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ABSTRACT 1 
Little is known about microscopic operations of bicycle traffic. This lack of knowledge makes designing and 2 
analyzing facilities that are (also) used by cyclists, as well as assessing their efficiency and safety, very 3 
difficult. This paper puts forward a novel composite headway model for bicycle flows. Based on a working 4 
definition of a bicycle headway, the model assumes that the headway is the sum of the so-called empty zone 5 
(the minimum headway that a cyclist will have with respect to the bicycle he or she is following) and the free 6 
headway (the additional headway that cyclists maintain when they are not following). Both headways are 7 
stochastic variables, given the large heterogeneity in cyclists’ behavior. Furthermore, we put forward a 8 
distribution-free model estimation approach that allows identifying the distributions of both the empty zone 9 
and the free headway without pre-specifying their functional form. The workings of the model and the 10 
estimation method are illustrated using data collected at a busy intersection in the Netherlands.  11 

INTRODUCTION 12 
The scientific and engineering knowledge on bicycle flow operations is limited. Navin (1) performed a series 13 
of experimental studies to determine the operating performance of a single bicycle, and the traditional traffic 14 
flow characteristics of a stream of bicycles and compared them to observed data. He concluded that under 15 
certain conditions, bicycle flows can be treated as vehicular flows, and concepts such as capacity of bicycle 16 
paths and their level of service could be sensibly defined. Other work predominantly looks at traffic 17 
engineering concepts as levels of service, but provides little insight into cycle behavior.  18 

Basic information covers bicycle dimensions, with different dimensions found in different countries. 19 
According to Allen et al. (2) a typical U.S. bicycle is 1.75 m long and its handlebar is 0.60 m wide, while the 20 
Dutch design guidelines (3) indicate that 95% of all bicycles have a length less than 1.90 m and 100% of the 21 
handlebars are less than 0.75 m wide. A much earlier study by Radlicke (4) showed similar dimensions, 22 
implying that bicycles’ dimensions have not changed considerably in the last 60 years. However, recently 23 
different types of more functional bikes have been developed, such as carrier (tri)cycles. Also, the share of 24 
scooters using the bicycle path has been increased. Related to the bicycle width, design guidelines give 25 
different values for the bicycle lane width. In general a minimal width for a one-way facility is 1.50 m (3,5). 26 
These norms are related to the necessary space for a single cyclist to move unconstrained in a lateral 27 
direction. According to Knoflacher (6) 50 % of the cyclists require at least 0.97 m for free movement in one-28 
way traffic, whereas the 85%-value is 1.24 m. The values do not include the case when two or more cyclists 29 
are moving next to each other.  30 

More research exists on fundamental diagrams for bicycle traffic. Critical density was found to be 31 
between 0.05 and 0.14 bicycles/m2 (1,7-9), while more variation was found in jam density: between 0.27 and 32 
0.45 bicycles/m2 (1,7-9). Most studies about the capacity of bicycle facilities come from Europe as the bicycle 33 
usage is much higher than in the United States and the bicycle infrastructure network is more developed. 34 
However, recently US and Canadian research groups have also performed several studies (14). The first 35 
earlier European studies by Smith reported capacities around 770 bicycles/h/m (10). Four years later, 36 
Homburger reported much higher capacities – 2,600 bicycles/h/m  (7). Using headways in free flow 37 
conditions to estimate capacity, Botma (11) concluded that the capacity is between 3,800 and 4,600 38 
bicycles/h/m. However, this method is likely to slightly overestimate the capacity value (12). Navin 39 
performed an experiment with children following a lead bicyclist on an oval 2.5 m wide lane showing a 40 
capacity value of 4,000 bicycles/h/m (1). However, this experiment clearly does not represent real conditions. 41 
In Austrian guidelines (6), a distinction is made between for the capacity of one-way traffic (1,000 42 
bicycles/h/m) and two-way traffic (750-800 bicycles/h/m). This capacity distinction is further elaborated by 43 
Richard (13) showing the relation between capacity, bicycle lane width and type of traffic (one or two way). 44 

Although some fundamental diagrams on bicycle traffic exist, most of them are either estimated on 45 
only the free flow branch (1,7,14-16) or based on simulation models (14).  Both methods have major 46 
drawbacks. In the first case, no information is known for the congested branch of the fundamental diagram, 47 
so any fundamental diagram could be fit to the data. Secondly, simulation models do not necessarily cover 48 
cyclist behavior sufficiently accurate to estimate a fundamental diagram. This especially holds for cyclist 49 
behavior under congested conditions, as not much is known for this behavior. 50 

The previous overview shows that indeed, only limited insight is available in bicycle traffic 51 
operations. As the mode share of bicycles increases, and the bicycle infrastructure network improves further, 52 
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bicycle traffic is in a transition towards an important mode, with not only issues in the interaction with 1 
vehicular and pedestrian traffic, but also capacities of bicycle paths are nowadays reached, especially in urban 2 
areas. Often, observations of congestions are not available, thus making it difficult if not impossible to 3 
accurately estimate capacity. In this paper we introduce a composite headway distribution model, 4 
distinguishing between constrained cyclists and free driving cyclists. We will show how we can use the so-5 
called empty zone distribution to estimate the capacity. 6 

This paper first introduces the composite headway distribution model, including the necessary 7 
definitions, followed by the description of the method to estimate this headway model. 8 

HEADWAY MODELING 9 
To gain more insight into the following behavior of cyclists, this behavior is analyzed by estimating a so-called 10 
composite headway distribution model, which distinguished between following (or constrained) and freely 11 
moving (unconstrained) cyclists. To do this, we first need to determine the leader-follower combinations, i.e. 12 
which cyclist j is being followed by following cyclist i.  13 

Definition of a headway of a cyclist 14 
Let 𝑡𝑡𝑖𝑖 denote the time instant at which cyclist i passes the cross-section x. We will use the following simple 15 
procedure to determine the leader j: let 𝑦𝑦𝑖𝑖(𝑡𝑡𝑖𝑖) denote the lateral position of cyclist i at 𝑡𝑡𝑖𝑖 (indicated by the 16 
white cross in FIGURE 1). The leader of i is the cyclist with the largest index 𝑗𝑗 < 𝑖𝑖 for which: 17 

 18 
 �𝑦𝑦𝑗𝑗�𝑡𝑡𝑗𝑗� − 𝑦𝑦𝑖𝑖(𝑡𝑡𝑖𝑖)� ≤

1
2
𝑎𝑎 (1) 19 

 20 
for some threshold value a > 0. Here, a typically equals the width of cyclist i’s handlebars plus additional shy-21 
away distance on either side, in total corresponding to the free space ahead of the cyclist needed to cycle. The 22 
headway ℎ𝑖𝑖 of cyclist i is then defined by: 23 

 24 
 ℎ𝑖𝑖 = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗 (2) 25 

 26 
FIGURE 1 shows a graphical description of this headway definition. 27 

 28 

 29 
FIGURE 1  Headway definition using the width a as the key decision variable to determine which 30 
cyclist is being followed. In the figure, cyclist D is following cyclist A. 31 

Composite headway modeling 32 
To study the following behavior, we propose to use the semi-Poisson model first presented by Buckley (17). 33 
The model distinguished between constrained headways and unconstrained headways. An unconstrained 34 
headway is a headway when a cyclist is experiencing no hindrance from other cyclists ahead. The distribution 35 
of this free headway U is usually determined by drawing the analogy with a Poisson-point process (17). 36 
Consequently, the free headway is assumed to be exponentially distributed.  37 
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Constrained headways are headways of cyclists following the cyclist in front, while being unable or 1 
reluctant to overtake, even if the desired cycling speed is less than the speed of the cyclist that is followed. 2 
The headway will be equal to – or actually fluctuate around – a desired minimum headway (or empty zone). It 3 
is reasonable to assume that, due to the heterogeneity in cycling behavior, different cyclists will adopt 4 
different empty zones, and therefore the empty zone follows some random variable X. Causes for these 5 
interpersonal variations are, among other things, subjectiveness in what is perceived as comfortable and safe, 6 
differences in cycling purpose and skill. Also intrapersonal variations in the headway will exist since no 7 
cyclist will be able to maintain the same empty zone all the time.  8 

Let 𝑔𝑔(ℎ) and 𝑟𝑟(ℎ) denote respectively the probability density functions of the empty zone and the 9 
free headway, and let 𝜙𝜙 denote the fraction of constrained cyclists, which are driving at their current 10 
minimum desired headway. The composite headway model of Buckley proposes that the probability density 11 
function 𝑓𝑓(ℎ) of the composite headway 𝐻𝐻 = 𝑋𝑋 + 𝑈𝑈 satisfies: 12 

 13 
 𝑓𝑓(ℎ) = 𝜙𝜙𝑔𝑔(ℎ) + (1 − 𝜙𝜙)𝑟𝑟(ℎ)  (3) 14 

 15 
Furthermore, in (17) it is shown that the free headway density function satisfies: 16 

 17 
 𝑟𝑟(ℎ) = 1

𝐴𝐴
𝜆𝜆 exp(−𝜆𝜆ℎ)∫ 𝑔𝑔(𝜏𝜏)𝑑𝑑𝜏𝜏ℎ

0  (4) 18 
 19 

where A is the so-called normalization constant defined by: 20 
 21 

 𝐴𝐴 = ∫ 𝜆𝜆 exp(−𝜆𝜆𝜏𝜏)𝑔𝑔(𝜏𝜏)𝑑𝑑𝜏𝜏∞

0  (5) 22 
 23 

and where 𝜆𝜆 ≥ 0 denotes the free headway arrival rate.  24 
In the remainder of this section, we will briefly recall the approach from Wasielewski (18) to 25 

estimate the parameters of the model, i.e. the free headway arrival rate 𝜆𝜆 and the fraction of constrained 26 
cyclists 𝜙𝜙, and – most importantly – the probability density function 𝑔𝑔(ℎ) of the empty zone. The approach 27 
put forward is distribution free in the sense that the functional form of the empty zone does not need to be 28 
specified beforehand. This allows us to study the inter- and intrapersonal variations in the cyclist minimum 29 
desired headways, but it also provides us with an approach to determine the capacity of the bicycle facility, 30 
even if there are no direct capacity measurements available. Finally, we are able to predict the headway 31 
distribution for different demand levels, and analyze the maximum flow for a crossing (car, pedestrian or 32 
bicycle) stream. Both applications will be briefly discussed below.  33 

Capacity estimation 34 
To determine the capacity of a bicycle facility using the composite headway model that has been identified 35 
using headway data, we will make the assumption that under capacity conditions, all cyclists are following. In 36 
other words, we have 𝜙𝜙 = 1. Under this assumption, and given the choice we have made for the threshold 37 
value 𝑎𝑎 to determine which bicycle is being followed, we can determine the capacity in bicycles/h/m by 38 
computing the inverse of the mean empty zone, i.e.: 39 

 40 
 𝐶𝐶 = 1

2𝑎𝑎𝑎𝑎(𝐻𝐻)|𝜙𝜙=1
= 1

2𝑎𝑎𝑎𝑎(𝑋𝑋)
 (6) 41 

 42 

Gap acceptance modeling 43 
Another application of the composite headway model is to use it to determine the (remaining) capacity of a 44 
non-prioritised crossing flow. For the case that we will describe in the ensuing of the paper, the crossing flow 45 
consists of cars that have to wait for a sufficiently large gap in the bicycle flow which they can pass. Which gap 46 
is acceptable depends on the critical gap of the car-driver. Given that the population of drivers is 47 
heterogeneous, it is reasonable to assume that the critical gaps follow some distribution.  48 
 To determine the (maximum) number of crossing maneuvres of the cars, the critical gap distribution 49 
is confronted with the cycle headway distribution. Using simple simulation approaches that are based on 50 
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drawings from both distribution functions, it is relatively easy to determine numerical estimates for the 1 
crossing flow or capacity.   2 

NON-PARAMETRIC COMPOSITE HEADWAY ESTIMATION 3 
The section generalizes the distribution-free (or rather, non-parametric) estimation approach first proposed 4 
by Wasielewski (18) for freeway traffic, to bicycle flows. We are given a data set {ℎ𝑖𝑖} of headways observed at 5 
a certain cross section x.  6 

The key assumption is now that there exists some value 𝑇𝑇∗ (the separation value), such that 𝑔𝑔(ℎ) = 0 7 
for all ℎ > 𝑇𝑇∗. That is, all observed headways larger than 𝑇𝑇∗ stem from free moving cyclists. Given that this 8 
assumption is valid, we can identify a set of observed headways {ℎ𝑖𝑖|ℎ𝑖𝑖 > 𝑇𝑇∗}. Since these headways follow an 9 
exponential distribution with mean arrival rate 𝜆𝜆, we can determine the following estimate of the free 10 
headway arrival rate 𝝀𝝀�: 11 

 12 
 �̂�𝜆 = 1

𝑚𝑚
∑ {ℎ𝑖𝑖|ℎ𝑖𝑖 > 𝑇𝑇∗}𝑛𝑛
𝑖𝑖=1  (7) 13 

 14 
where m is the number of elements in the set {ℎ𝑖𝑖|ℎ𝑖𝑖 > 𝑇𝑇∗}, i.e. the number of headways larger than 𝑇𝑇∗. We can 15 
then show that an estimate for the normalization constant is given by the following expression (18): 16 

 17 
 �̂�𝐴 = 𝑚𝑚

𝑛𝑛
exp��̂�𝜆𝑇𝑇∗� (8) 18 

 19 
where n is the total number of observed headways in the sample. Now, let 𝑓𝑓𝑛𝑛(ℎ) denote an estimate for the 20 
composite headway distribution based on the sample of headways {ℎ𝑖𝑖}. This can be a histogram, a Kernel 21 
estimate, or any approach to determine an estimate of the distribution. Now, let 𝑟𝑟1(ℎ) = (1 − 𝜙𝜙)𝑟𝑟(ℎ). 22 
Wasielewski shows that by solving the following integral equation: 23 

 24 
 �̂�𝑟1(ℎ) = 𝐴𝐴� 𝜆𝜆�

𝜙𝜙�
exp�−�̂�𝜆𝑇𝑇∗� ∫ �𝑓𝑓𝑛𝑛(𝜏𝜏) − �̂�𝑟1(𝜏𝜏)�𝑑𝑑𝜏𝜏ℎ

0  (9) 25 
 26 

subject to: 27 
 28 

 𝜙𝜙� = ∫ �𝑓𝑓𝑛𝑛(𝜏𝜏) − �̂�𝑟1(𝜏𝜏)� 𝑑𝑑𝜏𝜏∞

0  (10) 29 
 30 

we can determine an estimate for the empty zone: 31 
 32 

 𝑔𝑔�(ℎ) = 𝑔𝑔�1(ℎ)
𝜙𝜙�

= �̂�𝑓𝑛𝑛(ℎ)−�̂�𝑟1(ℎ)
𝜙𝜙�

 (11) 33 
 34 

Note that the integral expression above can be solved iteratively. For more details on this, we refer to the 35 
original paper of Wasielewski (18), and more recent work of Hoogendoorn (19).   36 

JAFFALAAN CASE STUDY 37 
In this section, we will illustrate the model and the proposed estimation method using data collected at a busy 38 
intersection. First, we will discuss the study site and the data collection approach taken in this study.  39 

Data collection set-up 40 
One of the intersections in the campus of the Delft University of Technology is well known for its large bicycle 41 
flows, see FIGURE 2a. This does not only lead to capacity issues for the bicycle traffic, but also safety is at 42 
stake, as the vehicle flows also need to pass this intersection during the peak hours. To quantify the safety 43 
and capacity issues, video images have been collected from a vantage point on a nearby building. The 44 
observations have been performed on weekdays from Wednesday, October 8, 2014 until Tuesday, October 14, 45 
2014, from 7h30 (dawn) until 18h30 (dusk). An example of the footage is shown in FIGURE 2b. 46 

 47 
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a. Overview of intersection. b. Counting line to count passing cyclists. 
FIGURE 2  Overview of the intersection in the Delft University of Technology campus, where high 1 
bicycle flows pass an intersection (on the left). On the right the location of the cross-section for which 2 
the data are collected. 3 

 4 
The counts have been based on so-called photofinish photos. For this technique, individual images 5 

are extracted from the video. With a frame rate of 10 fps, this leads to 10 frames or images per second. To 6 
compose the photofinish photo, we look at a single line of each image, the so-called counting line as indicated 7 
in FIGURE 2b. This counting line is extracted from each frame. In a separate image the counting lines from 8 
consecutive images are placed next to each other, thus forming the photofinish photo. The result is shown in 9 
FIGURE 3, where the vertical axis shows the intersection cross-section corresponding to the counting line and 10 
the horizontal axis represents the time. The vehicles and cyclists in the photofinish photo are clearly distorted, 11 
as their shape depends on their speed passing the cross-section: vehicles or cyclists with low speed (or 12 
standing still) are stretched (they are seen for a longer time period and thus in multiple images on the 13 
counting line), while fast moving cyclists are very small (they are only seen in a small amount of images).  14 

We have made a photofinish photo for time periods of 20 minutes. On each photofinish photo, the 15 
positions and passing moments of the cyclists have been identified by identifying the centre of gravity of each 16 
cyclist. This results in the passing moments of cyclists along the counting line indicated in FIGURE 2b. We 17 
have assumed that the flow was unidirectional: towards the campus in the morning and towards the city 18 
centre in the evening. 19 

 20 

Counting line 
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a. Counting photo, with full height and 15min width. A zoom of the dashed area is shown in b. 
 

 
b. Zoom of the dashed area marked in a. 
FIGURE 3  Counting photos of Wednesday, October, 8 from 17h30 – 17h45. 1 

Choice for estimation parameters 2 
One important parameter in the estimation process is 𝑇𝑇∗, the headway value above which all cyclists are 3 
driving freely. In (19), a method is described to determine this separation value. The idea is simple: since all 4 
headways ℎ𝑖𝑖 > 𝑇𝑇∗ will follow an exponential distribution, the empirical survival function �̂�𝑆𝑛𝑛(ℎ) = 1 − 𝐹𝐹�𝑛𝑛(ℎ) 5 
will be an exponential function. Plotting it with a logarithmic scale would yield a straight line for all values 6 
ℎ > 𝑇𝑇∗. FIGURE 4 shows the result of the analysis using the data collected at the Jaffalaan. The graph shows a 7 
clear bend for headway values less than 2 seconds. To be on the safe side, we choose the separation value 8 
𝑇𝑇∗ = 4𝑠𝑠.  9 
 10 
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 1 
FIGURE 4  Determining the separation value 𝑻𝑻∗ by plotting the survival function.  2 

Estimation results 3 
Using the data collected, we have identified the composite headway model presented earlier using the 4 
estimate method described in the previous section. FIGURE 5 shows the results of applying the procedure on 5 
the collected dataset. The figure shows the composite empirical headway distribution, the estimated 6 
distribution of the free headway (scaled with the estimated fraction of free driving cyclists 1 − 𝜙𝜙�), and the 7 
estimated distribution of the empty zone (scaled with the estimated fraction of constrained cyclists 𝜙𝜙�).  8 

 9 
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 1 
FIGURE 5  Headway estimation results for the Jaffalaan using 𝑻𝑻∗ = 𝟒𝟒𝟒𝟒, showing the empty zone 2 
distribution (red line), the free headway distribution (green line), and the composite distribution 3 
(dashed, blue). 4 

 5 
TABLE 1 gives an overview of the estimation results. The table shows that for this particular case, on 6 

average 54% of the cyclists are constrained. This is a relatively high number, showing that for this particular 7 
situation the demand is such that less than 50% of the cyclists (observed in the entire observation period) 8 
can cycle freely.  9 

The cyclists that are constrained have an average empty zone of 0.784 seconds. As we can also see 10 
from FIGURE 5, the interpersonal (and intrapersonal) variation in the empty zones are substantial: the 11 
standard deviation of the empty zone is 0.660 seconds.   12 

 13 
TABLE 1  Estimation Results for the Jaffalaan Data Set 14 

�̂�𝜆 𝜙𝜙� 𝐸𝐸(𝑋𝑋) 𝜎𝜎(𝑋𝑋) 
0.202 54.1% 0.784 0.660 
  15 

Note that the estimation results allow us to determine the (theoretical) capacity of the facility considered. 16 
Under the assumption that in capacity conditions, all cyclists are following, we can determine the capacity 𝐶𝐶 17 
in number of bicycles per:  18 

 19 
 𝐶𝐶 = 3600

0.784
= 4,593 𝑏𝑏𝑖𝑖𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠/ℎ (12) 20 

 21 
Note that this number holds for the entire bicycle lane. The bicycle lane is 3 m wide, which would result in a 22 
capacity value of 1,531 bicycles/h/m. As the dominant flow is into one direction, not the full width is used, 23 
and the capacity per meter is underestimated. This can also be seen in the comparison with other 24 
international study results discussed in the introduction. This may be due to the way capacity is measured in 25 
some of the other studies, namely by measuring the queue discharge rate at a controlled intersection. The 26 
capacity value that we have determined stems from microscopic observations and can be interpreted as a 27 
(theoretical) free capacity estimate.  28 

 29 
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Additional insight into the following process of the cyclist can be gained by looking at the conditional 1 
probability 𝜃𝜃(ℎ) that a cyclist driving at headway h is following. According to Bayes rule (19):  2 

 3 
 𝜃𝜃(ℎ) = 𝜙𝜙 ⋅ 𝑔𝑔(ℎ)

𝑓𝑓(ℎ)
 (13) 4 

 5 
For the considered case, this leads to the results shown in FIGURE 6. The figure shows that when driving at a 6 
small headway, it is almost certain that the cyclist is following. For larger headways, the probability is 7 
decreasing and eventually vanishes for headways larger than 5 seconds.  8 

 9 
FIGURE 6  Conditional probability of following when cycling at a certain headway with respect to the 10 
predecessor.  11 
 12 

CONCLUSIONS AND RECOMMENDATIONS 13 
In this paper, we have put forward a novel composite headway distribution model for bicycle traffic flows. 14 
The model distinguishes between constrained and unconstrained cyclists, and is based on the semi-Poisson 15 
model of Buckley. The paper furthermore proposes an estimation approach that can be used to determine the 16 
key parameters of the model (arrival rates of the free headway, fraction of constrained cyclists), and the 17 
minimum headway (or the empty zone) distribution, using individual headway data. The latter contains 18 
important information about the following behavior of cyclists.  19 
 Using data collected from a crossing on the TU Delft campus, we have tested the estimation 20 
procedure and the model. The resulting estimates appear to be plausible, and can be used to determine some 21 
key parameters of the considered facility. For instance, capacity estimates can be determined from the model 22 
estimation outcomes. Furhermore, the share of constrained cyclists can be determined (and turned out to be 23 
quite high), which is an indicator of the level-of-service that the facility offers. Finally, the model can be used 24 
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to see how many gaps could be used by a crossing flow, and as such determine the crossing flow capacity. In 1 
the situation at hand, the question is whether the large bicycle flow goes together with the vehicle flow. To 2 
identify the possible gaps for the vehicle to pass, the so-called empty space distribution can be estimated, 3 
which is one of the outcomes of this method. 4 

In this paper, the method has been applied to empirical data gathered on the TU campus. This implies 5 
that the majority of the cyclists consisted of students (young and in general fit adults), being experienced 6 
cyclists and used to crowded cycling conditions, as this is a daily occurring situation. Although this does not 7 
affect the applicability or the quality of the method, the resulting capacity should be handled with care. To 8 
come to a generically applicable capacity, it is therefore adviced to collect data at other locations and compare 9 
the various obtained capacities.  10 
 Future work will deal with analyzing this process further. One of the key things to consider are the 11 
dependence of the free flow arrival rate and the fraction of constrained cyclists on the demand level q. In 12 
finding relations 𝜙𝜙 = 𝜙𝜙(𝑞𝑞) and 𝜆𝜆 = 𝜆𝜆(𝑞𝑞), we can determine the headway distribution for different demand 13 
levels. Confronting this with the critical gap distribution of the crossing flows allows for the determination of 14 
generic relations for the crossing flow capacity, which in turn can be used to assess the facility and decide 15 
which interventions are needed.   16 
 17 
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