drone 2 swapped positions, and drone
3 and drone 4 swapped positions. This was done to rule out the hypothesis that faulty
hardware may had been the cause for the poor position accuracy during previous ex-
periment. Recall that RSE, defined in (2.6), is the difference in current position and
nominal position. A significant reduction in RSE is noticeable from results in Figure
3.9 compared to the previous experiment. The ellipses of the drones are all similar sizes
to the circle of expected error. Table 3.4 shows the RMSE of the experiment with P2P.
The table also contains the RMSE from the previous experiment using hybrid mode.
When comparing these values, it is clear from that the P2P implementation offers a
significant improvement in position accuracy. The drones that previously showed poor
position accuracy, drones 2 and 3 in this experiment, showed enhancements of approxi-
mately 87% and 93% respectively. The remaining drones did not show an as significant
improvement since these were already accurate within 10 cm. Drone 1 improved 24% in
position accuracy whereas drone 4 actually decreased in accuracy by 1.24%. However,
this is negligible, since 1.24% here corresponds to 0.0005 meters. In conclusion, the P2P
implementation performs better than the hybrid mode in terms of position estimation
accuracy. Therefore, it will be used throughout the remainder of this research.

Both hybrid mode and P2P were performed in a similar environment, implying that
the measurement error is expected to be comparable. The improvement is primarily due
to changes in the software, which address systematic errors. In the following section,
results from an experiment can be found that tested various inner software components
and identified improvements.
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Figure 3.9: Position estimation scatterplot and RSE of 4 stationary drones using P2P com-
munication

Table 3.4: RMSE of LPS position accuracy

Drone ID Hybrid mode (m) P2P (m) Improvement (%)
Drone 1 0.1084 0.0830 23.43
Drone 2 0.5185 0.0673 87.02
Drone 3 0.6136 0.0423 93.10
Drone 4 0.0402 0.0407 -1.24

3.6.2 Control rate

Recall from Section 3.4.1 that Hybrid Mode does not only sends packets containing
position, but also sends additional packets used for TWR and clock correction. These
additional packets may bottleneck the UWB bandwidth and the operating system which
results in less TDOA packets being received and handled and thus a less accurate
position estimation. To test this hypothesis and compare it to the P2P implementation,
experiments were conducted to track the execution rates of several function calls used
in the software.

The number of drones influences the number of events that occur regarding UWB.
Since, more drones relates to more UWB traffic this also implies there is more compu-
tation involved for each drone. Thus, more UWB traffic results in the affine formation
control algorithm being called more frequent since more information is being received.
Additionally, recall from the hybrid mode implementation in Algorithm 2, that the
affine formation algorithm was executed whenever a UWB event occurred, regardless
of the type of event. UWB events include receiving a UWB packet, transmitting a
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Figure 3.10: Rates of execution and packet

UWRB packet, failing to transmit a UWB packet, and similar activities. This algorithm
could potentially be executed without actually receiving any new relevant information
regarding the neighbours of the drone. Since no new information is being received, the
algorithm executions do not produce a different output and are therefore considered
redundant. The P2P implementation optimised this such that the algorithm is only
executed upon receiving new information about neighbour positions. This results in no
redundant algorithm executions and a less congested CPU overall.

Figure 3.10 shows the result of an experiment in which the rate of receiving packets
and the rate of algorithm execution are measured on stationary drones. The drones
were placed inside the cage and commanded to run the formation control algorithm and
the position estimation algorithm. Simultaneously, a laptop was monitoring the exe-
cution rates of these algorithms and tracking the frequency of UWB packet receptions.
This experiment was conducted using a total of 1, 2, and 4 drones simultaneously,
corresponding to having 0, 1, and 3 neighbours respectively. Both the Hybrid mode
implementation and the P2P implementation were tested under these conditions sep-
arately. The UWB packet rate here is defined as all the UWB packets received by
the drone per second. These incoming UWB packets can be split into P2P packets re-
ceived from neighbours, and TDOA packets received from anchors used for positioning
estimation. Since the P2P packets are received from possibly multiple neighbours, the
P2P packet rate must be normalised. If P2P packet rate is defined as p and N is the
number of drones in the experiment, then the P2P packet rate is normalised as follows

D = N (3.3)

Here p’ represents how many P2P packets are sent per neighbour per second.
Since P2P communication only happens when more than 1 drone is present, the
P2P packet rate and the normalised P2P packet rate are both 0 for the case where only
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Table 3.5: Comparison in implementation between Hybrid mode and P2P

Version Key characteristics Pros (+) & Cons (—)
e Stock (experimental) feature + Ease of implementation
Hybrid mode e Formation control at the start of each — Overloading UWB
UWB event — Redundant computation

e Custom packet type for P2P
P2P Mode e Custom packet handling
e Formation control only after P2P packet

4+ No redundant computation
+ Less UWB traffic

1 drone is present in the experiment. Additionally, recall from Section 3.4.2 that with
the P2P implementation, algorithm execution happens immediately after a P2P packet
is received. Therefore, in the case only 1 drone is present, the control rate is also 0.
More precisely, for the P2P version, the control rate is always equal to the P2P packet
rate. In the presence of 4 drones the control rate decreased from approximately 1100
executions per second in Hybrid mode to approximately 425 executions per second in
the P2P version. This concludes that the P2P version indeed performs less redundant
computation and thus is more efficient. The amount of UWB traffic remained similar
between Hybrid mode and P2P decreasing from approximately 600 packets/s to 550
packets/s. In addition to this experiment, Appendix C contains a technical note ac-
companying datasets providing time-varying positioning data and execution time data
of the Crazyflie under different conditions. A overview of key characteristics between
the hybrid mode implementation and the P2P implementation can be found in Table
3.5.

3.6.3 Convergence

In this experiment drones 1 (blue), 2 (orange) and 4 (green) are leaders, and drone 3
(purple) is a follower. The anchors used for positioning are marked in as black crosses.
Firstly, a simulation was done to estimate the trajectory and error of all drones. Figure
3.11 a shows how the drones reach their respective nominal positions. As expected, the
RSE for all drones approaches zero, since the simulation does not factor in noise. A
drone is considered to have converged in its nominal position once its RSE consistently
remains below the expected error of 10 cm. This data is used to compare against the
empirical data of this experiment which is shown in Figure 3.12.

Different stages of the experiment are shown in the following figures. Figure 3.13
shows the drones are on the ground ready for take-off at ¢ = 0 seconds. This also
shows where the anchors are located in the cage and which of the drones are leaders
and follower. Figure 3.14 shows the scenario at ¢t = 2 where the drones are in the
air moments before applying affine formation control and converging. Here the white
lines indicate the position in which the drones are expected to converge to. Figure
3.15 shows that the drones have converged into their expected position successfully at
approximately ¢ = 12.

Comparing the simulation and experiment shows that the leaders and follower con-
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Figure 3.11: Simulation data on trajectories and RSE of 4 drones using the affine formation
control algorithm
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Figure 3.12: Empirical data on trajectories and RSE of 4 drones using the Affine Formation
Control algorithm

verge consistently without any large outliers. However, the convergence happens much
more slowly in the experiment compared to the simulation. The follower, drone 3,
converged into nominal position at approximately ¢ = 12 whereas in the simulation it
did so at t = 8. The leaders also showed a slower convergence but since this difference
is so small it is considered negligible. The main reason for a slower convergence is
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Table 3.6: RMSE comparison between simulation and experiment

0<t<50 t>12

Drone ID

Simulation (m)  Experiment (m) Simulation (m)  Experiment (m)
Leaders
Drone 1 0.0300 0.0827 0.000 0.0447
Drone 2 0.0215 0.0871 0.000 0.0632
Drone 4 0.0417 0.1116 0.000 0.0315
Average 0.0311 0.093 0000 0.0465
Followers
Drone 3 0.0804 0.2387 0.000 0.0680

the presence of noise in the experiments. The expected positioning accuracy of 10 cm
influences the speed of convergence. Despite not reaching an RMSE of 0 m, as in the
simulation, the drones maintain an RMSE within the expected margin of 10 cm.

Table 3.6 presents the RMSE per drone for the entire duration of the experiment
(50 seconds), as well as for the period after convergence, which occurs at t = 12. The
RMSE is expected to be higher for the duration of the whole experiment compared
to just after convergence. During 0 < ¢ < 50 the leaders and followers show a higher
RMSE for the experiment than the simulation. However, due to the different initial
positions of each respective drone, the RMSE varies between drones. Therefore, data
where ¢ > 12 is more relevant since it only considers the positions of the drones after
convergence. The simulation showed the drones having a rounded RMSE of 0 m, which
is unrealistic as it does not account for noise. The RMSE for all drones are below
the expected 10 cm. This result can also be compared to Table 2.1 where the drones
showed a similar RMSE. In conclusion the leaders show an average RMSE of 0.0465 m
and the follower 0.0680 m, both of which fall within the acceptable margin of error of
10 cm.

3.7 Summary

This chapter delves into the affine formation control algorithm, including how it works
and its implementation on drones. Experiments were also conducted to test its perfor-
mance. The main points can be summarised as follows:

e The P2P implementation transmits custom packets to other neighbours and only
executes the affine formation control if new information is received

e The P2P implementation prevents overloading the positioning system algorithm,
thereby improving in position estimation by approximately 90% for drones that
previously performed poorly with hybrid mode.

e The drones successfully converge into formation with an RMSE of 4.65 cm for
leaders and 6.80 cm for the follower.
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Figure 3.13: AFC Experiment with square formation at ¢ = 0 before taking off

Figure 3.14: AFC Experiment with square formation at ¢ = 2 after taking off

29



Figure 3.15: AFC Experiment with square formation at ¢ = 12 in formation
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Relative Affine Localisation

The previous chapter discussed formations in which all drones are present and provide
information to their neighbours accordingly. As mentioned in Section 3.2, in the case
of an suddenly absent neighbour the formation may not converge and thus fall apart.
This chapter describes an addition to the formation control algorithm called Relative
Affine Localisation (RAL) which allows to keep the formation stable even in the case
of observation loss of a drone.

4.1 Algorithm

As mentioned in Section 3.2, in the case of a missing agent the formation most likely
will not converge. However, in some cases the position of this missing agent can be
inferred, as if the drone is still in its nominal position. The previous chapter only
considered two stages, the initial formation and the nominal formation. This chapter
introduces a third stage where a drone is missing and lost from observation, shown
in Figure 4.1c. The missing drone that is lost from observation has no edges with its
neighbours and thus is not able to communicate with them anymore.

N

K< £ 8
* >§@ 2@@
G X% T,
(a) Initial position (b) Nominal formation (¢) Missing drone

Figure 4.1: Three different stages of a 5 drone formation from initial positions to nominal
formation to a missing drone

The RAL algorithm, proposed by [76] is an extension from the original algorithm
defined in Section 3.3. This means that the original affine formation algorithm will
execute as usual, but only in the case of a missing neighbour, the RAL will be executed
to infer the position of this missing neighbour. Lets assume formation G(V, &) where
the set of neighbours of agent 4, A; can be divided into N; = (N}, N™). Where N}
are known neighbours and A/ are missing neighbours of agent i.

The RAL has certain limitations for operating effectively. First, the limit on missing
agents is defined by |N}| > d for all i € V. Secondly, N must span R? for alli € V [57].
Figure 4.2 shows 3 different configurations of agents. In this example configuration (a)
is not feasible since |[Nf| < d. Configuration (b) is also not feasible since N} does not
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Figure 4.2: Example of feasible and not feasible configurations of agents in a formation of R?

[57]

span R2.

The relative position of the missing drone can be estimated by using only observa-
tions. These observations include the relative positions of drones that still maintain a
connection with their neighbours. Assume a formation of dimension d at time t. With
this we can construct the following matrices from these observations. H; € R¥*Wil and
X, € R*Wil Recall that the nominal position of drone i is defined as p; € R? and the
actual position is defined as z; € R?. The construction for H; is done by the following
equation

pij = p; — Pi for all j € N, (4.1)

which is the displacement of nominal positions between drone 7 and all its known
neighbours. X; is constructed by the following equation

z;; = z; —z; for all j € N, 4.2
J J 7

which is the displacement of actual positions between drone ¢ and all its known neigh-
bours. With these definitions it is now possible to retrieve z;; for j € N/™ with the
following equation proposed by [50]

1

0s(t)" = (Hi(t) Hi(t))  Hi(t)"Xu(t).(4.3)

The matrix ©;(t) € R¥4 is here considered as the global affine transformation matrix
and is used to infer the displacement of its missing neighbour with the following equation

z;j(t) = O;(t)p; where j € M[™.(4.4)

The final vector z;;(t) is the inferred displacement of missing neighbour j.

4.2 Implementation

Since the RAL is an addition to the original formation control algorithm, no major
changes are needed to the original implementation. However, there is some additional
information required such as, nominal positions of the formation as well as an array
that keeps track of missing drones.

The RAL algorithm introduces a new type of computation that was not present in
the previous implementations, which is matrix calculations. Matrix multiplication and
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inversion are computationally intensive operations on embedded hardware. Because of
this, these operations must be executed as efficient as possible to prevent bottlenecking
the microcontroller in time and space. All variables, arrays, and matrices used as input,
output and intermediate results for the RAL are allocated at compile time, as can be
seen at lines 2-13 in Algorithm 4. This static memory allocation method prevents issues
related to running out of memory at runtime, which can occur with dynamic memory
allocation.

4.2.0.1 DSP CMSIS

For the computation of (4.3) and (4.4), the CMSIS DSP software library is used to
execute matrix transposes, multiplication and inversion [59]. This library is specifically
optimised for the Cortex-M family of microcontrollers which is also used on the drone.
There are 2 main characteristics of this library that allow faster computation. First,
the processor addresses memory as a flat linear address space. Because of this, the
library uses the First In First Out principle to store and shift new incoming data.
This means that less instructions are needed for handling data movement. This also
mitigates the overhead of checking the index every time data is accessed [60]. Secondly,
the algorithms present in CMSIS used for arithmetic operations allow for loop unrolling
[61]. This means that multiple iterations of a loop are executed at once. These benefits
enhance the computation used for all matrix operations in RAL. Unlike using this
library, manually implementing these matrix operations is error-prone and misses out
on the advantages provided by the DSP CMSIS library. Lastly, a common method
to improving computation time is by converting floating-point data into fixed-point
data. Fixed-point calculations are generally faster than floating-point calculations,
however comes at the cost of precision. The Cortex-M4 contains a Floating-Point Unit
(FPU) which is a processing unit with special instructions optimised for floating-point
calculations. Utilising the FPU can result in fast computation while keeping the benefit
of precision from the floating-point numbers. Therefore, converting the floating-point
numbers into fixed-point is in this case undesired.

Lines 15-21 in Algorithm 4 show the function for matrix transpose, multiplication
and inversion. Note that for this implementation it is assumed that each drone is
notified immediately when a drone is considered missing. Additional functions that are
called in this algorithm are handled by the firmware are described in 4.1 and a full list
of functions used in this research can be found in Appendix B. The source code for the
RAL implementation can be found in Appendix D.2.

Table 4.1: Functions used in Algorithm 4

Function Parameters Description

Mat_Trans A: Matrix A Transpose matrix A

Mat_Mult A,B: Matrix A and B Multiply matrix A with matrix B

Mat_ Inv A: Matrix A Invert matrix A or return —1 if invertible

Recall Algorithm 1 which is the the affine formation control algorithm without
RAL. With the introduction of RAL, it must now be included in the original algorithm.
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Algorithm 4 Relative affine localization algorithm

1: Initialization

2 Define number of non-missing neighbours m = |[NV¥|

3 Allocate and fill displacement of nominal position p;; € R4

4:  Allocate and fill H; € R™*¢ > Based on (4.1)
5: Allocate and fill X; € R™*d > Based on (4.2)
6:  Allocate HI € R™*4 HIH; € R H!X; € R4 (HI'H;)~! € Rxd

7 Allocate ©; € RI*d, o Rdxd Olp; € RY and zij € R?

8: procedure RAL(i)

9: Compute H? by MAT _TRANS(H,)

10.  Compute HZTH by MAT _MmuLT(H], H;)

11:  Compute H' X; by mat_murT(H/, X;)

12:  Compute (HIH;)~! by maT INv(H! H;)

13: Compute ©F by MaT murLT((HI'H;)~1, H'X,) > Based on (4.3)
14: Compute ©; by MAT TRANS(O])

15: Compute z;; = O;p;; by MAT MULT(O], p;;) > Based on (4.4)
16: return z; = z;; — z; > Position of missing drone j

17: end procedure

Algorithm 5 illustrates how the RAL is incorporated within the affine formation control
algorithm. The main changes are present in lines 10-12, where the positions of all
missing drones are inferred using RAL. After this, the algorithm continues as usual by
executing (3.2).

Algorithm 5 Affine formation control algorithm with RAL

1: Initialization
2 Define number of drones N = |V|
3 Define dimension of formation d = 2
4 Allocate and fill adjacency matrix A € RV*N
5: Allocate and fill position matrix Z € RV*d
6 Allocate and fill stress matrix 8 € RN*N
7. procedure AFC(i)
8: Define z; < GETCURRENTPOSITION()
. Define z; < 0 € R?
10:  for r € N/" do

11: Define z, < Execute RAL(i) > Algorithm 4
12: end for

13: for j € N; do

14: Compute z; = 2; + w;;(z; — z;) > Control law (3.2)
15: end for

16: Execute SETVELOCITY (%;)

17: end procedure
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Figure 4.3: Formation with 5 drones

4.3 Experimental Setup

For testing the RAL, the original experimental setup from the previous chapter must
be slightly modified. The formation consists of 5 drones as oppose to 4 drones which
was used in the previous chapter. The drone formation shown in Figure 4.3 consists of
3 leaders and 2 followers. Drones 1, 2 and 3 will be leaders, and drones 4 and 5 will
be followers. The need for 2 followers is because one must simulate being the missing
drone and the other will use the RAL algorithm to infer the missing drone’s position.
Simulating a missing drone can be done by for example drifting away from its nominal
position into certain direction the with constant velocity.

In this particular setup, drone 4 will drift off and be considered the missing drone,
while drone 5 will employ the RAL algorithm to infer drone 4’s position. From a trivial
perspective, it may seem obvious to simply turn off drone 4 and then enable RAL on
drone 5 to test and analyse the effectiveness of the RAL algorithm. However this will
not properly test the RAL algorithm. Recall from Section 3.3 that the most recent
information is used for the affine formation control algorithm. If drone 4 is turned off
at its nominal position, drone 5 will assume drone 4 is still at its nominal position since
that was the most recent information it received. Therefore, the position of drone 4
does not need to be inferred. A proper test requires drone 4 to actively fly away from
its nominal position and communicate its position with drone 5. Figure 4.4a illustrates
this experiment without RAL enabled, where drone 4 deviates from its position while
neighbouring drone 5 attempts to follow, as expected with affine formation control
algorithm. Figure 4.4b illustrates the same experiment but with the RAL enabled on
drone 5, which infers the position of drone 4.

4.4 Result

4.4.1 Baseline Experiment

In the baseline experiment, the followers behaved as shown in Figure 4.4a. In Figure 4.5
drone 4 actively flies away from its nominal position, and drone 5 follows accordingly.
Recall that the anchors used for positioning are marked as black crosses. At t = 0 all
drones take off and will engage formation. Until ¢ = 37, the drones stay in their nominal
position. After t = 37, drone 4 is simulating a loss in connection by flying away from
its nominal position and drone 5 follows this movement accordingly. The RSE for the
leaders fluctuates around the expected 10 cm bound. Despite some outliers above 10
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(a) Baseline outcome without RAL (b) Desired outcome with RAL

Figure 4.4: Schematic drawing of RAL experiment

cm for the leaders, the RMSE is still below 10 cm and therefore considered acceptable.
Both followers showed a significantly higher RSE than its leaders as expected. However,
this was not as linear as was expected. Where a trajectory shown in Figure 4.4a was
expected, the experiment showed significant outliers. This can be confirmed by width
of the confidence ellipses. A potential cause for this could be an increase in noise.
Recall from the LPS experiment in Section 2.6 that the side along the positive x-axis
is parallel to a wall and possibly causing issues regarding multipath. However, since
in this experiment the noise is present on both sides of the x-axis, it can be ruled out
that multipath is the cause of these outliers. Consequently, a probable cause are the
presence of systematic errors. In particular, the software not being able to process
the amount of the packets that are exchanged over UWB and thus resulting in poor
position estimations. The absence of sufficient empirical data prevents concluding the
exact impact of these systematic errors. Thus, it is left as future work to analyse the
nature and impact of these systematic errors. Furthermore, research has shown that
systematic errors have complex behaviour and in a similar setup have an accuracy that
is typically larger than 15 cm [62].

4.4.2 RAL Experiment

Figure 4.6 shows that in the RAL experiment the drones behaved as expected in Figure
4.4b. At t = 0 the drones are stationary on the ground, seen in Figure 4.7. Here it is
also shown were the anchors are positioned, and which drones are leaders and followers.
At t = 10 all drones have taken off and are all flying in nominal position, shown in
Figure 4.8. From ¢t = 37 drone 4 is commanded to fly away from it nominal position.
Simultaneously, drone 5 is notified of drone 4 losing connection and the RAL is enabled
on drone 5. At t = 45 drone 4 is away from its nominal position and drone 5 successfully
inferred the position of drone 4. Figure 4.9 illustrates which edges of the formation are
lost because of the missing drone and how drone 5 has remained in its nominal position
by inferring the position of drone 4.

The trajectory in Figure 4.5a shows that drone 4 flies in a much more controlled
manner compared to baseline experiment. The confidence ellipse is not as large in the
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Figure 4.5: Empirical data on trajectories and RSE of 5 drones, without using RAL
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Figure 4.6: Empirical data on trajectories and RSE of 5 drones, using RAL

experiment as in the baseline. As drone 4 flies away from its nominal position, drone 5
remained at its own nominal position since it inferred the nominal position of drone 4.
This trajectory is similar to the expected trajectory in the schematic drawing in Figure
4.4b. The RSE for the leaders are similar to that of the baseline experiment. The RSE
of the followers are however improved compared to the baseline experiment. Drone 4
steadily increases in error from ¢t = 37, as expected which relates to drifting away from
its nominal position. Furthermore, drone 5 does stays in its nominal position and does
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not follow drone 4, which implies that the RAL works as expected.

Table 4.2: RMSE comparison between baseline and experiment

0<t<60 t>37

Drone ID

Baseline (m) Experiment (m) Baseline (m) Experiment (m)
Leaders
Drone 1 0.0944 0.0768 0.0950 0.0674
Drone 2 0.0790 0.0868 0.0671 0.0927
Drone 3 0.0415 0.0837 0.0372 0.1058
Average 0.0716 0.0824  0.0664 0.0886
Followers
Drone 4 1.1039 0.8914 1.6492 1.4686
Drone 5 0.8655 0.1566 1.1996 0.1769

Table 4.2 contains the RMSE from each drone from both baseline and RAL ex-
periment. The data is divided into two intervals: the entire experiment, 0 < ¢ < 60,
and post-convergence, t > 37. For the duration of the whole experiment the leaders
perform as expected within the margin of 10 cm. Drone 4 is not considered relevant for
performance since it is expected to have a high RSE. The RMSE of drone 5 improved
from 0.8655 m in the baseline experiment to 0.1566 m in the RAL experiment which is
70% in terms of RMSE for the duration of the whole experiment. However, only the
data after convergence allows for an equal comparison, as the drones are expected to be
at their nominal positions post-convergence. Post-convergence, the leaders perform as
expected within the margin of 10 cm. Additionally, Drone 5 improved in accuracy from
1.1996 m to 0.1769 m, an 91% improvement by employing RAL. Recall from Section
3.6.3 that the RMSE for the follower for the 4 drone formation was 6.80 cm. Despite
the 91% improvement in this 5 drone experiment, the RMSE is higher than 6.80 cm
from the 4 drone experiment and also higher than the expected accuracy of 10 cm. A
potential cause for the decrease in position accuracy is the usage of RAL in combi-
nation with more drones being present. In particular, the software of the drone not
able to handle the RAL computation and the UWB packet handling simultaneously.
Conclusively, the RAL algorithm work as expected by maintaining the formation in the
case of an observation loss. However, there are still challenges regarding noise caused
by the environment and potential computational overhead.

4.5 Summary

In this chapter the case of observation loss in affine formation control is discussed. An
algorithm, RAL, was introduced which is able to infer the position of missing drones.
The RAL is implemented with the DSP CMSIS library, which provides faster compu-
tation of matrix operations. Lastly, experiments were done to analyse the performance
of RAL. The main results can be summarised as follows:

e The RAL allows the drones to successfully converge in formation in the case of
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observation losses.

e The RMSE increased from 6.80 cm in Table 3.6 for the 4 drone experiment to
17.69 cm in Table 4.2 for the 5 drone RAL experiment.

e Potential causes of increased position inaccuracy using RAL includes computa-
tional overhead and more UWB traffic. Other research in similar conditions with
systematic errors have shown an accuracy of larger than 15 cm which aligns with
the 17.69 cm that was measured in the RAL experiment.

Figure 4.7: RAL Experiment with 5-drone formation at ¢t = 0 before taking off
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Figure 4.9: RAL Experiment with 5-drone formation at ¢ = 45 after missing a drone
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Conclusion

This research focussed on implementing an affine formation control algorithm on drones
and handle the case of observation losses. The positioning principle used on the drones
is TDOA combined with TWR and is expected to be accurate up to 10 cm on average
by hardware specification. The objectives mentioned in Section 1.4 are summarised as
follows.

e The implementation of affine formation control required changing the execution
order of handling UWB packets to prevent the microcontroller from redundant
computation. Additionally a custom implementation of P2P communication was
designed. In the case of observation losses the RAL algorithm is used to infer
the position of the missing drones. The implementation of the RAL introduced
challenges with matrix operations for the CPU. The usage of the DSP CMSIS
library ensured a more error-prone implementation and more optimal execution
since this library was specifically designed for the microcontroller present on the
drones. Experiments with RAL showed that the formation stays intact in the case
of a missing drone.

e The affine formation control algorithm showed an accuracy of approximately 6.80
cm, which is within the expected 10 cm. In the case of observation loss the RAL
algorithm showed an accuracy of approximately 17.69 cm. Despite this being an
improvement than without RAL, it is still a lower accuracy than the expected 10
cm.

e The usage of the affine formation control algorithm with P2P communication in-
troduces UWB traffic. This is approximately 550 packet /s for a 4 drone formation,
and increases as the formation grows in number of drones. Combining this with
the execution of RAL equations, the computational load increases on the drones.
These factors contribute to systemic errors, along with measurement noise such
as signal propagation and multipath effects.

5.1 Future Work

Despite this research successfully implementing and demonstrating affine formation
control and observation losses, there are several key areas that can be improved to
enhance the findings.

A limitation of this research was the assumption that missing drones were manually
indicated by the operator to all other drones. Ideally, the drones would be able to
detect on their own if a neighbouring drone is missing. Additionally, the experiments
were conducted a confined area. The limited size of the cage made it challenging to fly
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more than five drones without risking collisions with the border of cage or with each
other.

With the algorithm now implemented on hardware, it can serve as a baseline for
future research into affine formation control. This includes noise analysis to understand
where the noise originates from and how this is distributed. Furthermore, the speed and
accuracy of convergence can be studied under different circumstances, such as outdoor
environments or various number of drones. Lastly, while this research only considers
two-dimensional formations, the application of three-dimensional formations remains
empirically untested.

The accuracy of the positioning system is approximately 10 cm, which, depending on
the use case, can be considered not accurate enough. An improvement of the positioning
system can be considered by using alternative position estimation methods, such as
TWR, TOA or an improved version of TDOA. Additionally, replacing the existing
UWB chip, DWM1000, with a newer version, DWM3000, could also further improve
the accuracy.

The firmware on the drones has been modified and fine-tuned for this research.
However, this can still be further improved. The formation control algorithm and the
RAL have been optimized for execution time, but the implementation’s structure could
still be enhanced such that it allows for scalability. In particular, being able to change
formation or re-assign leaders during flight. Secondly, the RAL is currently manually
triggered by the operator. Ideally, a missing drone detection feature that enables RAL
automatically would be desired. Lastly, the software lacks collision avoidance measures.
While the affine formation algorithm suggests collisions should not occur, implementing
collision avoidance could serve as a valid safety measure in case the drones fail to
maintain formation.

During the experiments, it became clear that the durability of some parts of the
drones were insufficient. The fragile propellers often broke during causing the drones to
crash during experiments. Additionally, the wires connecting the battery to the drone’s
motherboard occasionally failed due to poor quality wires or poor quality soldering.
This causes the drones to suddenly switch off mid-flight cause the wires delivering power
from the battery would disconnect. These weaknesses often led to crashes, causing the
entire formation to collapse. Using more robust parts will increase the longevity of the
drone and lower the amount crashes.

42



Bibliography

1]

[10]

[11]

[12]

K. W. Chan, U. Nirmal, and W. G. Cheaw, “Progress on drone technology
and their applications: A comprehensive review,” AIP Conference Proceedings,
vol. 2030, no. 1, p. 020 308, Nov. 2018, 1SSN: 0094-243X. DOI: 10.1063/1.5066949.
K. Telli et al., “A comprehensive review of recent research trends on unmanned
aerial vehicles (uavs),” Systems, vol. 11, no. 8, 2023, 1SSN: 2079-8954. DOI: 10.
3390/systems11080400.

S. A. H. Mohsan, N. Q. H. Othman, Y. Li, M. H. Alsharif, and M. A. Khan, “Un-
manned aerial vehicles (uavs): Practical aspects, applications, open challenges,
security issues, and future trends,” Intelligent Service Robotics, vol. 16, no. 1,
pp. 109137, Mar. 2023, 1SSN: 1861-2784. DOI: 10.1007/s11370-022-00452-4.
T. Gautam and R. Johari, “Drone: A systematicreview ofuavtechnologies,” in
Proceedings of Fourth International Conference on Computing, Communications,
and Cyber-Security, S. Tanwar, S. T. Wierzchon, P. K. Singh, M. Ganzha, and
G. Epiphaniou, Eds., Singapore: Springer Nature Singapore, 2023, pp. 147158,
ISBN: 978-981-99-1479-1.

F. Ahmed, J. C. Mohanta, A. Keshari, and P. S. Yadav, “Recent advances in un-
manned aerial vehicles: A review,” Arabian Journal for Science and Engineering,
vol. 47, no. 7, pp. 79637984, Jul. 2022, 1sSN: 2191-4281. po1: 10.1007/s13369-
022-06738-0.

A. Rejeb, S. J. S. Rejeb, and H. Treiblmaier, “Drones for supply chain man-
agement and logistics: A review and research agenda,” International Journal
of Logistics Research and Applications, vol. 26, no. 6, pp. 708731, 2023. DOI:
10.1080/13675567.2021.1981273.

A. Rejeb, A. Abdollahi, K. Rejeb, and H. Treiblmaier, “Drones in agriculture:
A review and bibliometric analysis,” Computers and electronics in agriculture,
vol. 198, p. 107017, 2022.

A. Restas, “Drone applications for supporting disaster management,” World Jour-
nal of Engineering and Technology, vol. 3, pp. 316321, 2015. DOI: 10.4236/wjet.
2015.33C047.

M. Hassanalian and A. Abdelkefi, “Classifications, applications, and design chal-
lenges of drones: A review,” Progress in Aerospace Sciences, vol. 91, pp. 99131,
2017, 18sN: 0376-0421. DO1: 10.1016/j.paerosci.2017.04.003.

M. Okasha, J. Kralev, and M. Islam, “Design and experimental comparison of
pid, Iqr and mpc stabilizing controllers for parrot mambo mini-drone,” Aerospace,
vol. 9, no. 6, 2022, 1SSN: 2226-4310. DOIL: 10.3390/aerospace9060298.

P. Boccadoro, D. Striccoli, and L. A. Grieco, “An extensive survey on the internet
of drones,” Ad Hoc Networks, vol. 122, p. 102600, 2021, 1sSN: 1570-8705. DOI:
10.1016/j.adhoc.2021.102600.

J. Tang, H. Duan, and S. Lao, “Swarm intelligence algorithms for multiple un-
manned aerial vehicles collaboration: A comprehensive review,” Artificial Intel-
ligence Review, vol. 56, no. 5, pp. 42954327, May 2023, 1SSN: 1573-7462. DOI:
10.1007/s10462-022-10281-7.

43


https://doi.org/10.1063/1.5066949
https://doi.org/10.3390/systems11080400
https://doi.org/10.3390/systems11080400
https://doi.org/10.1007/s11370-022-00452-4
https://doi.org/10.1007/s13369-022-06738-0
https://doi.org/10.1007/s13369-022-06738-0
https://doi.org/10.1080/13675567.2021.1981273
https://doi.org/10.4236/wjet.2015.33C047
https://doi.org/10.4236/wjet.2015.33C047
https://doi.org/10.1016/j.paerosci.2017.04.003
https://doi.org/10.3390/aerospace9060298
https://doi.org/10.1016/j.adhoc.2021.102600
https://doi.org/10.1007/s10462-022-10281-7

[13]

[14]

[21]

[22]

23]

[24]

[25]

J. Ota, “Multi-agent robot systems as distributed autonomous systems,” Ad-
vanced Engineering Informatics, vol. 20, no. 1, pp. 5970, 2006, 1SSN: 1474-0346.
DOI: 10.1016/j.aei.2005.06.002.

L. N. Duong et al., “A review of robotics and autonomous systems in the food
industry: From the supply chains perspective,” Trends in Food Science € Tech-
nology, vol. 106, pp. 355364, 2020, 1SSN: 0924-2244. DOI: 10.1016/j.tifs.2020.
10.028.

[. Karabegovi, E. Karabegovi, M. Mahmi, and E. Husak, “The application of
service robots for logistics in manufacturing processes.,” Advances in Production
Engineering € Management, vol. 10, no. 4, 2015.

J. Bourgeois et al., Distributed autonomous robotic systems. Jan. 2024. DOI: 10.
1007/978-3-031-51497-5.

T. Halsted, O. Shorinwa, J. Yu, and M. Schwager, “A survey of distributed op-
timization methods for multi-robot systems,” CoRR, vol. abs/2103.12840, 2021.
DOI: 10.48550/arXiv.2103.12840.

S. Ahirwar, R. Swarnkar, S. Bhukya, and G. Namwade, “Application of drone in
agriculture,” International Journal of Current Microbiology and Applied Sciences,
vol. 8, no. 01, pp. 25002505, Jan. 10, 2019. DOL: 10.20546/1 jcmas.2019.801 . 264.
[Online]. Available: 10.20546/1ijcmas.2019.801.264.

S. M. S. Mohd Daud et al., “Applications of drone in disaster management: A
scoping review,” Science Justice, vol. 62, no. 1, pp. 3042, 2022, 1SSN: 1355-0306.
DOI: 10.1016/j.scijus.2021.11.002.

S. Qamar, S. H. Khan, M. A. Arshad, M. Qamar, J. Gwak, and A. Khan, “Au-
tonomous drone swarm navigation and multitarget tracking with island policy-
based optimization framework,” IEEE Access, vol. 10, pp. 9107391091, 2022.
DOI: 10.1109/ACCESS.2022.3202208.

T. Uzakov, T. P. Nascimento, and M. Saska, “Uav vision-based nonlinear forma-
tion control applied to inspection of electrical power lines,” in 2020 International
Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 13011308. por:
10.1109/ICUAS48674.2020.9213967.

R. H. Jacobsen et al., “Design of an autonomous cooperative drone swarm for
inspections of safety critical infrastructure,” Applied Sciences, vol. 13, no. 3, 2023,
ISSN: 2076-3417. DOT: 10.3390/app13031256.

K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation con-
trol,” Automatica, vol. 53, pp. 424440, 2015, 1sSN: 0005-1098. por1: 10.1016/ 7.
automatica.2014.10.022.

Y. Liu and R. Bucknall, “A survey of formation control and motion planning of
multiple unmanned vehicles,” Robotica, vol. 36, no. 7, pp. 10191047, 2018. poTI:
10.1017/S0263574718000218.

P. Zhang, G. Chen, Y. Li, and W. Dong, “Agile formation control of drone flock-
ing enhanced with active vision-based relative localization,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 63596366, 2022. DOI: 10.1109/LRA.2022.
3171096.

44


https://doi.org/10.1016/j.aei.2005.06.002
https://doi.org/10.1016/j.tifs.2020.10.028
https://doi.org/10.1016/j.tifs.2020.10.028
https://doi.org/10.1007/978-3-031-51497-5
https://doi.org/10.1007/978-3-031-51497-5
https://doi.org/10.48550/arXiv.2103.12840
https://doi.org/10.20546/ijcmas.2019.801.264
10.20546/ijcmas.2019.801.264
https://doi.org/10.1016/j.scijus.2021.11.002
https://doi.org/10.1109/ACCESS.2022.3202208
https://doi.org/10.1109/ICUAS48674.2020.9213967
https://doi.org/10.3390/app13031256
https://doi.org/10.1016/j.automatica.2014.10.022
https://doi.org/10.1016/j.automatica.2014.10.022
https://doi.org/10.1017/S0263574718000218
https://doi.org/10.1109/LRA.2022.3171096
https://doi.org/10.1109/LRA.2022.3171096

[31]

32]
[33]

[34]

K. M. Kabore and S. Gler, “Distributed formation control of drones with onboard
perception,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 5, pp. 3121
3131, 2022. por: 10.1109/TMECH. 2021 .3110660.

Y. Bu, Y. Yan, and Y. Yang, “Advancement challenges in uav swarm formation
control: A comprehensive review,” Drones, vol. 8, no. 7, 2024, 1SSN: 2504-446X.
DOI: 10.3390/drones8070320.

Y. Ding, X. Wang, Y. Cong, and H. Li, “Scalability analysis of algebraic graph-
based multi-uavs formation control,” IFEE Access, vol. 7, pp. 129719129733,
2019. por: 10.1109/ACCESS.2019.2938991.

F. Saffre, H. Hildmann, and H. Karvonen, “The design challenges of drone swarm
control,” in Engineering Psychology and Cognitive Ergonomics, D. Harris and
W.-C. Li, Eds., Cham: Springer International Publishing, 2021, pp. 408426, ISBN:
978-3-030-77932-0.

P. Peng, W. Dong, G. Chen, and X. Zhu, “Obstacle avoidance of resilient uav
swarm formation with active sensing system in the dense environment,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2022, pp. 1052910535. por: 10.1109/IR0S47612.2022.9981858.

Y. Liu, X. Lin, Y. Liu, A. Jiang, and C. Zhang, “Affine formation maneuver con-
trol of underactuated surface vessels: Guaranteed safety under moving obstacles in
narrow channels,” Ocean Engineering, vol. 303, p. 117721, 2024, 1sSsN: 0029-8018.
DOI: 10.1016/j.0oceaneng.2024.117721.

CrazyFlie 2.1 | BitCraze. [Online]. Available: https://www . bitcraze . io/
products/old-products/crazyflie-2-1/.

STMS32F405/415, Ver. 9, STMicroElectronics, 2020. [Online|. Available: https:
//www.st.com/resource/en/datasheet/stm32f415rg. pdf.

S. Mittal and J. S. Vetter, “A survey of techniques for architecting dram caches,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 6, pp. 1852
1863, 2016. po1: 10.1109/TPDS.2015.24611565.

nRF51822, Ver. 3.4, Nordic semiconductor, 2023. [Online]. Available: https :
//docs.nordicsemi.com/bundle/nRF51-Series/resource/nRF51822 PS v3.
4 .pdf.

DWM1000, Rev. 1.8, Qorvo, 2016. [Online|. Available: https://www.qorvo.com/
products/d/da007948.

Loco Positioning deck | BitCraze. [Online]. Available: https://www.bitcraze.
io/products/loco-positioning-deck/.

Amazon Web Services, FreeRTOS Real-Time Operating System, version 10.4.0,
https://www.freertos.org, 2020.

A. Ledergerber, M. Hamer, and R. D’Andrea, “A robot self-localization system
using one-way ultra-wideband communication,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 31313137. DOI:
10.1109/IR0S.2015.7353810.

H. Zhi, L. Chen, C. Li, and Y. Guo, “Leaderfollower affine formation control of
second-order nonlinear uncertain multi-agent systems,” IEFE Transactions on
Clircuits and Systems II: Express Briefs, vol. 68, no. 12, pp. 35473551, 2021. DOTI:
10.1109/TCSII.2021.3072652.

45


https://doi.org/10.1109/TMECH.2021.3110660
https://doi.org/10.3390/drones8070320
https://doi.org/10.1109/ACCESS.2019.2938991
https://doi.org/10.1109/IROS47612.2022.9981858
https://doi.org/10.1016/j.oceaneng.2024.117721
https://www.bitcraze.io/products/old-products/crazyflie-2-1/
https://www.bitcraze.io/products/old-products/crazyflie-2-1/
https://www.st.com/resource/en/datasheet/stm32f415rg.pdf
https://www.st.com/resource/en/datasheet/stm32f415rg.pdf
https://doi.org/10.1109/TPDS.2015.2461155
https://docs.nordicsemi.com/bundle/nRF51-Series/resource/nRF51822_PS_v3.4.pdf
https://docs.nordicsemi.com/bundle/nRF51-Series/resource/nRF51822_PS_v3.4.pdf
https://docs.nordicsemi.com/bundle/nRF51-Series/resource/nRF51822_PS_v3.4.pdf
https://www.qorvo.com/products/d/da007948
https://www.qorvo.com/products/d/da007948
https://www.bitcraze.io/products/loco-positioning-deck/
https://www.bitcraze.io/products/loco-positioning-deck/
https://www.freertos.org
https://doi.org/10.1109/IROS.2015.7353810
https://doi.org/10.1109/TCSII.2021.3072652

[41]

[42]

[45]

[46]

[47]

[48]

[49]

[51]

[52]

7. Lin, L. Wang, Z. Chen, M. Fu, and Z. Han, “Necessary and sufficient graph-
ical conditions for affine formation control,” IFEE Transactions on Automatic
Control, vol. 61, no. 10, pp. 28772891, 2016. DOI: 10.1109/TAC.2015.2504265.
C. Pearanda, V. Julian, J. Palanca, and V. Botti, “A multi-agent system to im-
prove mobile robot localization,” in Hybrid Artificial Intelligent Systems, F. J.
Martnez de Pisn, R. Urraca, H. Quintin, and E. Corchado, Eds., Cham: Springer
International Publishing, 2017, pp. 471482, 1SBN: 978-3-319-59650-1.

R. F. Brena, J. P. Garca-Vzquez, C. E. Galvn-Tejada, D. Muoz-Rodriguez, C.
Vargas-Rosales, and J. Fangmeyer Jr., “Evolution of indoor positioning technolo-
gies: A survey,” Journal of Sensors, vol. 2017, no. 1, p. 2630413, 2017. DOI:
10.1155/2017/2630413.

L. Mainetti, L. Patrono, and I. Sergi, “A survey on indoor positioning systems,” in
2014 22nd International Conference on Software, Telecommunications and Com-
puter Networks (SoftCOM), 2014, pp. 111120. DOI: 10.1109/SOFTCOM . 2014 .
7039067.

M. Kwak and J. Chong, “A new double two-way ranging algorithm for ranging
system,” in 2010 2nd IEEFE InternationalConference on Network Infrastructure
and Digital Content, 2010, pp. 470473. DOI: 10.1109/ICNIDC.2010.5657814.
S.-H. Lee, I.-K. Lim, and J.-K. Lee, “Method for improving indoor positioning
accuracy using extended kalman filter,” Mobile Information Systems, vol. 2016,
no. 1, p. 2369103, 2016. po1: 10.1155/2016/2369103.

T. G. Hailu, X. Guo, H. Si, L. Li, and Y. Zhang, “Theories and methods for indoor
positioning systems: A comparative analysis, challenges, and prospective mea-
sures,” Sensors, vol. 24, no. 21, 2024, 1SSN: 1424-8220. DOI: 10.3390/s24216876.
S. ( Zekavat et al., “An overview on position location: Past, present, future,”
International Journal of Wireless Information Networks, vol. 28, no. 1, pp. 4576,
Mar. 2021, 18SN: 1572-8129. DOI: 10.1007/s10776-021-00504~z.

T. Sathyan, A. Sinha, and T. Kirubarajan, “Passive geolocation and tracking of
an unknown number of emitters,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 42, no. 2, pp. 740750, 2006. DOI: 10.1109/TAES.2006.1642587.

J. Smith and J. Abel, “Closed-form least-squares source location estimation from
range-difference measurements,” IFEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 35, no. 12, pp. 16611669, 1987. pOI1: 10.1109/TASSP .
1987.1165089.

W. Zhao, J. Panerati, and A. P. Schoellig, Learning-based bias correction for
time difference of arrival ultra-wideband localization of resource-constrained mo-
bile robots, 2021. DOI: 10.48550/arXiv.2103.01885.

W. Zhao, A. Goudar, and A. P. Schoellig, “Finding the right place: Sensor place-
ment for uwb time difference of arrival localization in cluttered indoor environ-
ments,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 60756082, Jul.
2022, 18SN: 2377-3774. DOIL: 10.1109/1ra.2022.3165181.

S. Zhao, “Affine formation maneuver control of multiagent systems,” IEEE Trans-
actions on Automatic Control, vol. 63, no. 12, pp. 41404155, 2018. DOT: 10.1109/
TAC.2018.2798805.

46


https://doi.org/10.1109/TAC.2015.2504265
https://doi.org/10.1155/2017/2630413
https://doi.org/10.1109/SOFTCOM.2014.7039067
https://doi.org/10.1109/SOFTCOM.2014.7039067
https://doi.org/10.1109/ICNIDC.2010.5657814
https://doi.org/10.1155/2016/2369103
https://doi.org/10.3390/s24216876
https://doi.org/10.1007/s10776-021-00504-z
https://doi.org/10.1109/TAES.2006.1642587
https://doi.org/10.1109/TASSP.1987.1165089
https://doi.org/10.1109/TASSP.1987.1165089
https://doi.org/10.48550/arXiv.2103.01885
https://doi.org/10.1109/lra.2022.3165181
https://doi.org/10.1109/TAC.2018.2798805
https://doi.org/10.1109/TAC.2018.2798805

[61]

[62]

J. Wang, X. Ding, C. Wang, Z. Zuo, and Z. Ding, “Affine formation control
of general linear multi-agent systems with delays,” Unmanned Systems, vol. 11,
no. 02, pp. 123132, 2023. DOI: 10.1142/82301385023410017.

Y. Li and W. Dong, A flexible and resilient formation approach based on hierar-
chical reorganization, 2024. DOIL: 10.48550/arXiv.2406.112109.

Z. Li and R. Rajan, Robust affine formation control of multiagent systems, Jul.
2024. por: 10.48550/arXiv.2407.03911.

Z.Liand R. T. Rajan, “Geometry-aware distributed kalman filtering for affine for-
mation control under observation losses,” in 2023 26th International Conference
on Information Fusion (FUSION), 2023, pp. 17. DOI: 10.23919/FUSI0ON52260 .
2023.10224101.

F. Molinari and J. Raisch, “Efficient consensus-based formation control with
discrete-time broadcast updates,” in 2019 IEEE 55th Conference on Decision and
Control (CDC), 2019, pp. 41724177. DOI: 10.1109/CDC40024.2019.9029346.
ARM-software, Cmsis-dsp: Cmsis-dsp embedded compute library for cortex-m and
cortez-a, GitHub, 2022.

L. T, The dsp capabilities of arm cortex-m4 and cortex-m7 processors, ARM,
2016. [Online|. Available: https://community .arm.com/cfs-file/__key/
communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.
ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-
Cortex_2D00_M7.pdf.

J. Huang and T. Leng, “Generalized loop-unrolling: A method for program
speedup,” in Proceedings 1999 IEEE Symposium on Application-Specific Systems
and Software Engineering and Technology. ASSET’99 (Cat. No.PR00122), 1999,
pp. 244248. DOL: 10.1109/ASSET . 1999 .756775.

A. Masiero, F. Fissore, and A. Vettore, “A low cost uwb based solution for direct
georeferencing uav photogrammetry,” Remote Sensing, vol. 9, no. 5, 2017, 1SSN:
2072-4292. DOTI: 10.3390/rs9050414.

47


https://doi.org/10.1142/S2301385023410017
https://doi.org/10.48550/arXiv.2406.11219
https://doi.org/10.48550/arXiv.2407.03911
https://doi.org/10.23919/FUSION52260.2023.10224101
https://doi.org/10.23919/FUSION52260.2023.10224101
https://doi.org/10.1109/CDC40024.2019.9029346
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://doi.org/10.1109/ASSET.1999.756775
https://doi.org/10.3390/rs9050414

48



Crazyflie 2.1

A.1 Hardware specifications

The following specifications in Table A.1 are taken from the Bitcraze website [32].

Table A.1: Hardware specification of Crazyflie 2.1

Type Properties Note Image
Weight 27 grams

+7min flying

Battery S00mAQ 4+40min charging

Clock frequency: 168MHz
Microcontroller RAM: 192Kb SRAM Cortex M4 / STM32F405

Storage: 1Mb flash - \
Accelerometer  3-axis gyroscope BMPI088 ‘ ____§
Pressure sensor BMP388
Storage 8KB EEPROM
Radio 2.4GHz ISM band nRF51822

A.1.1 Additional Decks

The crazyflie’s functionality can be extended by assembling so-called expansions decks.
Table A.2 shows some decks the Crazyflie supports and their functionality. All infor-
mation is taken from the Bitcraze website [32]

A.1.2 Positioning systems

The Crazyflie has multiple options to use for positioning

Lighthouse

So called lighthouse beacons emit infrared laser scans which are detected by the infrared
sensor on the Crazyflie. The beacons are fixed in-place and require a direct line of sight
with the drone to estimate the drones position accurately.
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Table A.2: Additional deck used on the Crazyflie

Type Properties Image

AT deck Processor for machine learning

LED-ring deck 12 downward facing leds

Qi 1.2 charger deck  Wireless charging

MicroSD Card deck Logging data

Flow deck Optical flow sensor for ground movement
Loco deck UWB for positioning
Lighthouse deck Infrared sensor for positioning

Loco Positioning System
A combination of reference anchors at fixed positions and an anchor on the Crazyflie.

These anchors communicate over UWB and apply the TDOA principle to estimate its
current position.
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(a) Lighthouse deck for receiving infrared signals (b) Infrared base station used as reference point

Figure A.1: Hardware required for the lighthouse positioning system

(a) UWB deck used for receiving UWB signals (b) UWB Anchor used as reference point

Figure A.2: Hardware required for the LPS

Motion Capture Positioning

A (third-party) motion capture camera uses markers on the drone to detect its position
in a global reference frame. The cameras use infrared flashes and detect reflections
from the markers.
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Table of Functions

Table B.1: Table of all functions used in this research

Function Parameters Description

Main functions
AFC i: Drone ID Run Algorithm 1
RAL i: Drone ID Run Algorithm 4

Helper functions

GetCurrentPosition - Return current position of drone
HybridMode - Transmit position to other drones
PacketHandler Packet: UWB packet  Process data of UWB packet

Mat_Inv A: Matrix A Invert matrix A or return —1 if invertible
Mat_ Mult A, B: Matrix A and B Multiply matrix A with matrix B

Mat_ Trans A: Matrix A Transpose matrix A

SendP2PPacket z;: Position of drone i  Transmit position to other drones

Set Velocity z;: velocity vector Send velocity to motors
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UWB experiments with Crazyflie quadcopters

Shaan Hossain

Abstract—This technical note accompanies datasets providing
positions and UWB communication transmission frequency of
the Crazyflie quadcopter. This note explains the context, creation,
format, and potential uses of the dataset. The code used to create
these data is publicly available.

I. CONTEXT

The Crazyflie is a nano quadcopter developed by Bitcraze
for educational research and hobbyist purposes. Bitcraze of-
fers a variety of tools and hardware that can be utilised
in conjunction with the quadcopter, including positioning
systems, upgraded motors, and additional stabilisers. One of
the positioning systems compatible with the Crazyflie is the
Loco Positioning System (LPS), which incorporates Ultra
Wide Band (UWB) expansion boards on the quadcopter and
communicates with designated UWB anchors [1]. These UWB
anchors have fixed positions and act as a reference to the
quadcopters. By transmitting packets and calculating the Time
Difference Of Arrival (TDOA) between the quadcopter and the
anchors, the system can estimate the quadcopter’s position [2].

Experiments were executed with two goals in mind. Firstly,
determining the accuracy of the position estimated by the LPS
under various conditions. Here the position of the quadcopters
are constantly polled to measure This data allows to draws
conclusions on how number of quadcopters affect the LPS.

Secondly, another set of experiments was done to measure
at what rate UWB packets are received on the quadcopter.
Each quadcopter is broadcasting their current position to other
quadcopters. Totally, These include packets sent by UWB-
anchors as well as other quadcopters. Packets from the anchors
are used for TDOA and ultimately position estimation. Packets
from other quadcopters are used to run a formation control
algorithm.

II. SETUP

All the experiments were done inside a cage with dimen-
sions 4x 3.5x 3 meters in length, width and height respectively.
Each vertical pole of the cage has two UWB anchors placed,
0.3m and 2.3m from the ground respectively, these are marked
blue in figure 1. The position of each anchor is fixed and
known to all quadcopters.

The quadcopters are running a modified version of the
stock firmware. This modification allows the quadcopters to
communicate with other quadcopters alongside the UWB
anchors. This is necessary to run the formation control al-
gorithm. Additionally, a python script is used to command the
quadcopters to take off, engage formation and land.

4m

3m

b,

L,

3.5m 35m

(a) Top view (b) Front view

Fig. 1: Schematic of cage setup

III. DATASET

All relevant data and additional instructions can be find on
Github!

A. Tick rate

The goal of these experiments was to measure the per-
formance of UWB communication with varying numbers of
quadcopters. Table I provides a description of the data fields
collected during these experiments. Data was collected from a
single quadcopter for the duration of 30 seconds with a polling
interval of 10ms. This quadcopter is placed at the centre of
the cage, which is considered the origin. In the case of other
quadcopters, these were placed randomly and evenly spaced
from each other inside the cage. The experiment also varies
in number of anchors that are present. These anchors allow
us to estimate the position of each quadcopter. Note that at
least 2 or more anchors are required to estimate positions.
Figure 2 shows a schematic scenario of an experiment with 2
anchors and 2 quadcopters. The anchors send TDOA packets
to the quadcopters (depicted in blue), and the quadcopters are
communicating amongst each other (depicted in green).

The data files follow a specific naming convention:
tickLocoRate-z-y.csv. Here, x represents the number of ac-
tivated anchors, and y represents the number of quadcopters
present. For instance, a file named tickLLocoRate-4-6.csv would
contain data from an experiment with 4 anchors and 6 quad-
copters. For this set of experiments, data of each scenario was
collected once.

B. Localisation

The goal of the localisation experiments was to measure
the accuracy of the LPS under different conditions. These

Uhttps://github.com/shossains/dollaFlie/tree/master/dollaFlie/logs
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Fig. 2: Example scenario with 2 anchors and 2 quadcopters

TABLE I: Headers of data files for tickrate experiments

header description unit
rxRate All packets that are received over UWB | packets/s
posUpdateRate | Packets that are used for localisation packets/s
P2PRate Packets from other quadcopters packets/s
controlRate Formation control algorithm execution executions/s

conditions involve changing the number of quadcopters and
transitioning between stationary on the ground, stationary in
the air, and flying at a constant speed. The logging of positions
occurred concurrently for all quadcopters during each polling
instance. Table II provides a summary of the data collected for
each experiment. The naming convention for the file names of
these experiments are explained in the readme file.

1) Experiment 3: During this set of experiments the quad-
copters were placed on the ground. The number of quadcopters
used for these experiments were 1, 2, 3, 4 and 5 quadcopter(s)
at fixed locations on the ground. Using UWB constantly
polling current location.

2) Experiment 4: During this set of experiments quad-
copters were flying in a square formation. Each quadcopter
flew at a fixed position at one of the corners of the formation.

TABLE II: Headers of data files for localisation experiments

header description unit
X x coordinate of quadcopter | meter
y y coordinate of quadcopter | meter
z z coordinate of quadcopter | meter
uri Id of the drone -

The positions of the quadcopters were polled for 30 seconds.
The number of quadcopters used for these experiments were
1, 2, 3 and 4 quadcopters.

3) Experiment 5: During this set of experiments 4 quad-
copters were flying in a square formation. Each quadcopter
started at one of the corners of the formation. They moved at
a constant speed from their starting position to the next corner
in the clockwise direction, see figure 4. When arrived at the
next corner the quadcopters land on the ground.

K I o
l

(b) Situation at t > 0

S

(a) Situation at t = 0

Fig. 4: Top-down view of experiment 5

Figure 3 shows some example plots of positioning data of
the quadcopters flying at a speed of 0.2m/s for 10 seconds.

IV. COMMENTS

For certain experiments or iterations of experiments, the
quadcopters may have been swapped from their positions.
For instance, an experiment using four drones in a square
formation may have been rearranged when the experiment was
repeated. This was done so anomalous behaviour could be
differentiated between a faulty quadcopter or environmental
influences.
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Source code

D.1 Affine Formation Control implementation in C

// 3 —mmmm- 2
/1 N/
// VAN 3 ----- 0 —--—- 2
// |/ N
// 0 —--m- 1

#define numberOfDrones 4
uint8_t missing = 255;

uint8_t dronelds|[numberOfDrones] = {0x18, 0x19, 0x20, 0x26};
float weights|[numberOfDrones|[number0OfDrones]| = {
(1.0, —1.0, 1.0, —1.0},
{-1.0, 1.0, —1.0, 1.0},
{1.0, —1.0, 1.0, —1.0},
{—1.0, 1.0, —1.0, 1.0}};
neighbours_t adjacency|[numberOfDrones]| = {
{(uint3_t(]) {1, 2, 3}, 3},
{(uint8_t[]) {0, 2, 3}, 3},
{(uint8_t[]) {0, 1, 3}, 3},
{(uint8_t[]) {0, 1, 2}, 3}};
pos_t p051t10ns[numberOfDrones] =
(0.0, 0.0},
(0.0, 0 0, 0.0},
(0.0, 0.0, 0.0},
(0.0, 0.0, 0.0}};

uint8_t getNormalisedDroneId(uint8_t droneld)

{

for (int i = 0; i < numberOfDrones; i++)

{ if (dronelds[i] = droneld)
{
return i;
}
}

return 255;

}

// Update position of drone
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void updatePositions(uint8_t droneld, float x, float y, float z)

{

uint8_t id = getNormalisedDronelId(droneld);

if (id != 255 && id != missing)

{

positions[id].x = x;
positions[id].y = y;
positions[id].z = z;

}

// Send target velocity to commander

void setVelocitySetpoint(setpoint_t *setpoint, float vx, float vy, float

z, float yawrate)

{
setpoint—>mode.x = modeVelocity;
setpoint—>mode.y = modeVelocity;
setpoint—>mode.z = modeAbs;
setpoint—>mode.yaw = modeVelocity;
setpoint—>velocity.x = vx;
setpoint—>velocity.y = vy;
setpoint—>position.z = z;
setpoint—>attitudeRate.yaw = yawrate;

setpoint—>velocity_body = true;

commanderSetSetpoint (setpoint, 2);

}

// Send target position to commander

void setPositionSetpoint(setpoint_t *setpoint, float x, float y, float z,

float yawrate)
setpoint—>mode.x = modeAbs;
setpoint—>mode.y = modeAbs;
setpoint—>mode.z = modeAbs;
setpoint—>mode.yaw = modeAbs;

setpoint—>position.x = x;
setpoint—>position.y = y;
setpoint—>position.z = z;
setpoint—>attitudeRate.yaw = yawrate;

setpoint—>velocity_body = false;

commanderSetSetpoint (setpoint, 2);

}

// Main equation
void calcVelocity(uint8_t droneld)

{

// Get most recent known position of self
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pos_t curPos;

curPos.x = logGetFloat (logGetVarId("stateEstimate", "x"));
curPos.y = logGetFloat(logGetVarId("stateEstimate", "y"));
// curPos.z = logGetFloat(logGetVarId("stateEstimate", "z"));
uint8_t id = getNormalisedDroneId(droneld);
if (id != 255)
{
uint8_t numberOfNeighbours = adjacency|[id].numberOfNeighbours;
pos_t sum = {0.0, 0.0, 0.0};
uint8_t 1i;
for (i = 0; i < numberOfNeighbours; i++)
{
uint8_t curNeighbour = adjacency[id].neighbours[i];
pos_t neighbourPosition = positions[curNeighbour];
sum.x = sum.x + (weights[id][curNeighbour] * (curPos.x —
neighbourPosition.x));
sum.y = sum.y + (weights[id][curNeighbour]| * (curPos.y —
neighbourPosition.y));
// sum.z = sum.z + (weights[id] [curNeighbour] * (curPos.z -
neighbourPosition.z));
}
setVelocitySetpoint(&setpoint, sum.x, sum.y, 1.5, 0);
}
}
// Main loop
void formationControlLoop(uint8_t droneld)
{
// Leaders fly to dedicated position
switch (droneld)
{
case 0x17:
setPositionSetpoint(&setpoint, 1.0, 0.0, 1.5, 0);
break;
case 0x18:
setPositionSetpoint(&setpoint, 0.33, 1, 1.5, 0);
break;
case 0x19:
setPositionSetpoint(&setpoint, 0.33, —1, 1.5, 0);
break;
default: // Followers
calcVelocity(droneld);
break;
}
return;
}

Listing D.1: Implementaion of Formation Control algorithm in C
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D.2 RAL implementation in C

1 void RAL(uint8_t i)

2

3 uint8_t numberOfNeighbours = adjacency[i].numberOfNeighbours;

4 uint8_t number0fMissingDrones = 1; // Number of missing neighbours

5 uint8_t M = numberOfNeighbours — numberOfMissingDrones; // Number of
known neighbours

6 uint8_t N = 2; // Dimension of formation

7

8 float32_t vp_ij[N][1];

9 float32_t vH_i|[M][N];

10 float32_t vX_i[M][N];

11 float32_t vH_i_T[N % M];

12 float32_t vH_i_T_H_i[N % N]J;

13 float32_t vH_i T_X_i[N x N];

14 float32_t vH_i_T_H_i_inv [N * NJ;

15 float32_t vtheta_i[N x N]J;

16 float32_t vtheta_i T[N % N]J;

17 float32_t vtheta_i_T_p_ij [N x 1];

18

19 // Populate p_ij = pl[i] - plmissing]

20 pos_t p_i = p[i];

21 pos_t p_missing = p[missing];

22 vp_ij[0][0] = p_i.x — p_missing.x;

23 vp_ij[1][0] = p_i.y — p_missing.y;

24 vp_ij[2][0] = p_i.z — p_missing.z;

25

26 pos_t curPos;

27 curPos.x = logGetFloat (logGetVarId("stateEstimate", "x"));

28 curPos.y = logGetFloat (logGetVarId("stateEstimate", "y"));

29 curPos.z = logGetFloat (logGetVarId("stateEstimate", "z"));

30

31 // Populate H_i and X_i

32 uint8_t j = 0;

33 uint8_t write = 0;

34 for (j = 0; j < numberOfNeighbours; j++)

35 {

36 uint8_t curNeighbour = adjacency[i].neighbours[j];

37 if (curNeighbour != missing)

38 {

39 // Populate H_i = formation displacement of known neighbours

(p_ij)

40 pos_t p_neighbour = p[curNeighbour|;

41 vH_i[write][0] = p_i.x — p_neighbour.

42 vH_i[write][1l] = p_i.y — p_neighbour

43 vH_i[write][2] = p_i.z — p_neighbour.

44

45 // Populate X_i = actual positions of known neighbours (z_ij)

46 pos_t neighbourPosition = positions[curNeighbour];

47 vX_i[write][0] = curPos.x — neighbourPosition.x;

48 vX_i[write][1] = curPos.y — neighbourPosition.y;
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vX_i[write][2] = curPos.z — neighbourPosition.z;
write—+-+;
} }
// Initialize the ARM matrix structures
arm_matrix_instance_£32 p_ij = {N, 1, (float32_t x)vp_ij};
arm_matrix_instance_£32 H_i = {M, N, (float32_t x)vH_i};
arm_matrix_instance_£32 X_i = {M, N, (float32_t x)vX_i};
arm_matrix_instance_£32 H_i_ T = {N, M, vH_i_T};
arm_matrix_instance_f£32 H_i_T_H_i = {N, N, vH_i_T_H_i};
arm_matrix_instance_f£f32 H_i_T_X_ i = {N, N, vH_i T _X_i};
arm_matrix_instance_£f32 H_i_T_H_i_inv = {N, N, vH_i_T_H_i_inv};
arm_matrix_instance_£32 theta_i = {N, N, vtheta_i};
arm_matrix_instance_£32 theta_i_T = {N, N, vtheta_i_T};
arm_matrix_instance_£f32 theta_i_T_p_ij = {N, 1, vtheta_i_T_p_ij};

// Transpose H_i
mat_trans(&H_ i, &H_i_T);

// Calculate H i.T @ H_i

mat_mult(&H_i T, &H_i, &H_i_T_H_i);

// Calculate H_i.T @ X_i

mat_mult(&H_i_ T, &X_i, &H_i_T_X_i);

// Calculate inverse of H_i.T

// Transpose theta_i

@ H i

mat_trans(&theta_i, &theta_i_T);

// Calcutate z_ij

mat_mult(&theta_i_T, &p_ij, &theta_i_T_p_ij);

// Update position of missing

positions|[missing]|.x = curPos
positions|[missing].y = curPos
positions|[missing]|.z = curPos

drone

.x — theta_i_T_p_ij.pData|0];
.y — theta_i_T_p_ij.pData[l];
.z — theta_i_T_p_ij.pData[2];

Listing D.2: Implementaion of RAL algorithm in C
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