

Conflict Prioritization with Multi-Agent Deep
Reinforcement Learning

D.J.G. Cuppen (MSc Student)
Supervisors: Dr. Ir. J. Ellerbroek, Prof. Dr Ir. J.M. Hoekstra and MSc M.J. Ribeiro

Section Control & Simulation, Department Control and Operations, Faculty Aerospace Engineering
Delft University of Technology, Delft, The Netherlands

Abstract—To facilitate an increase in air traffic volume and
to allow for more flexibility in the flight paths of aircraft, an
abundance of decentralized conflict resolution (CR) algorithms
have been developed. The efficiency of such algorithms often
deteriorates when employed in high traffic densities. Several
methods have tried to prioritize certain conflicts to alleviate part
of the problems introduced at high traffic densities. However,
manually establishing rules for prioritizing intruders is a difficult
task due to the complex traffic patterns that emerge in multi-
actor conflicts. Reinforcement Learning (RL) has demonstrated
its ability to synthesize strategies while approximating the system
dynamics. This research shows how RL can be employed to
improve conflict prioritization in multi-actor conflicts. We employ
the Proximal Policy Optimization algorithm with an actor-critic
network. The RL model decides on intruder selection based on
the local observations of an aircraft. It was trained on a limited
number of conflict geometries in which it was able to significantly
reduce the number of intrusions. A conflict prioritization strategy
was then formulated based on the decisions taken by the RL
model during training. We show that the efficacy of a conflict
resolution algorithm that adopts a global solution, the solution
space diagram (SSD) in this research, can be improved when
utilizing this conflict prioritization strategy. Finally, these results
were compared to the performance of a pairwise CR method, the
Modified Voltage Potential (MVP). Even though MVP resulted
in a smaller number of intrusions compared to SSD with conflict
prioritization, the prioritization strategy did reduce the gap
between the two CR methods.

Index Terms—Decentralized Conflict Resolution, Multi-agent
Reinforcement Learning, Proximal Policy Optimization, Solution
Space Diagram, Modified Voltage Potential, BlueSky ATC Sim-
ulator

I. INTRODUCTION

An increment in number of flights is expected in both the
manned and unmanned aviation sector [1]–[3]. The workload
of the Air Traffic Controller (ATCO) is often seen as the bot-
tleneck that would inhibit a further growth in air traffic volume
[4]. One the core tasks of Air Traffic Control (ATC) is Conflict
Detection and Resolution (CD&R) [5]. Conflict detection (CD)
describes the mechanism which monitors whether conflicts
are present. Conflict resolution (CR) is applied to establish
a conflict-free trajectory once a conflict is detected [6]. The
free flight (FF) concept can facilitate an increase in air traffic
volume and allow for a more optimized flight path. The free
flight (FF) concept proposes to transition the responsibility
for assuring safe traffic separation from ATC to the individual
aircraft (airborne separation). CD&R would evolve from a
centralized to a decentralized process, decreasing the workload
and pressure on ATCOs to guarantee global safety.

A variety of decentralized CD&R algorithms exists. Geo-
metric CR algorithms were found to be very successful in
terms of safety and efficiency in a low traffic density. In
a conflict with two aircraft, methods such as the Solution
Space Diagram (SSD) [7], can achieve a geometrically optimal
solution [8]. However, in a high traffic density with multi-
aircraft conflicts, the solution can become sub-optimal. The
sub-optimal solution is caused by the complex dynamics
which arise when multiple aircraft perform conflict avoidance
manoeuvres simultaneously. In the case of SSD, all conflicts
are considered simultaneously and a global solution is adopted.
In a multi-conflict situation, the only solution could be a sharp
turn away from the target or in the extreme no feasible solution
exist.

Prioritization of conflicts is a well-known phenomenon in
aviation. A prioritization between aircraft has been made based
on various criteria such as current velocity [9], lookahead time
[10] and only considering conflicts with aircraft on the right
(ROTW) [11]. Nonetheless, these methods have proven to be
not so efficient, because they do not prioritize based on the
current conflict geometry. It is hard to analytically establish a
fixed ruleset which can be applied to a dynamic multi-aircraft
conflict with a continuously changing conflict geometry.

Reinforcement learning (RL) could provide a solution by
leveraging its ability to approximate the system dynamics and
to determine a conflict prioritization strategy based on conflict
geometry. The performance of RL models exceeds expert
human-level performance on strategic games. For example,
a state-of-the-art agent called AlphaGo was able to beat the
world champion in Go [12] and more recently, the Alphastar
program defeated a top professional player in Starcraft II
[13]. This research aims to construct a conflict prioritization
policy which will be applied to an existing CR method with
RL. The RL framework consists of an actor-critic network
which implements Proximal Policy Optimization (PPO) [14].
PPO has shown promising results for multi-agent collision
avoidance algorithms in aviation [15], [16] and robotics [17].

The simulations required for the training and evaluation
of the deep RL model in this article, were performed in the
BlueSky ATC simulator [18]. The SSD method was selected
as the CR algorithm to apply conflict prioritization to. SSD is
selected, because it implements a global solution which often
results in a decrease in safety and efficiency due to a saturated
solution space. The improvement upon SSD with conflict pri-
oritization is then directly compared with a pairwise solution
method, the Modified Voltage Potential (MVP) method [19].

Although MVP does not implement a global solution, it has
proven to be very efficient at high traffic densities.

The detection and prioritization of conflicts in aviation is
elaborated upon in section II. Subsequently, the reinforcement
learning architecture is discussed in section III. The conflict
resolution algorithms that are used in this research are ex-
plained in section IV. Thereafter, the experiment design is
elaborated upon in section V and the results are presented in
section VII. Finally, a discussion and conclusion are provided
in section VIII and section IX, respectively.

II. THEORETICAL BACKGROUND

A. Conflict Detection

In this research, a state-based conflict detection mechanism
is utilized for all experimental conditions. This mechanism
assumes a linear propagation of the current state of all aircraft
involved. Conflict resolution is applied in a 2-dimensional
plane which means that only heading and velocity change can
be employed for a conflict resolution manoeuvre.

In manned aviation, the separation distance has to be obeyed
with respect to all heading angles, thus forming a circle with
the aircraft at its center. This circle is called the protective
zone with radius Rpz . A loss of separation (LoS) for ownship
occurs when an intruder penetrates the protected zone. The
terminology ownship and intruder is adopted from Ribeiro et
al. [20] and denotes the perspective of the conflict situation.
The conflict is described from the perspective of ownship,
while the other involved aircraft are defined as intruders.

This section further explains the characteristics of a conflict
situation, such as visualized in Figure 1, in more detail.
The Closest Point of Approach (CPA) is the point in which
the distance between two aircraft in motion will reach its
minimum value. The distance to Closest Point of Approach
(dcpa) is defined as the distance between two aircraft at CPA.
The Time to Closest Point of Approach (tcpa) is the time until
the closest point of approach is reached. The tcpa and dcpa can
be found with Equation 1 and Equation 2, respectively.

tcpa = −drel ·Vrel

|Vrel|2
(1)

dCPA =
√
d2
rel − t2CPA ·V2

rel (2)

The time until a loss of separation occurs tin, is computed
with Equation 3. A conflict occurs if the current path of
an aircraft will result in a loss of separation within a pre-
defined lookahead time window τ . Combined with the stated
assumptions on linear state propagation, a conflict occurs when
tin ≤ τ and dcpa < RPZ [20]. The term tin can also be
referred to as the time to loss of separation tLoS .

tin = tCPA −
√
R2

PZ − d2CPA

Vrel
(3)

Fig. 1: Description of relation between dcpa, drel, vrel and positions and
velocities of ownship and intruder. Adapted from Ribeiro et al. [20].

B. Prioritization of Intruders

A common approach to apply prioritization in collision
avoidance is a centralized approach in which aircraft are
assigned a low or high priority based on parameters such
as current velocity [9]. Aircraft with low priority should
avoid aircraft with a high priority. The right-of-way (ROW)
rules as part of the Rules of the Air (RotA) are perhaps the
most famous example of prioritization in conflict resolution
[11]. The two rules most relevant for this research are for
converging and head-on conflicts. For converging conflicts,
the aircraft that comes from the right has the Right-of-way
and does not need to alter its flight path. The other aircraft
has to perform a conflict avoidance manoeuvre. For a head-on
conflict, both aircraft have to avoid to the right. It was found
that following the RotA did not always reduce the complexity
in airspace operations. In a pairwise conflict, the responsibility
for maintaining safe separation is appointed to one aircraft
while it is often more advantageous if both aircraft perform a
conflict resolution manoeuvre to solve the conflict.

Conflict prioritization has also been applied to the SSD al-
gorithm [10]. A conflict prioritization strategy was constructed
based on a fixed set of rules. In order of importance, the
rules were based on τ , tLoS , dLoS and dcpa. A sequential
approach was taken, which means that a conflict rule with a
higher priority was selected if the current priority rules still
resulted in a completely saturated solution space, and thus no
feasible solution. The approach showed improvement over the
original SSD method. The major limitations of the research
were that only a limited number of rules and a limited number
of combinations of those rules were evaluated. Moreover, the
rules were not dependent on the conflict geometry.

Conflict prioritization in this research is represented by a
binary decision at each simulation timestep. When a conflict

is encountered, each aircraft for which state information is
available (dependent on ADS-B constraints [21]) is either
incorporated in the conflict resolution or completely ignored.

III. REINFORCEMENT LEARNING METHOD

A. Markov Decision Process

On an agent level, the mathematical framework used to
describe the RL problem of this research is a Markov Decision
Process (MDP). An MDP is a mathematical framework in
sequential decision making [22]. An MDP can formally be
described with the tuple ⟨S, A, T , R, λ⟩, where S is the
set of all states, A the set of all actions, T denotes the set of
transition probabilities (the probability that action at in state st
results in state st+1), R the set of all rewards and γ represent
the discount factor.

At time t an agent observes state st of the system and
takes action at ∈ A. Applying action at to the environment
transforms the system to state st+1 ∈ S and the agent receives
reward rt+1 ∈ R. The agent samples its actions from the policy
π(a|s). The policy tries to find the optimal action a based on
state s. The goal of the agent is to maximize the discounted
reward Gt which is computed according to Equation 4 with
0 ≤ γ ≤ 1. The discount factor γ reduces the importance of
future rewards and enhances the influence of the more current
rewards.

Gt =

∞∑
t=0

γtrt, (4)

B. RL Method

The Proximal Policy Optimization (PPO) network architec-
ture is adopted for this research [14]. PPO is a policy gradient
method where the policy is updated in a controlled way to limit
the difference between the old and new policy. Setting a con-
straint on the size of the policy update, increases the stability
of the RL algorithm. PPO has been successfully implemented
in a multi-agent collision avoidance setting [15]–[17]. For this
research, PPO is selected based on four criteria:

• Robustness: The PPO algorithm inherently supports ro-
bustness due to the design of the PPO architecture which
limits the variance between the old and new policies.
The PPO model showed state-of-the art performance with
limited hyperparameter tuning in cooperative multi-agent
environments [23].

• Experience Replay: PPO does not rely on experience
replay for convergence which is advantageous, because
evolving behaviour of agents makes the environment non-
stationary.

• Hyperparameters: Tuning of the hyperparameters of a
RL algorithm is a time-consuming task and of utmost
importance; slight adjustments in the hyperparameter
could transform a divergent algorithm into a convergent
algorithm. The PPO algorithm is robust for hyperparam-
eter settings [23].

• Action Space: In this research, the output of the RL
algorithm will be binary. As seen from one agent, the

algorithm will decide which intruders it considers (1) and
which intruders it ignores (0). The PPO algorithm allows
for a discrete action space and performs well on it [24].

The PPO algorithm is implemented with an actor-critic
network. In an actor-critic network, the policy-network is the
actor and determines which action to choose based on the
state. The value-network is the critic. Since the value function
is used when determining the policy gradient and thus used
for policy updates, the critic aids in the policy update [22].

Various implementations of PPO exists. In this research,
the implementation of PPO with a clipped objective function
is implemented. The clipped objective function LCLIP can be
found in Equation 5. The policy update rt is clipped by (1 +
ϵ) and (1 - ϵ) for a positive advantage and negative advantage
At, respectively [14], with ϵ as a hyperparameter. The policy
update rt is defined as the ratio between the old and new
policy or πθ(at|st)

πθOld
(at|st) . The actor policy is denoted by πθ with

θ as the model parameters.

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(5)

C. Multi-Agent RL

Multi-Agent Reinforcement Learning (MARL) is a branch
within RL in which a system of autonomous agents is simul-
taneously interacting in a common environment [25]. In this
research, multiple agents simultaneously apply conflict prior-
itization, which thus identifies as a multi-agent setting. The
multi-agent system in which aircraft apply conflict resolution
is cooperative [26]. The agents pursue a common goal in a
cooperative environment. They assist each other to maximize
a global reward. The system therefore employs a shared reward
function.

The domain of multi-agent RL introduces new problems
due to the increased complexity of interacting agents while
they are evolving. The main challenges are the nonstationarity
of the environment [25] and the curse of dimensionality [27].
To tackle these problems, this research adopts the paradigm
of ”Centralized Learning with Decentralized Execution”. The
agents sample actions based on their own observations (de-
centralized), but the policy is updated with a centralized
value function based on experience of all agents (centralized).
Experience consists of states, actions and rewards. For own-
ship, the input of the centralized value function consists of
its own observation vector plus all observations and actions
of the observed intruding agents. The environment becomes
stationary for ownship by including the observations and
actions of the other intruding aircraft. Furthermore, to deal
with the scalability, a shared policy is implemented. With a
shared policy, all agents sample from the same policy reducing
the number of trainable parameters and thus the training time.
The actor-critic network architecture is visualized in Figure 2.

D. State Formulation

Selecting the right variables for the formation of the state
vector of the reinforcement learning algorithm is a difficult

FCFCFC

128

FCFC

128 128 128 128

FCFCFC

128

FCFC

128 128 128 128

Ownship

Intruders

Actor

Critic

Input Output

...

Fig. 2: Schematic overview of actor-critic network architecture with central-
ized value function for a single time step. The input of the actor model consists
of the ownship state sown. The states and actions of intruding aircraft 1
through n are combined with the the state of ownship to form the input of the
critic network. Each fully connected (FC) layer in both the actor and critic
network consists of 128 hidden nodes. The output of the actor and critic model
consists of the action vector a and value function estimation v, respectively

task. Adding a dimension to the observation space causes
the computational complexity to exponentially increase [27].
Thus, it is beneficial to minimize the size of the observation
vector.

The tcpa parameter is selected to provide an indicator
on how imminent a LoS is with an intruding aircraft. The
latrel and lonrel denote the relative latitude and longitude
between ownship and an intruder as seen from the body-fixed
coordinate system of ownship. A combination of latrel and
lonrel can provide ownship with both a relative position of the
intruder and a distance to the intruder D. The distance D can
provide further context to tcpa. The state vector sit of observed
aircraft i at time t, is defined according to Equation 6. The
full definition of the state vector st can be found in Equation 7
in which n represents the number of observed ac. The size of
the observation vector can be computed by multiplying the
number of observed aircraft n with the number of features
per aircraft. In this research n equals 10 and the number of
features 3.

sit =


tcpait
latirelt
loni

relt

 (6) st =


s1t
s2t
.
.
snt

 (7)

The number of observed aircraft n was set at 10 to stimulate
a highly saturated solution space and allow for cooperative
behaviour whilst limiting the size of the actor-critic model.
The limited model size allows the RL model to train within
a practical amount of time. The number of aircraft in the
experiments on which the RL model is trained, is limited to

11 such that each aircraft can observe 10 intruders and has
information on all aircraft that simultaneously operate in the
same airspace.

E. Reward Formulation

The reward function r (st) for a single aircraft can be found
in Equation 8. A negative reward is given when an intrusion
is first encountered.

r (st) =

{
−10 Loss of Separation occurs
0 otherwise (8)

F. Action Space

The action vector should be able to individually include
(1) or exclude (0) an intruder from the avoidance manoeuvre
calculation. The action vector thus consists of binary variables.
For each observed aircraft i action ai ∈ {0, 1}. The complete
action vector at time t, at is given by Equation 9. The last
action in the action vector is referred to as aall. If aall
equals 1, all intruders are included in the computation of
the of the avoidance manoeuvre. In this manner, the model
can opt for a non-prioritized conflict avoidance manoeuvre.
In principle, adopting a solution which prevents conflicts with
all surrounding intruders will prevent all intrusions. Such a
solution should be chosen when it does result in a quick, safe
solution.

at =



a1
a2
.
.
an
aall


(9)

IV. CONFLICT RESOLUTION ALGORITHMS

The proposed RL framework is applied to a decentralized
CR method in this research. This section first explains the
concept of velocity obstacles, which is the base of the CR
algorithm herein used. Thereafter, the Solution Space Diagram
(SSD) and Modified Voltage Potential (MVP) algorithms are
described.

A. Velocity Obstacles

The idea of implementing velocity obstacles for 2-
dimensional motion planning and obstacle avoidance was
introduced in 1998 [28]. The concept of velocity obstacles is
explained with aid of Figure 3a. The collision cone between
ownship and intruder is denoted with CC. Assuming that
the current state is linearly propagated, any relative velocity
outside of collision cone CC guarantees a collision-free path
for ownship and intruder [28]. Subsequently, the collision cone
can be transformed from the relative velocity plane to the
absolute velocity plane. This simplifies the conflict resolution
process since avoidance maneuvers can be planned and exe-
cuted in the absolute velocity plane. The transformation can
be performed according to Equation 10 in which ⊕ is the

Fig. 3: Construction of velocity obstacle of a single intruding aircraft (a). Visualization of multiple velocity obstacles caused by concurrent intruders (b). The
velocity obstacles of the intruding aircraft are combined with the performance limits to form the SSD (c) [7].

Minkowsky vector sum operator. The transformed collision
cone is called a velocity obstacle.

V O = CCA,B ⊕VB (10)

B. Solution Space Diagram

The first concept similar to the SSD as implemented by
Balasooriyan [7], was introduced by Van Dam et al. as ”the
state vector envelope”. The state vector envelope has served
several other purposes [29]–[31] before it was implemented
as a conflict resolution method [7]. This research implements
the SSD in a similar fashion as Balasooriyan [7]. Therefore,
the construction process will be similar and is explained with
Figure 3. As explained before, Figure 3a displays the construc-
tion process of one VO belonging to one intruding aircraft. In
Figure 3b, ownship is displayed with three intruding aircraft
and their respective collision cones and velocity obstacles.
Finally, in Figure 3c, the velocity obstacles are encapsulated
by the performance limits of the aircraft to synthesize the SSD
in its final form.

If the velocity vector of ownship is located within one of
the VOs, the ownship is in a conflict. Therefore, the union
of the 3 VOs is called the set of Forbidden Velocities (FV)
and can be found with Equation 11. In Figure 3c the set of
reachable velocities (RV) is displayed and is based on the
performance limits of the aircraft. The set of RV is denoted
by the area between two circles. The inner circle has radius
Vmin and the outer circle has radius Vmax. Assuming that no
other regulatory constraints are imposed, an aircraft is able to
turn to any desired heading hence the circular shape (for every
heading angle, the aircraft at least flies at least at Vmin and
maximally at Vmax).

FV =

N⋃
i=1

VOi (11)

Division of the RV into the Allowed Reachable Velocities
(ARV) and Forbidden Reachable Velocities (FRV) is the final
step to synthesize the SSD. The FRV and ARV can be found
with Equation 12 and Equation 13, respectively.

FRV = RV ∩ FV (12)

ARV = RV ∩ FVC (13)

C. SSD in Conflict Resolution

The SSD diagram provides a set of allowable reachable
velocities. To utilize the SSD diagram as a conflict resolution
method, a methodology has to be established to select the
most optimal desired velocity vector from the set of allowable
reachable velocities. The shortest path out rule showed the
most promising results in terms of safety, stability and effi-
ciency [7] and will thus be used in this research. The shortest
path out rule can be seen in Figure 4 which is a zoomed in
version of Figure 3c. Conflict prioritization can be relevant for
the SSD algorithm, because it implements a joint solution. A
joint solution causes quick saturation of the solution space at
high traffic densities which in the extreme could result in no
feasible solution.

Fig. 4: Current velocity solution vector (red) is in the set of FRV. With
conflict resolution, the desired velocity solution vector (green) is computed
by applying the shortest path out rule to the SSD

D. SSD in Conflict Prioritization

This research will apply conflict prioritization to the SSD
method. For the SSD algorithm, this translates to inclu-
sion/exclusion of VOs, belonging to the intruding aircraft, in
the SSD. The influence of conflict prioritization on the SSD is
illustrated in Figure 5. The velocity vector in Figure 5a is in the
FRV, which means that the current state results in a collision.
Conflict resolution is thus required. When all 3 intruders are
taken into account, the aircraft will adapt its velocity vector
to Vsol, which is found with the shortest path out rule. Due to
the highly saturated solution space of the SSD, Vsol requires
the aircraft to make a sharp turn of almost 180 degrees. The
right turn results in an intrusion at time t2 as can be seen in
Figure 5b.

In Figure 5c, one intruding aircraft is not taken into account
by deactivating its VO. In the new situation, ownship will
continue to fly straight, resulting in Figure 5d. No intrusions
occur in the new situation. The initial conflict of ownship
is partly solved by the conflict avoidance maneuver of the
intruding aircraft. Ownship can continue to fly straight and
let the intruding aircraft completely resolve the conflict or
ownship can reactivate the intruding aircraft and assist in the
conflict resolution process.

It can be beneficial to temporarily exclude a VO from the
solution space to prevent an aircraft making a sharp turn. A
sharp turn would result in a significant deviation from its
original flight path, from which the aircraft has to recover.
The aircraft cannot instantaneously change its heading. Large
heading changes take time, during which it is not guaranteed
that ownship will not encounter an intrusion.

When the solution space is highly saturated, intruding
aircraft that for example are relatively far away from ownship,
seem like a good candidate to deactivate. The influence of
ignoring an intruding aircraft can vary. If the velocity solution
vector remains similar, exclusion of the VO has no effect.
However, when the velocity solution vector does change,
ownship essentially resolves towards a velocity solution vector
in the FRV. In case the previously disabled intruder does not
change its path, it does mean that the conflict with this intruder
will not be resolved and the time to loss of separation will
decrease. This is not necessarily negative when the new state
of the ownship (who has now resolved conflicts with other
intruders) may lead to a more efficient resolution manoeuvre
for this remaining intruder. Nevertheless, we do expect the
intruder to change its state in order to avoid LoS with the
ownship. It may even be that the CR manoeuvre performed
by the intruder to avoid ownship is sufficient to resolve the
conflict, as exemplified in Figure 5.

E. Modified Voltage Potential

The MVP [19] method is part of the group of force field
algorithms, in which a parallel is made between aircraft and
electrically charged particles. The idea behind a force field
algorithm, is that all aircraft are negatively charged which
creates a repulsive force between them which should facilitate
safe separation. In Figure 6, a conflict between ownship and

Fig. 5: The left two images visualize the progression of a conflict geometry
when ownship does not apply conflict prioritization at time t1 (a) and t2 (b).
The two images on the right show the same conflict geometry when conflict
prioritization is applied to ownship at time t1 (c) and t2 (d).

intruder is visualized. The goal of the MVP method is to
”push” the location of the closest point of approach outside of
the protected zone in the same direction as the dcpa vector, to
resolve the conflict. This can be accomplished by addition of
the VMV P solution vector to Vrel. The MVP solution vector
is always perpendicular to Vrel. The Vopt vector indicates the
shortest path out solution from the collision cone, which is
the geometrically optimal way to solve the conflict, resulting
in minimal path deviation [8]. In a multi-aircraft conflict,
the MVP method computes its velocity solution vector by
separately solving each conflict and subsequent addition of
all individual velocity solution vectors.

In section VII, MVP and SSD will be directly compared to
relate the behaviour of pairwise-summed and joint resolution
approaches. In a high traffic density, pairwise-summed meth-
ods such as MVP tend to induce more secondary conflicts
during conflict resolution. The secondary conflicts can be
beneficial, because they cause a redistribution of the traffic.
This creates space for new resolution manoeuvres, which were
not apparent before. Consequently, its performance tends to be
superior in terms of intrusions, compared to a joint resolution
approach. With SSD, an increase in traffic density, will likely
result in a decrease of the available solution space. SSD does
however tends to result in fewer conflicts [20], being better
at conflict prevention. Thus, it is interesting to see if conflict
prioritization can adapt the characteristics of SSD such that it
becomes better at dispersion of traffic in multi-actor conflict
situations, while remaining proficient in conflict prevention.

Fig. 6: For the given conflict geometry, the velocity solution vector found by
MVP is indicated with VMV P [19]. The geometrically optimal solution Vopt

[8] is also provided.

V. EXPERIMENT DESIGN

A. Simulation Environment

The simulations are performed in the BlueSky environment.
BlueSky is a simulator which is established to facilitate a
general platform on which ATC research can be performed.
This allows for better comparison of ATC research [18]. A
great advantage of the BlueSky system is that it implements
a server-client architecture, which enables parallel running of
experiments on separate CPU nodes, thus several episodes can
run simultaneously.

B. Training Architecture

Multi-agent reinforcement learning is a computationally
expensive process. Maximizing the computational capacity of
the hardware utilized to train the model is beneficial, since
it reduces the training time. Ray is a distributed framework
which empowers systems to cope with intensive parallel
simulations of experiments [32]. RLlib is part of the Ray
project and is a RL library which supports high scalability
[33]. With RLlib, the BlueSky server-client interface can
be leveraged for parallel collecting of experience. For every
simulation environment, a client is generated which connects
to a simulation node in its own thread by a multi-agent
environment. Every client can communicate with the server
without interfering with the other clients.

All environments first sample actions from the same actor
model. Subsequently, BlueSky is run for one simulation time
step dt, with conflict prioritization as determined by the
sampled actions. The simulation time step dt equals 2 seconds
in this research. The new state of BlueSky is processed in
the multi-agent environment interface and transformed into a
new set of observations and rewards. The observations, actions
and rewards are stored in the experience buffer. Once the
experience buffer size is equal to the predefined train batch
size, the experiments are resetted and the experience is used
to update the actor and critic network. An important step is
the postprocessing of the experience. During postprocessing
of the experience, the actions and observations for every time

step are shared among all agents. This is required to form the
input for the centralized value function. The PPO model trains
the policy in an on-policy fashion. Therefore, the experience
buffer is emptied after the policy update. An overview of the
RL framework can be found in Figure 7.

Simulation
Nodes

Actor Model

PostProcessing
Experience

Update Actor and
Critic Network

Multi-Agent
Env

Complete
Batch

Updated
weights

Actions

Observations,
Rewards

Experience
Buffer BlueSky

RLlib

Fig. 7: Schematic overview of multi-agent RL training architecture and
visualization of integration RLlib framework with BlueSky.

C. Challenges of Model Training

The first challenge when designing the traffic scenario was
the sparsity of the rewards. The reward function (Equation 8)
provides sparse rewards, because a reward is only nonzero
when a LoS occurs. Achieving a convergent RL model with
sparse rewards is an arduous task, because the RL model
receives limited feedback from the environment which does
not enable the model to train in a practical amount of time.
Furthermore, between take-off and landing, an aircraft is not
continuously in conflict with one or more intruding aircraft.
For a considerable amount of the time, it will be conflict
free. If the aircraft is not in conflict, conflict prioritization
has no effect, because including/excluding of intruders does
not influence the velocity and heading of the aircraft. From
that perspective, it would be ideal to have many conflicts
and intrusion per unit of simulation time, because that would
reduce the sparsity of the rewards and increase the influence
of the RL model on the conflict situation. However, if the
traffic scenario becomes too complex, it becomes (almost)
impossible to solve, which will reduce the stability of the
learning process. Thus it was decided, instead, to have the RL
model resolve randomized conflict geometries during training.
The traffic scenario is designed such that the number and
placement of aircraft facilitate multi-aircraft conflict situations
in which the original SSD method fails, while limiting the
variability, complexity and length of the scenarios to allow
for a convergent model.

D. Experiment Specifications

This section will first explain the traffic scenarios used
for model training. Thereafter, the more generalized traffic
scenario for model evaluation is elaborated upon. A schematic
example of a training scenario at t0 can be found in Figure 8.
The experimental area is a square. The total number of aircraft
per scenario is limited to 11. This ensures that all intruding
aircraft can be incorporated in the state vector of ownship as

was explained in subsection III-D. The total experimental area
is divided into four smaller squares. To induce conflicts and
intrusions and to limit the variability between scenarios, the
initial heading and position of the aircraft are not completely
randomized. The initial positions of the aircraft are generated
such that the number of aircraft in each of the four squares
is equal to two or three. Based on the initial position of the
aircraft, the target waypoint is selected in the opposing, non-
adjacent square as denoted by the blue waypoint marker in
Figure 8. At the start of the episode, aircraft are removed such
that no aircraft are in LoS. The aircraft are spawned with a true
airspeed (TAS) of 458 kts. Every episode has a fixed length of
270 s. The horizontal separation limit is defined by the ICAO
[34] and equals 5 nm when radar, ADS-B or MLAT is utilised
to determine the aircraft position. The radius of the protected
zone Rpz is thus set at 5 nm. A lookahead time of 5 minutes
is selected for conflict detection in the experiments.

During testing, a more generalized experiment is synthe-
sized which strives to simulate a more operational situation in
which both safety and efficiency can be measured. The basic
experimental setup is similar to the training scenarios, but there
are a few discrepancies:

• The number of aircraft is increased. Within the experi-
mental area, the number of aircraft is kept fixed to ensure
a constant traffic density. Experiments are performed with
a low, medium and high traffic density in which 30,
50 and 70 aircraft, respectively, are simulated in the
experimental area.

• A waypoint is assigned in similar fashion as in the
training scenarios. However, a waypoint is now located
outside of the experimental area as can be seen by the red
waypoint marker in Figure 8. In this manner, aircraft that
leave the experimental area can reach their waypoint with
relative ease and without encountering many intruders.
Aircraft are removed from the simulation once they have
reached their waypoint.

• The generalized traffic scenario is focused on the steady-
state phase of the experiment rather than the initial,
transient phase. The results for the first 15 minutes of an
experiment, as the traffic density builds-up to the desired
value, are therefore disregarded.

• The number of aircraft is kept fixed in the experimental
area, every time an aircraft leaves the area, a new aircraft
is spawned. Aircraft are spawned with at least 15 nm to
the closest intruding aircraft.

The number of simulated aircraft for all traffic densities is sig-
nificantly higher than the 11 utilized in the training scenarios.
The higher number of aircraft is required to achieve saturation
of the solution space in an operational setting and to ensure the
aircraft encounter multiple conflict situations before reaching
their waypoint. The size of the experimental area is increased
to allow for a higher number of simulated aircraft. Once an
aircraft leaves the experimental area, the measurements of
safety and efficiency continue until the aircraft is removed
from the simulation.

Fig. 8: Schematic representation of the experimental area with 11 aircraft at
t0 for a training scenario. The blue waypoint denotes the waypoint definition
in the training scenarios. The red waypoint, which is located outside of the
experimental area, describes the waypoint definition for the generalized traffic
scenario.

An overview of the traffic scenario parameters for the
training and generalized traffic scenario definition can be found
in Table I.

TABLE I: Parameters of training and generalized traffic scenario

Parameter Value Unit
Training latmin,latmax [−0.35, 0.35] °

lonmin,lonmax [−0.35, 0.35] °
Experimental Area 1770 NM2

Nac 11 -
Density 6.21 ·10−3 AC/NM2

General latmin,latmax [−1, 1] °
lonmin,lonmax [−1, 1] °
Experimental Area 14400 NM2

Naclow 30 -
Nacmedium 50 -
Nachigh 70 -

Both AC type Boeing 747-700 -
Altitude FL350 or 35000 ft
TASinitial 458 kts
TASmin, TASmax [400, 458] kts
τ 5 min
Rpz 5 nm

E. Independent Variables

During the experiments, a select number of independent
variables is varied to change the experimental conditions. An
overview of the independent variables can be found in Table II.
Each experiment is performed with either SSD, SSD+PRIO
or MVP as conflict resolution algorithm. SSD+PRIO is the
method that is evaluated, SSD and MVP are used as baselines
for comparison. Moreover, low, medium and high traffic
densities are implemented.

TABLE II: Overview of independent variables in the experiments. Each
experiment is performed with a specific CR method and density.

Parameter Value Unit
CR method SSD [-]
CR method SSD + PRIO [-]
CR method MVP [-]
Densitylow 2.08 ·10−3 AC/NM2

Densitymedium 3.47 ·10−3 AC/NM2

Densityhigh 4.86 ·10−3 AC/NM2

F. Dependent Variables

In this section, the definitions are provided for the variables
that are measured during the experiments to assess the safety
and efficiency of the conflict resolution method. The metrics
are based on previous research [7], [35]–[37]. An overview of
the dependent variables can be found in Table III.

Safety concerns adequate separation between aircraft. Safe
separation can be expressed in terms of NLoS and Nconf .
The terms LoS and intrusion indicate the same phenomenon
and can be interchanged. An intrusion does not directly
imply a collision. Differentiation between various intrusions is
accomplished by two parameters: the severity of LoS LoSsev

and the duration of LoS TLoS . The LoSsev can be computed
with Equation 14 in which R represent the radius of the
protected zone.

LoSsev =
Rpz − dCPA

R
(14)

The term TLoS indicates the duration of a single LoS. The
total time an aircraft spent in conflict is denotes by Tinconf .

Another objective for which conflict resolution methods can
be optimized is efficiency. Efficiency is measured with the
flight time T and the length of the traversed flight path D.

TABLE III: Overview of dependent variables used in the assessment of SSD
algorithm as a CD&R method, adapted from Balasooriyan [7]

Variable Type Description
Nconf Safety Number of conflicts
NLoS Safety Number of losses of separations
LoSsev Safety Loss of separation severity
TLoS Safety Duration of a loss of separation
Tinconf Safety Total time in conflict per ac
T Efficiency Duration of flight
D Efficiency Travelled distance

VI. EXPERIMENT HYPOTHESES

It is hypothesized that the RL model is able to learn optimal
conflict prioritization decisions that decrease the number of
intrusions in all 20 scenarios, but it remains uncertain whether
the learned behaviour will generalize well to unknown con-
flict geometries. The number of trained conflicts situations
might be too limited for the model to learn behaviour that
can also increase efficiency in unseen conflict geometries.
When analyzing the train scenarios to investigate how conflict
prioritization improved the safety of a scenario, it is thus
hypothesized that some solutions can be implemented in a
variety of conflict geometries. Other solutions will only be
applicable to specific conflict geometries.

Furthermore, it is hypothesized that the aircraft will show

cooperative behaviour due to the shared reward function. It is
expected that the RL model can make a prioritization based
on tcpa, the relative distance and position of the intruders.

In the experiments with the generalized traffic scenario, it
is hypothesized that SSD plus a conflict prioritization strategy
will reduce the number of intrusions compared to the regular
SSD method. Finally, the conflict prioritization strategy shifts
the global solution of SSD, when this is not the most efficient
solution, to a more pairwise solution, similar to MVP. The
performance of the SSD method with conflict prioritization
strategy is thus expected to be similar to the MVP method
[19].

VII. RESULTS

The results section consists of two parts. In the first part,
the choices that the RL model made to reduce the num-
ber of intrusions in the 20 training scenarios, are thorougly
analyzed. Based on the results of that analysis, a conflict
prioritization strategy is synthesized and applied to the regular
SSD algorithm. In the second part, the SSD algorithm with a
conflict prioritization strategy is compared to the regular SSD
and MVP method [19] when utilized in experiments which
resemble a more generalized airspace. For the 20 training
scenarios, the discussed dependent variables will be limited to
the number of intrusions NLoS and the number of conflicts
Nconf . An extensive comparison with a greater variety of
dependent variables will be provided with the results of the
generalized airspace experiments.

A. Training Results

The RL model was trained with 20 randomly generated
scenarios. At the start of every episode, one of the 20 scenarios
is selected as the starting state of the experiment. The mean
reward per episode for an increasing number of training steps
can be found in Figure 9. The displayed reward is averaged
over the last 100 episodes. Figure 9 displays the progress for
470M training steps.

0 1 2 3 4
Training Steps [-] 1e8

300

250

200

150

100

50

R
ew

ar
d

[-]

Mean Reward per Episode

Fig. 9: The evolution of the mean reward per episode during training

An overview of NLoS and Nconf per scenario can be
found in Figure 10 and Figure 11, respectively. The total

NLoS decreased with 74% from 46 to 12 and the total Nconf

increased with 6% from 744 to 789.

SSD SSD + PRIO
CR method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
um

be
r o

f I
nt

ru
si

on
s

[-]

Number of LoS per scenario

Fig. 10: The number of intrusions per training scenario for the regular SSD
method and the SSD method with conflict prioritization (SSD + PRIO)

SSD SSD + PRIO
CR method

25

30

35

40

45

50

55

N
um

be
r o

f C
on

fli
ct

s
[-]

Number of Conflicts per scenario

Fig. 11: The number of conflicts per training scenario for the regular SSD
method and the SSD method with conflict prioritization (SSD + PRIO)

B. Improving SSD with Ruleset

During flight, an aircraft can encounter an infinite number
of conflict geometries. Training the RL model on 20 conflict
scenarios does not provide sufficient variability to apply the
RL model to a generalized traffic scenario. The high number
of unknown conflict geometries results in poor model perfor-
mance. However, from the results in Figure 10 and Figure 11,
it can be seen that the model does significantly reduce NLoS .
Thus, it is interesting to further investigate per scenario which
model choices led to this.

Analyzing the choices of a RL model is not trivial, because
the RL model is essentially a black box, it does not provide
insight into the reasoning behind the choices that it makes.
A methodology to analyze a scenario was constructed and
consists of the following steps:

1) Analysis of Flight Path: Compare the flight paths of
the scenario with and without conflict prioritization.
Examine the cases where conflict prioritization resulted
in a different flight path.

2) SSD Comparison: For the selected aircraft, the SSD is
constructed with and without conflict prioritization. The

different flight paths can be caused by a different conflict
geometry or activation/deactivation of VOs.

3) Observation Vector Evaluation: For the aircraft which
had a different flight path based on conflict prioritization,
the observation vector is analyzed. The goal is to estab-
lish a relation between the observation vector variables
and the activation/deactivation of intruding aircraft.

4) Conclusion: Summarize the found relations per sce-
nario.

The conclusions that resulted from this approach were fur-
ther investigated. Only a select number of similar conclusions
were found in different scenarios and had the potential to gen-
eralize well beyond those scenarios. A conflict prioritization
strategy was synthesized based on those conclusions.

Intruders need to be included to allow for conflict resolution.
Therefore, the requirements for deactivating intruders are more
extensive than for activating intruders. The goal of conflict
prioritization is to increase the ARV. This is accomplished
by only selecting a limited number of aircraft within ADS-
B distance. The aircraft should be selected such that enough
information on conflict geometry remains present to perform
conflict resolution. In this research, a maximum of 10 intruding
aircraft can be selected by the CR algorithm for conflict resolu-
tion. The found prioritization rules were based on a RL model
that could only select up to 10 intruders. With a different
number, it is likely that less or more severe prioritization rules
would have been found. Selecting a maximum of 10 aircraft
also allows for a degree of comparison between the testing
and the training results. However, when the experimental setup
changes, it is possible that the maximum number of selected
aircraft needs to be recalibrated. The aircraft are selected based
on the following prioritization strategy:

1) Conflicting Aircraft: The first rule is the prioritization
of conflicting aircraft. An example from one of the scenarios
from which rule 1 originates, can be found in Figure 12. The
position of ownship is set at (0°,0°) as a body-fixed reference
frame is implemented in which lonrel and latrel are measured
with respect to ownship. The trajectories of the intruding
aircraft are clearly visible. The blue circles are increased in
size to denote the change in position of the intruding aircraft as
seen by ownship over time. Since it is a body-fixed reference
frame, the position of ownship is not altered. The VOs of
intruding aircraft AC2 are activated for all but one time step.
From Figure 12 and Figure 13, based on tcpa and relative
distance, it does not become clear why AC2 is selected. An
explanation is provided by Figure 14 which shows the dcpa
values of the intruding aircraft. With dcpa < Rpz and tcpa < τ ,
AC2 is found to be a conflicting intruder. The phenomenon of
selecting conflicting intruders over non-conflicting intruders
occurred in multiple scenarios. Hence, it is converted to a
rule. Conflicting aircraft are always selected if they are within
ADS-B range.

0.1 0.0 0.1 0.2 0.3 0.4 0.5
Lonrel[]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
La

t r
el

[
]

AC1

AC2

Activation/Deactivation Velocity Obstacles Intruders

activated
deactivated
ownship

Fig. 12: Conflict scenario in which the activation and deactivation of the
velocity obstacles of eight intruding aircraft for ownship are visualized. The
increase in size indicates the direction in which the intruders travelled.

0.1 0.0 0.1 0.2 0.3 0.4 0.5
Lonrel[]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
t r

el
[

]

AC1

AC2

tcpa intruders

ownship

0

25

50

75

100

125

150

175

200

t c
pa

[s
]

Fig. 13: The trajectories of the eight intruding aircraft are visualized. The
color of the data points indicate the time to closest point of approach for
every intruder with ownship.

0.1 0.0 0.1 0.2 0.3 0.4 0.5
Lonrel[]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
t r

el
[

]

AC1

AC2

dcpa intruders

ownship

0

5

10

15

20

25

d c
pa

[n
m

]

Fig. 14: The relative trajectories of the intruding aircraft are visualized in a
body-fixed reference frame with ownship at the origin. The color of the data
points indicate the distance to closest point of approach for every intruder
with ownship.

2) Closest Aircraft: Moreover, it was observed that intrud-
ers with the smallest tcpa, latrel and lonrel were prioritized.

In Figure 12, intruding aircraft AC1 is closest to ownship in
terms of relative position and has the lowest tcpa (Figure 13).
Intruding aircraft AC1 is the only intruder which is activated
for all time steps in which ownship was in conflict. This was
expected, because it makes sense that the closest aircraft for
which an intrusion is imminent are prioritized over aircraft
whose conflicts can be solved at a later point in time. There-
fore, after the selection of conflicting aircraft, the aircraft that
are closest in terms of relative distance are prioritized. The
tcpa parameter is deliberately not included. If an intruder is
very close to ownship, but on a parallel trajectory, tcpa is
infinite. However, a sudden change in direction of ownship or
the intruding aircraft could result in a very close range conflict
which justifies the exclusion of tcpa. Aircraft are selected such
that combined with the first step, a total up to 10 aircraft are
selected.

3) Removal of Aircraft: The final step concerns the deac-
tivation of intruders which are determined to be irrelevant by
the RL model. An example is provided with aid of Figure 15,
Figure 16 and Figure 17 which showcase the first 18 time
steps of a conflict scenario. After 18 time steps, all intruders
are activated for the remainder of the conflict scenario. For
the first 18 time steps, AC1 is almost fully activated and AC2
and AC3 are mostly deactivated. Again, AC1 is selected as it
is the closest aircraft with the highest tcpa. From Figure 17,
it becomes clear that AC2 is non-conflicting and AC3 is
conflicting. For this specific scenario, activation/deactivation
of AC3 has a very minor effect on the ARV. Therefore,
the focus of this section is on AC2. Deactivation of a non-
conflicting intruding aircraft (dcpa > Rpz) that has a high
tcpa and large relative distance, occurred in multiple scenarios.
Therefore, with the incorporation of a safety factor, the final
procedure is to deactivate selected intruders that have a dcpa >
15 nm, D > 30 nm and tcpa > 125 s.

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Lonrel[]

0.0

0.1

0.2

0.3

0.4

0.5

La
t r

el
[

]

AC1

AC2
AC3

Activation/Deactivation Velocity Obstacles Intruders

deactivated
activated
ownship

Fig. 15: Conflict scenario in which the activation and deactivation of the
velocity obstacles of eight intruding aircraft for ownship are visualized. The
increase in size indicates the direction in which the intruders travelled.

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Lonrel[]

0.0

0.1

0.2

0.3

0.4

0.5

La
t r

el
[

]

AC1

AC2
AC3

tcpa intruders

ownship

0

25

50

75

100

125

150

175

200

t c
pa

[s
]

Fig. 16: The relative trajectories of the intruding aircraft are visualized in a
body-fixed reference frame with ownship at the origin. The color of the data
points indicate the time to closest point of approach for every intruder with
ownship.

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Lonrel[]

0.0

0.1

0.2

0.3

0.4

0.5

La
t r

el
[

]

AC1

AC2
AC3

dcpa intruders

ownship

0

5

10

15

20

d c
pa

[n
m

]

Fig. 17: The relative trajectories of the intruding aircraft are visualized in a
body-fixed reference frame with ownship at the origin. The color of the data
points indicate the distance to closest point of approach for every intruder
with ownship.

To summarize, conflicting aircraft are first selected. The in-
truders which are closest to ownship are subsequently selected
until the total number of intruders equals 10. Finally, intruders
can be removed from those 10 selected intruders based on the
requirements stated in the previous paragraph.

C. Generalized Traffic Scenario

The experimental results for the generalized traffic scenario
are presented in this section. The SSD+PRIO abbreviation
utilized in the charts in this section refers to the original SSD
method combined with the prioritization strategy as described
in subsection VII-B. For each experimental setting, 6 scenarios
were simulated for 6 hours. Per experimental setting a specific
CR model and traffic density were evaluated. The outliers are
not shown in the graphs.

1) Safety: The results for the number of intrusions NLoS

can be found in Figure 18. At the low traffic density, the

performance of SSD+PRIO results in slightly fewer intrusions
than SSD+PRIO, but the results are (almost) comparable.
However, at a medium and high traffic density, when PRIO
becomes more important, SSD+PRIO significantly outper-
forms the original SSD method in terms of intrusions. MVP
outperforms SSD and SSD+PRIO in all traffic densities.

SSD SSD + PRIO MVP
CR method

0

10

20

30

40

N
um

be
r o

f I
nt

ru
si

on
s

[-]

Number of LoS per scenario

low
medium
high

Fig. 18: Number of LoS for low, medium and high traffic densities. The NLoS

are summed per experiment, which equals 6 hours of simulation time.

To provide more context to the NLoS numbers, Figure 19
displays the results for LoSsev . It can be seen that the
SSD+PRIO method also reduces the LoSsev compared to
SSD in all traffic densities. The change in traffic density does
not have a great effect on LoSsev . The intrusions that MVP
had, are significantly less severe compared to both SSD and
SSD+PRIO in a low, medium and high traffic density.

SSD SSD + PRIO MVP
CR method

0.0

0.2

0.4

0.6

0.8

1.0

Se
ve

rit
y

[-]

Severity of LoS

low
medium
high

Fig. 19: Severity of losses of separation for low medium and high traffic
densities.

The final descriptive parameter for the intrusions is TLoS .
The TLoS values for SSD and SSD+PRIO are quite similar.
SSD shows a slight increase in TLoS when switching from a
low to a high traffic density. The TLoS for MVP is smaller
than SSD and SSD+PRIO for all traffic densities.

SSD SSD + PRIO MVP
CR method

0

10

20

30

40

50

D
ur

at
io

n
[s

]
Duration of LoS

low
medium
high

Fig. 20: Duration of LoS for low, medium and high traffic densities.

The dependent variables Nconf , Tconf and Tinconf are
based on the conflicts which occurred during the experiments.
The results for the number of conflicts Nconf is visualized
in Figure 21. With all three CR methods, an exponential
increase in Nconf occurs when the traffic density increases. It
should be noted that the number of conflicts for SSD+PRIO is
considerably larger compared to SSD. For any traffic density,
MVP has the highest number of conflicts.

SSD SSD + PRIO MVP
CR method

0

10000

20000

30000

40000

50000

60000

N
um

be
r o

f C
on

fli
ct

s
[-]

Number of Conflicts per scenario

low
medium
high

Fig. 21: The number of conflicts for low, medium and high traffic density.

At last, Figure 22 displays the time an aircraft spent in
conflict Tinconf . Naturally, Tinconf shows an increment due
to an increase in traffic density for all three CR methods.
Interestingly, when using SSD+PRIO, aircraft spent the most
time in conflict for all three traffic densities.

SSD SSD + PRIO MVP
CR method

0

50

100

150

200

250

Ti
m

e
in

 c
on

fli
ct

 [s
]

Time in Conflict per AC

low
medium
high

Fig. 22: The time an aircraft spent in conflict for low, medium and high traffic
densities.

2) Efficiency: The efficiency of a CR method was measured
with flight time T and travelled distance D for which the
results can be found in Figure 23 and Figure 24, respectively.
In a low traffic density, the results for T and D are similar
for SSD, SSD+PRIO and MVP. Performance of SSD+PRIO
exceeds performance of SSD on both metrics in the medium
and high traffic densities. Furthermore, an increment in traffic
density had a negative effect on T and D for all 3 CR methods.
The increased traffic density evokes more conflict avoidance
manoeuvres which cause larger deviations of the aircraft from
the nominal route. The MVP method performs best with regard
to efficiency. It is interesting that the MVP method excels in
efficiency, despite the high number of conflicts. The deviation
from nominal flight path is small for every conflict avoidance
manoeuvre in MVP. The small conflict avoidance manoeuvres
in MVP create a wave-like effect which also helps to reduce
the number of intrusions.

SSD SSD + PRIO MVP
CR method

180

200

220

240

260

280

300

D
is

ta
nc

e
[n

m
]

Traversed Distance per AC

low
medium
high

Fig. 23: The travelled distance D per flight for low, medium and high traffic
densities.

SSD SSD + PRIO MVP
CR method

1400

1600

1800

2000

2200

2400

2600
Fl

ig
ht

 T
im

e
[s

]
Flight Time per AC

low
medium
high

Fig. 24: The flight time T for low, medium and high traffic densities.

VIII. DISCUSSION

The experiments in this researched aimed to improve the
safety and efficiency of a decentralized CR method at a high
traffic density by applying conflict prioritization with deep
RL. Aircraft encounter a multitude of conflict geometries in
experiments with a generalized traffic scenario. Establishing a
model which can resolve all conflict geometries is impossible.
Besides, training on such experiments is very time-consuming
and difficult, because of the sparsity of rewards. Consequently,
it was decided to train the RL model on a limited number of
20 conflict geometries. The model could have been trained on
more scenarios, but that also became unpractical time-wise and
still does not provide assurance that the model will perform
well on any unseen conflict geometry. As hypothesized, the
model was able to successfully reduce the number of intrusions
on 20 conflict scenarios.

It was decided that the best approach to leverage the
potential of the RL model, was to develop a PRIO strategy
based on the intruder selection of the RL model in the training
scenarios. The establishment of a PRIO strategy ensures that,
during real world operations, conflict prioritization decisions
will always be controllable and explainable. The PRIO strategy
essentially consists of 3 steps. First, all conflicting aircraft are
selected. Subsequently, a number of the closest intruders are
also included. Finally, from the selected intruders, aircraft can
be removed if they have a high relative distance, tcpa and
dcpa. The thresholds for the aforementioned parameters are
dependent on the performance limits of the aircraft. Removal
of such aircraft further increases the set of ARV. These general
rules led to a higher prevention rate of intrusions.

The discussion on the RL facet of this research will
be provided in subsection VIII-A. Thereafter, the results of
applying the conflict prioritization strategy specifically to
SSD, together with a comparison with MVP, are discussed
in subsection VIII-B. Recommendations for future work are
given in subsection VIII-C.

A. RL Model Settings

The relation between the state vector of the RL model and
the selected intruders was thoroughly analyzed. The RL model
was able to prioritize intruders with a small tcpa, latrel and
lonrel over intruders with a large tcpa, latrel and lonrel.
The latrel and lonrel parameters were included to provide
both a current distance and relative position of the intruder
to ownship. There were however no signs that the relative
position was used as a basis for a prioritization strategy. The
limited number of conflict scenarios could be a reason for the
absence of PRIO rules based on relative position. Training of
the RL model in a more generalized traffic scenario with latrel
and lonrel, in which a large number of conflict geometries is
encountered, could potentially result in PRIO based on relative
position.

Furthermore, latrel and lonrel did play a role in the identi-
fication of nearby intruders which allowed the model to solve
conflicts. However, some cases were found during training that
did not generalize well to all conflict geometries. For example,
an intruding aircraft was prioritized while it had the highest
relative distance and tcpa. Sometimes, the RL model simply
learned that the selection of an intruder based on a particular
state of the environment, resulted in the highest reward. If
the model applies similar logic in new conflict situations, it
is unlikely that it will result in a reduction of NLoS . The
explanation for this is overfitting of the RL model on the
training scenarios. To prevent overfitting, the model should
thus be trained on a larger amount of conflict geometries.
Besides, it may also be that the RL model requires more
information from the environment to improve its decisions.

B. SSD with Conflict Prioritization

The results of this research show that the addition of conflict
prioritization to the SSD method reduced both the number
of intrusions, and the effect of conflict resolution on flight
path and time. The difference in NLoS between the SSD and
SSD+PRIO method, increases with the traffic density, which
was expected. As the traffic density increases, the saturation of
the solution space becomes more problematic and the influence
of PRIO increases. The SSD+PRIO method has less severe
intrusions than the SSD method. The most severe intrusions
are often caused by uncoordinated behaviour (aircraft turn
into each other in an attempt to avoid each other) [7]. The
conflict prioritization strategy does reduce the frequency at
which uncoordinated behaviour occurs as can be seen in the
reduction in the number of intrusions. However, the current
conflict prioritization strategy does not completely eliminate
uncoordinated behaviour which explains the LoSsev values
for SSD+PRIO. The number, duration and severity of the
intrusions were all significantly lower for the MVP method.

Additionally, introduction of the PRIO strategy to the SSD
method caused an increment in the number of conflicts.
Conflict prioritization disables intruding aircraft to free up
solution space in the SSD. If a different velocity solution
vector is found in the newly available solution space, this
solution is no longer a global solution, because the solution

ignores the disabled aircraft. If the aircraft resolves towards
a new solution, it is expected that the solution results in new
conflicts which subsequently have to be solved.

With PRIO, conflicts are solved with smaller conflict res-
olution manoeuvres which is facilitated by the increase in
ARV. Due to the shorter conflict manoeuvres, ownship is able
to more quickly manoeuvre to the desired velocity solution
vector. This weakens the unpredictable effect of the dynamic
behaviour of the SSD [7]. The effect of the small conflict
manoeuvres is visible in the efficiency. The large conflict
resolution manoeuvres of the SSD method, cause a great
deviation from the nominal flight path. However, SSD+PRIO
is still not as efficient as MVP. Thus, albeit manoeuvres are
performed based on a smaller number of intruders than with
SSD, they still lead to larger deviations than the conflict
pairwise solution of MVP.

C. Recommendations

It is proposed to replace latrel and lonrel with relative
distance D and heading with respect to the intruders. Further-
more, it is advised to include information in the observation
vector that indicates whether an intruder is a conflicting
aircraft or not. This can be done with the dcpa parameter or
with a simple binary variable which equals 1 if intruder is
conflicting and 0 otherwise. Selecting dcpa or the binary value
is a trade-off between complexity and potential effectiveness.
The dcpa parameter is more complex to understand for the
model, but could potentially provide more information than a
simple binary variable.

Finally, with the proposed modifications in the formulation
of the RL problem, the PRIO strategy can be further refined
by training the RL model on a larger number of more complex
conflict geometries.

IX. CONCLUSION

This work investigated whether conflict prioritization can
improve the safety and efficiency of a decentralized CR
method in a multi-agent setting with deep RL. The Proximal
Policy Optimization (PPO) model was implemented with an
actor-critic network and was successfully trained on 20 ran-
domly generated multi-agent conflict scenarios, significantly
reducing the number of intrusions.

A conflict prioritization strategy was established based on
the optimal actions that the RL model selected. The strategy
consists of three steps. The first step is to select all conflict-
ing aircraft. The aircraft that are close by are subsequently
incorporated by the CR method. Finally, intruders should
be removed from the selection when they are past a safety
distance. Naturally, this safety distance is dependent on the
performance limits of the operating aircraft. This conflict
prioritization strategy significantly decreased intrusions in a
generalized airspace while reducing the impact of tactical
conflict resolution on the flight path and time.

Future work should extend the training of the RL model to
a larger number of different conflict geometries while varying
the setup of the RL model. This will likely lead to formulation

of additional conflict prioritization rules. Additionally, more
elaborate testing of the conflict prioritization strategy of this
research is required to verify that it is also beneficial in
airspaces with different specifications in which aircraft with
different performance limits operate. Moreover, a similar re-
search approach can be applied to different CR methods.

REFERENCES

[1] EUROCONTROL, Performance review report an assessment
of air traffic management in europe during the calendar year
2018, 2018.

[2] M. Doole, J. Ellerbroek, and J. Hoekstra, “Estimation of traffic
density from drone-based delivery in very low level urban
airspace,” Journal of Air Transport Management, vol. 88,
no. June, p. 101 862, 2020, ISSN: 09696997. DOI: 10.1016/j.
jairtraman.2020.101862.

[3] SESAR joint Undertaking, European drones outlook study
unlocking the value for europe, https://www.sesarju.eu/sites/
default / files / documents / reports / European Drones Outlook
Study 2016.pdf, 2016.

[4] B. Hilburn, “Cognitive complexity in air traffic control: A
literature review,” EEC note, vol. 4, no. 04, pp. 1–80, 2004.

[5] EUROCONTROL, Model for Task and Job Descriptions of
Air Traffic Controllers. European Air Traffic Control Harmon-
isation and Integration Programme, 1996.

[6] S. HAO, S. CHENG, and Y. ZHANG, “A multi-aircraft
conflict detection and resolution method for 4-dimensional
trajectory-based operation,” Chinese Journal of Aeronautics,
vol. 31, no. 7, pp. 1579–1593, Jul. 2018. DOI: 10.1016/j.cja.
2018.04.017.

[7] S. Balasooriyan, “Multi-aircraft conflict resolution using ve-
locity obstacles,” Master’s Thesis, Delft University of Tech-
nology, 2017.

[8] J. Ellerbroek, “Airborne conflict resolution in three dimen-
sions”,” Ph.D. dissertation, Delft University of Technology,
2013.

[9] H. Emami, F. Derakhshan, and S. Pashazadeh, “A new prioriti-
zation method for conflict detection and resolution in air traffic
management,” Journal of Emerging Trends in Computing and
Information Sciences, vol. 3, no. 7, pp. 1042–1049, 2012.

[10] L. P. I. da Piedade, “Aircraft conflict prioritization and reso-
lution using the solution space diagram,” 2018.

[11] “Right-of-Way Rules: Except Water Operations”, Air Traffic
and General Operating Rules. Federal Aviation Administration
Regulation, Title 14, Chap. 1.F, Pt. 91.B, Sec. 91.113, July
2004.

[12] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the
game of go with deep neural networks and tree search,” nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[13] O. Vinyals, T. Ewalds, S. Bartunov, et al., Starcraft II: A
new challenge for reinforcement learning, 2017. arXiv: 1708.
04782.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, Proximal policy optimization algorithms, 2017. arXiv:
1707.06347.

[15] D. Wang, T. Fan, T. Han, and J. Pan, “A Two-Stage Reinforce-
ment Learning Approach for Multi-UAV Collision Avoidance
under Imperfect Sensing,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3098–3105, 2020, ISSN: 23773766.
DOI: 10.1109/LRA.2020.2974648.

[16] M. Brittain, X. Yang, and P. Wei, A deep multi-agent reinforce-
ment learning approach to autonomous separation assurance,
2020. arXiv: 2003.08353.

https://doi.org/10.1016/j.jairtraman.2020.101862
https://doi.org/10.1016/j.jairtraman.2020.101862
https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf
https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf
https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf
https://doi.org/10.1016/j.cja.2018.04.017
https://doi.org/10.1016/j.cja.2018.04.017
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/LRA.2020.2974648
https://arxiv.org/abs/2003.08353

[17] T. Fan, P. Long, W. Liu, and J. Pan, Fully distributed multi-
robot collision avoidance via deep reinforcement learning
for safe and efficient navigation in complex scenarios, 2018.
arXiv: 1808.03841.

[18] J. M. Hoekstra and J. Ellerbroek, “Bluesky atc simulator
project: An open data and open source approach,” in Pro-
ceedings of the 7th international conference on research in
air transportation, FAA/Eurocontrol USA/Europe, vol. 131,
2016, p. 132.

[19] J. M. Hoekstra, R. N. Van Gent, and R. C. Ruigrok, “Designing
for safety: The ’free flight’ air traffic management concept,”
Reliability Engineering and System Safety, vol. 75, no. 2,
pp. 215–232, 2002, ISSN: 09518320. DOI: 10 .1016/S0951-
8320(01)00096-5.

[20] M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Review of con-
flict resolution methods for manned and unmanned aviation,”
Aerospace, vol. 7, no. 6, 2020, ISSN: 22264310. DOI: 10.3390/
AEROSPACE7060079.

[21] J. Sun, “Open aircraft performance modeling: Based on an
analysis of aircraft surveillance data,” Ph.D. dissertation, 2019.
DOI: 10 . 4233 / UUID : AF94D535 - 1853 - 4A6C - 8B3F -
77C98A52346A.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. MIT Press, 2018.

[23] G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht,
Benchmarking multi-agent deep reinforcement learning algo-
rithms in cooperative tasks, 2020. arXiv: 2006.07869.

[24] C. C.-Y. Hsu, C. Mendler-Dünner, and M. Hardt, Revisiting
design choices in proximal policy optimization, 2020. arXiv:
2009.10897.

[25] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I.
Mordatch, Multi-agent actor-critic for mixed cooperative-
competitive environments, 2017. DOI: 10.48550/ARXIV.1706.
02275.

[26] P. J. ’t Hoen, K. Tuyls, L. Panait, S. Luke, and J. A. La
Poutré, “An Overview of Cooperative and Competitive Mul-
tiagent Learning BT - Learning and Adaption in Multi-Agent
Systems,” pp. 1–46, 2006.

[27] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent
reinforcement learning: An overview,” Innovations in multi-
agent systems and applications-1, pp. 183–221, 2010.

[28] P. Fiorini and Z. Shiller, “Motion planning in dynamic envi-
ronments using velocity obstacles,” The International Journal
of Robotics Research, vol. 17, no. 7, pp. 760–772, 1998. DOI:
10.36288/roscon2012-900669.

[29] P. Hermes, M. Mulder, M. M. Van Paassen, J. H. Boering, and
H. Huisman, “Solution-space-based analysis of the difficulty
of aircraft merging tasks,” Journal of Aircraft, vol. 46, no. 6,
pp. 1995–2015, 2009, ISSN: 15333868. DOI: 10.2514/1.42886.

[30] G. A. Mercado Velasco, M. Mulder, and M. M. Van Paassen,
“Analysis of air traffic controller workload reduction based
on the solution space for the merging task,” AIAA Guidance,
Navigation, and Control Conference, no. August, 2010. DOI:
10.2514/6.2010-7541.

[31] C. Borst, C. Westin, and B. Hilburn, “An investigation into
the use of novel conflict detection and resolution automation
in air traffic management,” SIDs 2012 - Proceedings of the
SESAR Innovation Days, no. November, 2012.

[32] P. Moritz, R. Nishihara, S. Wang, et al., Ray: A distributed
framework for emerging ai applications, 2017. arXiv: 1712.
05889.

[33] E. Liang, R. Liaw, R. Nishihara, et al., “Ray rllib: A com-
posable and scalable reinforcement learning library,” [Online].
Available: https://github.com/ray-project/ray.

[34] ICAO, Doc 4444 - PANS-ATM, Procedures for Navigation
Services – Air Traffic Management, 16th ed. International Civil
Aviation Organisation, 2016.

[35] E. Sunil, J. Ellerbroek, J. Hoekstra, et al., “Analysis of
airspace structure and capacity for decentralized separation
using fast-time simulations,” Journal of Guidance, Control,
and Dynamics, vol. 40, no. 1, pp. 38–51, 2017.

[36] T. Langejan, E. Sunil, J. Ellerbroek, and J. Hoekstra, “Effect
of ads-b characteristics on airborne conflict detection and
resolution,” in Sixth SESAR Innovation Days, 8th – 10th
November 2018, 2018.

[37] M. Tra, E. Sunil, J. Ellerbroek, and J. Hoekstra, “Modeling the
intrinsic safety of unstructured and layered airspace designs,”
in Twelfth USA/Europe Air Traffic Management Research and
Development Seminar, 2017.

https://arxiv.org/abs/1808.03841
https://doi.org/10.1016/S0951-8320(01)00096-5
https://doi.org/10.1016/S0951-8320(01)00096-5
https://doi.org/10.3390/AEROSPACE7060079
https://doi.org/10.3390/AEROSPACE7060079
https://doi.org/10.4233/UUID:AF94D535-1853-4A6C-8B3F-77C98A52346A
https://doi.org/10.4233/UUID:AF94D535-1853-4A6C-8B3F-77C98A52346A
https://arxiv.org/abs/2006.07869
https://arxiv.org/abs/2009.10897
https://doi.org/10.48550/ARXIV.1706.02275
https://doi.org/10.48550/ARXIV.1706.02275
https://doi.org/10.36288/roscon2012-900669
https://doi.org/10.2514/1.42886
https://doi.org/10.2514/6.2010-7541
https://arxiv.org/abs/1712.05889
https://arxiv.org/abs/1712.05889
https://github.com/ray-project/ray

	9f9ba38e-68d8-4da7-8f39-700268802191.pdf
	Introduction
	Theoretical Background
	Conflict Detection
	Prioritization of Intruders

	Reinforcement Learning Method
	Markov Decision Process
	RL Method
	Multi-Agent RL
	State Formulation
	Reward Formulation
	Action Space

	Conflict Resolution Algorithms
	Velocity Obstacles
	Solution Space Diagram
	SSD in Conflict Resolution
	SSD in Conflict Prioritization
	Modified Voltage Potential

	Experiment Design
	Simulation Environment
	Training Architecture
	Challenges of Model Training
	Experiment Specifications
	Independent Variables
	Dependent Variables

	Experiment Hypotheses
	Results
	Training Results
	Improving SSD with Ruleset
	Conflicting Aircraft
	Closest Aircraft
	Removal of Aircraft

	Generalized Traffic Scenario
	Safety
	Efficiency

	Discussion
	RL Model Settings
	SSD with Conflict Prioritization
	Recommendations

	Conclusion

