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ABSTRACT

Metagenomic Next-Generation Sequencing (mNGS) presents a promising avenue to gen-
erate massive volume of sequence reads in a short period of time. This has opened op-
portunities for disease diagnosis based on individual variations and mutations by con-
sidering the microbiome profile of each patient. However, the effective use of this data
requires the design of appropriate algorithms which can closely represent the metage-
nomic data in an accurate and condensed manner.

In this work, we acknowledged the efficiency of current approaches such as reference-
based methods and frequency encoding. However, we also recognized the limitations
of current methods, such as limiting findings to pre-existing knowledge and inadequate
representation of reads and metagenomic samples. Accordingly, we explored a natural
language embedding technique, called Doc2vec, as a potential embedding approach for
metagenomic study and phenotype prediction.

We introduced some modifications in the original Doc2Vec architecture to remove a bot-
tleneck in analysing long reads. This was done by replacing kmer-level encoding with
nucleotide-level representation. We used the embeddings obtained from this method
as input to logistic classifier and ridge regression models. We compared the results with
Kraken2 on colorectal cancer and type-2 diabetes classification, and for regression tasks
on type-2 diabetes-related measures.

The results suggest a comparable performance between the proposed method and reference-
based method for colorectal cancer classification. For type-2 diabetes dataset, reference-
based method performs significantly better. In regression tasks to predict various met-
rics associated with type-2 diabetes, the proposed representation was comparable to
reference-based method for some phenotypes, but lacked flexibility in others, indicating
that the applicability of proposed approach strongly depends on the objective, dataset,
and target phenotype.

The codes for reproducing the results and figures in this work have been made available
at https://github.com/AbeelLab.
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1
INTRODUCTION

The early 2000s witnessed a massive success in Deoxyribose nucleid acid (DNA) and ri-
bose nucleic acid (RNA) sequencing techniques, allowing the generation of the entire
genome of microbial communities found in the environment [1]. This was achieved
using metagenomic Next-Generation Sequencing (mNGS), a parallel sequencing tech-
nique which can rapidly and efficiently generate millions of sequence reads in a short
period of time [2]. This has been used for diverse applications, such as variant discovery,
disease diagnosis, and novel pathogen identification [3]–[5]. This presents a promising
avenue to converge vast volume of data to generate new knowledge and advance clinical
care and personalized treatment.

However, the effective use of this data requires the design and implementation of
algorithms and high performance systems [6]. Consequently, computational techniques
have been widely explored to answer biological questions. Accordingly, in this work,
we explore the analysis of mNGS data from a computational perspective, specifically to
diagnose diseases and make recommendations for precision medicine.

1.1. METAGENOMICS IS CRUCIAL FOR PRECISION MEDICINE
The affordability and flexibility of mNGS has led to an increased accessibility to micro-
biome profile information of each patient. Consequently, a paradigm shift has been ob-
served from one-size-fits-all treatments to approaches tailored to individual variation
and features, called precision medicine [7]–[9]. This is achieved by analyzing the host’s
microbial communities’ DNA, and finding mutations or alternations, called biomarkers,
to be targeted for treatment.

Recent years have presented several research works on the association of metage-
nomic data with health phenotypes [3], [10], [11]. These studies suggest that analysing
metagenomic data, such as human gut microbiome [12], can indicate the presence of
diseases such as type-2 diabetes [13], [14] and colorectal cancer [15], [16]. This moti-
vates the focus on metagenomic data analysis and biomarker mining for this work.

1
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1.2. REFERENCE-BASED METHODS INTRODUCE BIASES
One of the most common approaches for analyzing metagenomic data is metagenomic
profiling, which predicts the relative abundance of various microbes in the sample [17].
This is usually achieved by aligning the sequences in the sample to a reference database
[18] of virus, bacteria or archaea using tools like Kraken2 [19], and MetaPhlAn2 [20]. This
yields a set of microbes and their frequency relative abundance in the dataset. This fre-
quency distribution can then be used as input for prediction tasks such as linear regres-
sion and expectation maximization [21], and further explored through feature impor-
tance to find biomarkers. An overview of this process is shown in Figure 1.1.

While these methods have presented accurate results, using reference databases re-
stricts the information and biomarkers found to the sequences already known in the
domain [22]–[24]. This is because the genomic sequences identified are not limited to
the variants and diversity [25] in the reference database. In addition, reference genomes
can often be incomplete [26] or erroneous [27] due to low quality, leading to further chal-
lenges in identifying associated genes or microbes [24]. Another reference-based meth-
ods includes the high computational overhead of assembling reads to genomes [28], [29].

Alternatively, several works employ reference-free methods to generate new knowl-
edge without restricting the approach to a pre-existing database. This includes modeling
the frequency distribution using k-mers [30]–[32] and counting GC bias [32] for similar-
ity analysis.

However, GC biases often under-represent GC-poor organisms [33]. In practice, the
most commonly found reference-free encoding approach is frequency [34], [35]. This
usually involves computing and clustering the relative abundance of the reads or kmers.
The ease and efficiency of frequency encoding makes it a popular approach, and can be
made scalable using hashing [36]. Yet, while frequency is an efficient method, it reduces
the sequence to a single scalar value. This raises the question of whether an alternate
embedding approach can be proposed which is a better representation of the sequence.

1.3. DOC2VEC AS A PROPOSED REPRESENTATION FOR

METAGENOME EMBEDDING
Unlike data modalities such as gene expression and relative abundance, raw reads are
not in a numerical format. Hence, an encoding strategy is needed to represent characters
prior to any analysis.

Accordingly, natural language based approaches were of interest in this work. They
are scalable, as they have been developed for large corpus of data, and can often be run in
parallel, such as attention models [37]. Several research works have widely used natural
language based approaches to embed sequences into vectors which represent the data
based on the context they are observed in [38]–[42]. However, most of these methods
analyze transcribed [38], translated [39]–[41], or targeted data [32], [42], [43], and have
not been actively explored for unaligned raw reads in metagenomic samples.

In this work, we considered natural language to be analogous to biological datasets
by representing sequence reads as words and metagenomic samples as documents. This
analogy is closely represented by a word2vec [44] based method, called Doc2Vec [45].

Word2vec, which is a natural language method, and is widely applied to generate
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word embeddings. In the recent years, Word2vec has been frequently used to embed
omic sequences as well [46], [47]. Its proven efficiency in embedding omic data mo-
tivated the hypothesis to evaluate Doc2Vec for metagenome data to generate context-
based representations of reads and samples.

Thus, in this research work, we recognized that reference-free methods offer a vast
opportunity to explain uncultured data in the biosphere [48], but have been largely under-
developed. Currently, the most commonly used reference-free embedding in practice is
frequency encoding, which condenses a k-mer to its relative abundance. This presents
an avenue to develop more meaningful representations, such as context-based embed-
dings. This directed our research focus towards natural language based methods, specif-
ically Doc2Vec, due to its intuitive analogy and the proven efficiency of Word2vec. Fur-
ther, we overcame some bottlenecks of the original Doc2vec and Word2vec models, as
further discussed in Chapter 3.

1.4. RESEARCH QUESTIONS
With the goal to predict phenotypes and mine novel biomarkers based on metagenomic
data using Doc2vec, we proposed the following two research directions.

1. Is the predictive power of proposed representation comparable to reference-based
methods?
In this thesis, we proposed Doc2vec as a representation to metagenomic data. This
is based on the need for a better embedding than relative abundance, and the ob-
served efficiency of Word2vec. However, while Doc2vec presents a vast opportu-
nity to generate context-based embeddings and find biomarkers, the large number
of variables and features can make it challenging to optimize in practice. This is in
contrast to reference-based methods which analyze a small set of already discov-
ered data, and align it to a finite reference database. Accordingly, with this research
question, we explored the viability of the proposed representation for phenotype
prediction.

2. Can the sequences obtained by feature importance be interpreted as biomarkers?
As the goal of finding biomarkers is to propose them for targeted treatment, it is
crucial to first establish their reliability. We did this by comparing the proposed
markers with existing domain knowledge, where a significant overlap between the
two sets of biomarkers would bolster the credibility of the novel biomarkers found
in this work.



2
MATERIALS AND METHODS

This chapter delineates the steps and metrics we used to conduct the experiments. This
includes selection and analysis strategy for datasets, evaluation metrics, and reference
methods. This is followed by system details used to produce this work.

2.1. DATASET SELECTION METHODOLOGY
To assess the proposed representation, we searched the following archives to find public
shotgun metagenomic sequencing datasets.

1. National Center for Biotechnology Information (NCBI)1- We used the following
query to find appropriate datasets in the "BioProjects" database.

"raw sequence reads"[Project Data Type] AND "metagenome"[Project Data Type]

2. Human Microbiome Project (HMP)2- The query used in HMP is as follows.

Format IS FASTQ AND Node Type IS wgs_raw_seq_set

3. European Nucleotide Archive (ENA)3- We used ENA to download samples and
metadata of datasets found in NCBI and HMP. This information is available in the
“Generated FASTQ files: FTP” and “Sample Title” columns of TSV reports of the
bioprojects.

4. Apart from archives, we looked into research articles [49], [50] based on metage-
nomic raw data to find the datasets used by them.

1https://www.ncbi.nlm.nih.gov/: Accessed on 28 March 2023
2https://portal.hmpdacc.org/search: Accessed on 28 March 2023
3https://www.ebi.ac.uk/ena/browser/home: Accessed on 28 March 2023
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(a)

(b)

Figure 2.1: Number of datasets found in (a) NCBI and (b) HMP archives after applying each constraint.

Table 2.1: Details of colorectal cancer dataset (Bioproject accession ID - PRJEB7774) used to analyse the per-
formance of proposed representation

Study title Gut microbiome development along the colorectal adenoma-carcinoma sequence
Source Gut microbiota in stool
Diagnosis Colorectal cancer - healthy controls, advanced adenoma, carcinoma
Number of samples Total samples = 156
Year 2015 - 2016

Table 2.2: Details of type-2 diabetes dataset (Bioproject accession ID - PRJNA422434) used to analyse the per-
formance of proposed representation

Study title A metagenome-wide association study of gut microbiota in type 2 diabetes
Source Gut microbiota in stool
Diagnosis Type-2 diabetes - healthy controls, diabetes

Related measures- Body mass index, fasting blood glucose, fasting serum insulin, systolic
and diastolic blood pressure, triglyceride level, low and high density lipoprotein levels,
total cholesterol, and glycosylated hemoglobin level

Number of samples Total samples = 95
Year 2017 - 2022

We selected datasets with at least 100 samples to ensure that the machine learning
model had sufficient samples for training, validation, and testing. This number was cho-
sen arbitrarily. Datasets without phenotype information such as diagnosis, disease stage,
and health measurements in the metadata were discarded. As shown in Figure 2.1, no
datasets found in these archives fulfilled all the constraints.

Finally, we selected the following two datasets from research articles [50], [51].

1. Colorectal cancer (PRJEB7774) 4- As shown in Table 2.1, we used this dataset to
evaluate the performance of proposed representation in classifying patients to car-
cinoma, adenoma, and control labels.

2. Type-2 diabetes (PRJNA422434) 5- As shown in Table 2.2, we used type-2 diabetes
dataset for two tasks. The first was classification of samples into type-2 diabetes
and control labels. The second task was a set of regression problems to predict
several type-2 diabetes related measure, such as body mass index and triglyceride
levels.

4https://www.ebi.ac.uk/ena/browser/view/PRJEB7774: Accessed on 28 March 2023
5https://www.ebi.ac.uk/ena/browser/view/PRJNA422434: Accessed on 28 March 2023

https://www.ebi.ac.uk/ena/browser/view/PRJEB7774
https://www.ebi.ac.uk/ena/browser/view/PRJNA422434
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2.2. DATA PRE-PROCESSING
We analyzed the selected datasets using the below mentioned steps.

1. Quality control- We assessed each sample using FastQC v0.11.76. Samples which
failed in any category were discarded.

2. Assessing potential batch effect- Using Kraken2 v2.1.27, we generated vectors of
relative abundance at species rank for each samples. These vectors were then vi-
sualized using the first two components of TSNE from scikit-learn v1.2.2 in Python
v3.9.16. Following this, we applied K-means clustering using scikit-learn for three
clusters with ten random initializations. The trueness of the clusters obtained was
evaluated using Adjusted rand index and Adjusted mutual information index. If a
value close to 0 was obtained, we concluded that the dataset has no batch effects.

3. Rarefaction- To avoid sequencing depth bias, we truncated the number of reads in
each sample to the number of reads in the smallest sample in that dataset. Prior
to truncation, we shuffled the reads using Python’s inbuilt .shuffle() function in the
random library, with random seed set to zero.

4. Removing reads based on length- For a hyperparameter setting where k-mer length
is k, and window distance at each end is w, we discarded reads shorter than (2∗w)+
k from the sample.

5. Handling reads with missing bases- We discarded reads with "N" denoting un-
known nucleotide from the sample.

6. Choosing single-end reads- Only single-end reads were chosen for this work. This
was an arbitrary decision based on ease of use.

7. Balanced data- For classification problems, we balanced the datasets by discarding
randomly selected extra samples from each label.

2.3. EVALUATING THE GENERATED EMBEDDINGS
To evaluate and compare the performance of the embeddings obtained from the pro-
posed representation and a typical reference-based approach, we applied for several
classification and regression tasks.We analysed the results using the metrics discussed
below.

1. Evaluation metrics for classification- Classification models classify each object x
to a class i , where i ∈ {0,1, ...,C −1}, and C is the total number of classes or labels.
Based on the number of correctly and incorrectly classified samples, true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN) are com-
puted, as shown below.

6https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
7https://ccb.jhu.edu/software/kraken2/

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://ccb.jhu.edu/software/kraken2/
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[Pr edi cted Posi t i ve Pr edi cted Neg ati ve
Actual Posi t i ve T P F N

Actual Neg ati ve F P T N

]

These measures are combined to represent different aspects of the model perfor-
mance [52]. As shown in Table 2.3, we used accuracy, precision, recall, f1 score,
area under the curve, and confusion matrix to obtain a complete understanding
of the model performance.

Table 2.3: Evaluation metrics for classification

Metric Formula Evaluation focus

Accuracy

∑C−1
i=0

T Pi+T Ni
T Pi+T Ni+F Pi+F Ni

C
Overall efficiency of the classifier by
considering the number of correctly
classified samples

Precision
T P

T P +F P
Accuracy of positive class prediction

Recall
T P

T P +F N
Completeness of positive classes pre-
diction

F1 Score
2∗Pr eci si on ∗Recal l

Pr eci si on +Recal l
Combines precision and recall into a
single metric by taking their harmonic
mean

Area under the
curve

1

2

[
T P

T P +F N
+ T N

T N +F P

]
Aggregate measure of model’s per-
formance over various classification
thresholds, and represents the model’s
ability to avoid false classification

Confusion matrix

[
T P F N
F P T N

]
Gives information about how the
model is confusing one class for an-
other

2. Evaluation metrics for regression- For each input variable xi , where i ∈ {0, ..., N−1},
and N is the total number of samples, regression models predict a target value ŷi .
The difference between this predicted value ŷi and the ground truth yi reflects the
efficiency of the model. We measure this difference with mean squared error and
Pearson correlation coefficient between true and predicted data, as shown in Table
2.4.
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Table 2.4: Evaluation metrics for regression

Metric Formula Evaluation focus

Pearson correlation
coefficient

∑N−1
i=0 (xi −x)(yi − y)√∑N−1

i=0 (xi −x)2 ∑N−1
i=0 (yi − y)2

Here, x and y represent the mean of
the input data and the ground truth
respectively.

Measures the strength of as-
sociation between predicted
data and true data.

Mean squared error
1

N

N−1∑
i=0

(yi − ŷi ) Computes the average
squared distance between
the predicted and true data,
and penalizes large errors and
outliers

2.4. COSINE SIMILARITY TO FIND BIOMARKER K-MERS
Cosine similarity is a commonly used metric to measure distance in high-dimensional
space. We obtained biomarkers of each sample by finding the k-mers whose embed-
dings have the highest cosine similarity with their respective metagenomic sample em-
beddings. After training, we generated k-mer embeddings using the trained weights,
and computer their cosine similarity against the corresponding sample embedding, as
shown in the equation below for two embedding vectors A and B .

Cosine similarity Sc (A,B) = A.B

||A||.||B || =
∑N−1

i=0 Ai Bi√∑N−1
i=0 A2

i

√∑N−1
i=0 B 2

i

2.5. REFERENCE-BASED METHOD FOR COMPARISON
We explored several reference-based methods to find existing approaches and packages
for comparison with the proposed representation. Based on the limited resources avail-
able for this work, we imposed the following constraints.

1. Research articles- The source code should be available, executable without major
changes, and should finish running within 36 hours.

2. Tools and software- The setup should not take more than 36 hours and a maximum
of 500 GB memory.

Of the several methods found, as shown in Table 2.5, only Kraken2 [19] could be suc-
cessfully set up. Following this, we set up a typical reference-based approach, such as in
Figure 1.1, for comparison, as explained below.
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Table 2.5: Some reference-based methods explored for comparison with the proposed representation.

Method Description Constraints in set up

Kraken2 [19] Improves the memory constraint of
Kraken’s tree-based k-mer alignment
approach [53] by using 32-bit hash
cells to store key-value pairs

-

MetaPhlan2 [20] Uses clade-specific marker genes for
metagenome classification

Required more than 500 GB

Centrifuge [21] Applies Burrows-Wheeler transform
[54] and the Ferragina-Manzini index
[55] to classify metagenome into mi-
crobial species

Dependency issues with Linux
system while setting up Bowtie
[56]

CLARK [57] Generates hash tables to create sets of
discriminative k-mers for fast classifi-
cation of metagenomic reads

Took more than 36 hours to set
up the refence databases

MetaML [58] Uses metagenomic profiles from
MetaPhlan2 [20] as input of machine
learning classifiers for metagenome-
based prediction task

Needs MetaPhlan2 [20] to run,
which coult be setup due to
high memory requirements

Deep Microbes [59] Applies deep learning for genus iden-
tification and abundance estimation

Took longer than 36 hours to
set up the reference databases

1. Training Kraken2 output- We used the relative abundance of Kraken2’s taxonomic
profile at species rank as input to machine learning models.

2. Normal distribution- For regression, we created a normal distribution using the
mean and standard deviation of various features available in the metadata. Values
from this distribution were then sampled for each test instance to evaluate if the
performance of proposed representation was better than average value. This nor-
mal distribution was created using .random.normal() function of Python’s numpy
v1.23.4 package.

For classification, we trained logistic classifier with five-fold cross validation using
scikit-learn’s LogisticRegressionCV function. For regression, ridge regression with five-
fold cross-validation was applied using scikit-learn’s RidgeCV function. For all the ex-
periments, k-mer length was set to 31.

2.6. SYSTEM DETAILS
All experiments were run on Linux CentOS-7 inside Slurm v21.08.8-2 cluster. A require-
ments.txt file with a list of all Python packages and their versions used in this work is
available at https://github.com/AbeelLab.

https://github.com/AbeelLab


3
RESULTS AND DISCUSSIONS

This chapter discusses the architecture we proposed in this work to generate embed-
dings or representations for metagenomic data. It beings with an explanation of the pro-
posed approach, followed by its performance evaluation, a review of some limitations,
and discussions regarding the research questions posed in this work.

3.1. PROPOSED METHOD
Most of the commonly used approaches for raw read analysis rely on reference databases.
This restricts the possibility of finding novel markers, and can introduce errors if the
database is incomplete or inaccurate. On the other hand, current reference-free meth-
ods often lose a significant amount of information, such as in frequency embeddings.
Accordingly, a method which considers context information is required. In this work, we
proposed Doc2Vec [45], a popularly used natural language model, to learn meaningful
representations of metagenome samples.

A metagonome sample consists from hundreds of thousands to millions of omic
reads. To use Doc2vec in such a setting , we considered omic reads, such as “ACTCC-
GACCTGCT”, as a natural language sentence, like “how to analyze protein structure and
function for enzymes”, as shown in Figure 3.1. The key components of this approach
are explained below, followed by the details on input encoding and the final architecture
proposed in this work to generate representations.

3.1.1. KEY COMPONENTS
The key components of Doc2vec we used in this work are context, target, encoder, and
decoder, as delineated below.

1. Window size- We analysed reads (sentences) in a sliding window manner, by mov-
ing frames across the data in steps of one. The size of this window is user-defined,
and can be considered 5 for this example. It represents the maximum distance
between a central value and its neighborhood. Thus, for a window distance w on
each side, the total length of the window is N = 2w .

11
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(a) Doc2vec for natural language embedding (b) Doc2vec for metagenome embedding

Figure 3.1: (a) Architecture of Doc2vec model for an example phrase “analyze protein structure and function”.
Here, “analyze”, “protein”, “and”, and “function”, are context inputs to predict the embedding of the target word
“structure”. W and D represent weight matrices for words and documents respectively. (b) Architecture of
Doc2vec for metagenomic embedding for an example sequence “TCCGACCTG”. Here, “CGACC” is the target
k-mer, and “TCCGA”, “CCGAC”, “GACCT”, and “ACCTG” are its context k-mers.

2. Target- Within a window, the objective of doc2vec was to find k-mer (word) em-
beddings. Each window focuses on generating embedding of the k-mer (word)
present at its centre.

For example, target word in the window “analyze protein structure and function”
is “structure” as it is present at the centre. Similarly, in the window “TCCGACCTG”,
the target k-mer is “CGACC” for a user defined k-mer length of 5.

3. Context- Words surrounding the target word within a maximum window distance
form its context. For a window size of w , number of context words are N = 2w .

For example, context words for the window “analyze protein structure and func-
tion” are “analyze”, “protein”, “and”, and “function”. Similarly, context words for the
window “TCCGACCTG” are “TCCGA”, “CCGAC”, “GACCT”, and “ACCTG”.

4. Sample- We assigned a unique index i to each sample, where i ∈ {0,S −1}, and S is
the total number of metagenomic samples (documents) in the dataset.

5. Encoder- As the name suggests, the encoder encodes the input into an embedding.
Here, the input are the context words and sample representation.

6. Decoder- The decoder decodes the embedding generated by the encoder to out-
put the target word. Thus, Doc2vec in the proposed approach reads context and
sample information to generate embedding of the target word at the centre of the
window frame.

3.1.2. INPUT REPRESENTATION
Alike other reference-free methods, we k-merised our metagenomic samples. However,
as k-mers are in text format, they cannot be directly used as inputs. Accordingly, we
needed numerical representations of the k-mers and samples.

1. Sample- For a dataset with S samples, each sample was assigned a unique index
i , i ∈ {0,S −1}. Following this, each sample was represented by a one hot vector of
size 1×S, as done in the original algorithm of doc2vec.
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Figure 3.2: Encoding length with Doc2vec’s original approach increases exponentially. Modifying the input
representation to nucleotide level encoding in the proposed approach significantly reduced the number of
parameters.

2. k-mers- The original paper of doc2vec creates a vocabulary of all the words in the
dataset, containing a total of V words. Each word w is then assigned a unique
index i , i ∈ {0,V −1}. Following this, each word is represented by a one hot vector
of dimension 1×V . Most of the natural language documents have a vocabulary
size of 10,000 to 100,000. However, the number of possible k-mers is much higher
than this order. For example, a k-mer length of 11 leads to 47 ∼ 4.19×106 possible
k-mers. This work considered k-mers of length 31 as it is most commonly found
in literature [60]. This resulted in a potential vocabulary size of 47 ∼ 4.61× 1018.
A one hot encoding of this order is computationally impractical, and an alternate
approach was needed.

We addressed this bottleneck by changing the input representation of k-mers. In-
spired by Chen et al. [61], instead of assigning a unique vector to each k-mer, input
encoding was performed at nucleotide level, as shown below.

A - [1 0 0 0]
C - [0 1 0 0]
G - [0 0 1 0]
T - [0 0 0 1]

Thus, for a given target k-mer “CGACC”, the encoding is be given by

[ C G A C C
Input Encodi ng 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0

]
Consequently, for a k-mer of length k, the input representation length reduced
from 4k , to 4×k, as can be observed in Figure 3.2.

3.1.3. ARCHITECTURE
The dense neural network architecture has three transformation matrices. These are for
sample, context k-mers, and decoding, as explained below.
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Figure 3.3: Doc2vec architecture for proposed representation. W1, W2, and W3 represent sample encoding,
k-mer encoding, and decoding matrices respectively. D is the embedding length hyperparameter.

1. Sample embedding matrix W1- Each row in this matrix of dimension S ×D repre-
sents a unique sample Si , i ∈ {0,S −1}. This matrix is shared by all samples.

2. Context embedding matrix W2- The k-mers are mapped to an embedding of size
D . This matrix is shared by all k-mers irrespective of the sample they are obtained
from.

3. Decoding matrix W3- The embedding of size D is decoded to obtain the target k-
mer using a transformation matrix of size D ×4k.

4. Training- During training, reads from each sample are parsed in a sliding window
manner to obtain target and context k-mers. These make the input and ground
truth of the model. Along with context k-mers, sample encoding is used as in-
put. Thus in every instance, the sample embedding matrix is trained along with
the context k-mer matrix. Consequently, for multiple training instances of a given
sample, context k-mers change, but the sample encoding remains the same, thereby
acting as a memory.

3.2. COLORECTAL CANCER CLASSIFICATION
This section evaluates the proposed representation on various hyperparameter settings,
and tests its predictive power compared to Kraken2 on unseen data.

3.2.1. HYPERPARAMETERS
1. Performance oscillates as embedding length increases

Table 3.1 presents the performance of the proposed representation averaged over
100 randomly sampled validation sets. It can be seen that there is no clear trend
in the performance, such as a monotonous increase or decrease in the outcomes,
as embedding length increases. With an increase an embedding length, the model
has more parameters and flexibility to fit the input data. This would suggest that
increasing embedding length should improve performance, until a threshold be-
yond which the model will exhibit overfitting. Although training error suggests



3.2. COLORECTAL CANCER CLASSIFICATION

3

15

Table 3.1: Validation performance of proposed representation with different embedding lengths and one hid-
den layer for colorectal cancer classification. The embeddings were trained using five-fold cross-validation
logistic regression model. The reported results are an average and standard deviation of performance on 100
randomly sampled validation sets of size 30.

Embedding length Accuracy Precision Recall F1 Area under the curve Confusion Matrix

1 0.38±0.05 0.29±0.11 0.37±0.05 0.31±0.07 0.56±0.05

 5.71±2.14 3.21±2.10 1.08±2.12
3.60±1.88 4.76±2.41 1.64±2.64
4.41±2.07 4.61±2.50 0.98±2.23


5 0.32±0.07 0.32±0.10 0.32±0.07 0.30±0.08 0.49±0.05

 3.49±1.82 3.16±1.91 3.35±2.21
3.20±2.08 3.04±1.85 3.76±2.26
3.22±1.75 3.62±2.04 3.16±1.87


20 0.38±0.08 0.39±0.09 0.38±0.08 0.38±0.08 0.56±0.06

 3.89±1.44 3.72±3.72 2.39±2.39
3.65±3.65 3.07±3.07 3.28±3.28
2.23±2.23 3.20±3.20 4.57±4.57


100 0.35±0.08 0.35±0.09 0.35±0.08 0.34±0.08 0.53±0.06

 3.58±1.42 3.18±1.43 3.24±1.54
3.53±1.59 3.45±1.45 3.02±1.54
3.74±1.68 2.86±1.33 3.40±1.43


500 0.37±0.06 0.30±0.11 0.37±0.06 0.31±0.06 0.56±0.05

 5.99±1.69 2.92±1.87 1.09±1.62
3.83±1.87 4.29±2.33 1.88±2.60
4.81±1.75 4.28±2.32 0.91±1.60


1000 0.34±0.07 0.33±0.08 0.34±0.07 0.33±0.08 0.52±0.05

 3.76±1.50 3.10±1.50 3.14±1.60
3.14±1.41 3.61±1.46 3.25±1.38
3.50±1.51 3.65±1.48 2.85±1.45


1500 0.30±0.08 0.29±0.09 0.30±0.08 0.28±0.08 0.48±0.06

 1.93±1.93 3.52±3.52 4.55±4.55
3.45±3.45 4.37±4.37 2.18±2.18
4.06±4.06 3.32±3.32 2.62±2.62



(a) Performance of proposed representation on
training and validation set over different embed-
ding lengths

(b) Performance of proposed representation on
training and validation set over different number
of hidden layers

Figure 3.4: Training and validation performance of the proposed representation in colorectal cancer [50] clas-
sification for different hyperparameter settings.

overfitting, as evident in Figure 3.4a and Table A.3, no clear decline in validation
performance is observed. One possible reason could be that some embedding
lengths offer better data separability, leading to easier classification. Similarly,
some hyperparameter settings, such as an embedding length of 500, might have
low data separability, thereby resulting in a significant drop in model performance
on training set. However, this is difficult to verify as the high dimensional data
cannot be visualized, and the few existing methods on quantifying separability of
data classes do not have a publicly available source code [62].

An interesting observation is that embedding length of 1 appears to perform the
best. This suggests than an entire metagenome sample containing thousands of
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Figure 3.5: Embeddings of length 1 generated with proposed representation approach and one hidden layer
for colorectal cancer [50] classification. The decision boundaries were obtained in a one-versus-all approach
to classify carcinoma, adenoma, and control, represented as class 0, 1, and 2 respectively.

omic reads can be represented by one value. This is counter-intuitive, especially
as no clear distinction is visible between the embeddings, as shown in Figure 3.5.

2. Increasing model depth can lead to overfitting
To evaluate the effect of model depth, we introduced more hidden layers to the
architecture, as illustrated in Appendix A.7. The architecture is inspired from U-
Net model [63] to incrementally modify data dimension. Table 3.2 presents the
observed performance of the proposed representation with embedding length of
1000 for different number of hidden layers. A decline in the performance from
one hidden layer to five hidden layers is observed. This is likely due to overfitting
in the model as the number of parameters available to fit the input data has in-
creased [64]. This can be confirmed from Figure 3.4b and Table A.4, which present
the performance of the proposed approach on training data as well. The results
on training data clearly demonstrate that the model is overfitting as the number
of layers increases. However, this does not explain the improvement in perfor-
mance for the hyperparameter setting of seven hidden layers. Similar to embed-
ding length, a possible explanation could be that data separability increases for
certain hyperparameter settings.

3.2.2. PERFORMANCE ON TEST DATA
Based on the hyperparameter evaluations, we set embedding length and number of hid-
den layers to 1 to generate test results. The results obtained using proposed represen-
tation were compared with Kraken2 to classify colorectal cancer [50] into three classes,
namely carcinoma, adenoma, and control, with labels 0, 1, and 2 respectively.

Table 3.3 presents the performance of the proposed representation and Kraken2 rep-
resentation on unseen data. The results were averaged over 100 randomly sampled test
sets of size 18. We see no distinctive difference in performance between the two ap-
proaches, as also evident from Figure 3.6.

Although the accuracy, recall, and F1 scores of the proposed approach are higher
than Kraken2’s representation, the confusion matrix reveals that it does not classify any
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Table 3.2: Validation performance of proposed representation with different number of hidden layers and an
embedding length of 1000 for colorectal cancer classification. The embedding length is 1, and the represen-
tations were trained using five-fold cross-validation logistic regression model. The reported results are an
average and standard deviation of performance on 100 randomly sampled validation sets of size 30.

Number of hidden layers Accuracy Precision Recall F1 Area under the curve Confusion Matrix

1 0.34±0.10 0.34±0.10 0.34±0.10 0.33±0.10 0.52±0.07

 3.50±1.66 3.00±1.52 3.50±1.53
3.35±1.62 3.80±1.47 2.85±1.31
3.45±1.60 3.75±1.41 2.80±1.50


3 0.28±0.04 0.30±0.08 0.28±0.04 0.27±0.04 0.44±0.05

 2.85±1.46 4.45±1.80 2.70±1.85
3.20±1.60 2.15±1.31 4.65±1.82
2.25±1.18 4.35±1.46 3.40±1.50


5 0.27±0.07 0.27±0.11 0.27±0.08 0.25±0.08 0.43±0.06

 2.30±1.49 4.25±2.23 3.45±2.13
3.15±2.15 4.10±2.07 2.75±1.67
3.05±1.66 5.15±2.10 1.80±1.21


7 0.35±0.07 0.37±0.07 0.36±0.07 0.36±0.07 0.52±0.06

 3.00±1.61 4.55±1.96 2.45±1.36
4.00±1.48 3.45±1.94 2.55±1.20
1.95±1.16 3.55±1.88 4.50±1.40



Table 3.3: Test performance of proposed representation and a reference-based method colorectal cancer clas-
sification. Embedding length of the proposed representation is 1, and was trained using logistic regression
with five-fold cross validation. The reported results are an average and standard deviation of performance on
100 randomly sampled test sets of size 18.

Representation Accuracy Precision Recall F1 Area under the curve Confusion Matrix

Proposed representation with
embedding length = 1

0.42±0.05 0.29±0.04 0.42±0.05 0.33±0.04 0.51±0.05

 2.81±0.64 3.19±0.64 0.00±0.00
1.20±0.58 4.80±0.58 0.00±0.00
1.99±0.70 4.01±0.70 0.00±0.00


Kraken2 representation 0.26±0.06 0.26±0.06 0.26±0.06 0.25±0.06 0.52±0.05

 2.03±0.66 1.88±0.68 2.09±0.72
3.37±0.76 1.37±0.61 1.26±0.64
2.08±0.70 2.64±0.71 1.28±0.57



Table 3.4: Class-wise test performance of proposed representation on colorectal cancer classification. The
embedding length is one, and the representations were trained using logistic regression with five-fold cross
validation. The reported results are an average and standard deviation of performance on 100 randomly sam-
pled test sets of size 18.

Representation
Precision Recall F1

Class 0 Class 1 Class 2 Class 0 Class 1 Class 2 Class 0 Class 1 Class 2
Proposed representation with
embedding length = 1

0.44±0.11 0.38±0.04 0.00±0.00 0.44±0.13 0.76±0.09 0.00±0.00 0.44±0.11 0.51±0.05 0.00±0.00

Kraken2 representation 0.29±0.08 0.23±0.09 0.29±0.14 0.36±0.10 0.23±0.09 0.22±0.10 0.32±0.08 0.22±0.08 0.25±0.12

objects to label 2, which is the control class, as can be observed in Table 3.4 as well.
Thus, all samples are classified as cancerous. While we want every data to be classified
correctly, often some mis-classifications have a higher cost then others. For example,
mis-classifying a healthy patient as cancerous, exposes them to cancer treatment, which
can cause nausea and allergic reactions.

On the other hand, not providing treatment to a cancer patient mis-diagnosed as
healthy can be potentially fatal. Accordingly, the cost of mis-classification is application
dependent.
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(a) Proposed representation (b) Kraken2 representation

Figure 3.6: ROC curves for colorectal cancer classification using (a) proposed representation with embedding
length = 1 and (b) Kraken2 relative abundance representation.

3.3. TYPE-2 DIABETES CLASSIFICATION
This section evaluates the performance of proposed representation for type-2 diabetes
classification, and tests its predictive power compared to Kraken2 on unseen data.

3.3.1. HYPERPARAMETERS
1. Performance oscillates as embedding length increases

Table 3.5 presents the performance of the proposed representation averaged over
100 randomly sampled validation sets. The embeddings were used to train a logis-
tic classifier with five-fold cross validation. The pattern observed for type-2 dia-
betes is similar to the trend noticed for colorectal cancer dataset in Table 3.1. The
performance fluctuates as the embedding length increases, which could be be-
cause of a difference in data separability for different embedding lengths. On the
other hand, the training performance increases with embedding length, leading
to overfitting, as evident from Figure 3.7a and Table A.5. This is likely because of
an increase in the number of parameters in the model, leading to higher flexibil-
ity to overfit to the training data. Despite high overfitting for embedding length of
1000, it also has the highest area under the curve on validation set. This suggests
that while the model is overfitting, it is also learning relevant patterns which can
be generalized to new samples seen in the validation set.

2. Increasing model depth can lead to overfitting
Table 3.6 presents the performance of the proposed representation over varying
model depth. While no clear trend is observed for validation performance, ana-
lyzing Figure 3.7b and Table A.6 indicates overfitting as the model depth increases.
A performance drop for training data is observed for three hidden layers, which
could be due to decrease in data separability for that hyperparameter setting.
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Table 3.5: Validation performance of proposed representation over different embedding lengths and one hid-
den layer for type-2 diabetes classification. The representations were trained using logistic regression with
five-fold cross validation for one hidden layer. The reported results are an average and standard deviation of
performance on 100 randomly sampled validation sets of size 20.

Embedding length Accuracy Precision Recall F1 Area under the curve Confusion Matrix

1 0.47±0.09 0.43±0.18 0.47±0.09 0.40±0.09 0.41±0.07

[
5.65±3.62 4.35±3.62
6.30±2.99 3.70±2.99

]
5 0.44±0.10 0.42±0.14 0.44±0.10 0.41±0.10 0.42±0.12

[
4.79±2.42 5.21±2.42
6.07±2.31 3.93±2.31

]
20 0.49±0.10 0.49±0.12 0.49±0.10 0.47±0.10 0.47±0.10

[
4.23±1.84 5.77±1.84
4.42±2.17 5.58±2.17

]
100 0.57±0.08 0.46±0.11 0.47±0.08 0.45±0.09 0.47±0.09

[
5.46±1.92 4.54±1.91
6.00±2.13 4.00±2.13

]
500 0.47±0.08 0.46±0.09 0.47±0.08 0.45±0.08 0.46±0.09

[
5.00±1.67 5.00±1.67
5.66±1.80 4.34±1.80

]
1000 0.54±0.09 0.55±0.10 0.54±0.10 0.54±0.10 0.54±0.11

[
5.5±1.72 4.5±1.72

4.59±1.52 5.41±1.52

]
1500 0.50±0.10 0.49±0.12 0.50±0.10 0.47±0.10 0.51±0.11

[
4.18±1.96 5.82±1.96
4.27±2.09 5.73±2.09

]

Table 3.6: Validation performance of the proposed representation over different number of hidden layers and
an embedding length of 1000 for type-2 diabetes prediction. The representations were trained using ogistic
regression with five-fold cross validation. The reported results are an average and standard deviation of per-
formance on 100 randomly sampled validation sets of size 20.

Number of hidden layers Accuracy Precision Recall F1 Area under the curve Confusion Matrix

1 0.54±0.09 0.55±0.10 0.54±0.10 0.54±0.10 0.54±0.11

[
5.5±1.72 4.5±1.72

4.59±1.52 5.41±1.52

]
3 0.39±0.09 0.36±0.10 0.40±0.09 0.36±0.08 0.33±0.08

[
5.11±2.26 4.89±2.26
7.21±1.96 2.79±1.96

]
5 0.55±0.10 0.55±0.11 0.55±0.10 0.54±0.10 0.56±0.10

[
5.60±1.77 4.40±1.77
4.68±1.52 5.32±1.52

]
7 0.54±0.09 0.55±0.11 0.54±0.09 0.53±0.10 0.58±0.10

[
5.98±1.93 4.02±1.93
5.08±2.06 4.92±2.06

]

3.3.2. PERFORMANCE ON TEST DATA
Based on the hyperparameter evaluations, embedding length of 1000 along with one
hidden layer were used to generate the representations. These were then trained on a
logistic regression model with five-fold cross validation.

Table 3.7 presents the performance of the proposed representation on unseen data.
It can be seen that although embedding length of 1000 gave the highest validation per-
formance, its results are close to random for test dataset. On the other hand, embedding
length of one, which has the lowest validation result, performs noticeably well on unseen
data, as also shown in Figure 3.8. However, it classifies nearly all samples as control, and
collapses for diabetes classification, as also seen in Table 3.8. This can be deduced from
Figure 3.8a as well, where only one label in the entire test dataset is classified to diabetes
class, while the rest are classified as control. Consequently, the proposed representation
does not seem to be a good approach for type-2 diabetes classification.
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(a) Performance of proposed representation for different
embedding lengths

(b) Performance of proposed representation for different
number of hidden layers

Figure 3.7: Performance of proposed representation on type-2 diabetes dataset [51] for different hyperparam-
eter settings. The reported results are an average and standard deviation of performance on 100 randomly
sampled validation sets of size 20.

Table 3.7: Test performance of proposed representation on type-2 diabetes classification. The representations
were trained using logistic regression with five-fold cross validation. The reported results are an average and
standard deviation of performance on 100 randomly sampled test sets of size 10.

Representation Accuracy Precision Recall F1 Area under the curve Confusion Matrix

Proposed representation with
embedding length = 1

0.45±0.05 0.24±0.01 0.45±0.05 0.31±0.02 0.72±0.05

[
4.48±0.50 0.52±0.50
5.00±0.00 0.00±0.00

]

Proposed representation with
embedding length = 1000

0.46±0.12 0.45±0.13 0.46±0.12 0.45±0.13 0.50±0.15

[
1.98±0.86 3.02±0.86
2.39±0.81 2.61±0.81

]

Kraken2 representation 0.74±0.09 0.76±0.10 0.74±0.09 0.74±0.10 0.90±0.07

[
3.49±0.81 1.51±0.81
1.05±0.59 3.95±0.59

]

Table 3.8: Class-wise test performance of proposed representation with embedding length of one for type-2 di-
abetes classification. The representations were trained using logistic regression with five-fold cross validation.
The reported results are an average and standard deviation of performance on 100 randomly sampled test sets
of size 10.

Representation
Precision Recall F1

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1
Proposed representation with
embedding length = 1

0.48±0.03 0.00±0.00 0.91±0.10 0.00±0.00 0.62±0.05 0.00±0.00

Kraken2 representation 0.78±0.13 0.74±0.12 0.70±0.17 0.79±0.12 0.73±0.12 0.76±0.09
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(a) Proposed representation with embedding length = 1 (b) ROC of type-2 diabetes classification using proposed
representation of embedding length = 1

(c) ROC of type-2 diabetes classification using proposed
representation of embedding length = 1000

(d) ROC of type-2 diabetes classification using Kraken2
representation

Figure 3.8: (a) shows the distribution of proposed embeddings of length one. The line represents the decision
boundary for type-2 diabetes versus control classification. (b), (c), and (d) present the ROC curves for type-
2 diabetes classification using proposed representation of embedding length = 1 proposed representation of
embedding length = 1000, and Kraken2 relative abundance representation respectively
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3.4. TYPE-2 DIABETES METRIC REGRESSION
This section evaluates the performance of the proposed representation in predicting sev-
eral measures, namely body mass index, fasting blood glucose, fasting serum insulin,
systolic and diastolic blood pressure, triglyceride level, low and high density lipoprotein
levels, total cholesterol, and glycosylated hemoglobin level, which are known to be as-
sociated with type-2 diabetes. The dataset metadata included height, weight, age, and
gender information as well. However, we did not explore them for this work, as they are
not known to be closely associated with type-2 diabetes.

Based on the observations made in the hyperparameter evaluations thus far, we posited
that increasing model depth often leads to overfitting, especially as the input data is
sparse. Accordingly, all the results reported henceforth have been reported for a model
architecture with one hidden layer.

3.4.1. BODY MASS INDEX
Body mass index (BMI) is a commonly used indicator of body fat based on a patient’s
weight and height. Elevated BMIs, especially BMI > 30 suggest a high risk of developing
several health complications, including type-2 diabetes [65].

Table 3.9: Validation performance of proposed representation over different embedding lengths and one hid-
den layer for BMI prediction. The representations were trained using ridge regression with five-fold cross
validation for 100 randomly sampled validation sets of size 10.

Embedding length r2 Mean squared error Mean absolute error
1 0.07±0.08 14.76±2.42 3.55±0.26
5 0.04±0.05 14.78±0.29 3.55±0.03

20 0.04±0.05 14.83±3.04 3.50±0.32
100 0.04±0.04 5.03±1.94 1.77±0.28
500 0.05±0.07 4.80±1.52 1.74±0.21

1000 0.02±0.04 14.27±2.54 3.49±0.28
1500 0.04±0.07 14.61±2.80 3.53±0.31

Table 3.10: Test performance of proposed representation, reference-based method, and randomly sampled
values for BMI prediction. The representations were trained using ridge regression with five-fold cross valida-
tion for 100 randomly sampled validation sets of size 10.

Embedding length r2 Mean squared error Mean absolute error
Proposed representation with
embedding length = 100

0.09±0.10 13.60±2.15 3.50±0.28

Proposed representation with
embedding length = 500

0.06±0.08 22.02±2.97 4.48±0.31

Kraken2 representation 0.04±0.05 20.17±3.15 4.14±0.40

Randomly sampled values 0.12±0.15 2.69±1.23 1.31±0.32
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(a) True versus predicted values using proposed repre-
sentation with embedding length = 100

(b) True versus predicted values using proposed repre-
sentation with embedding length = 500

(c) True versus predicted values using Kraken2 represen-
tation

(d) True versus predicted values using randomly samples
values

Figure 3.9: Scatter plot of true versus predicted data of (a) proposed representation with embedding length of
one, (b) embedding length of 500, (c) Kraken2 representation, and (d) randomly samples values for Body Mass
Index prediction.

Table 3.9 presents the performance of the proposed model in predicting BMI based
on various embedding lengths. We see that the performance does not improve or decline
with embedding length, but oscillates similar to colorectal cancer and type-2 diabetes
classification. While embedding length of one has slightly higher r2 score, embedding
length of 500 has comparable r2 with lower average mean squared and mean absolute
errors, along with lower standard deviations. Accordingly, we evaluated the performance
of the proposed representation with embedding length of 500 for BMI prediction. This
performance was compared with Kraken2’s relative abundance representation and pre-
dictions sampled from normal distribution of BMI test data.

Table 3.10 presents the observed predictions on unseen test data. Randomly sam-
pled predictions have the best prediction power, with the closest fit based on r2 score,
and lower prediction errors. This can be further verified from Figure 3.9 which shows
the values predicted by each representation for various test values. It can be seen that
the dynamic range of the true data is around two units. Consequently, values randomly
sampled from a distribution centred around the mean of the data has a low error. For a
higher dynamic range, random predictions are unlikely to perform well. Predictions of
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(a) True and predicted values using proposed represen-
tation for training set

(b) True and predicted values using proposed represen-
tation for test set

Figure 3.10: Scatter plot of true and predicted values of proposed representation on training and validation
data for BMI prediction. The embedding length was set to 500, and the representations were trained using a
ridge regression model with five-fold cross validation. The reported results were averaged over 100 randomly
sampled test sets of size 10.

Table 3.11: Training and validation performance of proposed representation for BMI prediction with embed-
ding length of 500 and one hidden layer. The representations were trained using ridge regression with five-fold
cross validation on 100 randomly sampled test sets of size 10.

Embedding length r2 Mean squared error Mean absolute error
Training set 0.97±0.03 5.70±4.55 1.87±1.17

Validation set 0.05±0.06 14.52±2.64 3.46±0.29

the proposed representation and Kraken2’s relative abundance representation are far off
from the original values, and Kraken2 has only one value that fits closely in the range.
This suggests that these representations might be unable to identify the pattern in the
data, and might be unsuitable for BMI prediction.

Analysing the training and validation performance of the proposed method in Table
3.11 and Figure 3.10 reveals that the model is overfitting on training data. Similar pattern
was observed for colorectal cancer and type-2 diabetes classification, where increas-
ing embedding length led to overfitting. Accordingly, we analyzed the performance of
the proposed representation on embedding length 100, as it presented comparable per-
formance to embedding length 500. We found that embedding length of 100 is slightly
closer to the true data, but still has a high error, as can be observed in Figure 3.9a.

3.4.2. LOW-DENSITY LIPOPROTEIN LEVEL

Low-density lipoprotein levels (LDL) represent the level of unhealthy or bad cholesterol
in the body. High density of LDL, approximately > 5.6 mmol/L, has been frequently as-
sociated with health problems such as heart diseases and diabetes [66]. Similar to BMI,
we evaluated the performance of the proposed representation for different embedding
lengths, as shown in Table 3.12.
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We found embedding length of 20 to give a slightly higher r2 score, with comparable
mean squared and mean absolute errors. However, the standard deviation of r2 score is
also higher than other embedding lengths. Nevertheless, we evaluated the performance
of the proposed method with embedding length of 20 on unseen test data, and compared
the results with Kraken2 representation and random samples.

As shown in Table 3.13, Kraken2 representation has a slightly higher r2 score than
the proposed representation. However, it also has a higher mean squared and mean
absolute error with comparable standard deviations. Further, Figure 3.11 shows that
the performance of Kraken2 representation and randomly sampled values seem similar,
whereas the proposed representation does not show much variation, and has a very low
dynamic range. Consequently, the proposed representation does not seem to be a good
approach for low density lipoprotein level prediction.

Table 3.12: Validation performance of proposed representation over different embedding lengths and one hid-
den layer for low density lipo-protein level prediction. The representations were trained using ridge regression
with five-fold cross validation. The results were averaged over 100 randomly sampled test sets of size 10.

Embedding length r2 Mean squared error Mean absolute error
1 0.06±0.08 0.47±0.11 0.56±0.08
5 0.06±0.07 0.50±0.12 0.58±0.08

20 0.11±0.09 0.47±0.10 0.56±0.07
100 0.04±0.05 0.51±0.12 0.59±0.08
500 0.09±0.08 0.49±0.10 0.58±0.07

1000 0.04±0.05 0.48±0.10 0.57±0.07
1500 0.04±0.05 0.48±0.10 0.57±0.07

Table 3.13: Validation performance of proposed representation over different number of hidden layers and an
embedding length of one for low density lipo-protein level prediction. The representations were trained using
ridge regression with five-fold cross validation. The results were averaged over 100 randomly sampled test sets
of size 10.

Approach r2 Mean squared error Mean absolute error
Proposed representation 0.08±0.10 0.74±0.35 0.63±0.12
Kraken2 representation 0.11±0.11 0.84±0.26 0.74±0.12

Randomly sampled values 0.10±0.13 1.47±0.61 0.94±0.20

3.4.3. OTHER DIABETES-RELATED METRICS
Several other metrics, namely fasting blood glucose, fasting serum insulin, systolic and
diastolic blood pressure, triglyceride level, high density lipoprotein levels, total choles-
terol, and glycosylated hemoglobin level, were also analyzed to evaluate the performance
of the proposed representation. We performed hyperparameter evaluations for various
embedding lengths on each of these measures, as shown in Tables A.7-A.14. Based on
the results obtained, appropriate embeddings lengths were selected for each measure
for testing.
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(a) Proposed representation with em-
bedding length = 20

(b) Kraken2 representation (c) Randomly samples values

Figure 3.11: Scatter plot of true and predicted data of proposed representation with embedding length = 20,
Kraken2 representation, and randomly samples values for low density lipoprotein level prediction in mmol/L.

For example, for high density lipoprotein prediction, embedding length of 1000 has
the highest r2 score and slightly lower standard deviation. Hence, we selected this hyper-
parameter setting for testing. On the other hand, for triglyceride levels, the embeddings
were found to have comparable performances. In such cases, we selected the smaller
embedding length. Hence, embedding length of 1 was selected for triglyceride level
prediction. Similarly, prediction performance for blood glucose level and glycosylated
hemoglobin level was also evaluated with an embedding length of 1. Systolic and dias-
tolic blood pressures and fasting serum insulin levels were found to perform best with
embedding lengths of 5. On the other hand, total cholesterol was found to be best rep-
resented by embedding length of 500.

As can be seen from Tables A.15-A.22 and Figures A.2-A.9, none of the representa-
tions, including the proposed approach, Kraken2 relative abundance, and random sam-
pling, were found to be adequate for this analysis. It can be seen from the Figures that
the proposed representation has nearly zero dynamic range, indicating that the model
is predicting a constant value for all unseen samples. This suggests the inability of the
proposed representation to generalize to unseen data.

3.5. EMBEDDING WEIGHTS DO NOT GENERALIZE TO NEW SAM-
PLES

To obtain embeddings of new samples, the original Doc2vec architecture freezes word
transformation matrix W2 and decoder matrix W3, and updates only the sample embed-
ding matrix W1. This is achieved by assigning the new sample an index S+1, and adding
a row to the transformation matrix W1 pre-trained on S samples. Accordingly, gradient
descent is performed only on the sample transformation matrix to generate sample em-
beddings.

In our analysis of this approach from Doc2vec’s original paper, we found the model
loss to not decline or converge. Hence, we concluded this approach to be unfit for our
application. In this work, every new sample was first added to the existing data, followed
by re-training the model on the updated dataset. This approach has been used for all
other experiments reported in this document.
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3.6. COSINE SIMILARITY CANNOT BE USED TO FIND BIOMARK-
ERS

Doc2vec suggests that information with similar context should have high cosine simi-
larities [45]. Hence, we computed the cosine distance of k-mer embeddings and sample
embeddings to find k-mers with the highest contribution towards sample representa-
tion. Such k-mers would then be posited as potential biomarkers for further analysis.

However, in the experiments, we found that nearly all k-mers had a cosine similarity
of 1.0 with the corresponding sample embeddings. This could mean that every k-mer
used for training is an important biomarker. However, a more plausible reasoning could
be that finding biomarkers based on cosine similarity is not a suitable approach for this
application.

3.7. REVISITING RESEARCH QUESTIONS
In this section, we answer the research questions put forth in Chapter 1 based on the
discussions and observations made in this work.

1. Is the predictive power of proposed representation comparable to reference-based
methods?
For colorectal cancer dataset, we found that neither of the representations per-
formed well in the classification task. On the other hand, while the proposed rep-
resentation had a high area under the curve performance for type-2 diabetes, per-
formance of reference-based method was better. Further, the proposed represen-
tation classified all the samples into one class, rendering it less useful in practical
applications.

For regression tasks, we observed that while the proposed representation showed
a quantitatively comparable performance with reference-based method on valida-
tion set, its test set predictions were the same for all samples and had nearly zero
standard deviation. This suggests that the model is strongly overfitting, as was ob-
served for hyperparameter settings with higher embedding lengths and number of
hidden layers for colorectal cancer dataset as well. Accordingly, modifications to
address overfitting can be explored.

One approach is to introduce regularization in the classification model. Alterna-
tively, one of the reasons for overfitting could be the high sparsity in the input data.
This can be address by introducing some noise in the input, such as by accounting
for the Illumina error rate at nucleotide level [67]. Further, not all possible hyper-
parameter combinations were tested in this work. We introduced randomness in
one aspect of the model at a time, specifically embedding length and model depth.
As increasing these factors leads to overfitting, it is expected that increasing both
factors is likely to cause overfitting as well. However, in the interest of time, these
experiment was not performed, and can be explored in the future.
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2. Can the sequences obtained by feature importance be interpreted as biomarkers?
For type-2 diabetes classification task, we used cosine similarity between k-mer
and sample embeddings to find potential biomarkers. However, we found all k-
mers to present a similarity of 1.0. Accordingly, we could not conclude if these k-
mers can be interpreted as biomarkers, as it would be impractical to individually
analyse all of them. Hence, it is unclear if the seqeunces can be interpreted as
biomarkers. However, it can be concluded that cosine similarity is not a suitable
approach to find biomarkers in the current setting.



4
CONCLUSIONS

The past two decades have witnessed an increased access to millions of reads generated
by metagenomic next generation sequencing techniques. This has opened horizons for
precision medicine and disease diagnosis. With an aim to efficiently analyze vast volume
of data, we proposed a Doc2vec-based method as a reference-free approach to represent
these metagenome samples.

We addressed the bottleneck of Doc2vec which limits existing Word2vec-based omic
embedding techniques from analyzing long k-mers. This was done by performing nucleotide-
level encoding instead of k-mer level. We tested the proposed representation for classi-
fication of colorectal cancer and type-2 diabetes, and regression on several type-2 dia-
betes related measures. For colorectal cancer, neither the proposed representation nor
the reference-based approach performed well, suggesting that the dataset might be un-
suitable for metagenome study. On the other hand, for type-2 diabetes, reference-based
method outperformed the proposed representation. Further, we observed that the pro-
posed approach collapsed for some classes in each dataset, indicating the need for fur-
ther modifications and improvements. Similar conclusions were drawn for regression
tasks, where the proposed representation failed to generalize for unseen samples.

Evaluating cosine similarity between k-mer and sample embeddings revealed a high
cosine similarity of 1.0 in all comparisons. This indicates that cosine similarity is not a
fit approach to find biomarkers in the current settings.

One of the limitations of the proposed representation is that the trained weights can-
not be directly used to generate new embeddings. Instead, the model needs to be re-
trained on the updated dataset containing the new sample.

Accordingly, several modifications can be made in the proposed representation. These
include addressing overfitting with regularization and noise, exploring alternate approaches
for biomarker discovery, and modifying the architecture for proposed representation
such that the trained weights can be directly used to compute new embeddings. These
recommendations can be addressed in future experiments.
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A.1. BATCH EFFECTS

(a) First two components of TSNE on colorectal cancer
dataset

(b) K-means clustering on TSNE components of colorec-
tal cancer data

(c) First two components of TSNE on type-2 diabetes
dataset

(d) K-means clustering on TSNE components of type-2
diabetes data

Figure A.1: Batch effect analysis on colorectal cancer [50] and type-2 diabetes datasets [51]

Table A.1: Analysis of cluster trueness versus randomness to find batch effects.

Dataset Adjusted rand index Adjusted mutual information index
Colorectal cancer [50] -0.0020 -0.0021
Type-2 diabetes [51] -0.0095 -0.0097
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Table A.2: Analysis to find taxonomy rank with most number of features for K-mer length of 31.

Dataset Species Genus Family Order Class Phylum Kingdom Domain
Colorectal cancer [50] 5285 1464 422 190 86 45 1 4
Type-2 diabetes [51] 5779 1569 440 197 88 48 3 4

A.3. COLORECTAL CANCER CLASSIFICATION HYPERPARAMETERS

Table A.3: Training data performance of proposed representation over different embedding lengths and one
hidden layer for colorectal cancer classification. The representations were trained using logistic regression
with five-fold cross-validation. The reported results are an average and standard deviation of performance in
100 randomly sampled validation sets of size 81.

Embedding length Accuracy Precision Recall F1 Area under the curve Confusion Matrix

1 0.40±0.03 0.33±0.08 0.40±0.03 0.33±0.05 0.58±0.04

 17.75±2.93 6.85±3.98 2.40±3.09
11.40±4.93 11.95±6.34 3.65±4.34
13.90±4.13 10.20±5.93 2.90±5.04


5 0.80±0.27 0.75±0.36 0.80±0.27 0.75±0.34 0.93±0.10

 23.14±11.13 3.65±9.29 3.54±7.54
2.32±7.58 25.04±10.28 3.00±7.57
2.58±7.55 3.49±9.34 24.24±11.43


20 0.65±0.05 0.65±0.05 0.65±0.05 0.65±0.05 0.84±0.03

 18.80±2.16 5.15±1.56 3.05±1.36
6.15±1.49 15.45±2.18 5.40±1.32
3.05±1.16 5.15±1.62 18.80±1.69


100 0.96±0.06 0.97±0.05 0.96±0.06 0.96±0.06 0.99±0.02

 25.05±3.34 0.85±1.49 1.10±2.07
0.15±0.36 26.50±0.92 0.35±0.73
0.10±0.30 0.50±0.92 26.40±1.02


500 0.40±0.03 0.33±0.08 0.40±0.03 0.33±0.05 0.58±0.04

 17.75±2.93 6.85±3.98 2.40±3.09
11.40±4.93 11.95±6.34 3.65±4.34
13.90±4.14 10.20±5.93 2.90±5.04


1000 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

 27.00±0.00 0.00±0.00 0.00±0.00
0.00±0.00 27.00±0.00 0.00±0.00
0.00±0.00 0.00±0.00 27.00±0.00


1500 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

 27.00±0.00 0.00±0.00 0.00±0.00
0.00±0.00 27.00±0.00 0.00±0.00
0.00±0.00 0.00±0.00 27.00±0.00



Table A.4: Training data performance of proposed representation over different number of hidden layers and
an embedding length of 1000 for colorectal cancer classification. The representations were trained using lo-
gistic regression with five-fold cross-validation. The reported results are an average and standard deviation of
performance in 100 randomly sampled validation sets of size 81.

Number of hidden layers Accuracy Precision Recall F1 Area under the curve Confusion Matrix

1 0.65±0.05 0.65±0.05 0.65±0.05 0.65±0.05 0.84±0.03

 18.80±2.16 5.15±1.56 3.05±1.36
6.15±1.49 15.45±2.18 5.40±1.32
3.05±1.16 5.15±1.62 18.80±1.69


3 0.77±0.03 0.78±0.03 0.77±0.03 0.77±0.03 0.90±0.01

 21.34±1.64 3.08±1.45 2.58±1.02
3.28±1.18 21.54±1.59 2.18±1.12
3.94±1.49 3.58±1.74 19.48±1.82


5 0.92±0.02 0.92±0.02 0.92±0.02 0.92±0.02 0.98±0.01

 25.36±1.11 0.84±0.78 0.80±0.80
1.74±0.82 24.22±1.15 1.04±0.80
0.92±0.93 1.08±0.52 25.00±1.11


7 0.94±0.02 0.94±0.02 0.94±0.02 0.94±0.02 0.98±0.01

 25.42±1.15 0.86±0.92 0.72±0.72
1.08±0.87 25.12±1.18 0.80±0.92
0.84±0.81 0.80±0.69 25.36±0.95
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A.4. TYPE-2 DIABETES CLASSIFICATION HYPERPARAMETERS

Table A.5: Training data performance of proposed representation over different embedding lengths and one
hidden layer for type-2 diabetes classification. The representations were trained using logistic regression with
five-fold cross-validation. The reported results were averaged over 100 randomly sampled validation sets of
size 42.

Embedding length Accuracy Precision Recall F1 Area under the curve Confusion Matrix

1 0.55±0.05 0.53±0.16 0.55±0.05 0.50±0.10 0.54±0.03

[
13.45±6.95 7.55±6.95
11.24±5.94 9.76±5.94

]
5 0.60±0.06 0.60±0.10 0.60±0.06 0.58±0.09 0.66±0.05

[
13.47±4.13 7.53±4.13
9.22±4.36 11.78±4.36

]
20 0.79±0.09 0.81±0.07 0.79±0.09 0.79±0.10 0.88±0.06

[
15.36±3.78 5.64±3.78
3.06±1.82 17.94±1.82

]
100 0.95±0.06 0.95±0.05 0.95±0.06 0.95±0.06 0.99±0.01

[
20.21±1.43 0.79±1.43
1.44±2.23 19.56±2.23

]
500 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

[
21.00±0.00 0.00±0.00
0.00±0.00 21.00±0.00

]
1000 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

[
21.00±0.00 0.00±0.00
0.00±0.00 21.00±0.00

]
1500 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

[
21.00±0.00 0.00±0.00
0.00±0.00 21.00±0.00

]

Table A.6: Training data performance of proposed representation over different number of hidden layers and
an embedding length of 1000 for type-2 diabetes classification. The representations were trained using logistic
regression with five-fold cross-validation. The reported results were averaged over 100 randomly sampled
validation sets of size 42.

Number of hidden layers Accuracy Precision Recall F1 Area under the curve Confusion Matrix

1 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

[
21.00±0.00 0.00±0.00
0.00±0.00 21.00±0.00

]
3 0.87±0.13 0.90±0.09 0.87±0.13 0.86±0.15 0.97±0.03

[
19.89±1.57 1.11±1.57
4.30±5.43 16.70±5.43

]
5 0.97±0.04 0.97±0.04 0.97±0.04 0.97±0.04 1.00±0.00

[
20.76±0.85 0.24±0.85
1.07±1.67 19.93±1.67

]
7 0.98±0.06 0.98±0.04 0.98±0.06 0.98±0.07 1.00±0.00

[
20.88±0.35 0.12±0.35
0.79±2.44 20.21±2.44

]
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Table A.7: Validation performance of proposed representation over different embedding lengths for high den-
sity lipoprotein level prediction. The representations were trained using ridge regression with five-fold cross-
validation. The reported results were averaged over 100 randomly sampled validation sets of size 20.

Embedding length r2 Mean squared error Mean absolute error
1 0.06±0.07 0.04±0.01 0.16±0.02
5 0.04±0.06 0.05±0.01 0.16±0.02

20 0.05±0.07 0.05±0.02 0.16±0.03
100 0.03±0.04 0.40±0.12 0.51±0.07
500 0.07±0.08 0.04±0.01 0.16±0.02

1000 0.10±0.05 0.05±0.01 0.57±0.07
1500 0.07±0.08 0.04±0.01 0.16±0.02

Table A.8: Validation performance of proposed representation over different embedding lengths for triglyc-
eride level prediction. The representations were trained using ridge regression with five-fold cross-validation.
The reported results were averaged over 100 randomly sampled validation sets of size 20.

Embedding length r2 Mean squared error Mean absolute error
1 0.07±0.08 0.66±0.28 0.58±0.09
5 0.06±0.07 0.69±0.33 0.59±0.10

20 0.07±0.08 0.64±0.30 0.58±0.10
100 0.05±0.06 0.63±0.28 0.58±0.09
500 0.04±0.05 0.64±0.31 0.58±0.10

1000 0.07±0.08 0.63±0.28 0.58±0.09
1500 0.05±0.06 0.70±0.31 0.59±0.09
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Table A.9: Validation performance of proposed representation over different embedding lengths for fasting
blood glucose level prediction. The representations were trained using ridge regression with five-fold cross-
validation. The reported results were averaged over 100 randomly sampled validation sets of size 20

Embedding length r2 Mean squared error Mean absolute error
1 0.07±0.08 4.77±1.61 1.73±0.22
5 0.03±0.04 4.94±1.53 1.76±0.22

20 0.03±0.04 5.07±1.56 1.78±0.21
100 0.06±0.06 4.44±1.38 1.69±0.21
500 0.02±0.04 5.25±1.50 1.81±0.21

1000 0.07±0.08 4.74±1.59 1.74±0.22
1500 0.03±0.05 5.06±1.50 1.76±0.22

Table A.10: Validation performance of proposed representation over different embedding lengths for systolic
blood pressure level prediction. The representations were trained using ridge regression with five-fold cross-
validation. The reported results were averaged over 100 randomly sampled validation sets of size 20

Embedding length r2 Mean squared error Mean absolute error
1 0.05±0.07 195.608±45.56 11.46±1.45
5 0.11±0.09 190.00±45.98 11.25±1.41

20 0.03±0.04 197.89±49.12 11.40±1.46
100 0.06±0.06 200.19±52.30 11.52±1.60
500 0.03±0.04 206.15±53.87 11.72±1.72

1000 0.40±0.06 204.41±46.80 11.59±1.49
1500 0.08±0.08 185.97±43.82 11.08±1.46

Table A.11: Validation performance of proposed representation over different embedding lengths for diastolic
blood pressure level prediction. The representations were trained using ridge regression with five-fold cross-
validation. The reported results were averaged over 100 randomly sampled validation sets of size 20

Embedding length r2 Mean squared error Mean absolute error
1 0.07±0.08 84.16±23.79 7.47±1.00
5 0.09±0.10 83.12±21.46 7.43±0.85

20 0.02±0.03 82.38±23.18 7.45±0.96
100 0.08±0.08 85.52±24.32 7.43±1.09
500 0.04±0.06 80.16±22.17 7.36±0.92

1000 0.04±0.05 86.65±23.35 7.60±1.02
1500 0.05±0.07 86.02±25.74 7.58±1.08
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Table A.12: Validation performance of proposed representation over different embedding lengths for fasting
serum insulin level prediction. The representations were trained using ridge regression with five-fold cross-
validation. The reported results were averaged over 100 randomly sampled validation sets of size 20

Embedding length r2 Mean squared error Mean absolute error
1 0.04±0.06 33.18±11.31 4.46±0.76
5 0.14±0.10 30.92±8.82 4.48±0.63

20 0.03±0.04 35.98±10.14 4.66±0.71
100 0.09±0.09 34.34±11.01 4.53±0.78
500 0.10±0.10 33.05±10.25 4.50±0.75

1000 0.04±0.05 86.65±23.35 7.60±1.02
1500 0.02±0.03 34.57±8.61 4.54±0.59

Table A.13: Validation performance of proposed representation over different embedding lengths for glyco-
sylated hemoglobin level prediction. The representations were trained using ridge regression with five-fold
cross-validation. The reported results were averaged over 100 randomly sampled validation sets of size 20

Embedding length r2 Mean squared error Mean absolute error
1 0.04±0.05 4.37±1.42 1.69±0.19
5 0.03±0.05 4.12±1.24 1.68±0.18

20 0.03±0.05 4.12±1.27 1.66±0.19
100 0.04±0.04 4.39±1.44 1.69±0.20
500 0.03±0.04 4.15±1.19 1.69±0.19

1000 0.03±0.04 4.27±1.32 1.69±0.19
1500 0.04±0.05 4.05±1.22 1.64±0.17

Table A.14: Validation performance of proposed representation over different embedding lengths for total
cholesterol level prediction. The representations were trained using ridge regression with five-fold cross-
validation. The reported results were averaged over 100 randomly sampled validation sets of size 20

Embedding length r2 Mean squared error Mean absolute error
1 0.04±0.04 0.39±0.11 0.50±0.07
5 0.06±0.06 0.04±0.12 0.50±0.07

20 0.05±0.07 0.40±0.12 0.50±0.08
100 0.03±0.04 0.40±0.12 0.51±0.07
500 0.07±0.07 0.39±0.11 0.51±0.07

1000 0.04±0.05 0.40±0.13 0.50±0.08
1500 0.04±0.05 0.42±0.14 0.51±0.08
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A.6. TYPE-2 DIABETES REGRESSION PERFORMANCE ON TEST DATA

Table A.15: Test performance for high density lipoprotein level prediction. The representations were trained
using ridge regression with five-fold cross-validation. The reported results were averaged over 100 randomly
sampled test sets of size 10.

Approach r2 Mean squared error Mean absolute error
Proposed representation with
embedding length = 1000

0.12±0.15 0.03±0.01 0.14±0.03

Kraken2 representation 0.16±0.15 0.03±0.01 0.15±0.03
Randomly sampled values 0.10±0.12 0.07±0.03 0.21±0.05

Table A.16: Test performance for triglyceride level prediction. The representations were trained using ridge
regression with five-fold cross-validation. The reported results were averaged over 100 randomly sampled test
sets of size 10.

Approach r2 Mean squared error Mean absolute error
Proposed representation with
embedding length = 1

0.13±0.12 0.85±0.28 0.71±0.13

Kraken2 representation 0.06±0.07 0.90±0.24 0.77±0.12
Randomly sampled values 0.12±0.14 1.51±0.67 0.96±0.24

Table A.17: Test performance for fasting blood glucose level prediction. The representations were trained using
ridge regression with five-fold cross-validation. The reported results were averaged over 100 randomly sam-
pled test sets of size 10.

Approach r2 Mean squared error Mean absolute error
Proposed representation with
embedding length = 1

0.04±0.07 10.64±3.85 2.60±0.41

Kraken2 representation 0.15±0.14 10.49±3.81 2.40±0.46
Randomly sampled values 0.16±0.16 20.21±9.57 3.53±0.87
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Table A.18: Test performance for systolic blood pressure level prediction. The representations were trained
using ridge regression with five-fold cross-validation. The reported results were averaged over 100 randomly
sampled test sets of size 10.

Approach r2 Mean squared error Mean absolute error
Proposed representation with
embedding length = 5

0.13±0.10 125.57±34.71 9.42±1.32

Kraken2 representation 0.10±0.08 210.96±58.17 11.60±1.92
Randomly sampled values 0.10±0.11 265.77±101.15 13.10±2.96

Table A.19: Test performance for diastolic blood pressure level prediction. The representations were trained
using ridge regression with five-fold cross-validation. The reported results were averaged over 100 randomly
sampled test sets of size 10.

Approach r2 Mean squared error Mean absolute error
Proposed representation with
embedding length = 5

0.10±0.12 59.04±14.93 6.62±0.96

Kraken2 representation 0.05±0.07 86.62±26.03 7.27±1.29
Randomly sampled values 0.10±0.12 114.62±44.55 8.74±1.87

Table A.20: Test performance for fasting serum insulin level prediction. The representations were trained using
ridge regression with five-fold cross-validation. The reported results were averaged over 100 randomly sam-
pled test sets of size 10.

Approach r2 Mean squared error Mean absolute error
Proposed representation with
embedding length = 5

0.16±0.15 84.39±26.32 7.55±1.02

Kraken2 representation 0.09±0.10 78.70±13.92 7.85±0.76
Randomly sampled values 0.11±0.15 165.42±76.93 10.28±2.42

Table A.21: Test performance for glycosylated hemoglobin level prediction. The representations were trained
using ridge regression with five-fold cross-validation. The reported results were averaged over 100 randomly
sampled test sets of size 10.

Approach r2 Mean squared error Mean absolute error
Proposed representation with
embedding length = 1

0.07±0.08 5.45±1.14 2.08±0.25

Kraken2 representation 0.17±0.16 5.38±1.36 1.87±0.30
Randomly sampled values 0.12±0.15 10.28±4.13 2.59±0.57

Table A.22: Test performance for total cholesterol level prediction. The representations were trained using
ridge regression with five-fold cross-validation. The reported results were averaged over 100 randomly sam-
pled test sets of size 10.

Approach r2 Mean squared error Mean absolute error
Proposed representation with
embedding length = 500

0.08±0.08 0.95±0.55 0.63±0.17

Kraken2 representation 0.10±0.10 0.94±0.48 0.65±0.17
Randomly sampled values 0.11±0.13 1.47±0.68 0.94±0.22
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(a) Proposed representation for embed-
ding length = 5

(b) Kraken2 representation (c) Randomly sampled values

Figure A.2: Scatter plot of true and predicted values for systolic blood pressure prediction

(a) Proposed representation for embed-
ding length = 5

(b) Kraken2 representation (c) Randomly sampled values

Figure A.3: Scatter plot of true and predicted values for diastolic blood pressure prediction

(a) Proposed representation for embed-
ding length = 5

(b) Kraken2 representation (c) Randomly sampled values

Figure A.4: Scatter plot of true and predicted values for fasting serum insulin level prediction
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(a) Proposed representation for embed-
ding length = 1000

(b) Kraken2 representation (c) Randomly sampled values

Figure A.5: Scatter plot of true and predicted values for high density lipoprotein level prediction

(a) Proposed representation for embed-
ding length = 1

(b) Kraken2 representation (c) Randomly sampled values

Figure A.6: Scatter plot of true and predicted values for triglyceride level prediction

(a) Proposed representation for embed-
ding length = 500

(b) Kraken2 representation (c) Randomly sampled values

Figure A.7: Scatter plot of true and predicted values for total cholesterol level prediction
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(a) Proposed representation for embed-
ding length = 1

(b) Kraken2 representation (c) Randomly sampled values

Figure A.8: Scatter plot of true and predicted values for total glycosylated hemoglobin level prediction

(a) Proposed representation for embed-
ding length = 1

(b) Kraken2 representation (c) Randomly sampled values

Figure A.9: Scatter plot of true and predicted values for fasting blood glucose level prediction
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A.7. HIDDEN LAYER ARCHITECTURE

This section includes the architecture used to increase the model depth. The architec-
ture below is shown for colorectal cancer dataset with 138 samples, and for an embed-
ding length of 1000. However, the same model was used for type-2 diabetes dataset with
95 samples.

1. Three hidden layers

Autoencoder(
(encoder): Encoder(

(linear_sample_1): Linear(in_features=138,
out_features=64, bias=True)
(linear_sample_2): Linear(in_features=64, out_features=1000,
bias=True)

(linear_context_1): Linear(in_features=124, out_features=512,
bias=True)
(linear_context_2): Linear(in_features=512, out_features=1000,
bias=True)

(relu): ReLU()
)

(decoder): Decoder(
(linear_1): Linear(in_features=embedding length, out_features=64,
bias=True)
(linear_2): Linear(in_features=64, out_features=124, bias=True)

(tanh): Tanh()
(relu): ReLU()
(sigmoid): Sigmoid()

)
)
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2. Five hidden layers

Autoencoder(
(encoder): Encoder(

(linear_sample_1): Linear(in_features=138, out_features=128,
bias=True)
(linear_sample_2): Linear(in_features=128, out_features=64,
bias=True)
(linear_sample_3): Linear(in_features=64, out_features=1000,
bias=True)

(linear_context_1): Linear(in_features=124, out_features=512,
bias=True)
(linear_context_2): Linear(in_features=512, out_features=128,
bias=True)
(linear_context_3): Linear(in_features=128, out_features=1000,
bias=True)

(relu): ReLU()
)
(decoder): Decoder(

(linear_1): Linear(in_features=1000, out_features=64, bias=True)
(linear_2): Linear(in_features=64, out_features=100, bias=True)
(linear_3): Linear(in_features=100, out_features=124, bias=True)

(tanh): Tanh()
(relu): ReLU()
(sigmoid): Sigmoid()

)
)
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3. Seven hidden layers

Autoencoder(
(encoder): Encoder(

(linear_sample_1): Linear(in_features=138, out_features=128,
bias=True)
(linear_sample_2): Linear(in_features=128, out_features=64,
bias=True)
(linear_sample_3): Linear(in_features=64, out_features=48,
bias=True)
(linear_sample_4): Linear(in_features=48, out_features=1000,
bias=True)

(linear_context_1): Linear(in_features=124, out_features=512,
bias=True)
(linear_context_2): Linear(in_features=512, out_features=256,
bias=True)
(linear_context_3): Linear(in_features=256, out_features=64,
bias=True)
(linear_context_4): Linear(in_features=64, out_features=1000,
bias=True)

(relu): ReLU()
)
(decoder): Decoder(

(linear_1): Linear(in_features=1000, out_features=64,
bias=True)
(linear_2): Linear(in_features=64, out_features=80,
bias=True)
(linear_3): Linear(in_features=80, out_features=100,
bias=True)
(linear_4): Linear(in_features=100, out_features=124,
bias=True)

(tanh): Tanh()
(relu): ReLU()
(sigmoid): Sigmoid()

)
)
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