Conflict = Prioritization
with Multi-Agent Deep

o .

he Universiteit Delft

]
TUDelft

Conflict Prioritization with Multi-Agent Deep
Reinforcement Learning

by

Daan Cuppen

to obtain the degree of Master of Science
at the Delft University of Technology,

Student number: 4488024
Thesis committee: Prof. dr. ir.].M. Hoekstra, TU Delft, Supervisor
Thesis committee: Dr.ir.]J. Ellerbroek, TU Delft, Supervisor
MSc M.J. Ribeiro, TU Delft, Supervisor
Dr. Alessandro Bombelli, TU Delft, External Examiner

An electronic version of this thesis is available at http: //repository.tudelft.nl/.

%
TUDelft

Contents

List of Figures iii
List of Tables A
Nomenclature vi
I Scientific Article 2
II Preliminary Report [already graded] 3
1 Introduction 4
1.1 Thesis Objective and Research Questions. 5

1.2 ResearchApproach L e 7

1.3 ResearchScope L e 8

1.4 Outline ReportStructure L e e 9

2 Literature Review 10
2.1 Conflict Detectionand Resolution L .. 10
2.1.1 Basic Concepts and Definitionso 10

2.1.2 Conflict Detection and Resolution Drones Taxonomy 12

2.1.3 ConflictDetection e e e 16

2.1.4 VelocityObstacles oL e e 17

2.1.5 Solution SpaceDiagram e e e e e 19

2.1.6 Optimal Reciprocal Collision Avoidance Method. 21

2.1.7 Conflict Prioritization e 23

2.1.8 DependentVariables. L 24

2.2 Reinforcement LearningBasics Lo 25
221 Introduction. L e e e 26

2.2.2 Methodology. e 26

223 Taxonomoy Lo e e e e e e e e e e e e e 26

2.2.4 Markov Decision Processeso 27

2.2.5 Reward, Policy and Value Function. L. L L 27

2.2.6 OptimalPolicies e e e e e 28

2.2.7 Model-Basedvs Model-Free oo 30

2.2.8 Value-BasedMethods L 30

2.2.9 Policy GradientMethods. L Lo 31

2.3 Advanced ReinforcementLearning L. Lo 32
2.3.1 Function Approximation.t e e e e e e e e e e 32

2.3.2 Multi-Agent Reinforcement Learning L 36

2.3.3 Challenges in Multi-Agent Reinforcement Learning 37

234 ControlScheme L 38

2.3.5 Reinforcement Learning in Multi-Agent Collision Avoidance Setting. 39

2.3.6 Advanced Algorithms L L 40

2.3.7 Discussionon Relevant Literature 42

2.3.8 Description on PPO implementation 0. 43

3 Preliminary Analysis 44
3.1 ResearchScope. e 44
3.2 ResearchMethodology e 44
3.3 Single-Agent Setting L L e e e e e e 45
3.3.1 ExperimentGoals e e e e e e e e 45

Contents ii

3.4

3.5

3.3.2 ExperimentScenario. Lo o0 o e 45
333 Model L e 46
3.34 ModelSettings. e 48
3.3.,5 ExperimentHypotheses Lo 50
3.3.6 ExperimentResults e e e e 50
Multi-Agent Setting L L e e e e e e 53
3.4.1 GoalsMulti-Agent Experiment. L Lo 53
3.4.2 ExperimentScenario. Lo o0 e e 53
343 Model e 54
34.4 ModelSettings. L e e e 54
3.4.5 ExperimentHypotheses L 55
3.4.6 ExperimentResults L L 55
Experiment Proposal Final Thesis. L oL 57
3.5.1 ExperimentDesignThesis oL 58
3.5.2 Training Architecture L. L e 59
3.5.3 Proposed Initial System Settings Lo 60

4 Conclusion 62

List of Figures

1.1 Schematic overview of single- and multi-agent experiment and their relation to each other and

the design of the multi-agent experiment in the main partofthethesis 8
1.2 Schematic overview of general multi-agent experiment and its relation to the finalmodel 8
2.1 Schematic Overview of horizontal (Rp) and vertical separation limits (k,) 11
2.2 Scenario in which a conflict between ownship and intruder is present at #; and a loss of separa-

tion (LoS) at #,. Ownship has velocity Vo, nship and radius of protected zone Rp. 11
2.3 Overview of categorization CD&R algorithms [73] 13
2.4 Overview of surveillance typesfrom [73] L 14
2.5 Overview of avoidance planning typesfrom [73] Lo 15
2.6 Description of relation between d¢pq, d;el, Vre; and positions and velocities of ownship and in-

truder, adapted from [73] e 17
2.7 Robots A and B are moving with velocities v4 and vp respectively, adapted from [21] 18
2.8 Thecollision cone CC4 g adapted from [21] 18

2.9 The initial situation (a) for which the collision cone for ownship and intruder is constructed (b)
and transformed from the relative velocity to the absolute velocity reference plane (c) from [2] . 19
2.10 Velocity obstacles from 3 intruders (a) are combined with the performance limits of the aircraft

(b) toformthe SSD (C) [2] ¢ o v it e e e 20
2.11 Solution points with basic coordination ruleset without priorityfrom [2] 21
2.12 Solution points with basic coordination ruleset with with priorityfrom [2] 21

2.13 The initial situation (a) for which the velocity obstacle Vqul p 18 constructed (b) which is trans-
formed to the absolute velocity plane assuming robot B selects its velocity from Vg (c), adapted

from [94] e e e e e e 22
2.14 Construction of velocity set ORC A} ; by addition of %u to vzp “from[94] 23
2.15 Theright-of-wayrulesfrom [1] e 24
2.16 RLtaxonomy adapated from [101] e e 27
2.17 Interaction loop between agent and environment Lo Lol 27
2.18 Optimal policy would select action ax basedonstateS 29
2.19 The bias-variance trade-off 32
2.20 Schematic representation of deep neural network in which the forward and backward pass are

visualized L e e 33
2.21 Unrolled LSTM network adapted from [63] 35
2.22 Cell structure of LSTM network adapted from [63] 35

2.23 On the left a situation with two agents is depicted which want to pass an obstacle and require
coordinate to successfully accomplish this task. The Q-table for this situation is visualized on

theright. Adapted from. [8] e 37
2.24 A step size thatis too large resultsin a fall of the cliff. [69] 41
2.25 Clipped surrogate objective from [77] 41

3.1 Schematic overview of single- and multi-agent experiment and their relation to each other and

the design of the multi-agent experiment in the final thesis 45
3.2 Screen capture of the BlueSky Simulator which displays the experiment scenario with the orig-

inal implementation of the SSD algorithm. The two screen captures represent the initial state

(a) and the LoS of AC00. The blue circle indicates aircraft ACO0 46
3.3 SSDofbasecaseafter5Sseconds 46
3.4 Architecture of the Actor-Critic network for the single-agent experiment 48
3.5 Total loss of centralized model for increasing numberofsteps 50

3.6 Value loss of centralized model for increasing number ofsteps 50

iii

List of Figures iv
3.7 Three screen captures of the BlueSky Simulator which show the solution of the agent in the
single-agent experiment. The three screen captures represent the initial state (a), conflict avoid-
ance maneuver between AC00 and ACO01 (b) and the conflict avoidance maneuver between
ACO0and ACO2 (C) . v v v v e e e e e e e e e e e 51
3.8 Visualization of activation/deactivation of velocity obstacles for intruding aircraft for AC00 in
the first 175 seconds of simulation time. o . 52
3.9 Three screen captures of the multi-agent experiment with the original implementation of the
SSD algorithm. Conflict resolution with SSD is activated in AC00 and ACO1. The three screen
captures represent the initial state (a), the start of conflict maneuver of AC00 and ACO01 (b) and
theloss of separation of ACOL (C). . . .« v v v vt i i e e e e e e e e e e e e e e e 54
3.10SSDatt=0sforACO0 e 54
311 SSDatt=0sforACOL e e e e e e 54
3.12 Total loss of centralized model for increasing numberofsteps 55
3.13 Value loss for centralized model for increasing numberofsteps 55
3.14 Screen capture of the BlueSky Simulator which displays three screen captures the solution for
the multi-agent scenario found by the centralized controller. The three screen captures repre-
sent the initial state at £ = 0 s (a), begin conflict avoidance maneuver between AC00 and ACO01 at
t =60 s (b) and the end of the conflict avoidance maneuver between AC00 and ACO01 at ¢ = 150
S(C) o e e e e e e e e 56
3.158SDatt=0sforACO0 @ e 56
316 SSDatt=0sforACOL e 56
3.17 Visualization of activation/deactivation of velocity obstacles for intruding aircraft for AC00 in
the first 175 seconds of simulation time. L o 57
3.18 Visualization of activation/deactivation of velocity obstacles for intruding aircraft for AC01 in
the first 175 seconds of simulationtime o oL 57
3.19 Structure of layout from which scenarios are sampled, adapted from [102] 58
3.20 Schematic overview of communication between Ray Cluster and environment from [59] 59
3.21 Schematic Overview of communication between policy server and BlueSky simulator 60

2.1
2.2
2.3

2.4

2.5

3.1

3.2
3.3

List of Tables

Summary basic definitions in field of Conflict Detection and Resolution (CDR) 12
Different types of avoidance planning with accompanying look-ahead time ranges 15
Summary of parameters SSD. Parameters are assumed to belong to ownship if not explicitely
defined otherwise. L 20
Eight rulesets which can be applied to the Solution Space Diagram to compute the velocity vec-
tor of an avoidance maneuver adaptedfrom [2] 21

Overview of dependent variables used in the assessment of SSD algorithm as a CD&R method [2] 25

Characteristics of Simulation AircraftinBlueSky 46
Specifications Observation Space 49
PPO algorithm hyperparameter specifications 50

List of Abbreviations

ADS-B Automatic Dependent Surveillance Broad-

cast
Al Artificial Intelligence
ANN Artificial Neural Network
ARV Allowed Reachable Velocities
ASM Air Space Management
ATC Air Traffic Control
ATCO Air Traffic Controller
ATFM Air Traffic Flow Management
ATM Air Traffic Management
ATS Air Traffic Services
BVLOS Beyond Visual Line of Sight
CD Conflict Detection
CDR Conflict Detection and Resolution
CNN Convolutional Neural Network
CPA Closest Point of Approach
CR Conflict Resolution
DAA Detect and Avoid
DDPG Deep Deterministic Policy Gradient
DEP Domino Effect Parameter
FAA Federal Aviation Administration
FF Free Flight
FL Flight Level
FRV Forbidden Reachable Velocities
FV Forbidden Velocities
GS Ground Speed

ICAO International Civil Aviation Organisation

IPR Intrusion Prevention Rate
LoS Loss of Separation
MARL Multi-Agent Reinforcement Learning

Nomenclature

MDP Markov Decision Process

MVP Modified Voltage Potential

NN Neural Network

ORCA Optimal Reciprocal Collision Avoidance

PPO Proximal Policy Optimization

RL Reinforcement Learning

RV Reachable Velocities

SSD Solution Space Diagram

TAS True Air Speed

TCAS Traffic Alert and Collision Avoidance System

UAV Unmanned Aerial Vehicles

UTM Unmanned Aircraft System Traffic Manage-
ment

VO Velocity Obstacles

List of Symbols

a Step size policy update

€ Exploration Rate

Y Discount Factor

7 Policy

T Look-ahead time window

6 Model parameters

A Advantage

a Action

L Loss

O Observation

q Action-value function

r Reward

S State

t Time

v Value function

Report Outline

This report contains work from the preliminary and final phase of the MSc Thesis project. The report is
divided into two parts:

I Scientific Article: The findings of the research in the final part of the thesis are presented in the form of
a scientific article.

II Preliminary Report [already graded]: In the preliminary phase, a literature study was first conducted.
Thereafter, exploratory experiments were conducted to synthesize a research proposal for the final
phase of thesis.

|

Scientific Article

Conflict Prioritization with Multi-Agent Deep
Reinforcement Learning

D.J.G. Cuppen (MSc Student)
Supervisors: Dr. Ir. J. Ellerbroek, Prof. Dr Ir. J.M. Hoekstra and MSc M.J. Ribeiro
Section Control & Simulation, Department Control and Operations, Faculty Aerospace Engineering
Delft University of Technology, Delft, The Netherlands

Abstract—To facilitate an increase in air traffic volume and
to allow for more flexibility in the flight paths of aircraft, an
abundance of decentralized conflict resolution (CR) algorithms
have been developed. The efficiency of such algorithms often
deteriorates when employed in high traffic densities. Several
methods have tried to prioritize certain conflicts to alleviate part
of the problems introduced at high traffic densities. However,
manually establishing rules for prioritizing intruders is a difficult
task due to the complex traffic patterns that emerge in multi-
actor conflicts. Reinforcement Learning (RL) has demonstrated
its ability to synthesize strategies while approximating the system
dynamics. This research shows how RL can be employed to
improve conflict prioritization in multi-actor conflicts. We employ
the Proximal Policy Optimization algorithm with an actor-critic
network. The RL model decides on intruder selection based on
the local observations of an aircraft. It was trained on a limited
number of conflict geometries in which it was able to significantly
reduce the number of intrusions. A conflict prioritization strategy
was then formulated based on the decisions taken by the RL
model during training. We show that the efficacy of a conflict
resolution algorithm that adopts a global solution, the solution
space diagram (SSD) in this research, can be improved when
utilizing this conflict prioritization strategy. Finally, these results
were compared to the performance of a pairwise CR method, the
Modified Voltage Potential (MVP). Even though MVP resulted
in a smaller number of intrusions compared to SSD with conflict
prioritization, the prioritization strategy did reduce the gap
between the two CR methods.

Index Terms—Decentralized Conflict Resolution, Multi-agent
Reinforcement Learning, Proximal Policy Optimization, Solution
Space Diagram, Modified Voltage Potential, BlueSky ATC Sim-
ulator

I. INTRODUCTION

An increment in number of flights is expected in both the
manned and unmanned aviation sector [1]—[3]. The workload
of the Air Traffic Controller (ATCO) is often seen as the bot-
tleneck that would inhibit a further growth in air traffic volume
[4]. One the core tasks of Air Traffic Control (ATC) is Conflict
Detection and Resolution (CD&R) [5]]. Conflict detection (CD)
describes the mechanism which monitors whether conflicts
are present. Conflict resolution (CR) is applied to establish
a conflict-free trajectory once a conflict is detected [6]]. The
free flight (FF) concept can facilitate an increase in air traffic
volume and allow for a more optimized flight path. The free
flight (FF) concept proposes to transition the responsibility
for assuring safe traffic separation from ATC to the individual
aircraft (airborne separation). CD&R would evolve from a
centralized to a decentralized process, decreasing the workload
and pressure on ATCOs to guarantee global safety.

A variety of decentralized CD&R algorithms exists. Geo-
metric CR algorithms were found to be very successful in
terms of safety and efficiency in a low traffic density. In
a conflict with two aircraft, methods such as the Solution
Space Diagram (SSD) [7]], can achieve a geometrically optimal
solution [8]]. However, in a high traffic density with multi-
aircraft conflicts, the solution can become sub-optimal. The
sub-optimal solution is caused by the complex dynamics
which arise when multiple aircraft perform conflict avoidance
manoeuvres simultaneously. In the case of SSD, all conflicts
are considered simultaneously and a global solution is adopted.
In a multi-conflict situation, the only solution could be a sharp
turn away from the target or in the extreme no feasible solution
exist.

Prioritization of conflicts is a well-known phenomenon in
aviation. A prioritization between aircraft has been made based
on various criteria such as current velocity [9], lookahead time
[10] and only considering conflicts with aircraft on the right
(ROTW) [11]. Nonetheless, these methods have proven to be
not so efficient, because they do not prioritize based on the
current conflict geometry. It is hard to analytically establish a
fixed ruleset which can be applied to a dynamic multi-aircraft
conflict with a continuously changing conflict geometry.

Reinforcement learning (RL) could provide a solution by
leveraging its ability to approximate the system dynamics and
to determine a conflict prioritization strategy based on conflict
geometry. The performance of RL models exceeds expert
human-level performance on strategic games. For example,
a state-of-the-art agent called AlphaGo was able to beat the
world champion in Go [[12]] and more recently, the Alphastar
program defeated a top professional player in Starcraft II
[13]. This research aims to construct a conflict prioritization
policy which will be applied to an existing CR method with
RL. The RL framework consists of an actor-critic network
which implements Proximal Policy Optimization (PPO) [14].
PPO has shown promising results for multi-agent collision
avoidance algorithms in aviation [15]], [16] and robotics [17].

The simulations required for the training and evaluation
of the deep RL model in this article, were performed in the
BlueSky ATC simulator [18]]. The SSD method was selected
as the CR algorithm to apply conflict prioritization to. SSD is
selected, because it implements a global solution which often
results in a decrease in safety and efficiency due to a saturated
solution space. The improvement upon SSD with conflict pri-
oritization is then directly compared with a pairwise solution
method, the Modified Voltage Potential (MVP) method [19].

Although MVP does not implement a global solution, it has
proven to be very efficient at high traffic densities.

The detection and prioritization of conflicts in aviation is
elaborated upon in Subsequently, the reinforcement
learning architecture is discussed in The conflict
resolution algorithms that are used in this research are ex-

plained in Thereafter, the experiment design is
elaborated upon in and the results are presented in

Finally, a discussion and conclusion are provided
in [section VIII] and [section IX] respectively.

II. THEORETICAL BACKGROUND

A. Conflict Detection

In this research, a state-based conflict detection mechanism
is utilized for all experimental conditions. This mechanism
assumes a linear propagation of the current state of all aircraft
involved. Conflict resolution is applied in a 2-dimensional
plane which means that only heading and velocity change can
be employed for a conflict resolution manoeuvre.

In manned aviation, the separation distance has to be obeyed
with respect to all heading angles, thus forming a circle with
the aircraft at its center. This circle is called the protective
zone with radius R,,. A loss of separation (LoS) for ownship
occurs when an intruder penetrates the protected zone. The
terminology ownship and intruder is adopted from Ribeiro et
al. [20] and denotes the perspective of the conflict situation.
The conflict is described from the perspective of ownship,
while the other involved aircraft are defined as intruders.

This section further explains the characteristics of a conflict
situation, such as visualized in in more detail.
The Closest Point of Approach (CPA) is the point in which
the distance between two aircraft in motion will reach its
minimum value. The distance to Closest Point of Approach
(dcpa) 1s defined as the distance between two aircraft at CPA.
The Time to Closest Point of Approach (f.p.) is the time until
the closest point of approach is reached. The ., and d.p, can
be found with [Equation 1| and [Equation 2] respectively.

drel : Vrel
tepg = ———— 1
P |Vrel|2 ()
dcpa = \/dzez - tZCPA) Vgel 2)

The time until a loss of separation occurs t;,, is computed
with A conflict occurs if the current path of
an aircraft will result in a loss of separation within a pre-
defined lookahead time window 7. Combined with the stated
assumptions on linear state propagation, a conflict occurs when
tin < 7 and depe < Rpz [20]. The term ¢;, can also be
referred to as the time to loss of separation tr,,g.

R2 _ d2
PZ CPA (3)

tin = tocpa — Vo
re

f N,
intruder N

-.—-—”

~

." V

intruder

-V

intruder

am——

Vawnship

7
M P ’
-

Fig. 1: Description of relation between dcpa, drel, Vre; and positions and
velocities of ownship and intruder. Adapted from Ribeiro et al. [20].

B. Prioritization of Intruders

A common approach to apply prioritization in collision
avoidance is a centralized approach in which aircraft are
assigned a low or high priority based on parameters such
as current velocity [9]. Aircraft with low priority should
avoid aircraft with a high priority. The right-of-way (ROW)
rules as part of the Rules of the Air (RotA) are perhaps the
most famous example of prioritization in conflict resolution
[11]]. The two rules most relevant for this research are for
converging and head-on conflicts. For converging conflicts,
the aircraft that comes from the right has the Right-of-way
and does not need to alter its flight path. The other aircraft
has to perform a conflict avoidance manoeuvre. For a head-on
conflict, both aircraft have to avoid to the right. It was found
that following the RotA did not always reduce the complexity
in airspace operations. In a pairwise conflict, the responsibility
for maintaining safe separation is appointed to one aircraft
while it is often more advantageous if both aircraft perform a
conflict resolution manoeuvre to solve the conflict.

Conflict prioritization has also been applied to the SSD al-
gorithm [[10]. A conflict prioritization strategy was constructed
based on a fixed set of rules. In order of importance, the
rules were based on 7, t1,5, dros and dcpe. A sequential
approach was taken, which means that a conflict rule with a
higher priority was selected if the current priority rules still
resulted in a completely saturated solution space, and thus no
feasible solution. The approach showed improvement over the
original SSD method. The major limitations of the research
were that only a limited number of rules and a limited number
of combinations of those rules were evaluated. Moreover, the
rules were not dependent on the conflict geometry.

Conflict prioritization in this research is represented by a
binary decision at each simulation timestep. When a conflict

is encountered, each aircraft for which state information is
available (dependent on ADS-B constraints [21]) is either
incorporated in the conflict resolution or completely ignored.

III. REINFORCEMENT LEARNING METHOD
A. Markov Decision Process

On an agent level, the mathematical framework used to
describe the RL problem of this research is a Markov Decision
Process (MDP). An MDP is a mathematical framework in
sequential decision making [22]. An MDP can formally be
described with the tuple (S, A, 7, R, \), where S is the
set of all states, A the set of all actions, 7 denotes the set of
transition probabilities (the probability that action a; in state s;
results in state s;41), R the set of all rewards and ~y represent
the discount factor.

At time t an agent observes state s; of the system and
takes action a; € A. Applying action a; to the environment
transforms the system to state s; 11 € S and the agent receives
reward ;41 € R. The agent samples its actions from the policy
m(als). The policy tries to find the optimal action a based on
state s. The goal of the agent is to maximize the discounted
reward Gy which is computed according to with
0 < v < 1. The discount factor reduces the importance of
future rewards and enhances the influence of the more current
rewards.

Gi=>_7'r, “)
t=0

B. RL Method

The Proximal Policy Optimization (PPO) network architec-
ture is adopted for this research [14f]. PPO is a policy gradient
method where the policy is updated in a controlled way to limit
the difference between the old and new policy. Setting a con-
straint on the size of the policy update, increases the stability
of the RL algorithm. PPO has been successfully implemented
in a multi-agent collision avoidance setting [[15]—[17]]. For this
research, PPO is selected based on four criteria:

+ Robustness: The PPO algorithm inherently supports ro-
bustness due to the design of the PPO architecture which
limits the variance between the old and new policies.
The PPO model showed state-of-the art performance with
limited hyperparameter tuning in cooperative multi-agent
environments [23]].

« Experience Replay: PPO does not rely on experience
replay for convergence which is advantageous, because
evolving behaviour of agents makes the environment non-
stationary.

o Hyperparameters: Tuning of the hyperparameters of a
RL algorithm is a time-consuming task and of utmost
importance; slight adjustments in the hyperparameter
could transform a divergent algorithm into a convergent
algorithm. The PPO algorithm is robust for hyperparam-
eter settings [23]].

o Action Space: In this research, the output of the RL
algorithm will be binary. As seen from one agent, the

algorithm will decide which intruders it considers (1) and
which intruders it ignores (0). The PPO algorithm allows
for a discrete action space and performs well on it [24].

The PPO algorithm is implemented with an actor-critic
network. In an actor-critic network, the policy-network is the
actor and determines which action to choose based on the
state. The value-network is the critic. Since the value function
is used when determining the policy gradient and thus used
for policy updates, the critic aids in the policy update [22].

Various implementations of PPO exists. In this research,
the implementation of PPO with a clipped objective function
is implemented. The clipped objective function LE“IF can be
found in The policy update r; is clipped by (1 +
€) and (1 - €) for a positive advantage and negative advantage
Ay, respectively [14], with € as a hyperparameter. The policy
update r; is defined as the ratio between the old and new
policy or —re(at30) _ The actor policy is denoted by 7y with

Toguq (at]se)”
0 as the model parameters.

LCLIP(g) = k, [min <rt(9)/lt, clip (r¢(0),1 —€,1+¢) At)] 5)

C. Multi-Agent RL

Multi-Agent Reinforcement Learning (MARL) is a branch
within RL in which a system of autonomous agents is simul-
taneously interacting in a common environment [25]. In this
research, multiple agents simultaneously apply conflict prior-
itization, which thus identifies as a multi-agent setting. The
multi-agent system in which aircraft apply conflict resolution
is cooperative [26]. The agents pursue a common goal in a
cooperative environment. They assist each other to maximize
a global reward. The system therefore employs a shared reward
function.

The domain of multi-agent RL introduces new problems
due to the increased complexity of interacting agents while
they are evolving. The main challenges are the nonstationarity
of the environment [25] and the curse of dimensionality [27].
To tackle these problems, this research adopts the paradigm
of ”Centralized Learning with Decentralized Execution”. The
agents sample actions based on their own observations (de-
centralized), but the policy is updated with a centralized
value function based on experience of all agents (centralized).
Experience consists of states, actions and rewards. For own-
ship, the input of the centralized value function consists of
its own observation vector plus all observations and actions
of the observed intruding agents. The environment becomes
stationary for ownship by including the observations and
actions of the other intruding aircraft. Furthermore, to deal
with the scalability, a shared policy is implemented. With a
shared policy, all agents sample from the same policy reducing
the number of trainable parameters and thus the training time.
The actor-critic network architecture is visualized in

D. State Formulation

Selecting the right variables for the formation of the state
vector of the reinforcement learning algorithm is a difficult

i i T
! Input 1+ Actor ! Output '
1 D : : :
: : | .
1 1 1 !
1) 1 1 !
1 Ownship | Sown : :
1
I : : :
: : | .
! S 1 1 :
1
: ' ' '
1 [l ! !
| Fmmmmmmmmmemssme---------- 1 1
! 1 Critic | 1
1 N\ 1 1 :
1 1
! (s1,01), ' ! '
1
1 1 . !
S2,Q Ve \ !
\Intruders (82, 02), FC I :\'/ v \/w !
1 ' ! S/ !
1 1 1 - !
1 1 1 :
1 1
1 (Sn, an) : 1 :
! — 128 128 : '
I g 1 !

Fig. 2: Schematic overview of actor-critic network architecture with central-
ized value function for a single time step. The input of the actor model consists
of the ownship state sown. The states and actions of intruding aircraft 1
through n are combined with the the state of ownship to form the input of the
critic network. Each fully connected (FC) layer in both the actor and critic
network consists of 128 hidden nodes. The output of the actor and critic model
consists of the action vector a and value function estimation v, respectively

task. Adding a dimension to the observation space causes
the computational complexity to exponentially increase [27].
Thus, it is beneficial to minimize the size of the observation
vector.

The t.p, parameter is selected to provide an indicator
on how imminent a LoS is with an intruding aircraft. The
lat,e; and lon,. denote the relative latitude and longitude
between ownship and an intruder as seen from the body-fixed
coordinate system of ownship. A combination of lat,.; and
lon,¢; can provide ownship with both a relative position of the
intruder and a distance to the intruder D. The distance D can
provide further context to ¢.,,. The state vector si of observed
aircraft ¢ at time ¢, is defined according to The
full definition of the state vector s; can be found in [Equation 7
in which n represents the number of observed ac. The size of
the observation vector can be computed by multiplying the
number of observed aircraft n with the number of features
per aircraft. In this research n equals 10 and the number of
features 3.

) St

N k
S% = lat;elt (6) Sy =) (7)

lonielt)

sy

The number of observed aircraft n was set at 10 to stimulate
a highly saturated solution space and allow for cooperative
behaviour whilst limiting the size of the actor-critic model.
The limited model size allows the RL model to train within
a practical amount of time. The number of aircraft in the
experiments on which the RL model is trained, is limited to

11 such that each aircraft can observe 10 intruders and has
information on all aircraft that simultaneously operate in the
same airspace.

E. Reward Formulation

The reward function r (s;) for a single aircraft can be found
in A negative reward is given when an intrusion
is first encountered.

r (5)) = { 0—10

F. Action Space

Loss of Separation occurs
otherwise

(®)

The action vector should be able to individually include
(1) or exclude (0) an intruder from the avoidance manoeuvre
calculation. The action vector thus consists of binary variables.
For each observed aircraft ¢ action a; € {0, 1}. The complete
action vector at time ¢, a; is given by The last
action in the action vector is referred to as agqy. If aqy
equals 1, all intruders are included in the computation of
the of the avoidance manoeuvre. In this manner, the model
can opt for a non-prioritized conflict avoidance manoeuvre.
In principle, adopting a solution which prevents conflicts with
all surrounding intruders will prevent all intrusions. Such a
solution should be chosen when it does result in a quick, safe
solution.

a =4 ©)

Qnp
Aqll

IV. CONFLICT RESOLUTION ALGORITHMS

The proposed RL framework is applied to a decentralized
CR method in this research. This section first explains the
concept of velocity obstacles, which is the base of the CR
algorithm herein used. Thereafter, the Solution Space Diagram
(SSD) and Modified Voltage Potential (MVP) algorithms are
described.

A. Velocity Obstacles

The idea of implementing velocity obstacles for 2-
dimensional motion planning and obstacle avoidance was
introduced in 1998 [28]]. The concept of velocity obstacles is
explained with aid of [Figure 3p. The collision cone between
ownship and intruder is denoted with C'C. Assuming that
the current state is linearly propagated, any relative velocity
outside of collision cone C'C' guarantees a collision-free path
for ownship and intruder [28]]. Subsequently, the collision cone
can be transformed from the relative velocity plane to the
absolute velocity plane. This simplifies the conflict resolution
process since avoidance maneuvers can be planned and exe-
cuted in the absolute velocity plane. The transformation can

be performed according to in which @ is the

V

ownship

b c

Fig. 3: Construction of velocity obstacle of a single intruding aircraft (a). Visualization of multiple velocity obstacles caused by concurrent intruders (b). The

velocity obstacles of the intruding aircraft are combined with the performance limits to form the SSD (c) [7].

Minkowsky vector sum operator. The transformed collision
cone is called a velocity obstacle.

VO=CCsp® VB (10)

B. Solution Space Diagram

The first concept similar to the SSD as implemented by
Balasooriyan [7], was introduced by Van Dam et al. as “the
state vector envelope”. The state vector envelope has served
several other purposes [29]—[31]] before it was implemented
as a conflict resolution method [7]]. This research implements
the SSD in a similar fashion as Balasooriyan [7]. Therefore,
the construction process will be similar and is explained with
As explained before, displays the construc-
tion process of one VO belonging to one intruding aircraft. In
[Figure 3pb, ownship is displayed with three intruding aircraft
and their respective collision cones and velocity obstacles.
Finally, in [Figure 3k, the velocity obstacles are encapsulated
by the performance limits of the aircraft to synthesize the SSD
in its final form.

If the velocity vector of ownship is located within one of
the VOs, the ownship is in a conflict. Therefore, the union
of the 3 VOs is called the set of Forbidden Velocities (FV)
and can be found with [Equation 11| In [Figure 3¢ the set of
reachable velocities (RV) is displayed and is based on the
performance limits of the aircraft. The set of RV is denoted
by the area between two circles. The inner circle has radius
Vinin and the outer circle has radius V,,,4,. Assuming that no
other regulatory constraints are imposed, an aircraft is able to
turn to any desired heading hence the circular shape (for every
heading angle, the aircraft at least flies at least at V,,;, and
maximally at V,4,).

N
FV = U VO,

=1

Y

Division of the RV into the Allowed Reachable Velocities
(ARV) and Forbidden Reachable Velocities (FRV) is the final
step to synthesize the SSD. The FRV and ARV can be found
with [Equation 12| and [Equation 13} respectively.

FRV = RV NFV (12)

ARV = RV NFVY¢ (13)

C. SSD in Conflict Resolution

The SSD diagram provides a set of allowable reachable
velocities. To utilize the SSD diagram as a conflict resolution
method, a methodology has to be established to select the
most optimal desired velocity vector from the set of allowable
reachable velocities. The shortest path out rule showed the
most promising results in terms of safety, stability and effi-
ciency [7] and will thus be used in this research. The shortest
path out rule can be seen in which is a zoomed in
version of [Figure 3. Conflict prioritization can be relevant for
the SSD algorithm, because it implements a joint solution. A
joint solution causes quick saturation of the solution space at
high traffic densities which in the extreme could result in no
feasible solution.

sol

Fig. 4: Current velocity solution vector (red) is in the set of FRV. With
conflict resolution, the desired velocity solution vector (green) is computed
by applying the shortest path out rule to the SSD

D. SSD in Conflict Prioritization

This research will apply conflict prioritization to the SSD
method. For the SSD algorithm, this translates to inclu-
sion/exclusion of VOs, belonging to the intruding aircraft, in
the SSD. The influence of conflict prioritization on the SSD is
illustrated in[Figure 5] The velocity vector in[Figure S is in the
FRYV, which means that the current state results in a collision.
Conflict resolution is thus required. When all 3 intruders are
taken into account, the aircraft will adapt its velocity vector
to Vo1, which is found with the shortest path out rule. Due to
the highly saturated solution space of the SSD, V,; requires
the aircraft to make a sharp turn of almost 180 degrees. The
right turn results in an intrusion at time ¢5 as can be seen in
[Figure 3.

In[Figure 5k, one intruding aircraft is not taken into account
by deactivating its VO. In the new situation, ownship will
continue to fly straight, resulting in [Figure 5d. No intrusions
occur in the new situation. The initial conflict of ownship
is partly solved by the conflict avoidance maneuver of the
intruding aircraft. Ownship can continue to fly straight and
let the intruding aircraft completely resolve the conflict or
ownship can reactivate the intruding aircraft and assist in the
conflict resolution process.

It can be beneficial to temporarily exclude a VO from the
solution space to prevent an aircraft making a sharp turn. A
sharp turn would result in a significant deviation from its
original flight path, from which the aircraft has to recover.
The aircraft cannot instantaneously change its heading. Large
heading changes take time, during which it is not guaranteed
that ownship will not encounter an intrusion.

When the solution space is highly saturated, intruding
aircraft that for example are relatively far away from ownship,
seem like a good candidate to deactivate. The influence of
ignoring an intruding aircraft can vary. If the velocity solution
vector remains similar, exclusion of the VO has no effect.
However, when the velocity solution vector does change,
ownship essentially resolves towards a velocity solution vector
in the FRV. In case the previously disabled intruder does not
change its path, it does mean that the conflict with this intruder
will not be resolved and the time to loss of separation will
decrease. This is not necessarily negative when the new state
of the ownship (who has now resolved conflicts with other
intruders) may lead to a more efficient resolution manoeuvre
for this remaining intruder. Nevertheless, we do expect the
intruder to change its state in order to avoid LoS with the
ownship. It may even be that the CR manoeuvre performed
by the intruder to avoid ownship is sufficient to resolve the

conflict, as exemplified in
E. Modified Voltage Potential

The MVP [[19] method is part of the group of force field
algorithms, in which a parallel is made between aircraft and
electrically charged particles. The idea behind a force field
algorithm, is that all aircraft are negatively charged which
creates a repulsive force between them which should facilitate

safe separation. In a conflict between ownship and

ty Vsol t
b) d)
:"‘_ N\\ ;””) \\
1 x H] k 1
1 ! i '
!] !]
kY i \, J

,,,,,

Fig. 5: The left two images visualize the progression of a conflict geometry
when ownship does not apply conflict prioritization at time ¢1 (a) and ¢2 (b).
The two images on the right show the same conflict geometry when conflict
prioritization is applied to ownship at time ¢; (c) and ¢2 (d).

intruder is visualized. The goal of the MVP method is to
”push” the location of the closest point of approach outside of
the protected zone in the same direction as the d.p, vector, to
resolve the conflict. This can be accomplished by addition of
the Vv p solution vector to V,..;. The MVP solution vector
is always perpendicular to V,..;. The V;,,, vector indicates the
shortest path out solution from the collision cone, which is
the geometrically optimal way to solve the conflict, resulting
in minimal path deviation [8]. In a multi-aircraft conflict,
the MVP method computes its velocity solution vector by
separately solving each conflict and subsequent addition of
all individual velocity solution vectors.

In MVP and SSD will be directly compared to
relate the behaviour of pairwise-summed and joint resolution
approaches. In a high traffic density, pairwise-summed meth-
ods such as MVP tend to induce more secondary conflicts
during conflict resolution. The secondary conflicts can be
beneficial, because they cause a redistribution of the traffic.
This creates space for new resolution manoeuvres, which were
not apparent before. Consequently, its performance tends to be
superior in terms of intrusions, compared to a joint resolution
approach. With SSD, an increase in traffic density, will likely
result in a decrease of the available solution space. SSD does
however tends to result in fewer conflicts [20], being better
at conflict prevention. Thus, it is interesting to see if conflict
prioritization can adapt the characteristics of SSD such that it
becomes better at dispersion of traffic in multi-actor conflict
situations, while remaining proficient in conflict prevention.

Vintruder Pz
- ~/
- S
'\, b‘, \\
7
. \
\\:Vintruder I, \‘
.] !
vownship l\ dcpa Ve i’ -
Vig NN CPA
r N } A
N i ’
V. ~'." Sso - -7
opt Ve

Fig. 6: For the given conflict geometry, the velocity solution vector found by
MVP is indicated with Vary p [[19]. The geometrically optimal solution Vo p¢
[8]] is also provided.

V. EXPERIMENT DESIGN
A. Simulation Environment

The simulations are performed in the BlueSky environment.
BlueSky is a simulator which is established to facilitate a
general platform on which ATC research can be performed.
This allows for better comparison of ATC research [1§]. A
great advantage of the BlueSky system is that it implements
a server-client architecture, which enables parallel running of
experiments on separate CPU nodes, thus several episodes can
run simultaneously.

B. Training Architecture

Multi-agent reinforcement learning is a computationally
expensive process. Maximizing the computational capacity of
the hardware utilized to train the model is beneficial, since
it reduces the training time. Ray is a distributed framework
which empowers systems to cope with intensive parallel
simulations of experiments [32]]. RLIib is part of the Ray
project and is a RL library which supports high scalability
[33]. With RLIib, the BlueSky server-client interface can
be leveraged for parallel collecting of experience. For every
simulation environment, a client is generated which connects
to a simulation node in its own thread by a multi-agent
environment. Every client can communicate with the server
without interfering with the other clients.

All environments first sample actions from the same actor
model. Subsequently, BlueSky is run for one simulation time
step dt, with conflict prioritization as determined by the
sampled actions. The simulation time step dt equals 2 seconds
in this research. The new state of BlueSky is processed in
the multi-agent environment interface and transformed into a
new set of observations and rewards. The observations, actions
and rewards are stored in the experience buffer. Once the
experience buffer size is equal to the predefined train batch
size, the experiments are resetted and the experience is used
to update the actor and critic network. An important step is
the postprocessing of the experience. During postprocessing
of the experience, the actions and observations for every time

step are shared among all agents. This is required to form the
input for the centralized value function. The PPO model trains
the policy in an on-policy fashion. Therefore, the experience
buffer is emptied after the policy update. An overview of the
RL framework can be found in

Observations Q RLIib
: y | —— |
_______________________ Rewards |
> Experience
BlueSky Buffer |Complete

Batch

PostProcessing
Experience

It 0o
(n L
Simulation !| Multi-Agent
Nodes : Env

Update Actor and

Actor Model Critic Network

]

Actions

Updated
weights

Fig. 7: Schematic overview of multi-agent RL training architecture and
visualization of integration RLIib framework with BlueSky.

C. Challenges of Model Training

The first challenge when designing the traffic scenario was
the sparsity of the rewards. The reward function (Eq 8)
provides sparse rewards, because a reward is only nonzero
when a LoS occurs. Achieving a convergent RL model with
sparse rewards is an arduous task, because the RL model
receives limited feedback from the environment which does
not enable the model to train in a practical amount of time.
Furthermore, between take-off and landing, an aircraft is not
continuously in conflict with one or more intruding aircraft.
For a considerable amount of the time, it will be conflict
free. If the aircraft is not in conflict, conflict prioritization
has no effect, because including/excluding of intruders does
not influence the velocity and heading of the aircraft. From
that perspective, it would be ideal to have many conflicts
and intrusion per unit of simulation time, because that would
reduce the sparsity of the rewards and increase the influence
of the RL model on the conflict situation. However, if the
traffic scenario becomes too complex, it becomes (almost)
impossible to solve, which will reduce the stability of the
learning process. Thus it was decided, instead, to have the RL
model resolve randomized conflict geometries during training.
The traffic scenario is designed such that the number and
placement of aircraft facilitate multi-aircraft conflict situations
in which the original SSD method fails, while limiting the
variability, complexity and length of the scenarios to allow
for a convergent model.

D. Experiment Specifications

This section will first explain the traffic scenarios used
for model training. Thereafter, the more generalized traffic
scenario for model evaluation is elaborated upon. A schematic
example of a training scenario at to can be found in
The experimental area is a square. The total number of aircraft
per scenario is limited to 11. This ensures that all intruding
aircraft can be incorporated in the state vector of ownship as

was explained in [subsection III-D] The total experimental area

is divided into four smaller squares. To induce conflicts and
intrusions and to limit the variability between scenarios, the
initial heading and position of the aircraft are not completely
randomized. The initial positions of the aircraft are generated
such that the number of aircraft in each of the four squares
is equal to two or three. Based on the initial position of the
aircraft, the target waypoint is selected in the opposing, non-
adjacent square as denoted by the blue waypoint marker in
At the start of the episode, aircraft are removed such
that no aircraft are in LoS. The aircraft are spawned with a true
airspeed (TAS) of 458 kts. Every episode has a fixed length of
270 s. The horizontal separation limit is defined by the ICAO
[34] and equals 5 nm when radar, ADS-B or MLAT is utilised
to determine the aircraft position. The radius of the protected
zone R, is thus set at 5 nm. A lookahead time of 5 minutes
is selected for conflict detection in the experiments.

During testing, a more generalized experiment is synthe-
sized which strives to simulate a more operational situation in
which both safety and efficiency can be measured. The basic
experimental setup is similar to the training scenarios, but there
are a few discrepancies:

e The number of aircraft is increased. Within the experi-
mental area, the number of aircraft is kept fixed to ensure
a constant traffic density. Experiments are performed with
a low, medium and high traffic density in which 30,
50 and 70 aircraft, respectively, are simulated in the
experimental area.

e« A waypoint is assigned in similar fashion as in the
training scenarios. However, a waypoint is now located
outside of the experimental area as can be seen by the red
waypoint marker in In this manner, aircraft that
leave the experimental area can reach their waypoint with
relative ease and without encountering many intruders.
Aircraft are removed from the simulation once they have
reached their waypoint.

o The generalized traffic scenario is focused on the steady-
state phase of the experiment rather than the initial,
transient phase. The results for the first 15 minutes of an
experiment, as the traffic density builds-up to the desired
value, are therefore disregarded.

o The number of aircraft is kept fixed in the experimental
area, every time an aircraft leaves the area, a new aircraft
is spawned. Aircraft are spawned with at least 15 nm to
the closest intruding aircraft.

The number of simulated aircraft for all traffic densities is sig-
nificantly higher than the 11 utilized in the training scenarios.
The higher number of aircraft is required to achieve saturation
of the solution space in an operational setting and to ensure the
aircraft encounter multiple conflict situations before reaching
their waypoint. The size of the experimental area is increased
to allow for a higher number of simulated aircraft. Once an
aircraft leaves the experimental area, the measurements of
safety and efficiency continue until the aircraft is removed
from the simulation.

/ \
{ }
VIR
\
sz ®, i

Fig. 8: Schematic representation of the experimental area with 11 aircraft at
to for a training scenario. The blue waypoint denotes the waypoint definition
in the training scenarios. The red waypoint, which is located outside of the
experimental area, describes the waypoint definition for the generalized traffic
scenario.

An overview of the traffic scenario parameters for the
training and generalized traffic scenario definition can be found

in [Table Tl

TABLE I: Parameters of training and generalized traffic scenario

Parameter Value Unit
Training latmin,latmax [—0.35,0.35] °
lonyin,lonmax [—0.35,0.35] °
Experimental Area 1770 NM?2
Nac 11 -
Density 6.21 1073 AC/NM?
General latmin,latmax [—1,1] °
lonmin,10Nmax [—1,1] °
Experimental Area 14400 NM?
Nacyyw 30 -
Nacm,ediunb 50 -
AChigh 70 -
Both AC type Boeing 747-700 -
Altitude FL350 or 35000 ft
TASinitial 458 kts
TASmin, TASmax [400, 458] kts
T 5 min
Ry 5 nm

E. Independent Variables

During the experiments, a select number of independent
variables is varied to change the experimental conditions. An
overview of the independent variables can be found in [Table TI}
Each experiment is performed with either SSD, SSD+PRIO
or MVP as conflict resolution algorithm. SSD+PRIO is the
method that is evaluated, SSD and MVP are used as baselines
for comparison. Moreover, low, medium and high traffic
densities are implemented.

TABLE II: Overview of independent variables in the experiments. Each
experiment is performed with a specific CR method and density.

Parameter Value Unit

CR method SSD [-]

CR method SSD + PRIO [-]

CR method MVP [-]
Density; o, 2.08 -10—3 AC/NM?
Density,pedium 3.47 -1073 AC/NM?
Densityn;gn 4.86 -10~3 AC/NM?

F. Dependent Variables

In this section, the definitions are provided for the variables
that are measured during the experiments to assess the safety
and efficiency of the conflict resolution method. The metrics
are based on previous research [7[], [35]-[37]. An overview of
the dependent variables can be found in

Safety concerns adequate separation between aircraft. Safe
separation can be expressed in terms of Nr,g and Neopf.
The terms LoS and intrusion indicate the same phenomenon
and can be interchanged. An intrusion does not directly
imply a collision. Differentiation between various intrusions is
accomplished by two parameters: the severity of LoS LoSse,
and the duration of LoS Tp,s. The LoSse, can be computed
with in which R represent the radius of the

protected zone.

sz - dCPA
R
The term T7,g indicates the duration of a single LoS. The
total time an aircraft spent in conflict is denotes by T;ycon f-
Another objective for which conflict resolution methods can
be optimized is efficiency. Efficiency is measured with the
flight time 7" and the length of the traversed flight path D.

LoSsen = (14)

TABLE III: Overview of dependent variables used in the assessment of SSD
algorithm as a CD&R method, adapted from Balasooriyan [7]

Variable Type Description

Neong Safety Number of conflicts

Nios Safety Number of losses of separations
LoSsev Safety Loss of separation severity
TrLos Safety Duration of a loss of separation
Tincony Safety Total time in conflict per ac

T Efficiency Duration of flight

D Efficiency Travelled distance

VI. EXPERIMENT HYPOTHESES

It is hypothesized that the RL model is able to learn optimal
conflict prioritization decisions that decrease the number of
intrusions in all 20 scenarios, but it remains uncertain whether
the learned behaviour will generalize well to unknown con-
flict geometries. The number of trained conflicts situations
might be too limited for the model to learn behaviour that
can also increase efficiency in unseen conflict geometries.
When analyzing the train scenarios to investigate how conflict
prioritization improved the safety of a scenario, it is thus
hypothesized that some solutions can be implemented in a
variety of conflict geometries. Other solutions will only be
applicable to specific conflict geometries.

Furthermore, it is hypothesized that the aircraft will show

cooperative behaviour due to the shared reward function. It is
expected that the RL model can make a prioritization based
on .y, the relative distance and position of the intruders.

In the experiments with the generalized traffic scenario, it
is hypothesized that SSD plus a conflict prioritization strategy
will reduce the number of intrusions compared to the regular
SSD method. Finally, the conflict prioritization strategy shifts
the global solution of SSD, when this is not the most efficient
solution, to a more pairwise solution, similar to MVP. The
performance of the SSD method with conflict prioritization
strategy is thus expected to be similar to the MVP method
[19].

VII. RESULTS

The results section consists of two parts. In the first part,
the choices that the RL model made to reduce the num-
ber of intrusions in the 20 training scenarios, are thorougly
analyzed. Based on the results of that analysis, a conflict
prioritization strategy is synthesized and applied to the regular
SSD algorithm. In the second part, the SSD algorithm with a
conflict prioritization strategy is compared to the regular SSD
and MVP method [[19] when utilized in experiments which
resemble a more generalized airspace. For the 20 training
scenarios, the discussed dependent variables will be limited to
the number of intrusions Nj,s and the number of conflicts
Neons. An extensive comparison with a greater variety of
dependent variables will be provided with the results of the
generalized airspace experiments.

A. Training Results

The RL model was trained with 20 randomly generated
scenarios. At the start of every episode, one of the 20 scenarios
is selected as the starting state of the experiment. The mean
reward per episode for an increasing number of training steps
can be found in The displayed reward is averaged

over the last 100 episodes. displays the progress for
470M training steps.

Mean Reward per Episode

_50 -

=100

=150

Reward [-]

| |
N N
()} o
o o
| |

=300

T T T T
0 1 2 3 4

Training Steps [-] 1e8

Fig. 9: The evolution of the mean reward per episode during training

An overview of Nr,s and Ng,; per scenario can be
found in [Figure 10| and |[Figure 11} respectively. The total

Nios decreased with 74% from 46 to 12 and the total N, ¢
increased with 6% from 744 to 789.

Number of LoS per scenario

w
o

g
1)

g
o

-
o

Number of Intrusions [-]
& &

[
=}

SSD SSD + PRIO

CR method

Fig. 10: The number of intrusions per training scenario for the regular SSD
method and the SSD method with conflict prioritization (SSD + PRIO)

Number of Conflicts per scenario

(6]
[&)]

(o))
o

N
(6]

w
(&)

Number of Conflicts [-]
w B
o o

N
(&}

SSD SSD + PRIO

CR method

Fig. 11: The number of conflicts per training scenario for the regular SSD
method and the SSD method with conflict prioritization (SSD + PRIO)

B. Improving SSD with Ruleset

During flight, an aircraft can encounter an infinite number
of conflict geometries. Training the RL model on 20 conflict
scenarios does not provide sufficient variability to apply the
RL model to a generalized traffic scenario. The high number
of unknown conflict geometries results in poor model perfor-
mance. However, from the results in |[Figure 10| and [Figure 11}
it can be seen that the model does significantly reduce Ny,,s.
Thus, it is interesting to further investigate per scenario which
model choices led to this.

Analyzing the choices of a RL model is not trivial, because
the RL model is essentially a black box, it does not provide
insight into the reasoning behind the choices that it makes.
A methodology to analyze a scenario was constructed and
consists of the following steps:

1) Analysis of Flight Path: Compare the flight paths of
the scenario with and without conflict prioritization.
Examine the cases where conflict prioritization resulted
in a different flight path.

2) SSD Comparison: For the selected aircraft, the SSD is
constructed with and without conflict prioritization. The

different flight paths can be caused by a different conflict
geometry or activation/deactivation of VOs.

3) Observation Vector Evaluation: For the aircraft which
had a different flight path based on conflict prioritization,
the observation vector is analyzed. The goal is to estab-
lish a relation between the observation vector variables
and the activation/deactivation of intruding aircraft.

4) Conclusion: Summarize the found relations per sce-
nario.

The conclusions that resulted from this approach were fur-
ther investigated. Only a select number of similar conclusions
were found in different scenarios and had the potential to gen-
eralize well beyond those scenarios. A conflict prioritization
strategy was synthesized based on those conclusions.

Intruders need to be included to allow for conflict resolution.
Therefore, the requirements for deactivating intruders are more
extensive than for activating intruders. The goal of conflict
prioritization is to increase the ARV. This is accomplished
by only selecting a limited number of aircraft within ADS-
B distance. The aircraft should be selected such that enough
information on conflict geometry remains present to perform
conflict resolution. In this research, a maximum of 10 intruding
aircraft can be selected by the CR algorithm for conflict resolu-
tion. The found prioritization rules were based on a RL model
that could only select up to 10 intruders. With a different
number, it is likely that less or more severe prioritization rules
would have been found. Selecting a maximum of 10 aircraft
also allows for a degree of comparison between the testing
and the training results. However, when the experimental setup
changes, it is possible that the maximum number of selected
aircraft needs to be recalibrated. The aircraft are selected based
on the following prioritization strategy:

1) Conflicting Aircraft: The first rule is the prioritization
of conflicting aircraft. An example from one of the scenarios
from which rule 1 originates, can be found in The
position of ownship is set at (0°,0°) as a body-fixed reference
frame is implemented in which lon,.; and lat,..; are measured
with respect to ownship. The trajectories of the intruding
aircraft are clearly visible. The blue circles are increased in
size to denote the change in position of the intruding aircraft as
seen by ownship over time. Since it is a body-fixed reference
frame, the position of ownship is not altered. The VOs of
intruding aircraft AC2 are activated for all but one time step.
From [Figure 12| and [Figure 13| based on #.,, and relative
distance, it does not become clear why AC2 is selected. An
explanation is provided by which shows the d.,
values of the intruding aircraft. With depq < Ry, and tep, < 7,
AC2 is found to be a conflicting intruder. The phenomenon of
selecting conflicting intruders over non-conflicting intruders
occurred in multiple scenarios. Hence, it is converted to a
rule. Conflicting aircraft are always selected if they are within
ADS-B range.

Activation/Deactivation Velocity Obstacles Intruders

activated
deactivated
°e A ownship

N

0.6 - ‘e °
0.5
0.4
0.3 4

0.2 4

Latrell°]
H
/

0.1
oA \
®
-0.1 _I T T T T T T
-0.1 0.0 0.1 0.2 0.3 0.4 0.5

Lone[°]

Fig. 12: Conflict scenario in which the activation and deactivation of the
velocity obstacles of eight intruding aircraft for ownship are visualized. The
increase in size indicates the direction in which the intruders travelled.

tepa intruders

200
064 | A ownship
L]
o. 175
05 .
'u. 150
0.4+
125

Latrel[°]

4 . [
03 °e 100 _g_
<
4.
02 \ .

017 50
0.0 A 25
_01 _I T T T T T T 0
-01 00 0.1 0.2 0.3 04 05
Lonee[°]

Fig. 13: The trajectories of the eight intruding aircraft are visualized. The
color of the data points indicate the time to closest point of approach for
every intruder with ownship.

dcpa intruders

0.6 - A ownship
25
054 “ens]
D 20
0.4 . ‘s
— ° —
. AC2 g
.-.3 0.3 <veg 15 =
=]
3 02 - \ s
\ 10
0.1 ACH
0.0 A °
_01 _I T T T T T T O
-01 00 0.1 0.2 0.3 0.4 0.5
I-onrel[°]

Fig. 14: The relative trajectories of the intruding aircraft are visualized in a
body-fixed reference frame with ownship at the origin. The color of the data
points indicate the distance to closest point of approach for every intruder
with ownship.

2) Closest Aircraft: Moreover, it was observed that intrud-
ers with the smallest t.,,, lat,.; and lon,.; were prioritized.

In intruding aircraft ACI is closest to ownship in

terms of relative position and has the lowest ¢, (Figure 13).
Intruding aircraft ACI is the only intruder which is activated

for all time steps in which ownship was in conflict. This was
expected, because it makes sense that the closest aircraft for
which an intrusion is imminent are prioritized over aircraft
whose conflicts can be solved at a later point in time. There-
fore, after the selection of conflicting aircraft, the aircraft that
are closest in terms of relative distance are prioritized. The
tepa parameter is deliberately not included. If an intruder is
very close to ownship, but on a parallel trajectory, tcpq is
infinite. However, a sudden change in direction of ownship or
the intruding aircraft could result in a very close range conflict
which justifies the exclusion of .. Aircraft are selected such
that combined with the first step, a total up to 10 aircraft are
selected.

3) Removal of Aircraft: The final step concerns the deac-
tivation of intruders which are determined to be irrelevant by
the RL model. An example is provided with aid of
[Figure 16| and [Figure 17| which showcase the first 18 time
steps of a conflict scenario. After 18 time steps, all intruders
are activated for the remainder of the conflict scenario. For
the first 18 time steps, ACI is almost fully activated and AC2
and AC3 are mostly deactivated. Again, ACl1 is selected as it
is the closest aircraft with the highest ¢.,,. From
it becomes clear that AC2 is non-conflicting and AC3 is
conflicting. For this specific scenario, activation/deactivation
of AC3 has a very minor effect on the ARV. Therefore,
the focus of this section is on AC2. Deactivation of a non-
conflicting intruding aircraft (d.p, > IR,.) that has a high
tcpa and large relative distance, occurred in multiple scenarios.
Therefore, with the incorporation of a safety factor, the final
procedure is to deactivate selected intruders that have a dcpq >
15 nm, D > 30 nm and .y, > 125 s.

Activation/Deactivation Velocity Obstacles Intruders

'y J
0.5+
® AC2 AC3
’ 0000000, ,
0.4 -
0.3 -
& s .
5 $ 4 oy
= 02 \
0.1 ‘ , *
’ ACT deactivated
e activated
0.0 A A ownship
T T T T T T T T
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

I-o"rel[°]

Fig. 15: Conflict scenario in which the activation and deactivation of the
velocity obstacles of eight intruding aircraft for ownship are visualized. The
increase in size indicates the direction in which the intruders travelled.

tepa intruders

200
A ownship o0° ! YT
* 175
0.5 R
AC2
Mo.. 150
0.4
- 125
-°—?; 034 ¢ @
K P 10073
(] —~
= 02+ \ 75
50
0.1 7 ACT
25
0.0 - A
T T T T T T T T 0
-03 -02 -041 00 01 02 03 04
I-")nrel[°]

Fig. 16: The relative trajectories of the intruding aircraft are visualized in a
body-fixed reference frame with ownship at the origin. The color of the data
points indicate the time to closest point of approach for every intruder with
ownship.

dcpa intruders

A ownship LY TN
0.5 20
¢ Ac2 AC3
M..
0.4 / e,
15
=03+ :. g
> ©
® 108
= 0.2
0.1 1 ACT 5
0.0 - A
T T T T T T T T 0
-03 -02 -01 00 01 02 03 04
I-onrel[°]

Fig. 17: The relative trajectories of the intruding aircraft are visualized in a
body-fixed reference frame with ownship at the origin. The color of the data
points indicate the distance to closest point of approach for every intruder
with ownship.

To summarize, conflicting aircraft are first selected. The in-
truders which are closest to ownship are subsequently selected
until the total number of intruders equals 10. Finally, intruders
can be removed from those 10 selected intruders based on the
requirements stated in the previous paragraph.

C. Generalized Traffic Scenario

The experimental results for the generalized traffic scenario
are presented in this section. The SSD+PRIO abbreviation
utilized in the charts in this section refers to the original SSD
method combined with the prioritization strategy as described
in[subsection VII-B] For each experimental setting, 6 scenarios
were simulated for 6 hours. Per experimental setting a specific
CR model and traffic density were evaluated. The outliers are
not shown in the graphs.

1) Safety: The results for the number of intrusions Np,g

can be found in At the low traffic density, the

performance of SSD+PRIO results in slightly fewer intrusions
than SSD+PRIO, but the results are (almost) comparable.
However, at a medium and high traffic density, when PRIO
becomes more important, SSD+PRIO significantly outper-
forms the original SSD method in terms of intrusions. MVP
outperforms SSD and SSD+PRIO in all traffic densities.

Number of LoS per scenario

1 low
1 medium
high

N
o

w
o

N
o

=

=

SSD

Number of Intrusions [-]
N
o

I——]
— | ——
SSD + PRIO
CR method

MVP

Fig. 18: Number of LoS for low, medium and high traffic densities. The N,,g
are summed per experiment, which equals 6 hours of simulation time.

To provide more context to the Np,g numbers,
displays the results for LoSse,. It can be seen that the
SSD+PRIO method also reduces the LoSs., compared to
SSD in all traffic densities. The change in traffic density does
not have a great effect on LoSs.,. The intrusions that MVP
had, are significantly less severe compared to both SSD and
SSD+PRIO in a low, medium and high traffic density.

Severity of LoS
10 1 low
[medium
08 =1 high
; 0.6
=
2
2 04
»n
0.2

SSD SSD + PRIO

CR method

MVP

Fig. 19: Severity of losses of separation for low medium and high traffic
densities.

The final descriptive parameter for the intrusions is T7,s.
The 17,5 values for SSD and SSD+PRIO are quite similar.
SSD shows a slight increase in 17,5 when switching from a
low to a high traffic density. The 77,5 for MVP is smaller
than SSD and SSD+PRIO for all traffic densities.

Duration of LoS

1 low

S0 1 medium
40 1 high
2,
S 30
<
=
a 20

10

0 T T =

SSD SSD + PRIO MVP
CR method

Fig. 20: Duration of LoS for low, medium and high traffic densities.

The dependent variables Neong, Teony and Tipcony are
based on the conflicts which occurred during the experiments.
The results for the number of conflicts N, is visualized
in With all three CR methods, an exponential
increase in Ny, s occurs when the traffic density increases. It
should be noted that the number of conflicts for SSD+PRIO is
considerably larger compared to SSD. For any traffic density,
MVP has the highest number of conflicts.

Number of Conflicts per scenario

60000 é 0 low
= 1 medium
£ 50000 = high
L2
E 40000
3
% 30000 =
.

2 20000 T
£ = e
= 10000 —
— L
o =
SSD SSD+PRIO MVP
CR method

Fig. 21: The number of conflicts for low, medium and high traffic density.

At last, displays the time an aircraft spent in

conflict Tincons. Naturally, Tincons shows an increment due
to an increase in traffic density for all three CR methods.
Interestingly, when using SSD+PRIO, aircraft spent the most
time in conflict for all three traffic densities.

Time in Conflict per AC

250 _ 0 low
1 medium
=, 200 _ [high
k]
E 150
o
o
£ 100
Q
£
= 50
0 e e
SSD SSD + PRIO MVP
CR method

Fig. 22: The time an aircraft spent in conflict for low, medium and high traffic
densities.

2) Efficiency: The efficiency of a CR method was measured
with flight time 7' and travelled distance D for which the
results can be found in [Figure 23| and [Figure 24| respectively.
In a low traffic density, the results for 7" and D are similar
for SSD, SSD+PRIO and MVP. Performance of SSD+PRIO
exceeds performance of SSD on both metrics in the medium
and high traffic densities. Furthermore, an increment in traffic
density had a negative effect on 7" and D for all 3 CR methods.
The increased traffic density evokes more conflict avoidance
manoeuvres which cause larger deviations of the aircraft from
the nominal route. The MVP method performs best with regard
to efficiency. It is interesting that the MVP method excels in
efficiency, despite the high number of conflicts. The deviation
from nominal flight path is small for every conflict avoidance
manoeuvre in MVP. The small conflict avoidance manoeuvres
in MVP create a wave-like effect which also helps to reduce
the number of intrusions.

Traversed Distance per AC

300 1 low
T [medium
280 _ B high

Distance [nm]
N
N
o

220
200
180 — =
SSD SSD + PRIO MVP
CR method

Fig. 23: The travelled distance D per flight for low, medium and high traffic
densities.

Flight Time per AC

2600
1 low

2400 T [medium
7 2200 1 high
o
E 2000 -lr ‘l'
ur Be
i 1600 -|- l -|- J _LTT

1400 1

SSD SSD + PRIO MVP
CR method

Fig. 24: The flight time 7" for low, medium and high traffic densities.

VIII. DISCUSSION

The experiments in this researched aimed to improve the
safety and efficiency of a decentralized CR method at a high
traffic density by applying conflict prioritization with deep
RL. Aircraft encounter a multitude of conflict geometries in
experiments with a generalized traffic scenario. Establishing a
model which can resolve all conflict geometries is impossible.
Besides, training on such experiments is very time-consuming
and difficult, because of the sparsity of rewards. Consequently,
it was decided to train the RL model on a limited number of
20 conflict geometries. The model could have been trained on
more scenarios, but that also became unpractical time-wise and
still does not provide assurance that the model will perform
well on any unseen conflict geometry. As hypothesized, the
model was able to successfully reduce the number of intrusions
on 20 conflict scenarios.

It was decided that the best approach to leverage the
potential of the RL model, was to develop a PRIO strategy
based on the intruder selection of the RL model in the training
scenarios. The establishment of a PRIO strategy ensures that,
during real world operations, conflict prioritization decisions
will always be controllable and explainable. The PRIO strategy
essentially consists of 3 steps. First, all conflicting aircraft are
selected. Subsequently, a number of the closest intruders are
also included. Finally, from the selected intruders, aircraft can
be removed if they have a high relative distance, t.,, and
depa. The thresholds for the aforementioned parameters are
dependent on the performance limits of the aircraft. Removal
of such aircraft further increases the set of ARV. These general
rules led to a higher prevention rate of intrusions.

The discussion on the RL facet of this research will
be provided in [subsection VIII-Al Thereafter, the results of
applying the conflict prioritization strategy specifically to
SSD, together with a comparison with MVP, are discussed
in [subsection VIII-Bl Recommendations for future work are
given in [subsection VIII-C|

A. RL Model Settings

The relation between the state vector of the RL model and
the selected intruders was thoroughly analyzed. The RL model
was able to prioritize intruders with a small t.,,, lat,¢ and
lon,¢ over intruders with a large t.,q, lat,e and lon,..
The lat,.; and lon,. parameters were included to provide
both a current distance and relative position of the intruder
to ownship. There were however no signs that the relative
position was used as a basis for a prioritization strategy. The
limited number of conflict scenarios could be a reason for the
absence of PRIO rules based on relative position. Training of
the RL model in a more generalized traffic scenario with lat,.;
and lon,.e;, in which a large number of conflict geometries is
encountered, could potentially result in PRIO based on relative
position.

Furthermore, lat,.; and lon,.; did play a role in the identi-
fication of nearby intruders which allowed the model to solve
conflicts. However, some cases were found during training that
did not generalize well to all conflict geometries. For example,
an intruding aircraft was prioritized while it had the highest
relative distance and £.p,. Sometimes, the RL model simply
learned that the selection of an intruder based on a particular
state of the environment, resulted in the highest reward. If
the model applies similar logic in new conflict situations, it
is unlikely that it will result in a reduction of Np,s. The
explanation for this is overfitting of the RL model on the
training scenarios. To prevent overfitting, the model should
thus be trained on a larger amount of conflict geometries.
Besides, it may also be that the RL model requires more
information from the environment to improve its decisions.

B. SSD with Conflict Prioritization

The results of this research show that the addition of conflict
prioritization to the SSD method reduced both the number
of intrusions, and the effect of conflict resolution on flight
path and time. The difference in Ny ,s between the SSD and
SSD+PRIO method, increases with the traffic density, which
was expected. As the traffic density increases, the saturation of
the solution space becomes more problematic and the influence
of PRIO increases. The SSD+PRIO method has less severe
intrusions than the SSD method. The most severe intrusions
are often caused by uncoordinated behaviour (aircraft turn
into each other in an attempt to avoid each other) [7]. The
conflict prioritization strategy does reduce the frequency at
which uncoordinated behaviour occurs as can be seen in the
reduction in the number of intrusions. However, the current
conflict prioritization strategy does not completely eliminate
uncoordinated behaviour which explains the LoS,., values
for SSD+PRIO. The number, duration and severity of the
intrusions were all significantly lower for the MVP method.

Additionally, introduction of the PRIO strategy to the SSD
method caused an increment in the number of conflicts.
Conflict prioritization disables intruding aircraft to free up
solution space in the SSD. If a different velocity solution
vector is found in the newly available solution space, this
solution is no longer a global solution, because the solution

ignores the disabled aircraft. If the aircraft resolves towards
a new solution, it is expected that the solution results in new
conflicts which subsequently have to be solved.

With PRIO, conflicts are solved with smaller conflict res-
olution manoeuvres which is facilitated by the increase in
ARV. Due to the shorter conflict manoeuvres, ownship is able
to more quickly manoeuvre to the desired velocity solution
vector. This weakens the unpredictable effect of the dynamic
behaviour of the SSD [7]. The effect of the small conflict
manoeuvres is visible in the efficiency. The large conflict
resolution manoeuvres of the SSD method, cause a great
deviation from the nominal flight path. However, SSD+PRIO
is still not as efficient as MVP. Thus, albeit manoeuvres are
performed based on a smaller number of intruders than with
SSD, they still lead to larger deviations than the conflict
pairwise solution of MVP.

C. Recommendations

It is proposed to replace lat,.; and lon,.; with relative
distance D and heading with respect to the intruders. Further-
more, it is advised to include information in the observation
vector that indicates whether an intruder is a conflicting
aircraft or not. This can be done with the d.,, parameter or
with a simple binary variable which equals 1 if intruder is
conflicting and 0 otherwise. Selecting d.,, or the binary value
is a trade-off between complexity and potential effectiveness.
The dp, parameter is more complex to understand for the
model, but could potentially provide more information than a
simple binary variable.

Finally, with the proposed modifications in the formulation
of the RL problem, the PRIO strategy can be further refined
by training the RL model on a larger number of more complex
conflict geometries.

IX. CONCLUSION

This work investigated whether conflict prioritization can
improve the safety and efficiency of a decentralized CR
method in a multi-agent setting with deep RL. The Proximal
Policy Optimization (PPO) model was implemented with an
actor-critic network and was successfully trained on 20 ran-
domly generated multi-agent conflict scenarios, significantly
reducing the number of intrusions.

A conflict prioritization strategy was established based on
the optimal actions that the RL model selected. The strategy
consists of three steps. The first step is to select all conflict-
ing aircraft. The aircraft that are close by are subsequently
incorporated by the CR method. Finally, intruders should
be removed from the selection when they are past a safety
distance. Naturally, this safety distance is dependent on the
performance limits of the operating aircraft. This conflict
prioritization strategy significantly decreased intrusions in a
generalized airspace while reducing the impact of tactical
conflict resolution on the flight path and time.

Future work should extend the training of the RL model to
a larger number of different conflict geometries while varying
the setup of the RL model. This will likely lead to formulation

of additional conflict prioritization rules. Additionally, more
elaborate testing of the conflict prioritization strategy of this
research is required to verify that it is also beneficial in
airspaces with different specifications in which aircraft with
different performance limits operate. Moreover, a similar re-
search approach can be applied to different CR methods.

REFERENCES

[1] EUROCONTROL, Performance review report an assessment
of air traffic management in europe during the calendar year
2018, 2018.

[2] M. Doole, J. Ellerbroek, and J. Hoekstra, “Estimation of traffic
density from drone-based delivery in very low level urban
airspace,” Journal of Air Transport Management, vol. 88,
no. June, p. 101 862, 2020, 1SSN: 09696997. DoTI: 10.1016/].
jairtraman.2020.101862.

[3] SESAR joint Undertaking, European drones outlook study
unlocking the value for europe, https://www.sesarju.eu/sites/
default/files/documents/reports/ European_Drones_Outlook _
Study_2016.pdf, 2016.

[4] B. Hilburn, “Cognitive complexity in air traffic control: A
literature review,” EEC note, vol. 4, no. 04, pp. 1-80, 2004.

[5S] EUROCONTROL, Model for Task and Job Descriptions of
Air Traffic Controllers. European Air Traffic Control Harmon-
isation and Integration Programme, 1996.

[6] S. HAO, S. CHENG, and Y. ZHANG, “A multi-aircraft
conflict detection and resolution method for 4-dimensional
trajectory-based operation,” Chinese Journal of Aeronautics,
vol. 31, no. 7, pp. 1579-1593, Jul. 2018. port: |10.1016/j.cja.
2018.04.017.

[7] S. Balasooriyan, “Multi-aircraft conflict resolution using ve-
locity obstacles,” Master’s Thesis, Delft University of Tech-
nology, 2017.

[8] 1. Ellerbroek, “Airborne conflict resolution in three dimen-
sions”,” Ph.D. dissertation, Delft University of Technology,
2013.

[9] H. Emami, F. Derakhshan, and S. Pashazadeh, “A new prioriti-

zation method for conflict detection and resolution in air traffic

management,” Journal of Emerging Trends in Computing and

Information Sciences, vol. 3, no. 7, pp. 1042-1049, 2012.

L. P. I. da Piedade, “Aircraft conflict prioritization and reso-

lution using the solution space diagram,” 2018.

“Right-of-Way Rules: Except Water Operations”, Air Traffic

and General Operating Rules. Federal Aviation Administration

Regulation, Title 14, Chap. 1.F, Pt. 91.B, Sec. 91.113, July

2004.

D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the

game of go with deep neural networks and tree search,” nature,

vol. 529, no. 7587, pp. 484-489, 2016.

O. Vinyals, T. Ewalds, S. Bartunov, et al., Starcraft 1I: A

new challenge for reinforcement learning, 2017. arXiv: [1708.

04782.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.

Klimov, Proximal policy optimization algorithms, 2017. arXiv:

1707.06347.

D. Wang, T. Fan, T. Han, and J. Pan, “A Two-Stage Reinforce-

ment Learning Approach for Multi-UAV Collision Avoidance

under Imperfect Sensing,” IEEE Robotics and Automation

Letters, vol. 5, no. 2, pp. 3098-3105, 2020, 1SSN: 23773766.

DOTI: [10.1109/LRA.2020.2974648.

M. Brittain, X. Yang, and P. Wei, A deep multi-agent reinforce-

ment learning approach to autonomous separation assurance,

2020. arXiv: 2003.08353.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

https://doi.org/10.1016/j.jairtraman.2020.101862
https://doi.org/10.1016/j.jairtraman.2020.101862
https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf
https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf
https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf
https://doi.org/10.1016/j.cja.2018.04.017
https://doi.org/10.1016/j.cja.2018.04.017
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/LRA.2020.2974648
https://arxiv.org/abs/2003.08353

(17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

T. Fan, P. Long, W. Liu, and J. Pan, Fully distributed multi-
robot collision avoidance via deep reinforcement learning
for safe and efficient navigation in complex scenarios, 2018.
arXiv: 1808.03841.

J. M. Hoekstra and J. Ellerbroek, “Bluesky atc simulator
project: An open data and open source approach,” in Pro-
ceedings of the 7th international conference on research in
air transportation, FAA/Eurocontrol USA/Europe, vol. 131,
2016, p. 132.

J. M. Hoekstra, R. N. Van Gent, and R. C. Ruigrok, “Designing
for safety: The 'free flight’ air traffic management concept,”
Reliability Engineering and System Safety, vol. 75, no. 2,
pp. 215-232, 2002, 1SSN: 09518320. por: 10.1016/S0951 -
8320(01)00096-5.

M. Ribeiro, J. Ellerbroek, and J. Hoekstra, “Review of con-
flict resolution methods for manned and unmanned aviation,”
Aerospace, vol. 7, no. 6, 2020, 1SSN: 22264310. poI: |10.3390/
AEROSPACE7060079.

J. Sun, “Open aircraft performance modeling: Based on an
analysis of aircraft surveillance data,” Ph.D. dissertation, 2019.
DOI: |10 . 4233 / UUID : AF94D535 - 1853 - 4A6C - 8B3F -
77C98A52346A.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. MIT Press, 2018.

G. Papoudakis, F. Christianos, L. Schifer, and S. V. Albrecht,
Benchmarking multi-agent deep reinforcement learning algo-
rithms in cooperative tasks, 2020. arXiv: 2006.07869.

C. C.-Y. Hsu, C. Mendler-Diinner, and M. Hardt, Revisiting
design choices in proximal policy optimization, 2020. arXiv:
2009.10897.

R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I.
Mordatch, Multi-agent actor-critic for mixed cooperative-
competitive environments, 2017. DOI: |10.48550/ARXIV.1706.
02275l

P. J. ’t Hoen, K. Tuyls, L. Panait, S. Luke, and J. A. La
Poutré, “An Overview of Cooperative and Competitive Mul-
tiagent Learning BT - Learning and Adaption in Multi-Agent
Systems,” pp. 1-46, 2006.

L. Busoniu, R. Babuska, and B. De Schutter, “Multi-agent
reinforcement learning: An overview,” Innovations in multi-
agent systems and applications-1, pp. 183-221, 2010.

P. Fiorini and Z. Shiller, “Motion planning in dynamic envi-
ronments using velocity obstacles,” The International Journal
of Robotics Research, vol. 17, no. 7, pp. 760-772, 1998. DOI:
10.36288/roscon2012-900669.

P. Hermes, M. Mulder, M. M. Van Paassen, J. H. Boering, and
H. Huisman, “Solution-space-based analysis of the difficulty
of aircraft merging tasks,” Journal of Aircraft, vol. 46, no. 6,
pp. 1995-2015, 2009, 1SSN: 15333868. DOI: |10.2514/1.42886.
G. A. Mercado Velasco, M. Mulder, and M. M. Van Paassen,
“Analysis of air traffic controller workload reduction based
on the solution space for the merging task,” AIAA Guidance,
Navigation, and Control Conference, no. August, 2010. DOI:
10.2514/6.2010-7541.

C. Borst, C. Westin, and B. Hilburn, “An investigation into
the use of novel conflict detection and resolution automation
in air traffic management,” SIDs 2012 - Proceedings of the
SESAR Innovation Days, no. November, 2012.

P. Moritz, R. Nishihara, S. Wang, et al., Ray: A distributed
framework for emerging ai applications, 2017. arXiv: 1712.
05889,

E. Liang, R. Liaw, R. Nishihara, er al., “Ray rllib: A com-
posable and scalable reinforcement learning library,” [Online].
Available: https://github.com/ray-project/ray.

ICAO, Doc 4444 - PANS-ATM, Procedures for Navigation
Services — Air Traffic Management, 16th ed. International Civil
Aviation Organisation, 2016.

(35]

(36]

(37]

E. Sunil, J. Ellerbroek, J. Hoekstra, et al., “Analysis of
airspace structure and capacity for decentralized separation
using fast-time simulations,” Journal of Guidance, Control,
and Dynamics, vol. 40, no. 1, pp. 38-51, 2017.

T. Langejan, E. Sunil, J. Ellerbroek, and J. Hoekstra, “Effect
of ads-b characteristics on airborne conflict detection and
resolution,” in Sixth SESAR Innovation Days, 8th — 10th
November 2018, 2018.

M. Tra, E. Sunil, J. Ellerbroek, and J. Hoekstra, “Modeling the
intrinsic safety of unstructured and layered airspace designs,”
in Twelfth USA/Europe Air Traffic Management Research and
Development Seminar, 2017.

https://arxiv.org/abs/1808.03841
https://doi.org/10.1016/S0951-8320(01)00096-5
https://doi.org/10.1016/S0951-8320(01)00096-5
https://doi.org/10.3390/AEROSPACE7060079
https://doi.org/10.3390/AEROSPACE7060079
https://doi.org/10.4233/UUID:AF94D535-1853-4A6C-8B3F-77C98A52346A
https://doi.org/10.4233/UUID:AF94D535-1853-4A6C-8B3F-77C98A52346A
https://arxiv.org/abs/2006.07869
https://arxiv.org/abs/2009.10897
https://doi.org/10.48550/ARXIV.1706.02275
https://doi.org/10.48550/ARXIV.1706.02275
https://doi.org/10.36288/roscon2012-900669
https://doi.org/10.2514/1.42886
https://doi.org/10.2514/6.2010-7541
https://arxiv.org/abs/1712.05889
https://arxiv.org/abs/1712.05889
https://github.com/ray-project/ray

|

Preliminary Report [already graded]

Introduction

In 2019, a staggering amount of 566,031 commercial flights were recorded in the Netherlands alone [11].
Smooth operation of all these flights is enabled by Air Traffic Management (ATM). ATM is a term that em-
bodies various services that are responsible for managing the airspace and air traffic in a safe, economically
optimal and efficient manner [39]. ATM has three main components: Air Space Management (ASM), Air Traf-
fic Services (ATS) and Air Traffic Flow Management (ATFM). Part of ATS is Air Traffic Control (ATC) and the
main purpose of an Air Traffic Controller (ATCo) is to ensure a safe, efficient and orderly flow of traffic [70].
One of their core tasks which contributes to this process is Conflict Detection and Resolution (CD&R) [18].

In 2018, Europe had 11 million flights and an average annual growth rate of 2.0% was predicted [19]. This
increase in air traffic was expected to cause an increment in the workload of the ATCo. The workload of the
ATCo is often seen as the bottleneck that would inhibit a further growth in air traffic volume [27]. Various
initiatives to evolve from the current ATM system to a new system which can cope with such problems have
been established namely SESAR [79] and NextGen [42] for Europe and the United States respectively.

An interesting development parallel to the events that occurred in the manned aviation sector, is the growth
and expected growth in number of unmanned aerial vehicles (UAV) employed in a commercial manner. In a
case study for the Paris Metropolitan area (12,012 km?), a conservative estimate was made that the airspace
would need to cope with 63,596 delivery drones in 2035 which operate at 0-500 ft above ground level, assum-
ing no regulatory constraints will be imposed. These drones would be employed for small express packages
and fast-food meals delivery [13]. A study by SESAR shares this vision and expects around 7 million drones
for recreational purposes and around 400,000 for commercial and governmental assignments in 2050. Also,
the 2015 EU Aviation Strategy concludes that an increase in the utilization of drone services will take place
which could induce major economic growth and produce social benefits [82]. The urge for Unmanned Air-
craft System Traffic Management (UTM) becomes evident from such a high expected traffic density and po-
tential commercial and social gains. In Europe, the U-space framework is being developed, which strives to
facilitate safe, efficient and secure operations for an extensive number of UAVs in the airspace [80].

A concept which could alleviate the current and projected problems with a centralized CD&R method is the
free flight (FF) concept [32]. In this concept, the responsibility of assuring traffic separation is transitioned
from ATC to the individual aircraft (airborne separation) [32]. All aircraft are allowed the fly their preferred
route. Furthermore, in the latest Federal Aviation Administration (FAA) ConOps, it was stated that a Detect
and Avoid (DAA) mechanisms for Beyond Visual Line of Sight (BVLOS) operations of a UAV is required [60].

CD&R thus plays a vital role in the current developments in the fields of ATM and UTM. This research focuses
on a class of conflict resolution (CR) algorithms which are dependent on the concept of Velocity Obstacles
(VO) [21] for obstacle avoidance. An example of an algorithm is the conflict resolution method based on the
Solution Space Diagram (SSD) [2]. In a conflict with two aircraft, the SSD method can achieve a geometrically
optimal solution [16], but in conflicts with multiple aircraft, the solution can become sub-optimal. The sub-
optimal solution is caused by the complex dynamics which arise when multiple aircraft perform conflict
avoidance maneuvers simultaneously. This reduces the set of available avoidance maneuvers which avoid all
conflicts. In extreme situations, potentially no maneuver is available that resolves all conflicts.

Analytically establishing a set of rules, which are used to select an avoidance maneuver for any conflict sce-
nario, is extremely hard if not impossible. Deciding on which conflict avoidance maneuver to select based on

4

1.1. Thesis Objective and Research Questions 5

the current conflict geometry with an approximated model of the system dynamics, is a problem for which
Artificial Intelligence (AI) could provide promising solutions. The specific field in Al which focuses on such
problems is called Reinforcement Learning (RL). The performance of RL models exceed expert human-level
performance on strategic games. For example, a state-of-the-art agent called AlphaGo was able to beat the
world champion in Go [85] and more recently, the Alphastar program defeated a top professional player in
Starcraft II [95]. This research aims to improve the strategy of an existing CD&R method by leveraging the
ability of RL to synthesize strategies.

1.1. Thesis Objective and Research Questions

Shifting the ATC from a centralized approach to a more decentralized approach, which allows an aircraft to
determine its own control strategy, facilitates an increase in air traffic volume and a more optimized flight
path [32]. Such advantages make research into decentralized CD&R algorithms imperative. Ideally, a decen-
tralized algorithm would allow aircraft to always find the optimal solution, with respect to concepts such as
safety and efficiency [87], based on its own observations in any air traffic density and conflict geometry. Un-
fortunately, such a method does not exist yet. The objective of this research is to improve upon an existing
conflict resolution method that implements velocity obstacles and to close the gap between the current limi-
tations of the conflict resolution algorithms and the portrayed perfect algorithm. A more formal definition of
the research objective is:

" Use reinforcement learning to apply conflict prioritization in a multi-aircraft setting in order to improve the
efficiency of a velocity obstacle based conflict resolution method at high traffic densities"

A joint solution indicates that the VOs of all conflicting aircraft are incorporated in the computation of an
avoidance maneuver. In velocity obstacle based conflict resolution methods which apply a joint solution [94,
2], the solution space is quickly saturated at high traffic densities. In the extreme this results in no feasible
solution. Performing conflict prioritization to increase the available solution space can improve on a joint
solution method [68]. In [68], a fixed prioritization rule set was applied to the SSD. With increasing level of
priority, the rules were based on lookahead time, time to loss of separation, distance to loss of separation and
distance to closest point of approach. The definition of these terms will be provided in section 2.1. The set of
rules resulted in an improved CD&R method. It however remains hard to synthesize a fixed ruleset which can
be applied to a dynamic multi-aircraft conflict with a continuously changing conflict geometry. Therefore,
this research proposes to learn a dynamic strategy for conflict prioritization with RL. The simulations in this
research are performed in the BlueSky environment. BlueSky is a simulator which is established to facilitate a
general platform on which ATC research can be performed. This allows for better comparison of ATC research
[41]. The research objective can be divided into 8 research activities with accompanying research questions.

The research activities are mostly sequential activities which means that the work on research activity 2 starts
when work on research activity 1 is finished. Some activities can be performed concurrently or have to be
executed in an iterative fashion. The subsequent section on research approach (section 1.2) illustrates the
relations between the various activities. Research Activities 1,2,3,4 and 5 will be performed in the preliminary
analysis.

Research Activity 1: Selection of conflict resolution method.

The CD&R methods which are considered in this research are the Optimal Reciprocal Collision Avoidance
(ORCA) [94] and the SSD method [2]. The original SSD algorithm is considered without the prioritization
rules of [68], because the goal of the research is to develop a model which learns its own rules. To decide on
the method to which RL will be applied, the following research questions are stated:

a) Which VO-based conflict resolution methods are suitable for this research?
b) How can conflict prioritization be applied to the selected methods?

¢) What information about the conflict can be extracted from the conflict resolution method which can be
used as input for the RL model?

1.1. Thesis Objective and Research Questions 6

Research Activity 2: Select a reinforcement learning model which can be used in a high traffic density traffic
scenario with multiple controlled aircraft.

The choice for a model structure type is crucial since it will partly determine the success of the final conflict
resolution method. This literature review does not aim to be a description of all available RL concepts and
algorithms. However, to be able to justify the choice for the RL model and to properly understand the inner
workings of the models which is deemed essential in the implementation phase, a theoretical study on the
relevant concepts and methods is required. The accompanying research question are:

1. What are the basic concepts of RL?
2. Which categories of methods adhere to the requirements imposed by this research?
3. Within the selected categories, which methods are available from comparable research in literature?

4. How does the algorithm cope with challenges imposed by multi-agent reinforcement learning?

Research Activity 3: Define single-agent case for proof-of-concept

In the preliminary analysis, a proof-of-concept for a simple single agent setting is the first hurdle that has to
be overcome on the road to design the final model. With the reinforcement learning model that is chosen
from literature in Research Activity 1, an experiment is designed to validate that conflict prioritization with
the selected RL model is feasible. It should be noted that in the single-agent experiment multiple aircraft are
present, but only one is controlled by the RL model. The ensuing research questions can be formulated as:

1. How to design a simple proof-of-concept experiment which can be extended into a more complex experi-
ment?

2. What are the characteristics of the observation space considering that each agent only has partial observ-
ability?

3. How is the action space specified?
4. How can safety be incorporated in the formulation of the reward function?

5. What are the hyperparameter settings of the RL model?

Research Activity 4: Define multi-agent case for proof-of-concept cooperative behaviour between aircraft

The results of the preliminary thesis should be the fundament on which the successor of the preliminary
thesis, the actual thesis, is built. The preliminary experiments ought to provide more in-depth knowledge
on experimental and modelling principles in the relevant context. The relevant context with regard to this
research is the application of reinforcement learning to conflict prioritization in CD&R algorithms which
implement VOs in a multi-agent setting. The successive experiment is conducted in a multi-agent setting.
The RL model controls conflict prioritization for at least 2 aircraft. The rationale behind the multi-agent
experiment is to discover whether aircraft can cooperate to find a solution. Beside similar research questions
as in Research activity 3, additional research questions arise:

1. How will the RL model be implemented in a multi-agent setting?

2. Can aircraft efficiently cooperate without sharing intent?

Research Activity 5: Synthesize proposal for experiment design in the main phase of the thesis.

Based on the results from the single-agent and multi-agent experiment from Research Activity 1 and Research
Activity 2 respectively, a training methodology and experiment design for the main part of thesis will be es-
tablished. The research questions belonging to this objective are:

1. What are the specifications of the training architecture?

2. What is a relevant structure for the traffic scenario in the experiments?

1.2. Research Approach 7

3. What are the model settings (observation space, action space, hyperparameters)?

Research Activity 6,7 and 8 will be performed in the final part of the thesis.
Research Activity 6: Implement and optimize the model settings of the multi-agent scenario.

The multi-agent experiment is initially constructed according to proposal from Research Activity 5. The goal
of research activity 6 is twofold: to implement the chosen multi-agent architecture in BlueSky and to optimize
performance. The performance of the method is evaluated with Research activity 6 and 7. Therefore, the
second goal requires iterative execution of activity 6,7 and 8. The corresponding research questions can be
defined:

1. Which model settings lead to a convergent scenario?

2. What are the optimal model settings for the multi-agent experiment?

Research Activity 7: Evaluate performance in the multi-agent experimental setting of conflict resolution al-
gorithm with conflict prioritization.

The RL model is optimized based on the objectives in the reward function. The RL model is therefore ex-
pected to show high performance on the dependent variables which greatly correlate to the reward function
components. Nevertheless, it is relevant to investigate the relationship between the model settings (with re-
ward function design) and a predefined set of evaluation parameters. The related research questions can be
stated as:

1. Based on what performance metrics is performance measured?
2. Houw to correctly assess the safety and efficiency of the conflict resolution method?

3. Are there recurring phenomena in the behaviour of the aircraft in a multi-aircraft conflict which can be
described with fixed-rules?

Research Activity 8: Compare performance with original conflict resolution method without conflict priori-
tization.

Finally, the performance of the trained RL model is compared with the original implementation of the SSD
method [2]. Both methods are applied to similar scenarios to allow for adequate comparison. The research
questions are:

1. Based on the established evaluation criteria, what are the discrepancies between the two methods?
2. What are the differences in aircraft behaviour?

3. What are the recommendation for future work?

1.2. Research Approach

The results from the research activities can be combined to establish a solution to the thesis objective. This
section illustrates the relationship between the various research activities. The overview for the preliminary
and final phase can be found in Figure 1.1 and Figure 1.2 respectively.

On the left-hand side of Figure 1.1, the single-agent experiment is described (Research Activity 3). Based on
the chosen CR method and RL model from literature, the model settings are initialized (Research Activity 1,2).
A scenario in BlueSky is defined and the model alternates between training and adjusting of model settings
until a successful agent has been trained. A successful agent is a rather ambiguous term, but in this scenario
corresponds to the agent successfully maneuvering through the scenario. More details will be explained in
chapter 3.

1.3. Research Scope 8

Thereafter, a successful single-agent scenario can be transformed to a multi-agent scenario for the second
experiment (Research Activity 4). Achieving a convergent model which showcases desirable properties is
expected to be significantly more difficult compared to the single-agent case due to the challenges of multi-
agent reinforcement learning described in subsection 2.3.2. The knowledge gained from the single-agent case
is utilized in the formation of the model setup for the multi-agent case.

Finally, the results of the single- and multi-agent experiments are combined to synthesize a proposal for the
experiment design in the subsequent thesis phase (Research Activity 5). The term proposal is employed since
the design is based on current knowledge. In the implementation phase, deviations from the proposal can
occur in further design iterations.

Experiment 1: Single-Agent Experiment 2: Multi-Agent

Initialize
Model
Settings

Initialize
Model
Settings

Train Model

BlueSky

]

1

1

1

1

]

! Adjust

] . jus

Literature Model 1 Model

1

1

1

1

Settings

Settings

Design Multi-Agent
Experiment Thesis

A

Figure 1.1: Schematic overview of single- and multi-agent experiment and their relation to each other and the design of the multi-agent
experiment in the main part of the thesis

The approach in the final thesis is similar to the preliminary phase. An overview of the methodology is pro-
vided in Figure 1.2. The starting point is implementing the proposal from the preliminary phase (Research
Activity 6). After that, the model is trained and the performance is evaluated (Research Activity 7) and com-
pared to the original CR method (Research Activity 8). The model settings are updated until satisfactory
results are attained.

General Multi-Agent Experiment

1

1

1

1

1 PPrpT
Design Multi-Agent 1 IrIUIt:dhezle ke Evaluate Compare Competent Final Model
Experiment Thesis [: Ao Performance Performance "\ _Results? d

1 Settings

1

Train Model No

ES

Adjust
Model [«
Settings

Figure 1.2: Schematic overview of general multi-agent experiment and its relation to the final model

1.3. Research Scope

To narrow the scope of this research, a list of general assumptions is provided in this section. If deemed
necessary, more assumptions are stated throughout the research to further narrow the scope. The following
general assumptions apply to this research:

1.4. Outline Report Structure 9

* No wind and turbulence in experiments. The experiments are performed in the BlueSky simulator
[41] in which wind and turbulence are deactivated. In the experiments perfect weather conditions are
assumed with no wind or turbulence. In such perfect conditions the True Air Speed (TAS) is equal to
the ground speed (GS).

* Homogeneity of CD&R methods for aircraft. It is assumed that all aircraft which have the CD&R
method activated, implement the same algorithm.

* Homogeneity in aircraft model. When conducting an experiment, the aircraft all have the same model
type which translates to similar constraints that are imposed on the agents in terms of performance.

* No restrictions with regard to air space. The aircraft are allowed to freely maneuver through the air
space and follow any flight path that they desire during the entirety of every experiment. This assump-
tion adheres to the ideas of the free-flight concept [31].

 Aircraft instantaneous obtain an unbiased measurement of the states of surrounding aircraft. In
real-life, the Automatic Dependent Surveillance Broadcast (ADS-B) provides a noisy estimate of the
aircraft state with a delay in time.

1.4. Outline Report Structure
Section 2.1 elaborates on the various facets of conflict detection and resolution methods with a focus on
methods that implement velocity obstacles. Subsequently, the concepts of reinforcement learning in a single-
and multi-agent setting are elaborated upon. Thereafter, chapter 3 explains the experiments performed in the
preliminary analysis based on knowledge gained from chapter 2. Finally, chapter 2 also provides a proposal
on the research approach in the final thesis.

Literature Review

In this chapter a description of the literature required to answer the research questions is provided. Sec-
tion 2.1 elaborates on conflict detection and resolution for manned and unmanned aviation. Thereafter, the
basic principles of reinforcement learning are described in section 2.2. Finally, the advanced reinforcement
learning concepts are described in section 2.3.

2.1. Conflict Detection and Resolution

The basic concepts and definitions in the field of CD&R are described in subsection 2.1.1. A taxonomy of
CD&R methods for manned and unmanned aviation is used to define the scope of this research. Subse-
quently, the taxonomy is used to provide a perspective on how this research relates to the spectrum of CD&R
methods in subsection 2.1.2. Section 2.1.3 further elaborates on the concept of conflict detection. The prin-
ciples of a velocity obstacles are elaborated upon in subsection 2.1.3. Thereafter, the Solution Space Diagram
(SSD) and the Optimal Reciprocal Collision Avoidance (ORCA) method are discussed in subsection 2.1.5 and
subsection 2.1.6 respectively. The performance metrics which can be used to evaluate the CD&R methods are
explained in subsection 2.1.8.

2.1.1. Basic Concepts and Definitions

The concepts and definitions explained in this section are required as basic knowledge for the remainder of
section 2.1. Part of the terms introduced in subsection 2.1.1 will be more elaborately discussed in subsequent
sections, often from a more mathematical perspective. The assumptions stated in subsection 2.1.1 are further
justified in subsection 2.1.2

The first concept concerns the separation limits in manned and unmanned aviation. The horizontal and
vertical separation minimum separation requirements for manned aircraft are defined by the ICAO [38]. The
horizontal requirement is 5 nm when radar, ADS-B or MLAT is utilised to determine the aircraft position. The
vertical minimum distance is 1000 ft below F1.290. Exceptions to these limits do exist in specific situations.
The separation distance has to be obeyed with respect to all heading angles thus forming a circle with the
aircraft at its center. This circle is called the protective zone. The protective zone with horizontal separation
limit Ry, and vertical separation limit /, are illustrated by Figure 2.2.

Regulation for unmanned aircraft has not been properly established yet and is still in development. There-
fore, exact numbers on the horizontal and vertical separation limits do not exist. The Bubbles project aims to
solve this problem and develop a framework for separation limits [81]. In research on conflict detection and
resolution for UAVs, the horizontal minimum separation distance was selected between 15 m and 400 m [29,
100, 72]. This range can be employed as a reference.

This research will focus on the conflict detection and resolution in the horizontal plane. Therefore, the term
minimum separation distance will indicate the horizontal minimum separation distance in future sections.

10

2.1. Conflict Detection and Resolution 11

Top View Side View

X NN

Figure 2.1: Schematic Overview of horizontal (Rp) and vertical separation limits (/ p)

It is assumed that the aircraft propagate their current state in a linear manner [73]. A loss of separation (LoS)
for ownship occurs when an intruder penetrates the protected zone. The terminology ownship and intruder
is adopted from [73] and denotes the perspective of the conflict situation. A conflict occurs when a LoS is
predicted based on linear propagation of the current states if the involved aircraft. In Figure 2.2 a conflict
takes place at time #. If no adaption is made to the projected flight path of both aircraft, a LoS between
ownship and intruder occurs at time #,

(_LoS
at tz

Conflict
at tq

Figure 2.2: Scenario in which a conflict between ownship and intruder is present at #; and a loss of separation (LoS) at t2. Ownship has
velocity Vo nship and radius of protected zone Rp.

A summary of the terms introduced in subsection 2.1.1, along with definitions for conflict detection and
conflict resolution that are used in this research, can be found in Table 2.1.

2.1. Conflict Detection and Resolution 12

Table 2.1: Summary basic definitions in field of Conflict Detection and Resolution (CDR)

Term Definition

Protected Zone Zone around aircraft which is generated by vertical and horizontal separation limits
that have to be obeyed for all heading angles

Conflict A conflict arises when the propagated trajectory of an intruder results in a

conflict with ownship within a pre-specified time interval into the future

Loss of Separation A LoS denotes the penetration of the protected zone of ownship by an intruder

Conflict Detection Conflict detection describes the mechanism which monitors whether conflicts are
present

Conflict Resolution Conflict resolution is applied to establish a conflict-free trajectory once a conflict
is detected [25].

2.1.2. Conflict Detection and Resolution Drones Taxonomy

This research aims to improve on an existing CD&R method which can be applied to both manned and un-
manned aviation. Within the landscape of CD&R, a great abundance of methods exist. To provide context on
the various characteristics of CD&R algorithms and the relation between the scope of this research and the
total spectrum of algorithms, a taxonomy of CD&R algorithms is provided in this section. The assumptions
stated in section 1.3 are utilized to define the subspace in which the to be researched algorithms operate.

The taxonomy from [73] is utilized to provide a structured overview of the available CD&R methods for
manned and unmanned aircraft, which aims to extend the taxonomy of Kuchar and Yang [47] by incorpo-
rating more recent CD&R concepts. An overview of the various categories of the taxonomy used to define
each CD&R method can be found in Figure 2.3. The highlighted boxes in Figure 2.3 indicate the character-
istics of the relevant algorithms for this research. A motivation on the scope is provided in the remainder of
this section.

2.1. Conflict Detection and Resolution

Conflict Detection

Conflict Resolution

Surveillance

Centralized Dependent

Distributed Dependent

Independen{

Predictability
Assumption

Nominal

Probablistic

Worst-Case

Trajectory
Propagation

State-Based

Intent-Based

Centralized

Decentralized

CD&R Categories

Resolution
Manoeuvre

Heading

Speed

Vertical

Flight Plan

Types of surveillance

Multi-Actor conflicts

Sequential

Concurrent

Pairwise Sequential

Pairwise Summed

Obstacle Types

Joint Solution

Static

Dynamic

Optimization
Objective

Flight Path

Flight Time

Fuel/Energy
Consumption

Avoidance Planning

Strategic

Tactical

Escape

Method Category

T
Ex{act

Heuristic

Prescribed

Reactive

Explicitely Negotiated

Figure 2.3: Overview of categorization CD&R algorithms [73]

Aircraft surveillance type denotes whether the aircraft is able to autonomously gather data relevant for CDR
or if the aircraft is dependent on incoming data from external systems. Three main surveillance types exist

2.1. Conflict Detection and Resolution 14

namely centralized dependent, distributed dependent and independent surveillance or DAA. In a centralized
dependent system, information is retrieved from one general station. In a decentralized dependent system
the aircraft broadcast information to each other. In manned aviation, a system called Automatic Depen-
dent Surveillance-Broadcast (ADS-B) is in place which can transmit state information on the aircraft posi-
tion, ground speed and vertical rate which can be used by other aircraft or ATC [86]. Finally, in this research it
is assumed that UAVs have an independent system in which static and dynamic obstacles are detected with
sensors integrated in the drone. The various types of surveillance are illustrated with Figure 2.4.

+:»/+ R y

(a) Centralised dependent surveillance (b) Distributed dependent surveillance (c) Independent Surveillance

Figure 2.4: Overview of surveillance types from [73]

It is assumed that the aircraft is capable to detect the relative distance and velocity to all obstacles that are
considered to be an intruder in a 2-dimensional plane.

Control

In manned aviation, ATC is responsible for the separation of all aircraft within their monitored airspace. This
is a centralized control approach since ATC provides a solution to all aircraft from a central point, the ATC
tower. In a distributed approach the computation of the solution is divided over each individual aircraft thus
reducing the computational limitations to which centralized solutions have to adhere to. Since the bottleneck
in ATC is the workload of the ATCos even with a limited number of aircraft [27], with the expected increase in
the number of drones [14], a distributed solution becomes a very viable and attractive option. Another dis-
advantage about a centralized approach is the need for communication. In the case of manned aviation, the
aircraft need to send information about their state to the ATC tower which computes a global solution. This
global solution then needs to be communicated to all aircraft. The delay caused by communication limits the
speed at which aircraft can adapt their state and no central coordination is possible in case of communica-
tion failure. In a distributed system, the lack of global coordination could incite hazardous situations if the
aircraft involved in the conflict do not possess sufficient information on the intent of other aircraft to form a
globally optimal solution [71].

The current approach in manned aviation is a centralized approach which is expected to experience prob-
lems with an increase in air traffic. For UAVs no centralized system is in place. Therefore, this research focuses
on distributed control methods in which one of the challenges will be to cope with the lack of global coordi-
nation.

Trajectory Propagation

The possible future trajectory of an aircraft can be constructed based on current state (i.e. state-based) or
with the inclusion of future intent (i.e. intent-based). A state-based method assumes linear propagation of
the current state while an intent-based method can incorporate variations in heading and speed based on
readily available flight plan.

Sharing of intent entails data transmission through communication between the aircraft. Various problems
concerning data transmission were discussed in the section on control hence the trajectory propagation of
the CD&R method in this research assumes state-based trajectory propagation.

Predictability Assumption
In the process of predicting the future states and thus trajectory of an aircraft including assumptions about
disturbances (irregular wind gusts, uncoordinated traffic) can be made on three levels: nominal, worst-case

2.1. Conflict Detection and Resolution 15

and probabilistic. The nominal assumption assumes no disturbances. The worst-case assumption considers
all events that could potentially influence the trajectory. With the probabilistic assumption, a probability is
assigned to each of the possible future paths and the decision on a conflict maneuver is dependent on the
most probable path.

The more information on disturbance factors is included, the higher the level of accuracy a conflict resolution
maneuver can obtain. The increased accuracy of the solution comes with a higher computational cost and
therefore the nominal predictability assumption is selected.

Avoidance Planning

Avoidance planning can occur on three levels. Strategic planning of conflict resolution maneuvers signifi-
cantly alters the original flight path in an attempt to avoid unnecessary conflicts. Tactical maneuvers are in
the mid-range and try to keep the minimum separation requirements intact while also minimizing the devi-
ation from the original flight path. As a last resort, there are the escape maneuvers which do not care about
flight path optimisation and only want to avoid a collision. The various types of avoidance planning ma-
neuvers are visualized in Figure 2.5. Typical ranges for look-ahead time that belong to the different types of
avoidance planning can be found in Table 2.2 [73]. In manned aviation ATC and CD&R methods take care of
strategic and tactical avoidance maneuvers. For escape maneuvers, a Traffic Alert and Collision Avoidance
System (TCAS) can compute a pairwise solution for a two-aircraft conflict [48]. For UAVs all strategic, tactical
and escape avoidance maneuvers depend on the CD&R algorithm. Due to the limitations of the on-board
sensing and processing systems, the avoidance maneuvers of UAVs can produce tactical and escape maneu-
vers only. Consequently, tactical avoidance planning type is assumed.

Table 2.2: Different types of avoidance planning with accompanying look-ahead time ranges

Avoidance Planning Type Look-ahead Time Range Unit

Strategic >20 min
Tactical 3-20 min
Escape <3 min

-{—-—K&-—'—}- ——————— > €eu -==>

(a)Strategic planning. (b)Tactical planning, (c)Escape planning,

Figure 2.5: Overview of avoidance planning types from [73]

Maneuver Employed for Resolution

An aircraft can resort to several options when choosing a resolution manoeuvre. The avoidance manoeuvre
can translate into a change in current heading, velocity, altitude and/or a change in flight plan. Even though
three-dimensional conflict resolution methods which implement velocity obstacles exist [12], it is decided
to limit the scope to methods which employ heading and velocity changes to limit the computational com-
plexity. Besides, it was found that horizontal maneuvers are preferred for both passenger comfort and fuel
consumption [10].

Approach to Multi-Actor Conflicts

Multi-actor conflicts are conflicts which include more than two aircraft. Such conflicts can be solved in a
sequential manner in which a prioritization is made between the various aircraft involved in the conflict [35].
The second method is to solve the conflicts in a concurrent manner where all new trajectories for all aircraft
are computed at once [65]. Solutions in a decentralized approach can be divided between joint solutions,
pairwise sequential solutions and pairwise summed solutions. In a joint solution, all other aircraft that are

2.1. Conflict Detection and Resolution 16

considered intruders based on user defined criteria (e.g. relative distance), are taken into account when
computing a solution that solves all conflicts concurrently. In a pairwise sequential solution, conflicts pairs
are solved individually based on the conflict prioritization order. Finally, in a pairwise summed solution the
avoidance maneuvers of the individual pairs are added together into one conflict avoidance maneuver.

In chapter 1, it was already explained that this research focuses on joint solution methods.

Obstacle types

A CD&R method can be designed to cope with static obstacles, dynamic obstacles or a combination of both. It
is no guarantee that a CD&R method which is designed for dynamic obstacles can automatically avoid static
obstacles. Static obstacles are neglected in this research.

Optimisation Objective

The performance of a CD&R method can be measured based on several components. Safety is naturally the
most obvious and important measure. Besides safety, it can be important to choose the resolution maneuver
that alleviates the consequences on the fuel consumption or flight time.

The optimisation objectives partly dictate the reward structure of the reinforcement learning algorithm. There-
fore, at this point it is too early to fix the optimisation objectives. However, this research starts with an already
existing CD&R algorithm. Similar dependent variables that were used to assess the original algorithm can
thus be used. In this manner, the discrepancies between the original method and the algorithm of this re-
search can be investigated.

Method Categories

With a distributed control scheme, the conflict resolution categories are divided based on the type of avoid-
ance manoeuvres. The categories are prescribed, reactive and explicitly negotiated. In prescribed methods
all aircraft involved act according to a set of predefined rules, while in reactive methods the aircraft compute
their avoidance manoeuvres from the same conflict resolution algorithm that takes conflict geometry as in-
put. Finally, in explicitly negotiated all aircraft involved in the conflict communicate with each other such
that all aircraft are aware of the intended conflict avoidance strategy of the other aircraft.

The VO-based conflict resolution methods decide on the avoidance maneuver based on the conflict geome-
try. Therefore, the method of this research falls in the reactive category.

Concluding Remarks

The initial scope of the research is defined in subsection 2.1.2. This does not mean that the scope is definite
and cannot be altered any more. During this research, it could be concluded that the current scope is not
adequately defined and needs to be changed. It will be clearly stated when assumptions are added/removed.
The algorithms that fit the criteria of the scope and are selected for further research are the SSD [2] and
Optimal Reciprocal Collision Avoidance [94] which are discussed in subsection 2.1.5 and subsection 2.1.6.

2.1.3. Conflict Detection

An introduction to conflict detection was given in subsection 2.1.1. This section explains further elaborates
on the characteristics of a conflict situation. The Closest Point of Approach (CPA) is the point at which min-
imum separation between the ownship and intruder aircraft is reached. The distance to Closest Point of
Approach (dcp,) is defined as the distance between intruder and the closest point of approach. The Time
to Closest Point of Approach (f¢p,) is the time until the closest point of approach is reached. A conflict is
detected when dp, is smaller than the radius of the protected zone R),.

To derive the equations for #.p, and d.p,, start with a scenario in which the trajectories of two aircraft are
derived from their current state in a linear manner. The distance between the two aircraft starting at time ¢
with their initial position at ¢ = 0 is equal to Equation 2.1 in which d;; denotes the distance between aircraft
i and j in m, x the position vector with unit m, v the velocity vector with unit m/s, the vector d,.; represents
the relative position between the two aircraft in m and v,,; denotes the relative velocity vector between the
two aircraft with unit m/s [37].

2.1. Conflict Detection and Resolution 17

dij (1) =1x; (1) —x; (1)
=1x;(0) —x;(0) + (v; —v;) - t] 2.1)
= |dyer () +Vyer (1) -]
The goal is to find time ¢ which minimizes the distance d; ;. This can be accomplished by setting the deriva-
tive of d;;(¢) equal to 0. To deal with the negative values the derivative of dl?j is computed. The result of this

derivation are the equations for t,, and d.p, which can be found in Equation 2.2 and Equation 2.3 respec-
tively.

drerVrer
tepa=———5— (2.2)
cpa |Vrel|2
_ /32 2 2
dcpa= drel ~lepaViel 2.3)

With aid of geometric relations, Equation 2.4 can be derived in which ¢;, represents the time until a loss of
separation occurs and f,,; when the conflict is resolved. A conflict occurs if the current path of an aircraft
will result in a loss of separation within a pre-defined look-ahead time window 7. Combined with the stated
assumptions on the CD&R methods in this research, this translates to ;; <7 and d¢pq < Rpz [73]. The term
tin can also be referred to as the time to loss of separation ;5.

2 _ 72
Rpy—dipa
tin)tout = lcpAT —— (2.4)
Vrel

Pintruder

F’awnship

Figure 2.6: Description of relation between dcpa, drej, Vre; and positions and velocities of ownship and intruder, adapted from [73]

2.1.4. Velocity Obstacles
This section first describes the original paper which implemented velocity obstacles. Thereafter, it is de-
scribed how the velocity obstacles can be applied in the field of aviation.

Original Velocity Obstacles
The idea of implementing velocity obstacles for 2-dimensional motion planning and obstacle avoidance was
already introduced in the previous century [21]. The collision cone described in the paper contains a set

2.1. Conflict Detection and Resolution 18

of all relative velocities between robots A and B which result in collision at some time in the future. The
construction process of a collision cone can be explained with aid of Figure 2.7 and Figure 2.8. In Figure 2.7
the initial situation can be found at ¢, in which two circular shaped robots A and B with radii r4 and rp have
velocities v4 and vg. In Figure 2.8 r, is subtracted from robot A and added to r; forming circle B, Vap is
the relative VelocAity Vectpr between A and B and A4,p is a line which extends v4 5 to infinity, A, and A7 are
tangent lines to B from A.

Intuitively, if 14 5 intersects with circle B, this means that at some time ¢ in the future, a collision will occur
between robot A and B with the current relative velocity v4 g. A more formal and mathematical definition of
the collision cone CCy4 p can be found in Equation 2.5 which states that any relative velocity V4 g for which
A a,p intersects with B belongs to the set of velocities that compose CCy p.

Va

A

Figure 2.7: Robots A and B are moving with velocities v4 and vg Figure 2.8: The collision cone CCy, p adapted from [21]
respectively, adapted from [21]

CCap={VaBlAapNB#0} (2.5)

Any relative velocity outside of CC4 p guarantees a collision-free path for robot A and B [21]. Subsequently,
the collision cone can be transformed from the relative velocity plane to the absolute velocity plane. This
simplifies the conflict resolution process since avoidance maneuvers can be planned and executed in the
absolute velocity plane. Also, this allows the inclusion of transformed collision cones of multiple dynamic
and/or static obstacles in the process of selecting a desired velocity vector. This operation can be performed
according to Equation 2.6 in which & is the Minkowsky vector sum operator. The collision cone is now re-
named as a velocity obstacle.

VO=CCypeVp (2.6)

Velocity Obstacles with Aircraft

The construction of velocity obstacles for aerial vehicles can follow a similar methodology as the circular
shaped robots, because the aircraft have to obey the minimum horizontal separation distance. The aircraft
thus also have a circular shape and the underlying mathematical problem is therefore comparable. If the
relative velocity between aircraft A and B is within CCy, g, this will results in a loss of separation. The com-
putation of the velocity obstacle for two aircraft is displayed in Figure 2.9 which shows great similarity to the
example in section subsection 2.1.3. The shift of the collision cone by the Minkowsky vector sum operator is
clearly visualized by Figure 2.9b and Figure 2.9c.

2.1. Conflict Detection and Resolution 19

V. . f v
; . mt \ / \
intruder \

ownship

(a) (b) (c)

Figure 2.9: The initial situation (a) for which the collision cone for ownship and intruder is constructed (b) and transformed from the
relative velocity to the absolute velocity reference plane (c) from [2]

2.1.5. Solution Space Diagram

The first concept similar to the SSD as implemented by [2], was introduced by [93] as the "state vector enve-
lope". The goal of the state vector envelope was to assist the pilot in the aircraft separation assurance task.
Subsequent research focused on the assessment of the ATCo workload [26]. High correlation between prop-
erties of an SSD and the difficulty of the aircraft merging task as reported by the ATCo were found.

Thereafter, instead of only measuring workload of the ATCo with the SSD, the idea arose to employ the SSD
as a tool for the ATCo’s to manage air traffic [56]. Significant effects on the reduction of the workload of the
ATCo were found by implementing the SSD. Furthermore, experiments were performed to test the accep-
tance of the SSD as a CD&R tool [5] by ATCo’s. Finally and most importantly for this research, the SSD was
implemented as a conflict resolution [2].

This section first elaborates on the construction of the SSD. Thereafter, the components which are required
to synthesize the SSD and its solutions are described. At last, the SSD as a conflict resolution algorithm is
explained.

Construction of Solution Space Diagram

This research implements the SSD in a similar fashion as in [2]. Therefore, the construction process will
be similar and is explained with Figure 2.10. Figure 2.10a displays 3 VOs which belong to 3 obstacles. If
the velocity vector of ownship is located within one of the VOs, the ownship is in a conflict. Therefore, the
union of the 3 VOs is called the set of Forbidden Reachable Velocities (Equation 2.7). In Figure 2.10b the set
of reachable velocities (RV) is displayed and is based on the performance limits of the aircraft. The inner
circle has radius v,,;, and the outer circle has radius v,,,,. Assuming that no other regulatory constraints
are imposed, an aircraft is obviously able to turn to any desired heading hence the circular shape (for every
heading angle, the aircraft at least flies at v,,;, and maximally at v,,4x).

N
Fv=JVO; 2.7)

i=1

2.1. Conflict Detection and Resolution 20

Bl FRV [] ARV
(a) (b) (c)

Figure 2.10: Velocity obstacles from 3 intruders (a) are combined with the performance limits of the aircraft (b) to form the SSD (c) [2]

Division of the RV into the Allowed Reachable Velocities (ARV) and Forbidden Reachable Velocities is the final
step to synthesize the SSD. The FRV and ARV can be found with Equation 2.8 and Equation 2.9 respectively.
Figure 2.10c displays the final result.

FRV =RVNFV (2.8)
ARV =RVNFV® (2.9)

Components of Solution Space Diagram

Selecting the right for the formation of the state space in the reinforcement learning algorithm is a difficult
task. Utilizing the entire SSD image as input image has several drawbacks. An image is essentially a 3-D
array in which two dimensions represent the length and width of the image measured in pixels. The third
dimension denotes the color of each pixel. A variety of ways exist to represent the color of the pixel such as
RGB (red-green-blue) or grayscale. However, the image of the SSD will probably need to be compressed in
order to train the model in a feasible amount of time. During compression, information from the conflict
geometry is lost which is undesired. Furthermore, if VOs from various conflicts are overlapping, the model
cannot distinguish individual VOs and has no correct interpretation on the conflict geometry. It is therefore
decided that the parameters which are used to construct the SSD will be directly inputted to the model.

A summary of parameters which are utilized in the computational process of the SSD and its solutions can be
found in Table 2.3.

Table 2.3: Summary of parameters SSD. Parameters are assumed to belong to ownship if not explicitely defined otherwise.

Parameter Unit
Velocity m/s
Maximum Velocity m/s
Minimum Velocity m/s
Heading deg
Conflict Angle deg
Latitude and Longitude intruders deg
Relative heading intruders deg
Relative distance intruders m
Velocity intruders m/s
Target Heading deg
Number of conflicting aircraft [-]
lepa s
dcpa S

Lios S

2.1. Conflict Detection and Resolution 21

Solution Space Diagram in Conflict Resolution

The SSD diagram provides a set of allowable reachable velocities, but that is only part of the solution. The
second part is to select which velocity vector to choose from the set of available reachable velocities. In
Table 2.4, various rules for selecting a velocity vector from the ARV can be found [2]. For conflicts that involve
two aircraft, the first rule OPT is geometrically optimal according to Ellerbroek [16]. The other rules also
include the ROW rules and a prioritization of VOs.

Table 2.4: Eight rulesets which can be applied to the Solution Space Diagram to compute the velocity vector of an avoidance maneuver
adapted from [2]

ID Priority Description

1. OPT X Resolve by taking the shortest way out
2.RIGHT X Resolve by only turning right

3. HDG X Resolve by only changing speed

4. SPD X Resolve towards the target heading

5.DEST X Resolve by adhering to the rules of air

6. ROTA vV Resolve sequentially while adhering to OPT
7. OPT+ v Resolve sequentially while adhering to OPT
8. DEST+ V Resolve sequentially while adhering to DEST

The rules can be best explained with an example SSD. The SSD that illustrates the rules without priority
and with priority can be found in Figure 2.11 and Figure 2.12 respectively. The numbered yellow points in
Figure 2.11 and Figure 2.12 represent the the velocity vector from the ARV that belongs to the solution of the
rule. In Figure 2.12, only VOs from which the intruder is within 40 NM are taken into account when computing
the resolution velocity vector. For example, in Figure 2.12, the solution for OPT without priority (1) is clearly
different than the solution for OPT+ with priority (7).

- FRV .j FRV (primary)
I:l ARV - FRV (secondary)
o Resolution Point D ARV

w Target Heading o Resolution Point

—> Velocity Vector ¥ Target Heading

—> Velocity Vector

Figure 2.11: Solution points with basic coordination ruleset Figure 2.12: Solution points with basic coordination ruleset with
without priority from [2] with priority from [2]

The shortest path out ruleset showed the most promising results in terms of safety, stability and efficiency.
An interesting recommendation from [2] was to take the dynamic behaviour of the SSD into account when
constructing the resolution velocity vector. The dynamic behaviour can be included by constructing an SSD
in which the states of all aircraft involved are linearly propagated.

2.1.6. Optimal Reciprocal Collision Avoidance Method

Another conflict resolution approach based on VOs is the Optimal Reciprocal Collision Avoidance (ORCA)
algorithm. The ORCA method was originally applied to circular robots [94]. It is a decentralized method in
which each robot selects a preferred velocity such that all robots are collision free for at least T seconds. The
definition of the VOs is slightly different than in subsection 2.1.3 and is explained with Figure 2.13.

2.1. Conflict Detection and Resolution 22

P Vi v,
V\Oj;;-é@ Vi
P b4)/T
CAin(Vi)
A ol v
(a) (b) (c)

Figure 2.13: The initial situation (a) for which the velocity obstacle VO/T“I B is constructed (b) which is transformed to the absolute
velocity plane assuming robot B selects its velocity from Vp (c), adapted from [94]

The initial situation is similar (Figure 2.13a), but the VO obstacle VOZ‘ g is now determined based on 7 sec-
onds in the future causing r, of robot A to be transformed to pB;pA . Similarity of the two methods can simply
be proven with Equation 2.10. If you take the limit of 7 to infinity the truncated cone of Figure 2.13b will
approximate the same triangular shape as in subsection 2.1.3. The truncated cone means that the relative

velocity between the two robots can be so small that it will not result in a loss of separation within 7 seconds.

lim P57 Pa

T—00 T

=0 (2.10)

The complement of the Minkowksy sum Vqul 5 @ Vg is the set of collision avoiding velocities for A provided
that B select its velocity from Vg which is displayed in Figure 2.13c. The definition can be found in Equa-
tion 2.11.

CAY(Vp) = {(vIvE VO 5 ® VB} 2.11)

The set of velocities that is defined by the ORCA algorithm based on CAE;\ 5(VB) and Vqul 5 is computed
according to Equation 2.12 and visualized in Figure 2.14. In Equation 2.12, n is the outward normal from the
circumference of VOIT4| B from the position (v?{pt - V%pt) + u, the vector u represent the smallest adjustment
required to the relative velocity of A and B to avoid a collision within the next 7 seconds. The set of velocities
ORCAR, , can be defined symmetrically. Robots A and B can deduce ORCA}, ; and ORCAf, , implicitly;

purely based on their own observations.

1
ORCAY g = l(v— (v} + SwW-n=0} 2.12)

2.1. Conflict Detection and Resolution 23

Vy
&
ey Cﬁ&\?
0"1‘
0 Ve
Vi

Figure 2.14: Construction of velocity set ORC AITL” g by addition of %u to vat from [94]

This principle can be extended to a scenario with n robots. Robot A senses the radius, velocity and position
of the (n—1) robots and computes the set of permissible velocities with respect to each intruder. The result is
a set of permissible velocities for all the intersecting half-planes which is called ORC A’,. The new v is found
with Linear Programming by minimizing the distance between the current velocity and the set of permissible
velocities. In a very cluttered environment, it can be possible that ORCAY, is empty and no conflict free
velocity can be computed.

In [61], ORCA is implemented as a CD&R algorithm to civil aviation in which the algorithm succesfully solved
potential conflicts and reduced the pilot his workload. In [62], ORCA with a of directive is implemented as a
decentralized method for CD&R.

2.1.7. Conflict Prioritization
This section first explains the choice of the conflict resolution algorithm for the experimental phase. There-
after, a description on related work in the field of conflict prioritization in conflict resolution is given.

Choice of Conflict Resolution Method

As explained in section 1.1, this research will apply conflict prioritization to an existing CD&R method based
on velocity obstacles. The two considered methods are the SSD and ORCA algorithms from subsection 2.1.5
and subsection 2.1.6 respectively. Conflict prioritization in this research is represented by a binary decision.
When a conflict is encountered, all aircraft from which state information is available (dependent on ADS-B
constraints for manned aviation and sensory limitations for unmanned aviation) are either incorporated in
the conflict resolution or completely ignored. For the SSD algorithm, this translates to activating/deactivating
the VO for each aircraft in the SSD. In the ORCA algorithm this corresponds to addition/removal of constraints
on the velocity space imposed by each conflict pair. Conflict prioritization is relevant for the SSD and ORCA
algorithm, because these algorithms implement a joint solution which causes quick saturation of the solution
space at high traffic densities yielding no feasible solution.

The SSD is selected as the method to which the conflict prioritization is first applied. In the ORCA method,
each constraint introduced by a conflict pair approximately halves the solution space. In a multi-aircraft
scenario with 7 or 8 aircraft, it is hypothesized that the removal of aircraft in the ORCA algorithm will resultin a
smaller increment in the solution space compared to the SSD algorithm. A larger solution space allows the RL
algorithm to explore more options and potentially produce a more optimal solution. Moreover, comparable
research with the SSD on manned and unmanned aviation is more extensive [2, 68, 16]. Hence, the SSD

2.1. Conflict Detection and Resolution 24

method is selected for this research. If the time allows it, a similar approach can be applied to the ORCA
algorithm to investigate if the prioritization method generalizes beyond the SSD algorithm.

Related Work

A common approach to apply prioritization in collision avoidance is a centralized approach in which aircraft
are assigned a low or high priority based on criteria such as current velocity [55, 17]. Aircraft with low priority
should avoid aircraft with a high priority. Also, efforts for conflict prioritization have been made to the SSD
algorithm [68]. In [68], a conflict prioritization strategy was constructed based on a fixed set of rules. With
increasing priority, the rules were based on lookahead time, f7,s, dros and dcpq. A sequential approach was
taken which means that a conflict rule with a higher priority was selected if the current priority rule did not
result in a solution. The approach showed improvement on the original SSD method. Limitations of the
research were that only a limited number of rules and a limited number of combinations of those rules were
evaluated.

The right-of-way (ROW) rules as part of Rules of the Air (RotA) are perhaps the most famous example of
prioritization in conflict resolution [1]. The ROW can be found in Figure 2.15. It was found that following the
RotA did not always reduce the complexity in airspace operations. Also, the deviation from the original flight
path by complying to RotA is not minimized [58].

A .

Converging: The one on the right- | | Head on: None has the right of
hand side has the right of way way, and both have to avoid to the right

Right of
Way -
> P—_ > Righ of Way “

.
e 5

_ Avoidance should not go over,
Same path: The one being taken| | under, or in front of other that
over has the right of way has the right of way

Figure 2.15: The right-of-way rules from [1]

2.1.8. Dependent Variables

In this section, the definitions are provided for the variables that are measured during the experiments to
assess the safety, stability and efficiency of the conflict resolution method. To accurately compare the SSD
algorithm with conflict prioritization to the original SSD algorithm, the utilized evaluation metrics should be
similar. The metrics are based on previous research [87, 49, 91]. An overview of the dependent variables can
be found in Table 2.5. First, the parameters which measure safety are explained. The dependent variables for
the efficiency and stability criteria are subsequently described.

2.2. Reinforcement Learning Basics 25

Table 2.5: Overview of dependent variables used in the assessment of SSD algorithm as a CD&R method [2]

Variable Type Description

Neonf Safety Number of conflicts

Nios Safety Number of losses of separations

IPR Safety Intrusion prevention rate

LoSey Safety Loss of separation severity

Teonf Safety Duration of a conflict

Tros Safety Duration of a loss of separation
Tinconf Safety Total time in conflict per ac

TinLoS Safety Total time in loss of separation per ac
DEP Stability Domino Effect Parameter

Npcons Stability Number of aircraft involved in multi-AC conflicts
w Efficiency Work performed during flight

T Efficiency Duration of flight

D Efficiency Travelled distance

Safety

Safety concerns adequate separation between aircraft. Safe separation can be expressed in terms of Ny,s
and Ngop¢. The terms LoS and intrusion indicate the same phenomenon and can be interchanged. The
intrusion prevention rate (IPR) can be computed with Equation 2.13. It denotes which part of the conflicts
were successfully resolved and did not result in an intrusion [87].

1pR = Neft = Nios (2.13)
Nyl
An intrusion does not directly imply a collision. Differentiation between various intrusions is achieved by two
parameters: the severity of LoS LoS;s., and the duration T;,s. For horizontal maneuvers only, LoS;,., can be
computed with Equation 2.14 in which R represent the radius of the protected zone. The term 77,5 indicates
the duration of a single LoS. An extension of T, is the total time an aircraft spentin a LoS Tj,10s. In a similar
fashion T¢o, r and Tipcon s are defined for conflicts.
R—dcpa

L0Sse = ——=— (2.14)

Stability

At a very high traffic density, resolving conflicts can result in secondary conflicts. To measure the stability
of the solution, the domino effect parameter (DEP) is used in literature [45]. The implementation of [87] for
the DEP is chosen and is defined by Equation 2.15. In Equation 2.15, S; represents the subset of conflicts if
CR is deactivated during simulation and S» the subset of conflicts if CR is activated. A high DEP thus implies
that the CR method often incites secondary conflicts. The number of aircraft which experience multi-aircraft
conflicts Nycon s is @ second measure for stability.

S2

DEP=-—=-1 (2.15)
S1

Efficiency
A third objective for which conflict resolution methods can be optimized is efficiency. Efficiency is measured

with the work done during a flight W, the flight time T and the length of the traversed flight path D. The work
W is defined with Equation 2.16 in which T and s denote a thrust and displacement vector respectively.

W= T-ds (2.16)
path
2.2. Reinforcement Learning Basics
The basic concepts of reinforcement learning which are required to understand the principles on which the
advanced methods are based, are explained in this section. First an introduction to the topic of reinforcement

2.2. Reinforcement Learning Basics 26

learning is provided in subsection 2.2.1. Thereafter, a description of the research methodology is provided in
subsection 2.2.2. A taxonomy of RL methods is given in subsection 2.2.3. Thereafter, the basic mathematical
framework for RL problems is explained in subsection 2.2.4. Subsequently, the concepts of reward, policy and
value function are elaborated upon in subsection 2.2.5. Section 2.2.6 describes how the optimal policy can
be found. In subsection 2.2.7, the difference between a model-free and model-based approach is explained.
Finally, subsection 2.2.8 and subsection 2.2.9 describe value- and policy based methods.

2.2.1. Introduction

A gazelle calf is barely able to stand on its feet just after it is born. However, within hours it is able to run
around. In the first couple of hours of its life, the gazelle continuously receives feedback from its environment
on whether the movements of its limbs successfully contribute to the process of being able to stand up and
run around. The gazelle is able to learn which movements are successful and incrementally becomes better
at moving around. This is an example of how an agent (the gazelle) with no previous information, is able to
determine optimal behaviour by interacting with the environment.

The term Artificial Intelligence (Al) is a general term which already originates from 1956 [24] and encom-
passes a great variety in algorithms and methods. Artificial intelligence is defined as "a system’s ability to
interpret external data correctly, to learn from such data, and to use those learnings to achieve specific goals
and tasks through flexible adaptation” [43]. The branch of Al that focuses on problems similar in nature to
the gazelle calf that learns to walk by interacting with the environment without an explicit teacher, is called
Reinforcement Learning (RL) [88].

The agent and environment are the two main elements that each RL problem has. The environment is the
world as the agent sees it and the state is an observation of how an agent perceives the environment at a spe-
cific time. An environment can be altered by the action of an agent or change on its own. The agent observes
a reward from the environment which is essentially a feedback mechanism that provides a numerical value
to how desirable the selected action of the agent was based on the future environment state.

The crux in reinforcement learning lies in how the agent selects an action based on an observation of the
environment. To define the scope of the examined methods in this chapter, a taxonomy is provided in sub-
section 2.2.3.

2.2.2. Methodology

In this section, a motivation is provided on why the included sections are relevant in the research to decide on
the type of reinforcement learning model. The basic concepts of RL within the relevant scope are explained
in section 2.2. The relevant scope will be defined in subsection 2.2.3. Thereafter, function approximators
and challenges on MARL are discussed in subsection 2.3.1 and subsection 2.3.3 respectively. The sections
are relevant, because almost all state-of-the-art methods utilize function approximators and the proposed
objective of applying conflict prioritization to multiple aircraft is a multi-agent problem. Relevant literature
in subsection 2.3.5 is described with a focus on RL model type and the methodologies to deal with the chal-
lenges imposed by multi-agent RL. The advanced algorithms are related to previous section, because they
implement function approximators and their inner mechanics can be explained with aid of the basic con-
cepts. The relevant advanced algorithms are further explained in detail in subsection 2.3.6 before a decision
about the final method is made in subsection 2.3.7.

2.2.3. Taxonomoy

Due to extensive research, a great variety of reinforcement learning algorithms has been established. The
properties of the problem determine which algorithms are most suitable. An abbreviated taxonomy is pro-
vided in Figure 2.16 which assists to narrow the scope of this research to algorithms that could actually be
implemented to solve the problem imposed in chapter 1. The first division is between algorithms that use
finite Markov Decision Processes (MDP) and bandits. This research focuses on MDPs.

2.2. Reinforcement Learning Basics 27

Model-Based

MDP

Value-Based

RL Algorithms

Model-Free

Bandits

Policy-Based

Figure 2.16: RL taxonomy adapated from [101]

2.2.4. Markov Decision Processes

A MDP is a mathematical framework in sequential decision making [88]. It does not only take the immediate
reward based on an action into account, but also subsequent states and thus rewards. A Markov Decision
Process in the context of RL can be explained with Figure 2.17. At time ¢ = 0, agent receives state sy € S and
takes action ag € Awith S and A being the sets of all valid states and actions respectively. Applying action ag
to the environment results in s; € Sand r; € Rwith R as the set of all valid rewards. The continuous interac-
tion between agents and environment for n timesteps into the future results in a trajectory 7 represented by

Equation 2.17.
"_I Agent |

state| |reward action
s, | |& A
Rr+l (
S.. | Environment |[e———
L
Figure 2.17: Interaction loop between agent and environment
T = So, Ao, S1, 11, A1, 82,12, A2, ...Sn, I'ny Ap. (2.17)

If the series of Equation 2.17 is a Markov decision process, the system dynamics are completely determined
by Equation 2.18. That means that the probability, for all valid s; and r;, is solely dependent on the last state
and action, namely s;_; and a;_;. If the state is able to capture all relevant information about past interaction
in the previous state, the Markov Property can be assigned to the state. The Markov property is assumed to
be true for the rest of this research.

p(shrisa)=Pr{s;=s",ri=rlsi_1=sa;,-1=a} (2.18)

2.2.5. Reward, Policy and Value Function

For optimal behaviour an agent should not only focus on immediate rewards, but also on future rewards.
There are RL problems that can easily be divided in sequences in which the agent selects a new action until
the terminal state is reached. Once the terminal state is reached, a new sequence is started. Those sequences
are called episodes. An example of an episode is playing an entire game of Pac-man. Maximizing the reward
for such problems could simply mean to maximize the total sum of all rewards received within one episode.
However, there are also continuous RL problems in which time runs to infinity which obviously would make
this simple approach not very attractive since the sum of rewards might not converge. Therefore, the con-
cept of discounting is introduced which results in a new function that the agent tries to optimize. This new
function is called the total discounted reward G; or return and is represented by Equation 3.8.

2.2. Reinforcement Learning Basics 28

(e 0]
Ge=Te + YT+ Y rees+ = Y Yo rpn, (2.19)
k=0
In Equation 3.8, y (with 0 < y < 1), denotes the discount factor which reduces the effect of future rewards and
increases the effect of more recent reward.

The value function is incorporated in almost every reinforcement learning algorithm and indicates the long
term value of being in a state. It is an indication for the agent on how desirable the current state is. A policy
assigns a probability to all possible actions that an agent can take and fully defines the behaviour of an agent.
An agent with policy 7 has probability n(a | s) of selecting action a given state s. Equation 2.20 displays this
relationship in a more formal manner. It should be noted that a policy is time-invariant [83].

n(als)=Plag=a| s; =] (2.20)

Given a policy 7, the value function of a state v,(s) can be defined according to Equation 2.21 for MDPs.
The value function is the expected return when starting in state s and subsequently following policy . The
function vy (s) is called the state-value function for policy 7.

Ur(8) =Ex [Gy | s = 5] (2.21)

In a similar fashion, the action-value function for policy = can be determined. The action-value function
g (s, a) represents the value of selecting value a in state s while following policy 7 and can be found in Equa-
tion 2.22.

qn(s,a) =By [G¢| Sy =5, Ar = a] (2.22)

A very fundamental equation in RL is the Bellman equation. The Bellman equation describes the value of
a current state by taking the expected value of the immediate reward and the discounted sum of the value
function for the subsequent state. The basic mathematical idea behind an expected value computation is to
multiply every possible value that a random variable can take on with the probability of occurrence and sum
all values. For a discrete random variable X, this computational process can be found in Equation 2.23 with
f(X) being the probability density function.

EIX]=) X;-f(X) (2.23)

A similar approach can be applied to the first line of Equation 2.24. The policy determines the probability
n(a| s) for action a given state s. Action a has probability p (s’, rls, a) to transform the state of the agent from
sto s’ given a. State s’ leads to reward r and discounted value (v (s')). So the probability of reaching state s’
isequalton(als)-p(s',r s, a)and the value of s is (r + v, (s')). Summing over all possible states s’ based on
action a and all actions a results in the recursive algorithm of Equation 2.24.

Un(8) =Eq [rie1 +YGre1 | 8= 5]
=Y nal9)) p(s,risa)[r+yvy(s)], forallseSs (2.24)
a s'r

A similar derivation can be made for the action-value function g, (s, a) resulting in Equation 2.25.
drs,a)=) p(sirisa)|r+yd.n(d |s) g (s, a) (2.25)
s,r a'

2.2.6. Optimal Policies

An optimal policy is denoted as 7. and this means that there is no policy with a higher state-value function
for all states. There can, however, be multiple optimal policies (e.g. multiple trajectories with similar rewards
could lead to multiple policies which are equally optimal). The optimal state-value function v (s) is defined
by Equation 2.26.

Vi (S) = m;lx v ($) (2.26)

2.2. Reinforcement Learning Basics 29

The optimal action-value function g. (s, a) is displayed by Equation 2.27 and denotes the maximum action-
value function over all possible policies. The optimal policy is followed after starting in state s and taking
action a [83]. Subsequently, the optimal policy is followed.

qs«(s,a) = max qn(s,a) (2.27)

The optimal state-value function v, (s) and the optimal action-value function g. (s, a) are related to each other
by the Bellman optimality equation (Equation 2.28). Intuitively, this makes sense, because it essentially says
that when in state s, select the action that maximizes the optimal action-value function g« (s, a). It is known
that g. (s, a) follows the optimal policy after selecting action a and hence if state a is also optimal with respect
to g+« (s, a), the optimal policy is followed resulting in an optimal value function. [88]

Comparing Equation 2.28 with Equation 2.24, the discrepancy can be found in the first part of the equation.
Instead of assigning a probability a to each possible action from state s based on the policy n(a | s), a 100%
probability is assigned to the action which maximizes the sum of immediate reward and discounted value
function based on future states.

v« (s) = maxgqy, (s, a)
acA

— / / (2.28)
_maaxS,er(s,r I's,a) [r+yvs(s)]

The Bellman equation for the optimal action-value function g. (s, a) can be found in Equation 2.28. Again,
compared to Equation 2.25, the summation over all possible actions is exchanged for the action which maxi-
mizes g (s,a).

gs(s, @)=Y p(s,risa)|r +ymaxq. (s',a') (2.29)
sr a
The goal is to compute the optimal policy 7. (a | s). The policy allows the agent to maneuver through the
environment. Hence, with an optimal policy, the agent knows the most desirable way to maneuver. The
optimal policy can be derived from v, (s) or g. (s, a).

To derive the optimal policy from v, (s), the action should be selected that is optimal in the next step. Due
to the definition of the optimal state value function, performing this method for each singular step actually
results in the optimal policy. The policy is said to be greedy with respect to the value function. An example
can be found in Figure 2.18, in which the values of possible future states are visualized. The optimal policy
would select action a, because it results in the state with the highest value of all actions ay, a, as and a4. With
the optimal g (s), this process is even more effortless and the action that maximizes g. (s) is selected. More
formally, this is defined by Equation 2.30 [83].

Initial
State
i Action
a4 a2 a3 a4
10 V(s')

Figure 2.18: Optimal policy would select action a, based on state S

1 if a=argmax(q.(s,a)
n.(als) = acA (2.30)
0 otherwise

2.2. Reinforcement Learning Basics 30

2.2.7. Model-Based vs Model-Free

From Figure 2.16, it can be seen that the category of MDP consists of two subcategories namely Model-Based
and Model-Free. Model-Based and Model-Free refer to the availability of the exact model dynamics as de-
fined by Equation 2.18. In this research, the focus will lie on the Model-Free methods since the exact model
dynamics are not known in the case of the multi-agent collision resolution scenario to which the RL algorithm
will be applied. A famous example of an agent that does incorporate a model-based approach is the AlphaGo
from DeepMind [85] mentioned in chapter 1.

The Model-Free algorithms can learn from experience. Experience are states, actions and rewards that are
accumulated by interacting with the environment. From the taxonomy in Figure 2.16, it can be seen that the
Model-Free methods are built up from the subcategories: value-based and policy-based.

2.2.8. Value-Based Methods

The difference between on-policy Methods and off-policy methods lies in how the policy is used to find the
optimal policy. In on-policy methods the policy which determines which action the agent has to take, the
behavioural policy, is the same policy that is optimized by the RL algorithm, the target policy. In off-policy
method the behavioural policy is different than the target policy. The experience collected by the behavioural
policy is utilized by the agent to update the target policy.

When learning from experience with a Model-Free method, it is important that the algorithm allows for suffi-
cient exploration of actions and states. This is important to prevent the algorithm from immediately selecting
the actions that initially seem most optimal, because it is possible that other actions, which are actually more
optimal, are never selected. On-policy and off-policy methods ensure exploration in a different manner. Off-
policy methods ensure proper exploration by implementing a behavioural and target policy.

In on-policy methods, use is often made of a e-greedy policy which means that a nonzero probability is as-
signed to all actions a in each state s. In a e-greedy policy, which encourages exploration, all actions m are
selected with non-zero probability e/ m. An extra probability of 1 —e is assigned to the greedy action. but with
probability € one of the non-optimal actions is selected. The policy is represented by Equation 2.31. This
policy allows for exploration by implementing a non-optimal policy and € is a hyperparameter which can be
manually tuned [83].

acA (2.31)

e/m+1-¢ ifa* =argmaxQ(s,a)
n(als)=
elm otherwise

On-Policy Method: SARSA

A well-known on-policy method is called SARSA. The SARSA-algorithm updates the action-value function
following the logic of Equation 2.32 in which a is the learning rate. It can be seen that SARSA utilizes two state-
action pairs and one reward resulting in the set: (S;, Ar, Ry+1, St+1, Ar+1). It immediately becomes evident
where the name SARSA originates from. The value function Q(S;, A;) is updated with a known reward R;4
and with an estimate of the value function Q (S;+1,As+1. Updating an estimate with an estimate is called
bootstrapping. The actions A; and A;;; on the right-hand side of Equation 2.32 are from the current policy
and are utilized to update the current policy (left-hand side).

Q(sp,ap) — Q(ag ap) + a [ree1 +YQ (Sr41, ars1) — Q(st, ar) | (2.32)

Off-Policy Method: Q-learning

An algorithm which was already developed in 1989 and is still widely applied is called Q-learning [97]. Q-
learning is an off-policy method and the action-value function is updated according to Equation 2.33. The
action-value function Q (S;, A;) is updated in a way such that it approximates the optimal action-value func-
tion. This is accomplished by the max operator which ensures that the action a in state S;;; is chosen that
maximizes the current approximation of the action-value function. The action a is thus chosen indepen-
dently of the current behavioural policy.

Q(spyar) — Q(sp,an) +a|r +Ym§1XQ(St+1ya) - Q(ss,ay) (2.33)

2.2. Reinforcement Learning Basics 31

2.2.9. Policy Gradient Methods

Besides algorithms that try to learn the optimal action-value function and base the optimal policy on it, a
different branch of algorithms exists that focuses on optimizing the policy without requiring a value function.
The policy is a parameterized policy of which the derivatives with respect to its parameters 6 should exist.
The notation 7 (a | s,60) or 1y means that the policy is dependent on parameter 8. The goal of policy based
methods is to optimize the parameters settings such that an objective function J(6) is maximized. For a
stochastic policy, the objective function J (0) is equal to the expected total reward Z‘t";o yt R, [76].

The updates of the parameter settings are performed according to Equation 2.35 [88] in which a is parameter
that determines the step size. The gradient of the objective function with respect to the policy parameters is
added to the current parameter settings 8. This makes sense, because say that the derivative of the objective
function with respect to parameter 0, is 1 (Equation 2.34), an increase in the parameter 8, will cause an
increase in the objective function which means a more positive value should be assigned to 6; and that is
exactly what happens. If the derivative is negative, the exact opposite holds: a decrease in the parameter
value will cause an increase in the objective function and a smaller value for 6, is thus desired.

5J6)
59t,1 =1 (2.34)
6,,1=0,+av]@) (2.35)

The term V] (8)) is a stochastic estimate of the policy gradient g. A stochastic estimate means that the gradi-
ent g isnot computed on the entire data set, but on a sample or batch of samples. The policy gradient g can be
computed in a variety of ways and have the general form of Equation 2.36 [76]. The different representations
have the same expected value, but differ in the amount of variance.

g=E|) ¥:Vylogmy(a;|ss) (2.36)
=0

Where ¥; can be any of the following choices in which the discount factor y is assumed to be 1 [76]:

1. 32,1+ cumulative reward of trajectory.

2. Y%, ry: immediate reward by following action a;.

3. Z‘t’?:t ry — b (s,): Similar to 2, but with a baseline.
4. Q" (s, a;): state-action value function.
5. A" (sy,a;): as an advantage function.

6. 1+ V™ (s¢41) — V™ (s4): Temporal Difference residual.

To illustrate the general problem of the bias-variance tradeoff in machine learning and explain why it is pos-
sible that all different options for ¥; have the same expected value, Figure 2.19 is utilized. The left image
showcases an approach with high bias, but no variance. In the middle image, it can be seen that there ex-
ists no bias, but a high variance. Finally, the image on the right shows a trade-off between variance and
bias which is often desired. All three situations showcase different amounts of bias and variance, but have a
similar expected value. In the context of policy gradient algorithms high variance among samples impedes
convergence. One sample could adapt the weights in one direction and if the next sample is very different
and adapts the weights in the opposite direction, one can imagine that convergence is difficult. Introducing
for example a baseline function (Option 3) reduces the variance, but increases the bias.

The advantage function is defined according to Equation 2.37 [76]. The advantage function measures how
good a certain action is compared to following the current policy.

A" (stya0):= Q" (sr,a:) — V™ (sp) (2.37)

2.3. Advanced Reinforcement Learning 32

The advantage function is often not available and has to be estimated. An estimator that is widely imple-
mented along policy gradients algorithms is called the generalized advantage estimator (GAE) [76]. The bias-
variance trade-off is influenced by two parameters in GAE namely A and y when an approximate value func-
tion is utilized. A general value for y = 0.99 and for A in the somewhere in the range [0.9,0.99].

High Bias High Variance Trade-off
, ° e o y y ° [] o .
(] (] ° o o °
[
> >
X X X

Figure 2.19: The bias-variance trade-off

2.3. Advanced Reinforcement Learning

State-of-the art reinforcement learning methods are discussed in this section. First, function-approximatos
are explained in subsection 2.3.1. Thereafter an introduction to multi-agent reinforcement learning and the
accompanying challenges is provided in subsection 2.3.2 and subsection 2.3.3. The various types of control
schemes in MARL are described in subsection 2.3.4. Within the defined scope of RL algorithms, solutions
to MARL problems from relevant research are given in subsection 2.3.5. The RL models from literature are
explained in subsection 2.3.6. Finally, in subsection 2.3.7 a discussion is provided on the most optimal model
for this research for which details on the implementation are given in subsection 2.3.8.

2.3.1. Function Approximation

Up untill this point we dealt with tabular approach of Q(s,a) and V(s). Tabular methods become impractical
for alarge state and action space. Instead, function approximations methods are utilized. The approximation
function can for example be a linear function approximation in which the function value is equal to a feature
vector multiplied with weights. Even though the linear approximation function is shown to theoretically
always converge, its inability to capture complex non-linear relationships meant that the search to other
function approximators continued [88]. A notable breakthrough was a paper in which a convolutional Neural
Network (CNN) was implemented to estimate the action-value function with raw video pixels as state input
[36]. The algorithm is called Deep Q-Learning (DQN) and showed performance which exceeded the human
expert when playing Atari 2600 games [3].

To stabilize the Q-learning process with a non-linear function approximator (Q(s, a;0) = Q(s, a)), use was
made of a replay memory buffer and a fixed target network. The replay buffer entails that the training data is
randomly sampled from a buffer of experiences to tackle the problem of correlated data and non-stationary
distributions [52]. It is also increases the data efficiency since one sample is utilized multiple times. Note
that in practice, the experience buffer has a limited size, so if the buffer is full, the oldest experiences are
removed. The replay memory buffer consists of observations in the format (s;, as, 14, s+1)- The loss function
of the DQN algorithm can be found in Equation 2.38 in which y; is the target value for the i'” iteration. The
parameters 8; are optimized such that the loss function is minimized based on a batch of samples from the
experience replay buffer. At iteration i +1, Q(s, a;0) is optimized to approximate the target network. If the
target network shares the same weights then the target network is also updated causing a chase to a moving
target. Therefore, the weights of the target network are fixed and updated every C iterations [36].

Li 0 = Esa~pts | (vi - Q s, @:60))°) (2.38)

Artificial Neural Network

The CNN implemented in the DQN paper [36] is an Artificial Neural Network (ANN) with multiple layers mak-
ing it a Deep Neural Network (DNN) [50]. The input of a CNN is usually an image. The specific architecture
and working principle of a CNN will not be elaborated upon since the input state in this research will not

2.3. Advanced Reinforcement Learning 33

be an image. A deep network refers to the existence of multiple layers in its model that learn representation
of the data in an abstract manner. The most common implementation of deep learning algorithms is in a
supervised learning fashion. This also holds for implementing the deep models in a reinforcement learning
setting. In supervised learning the desired output of the model is known and the model weights are optimized
to reduce the error between the model output and the desired model output. Equation 2.38 is a good example
of the loss function for a supervised learning problem. The desired output is the target y; and the weights
are adapted such that Q (s, a; 0;) better approximates y;.

The general structure of a multi-layer NN consists of an input layer, » hidden layers and an output layer with
weights connecting the nodes between layers. This can be seen in the left image of Figure 2.20. The input
values at the the first hidden layer H1 are computed by a weighted sum of the output values of the connected
nodes from the previous layer. In the hidden layer H1 the input is transformed by a non-linear activation
function (bias is left out to simplify the situation). The rectified linear unit (ReLU) is popular and equals
f(z2) = max(z,0), but alternatives such as the tanh(z) = m are also often used. This computational
process is repeated for each layer until an output is computed at the output layer. Transforming the input of
the network to the output is referred to as the forward pass.

Compare outputs with correct
answer to get error derivatives

= JE
Outputunitsé O %=1@) l l W:M—t/
Z= E Wi Yk aE/ 9E 8
» ke H2 EZW

. W\ 9% V02

aE _ aE
Y =1(z) @7 W“a_z,
Hidden units H2 I & out
Z = 2 Wiky;
jeH1 2_5::_5% W . .
Z, Vi 0Z 9E _ 3
) k OV 0% o E wlka
Hidden units H1 ¥ =1(7) O) O kenz2
= 0E _oE Oy,
z W X R
] E U] Wll DZ/ [)y/ OZ/
i & Input

@ O

Figure 2.20: Schematic representation of deep neural network in which the forward and backward pass are visualized

With the general structure and working principle of a deep network explained, an elaboration on how the
weights will be updated will be provided with aid of the right figure in Figure 2.20. The cost function C in the
example is Equation 2.39 [50], in which y; is the output layer value and ¢; is the target value. The goal is to
compute a function in which the derivative of the cost function with respect to all network weights is known.
The computational process for the derivative of the error with respect to w j, which is the weight connecting
neuron j with neuron k, is described. The gradient of the cost function with respect to the network parame-
ters can be obtained by applying the chain rule for derivatives. The derivation starts with Equation 2.39 and
z and y refer to the input and output of a layer respectively.

1
E=Z(y-uw? (2.39)

The partial derivative of Equation 2.39 with respect to y; is simply (y; — ;) 5—5}. The derivative g—g can be found

by multiplying g—ﬁ with the derivative of the activation function g—JZ';. The derivative % can be found with
Equation 2.40. Since node k is connected to both output nodes, a change in y; influences the output in both
nodes and thus also the error in both nodes. Therefore, the partial derivative 9E i5 a summation of errors

0yk
terms each belonging to a path from which y; can influence E.

) JF

—_—= Wi — (2.40)
0yk le out 0z

In a similar fashion, the derivatives for z and y with respect to the cost function can be constructed for the
Jod}

other network layers up until the inputlayer. The derivative Buw,;, can be be constructed by multiplying y; with

2.3. Advanced Reinforcement Learning 34

gTEk which is the desired end result. To start at the output and compute the derivatives of the cost function
with respect to the weights from there, is called backpropagation. With aid of backpropagation, weights are
updated according to Equation 2.41 in which 6; is the updatable weight and « the learning rate. The algorithm
is called stochastic gradient descent (SGD) in the context of RL, because the updates of the weights can never
be made on a "complete" data set since the agent continues to explore the environment. It would be called
gradient descent (GD) if the update of the weights is based on all data samples from the train set.

(2.41)

OE
6t+1=6t_a()

80

Gradient Descent Optimization Algorithms
Stochastic gradient descent suffers from multiple issues [75] such as:
¢ Tuning of the hyperparameter a can be tedious.

* Using a fixed learning rate schedule [74] on which the magnitude of the learning rate is decreased pre-
vents adaption of the algorithm to specific characteristics of the data set.

¢ The same learning rate is applied to all parameters. Weights that belong to rare features might want to
be updated with a larger step than weights belonging to features that occur in many input data samples.

¢ Getting trapped in local minima in a non-smooth optimisation landscape.

A variety of gradient descent optimization algorithm exist. Which optimizer is most optimal is correlated to
type of optimisation problem. In general, the Adaptive Momentum Estimation (Adam) Optimizer is most
optimal and the hyperparameters typically do not require extension tuning [75]. The Adam optimizer can
be seen as a successor of the Adagrad [15] and RMSprop [90] optimization algorithms. The Adagrad algo-
rithm can handle sparse features well and RMSprop is more suitable for on-line parameter updates in non-
stationary environments [44]. Adam is an optimisation method which assigns an adaptive learning rate to
each individual model parameter while also implementing a momentum based gradient. The parameters are
updated according Equation 2.42.

0t1=0;— (2.42)

n -
Vii+e
in which e is a term which prevents a division by zero, 7 is the learning rate, 7, is the biased corrected first
moment estimate and ?, bias corrected second order estimate. Default values for e and) are 1078 and 0.001
respectively [44].

The term r1; is computed by taking an exponentially weighted moving average of past gradients in a fixed time
window w. The idea of replacing the gradient with a weighted moving average of past gradients originates
from the momentum gradient descent optimisation algorithm. It improves the convergence of the SGD in
the desired direction and reduces a fluctuating behaviour around the desired gradient direction.

The learning rate n is divided by v/ 7; + € causing an adaptive learning rate for each parameter. 7, is found
by taking a bias corrected exponentially weighted moving average of past squared gradients in a fixed time
window w. The term ¥; represents an estimation of the variance in the gradients.

Recurrent Neural Networks

A different type of ANN which is suitable for sequential input data such as speech or text is a recurrent neural
network (RNN). RNNs can also be implemented as a policy in reinforcement learning for a wide variety of
problems [46]. A RNN is a network with loops which allows information to be transferred in a hidden state
such that information about the history of input data can be used at the current input. This process is visu-
alized in Figure 2.21 in which x; and &, represent the input and output of the RNN module at time ¢. If the
looped network is unfolded, it can be seen as a chain of identical neural networks which transfer information
to each other through the hidden state.

2.3. Advanced Reinforcement Learning 35

Regular RNNs experience the problem of vanishing or exploding gradients when the back propagation algo-
rithm is implemented for a large number of time steps [50] causing difficulty for learning long term depen-
dencies in the input data. A special kind of RNN solves this problem namely a Long Short Term Memory
(LSTM) Network. The original idea of the LSTM dates back from 1997 when it was created by Hochreiter
Schmidhuber [30].

e R A A

A A~ A P A

o owom W

Figure 2.21: Unrolled LSTM network adapted from [63]

Y

>

The structure of an LSTM cell is displayed in Figure 2.22 [63]. The idea of an LSTM is to to control the cell
state C; which can be found at the top of the cell. The cell state is controlled by three gates. The gates are
called the forget gate, input gate and output gate. All gate layers take the input at time ¢ x; (input sample at
time ?) and the h;_; (output of network at time #—1) as input. The forget gate layer outputs f; which takes on
a value between 0 and 1 and describes for each element in the cell state how much of the information needs
to be remembered. The input layer gate outputs i; which determines which parts of the new information
which can be added to the cell state C, (partly based on the new input sample x;) are added to the cell state.
The output layer gate output o, is pointwise multiplied with the cell state and determines which parts of the
cell state are provided as an output. The mathematical definitions of f;, iy, C,, C;, 0; and h; can be found in
Equation 2.44-Equation 2.48 in which W and b denote the weights and bias for each layer.

)

hy A

Ct,1 Ct
” > fr=0(Wp-[he-1, %] + by) (2.43)
ir=0(W;-[hi—1, %+ b;) (2.44)
C; =tanh (W¢ - [hs—1, x;]1 + bc) (2.45)
hi_1 hy Ci=fr*Cr1+ir*xCy (2.46)
—> — 01 =0 (Wo [h-1, %] + by) (2.47)
h; = oy = tanh (Cy) (2.48)

Figure 2.22: Cell structure of LSTM network adapted from [63]

Hyperparameter Tuning

Hyperparameters are the parameters which are set before the training is started. Examples of hyperparam-
eters can be the number of nodes in the hidden layer or the discount factor y. Hyperparameter tuning is a
tedious process, but important to obtain a well converging algorithm. Four common methods to select the
optimal set of hyperparameters are:

2.3. Advanced Reinforcement Learning 36

¢ Manual Tuning: Hyperparameters are selected by hand. This requires intuition from the user and
becomes increasingly more difficult with increasing number of parameters and the ranges of values
which those parameters can attain [98].

* Grid Search: Based on exhaustive search. The hyperparameter ranges are discretized and a model
is trained for each possible combination of hyperparameters. The set of hyperparameters with the
highest performing model is selected. A grid search is accompanied with a high computational load,
because it suffers from the curse of dimensionality [4].

¢ Random Search: This is a variation on grid search. Random search reduces the number of hyperpa-
rameters by focussing on the hyperparameters that have the greatest influence on performance [4].

* Bayesian Optimization: The optimization function in the hyperparameter tuning process is a black-
box function. Bayesian optimization is suitable for an optimization problem with these characteristics.
The Bayesian formula is utilized to obtain information on where the objective function is maximized
[98].

2.3.2. Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) is a branch within RL in which a system of autonomous agents
is simultaneously interacting in a common environment [54]. The theory explained up until this point has
mostly been with regard to reinforcement learning in a single-agent setting. This means that the actions of
the policy only influence one agent in the environment. The goal of this thesis is to improve CD&R in a high
traffic density scenario in which multiple aircraft implement conflict prioritization. This is a multi-agent
setting. Therefore, this section aims to explain how the concepts of the single-agent settings are related to the
multi-agent setting and which new problems and concepts are introduced due to this increase in number of
interacting agents.

Mathematical Framework

An extension of the MDP mathematical framework defined for the single-agent RL case to the multi-agent
case is called a Markov Game [53]. A Markov Game in its most generic form can be described with a tuple
(N, S, A R, P,y) [54] in which S is a set of all possible states which describe the agents in the environment, A
= {A;, Ay,...An} is a set of actions for all agents N, R is the reward function, P denotes the state transition
probability based on current state plus action from each agent: S xA; x A» x Ay — P(s’ | s,a) and y denotes the
discount factor. Note that each agent i has their own reward function R;: S xA; x A» x Ay — R and strives to
maximize its own expected discounted sum of rewards.

A partially observable Markov Game can be described with the tuple: (N, S,A,R, P, O,y) in which O = {0y,
0,,...0N} which is a collection of observations for each individual agent. The difference is that each agent i
cannot acquire a full description of the system state S, but instead obtains a partial observation O; based on
which it selects an action.

NEED TO FINISH

Cooperative vs Competitive

To appropriately maneuver through the landscape of multi-agent reinforcement learning, algorithms will be
grouped based on common characteristics and the research will focus on the algorithms most suited for this
research. The first categorization is often made in literature on multi-agent systems and labels a system as
either cooperative or competitive [33].

Agents pursue a common goal in a cooperative environment. They assist each other to maximize a global
reward. In such systems, no limit exist on the amount of system knowledge that one agent can have. Agents
can expect that the observed behaviour from other agents originates from good intentions. Agents in a multi-
agent system in a competitive setting aim to maximize their own reward.

Thus, the essential difference between cooperative and competitive system is that in a cooperative systems
agents maximize a group utility and in competitive systems agents strive to maximize their own utility. In

2.3. Advanced Reinforcement Learning 37

this research, a system is labelled based on their design intention and not their actual behaviour. It could for
example be the case that a system that is designed in a competitive manner, exhibits cooperative behaviour
amongst agents. This occurs when collaboration translates to the highest individual utility which was the
initial goal of the selfish agent.

From the perspective of this literature review, multi-agent systems are classified as cooperative. The objective
of the research is to improve an existing CD&R algorithm in a multi-agent setting. All aircraft have common
goals which will be expressed in the reward function in the RL algorithm. Those goals have not been set yet,
but a very likely goal for example is to minimize the total distance travelled by all aircraft. This is obviously
a common goal since the optimal solution since it performance is based on all aircraft and not an individual
aircraft. The optimal solution might result in sub-optimal flight paths for some aircraft, but that would still
result in the optimal global solution. The performance metrics of the developed algorithm will be based on
all agents. Further sections will assume a cooperative setting unless specifically mentioned otherwise.

2.3.3. Challenges in Multi-Agent Reinforcement Learning

Similar to the single-agent case, proof of convergence for multi-agent tabular methods exists. In [9], an
overview of such methods is provided. The discussed methods are based on temporal-difference learning,
game theory and direct policy search. The challenges in multi-agent RL learning will be explained with al-
gorithms for which convergence proofs exists. The four challenges which are discussed are nonstationarity,
variance in policy-based methods and scalability.

Coordination
Assume a Markov game with N agents which is fully cooperative and the state of the system is fully observable
with no bias. All agents have a joint reward function (R} = R» = ... = Ry). Ifa centralized scheme with a central

controller is implemented, the problem reduces to an MDP. The centralized policy takes the full state as input
and outputs a joint action for all agents. More on centralized controllers in subsection 2.3.4. A Q-learning
algorithm (Equation 2.2.8) can then be implemented to find the optimal Q-function and then use a greedy
policy for the optimal policy [9].

However, agents can take actions independently. Therefore, in a scenario in which multiple optimal joint
actions are available, coordination between agents is required to guarantee that the individual actions of the
agent result in an optimal joint action.

The need for coordination is illustrated in Figure 2.23. In this situation, agents 1 and 2 approach an obsta-
cle which they want to avoid. From the Q-table on the right of Figure 2.23, it can be seen that Q(L;, Lp) =
Q (Ry, R2) = 10. Therefore, multiple joint-actions are optimal. Without coordination agent 1 could select ac-
tion R; and agent 2 could select action L. The Q-value for Q (R, L2) = —10 which is obviously a suboptimal
action.

obstacle o|L |8 | R

g o L 10| 5] 0

! : S| -5 (-10] -5
L $ R, L, ¢ R, : - -
+®+ +@+ R [-10] -5 10

Figure 2.23: On the left a situation with two agents is depicted which want to pass an obstacle and require coordinate to successfully
accomplish this task. The Q-table for this situation is visualized on the right. Adapted from. [8]

2.3. Advanced Reinforcement Learning 38

Nonstationarity

Similar to the previous sections, the Q-learning algorithm will also be used to illustrate the challenge of non-
stationarity in multi-agent environments. Q-learning can be implemented in a multi-agent setting by en-
abling each agent i to learn a state-value function Q; and assuming that the other agents belong to the envi-
ronment. Because each agentindependently updates their Q-function and thus their policy, the environment
becomes non-stationary as seen from another agent. P (s' | s, a;,71,...,mn) # P(s' | s,a;,7},...,my) when any
T # 7'[;. [54] describes the non-stationarity of the environment which causes violation of the Markov Property
and results in a non-convergent algorithm.

Policy-based methods

Previous challenges were explained with aid of the Q-function which is a value-based method. Challenges
for policy-based methods, however, also exist. As explained in subsection 2.2.9, one of the main problems
of policy based methods is the variance in the gradient estimate. This variance is amplified in a multi-agent
setting since a reward in a multi-agent setting is not only dependent on the own agent’s action, but also on
the actions of the other agents [54]. This dependency increases the noise and variance in the reward for
the single agent and thus increases the variance in the gradient estimate. An increase in the variance of the
gradient estimate reduces the probability that the parameters of the policy are updated in the direction of the
optimal policy [64].

Scalability

Start with the same scenario sketched in the section on coordination, a centralized policy which determines
the joint action for agents. Another consequence of a centralized policy is that each additional agent adds
a dimension to the observation and action space, causing the computational complexity of the Q-learning
algorithm to exponentially increase [9]. This is often referred to as the curse of dimensionality and requires a
large Q-table.

A major issue with RL methods which require tabular storage of Q-values or policies is the scalability. When
the size of the state and action space increase or even becomes continuous, these methods become imprac-
tical or even infeasible. Therefore, similar to the single-agent case, research on the multi-agent setting will
focus on methods with function approximators which are able to map the state space to the action space
in a more computationally compact manner [9]. More specifically, the function approximators will be deep
ANN. Deep multi-agent reinforcement learning denotes the application of a deep function approximator in a
multi-agent reinforcement learning setting. Therefore, the concepts and methods in the subsequent sections
are explained in the context of deep multi-agent RL. The proposed methods will proof their value in a more
empirical manner similar to the DQN for the Atari games [3].

2.3.4. Control Scheme

The various training approaches for cooperative multi-agent settings are explained in this section. The con-
troller types that are explained are: centralized, decentralized with individual policy and decentralized with
shared policy.

Centralized Controller

The original implementation of a centralized controller were the Joint Action Learners (JALs). The name
JAL is pretty self explanatory, a central controller decides on a joint action for all agents. The concept has
already been introduced in subsection 2.3.3. A central contoller solves the problem of non-stationarity of the
environment, but the curse of dimensionality makes a fully centralized approach unfeasible for systems with
many agents. Besides, a centralized policy requires continuous communication between the agent and the
policy server which is not desired for numerous reasons. The communication can for example be interrupted
causing complete disruption of the system. Besides, a time lag always exists between the observation of the
agent and the reception of the action from the centralized policy imposing further constraints on the system.
An example of a system which successfully implemented a centralized controller is AlphaStar [95]. Alphastar
was built by DeepMind and was able to beat top professional players in StarCraft II.

2.3. Advanced Reinforcement Learning 39

Decentralized with Individual Policy

The foundation for decentralized control in multi-agent system comes from the concept of independent
learners (IL) [89]. In a decentralized system each agent decides which action to take based on their own
observation. The policy however can be a shared policy or an individual policy. This section zooms in on the
decentralized system with an individual policy. Assume a situation similar to subsection 2.3.3: enable each
agent i to learn a state-value function Q; and assume that the other agents belong to the environment. The
resulting nonstationary setting provides an additional problem when using a deep Q-function approximator.
Namely, the experience replay buffer can not be utilized due to this non-stationarity in the environment [22].
The decentralized control with individual policies does not efficiently scale to a large number of agents since
the agents do not share experience with each other which adds to the sample complexity [23].

Decentralized with Shared Policy

In a setting with homogeneous agents, the training process can be ameliorated with parameter sharing. The
system is still decentralized (agents take actions based on their own observations), but the policy from which
the action is sampled is shared among all agents. Policy parameter updates occur based on a batch of expe-
riences sampled by all agents in the system. The paradigm: "Centralized learning with decentralized execu-
tion" is applicable here. With the framework of parameter sharing, single agent methods such as DDPG [77]
can be extended to a multi-agent setting [23].

2.3.5. Reinforcement Learning in Multi-Agent Collision Avoidance Setting

The basic concepts of RL were explained in section 2.2 while the function approximators and the challenges
of MARL were explained in subsection 2.3.1 and subsection 2.3.3. This section focuses on related research in
the multi-agent collision avoidance setting which implement advanced algorithms within the specified do-
main of value- and policy based methods. Also, an important aspect is to investigate how the algorithms deal
with the challenges of MARL. The focus is on the used type of RL model and control scheme. The discrepancy
between most existing literature and the goal of this research is that existing research employed RL to com-
pletely perform conflict resolution. In this research conflict prioritization is used to improve on an existing
CD&R method.

In [96], reinforcement learning was applied to establish a multi-UAV collision avoidance system. A centralized
learning, decentralized execution paradigm was adopted in this research. The paper assumes all agents follow
the same collision avoidance policy which enables a cooperative decentralized collision avoidance system
without communication. To put a constraint on the state and action space, only the 5 nearest neighbours are
considered in the collision avoidance process. A two-stage training method is applied. In the first stage the
actor policy is pre-trained by trying to mimic the actions of ORCA [94] and the critic is updated according to
the standard DDPG algorithm. Thereafter, the algorithm is trained in an unsupervised fashion. Pre-training
the algorithm on ORCA resulted in a significantly faster converging algorithm. The final trained policy showed
various advantages over the regular ORCA algorithm.

A different approach of implementing reinforcement learning in aircraft collision avoidance was taken in [72].
Instead of designing a model which outputs an avoidance maneuver (e.g. heading or velocity alteration),
reinforcement learning was applied to transform a constant parameter called the fixed lookahead time in the
Modified Voltage Potential (MVP) algorithm into a dynamic parameter which varies based on relative position
of other agents and traffic density. One DDPG policy was trained based on the experience of all agents. The
research showed that RL can improve on an existing geometrical method (MVP). A remaining issue however
is the stabilization of experience replay. Agents continuously evolve and thus their behaviour keeps changing.

To deal with a varying number of intruding aicraft which should be considered for conflict resolution, [6]
introduces a deep multi-agent RL framework with an attention mechanism. The attention mechanism is an
LSTM network. One of the main characteristics of an LSTM network is its ability to handle arbitrary-length
input sequences. The states of the agents are ordered based on distance and fed to the LSTM network which
is able to compress the relevant information of all conflicting agents to a fixed-length vector. Furthermore, a
PPO algorithm with centralized training and decentralized execution is utilized.

Comparable scenarios for multi-agent settings which did not include aircraft showed a similar approach in
terms of training scheme and utilized model structure. Multi-agent collision avoidance with RL in a robotic

2.3. Advanced Reinforcement Learning 40

setting was proposed by [20]. This research deployed the robust PPO algorithm with centralized learning
and decentralized execution. The policy and state-value function are updated independently and share no
parameters. The advantage function estimates are computed with GAE [76]. It was found that the designed
method significantly outperformed state-of-the-art algorithms in generalization performance, success rate
and navigation efficiency. Furthermore, the PPO algorithm is implemented for multiple autonomous vehicles
at a non-signalized crossing [92].

2.3.6. Advanced Algorithms

The two model structures that were used were the single-agent Proximal Policy Optimization (PPO) and Deep
Deterministic Policy Gradient (DDPG) extended to the multi-agent environment by implementing shared
policy among agents. To make a well considered choice for the method, the specifications of the algorithms
will first be explained. Implementation of the PPO are often based on an actor-critic approach. Therefore,
first the concept of actor-critic methods is explained before the PPO method is elaborated upon. Similarly,
DDPG is based on DPG and a description of both is provided.

Actor-Critic Methods

A group of algorithms similar to the algorithms of Equation 2.2.8 and Equation 2.2.8, which take both s; and
the transitioned state s;4+; into account when updating their value function, exist in the domain of policy
gradient methods. Those algorithms use the one-step return which is equal to the reward r;+; plus the state-
value function for the transitioned state v” (sy41). If the state-value function is used to assess the quality of
action a in a similar fashion, it is called a critic. The policy gradients methods which implement such a critic
are called actor-critic methods. The actor refers to the policy which is updated according to Equation 2.35.
Since the gradient is partly determined by the critic, the critic aids in the policy update. Implementing an
actor-critic method enables online and incremental policy updates since no full episodes are required before
the parameters can be updated [88].

A well-known improvement on the regular concept of actor-critic methods is the Asynchronous Advantage
Critic (A3C) [57] method. It strives to enhance the stability of the learning algorithm for the on-policy actor-
critic method by running multiple instances of the environment running in which multiple agents are asyn-
chronously executed in parallel. This enhances the stationarity of the environment which is a similar goal
that the replay buffer in experience replay has. A variation on the A3C is the Advantage Actor Critic or A2C.
The first A for asynchronous is omitted, because A2C uses a coordinator to synchronously update the global
parameters for all agents. The difference is visualized in 22 It is shown that the A2C version is computationally
advantageous compared on a single-GPU compared to A3C [99].

Proximal Policy Optimization

The idea is to limit the size of the policy update to prevent destructing policies. If you keep running gradient
descent on the same batch of data, the policy is repeatedly updated and continues to move increasingly fur-
ther away from the old policy. This also means moving further away from where the batch data was sampled
with an increased uncertainty in the loss function characteristics on the area where the new policy operates.
This is illustrated with an example in Figure 2.24. The blue arrow represents the update step and at first the
update is in the right direction (follows the path), but because the step size is too large, it still results in an
undesired situation (fall of cliff).

2.3. Advanced Reinforcement Learning 41

Figure 2.24: A step size that is too large results in a fall of the cliff. [69]

In the Trust Region Policy Optimatization (TRPO) algorithm constraints were set on the objective function
to control the update step size of the policy based. The constraints were based on the Kullback-Leiber (KL)
divergence over states [78]. The KL divergence is a measure of how different two probability distribution are.
In the original paper of PPO [77] two variations on TRPO were considered. One variation focussed on putting
a constraint on the objective function based on an adapative KL penalty. The other method focussed on
clipping of the objective function which is arguably simpler and is most widely implemented and showed the
best results on the test set. Therefore, the rest of the section explains how the PPO algorithm with a clipped
objective function works. The main part of the objective function L2/ () can be found in Equation 2.49.

L°HP @) = £, [min (r, @) Ay, clip (:(0),1 —€,1 +€) A)] (2.49)
g (arlst)
014 (atlse)
of Equation 2.49 is the loss function of the conservative policy iteration [77]. The term clip (7:(0),1 —€,1 +€) A,
performs a clipping operation. Values outside the interval [1—¢, 1+¢] are clipped to the interval corner values.
Performing a minimization operation on both terms results in Figure 2.25 for negative and positive advantage

values A for a single term ¢.

In which € is a hyperparameter with typical values ranging from 0.1 to 0.3 and r,(6) = . The first part

The logic behind Equation 2.49 will be explained while keeping the goal of limiting the policy update step in
mind. In case of a positive advantage function (A > 0) the action is better than following the current policy
and thus the probability for this action should be increased in the new policy (r > 1). In the left graph of
Figure 2.25, belonging to a positive advantage, it can be seen that the update for r is limited to (1 +¢). In a
similar fashion, for a negative advantage, the reduction in probability of the action is limited by clipping r to
(1I-e.

A<O

1
I
I
I
|
0 1 1+e oL

Figure 2.25: Clipped surrogate objective from [77]

Exploration is guaranteed by the stochastic policy. The policy will be updated based on the rewards it receives
from the environment with the initial policy. The policy is therefore prone to end up in a local maxima and

2.3. Advanced Reinforcement Learning 42

is highly dependent on the initial policy. Well-known implementations of the PPO algorithm [59] [28] imple-
ment KL-divergence as a measurement for early stopping. A small KL-divergence means that the policies did
not significantly change between updates and training can be stopped.

Deterministic Policy Gradient

Determinstic Policy Gradient (DPG) has a deterministic policy pg (s) which maps states s to actions a. A
deterministic policy in the context of policy gradient might sound counter intuitive since there is only one
action. However, in [84], proof exists for the Deterministic Policy Gradient Theorem. DDPG is an off-policy
actor-critic method. Off-policy DPG methods have a target policy which is different than the behavioural
policy.

Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient method or DDPG can be seen as an extension of DQN to continuous
action spaces [51]. Applying Q-learning to the continuous action space is unpractical with large function
approximators since at every time step an optimization of the greedy policy has to be run to find a;. DDPG is
an off-policy actor-critic method based on Deterministic Policy Gradient (DPG) [84].

Similar to the DQN network, a replay buffer is implemented to cope with experience which is gathered in a
sequential manner. Futhermore, also the the target network from the DQN network [36] was implemented
in the DDPG network in a slightly adjusted fashion for actor-critic methods. The parameters of the target
network are updated with a soft update: 8’ — 76 + (1 —7)6’ with T < 1.

To ensure that the values of the features from the observation vector are in a similar range throughout all
environments and training phases, the DDPG method implements a paradigm from deep learning called
batch normalization [40]. Batch normalization normalizes every input feature across a batch of samples to
unit mean and variance.

Since the policy in DDPG is deterministic, the method struggles to provide sufficient exploration in the con-
tinuous action space. This problem is tackled by the introduction of a new policy ¢’ to which noise from noisy
process A is added. Equation 2.50 displays the policy ¢’ in a more mathematical manner.

W(s)=p(se108)+ N (2.50)

2.3.7. Discussion on Relevant Literature

The methods in the described relevant literature [96, 72, 6, 20, 92] in subsection 2.3.5 employ a decentralized
control scheme with a shared policy. This approach allows for easy scalability to a large number of agents.
The centralized critic reduces the variance, increases stability while it still allows for coordination between
agents. Therefore, it is advised to follow the approach of centralized learning and decentralized execution in
this research when training in a multi-agent scenario.

The model structures that were taken into consideration and for which an extensive description was provided
were the PPO and DDPG methods. For the experimental phase of this research, the PPO algorithm is preferred
over the DDPG algorithm due to the following:

* Robustness: Due to the design of the PPO architecture, the algorithm is inherently more robust com-
pared to the DDPG algorithm and does not rely on experience replay. Even though DDPG has shown
to converge in multi-agents settings, it remains unstable. In [66], the PPO algorithm converged on all 4
multi-agent environments and showed state-of-the art performance with limited hyperparameter tun-
ing while DDPG was unable to convergence on any of the environments.

* Experience Replay: PPO does not rely on experience replay for convergence

¢ Hyperparameters: Tuning of the hyperparameters of a RL algorithm is a time-consuming task and of
utmost importance; slight adjustments in the hyperparameter could transform a divergent algorithm
into a convergent algorithm. The PPO algorithm is more robust for hyperparameter settings [66].

2.3. Advanced Reinforcement Learning 43

 Action Space: In this research, a conflict prioritization method is designed and the expected output of
the RL algorithm will be binary. As seen from one agent, the algorithm will decide which conflicts to
consider (1) and which conflicts to neglect (0). As mentioned in Figure 2.3.6, DDPG can be seen as an
extension of DQN to the continuous domain. Therefore, it does not make sense to revert the distinct
characteristics of the DDPG network. On the other side, performance of a PPO algorithm was found to
increase when switching from a continuous action space to a discrete action space [34].

2.3.8. Description on PPO implementation

The description of the precise characteristics of the PPO method which will be implemented in chapter 3
is given in this section. The PPO agent in this preliminary analysis is a predefined agent from the stable
baselines project [28]. The agent is implemented with the PyTorch framework [67]. The implementation in
the stable baseline agents follows [77]. PyTorch facilitates automatic differentiating. Therefore, a scalar loss
function value is sufficient to update the model parameters. The total loss function is composed of several
composed and is defined by Equation 2.51 [77].

LEHPHVEES) = £, [LEHP (0) — ¢, LYT(0) + ¢S [mp] (s1)] (2.51)

In Equation 2.51, qup (8) is the clipped objective function from Equation 2.49 ,c; and c; are coefficients

2
belonging to the squared error loss (Vg () — Vttarg) and entropy bonus S respectively. The entropy bonus
encourages explorations as was found by [57].

The state-value function V(s) is used in the computation of the advantage function. Inclusion of the loss
due to the error in the estimated state-value function is compulsory when the actor and critic network share
parameters. Parameter sharing can for example be useful when the network takes an image as an input and
a similar feature extraction mechanism can be used for both the actor and critic network. However, in this
research the input is not an image and no shared layers are defined. In theory, this means that ¢ can be set to
zero and the parameters of the value network can be optimized separately from the policy parameters. The
stable baselines implementation however does not allow this since all parameters are updated based on the
scalar loss value computed with Equation 2.51.

The advantage function A; is defined by Equation 2.52 in which §; is defined by Equation 2.53 [77]. Equa-
tion 2.52 is a trunctated version of the GAE [76] and based on the implementation of the GAE in the paper on
the A3C architecture [57].

At=5t+('ya)5t+l+"'+"'+(YA)T_I+15T—1 (2.52)

Or=r1:+YV(si41) =V (sp) (2.53)

Preliminary Analysis

To develop a better insight in how to optimally utilize the theoretical concepts defined in chapter 2 to ful-
fill the research objective, preliminary experiments were performed. The research scope of the preliminary
experiments is further specified in section 3.1. A short recap of the methodology is given in section 3.2. Sub-
sequently, the single- and multi-agent experiments are described in section 3.3 and section 3.4 respectively.
Finally, the proposal for the research approach in the main part of the thesis is provided in section 3.5.

3.1. Research Scope

In this preliminary analysis, it is decided to not extensively research and fine-tune the optimal network ar-
chitecture, hyperparameters and the selected features. The aforementioned model properties are greatly de-
pendant on the given task to which the RL algorithm is applied. Elaborate tuning on the proposed scenarios
in the single- and multi-agent setting is not very sensible since the final task (in the thesis) will differ from the
scenarios which provide a Proof-of-Concept.

The single-agent case and multi-agent case each consider one specific scenario and the generalization prop-
erty of the model is thus not evaluated. Evaluating generalization performance of a reinforcement learning
model is harder compared to supervised learning problems. In a supervised learning problem the total data
set can be split in a train, validation and test set. The model is trained with the train and validation data. The
generalization abilities are determined based on the performance on the test set. In reinforcement learning,
such a division cannot be made. Testing of the generalization abilities would require extensive training on
experiments which strive to vary its conditions such that the agents encounters all relevant dynamics to train
its model on. This is not within the scope of the preliminary thesis.

3.2. Research Methodology

The research methodology for the experiments has already been described in detail in section 1.2. The Fig-
ure 1.1 is inserted below as Figure 3.1 for a quick recap of the methodology in the preliminary phase. Based on
literature, the model settings for the single-agent experiment are initialized. Once the results for single-agent
experiment are determined to be sufficient, the multi-agent experiment is initialized with results from the
single-agent experiment and additional concepts from literature. With a successful multi-agent scenario, the
outcome of both experiments is combined to devise a proposal for the design of the the multi-agent experi-
ment in the final part of the thesis.

44

3.3. Single-Agent Setting 45

Experiment 1: Single-Agent Experiment 2: Multi-Agent

1

1

BlueSky 1

1

- 1
—_— Initialize 1 Initialize

. Model Model

Scenario Settings Settings

Train Model Train Model

No

BlueSky

Adjust
Model
Settings

Adjust
Model
Settings

Scenario

Design Multi-Agent
Experiment Thesis

A

Figure 3.1: Schematic overview of single- and multi-agent experiment and their relation to each other and the design of the multi-agent
experiment in the final thesis

3.3. Single-Agent Setting

This section on the experiment in the single-agent setting starts with stating the experiment goals and the ex-
periment scenario in subsection 3.3.1 and subsection 3.3.2 respectively. Thereafter, information on the model
structure and the hyperparameter settings are provided in subsection 3.3.3 and subsection 3.3.4. Hypotheses
are given in subsection 3.3.5 and the results are displayed in subsection 3.3.6.

3.3.1. Experiment Goals
Besides the main goal of providing a first Proof-of-Concept, several sub-goals of this experiment can be de-
fined:

1. Development of an intuition for the hyperparameters.
2. Getinsight in the feature design process. Investigate what the characteristics of a good feature are.

3. Conclusions from single-agent experiment can assist in the initialization of multi-agent scenario.

3.3.2. Experiment Scenario

The name of the single-agent experiment indicates that the SSD algorithm is only enabled in only one aircraft.
The SSD is thus disabled in all other aircraft. Empowering all aircraft to use the SSD for conflict resolution
results in complex system dynamics in a scenario with high-traffic density preventing straightforward testing
of scenarios. The experimental scenario is visualized in Figure 3.2.

In this experiment the Boeing-747 is chosen as aircraft type. The first notable element of the scenario in
Figure 3.2 is the number of aircraft. With this high traffic density scenario, the limitations of the current im-
plementation of the SSD algorithm can be illustrated. "AC00" is the controlled aircraft in which the SSD is
enabled. All other aircraft fly in a straight line in the direction of their initial heading. The SSD after the sce-
nario is run for 5 seconds is displayed by Figure 3.3. Note that at subsequent figures of an SSD, the legend has
been omitted, but is equal to the legend of Figure 3.3. The velocity solution point V441105 is computed with
the shortest path out rule from Table 2.4, because it was found that this rule was most optimal [2]. Immedi-
ately, it becomes evident that the found solution for the the velocity vector is undesired. It requires almost a
complete 180° right turn from the current heading. When ACOO is altering its current velocity vector V;y rens
to Vsoiurion, @ loss of separation between AC00 and AC04 occurs. Further specifications of the simulated
aircraft can be found in Table 3.1.

3.3. Single-Agent Setting 46

Table 3.1: Characteristics of Simulation Aircraft in BlueSky

Aircraft Type Altitude Velocity
Boeing 747-400 FL250 250 kts

The aim of this experiment is for the RL algorithm to activate/deactivate the VOs of the aircraft such that
no loss of separation occurs for AC00 while limiting the deviation from the original flight path. The solution
of the SSD is still computed with the shortest path out rule. AC00 reaches its target waypoint if the initial
trajectory was propagated and AC00 would fly in a straight line with heading 0.

@) (b)

Figure 3.2: Screen capture of the BlueSky Simulator which displays the experiment scenario with the original implementation of the
SSD algorithm. The two screen captures represent the initial state (a) and the LoS of AC00. The blue circle indicates aircraft ACO0

t = 5 seconds

I FRV
ARV
— Veumrent
& Vsouton

Figure 3.3: SSD of base case after 5 seconds

3.3.3. Model
In subsection 2.3.6, the PPO algorithm was selected for this research. The implementation of the PPO algo-
rithm in the stable baselines project was also described [28]. The relation between the collecting of experi-

3.3. Single-Agent Setting 47

ence and updating of the model weights is explained in this section. Understanding how gathered experience
and model updates interact is important to comprehend the hyperparameters of the model and tune them if
necessary. Thereafter, the architecture of the actor-critic network is described.

Updating Model Weights

The weights 6 are updated according to the pseudo-code of algorithm 1. Each iteration, N parallel actors
gather experiences from their environments and compute advantage estimates for T timesteps. The parame-
ters are updated with an optimizer for K epochs on a minibatch sampled from the N T time step data points.
Parallel actors allow for faster collection of experiences, in this preliminary analysis only one environment
and thus one actor was utilized [77].

Algorithm 1: Proximal Policy Optimization (PPO) [77]

for iteration=1,2,... do
for actor=1,2,...,N do
Run policy 7g,,, in environment for T timesteps
Compute advantage estimates Al, e AT
end
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
Oo1a — 0
end

In order to start with the tuning of hyperparameters or understand why the default hyperparameters settings
make sense, it important to first properly understand what the precise definition of an epoch, batch and
mini-batch is and how they are related to each other. A batch consists of NT data points and represents the
entire available training data set for one iteration. A mini-batch is a subset of the batch data. It is advised to
select the size of the mini-batches such that fits an integer times in the batch. Otherwise, the last parameter
update of the batch will be performed on a mini-batch which size is smaller than the specified mini-batch
size, because no sufficient amount of data is left to construct an entire mini-batch.

Parameter updates can be based on an entire batch which is computationally slow and intractable for large
datasets from a memory perspective. Parameter updates can also be updated for every sample. This results
in high variance in the parameter updates which can be advantageous to escape poor local minima, but
makes convergence to the desired minima more complicated since it could also escape the desired minima.
Therefore, performing weight updates based on a mini-batch is a trade-off between the two aforementioned
mentions and profits from the advantages of both methods [75].

An epoch indicates how often all the data from a batch is utilized for model parameter updates. So one epoch
means that the entire batch of training data is used once for a parameter update. Advantage normalization is
applied per mini-batch according to Equation 3.1 in which o 4 and p ; represent the standard deviation and
mean of the mini-batch of advantage estimates respectively.

A,'—O'A
Ha

~
Airmrm -

(3.1

Architecture Actor-Critic Network

The architecture of the Actor-Critic Network is visualized in Figure 3.4. The actor denotes the stochastic
policy my(s) and the critic the value function Vy(s). The actor network takes an observation as input and
outputs a probability distribution over the discrete actions from which an action is sampled which is referred
to as a categorical policy. The critic network takes the same observation as input and outputs a scalar value
for the state-value function. The actor and critic network do not share any layers, both have two hidden
layers with 64 neurons per hidden layer and a tanh activation function. Orthogonal initialization is utilized
for initialization of layer weights.

3.3. Single-Agent Setting 48

Input NN with Fully Connected Layers Output
"z Actor N\
Hidden Layer 1 Hidden Layer 2 Probability
: Tanh Act. function [—> Tanh Act. Function —>| Distribution
64 neurons 64 neurons Actions
Observation /
Critic \ :
Hidden Layer 1 Hidden Layer 2
. : State-
' 3 _) . ;
Tanh Act. Function Tanh Act. Function Value
64 neurons 64 neurons
- e

Figure 3.4: Architecture of the Actor-Critic network for the single-agent experiment

3.3.4. Model Settings

Environment

The RL environment is synthesized with the standardized framework of OpenAI Gym [7]. In an OpenAl Gym
environment three functions have to be defined. An initialization function in which the dimensions of the
observation and action space are defined. A step function which allows the agent to take a step in the envi-
ronment based on the inputted action. The step function takes an action as input and returns an observation
and reward. Finally, the reset function resets the environment when the episode ends or a terminal state is
encountered. The episode ends if the specified maximum episode length is reached.

Observation Space

In this environment, the observation space is a discrete representation of the continuous observation space.
The size of the observation space vector is defined by multiplying the number of aircraft that are taken into
account with the number of features per aircraft. Deciding how many aircraft and which aircraft should
be taken into account for conflict avoidance will be an important design decision in the final model. In
this scenario, the observation space of AC00 collects observations from all 5 other aircraft during the entire
experiment.

The features selected for this experiment are specifically chosen for this scenario. A feature denotes a property
which can take on a numerical value and can be assigned to an aircraft. Relevant features in the context of
applying conflict prioritization to conflict resolution can for example be ¢, and d.p, between ownship and
intruder. Determining which features are optimal for conflict prioritization is a critical task and is not an exact
science. Features from Table 2.3 are a good starting point. The multi-agent scenario restricts the number of
features which can be selected since every feature has to be selected from 5 aircraft effectively multiplying
the observation space dimension with 5.

Incorporating the minimum number of features has the advantage that the size of the observation space re-
mains limited. Besides, it is interesting to investigate the power of the agent with a limited observation space.
The distance d between AC00 and the other aircraft was chosen as the first feature, because this could allow
the agent to prioritize aircraft based on relative distance and potentially learn that aircraft with a smaller d
probably form a greater threat than aircraft with a large d. The second feature is the time to closest point
of approach f¢p4. It is hypothesized that the agent can combine both features to correctly judge on which
aircraft the conflict resolution maneuver should be based. The vector of observations O; is defined by Equa-
tion 3.2.

Ot = {tlcpu[’ dlzr tZC,m[rdZ[r tSCpu[7d3[7 t4cpa[’ d4[; tscpa[’ dS[} (3.2)

3.3. Single-Agent Setting 49

An overview of the feature specifications can be found in Table 3.2 in which Ny, s indicates the number of
discrete points on the continuous range. Both the range and number of discretization points are additional
hyperparameters. The lenght of the observation vector is thus 10 (five aircraft and 2 features per aircraft) and
each observation can take on 15 discrete values.

Table 3.2: Specifications Observation Space

Feature Range N,in;s Unit
tepa [0,60] 15 s
d [0,120] 15 km

Action Space

The action space should be able to turn VOs on (1) and off (0). It therefore needs an output for all selected air-
craft. Again, in this scenario all 5 other aircraft. For each aircraft i action a; € {0, 1}. The complete action space
A at any given time for AC00 can be found in Equation 3.4 and the action vector at time ¢ a; in Equation 3.4.

A={{0,1},{0,1},{0,1},{0,1},{0, 1}} (3.3)
a; = {m,, a,, az,, as,, as,} (3.4)

Reward Function

As stated in subsection 3.3.2, the two objectives of this research are to prevent loss of separation for AC00
while minimizing deviation from target waypoint. The reward function should incorporate both these ele-
ments. The reward function can be found in Equation 3.5 in which dg denotes the distance between AC00
and its target waypoint at time 7 in km. The term dg, ., represents the distance at ¢ = 0.

__dg (3.5)

8init

—100, Loss of Separation, end episode
r(sy)=

, otherwise

Loss of separation is a sparse reward. The rewards with respect to the distance from target waypoint help
the algorithm converge and optimize its efficiency. The reward is negative, because if ACO0 moves towards
its target waypoint, it will become less negative which can be interpreted as positive by the agent. Trying to
minimize number of conflicts by penalizing conflicts in the reward function sounds tempting, but in the MVP
it was found that conflicts actually positively contributed to the conflict resolution [31]. The reward function
is based on the approach of [102]. If no LoS occurs the episode is stopped after 200 seconds of simulation
time.

Hyperparameter Settings

In subsection 2.3.7, it was stated that the PPO algorithm is a robust algorithm and generally does not require
extensive tuning of its hyperparameter settings. Therefore, it was decided to first evaluate the performance
of the algorithm based hyperparameter values from literature [77]. Based on the initial results, a decision
on the required type of hyperparameter optimization was made. The default hyperparameter settings were
found to be sufficient to obtain an agent with a well performing behaviour. Manual tuning did not result in an
increase in performance. A summary of the hyperparameters of the PPO algorithm can be found in Table 3.3.
The max gradient parameter is from gradient clipping. Gradient clipping is implemented to limit the size of
the gradient to counteract exploding gradients in a deep neural network.

3.3. Single-Agent Setting

50

Table 3.3: PPO algorithm hyperparameter specifications

Parameter Value
Horizon (T) 2048
Learning rate 3-107*
Number epochs 10
Minibatch size 64
Discount (y) 0.99
GAE parameter (1) 0.95
cl 0.5

c2 0
Clipping () 0.2
Max gradient 0.5

3.3.5. Experiment Hypotheses

The following hypotheses for the single-agent experiment are established:

1. AC00 can maneuver through the scenario without a LoS. Aircraft AC00 should initially ignore AC02
and AC03 and focus on avoiding ACO1. Ignoring AC02 and ACO3 refers to the deactivation of their VOs
in the SSD diagram of AC00. Once ACO01 is avoided it should reactivate the VOs from AC02 to maneuver
through this scenario without any loss of separation.

2. AC00 maneuvers through the scenario with minimal deviation from optimal flight path: The VOs
should be activated and deactivated in a way which minimizes the increase in flight path length while
preventing LoS.

3.3.6. Experiment Results
In this section, first the training progress is visualized. Subsequently, the trajectory of the trained agent in the
scenario is displayed. Finally, a discussion on conclusion of the results is given.

Training Progress
The training progress for the total loss qup *VE(@) and value loss L‘t/F (0) is displayed by Figure 3.5 and Fig-
ure 3.6 respectively. The agent is trained for 70000 steps and each model step corresponds to 1 second in the
simulation time of the BlueSky Simulator. The maximum trajectory length is 200 steps if no LoS occurs. Both
the total loss function and value function were convergent.

600

500

= 400

Total Loss

200

100

10000

Training progress of total loss

20000 30000
Number of steps [-]

40000

1400

1200

1000

Value Loss [-]
& (=2} o]
o o o
o o o

[N
=
S

o

50000

Training progress of value loss

10000 20000 30000

Number of steps [-]

40000 50000

Figure 3.5: Total loss of centralized model for increasing number Figure 3.6: Value loss of centralized model for increasing number

of steps

Flight Path Trained Agent
The RL model was able to learn the fastest and safest way to resolve this conflict situation by applying conflict
prioritization. A visual representation of the optimized path that the trained agent follows can be found in

of steps

3.3. Single-Agent Setting 51

Figure 3.7. The agent AC00 learned to maneuver through the environment without any loss of separation. To
avoid aircraft AC01, agents AC00 has to adjust its flight path and make a slight deviation of the desired heading
to the left. The new flight path of AC00 causes a conflict with AC02. Thus, as soon as the conflict with ACO01 is
resolved, ACOO reactivates the VO of AC02 and avoids AC02 as well. Another notable remark which does not
become obvious from Figure 3.7, is that the flight path of aircraft AC00 shows a slight oscillatory motion due to
the activation/reactivating of VOs which denotes that the agent aims to minimize the deviation from original
flight path. The optimization objectives in the single-agent experiments are assessed in a more qualitative
manner. In the final thesis, the performance will be measured in a quantitative way based on the metrics of
Table 2.1.8.

Figure 3.7: Three screen captures of the BlueSky Simulator which show the solution of the agent in the single-agent experiment. The
three screen captures represent the initial state (a), conflict avoidance maneuver between AC00 and ACO01 (b) and the conflict avoidance
maneuver between AC00 and AC02 (c)

In Figure 3.8, the activation/deactivation of the VOs of intruding aircraft for ownship ACO00 are visualized for
the first 200 seconds of simulation time. The most interesting VOs belong to AC01 and AC02. Initially, the
VO of ACO01 is mainly activated and the VO of AC02 is completely deactivated. Between 25 and 100 seconds it
can be seen that the VOs of AC01 and AC02 are continuously switched on and off to allow AC00 to maneuver
through the environment in an efficient manner without LoS.

3.3. Single-Agent Setting 52

Activation of VOs intruders for AC0O0

5 - 99960 OSDTOSTEEES ® 00900 L]

4- *S9000000000000000 000009 D 0G0

Aircraft id

2 &8 oIeTITNBGE@ 8 2L SESESEGZEHED B @8R

l | E2eseetE@sd ©IPESSEETESeETEOURTEETEEeEsD

T T T T T
] 25 50 75 100 125 150 175 200
Simulation Time [s]

Figure 3.8: Visualization of activation/deactivation of velocity obstacles for intruding aircraft for AC00 in the first 175 seconds of
simulation time.

Discussion

The default hyperparameters provide satisfactory performance on the single-agent experiment. In the train-
ing architecture for the single-agent experiment, the horizon parameter is equal to the batch size since only
one actor collects experience. It was found that the batch size has great influence on convergence. Reducing
the horizon parameter before updating the parameters resulted in a bad performing agent. The batch size
denotes the number of steps the agent takes before the policy is updated. If the number of steps is not suffi-
ciently large, the agent could get trapped in a local optimum. The agent begins to optimize its policy while it
has not interacted enough with the environment to know the most optimal direction to update its weights in.
Instead, it settles for a local optimum which is inferior to the global optimum.

The agent was able to successfully maneuver through the scenario without a LoS. The oscillatory motion was
an indication that the agent also optimized its solution with respect to efficiency. The agent was able to learn
this behaviour based on the feature set {z.4,d}. It was expected that this feature set would suffice, because if
the agent can learn that aircraft with a small #.,, and d impose the greatest threat, the agent should be able
to successfully maneuver through this particular scenario.

The reward function eventually functioned as expected, but it required several design iterations and manual
tuning of the weights before the final behaviour was achieved. If the -100 reward for a LoS was reduced to
for example -5, the agent AC00 learned that it was more advantageous to simply fly in a straight line and
not deviate from the flight path than to avoid the loss of separation. Therefore, in the multi-agent case, it is
advised to utilize the same reward function. If an alteration of the reward function is necessary, ensure that
magnitude of the rewards for loss of separation and deviation from flight path are recalibrated.

Conclusion
The following conclusions were drawn from the single-agent experiment:
¢ Proof-of-Concept for the single-agent setting is given.

* No hyperparameter tuning was required. Therefore, it is advised to start with the default hyperparam-
eter setting in the multi-agent experiment.

3.4. Multi-Agent Setting 53

* The feature set {f.,q,d} contained sufficient information for the agent to correctly activate/deactivate
the VOs of intruding aircraft.

* The reward function in the single-agent setting performed accordingly and serves as a good starting
point in the multi-agent setting.

3.4. Multi-Agent Setting

The structure is similar to the single-agent setting. The experiment goals and the experiment scenario are
described in subsection 3.4.1 and subsection 3.4.2 respectively. Subsequently, the decision on the control
scheme and hyperparameter settings are provided in subsection 3.4.3 and subsection 3.4.4. Hypotheses are
described in subsection 3.3.5 and the results can be found in subsection 3.3.6.

3.4.1. Goals Multi-Agent Experiment
The goals of the experiment in the multi-agent setting are:

* Prove that it is possible to show cooperative behaviour between agents in a multi-agent.
¢ Provide insights into the pitfalls of designing a multi-agent scenario.

* Assist in determining the scope of multi-agent experiment setting.

3.4.2. Experiment Scenario

Designing a base case for the multi-agent setting is significantly harder than in the single-agent setting, be-
cause two agents are adapting their velocity vector based on the interactions with the environment inciting
more unpredictable system dynamics. The main goal of the experiment is to proof that cooperation between
agents is feasible. The experiment should therefore be designed in such a way that the agents must cooperate
to come to a good solution.

An overview of the initial state of the experiment in the BlueSky simulator can be found in Figure 3.9. In
this experiment, conflict resolution with the SSD is enabled in AC00 and ACO1. The other aircraft simply
fly in a straight line in the direction of their initial heading. In the current implementation of the SSD, the
conflict between AC00 and ACO01 cannot be resolved without a LoS for ACO1. The aim of this experiment is to
investigate whether the aircraft AC00 and ACO1 can synthesize a joint solution which exceeds performance
of the regular SSD algorithm. The number of LoS (Ny,s) is measured and efficiency of the flight path is again
assessed in a more qualitative manner.

In a similar scenario with only AC00 and ACO01, a geometrically optimal solution exists according to Ellerbroek
[16]. However, the construction of the geometrically optimal solution in Figure 3.9 is distorted by AC02, AC03,
AC04 and ACO05, because the velocity obstacles of belonging to these aircraft significantly reduce the set of
ARVs in the SSDs of AC00 and ACO1. The solution space of AC00 and ACO1 at ¢ = 0 can be found in Figure 3.10
and Figure 3.11 respectively.

3.4. Multi-Agent Setting 54

Figure 3.9: Three screen captures of the multi-agent experiment with the original implementation of the SSD algorithm. Conflict
resolution with SSD is activated in AC00 and ACO1. The three screen captures represent the initial state (a), the start of conflict
maneuver of AC00 and ACO01 (b) and the loss of separation of ACO01 (c).

Figure 3.10: SSD at ¢ = 0 s for AC00 Figure 3.11: SSD at ¢ = 0 s for ACO1

3.4.3. Model

First, a decision has to be made on which control scheme (subsection 2.3.4) will be used for multi-agent
RL. The most natural choice for a control scheme which allows for cooperation between agents and ensures
stability is the centralized controller (subsection 2.3.4). The major disadvantage of the centralized controller
is that it poorly scales to a large number of agents. Since the number of controlled and observed agents are
now only 2 and 5 respectively, the dimensionality of the observation and action space is not expected to be the
limiting factor for a successful multi-agent model. Therefore, the centralized controller is deemed suitable
for providing a proof-of-concept for the cooperative behaviour of the agents, even if the implementation in
the final thesis will follow a decentralized control scheme. If the centralized controller cannot converge to
a joint solution, it implies that the decentralized control method will also fail, because it is assumed that
attaining convergence for a decentralized controller is more difficult compared to a centralized controller. If
The centralized controller does converge, a possibility exists that the decentralized controller also converges.
The implementation of the PPO model is similar to the single-agent case of section 3.3.

3.4.4. Model Settings

The observation and action space have to be extended to the multi-agent scenario. Due to the centralized
control scheme, the observation and action spaces of the individual agents can be stacked to compose the
observation and action space of the centralized model. Consequently, the stacked observation (a.) and action

3.4. Multi-Agent Setting 55

vector (a.) of the centralized model at time ¢ can be computed with Equation 3.6 and Equation 3.7 respec-
tively.

0O¢, =1{000,,001,} (3.6)

ac, = {ago,, ao1,} (3.7

The action vector length thus doubles to 10 discrete actions since 2 aircraft each decide on activation of 5
VOs. If similar to section 3.3 two features per aircraft are used, the observation input vector is also doubled in
size. Addition of features obviously increases the observation vector even further. The reward function from
Equation 3.5 is applied for both agents AC00 and AC00. The total reward r,;,; is computed with Equation 3.8.

T'total = T0o0 701 (3.8)

3.4.5. Experiment Hypotheses

The following hypotheses were formulated with regard to the experiment in the multi-agent setting:

* AC00 and ACO01 should not enter a loss of separation while simultaneously maintaining high effi-
ciency. Similar to the single-agent experiment, the agents are expected to avoid LoS and optimize their
behaviour with respect to efficiency.

¢ More steps are required for a converging method compared to the single-agent setting. It is expected
that establishing cooperation between agents is difficult for the PPO algorithm. Thus more experience
is required for training.

¢ Cooperation can be achieved with a centralized controller. Due to the centralized control scheme,
the multi-agent problem can be solved with a single-agent approach. Convergence was achieved for
the experiment in the single-agent setting. Hence, it is expected that AC00 and ACO01 can find a solution
which is better than the solution described in Figure 3.9.

3.4.6. Experiment Results
Training Progress

The platform on which the models were trained was similar to subsection 3.3.6. A step again corresponds to
1 second in simulation time of the BlueSky simulator. The agents were trained for 30000 steps. If no terminal

state is encountered, the episode ends after 200 steps. The training progress for the total loss qup VE@)
and value loss L}’F (0) is displayed by Figure 3.12 and Figure 3.13 respectively.
Training progress of total loss Training progress of value loss
800
700
400
600
— 300 = 500
123 0
§ § 400
T 200 E:
° S 300
200
100
100
0 0
5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000

Number of steps [-] Number of steps [-]

Figure 3.12: Total loss of centralized model for increasing number Figure 3.13: Value loss for centralized model for increasing
of steps number of steps

3.4. Multi-Agent Setting 56

Flight Paths Trained Agents

The RL model with a centralized controller enabled the agents to cooperate and find a better solution based
on the amounts of LoS and flight path distance. Figure 3.14 displays the flight paths of the aircraft while the RL
model decides which VOs AC00 and ACO1 have to incorporate in their SSD. It becomes evident that both have
succeeded to find a joint solution which is preferred over the solution constructed by the current SSD-based
algorithm. No LoS occurs for ACO0 or ACO1.

(@) (b) (c)

Figure 3.14: Screen capture of the BlueSky Simulator which displays three screen captures the solution for the multi-agent scenario
found by the centralized controller. The three screen captures represent the initial state at £ = 0 s (a), begin conflict avoidance maneuver
between AC00 and ACO1 at ¢ = 60 s (b) and the end of the conflict avoidance maneuver between AC00 and ACO1 at ¢ = 150 s(c)

The SSD for AC00 and ACO1 at ¢t = 0 are displayed in Figure 3.15 and Figure 3.16 respectively. As expected,
compared to Figure 3.10 and Figure 3.11, VOs in Figure 3.15 and Figure 3.16 have been omitted to allow for a
more optimal joint solution.

Figure 3.15: SSD at ¢ = 0 s for AC00 Figure 3.16: SSD at ¢ = 0 s for ACO1

The activations/deactivations of the velocity obstacles for the intruding aircraft for AC00 and ACO1 are visu-
alized in Figure 3.17 and Figure 3.18 respectively. A blue dot indicates that for that simulation step, the VO
of a particular aircraft was included in the SSD for conflict resolution. From Figure 3.17, it can be seen that
ACO01 mainly deactivates the VO of ACO0 and AC02 almost always activates the VO of AC04. While AC00 in
Figure 3.18 does activate the VO of aircraft AC01, AC02 and AC05 most of the time and the VOs of AC03 and
AC04 most of the time.

3.5. Experiment Proposal Final Thesis 57

Activation of VOs intruders for ACOO Activation of VOs intruders for ACO1

S

w

Aircraft id
Aircraft id

2 eee
2
1
14 0 eeoe L] e eoomemEINENS 000000
T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 (4] 25 50 75 100 125 150 175
Simulation Time [s] Simulation Time [s]

Figure 3.17: Visualization of activation/deactivation of velocity =~ Figure 3.18: Visualization of activation/deactivation of velocity

obstacles for intruding aircraft for AC00 in the first 175 seconds of obstacles for intruding aircraft for AC01 in the first 175 seconds of
simulation time. simulation time

Discussion
The aircraft ACO0 and ACO1 did both not enter a LoS and AC00 and ACO1 were able to increase the total
efficiency of their combined flight paths. It was hypothesized that the multi-agent scenario required more
steps for convergence. However, the multi-agent scenario converged in 30000 steps compared to the single-
agent scenario which converged in 70000 steps. The multi-agent model is said to be more sample efficient
than the single agent model. This can be explained based on two reasons:

* Scenario Length: The most prominent problem in the multi-agent case is the immediate conflict be-
tween AC00 and ACO1. In the single-agent case the relevant conflicts are with AC01 and AC02 which
requires more steps in the environment to sample experience from than the single immediate conflict
in the multi-agent case.

¢ Scenario Complexity: The single-agent case is more complex, because the agent first has to learn how
to avoid AC01 and subsequently has to learn how to avoid AC02. It is expected that more batches of
data are required before converging to the desired behaviour. Once the multi-agent model is able to
solve the initial conflict between AC00 and ACO1, it is expected that agents AC00 and AC01 will be able
to maneuver through the rest of the environment without the need of conflict prioritization.

Conclusion
The following concluding remarks can be made based on the multi-agent experiment:
* The Proof-of-Concept for multi-agent scenario provided. Cooperation between aircraft is feasible in a
scenario with a centralized controller.

* The selected features ., and d allowed the model to converge in the multi-agent setting. The features
need to be altered for the multi-agent case in the final experiment, because with the current set of
features the agent do not know the relative position of the other aircraft. The agents were still able to be
trained on the current set of features, because relative position was not imperative to solve the single-
and multi-agent experiments. In a more generalized setting, relative position is important and should
be integrated in the feature design.

¢ In the process of designing a suitable scenario for the multi-agent experiment, it was found that the
unpredictable dynamics make it rather hard to design an experiment in which both aircraft operate as
is expected when the scenario is designed. If uncertainty arises in the main part of the thesis about in-
clusion of a new feature in the general multi-agent case experiment, it is advised to construct a scenario
in the single-agent setting in which you test the behaviour of the newly synthesized feature.

3.5. Experiment Proposal Final Thesis
The proposal for the subsequent part of the thesis is elaborated upon in this section. The formulation of the
experiment design is explained in subsection 3.5.1. Thereafter, the proposed train architecture is discussed

3.5. Experiment Proposal Final Thesis 58

in subsection 3.5.2. Finally, subsection 3.5.3 elaborates on the initial model settings for the generalized multi-
aircraft experiment.

3.5.1. Experiment Design Thesis
The first part of the proposal consists of the design of experiment structure. The structure should be designed
while obeying the following requirements:

¢ Traffic Density: The number and placement of aircraft should facilitate conflicts that involve multiple
aircraft.

¢ Generalization: A simulation is not equivalent to reality and assumptions will always be present. How-
ever, the layout should strive to mimic a real-life situation and encapture the variability which occurs.

* Stability: More variability in the scenarios represents closer resemblance to the true physical encoun-
ters which could potentially occur. Nonetheless, variability comes at a price. More variability reduces
the stability of the learning process for the agents and requires more exploration. Hence, the experi-
ment structure should make a trade-off between its generalization and stability properties.

The proposed layout of the experiment structure can be found in Figure 3.19 and is based on the experiments
performed in [96]. The structure is represented by a hexagon. In each corner an aircraft can be spawned.
The target corner of the aircraft can be any corner on the hexagon except for its neighbouring corners. The
structure ensures that the aircraft are evenly spawned across the corners of the hexagon and ensures that the
aircraft fly towards each other fulfilling the first requirement of traffic density. Albeit aircraft cannot encounter
each other from every random angle, the hexagon still allows for a variety in conflict angles, but with a reduced
variability. Besides, when aircraft are performing avoidance maneuvers they will deviate from their original
heading which results improves the generalization property of the structure.

As explained in chapter 1, the ATM system for UAVs is under development. If the UTM will incorporate fixed
air routes with fixed intersections, the experimental structure will accurately mimic the real-life situation.
Moreover, delivery drones in cities such as New York city will be forced to follow the roads for cars due to
the high skyscrapers which impede the free-flight concept. If the UTM implements a free flight concept, the
structure still allows for sufficient variability as explained above.

b

Figure 3.19: Structure of layout from which scenarios are sampled, adapted from [102]

3.5. Experiment Proposal Final Thesis 59

In a scenario, a fixed number of aircraft is spawned and each aircraft is assigned to a different starting node.
The target node is randomly selected from the available target nodes. Furthermore, a delay is assigned to
each aircraft which prevents the aircraft from all spawning at the same time. The scenario is run untill either
all agents have reached their target node or a terminal state is encountered.

3.5.2. Training Architecture

The control scheme of the RL model for the multi-agent experiment was centralized. The centralized con-
troller was implemented to support cooperative behaviour between the agents. In the thesis, a centralized
controller is not desired, because it suffers from the curse of dimensionality with an increasing number of
agents and it requires communication with a central entity.

The proposed control scheme is centralized learning with decentralized execution and a shared policy 7y (s).
An extensive motivation on the proposed control scheme is provided in subsection 2.3.6. The methodology
to update the weights shows great similarity to the approach of algorithm 1. The discrepancy lies in the
computation of the advantage function estimates. The advantage function estimates are based on a batch of
trajectories from all agents. The centralized learning implies that the agents have a shared reward function
and rewards from all trajectories are thus required to construct the advantage estimates. Afterwards, the
methodology to update the model parameters is analogous to algorithm 1.

Multi-agent reinforcement learning is a computationally intensive process. Maximizing the computational
capacity of the hardware utilized to train the model is beneficial since it reduces the run time. Ray is a dis-
tributed framework which empowers systems to cope with intensive parallel simulations of scenarios [59].
The BlueSky architecture has a server-client interface in which several clients can run parallel experiments
on separate CPU nodes. Parallel gathering of experience is thus already feasible with the current architecture.
The problem is that all agents in the parallel experiments sample from the same policy. Hence, all agents
should have access to the policy and the parameter updates of the policy have to be coordinated.

RLlib is part of the Ray project and is a reinforcement learning library which supports high scalability and is
able to solve the aforementioned problems concering the central policy. Similar to BlueSky, an option in Ray
is to adopt the server-client architecture for the policy. The policy server can be initialized with the policy-
ServerClient class which runs on the local network. Agents in the BlueSky environment can initialize a client
with the PolicyClient class. An overview of the architecture is provided by Figure 3.20. The policyServerInput
object collects rollout fragments (trajectories) from the environment. Once the pre-specified batch size is
attained, the experience is inputted to the trainer object which updates the model parameters. The agents in
the BlueSky environment use the PolicyClient to access the current version of the policy. Policy inference can
be run with a cached copy of the policy which increases the efficiency of collecting the experience [59].

= |
: i rollout |
i | Trainer !

' rollout data | Hagants Your Application Process

i TI'Iearner Policy : PO"{"’ﬁ Policy

Server Input | | We/ghts Client Sim

' i iii

. Ray Cluster | 1] el | | get_action()

Figure 3.20: Schematic overview of communication between Ray Cluster and environment from [59]

In Figure 3.21, the interaction between the policy server and the BlueSky environment is visualized. Rewards
are included in the trajectory data and are computed within the simulation nodes block.

3.5. Experiment Proposal Final Thesis 60

5

Scenario
Generator

1
1
]
: Environment o o Ray '
; 1 Trajectories ; 1
+ - 1
! 1 1 1
: 1 1 1
1 : : > Policy Server :
1 : i Input !
: Observation |) 1
! \ 5 Policy -— \
1 Simulation \ i ' Client !
: Nodes 1 . 1
1 1 1
: 1 .] ﬁgﬁ« .
1 1 1
; I Action 1 Update !
! E : : Model :
! 1 1 Parameters 1
: I 1 1
1 : L |
[}
- :
1
i 1

Figure 3.21: Schematic Overview of communication between policy server and BlueSky simulator

3.5.3. Proposed Initial System Settings

Observation Space

In the preliminary thesis, it was decided to discretize the observation space with the idea that it would im-
prove the learning abilities of the PPO algorithm, because the number of possible states is limited. With a
continuous state space, the probability that an agent visits a state which it has never encountered is larger,
because the number of states is infinite. Nonetheless, the PPO algorithm is able to cope with continuous ob-
servation spaces. In the thesis, the approach will be to first implement a discrete action space. Subsequently,
a continuous observation space can be implemented to compare performance.

The selected features should be chosen such that no ambiguity exists for the agent. Features should be in-
variant against rotation and translation. It is hypothesized that the features have to include information on
the position of the other aircraft and provide on indicator on how imminent a LoS is. Including the position
of other aircraft in a relative positional framework has the advantage that it is automatically invariant against
rotation and translation and reduces the necessity to incorporate the state of ownship in the observation
vector. This slightly reduces the length of the observation vector which is computationally advantageous.

Utilizing heading to denote the relative position of an intruding aircraft sounds tempting, but is very counter-
intuitive for the model to interpret. The difference between a heading angle of -179° and 179° is in reality only
2 degrees, but to the model sees it as a difference of of 358°. Therefore, it is advised to implement the relative
position feature by decomposing the relative distance into x- and y-components with the relative bearing an-
gle. It is expected that the information on how imminent a conflict is, can be best included with either #;,5 or

tepa-

Due to computational constraints, an increase in the amount of features per aircraft in the observation vec-
tor reduces the number of aircraft which can be included in the observation vector. This has to be taken
considered when deciding on the number of features per aircraft.

Action Space

The action space will be similar to section 3.3. The action space is not similar to the action space of the multi-
agent setting, because a decentralized control scheme is used. The size of the action vector will initially be
fixed, because the number of aircraft in a scenario will also be fixed. In later experimental stages in which the
number of aircraft is increased, a procedure has to be designed to select the N aircraft which are included in
the state space and for which the policy decides on inclusion of the VOs in the SSD.

Reward Function
The various parts of a reward function are determined by the optimization goals which are defined. The
goal of this research is to apply conflict prioritization to improve current CD&R methods which incorporate

3.5. Experiment Proposal Final Thesis 61

VOs. It was decided to apply conflict prioritization on the SSD algorithm. The inherent goal of the SSD is to
provide a set of ARV which do not result in a LoS. Preventing LoS is therefore an obvious part of the reward
function. LoS is a sparse reward and the agents must also aim to optimize its avoidance maneuvers in terms
of efficiency. Efficiency will be included in the reward function measured in travelled distance D. No further
objectives are initially added to the reward function, because the safety and efficiency objective mimic the
goals of the SSD algorithm. Besides, adding more terms to the objective function increases the complexity
for the agent which reduces stability. The initial reward function will thus be similar to Equation 3.5. Even
though only two objectives are included in the reward function, all performance metrics from Table 2.1.8 can
still be utilized to evaluate the method. When the experiments require further design iterations of the reward
function, inspiration can be found in [96, 72, 6, 20, 92].

Hyperparameters

In the experiments of the single-agent and multi-agent setting the default hyperparameters were sufficient.
Hence, the initial hyperparameter settings for the generalized experiment should also be the default values.
A further elaboration on the hyperparameters is provided in section 3.3 and can be examined when tuning of
hyperparameters is required.

Conclusion

To facilitate an increased number of flights in manned aviation, the concept of Free Flight is proposed which
requires a decentralized approach to CD&R. Simultaneously, an increase in the number of drones projected
and their obligation to incoporate a DAA system further emphasizes the relevance into decentralized CD&R
methods. A class of CD&R algorithms is based on velocity obstacles (VO). When a VO-based method uses a
joint solution, the solution space promptly decreases in size with in increase in traffic density. To alleviate
this problem, this research proposed to apply conflict prioritization to a VO-based CD&R method.

To proof the veracity of the proposed method, two experiments were conducted based on the theoretical
concepts of CD&R and reinforcement learning which were explained in section 2.1, section 2.2 and subsec-
tion 2.3.6. It was decided to select the SSD algorithm as the CD&R method to apply conflict prioritization
on.

The preliminary experiments were conducted in a single-agent setting and a multi-agent setting in chapter 3.
The RL model controls one aircraft in the single-agent setting and two in the multi-agent setting. The PPO
algorithm was concluded to be to most suitable for this research and thus selected as RL model. In the multi-
agent experiment the PPO model was implemented with a centralized control scheme. In both settings, the
agents were successfully trained to prevent LoS while increasing the efficiency of the resolution maneuver.

In the subsequent part of the thesis, the focus will be to extend the proof-of-concept from the single- and
multi-agent setting to a generalized multi-agent experiment with a higher number of controlled aircraft. The
variability in the scenarios is increased which allows the agents to encounter more conflict scenarios with a
different conflict geometry. In the initial setup the PPO method will be implemented with a decentralized
control scheme and a shared policy to deal with the challenges of multi-agent reinforcement learning. How-
ever, issues are still expected to arise from the increased complexity of interacting agents which are evolving
simultaneously. An important aspect will be to fine-tune the model settings by iteratively updating of the
model settings and evaluation of the dependent variables.

62

(10]

(11]

(12]

(13]

(14]

(13]

(16]

[17]

(18]

(19]

Bibliography

“Right-of-Way Rules: Except Water Operations”. Air Traffic and General Operating Rules. Federal Avi-
ation Administration Regulation, Title 14, Chap. 1.E Pt. 91.B, Sec. 91.113, July 2004.

S. Balasooriyan. “Multi-aircraft conflict Resolution using Velocity Obstacles”. Master’s Thesis. Delft
University of Technology, 2017.

M. G. Bellemare et al. “The Arcade Learning Environment: An Evaluation Platform for General Agents”.
In: Journal of Artificial Intelligence Research 47 (June 2013), pp. 253-279. DOI: 10.1613/jair.3912.

J. Bergstra and Y. Bengio. “Random search for hyper-parameter optimization.” In: Journal of machine
learning research 13.2 (2012).

C. Borst, C. Westin, and B. Hilburn. “An investigation into the use of novel conflict detection and res-
olution automation in air traffic management”. In: SIDs 2012 - Proceedings of the SESAR Innovation
Days November (2012).

M. Brittain, X. Yang, and P. Wei. A Deep Multi-Agent Reinforcement Learning Approach to Autonomous
Separation Assurance. 2020. arXiv: 2003. 08353.

G. Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540.

L. Busoniu, R. Babuska, and B. De Schutter. “A comprehensive survey of multiagent reinforcement
learning”. In: IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
38.2 (2008), pp. 156-172. ISSN: 10946977. DOIL: 10.1109/TSMCC.2007.9139109.

L. Busoniu, R. Babus$ka, and B. De Schutter. “Multi-agent reinforcement learning: An overview”. In:
Innovations in multi-agent systems and applications-1 (2010), pp. 183-221.

S. Cafieri. “Chapter 22: Mixed-Integer Nonlinear Optimization in Air Traffic Management: Aircraft
Conflict Avoidance”. In: Advances and Trends in Optimization with Engineering Applications. Society
for Industrial and Applied Mathematics, Apr. 2017, pp. 293-301. DOI: 10.1137/1.9781611974683.
ch22.

CBS. Aviation: monthly figures of Dutch airports. URL: https://opendata.cbs.nl/statline/#/
CBS/en/dataset/37478eng/table. 2021.

P. Conroy et al. 3-D Reciprocal Collision Avoidance on Physical Quadrotor Helicopters with On-Board
Sensing for Relative Positioning. 2014. arXiv: 1411.3794.

M. Doole, J. Ellerbroek, and J. Hoekstra. “Estimation of traffic density from drone-based delivery in
very low level urban airspace”. In: Journal of Air Transport Management 88.June (2020), p. 101862.
ISSN: 09696997. DOI: 10.1016/j. jairtraman.2020.101862.

M. Doole,]. Ellerbroek, and J. Hoekstra. “Drone delivery: Urban airspace traffic density estimation”.
In: 8th SESAR Innovation Days, 2018 (2018).

J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. “Randomized smoothing for (parallel) stochastic op-
timization”. In: Proceedings of the IEEE Conference on Decision and Control 12 (2012), pp. 5442-5444.
ISSN: 01912216. DOI: 10.1109/CDC.2012.6426698.

J. Ellerbroek. “Airborne Conflict Resolution In Three Dimensions””. PhD thesis. Delft University of
Technology, 2013.

H. Emami, E Derakhshan, and S. Pashazadeh. “A new prioritization method for conflict detection and
resolution in air traffic management”. In: Journal of Emerging Trends in Computing and Information
Sciences 3.7 (2012), pp. 1042-1049.

EUROCONTROL. Model for Task and Job Descriptions of Air Traffic Controllers. European AirTraffic
Control Harmonisation and Integration Programme, 1996.

EUROCONTROL. Performance Review Report An Assessment of Air Traffic Management in Europe dur-
ing the Calendar Year 2018. 2018.

63

Bibliography 64

[20]

(21]

[22]

(23]

[24]

(23]

[26]

[27]

(28]
[29]

(30]

(31]

(32]

(33]

(34]

(33]

(36]

[37]

(38]

(39]

[40]

[41]

T. Fan et al. Fully Distributed Multi-Robot Collision Avoidance via Deep Reinforcement Learning for
Safe and Efficient Navigation in Complex Scenarios. 2018. eprint: arXiv:1808.03841.

P. Fiorini and Z. Shiller. “Motion Planning in Dynamic Environments Using Velocity Obstacles”. In:
The International Journal of Robotics Research 17.7 (1998), pp. 760-772. DOI: 10.36288/roscon2012-
900669.

J. Foerster et al. “Stabilising experience replay for deep multi-agent reinforcement learning”. In: 34th
International Conference on Machine Learning, ICML 2017 3 (2017), pp. 1879-1888. arXiv: 1702 .
08887.

J. K. Gupta, M. Egorov, and M. Kochenderfer. “Cooperative Multi-agent Control Using Deep Reinforce-
ment Learning”. In: Autonomous Agents and Multiagent Systems (2017), pp. 66-83. DOI: 10 . 1007 /
978-3-319-71682-4.

M. Haenlein and A. Kaplan. “A brief history of artificial intelligence: On the past, present, and future of
artificial intelligence”. In: California Management Review 61.4 (2019), pp. 5-14. ISSN: 21628564. DOTI:
10.1177/0008125619864925.

S. HAO, S. CHENG, and Y. ZHANG. “A multi-aircraft conflict detection and resolution method for 4-
dimensional trajectory-based operation”. In: Chinese Journal of Aeronautics 31.7 (July 2018), pp. 1579-
1593. DOI: 10.1016/j.¢cja.2018.04.017.

P. Hermes et al. “Solution-space-based analysis of the difficulty of aircraft merging tasks”. In: Journal
of Aircraft 46.6 (2009), pp. 1995-2015. 1SSN: 15333868. DOI: 10.2514/1.42886.

B. Hilburn. “Cognitive complexity in air traffic control: A literature review”. In: EEC note 4.04 (2004),
pp. 1-80.

A.Hill et al. Stable Baselines. https://github.com/hill-a/stable-baselines. 2018.

E Ho et al. “Decentralized Multi-Agent Path Finding for UAV Traffic Management”. In: IEEE Transac-
tions on Intelligent Transportation Systems (2020), pp. 1-12. DOI: 10.1109/TITS.2020.3019397.

S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural Computation 9.8 (1997),
pp- 1735-1780. 1SSN: 08997667. DOI: 10.1162/neco.1997.9.8.1735.

J. M. Hoekstra, R. N. Van Gent, and R. C. Ruigrok. “Designing for safety: The 'free flight’ air traffic
management concept”. In: Reliability Engineering and System Safety 75.2 (2002), pp. 215-232. ISSN:
09518320. DOI: 10.1016/S0951-8320(01) 00096-5.

J. Hoekstra, R. Ruigrok, and R. Van Gent. “Free flight in a crowded airspace?” In: Proceedings of the 3rd
USA/Europe Air Traffic Management R&D Seminar. 2001.

P J. . Hoen et al. “An Overview of Cooperative and Competitive Multiagent Learning BT - Learning
and Adaption in Multi-Agent Systems”. In: (2006), pp. 1-46.

C. C.-Y. Hsu, C. Mendler-Diinner, and M. Hardt. Revisiting Design Choices in Proximal Policy Opti-
mization. 2020. arXiv: 2009.10897.

J. Hu, M. Prandini, and S. Sastry. “Optimal coordinated maneuvers for three-dimensional aircraft con-
flict resolution”. In: Journal of Guidance, Control, and Dynamics 25.5 (2002), pp. 888-900.

Y. Huang. “Deep Q-networks”. In: Deep Reinforcement Learning: Fundamentals, Research and Appli-
cations (2013), pp. 135-160. DO1: 10.1007/978-981-15-4095-0_4.

Y. Huo, D. Delahaye, and Y. Wang. “Sensitivity Analysis of Closest Point of Approach”. In: 8th Interna-
tional Conference for Research in Air Transportation, (June 2018).

ICAO. Doc 4444 - PANS-ATM, Procedures for Navigation Services — Air Traffic Management. 16th ed.
International Civil Aviation Organisation, 2016.

ICAO. Doc 9882 AN/467, Manual on Air Traffic Management System Requirements. 1st ed. 2008.

S.Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training by reducing internal
covariate shift”. In: 32nd International Conference on Machine Learning, ICML 2015 1 (2015), pp. 448-
456. arXiv: 1502.03167.

J. E. Jacco Hoekstra. “BlueSky ATC Simulator Project: An Open Data and Open Source Approach”. In:
7th International Conference on Research in Air Transportation: Philadelphia, USA (2016).

Bibliography 65

[42] Joint Planning and Development Office (JPDO) and Next Generation Air Transportation System (NextGen).
Concept of operations for the next generation air transportation system. Tech. rep. 2011.

[43] A.Kaplan and M. Haenlein. “Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations,
illustrations, and implications of artificial intelligence”. In: Business Horizons 62.1 (Jan. 2019), pp. 15—
25.D01: 10.1016/j .bushor.2018.08.004.

[44] D. P Kingma and J. L. Ba. “Adam: A method for stochastic optimization”. In: 3rd International Con-
ference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015), pp. 1-15. arXiv:
1412.6980.

[45]].Klooster et al. “Trajectory synchronization and negotiation in trajectory based operations”. In: 29th
Digital Avionics Systems Conference. IEEE. 2010, 1.A.3-1-1.A.3-11.

[46] A.Koul, S. Greydanus, and A. Fern. Learning Finite State Representations of Recurrent Policy Networks.
2018. arXiv: 1811.12530.

[47] J. K. Kuchar and L. C. Yang. “A Review of Conflict Detection and Resolution Modeling Methods”. In:
IEEE Transactions on Intelligent Transportation Systems 1.4 (2000), pp. 179-189. 1SSN: 15249050. DOT:
10.1109/6979.898217.

[48]].Kuchar and A. C. Drumm. “The traffic alert and collision avoidance system”. In: Lincoln laboratory
Jjournal 16.2 (2007), p. 277.

[49] T.Langejan. “Effect of ADS-B Limitations and Inaccuracies on CDR Performance”. 2016.

[50] Y. Lecun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553 (2015), pp. 436-444. ISSN:
14764687. DOI: 10.1038/nature14539.

[51] T.P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: 4th International Con-
ference on Learning Representations, ICLR 2016 - Conference Track Proceedings (2016). arXiv: 1509 .
02971.

[52] L.-J. Lin. “Self-improving reactive agents based on reinforcement learning, planning and teaching”.
In: Machine Learning 8.3-4 (May 1992), pp. 293-321. DOI: 10.1007/b£00992699.

[53] M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. Morgan Kauf-
mann Publishers, Inc., 1994, pp. 157-163. DOI: 10. 1016 /b978-1-55860-335-6.50027 - 1. URL:
http://dx.doi.org/10.1016/B978-1-55860-335-6.50027-1.

[54] R. Lowe et al. “Multi-agent actor-critic for mixed cooperative-competitive environments”. In: Ad-
vances in Neural Information Processing Systems 2017-Decem (2017), pp. 6380-6391. 1SSN: 10495258.
arXiv: 1706.02275.

[55] X.Ma et al. “3-D Decentralized Prioritized Motion Planning and Coordination for High-Density Op-
erations of Micro Aerial Vehicles”. In: IEEE Transactions on Control Systems Technology 26.3 (2018),
pp- 939-953. DOI: 10.1109/TCST. 2017 .2699165.

[56] G.A. Mercado Velasco, M. Mulder, and M. M. Van Paassen. “Analysis of air traffic controller workload
reduction based on the solution space for the merging task”. In: AIAA Guidance, Navigation, and Con-
trol Conference August (2010). DOI: 10.2514/6.2010-7541.

[57] V. Mnih et al. “Asynchronous methods for deep reinforcement learning”. In: 33rd International Con-
ference on Machine Learning, ICML 2016 4 (2016), pp. 2850-2869. arXiv: 1602.01783.

[58] T. Molloy et al. “Evaluation of the Rules of the Air for the Future of Air Traffic Management”. In:
AIAA AVIATION 2020 FORUM. American Institute of Aeronautics and Astronautics, June 2020. DOI:
10.2514/6.2020-2855.

[59] P Moritz et al. “Ray: A distributed framework for emerging Al applications”. In: Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018 (2007), pp. 561-
577. arXiv: 1712.05889.

[60] NextGEN. Concept of Operations v2.0. https : //wuw . faa . gov/uas/research_development /
traffic_management/media/UTM_ConOps_v2.pdf. 2020.

[61] H. Niu, C. Ma, and P. Han. “A decentralized method for collision detection and avoidance applied to
civil aircraft”. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering (2020). ISSN: 20413025. DOI: 10.1177/0954410020953045.

Bibliography 66

[62]

[63]

[64]

[63]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

(73]

[76]

[77]

(78]

[79]
[80]
(81]

(82]

[83]

H. Niu, C. Ma, and P. Han. “A decentralized method for collision detection and avoidance applied to
civil aircraft”. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering (2020). 1ISSN: 20413025. DOI: 10.1177/0954410020953045.

C. Olah. Understanding LSTM Networks. URL: https : //colah . github. io/posts/2015-08-
Understanding-LSTMs/. 2015.

A. OroojlooyJadid and D. Hajinezhad. “A review of cooperative multi-agent deep reinforcement learn-
ing”. In: arXiv (2019). 1ISSN: 23318422, arXiv: 1908.03963.

L. Pallottino, E. M. Feron, and A. Bicchi. “Conflict resolution problems for air traffic management
systems solved with mixed integer programming”. In: IEEE transactions on intelligent transportation
systems 3.1 (2002), pp. 3-11.

G. Papoudakis et al. Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Coopera-
tive Tasks. 2020. arXiv: 2006.07869.

A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In: Advances
in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,
pp- 8024-8035. URL: http : //papers . neurips . cc/paper /9015 - pytorch - an - imperative -
style-high-performance-deep-learning-library.pdf.

L. P I. da Piedade. “Aircraft Conflict Prioritization and Resolution using the Solution Space Diagram”.
2018.

PRONETOWANDERFRIENDS'S BLOG. URL: https : //pronetowanderfriends . wordpress . com/
2014/02/23/angels-landing-in-zion-national-park-check/.2014.

S. A. Rahman et al. “Cross-sector transferability of metrics for air traffic controller workload”. In: IFAC-
PapersOnLine 49.19 (2016), pp. 313-318. DOI: 10. 1016/ j . ifacol.2016.10.561. URL: https :
//doi.org/10.1016/j.ifacol.2016.10.561.

M. Ribeiro, J. Ellerbroek, and J. Hoekstra. “Determining Optimal Conflict Avoidance Manoeuvres At
High Densities With Reinforcement Learning”. In: December (2020).

M. Ribeiro, J. Ellerbroek, and J. Hoekstra. “Improvement of Conflict Detection and Resolution at High
Densities Through Reinforcement Learning”. In: 9th International Conference for Research in Air Trans-
portation (ICRAT) (2020).

M. Ribeiro, J. Ellerbroek, and J. Hoekstra. “Review of conflict resolution methods for manned and
unmanned aviation”. In: Aerospace 7.6 (2020). ISSN: 22264310. DOIL: 10.3390/AEROSPACE7060079.

H. Robbins and S. Monro. “A Stochastic Approximation Method”. In: The Annals of Mathematical
Statistics 22.3 (1951), pp. 400-407. DOI: 10 . 1214 /aoms / 1177729586. URL: https : //doi . org/
10.1214/aoms/1177729586.

S.Ruder. “An overview of gradient descent optimization algorithms”. In: (2016), pp. 1-14. arXiv: 1609.

04747. URL: http://arxiv.org/abs/1609.04747.

J. Schulman et al. “High-dimensional continuous control using generalized advantage estimation”. In:
4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings
(2016), pp. 1-14. arXiv: 1506.02438.

J. Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707 . 06347.

J. Schulman et al. “Trust region policy optimization”. In: 32nd International Conference on Machine
Learning, ICML 2015 3 (2015), pp. 1889-1897. arXiv: 1502.05477.

SESAR Consortium. The Concept of Operations at a Glance. Single European Sky. 2007.
SESAR Joint Undertaking. U-space: blueprint. Publications Office, 2017. DOI: 10.2829/335092.

SESAR joint Undertaking. Bubbles Separation Management. https:/ /www.sesarju.eu/projects/bubbles.
2020.

SESAR joint Undertaking. European Drones Outlook Study Unlocking the value for Europe. https :
//wuw.sesarju.eu/sites/default/files/documents/reports/European_Drones_QOutlook_
Study_2016 . pdf. 2016.

D. Silver. Lectures on Reinforcement Learning. URL: https : //www . davidsilver . uk/teaching/.
2015.

Bibliography 67

[84] D. Silver et al. “Deterministic policy gradient algorithms”. In: 31st International Conference on Ma-
chine Learning, ICML 2014 1 (2014), pp. 605-619.

[85] D. Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In: nature
529.7587 (2016), pp. 484-489.

[86]].Sun. “Open Aircraft Performance Modeling: Based on an Analysis of Aircraft Surveillance Data”. PhD
thesis. 2019. DOI: 10.4233/UUID: AF94D535-1853-4A6C-8B3F-77C98A52346A.

[87] E.Sunil et al. “Analysis of airspace structure and capacity for decentralized separation using fast-time
simulations”. In: Journal of Guidance, Control, and Dynamics 40.1 (2017), pp. 38-51.

[88] R.S.Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

[89] M. Tan. “Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents”. In: Machine
Learning Proceedings 1993 (1993), pp. 330-337. DOI: 10.1016/b978-1-55860-307-3.50049-6.

[90] T.Tieleman and G. Hinton. Lecture 6.5 - RMSProp, COURSERA: Neural Networks for Machine Learning.
URL: http://www.cs.toronto.edu/ tijmen/csc321/slides/lecture_slides_lec6. pdf.
2012.

[91] M. Tra. “The Effect of a Layered Airspace Concept on Conflict Probability and Capacity”. MA thesis.
2016.

[92] D.Q.TranandS. H. Bae. “Proximal policy optimization through a deep reinforcement learning frame-
work formultiple autonomous vehicles at a non-signalized intersection”. In: Applied Sciences (Switzer-
land) 10.16 (2020). ISSN: 20763417. DOIL: 10.3390/app10165722.

[93] S.B.Van Dam et al. “Functional presentation of travel opportunities in flexible use airspace: An EID
of an airborne conflict support tool”. In: Conference Proceedings - IEEE International Conference on
Systems, Man and Cybernetics 1 (2004), pp. 802-808. 1SSN: 1062922X. pDoOI: 10.1109/ICSMC. 2004 .
1398401.

[94]]. Van Den Berg et al. “Reciprocal n-body collision avoidance”. In: Robotics research. Springer, 2011,
pp. 3-19.

[95] O.Vinyals et al. StarCraft II: A New Challenge for Reinforcement Learning. 2017. arXiv: 1708.04782.

[96] D. Wang et al. “A Two-Stage Reinforcement Learning Approach for Multi-UAV Collision Avoidance
under Imperfect Sensing”. In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 3098-3105. ISSN:
23773766. DOI: 10.1109/LRA.2020.2974648.

[97] C.Watkinsk. “Learning from Delayed Rewards”. PhD thesis. University of Cambridge, 1989.

[98] J.Wuetal. “Hyperparameter optimization for machine learning models based on Bayesian optimiza-
tion”. In: Journal of Electronic Science and Technology 17.1 (2019), pp. 26-40.

[99] Y. Wu et al. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. In: Advances in Neural Information Processing Systems 2017-December (2017), pp. 5280-
5289. 1SSN: 10495258. arXiv: 1708.05144.

[100] J.Yangetal. “Distributed cooperative onboard planning for the conflict resolution of unmanned aerial
vehicles”. In: Journal of Guidance, Control, and Dynamics 42.2 (2019), pp. 272-283. 1SSN: 15333884.
DOI: 10.2514/1.G003583.

[101] H.Zhangand T. Yu. “Taxonomy of Reinforcement Learning Algorithms”. In: Deep Reinforcement Learn-
ing. Springer Singapore, 2020, pp. 125-133. DOI: 10.1007/978-981-15-4095-0_3.

[102] Y.Zhaoetal. “Reinforcement Learning-Based Collision Avoidance Guidance Algorithm for Fixed-Wing
UAVs”. In: Complexity (2021). 1SSN: 10990526. DOI: 10.1155/2021/8818013.

	9f9ba38e-68d8-4da7-8f39-700268802191.pdf
	Introduction
	Theoretical Background
	Conflict Detection
	Prioritization of Intruders

	Reinforcement Learning Method
	Markov Decision Process
	RL Method
	Multi-Agent RL
	State Formulation
	Reward Formulation
	Action Space

	Conflict Resolution Algorithms
	Velocity Obstacles
	Solution Space Diagram
	SSD in Conflict Resolution
	SSD in Conflict Prioritization
	Modified Voltage Potential

	Experiment Design
	Simulation Environment
	Training Architecture
	Challenges of Model Training
	Experiment Specifications
	Independent Variables
	Dependent Variables

	Experiment Hypotheses
	Results
	Training Results
	Improving SSD with Ruleset
	Conflicting Aircraft
	Closest Aircraft
	Removal of Aircraft

	Generalized Traffic Scenario
	Safety
	Efficiency

	Discussion
	RL Model Settings
	SSD with Conflict Prioritization
	Recommendations

	Conclusion

