
 
 

Delft University of Technology

HAT
haplotype assembly tool using short and error-prone long reads
Shirali Hossein Zade, Ramin; Urhan, Aysun; Assis de Souza, Alvaro; Singh, Akash; Abeel, Thomas

DOI
10.1093/bioinformatics/btac702
Publication date
2022
Document Version
Final published version
Published in
Bioinformatics (Oxford, England)

Citation (APA)
Shirali Hossein Zade, R., Urhan, A., Assis de Souza, A., Singh, A., & Abeel, T. (2022). HAT: haplotype
assembly tool using short and error-prone long reads. Bioinformatics (Oxford, England), 38(24), 5352-5359.
https://doi.org/10.1093/bioinformatics/btac702

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1093/bioinformatics/btac702
https://doi.org/10.1093/bioinformatics/btac702


Genome analysis

HAT: haplotype assembly tool using short and

error-prone long reads

Ramin Shirali Hossein Zade 1, Aysun Urhan1,2, Alvaro Assis de Souza1,

Akash Singh1 and Thomas Abeel 1,2,*

1Delft Bioinformatics Lab, Delft University of Technology Van Mourik, 2628 XE Delft, The Netherlands and 2Infectious Disease and

Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

*To whom correspondence should be addressed.

Associate Editor: Can Alkan

Received on July 20, 2022; revised on September 16, 2022; editorial decision on October 21, 2022; accepted on October 25, 2022

Abstract

Motivation: Haplotypes are the set of alleles co-occurring on a single chromosome and inherited together to the
next generation. Because a monoploid reference genome loses this co-occurrence information, it has limited use in
associating phenotypes with allelic combinations of genotypes. Therefore, methods to reconstruct the complete
haplotypes from DNA sequencing data are crucial. Recently, several attempts have been made at haplotype recon-
structions, but significant limitations remain. High-quality continuous haplotypes cannot be created reliably, particu-
larly when there are few differences between the homologous chromosomes.

Results: Here, we introduce HAT, a haplotype assembly tool that exploits short and long reads along with a refer-
ence genome to reconstruct haplotypes. HAT tries to take advantage of the accuracy of short reads and the length of
the long reads to reconstruct haplotypes. We tested HAT on the aneuploid yeast strain Saccharomyces pastorianus
CBS1483 and multiple simulated polyploid datasets of the same strain, showing that it outperforms existing tools.

Availability and implementation: https://github.com/AbeelLab/hat/.

Contact: t.abeel@tudelft.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most eukaryotes have more than one copy of each chromosome,
and some species have more than two homologous copies of each
chromosome (i.e. polyploids), which is common in plants (Ramsey

and Schemske, 1998). In genetics, a haplotype is the combination of
individual alleles (one allele of each gene) located on the same
chromosome. Because these alleles are located on the same chromo-
some, they are passed on together to the next generation (Crawford
and Nickerson, 2005). Haplotype assembly or reconstruction refers

to the task of reassembling each individual haplotype. The need to
reconstruct haplotypes arises from the inability of current DNA
sequencing technologies, such as next-generation (NGS) and third-
generation (TGS) sequencing, to read a chromosome’s sequence
from beginning to end. These technologies instead sequence shorter

fragments called reads. In addition, chromosome separation before
sequencing requires complicated and expensive lab work that is not
feasible for most studies. Therefore, it is more common to sequence
chromosomes together, and then use computational methods to sep-
arate the reads and reconstruct the haplotypes. A monoploid

reference genome consists of a mosaic structure of haplotypes with
allelic combinations that do not co-occur within any haplotype.
Additionally, some of the alleles found in the haplotypes are absent
in the monoploid reference. In contrast, with a haplotype-resolved
reference, we can understand genetic variation and link phenotypic
traits with the associated alleles in the haplotype better.

It is significantly more challenging to reconstruct haplotypes for
polyploid genomes than for diploid genomes. If one of the haplo-
types of a diploid genome has been phased (i.e. the said haplotype
has been inferred), it is trivial to determine the alleles of the other
haplotype based on this. On the other hand, in polyploid genomes,
other haplotypes may have the same or different alleles (Garg,
2021). Hence, the phasing of one haplotype does not clearly indicate
what alleles are present in other haplotypes.

Recognizing the widespread use of NGS and TGS, it is impera-
tive to develop algorithms for polyploid haplotype reconstruction
from sequencing reads to facilitate various research applications
such as finding compound mutations that cause a disease (Ng et al.,
2009), or studying yield-related markers that are located in a haplo-
type that can be used in plant breeding programs (Bhat et al., 2021).

VC The Author(s) 2022. Published by Oxford University Press. 5352

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(24), 2022, 5352–5359

https://doi.org/10.1093/bioinformatics/btac702

Advance Access Publication Date: 29 October 2022

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/24/5352/6779972 by Technische U
niversiteit D

elft user on 05 January 2023

https://orcid.org/0000-0003-2624-0718
https://orcid.org/0000-0002-7205-7431
https://github.com/AbeelLab/hat/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data
https://academic.oup.com/


In the past years, few tools have tackled this problem. nPhase (Abou
Saada et al., 2021) and Whatshap (Schrinner et al., 2020) are among
some examples of recently developed tools.

This study presents HAT, a haplotype assembly tool that com-
bines short reads and error-prone long reads along with a reference
genome to reconstruct haplotypes. Similar to Ranbow (Moeinzadeh
et al., 2020), HAT first creates seeds from short reads, but then it
expands the seeds with long reads. We benchmark HAT against
Whatshap and nPhase because both use long reads to phase haplo-
types. Using simulated and real yeast genome data, we demonstrate
that HAT outperforms both Whatshap polyphase and nPhase in
terms of contiguity and the accuracy of phased alleles.

2 Materials and methods

2.1 Data
Using both simulated and real data is essential to test HAT properly.
Simulated data provide the ground truth of haplotypes to evaluate
phasing accuracy, and the real data validate HAT’s performance.

2.1.1 Simulated data

We use Haplogenerator (Motazedi et al., 2018) to simulate haplo-
types from the base genome—chromosome ScII of Saccharomyces
pastorianus CBS1483 with accession number ASM1102231v1
(ChrSc2) (Salazar et al., 2019). The ground truth is the simulated
haplotypes, and ChrSc2 base sequence is the reference. Next, we
simulate reads with 20� coverage per haplotype, similar to the
simulation design used in previous studies including nPhase. We use
Badread (Wick, 2019) version 0.2.0 and ART (Huang et al., 2012)
version 2.5.8 to simulate reads similar to Oxford Nanopore
Technology (ONT) and to Illumina’s HiSeq 2500, respectively.
Badread is used with default parameters, ART parameters are avail-
able in Supplementary Table S2. Supplementary Table S4 shows the
simulated ONT reads’ error rates and compares them to the real
data. In total, six datasets are generated for ploidy levels 3, 4 and 5,
with low and high heterozygosity. For the low heterozygosity data-
sets, we set the parameters of Haplogenerator to produce the same
number of SNPs/Insertions/Deletions as the chromosomes ScII, SeIII-
ScIII and ScVIII of CBS1483 which are triploid, tetraploid and penta-
ploid, respectively. Because chromosomes SeIII-ScIII and ScVIII are
smaller than ScII, the chromosome we use for the simulations, we
multiply the number of SNPs/Insertions/Deletions by the ratio of gen-
ome sizes. For the high-heterozygosity datasets, we fit a lognormal
distribution on the distances (Motazedi et al., 2018) between consecu-
tive SNPs/Insertions/Deletions of chromosome ScII, SeIII-ScIII and
ScVIII and use the parameters on Haplogenerator. The parameter
settings for Haplogenerator are in Supplementary Table S1.

Then, the short reads are mapped to the monoploid reference
genome using BWA-MEM (https://arxiv.org/abs/1303.3997) with
default parameters. We obtain variations using FreeBayes (https://
arxiv.org/abs/1207.3907) version 0.9.21 from the short-read align-
ments. We use vcffilter from vcflib (https://www.biorxiv.org/con
tent/10.1101/2021.05.21.445151v1) package version 1.0.2 to ex-
tract the SNPs. We map the long reads using minimap2 (Li, 2018)
version 2.13-r858-dirty. Parameters for all tools are in
Supplementary Table S2. The short- and long-read mapping, ploidy
of the chromosome and the SNPs are the inputs for HAT.

2.1.2 Real data

We reconstruct the haplotypes of CBS1483, which is aneuploid and
has ploidy ranging from one to five. It consists of ONT and paired-
end Illumina reads that are available under the BioProject
PRJNA522669. There are four ONT runs in this BioProject, and we
used all of them in this study. Short reads have coverage of 159�
and are 151 bp, Nanopore reads have coverage of 72� with an aver-
age read length of 7 kb and N50 of 10 kb. We use the
ASM1102231v1 assembly as the reference genome of CBS1483.

Moreover, we reconstruct the haplotypes of Brettanomyces
bruxellensis strain GB54, a triploid genome which has higher

heterozygosity, and longer chromosomes than CBS1483. The lon-
gest chromosome of GB54 is 4 Mb which is three times larger than
CBS1483 largest chromosome. The ONT and paired-end Illumina
reads are available under the BioProject PRJEB40511. The Illumina
short reads are 75 bp and 30� coverage. The nanopore long reads
have the average read length of 12 kb, 82� coverage and 23 kb N50.
We use the DEBR_UMY321v1 assembly as the reference genome of
GB54.

In both real datasets, the SNPs and the alignments are obtained
with the same method as in the simulated datasets.

2.2 HAT method
HAT reconstructs haplotypes by linking alleles at SNP loci together
using short and long reads. HAT comprises three components—ini-
tialization, iteration and assembly. Initialization creates the first
phased blocks. The iteration expands the phased blocks and finds
alleles of all haplotypes. Then, HAT clusters the reads and assembles
haplotypes using these clustered reads. An overview of the HAT al-
gorithm can be seen in Figure 1.

2.2.1 Initialization

In initialization (see Fig. 1A), the multiplicity blocks are found, and
then the first phased blocks are created. Phased blocks are a set of
consecutive SNP loci in the phase matrix where the alleles are con-
nected. First HAT creates seeds, which are a combination of con-
secutive SNP loci covered by the same short read; a single seed can
be as small as two SNP loci. To create the seeds, we determine the
SNP loci each short read is covering. If a read covers more than two
SNP loci, we create all combinations of consecutive SNPs with differ-
ent lengths and starting points. When we create a seed, based on the
alleles present in the short reads that cover it, we obtain a set of com-
binations of alleles. While processing a short read, if the seed it would
create already exists, no new seed is created and only the combination
of alleles in the new read is added to the existing seed. In addition, we
store the number of reads supporting each combination of alleles.
Next, we filter the combination of alleles and the seeds. The combina-
tions of alleles with fewer than five reads supporting are removed to
remove erroneous combinations of alleles. If a seed ends up with
fewer than two combinations of alleles, it is removed.

Next, HAT finds overlapping seeds and keeps only one of them
because each SNP locus should be at most in one of the seeds to
avoid conflicts. When HAT finds overlapping seeds, we check the
number of combinations of alleles in each seed, the support of the
seeds and the first SNP locus of the seeds, then HAT picks the seed

A. Ini�aliza�on

B. Itera�on (run for each 
Mul�plicity block 
separately)

Mul�plicity blocks

Crea�ng seeds Filtering seeds
Finding 

mul�plicity 
blocks

Crea�ng first 
phased blocks

Read 
assignment Fill blocks

Read 
assignment

Connect and 
merge

Assembling 
haplotypes 

with miniasm

Polish 
haplotypes 
with Pilon

C. Assembly Clustered reads

Fig. 1. HAT overview. (A) HAT creates seeds based on short-read alignments and

the location of SNPs. Then, it removes the combinations of alleles with low support

as well as overlapping seeds. Next, HAT finds multiplicity blocks and creates the

first phased blocks within them. (B) HAT assigns reads to the blocks and haplo-

types; based on these read assignments, it fills the unphased SNPs within blocks. (C)

Finally, HAT can also use miniasm to assemble haplotype sequences for each block

and polishes the assemblies using Pilon, but this step is optional

HAT: haplotype assembly tool using short and error-prone long reads 5353

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/24/5352/6779972 by Technische U
niversiteit D

elft user on 05 January 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data
https://arxiv.org/abs/1303.3997
https://arxiv.org/abs/1207.3907
https://arxiv.org/abs/1207.3907
https://www.biorxiv.org/content/10.1101/2021.05.21.445151v1
https://www.biorxiv.org/content/10.1101/2021.05.21.445151v1
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data


with the maximum number of combinations of alleles. If there are
two overlapping seeds with the same number of combinations, we
pick the longest one.Then, HAT detects the regions that contain at
least two different haplotypes, which we call multiplicity blocks. We
use the sorted set of seeds as the input for Algorithm 1 to find multi-
plicity blocks and their corresponding multiplicity. The seeds are
sorted with respect to the number of combinations of alleles, and
when two seeds have the same number, the one with an earlier pos-
ition of the first SNP locus will come first. Once Algorithm 1 has
identified the multiplicity blocks if the estimated multiplicity of the
block exceeds the ploidy of the chromosome, it is decreased to the
ploidy of the chromosome. In such cases, HAT eliminates combina-
tions of alleles with low support until each seed has the same num-
ber of combinations as the chromosome’s ploidy. HAT creates a
separate phase matrix for each multiplicity block. Each row of the
phase matrix corresponds to one of the haplotypes, and each column
is representative of an SNP locus within the multiplicity block.

Finally, HAT generates the first phased blocks. First, HAT
removes the seeds with fewer combinations of alleles than the esti-
mated multiplicity of the block. Next, we use the combinations of
alleles of the seeds to fill the phase matrix in the columns the seed is
covering. Each seed creates a separate phased block because the rela-
tion of combinations of alleles of different seeds is unclear to one an-
other. The SNP loci that do not belong to any block are added to the
closest block to them.

2.2.2 Iteration

The iterative part of HAT (Fig. 1B and Supplementary Fig. S1B)
continues until there is only one block and the phase matrix is full,
or if the blocks and the phase matrix stop updating. We run the first
iteration with short reads and the rest with long reads.

An essential step of the iterative HAT algorithm is assigning
short and long reads to haplotypes in blocks. Each stage of the itera-
tive part uses these assigned reads. Therefore, after both Fill blocks
and Connect and merge steps, reads are reassigned to the haplotype
blocks based on the latest changes.

First, for every read, we check the phased SNP loci that it covers
within a block. If the combinations of alleles at those loci are unique
for each haplotype, the read is assigned to the block. Then, the
alleles of the read located at the phased SNP loci the read is covering
within the block are compared with the alleles of each row of the
phase matrix. The read is assigned to the haplotype if the Hamming
distance to the row is less than hamming_parameter, which changes
with each run of the algorithm. When assigning long reads to the
haplotypes, the hamming_parameter is small (1) to accommodate
sequencing errors. As the phasing algorithm proceeds, we increase
hamming_parameter to 3 to be less strict with the assignments, be-
cause there are more shared phased SNP locus within the block and
the read.

The next stage of the iterative component is connecting and
merging consecutive phased blocks. To connect two blocks, we use
reads assigned to both blocks. We iterate over the blocks based on
their location. If there is a one-to-one connection between all the
haplotypes of two blocks with enough support, the blocks are
merged, and the rows of the second block are switched so that the
connected haplotypes of the first and second haplotypes are in the
same row. Two haplotypes are connected if the number of reads
supporting the connection is more than 1 in the first and second iter-
ations, and 3 in the rest.

In the blocks’ filling step, we use all reads assigned to haplotypes
of a block as input and process them to find the allele of unphased
SNPs within the block by a majority voting between the reads of the
haplotype. If the number of the reads supporting the majority vote
allele is greater than 2, the allele is assigned to the haplotype’s SNP
locus, and that cell of the phase matrix is filled. This phase might
lead to some SNP loci being phased in some haplotypes but not in
others. When iteration converges, HAT assigns long and short reads
to haplotypes of each phased block using the read assignment
module.

2.2.3 Assembly

Optionally, HAT can assemble the reads to reconstruct sequence of
the haplotypes using miniasm (Vaser et al., 2017) version 0.3-r179
and the clustered long reads, then polish the assemblies using Pilon
(Walker et al., 2014) version 1.24 and the clustered short reads.
This part of HAT is optional. HAT uses miniasm and Pilon with de-
fault parameters. Users can use HAT to only cluster the reads and
create the phase matrix and then use a tool of their choice to recon-
struct the sequence of the haplotypes.

2.3 Output
HAT outputs the following files:

• A multiplicity block figure which illustrates the multiplicity

blocks and their level over the chromosome.

Algorithm 1: Find multiplicity blocks algorithm. The find

multiplicity blocks algorithm takes the sorted set of seeds and

a distance_parameter as input, and it returns multiplicity

blocks as output. The variable Multiplicity_blocks is a dic-

tionary that with multiplicity blocks as keys and multiplicity

of the region as values. Each multiplicity block has a start

and end position as well as an estimated multiplicity for that

region. The Alleles function in the algorithm gets a seed as in-

put and returns the number of combinations of alleles the

seed has. The Multiplicity function in the algorithm gets a list

of seeds as input and returns the highest number of combina-

tions of alleles within them.

5354 R.Shirali Hossein Zade et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/24/5352/6779972 by Technische U
niversiteit D

elft user on 05 January 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data


• The clustered reads files which contain the IDs of clustered reads

for the haplotypes of each phased block.
• The phase matrix file which lists the alleles of haplotypes within

each phased block.
• The haplotype sequences within each phased block. This output

is optional, and it is produced only if the user also requests

assembly.

2.4 Evaluating HAT
We run HAT version 0.1.7, nPhase version 1.1.10 and Whatshap
polyphase version 0.19.dev161þg7660dcf from the polyploid-
haplotag branch on the simulated datasets and compare the phasing
and read clustering accuracy. Unlike HAT and nPhase, Whatshap
polyphase does not cluster the reads by default and after phasing
with Whatshap polyphase, we use Whatshap haplotag to cluster the
reads for evaluation purposes. The parameters of Whatshap haplo-
tag are mentioned in Supplementary Table S2. To calculate the
phasing accuracy of HAT, first we find a one-to-one mapping be-
tween the haplotypes HAT identifies within each block and the real
haplotypes. Then, we compare the allele of each haplotype at the
SNP loci from the phase matrix to the ground truth. We count the
number of correct SNPs for all the blocks and haplotypes and calcu-
late accuracy as the count of correct SNPs divided by the total num-
ber of SNPs within the multiplicity blocks. To calculate the phasing
accuracy of nPhase and Whatshap, we first find the haplotype which
is the most similar to each cluster based on the cluster’s and haplo-
type’s alleles at the SNP loci the cluster covers. Then, we divide the
count of correctly phased SNPs by the total number of SNPs within
the clusters.

Then, we assess the accuracy of read clustering. Since the simu-
lated reads are already labeled with their native haplotype, we calcu-
late the clustering accuracy by counting the number of reads
clustered correctly. We also count the number of phased blocks to
evaluate the reconstructed haplotypes’ completeness.

In addition to simulated data, we investigate the haplotypes
HAT creates for the real CBS1483 and GB54 data.

3 Results

3.1 Conceptual overview of HAT using the example of a

triploid chromosome
To provide an overview of the HAT algorithm, we consider the trip-
loid chromosome ScII of S.pastorianus CBS1483 (ChrSc2), for a
step-by-step discussion of HAT. The HAT algorithm consists of
three main steps: (i) initialization, (ii) iteration and (iii) assembly.
The input is a combination of both short and long reads, along with
a reference genome. HAT will produce read clusters per haplotype
when run in default settings. If the optional assembly parameter is
supplied by the user, HAT will also generate the haplotype
sequences.

In the initialization step, HAT builds prototype phased blocks
from seeds within multiplicity blocks. Phased blocks are fully
resolved haplotype segments while multiplicity blocks are genomic
regions presenting sufficient variants for phasing and have an esti-
mated ploidy associated. The initialization consists of three steps.

First, HAT uses the alignment of short reads to the reference to find
well-supported combinations of variant alleles, called seeds. In our
example of ChrSc2, 528 SNPs were used to create 25 335 combina-
tions, which are filtered down to 119 by removing the combinations
with low support (see Section 2). Next, HAT constructs multiplicity
blocks from the seeds with Algorithm 1. Finally, HAT uses seeds
with a matching number of combinations of alleles to create the
first phased blocks within each multiplicity block. In the example
of ChrSc2, HAT found 16 multiplicity blocks (see Supplementary
Fig. S3).

During the iterative phase, HAT processes each multiplicity
block to phase the remaining SNPs and create bigger phased blocks
within a multiplicity block. It consists of two sections: (i) filling
blocks and (ii) merging blocks. Before running each section, HAT
assigns reads to blocks and haplotypes based on the SNPs each
read covers and their similarity to the phased SNPs. Supplementary
Table S3 shows how each step of the iterative algorithm improves
the phasing of ChrSc2. The iteration stops when there is no improve-
ment over the previous step. The first iteration uses the short reads
while the remaining iterations use long reads. In our experiments
with real and simulated data, HAT converges in <4 iterations.
Increasing the number of iterations for the short reads does not
change the overall phasing performance because the blocks are big-
ger than the linking range of the short reads.

Upon convergence, there are 23 phased blocks and only 23 un-
phased alleles from the SNP loci within the multiplicity blocks. We
use miniasm on the long reads assigned to haplotypes of each phased
block to assemble them. Then, we polish the assemblies with the
short reads assigned to haplotypes using Pilon.

3.2 HAT outperforms state-of-the-art on simulated data
To evaluate HAT, we use simulated datasets, consisting of short and
long reads, and alignments to the haplotypes. Details of the simula-
tion are described in Section 2. Summary statistics of the simulated
datasets are reviewed in Table 1.

We compare HAT to nPhase and Whatshap polyphase using the
various metrics (see Section 2); Table 2 summarizes the performance
of the tools on the simulated datasets. First, we compare long-read
clustering accuracy. The number of long reads clustered incorrectly
by HAT is lower than that of both nPhase and Whatshap for all
ploidy levels: HAT’s error rate ranges from <1% (triploid high het-
erozygosity) to 24% (pentaploid low heterozygosity), whereas for
nPhase, the range is 5% (tetraploid high heterozygosity) to 38%
(pentaploid low heterozygosity) and for Whatshap, it is 7% (tetra-
ploid high heterozygosity) to 22% (triploid high heterozygosity).

For all datasets, HAT successfully phases at least 90% of the
SNPs, and the accuracy is the highest at 98% for the triploid high
heterozygous genome (last column in Table 2). In all datasets,
Whatshap has the lowest accuracy and HAT has the highest. Note
that the phasing accuracy of HAT is calculated only for the SNPs in-
side the multiplicity blocks, but the multiplicity blocks cover almost
all of the SNPs on the chromosome, with the lowest coverage being
78% for the pentaploid low heterozygous genome (Table 3).
Similarly, for nPhase and Whatshap, we calculated the phasing ac-
curacy based on the clusters each tool generates.

As shown in Table 2, HAT phases fewer total SNPs than nPhase
and Whatshap. That is because HAT does not attempt to phase the
areas far from the seeds. A few reads cover both the core of the

Table 1. Descriptive statistics of the simulated datasets and ChrSc2, the base chromosome used for simulations

Dataset Ploidy Simulated SNPs No. of SNPs found by Freebayes No. of short reads No. of long reads

Triploid low heterozygosity 3 1230 687 194 910 3295

Triploid high heterozygosity 3 6398 4143 194 910 3441

Tetraploid low heterozygosity 4 1144 506 259 880 4423

Tetraploid high heterozygosity 4 12 072 7512 259 880 4358

Pentaploid low heterozygosity 5 1606 504 324 850 5433

Pentaploid high heterozygosity 5 17 802 7232 324 850 5394

CBS1483 chromosome ScII 3 — 528 428 802 8051

HAT: haplotype assembly tool using short and error-prone long reads 5355

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/24/5352/6779972 by Technische U
niversiteit D

elft user on 05 January 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data


multiplicity block and these regions that are far, making phasing of
these regions less reliable. That means the result of HAT can be in-
complete, but it has higher accuracy because it only works in reliable
regions.

To assess the phasing contiguity, we checked the number of
phased blocks in the HAT output and report that for highly hetero-
zygous cases HAT can phase almost all of the haplotypes. HAT cre-
ates two phased blocks for the triploid case and three phased blocks
for the tetraploid one. For cases with low heterozygosity, HAT cre-
ates 15, 30 and 23 phased blocks for the triploid, tetraploid and
pentaploid genomes. This is expected because these genomes are
largely identical, and it is not possible to connect the phased blocks.
In contrast, we also note that for the highly heterozygous pentaploid
dataset, HAT creates 33 phased blocks although it has 96% phasing
accuracy, an outcome likely caused by the high ploidy level.

3.3 HAT shows robust performance on real data
Since there are not many chromosome-level polyploid assemblies
available, the disparity between simulated and real genomes can be
significant. Hence, we are evaluating HAT on the real S.pastorianus
CBS1483 dataset to corroborate the results from the simulated data-
sets as well. CBS1483 is a valid test model because it is aneuploid
and has various ploidies ranging from one to five. Additionally, the
chromosomes are small and easy to investigate. We report read clus-
tering and phasing results for seven chromosomes of CBS1483 rep-
resenting various levels of ploidy, heterozygosity and length in

Table 4. For the highly heterozygous chromosome ScI (see Fig. 2),
multiplicity blocks that HAT finds cover 54% of the whole sequence
and within these blocks HAT phased 96% of the alleles. Although
ScIV contains a large number of SNPs, it is the largest chromosome,
and all the SNPS are concentrated around the centromere and thus,
the % of phased regions is lower. SeI, on the other hand, is one of
the shortest chromosomes (185 kb long) and there are very few
SNPs, meaning that the haplotypes are identical in most positions
on the chromosome. For that reason, HAT phases <1% of the
chromosome.

We observe the haplotype sequences created by miniasm and
polished by Pilon for the multiplicity block 153738, 163604 in
chromosome ScII (Fig. 3). This multiplicity block is only 8 kb long,
and the estimated ploidy for that region is 2. To visually investigate
the accuracy of haplotype reconstruction, we map the clustered
reads to haplotypes 1 and 2 reconstructed by HAT and view the
alignment in Integrative Genome Viewer (iGV). Figure 3 depicts the
alignment of clustered reads of CBS1483 Chromosome ScII to the
sequence of the first haplotype. The reads that belong to each haplo-
type have matching alleles that can differentiate them from the reads
of other haplotypes. We, therefore, demonstrate that the HAT

Table 2. HAT outperforms nPhase and Whatshap in phasing accuracy on simulated data

Dataset Tool Read clustering error Total reads phased SNP phasing performance Accuracyb (%)

Shorta Long Shorta Long Correct Incorrect Unphased

Triploid low HAT 14 65 5400 2122 1813 20 35 98

nPhase — 307 — 1268 1936 379 0 84

Whatshap — 225 — 1943 759 1215 0 61

Triploid high HAT 55 13 37 291 2138 11 895 185 19 98

nPhase — 218 — 2829 12 701 1464 0 90

Whatshap — 680 — 3060 7106 4663 0 60

Tetraploid low HAT 135 187 2466 1580 1549 34 68 94

nPhase — 297 — 1439 2023 335 0 86

Whatshap — 254 — 2229 1434 538 0 72

Tetraploid high HAT 62 32 17 968 2252 29 039 493 37 98

nPhase — 219 — 4053 28 980 1990 0 94

Whatshap — 287 — 4142 20 550 7942 0 72

Pentaploid low HAT 545 518 2350 2141 1341 51 74 91

nPhase — 662 — 1726 1714 287 0 86

Whatshap — 348 — 2396 1803 547 0 76

Pentaploid high HAT 1041 266 9360 6804 31 980 1479 224 95

nPhase — 449 — 5264 35 450 2676 0 93

Whatshap — 708 — 5246 27 929 7301 0 79

Note: The first two columns show number the number of reads clustered and phased, third column lists the number of SNPs within multiplicity blocks that

were phased correctly/incorrectly and unphased. The final column is the SNP phasing accuracy.
aThe short read cluster error was calculated only for HAT because nPhase and Whatshap are designed specifically to cluster the long reads.
bAccuracy is defined in Section 2.

Table 3. The percentage of SNPs that are inside multiplicity blocks

Dataset Percentage of SNPs inside

multiplicity blocks

Triploid low heterozygosity 92

Triploid high heterozygosity 99

Tetraploid low heterozygosity 87

Tetraploid high heterozygosity 99

Pentaploid low heterozygosity 78

Pentaploid high heterozygosity 98

Table 4. HAT results on CBS1483 real data

Chromosome

name

Ploidy No. of

SNPs

% phased

regions

Alleles within

blocks

PhasedUnphased

ScI 3 619 54 1384 60

ScII 3 528 14 922 23

ScIV 3 1643 20 3424 168

ScIX 2 195 10 335 43

ScVIII 5 417 14 687 4

SeI 2 21 <1 8 0

SeVII-ScVII 3 341 4 444 5

Note: These chromosomes are a representative subset of all chromosomes

of CBS1483.

5356 R.Shirali Hossein Zade et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/24/5352/6779972 by Technische U
niversiteit D

elft user on 05 January 2023



algorithm for read clustering and finding multiplicity blocks works
on real data.

Previous studies show that the UIP3 gene is removed in some of
the haplotypes of CBS1483 chromosome ScI (Salazar et al., 2019).
We investigate the same gene in HAT output by aligning the reads
HAT clustered in the multiplicity block covering the positions from
169765 to 178549 where UIP3 is located (see Fig. 2), to UIP3 se-
quence. As expected, only haplotype 2 reads align with the gene.

Finally, we test the performance of HAT on GB54, a triploid
B.bruxellensis yeast strain, which Abou Saada et al. (2021) also use
to evaluate nPhase. GB54 is an interesting test set because it has lon-
ger chromosomes and the chromosomes are more heterozygous

compared to CBS1483. Table 5 shows HAT’s performance in phas-
ing GB54, and Supplementary Figure S4 illustrates the multiplicity
blocks HAT finds. As expected, the percentage of phased regions is
much larger than that of CBS1483 (Table 4), since GB54 is more
heterozygous. Additionally, when we visualize the multiplicity
blocks in GB54 we observe multiple long regions in chromosomes 2,
3 and 5 where two of the haplotypes are identical. For instance, on
Chr 3 the genomic region from 909325 to 1172321, all of the seeds
have only two combinations of alleles, and the average ratio of the
read support for the combination of alleles of seeds at these regions
is 1.7. This is in line with our expectation that two of the haplotypes
are identical in this region, and we get on average near twice as

Fig. 2. Multiplicity blocks HAT finds for chromosome ScI of CBS1483. The output of finding multiplicity blocks algorithm on real data, chromosome ScI of CBS1483. The

long, black vertical lines at the bottom show the SNPs and their positions on the chromosome found by FreeBayes. From these SNPS, HAT finds the seeds shown in short, black

vertical lines in panel above the SNPs. The seeds are placed vertically based on the number of combination of alleles they have, ranging from one to six (y axis). HAT uses these

seeds to find multiplicity blocks, which are shaded regions encapsulating the seeds and the color of the region indicates the estimated multiplicity level. See the legend for the

colors corresponding to different multiplicity levels. The dashed box covers the multiplicity block that contains the UIP3 gene

Fig. 3. HAT can accurately cluster reads to reconstructed haplotypes. We aligned short and long reads to haplotype 1 (top two rows) and haplotype 2 (bottom two rows)

phased by HAT for the multiplicity block covering the positions from 153 738 to 163 604 of ChrSc2 and visualized the alignment using iGV. Haplotype 2 reads differ signifi-

cantly from haplotype 1 reads at five positions (outlined with dashed rectangles)

HAT: haplotype assembly tool using short and error-prone long reads 5357

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/24/5352/6779972 by Technische U
niversiteit D

elft user on 05 January 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data


much read coverage for one of the haplotypes as there would be if
there were three different haplotypes. Moreover, when Abou Saada
et al. phased Chr 4 using nPhase, they reported that two of the haplo-
types were identical at the end region of Chr 4 since they could phase
only two haplotypes. However, when we look at the same location
on Chr 4, we observe two small genomic regions (from 1407542 to
1430976 and from 1533678 to 1546306) where HAT can successful-
ly phase all three haplotypes (see Supplementary Fig. S4).

The running time of HAT depends on the size of the multiplicity
blocks. The bigger the multiplicity blocks are, the more reads are
assigned to them. The computational complexity of running HAT is
currently OðSKn2Þ, where S is the number of SNP loci, K is the
ploidy of the chromosome, and n is the number of long reads within
a multiplicity block. The process of phasing each multiplicity block
can be run in parallel, but in the current implementation, it is not
parallelized. It took HAT less than an hour to run for each chromo-
some of S.pastorianus, because it has small multiplicity blocks.
However, the B.bruxellensis took longer to run because it has longer
multiplicity blocks (in some cases, chromosome scale). It took HAT
24 h to phase the longest chromosome of B.bruxellensis, which is
3.5 Mb. HAT memory usage is minimal; HAT uses <8 GB of mem-
ory for all datasets. We executed HAT on a system with 16 cores of
CPU and 32 GB of memory. It is worth mentioning that HAT is a
proof-of-concept implementation and is not optimized for speed.

4 Conclusion

HAT is a haplotype assembly tool that reconstructs haplotypes and
phases genomes using NGS and TGS data. It is impossible to phase
entire homologous chromosomes when there are large variation de-
serts. To address this, HAT identifies regions where some of the hap-
lotypes are identical so they are taken into account when phasing.
We show that NGS and TGS provide enough information to phase
high-heterozygosity genomes on a chromosome scale and more than
90% of the alleles in low-heterozygosity genomes.

We evaluate the performance of HAT on six simulated datasets
based on an aneuploid yeast strain S.pastorianus CBS1483, and
compare it to nPhase and Whatshap, the state-of-the-art algorithms.
We observe that HAT presents higher phasing accuracy, which
results from starting with seeds created by accurate short reads.
While all tools have decent performance in highly heterozygous
genomes, HAT performs remarkably well in phasing and read clus-
tering of low heterozygote genomes. However, in the latter case,
haplotypes created by HAT are fragmented since it does not attempt
to connect the multiplicity blocks, because there is not enough infor-
mation to link them. While we did not evaluate HAT on any diploid
dataset directly, we observed that HAT successfully phases blocks
with a multiplicity level of 2 which shows that it can also be applied
to diploid genomes.

The value of the distance_parameter affects HAT’s result. A
smaller distance_parameter affects HAT’s result, for example, a
smaller distance_parameter will lead to smaller multiplicity blocks.
That means the final phasing is more accurate because only the seeds
and the areas close to them are phased and connected. However,

simultaneously, the final result is separated into more disjoint blocks
because HAT considers multiplicity blocks disconnected from each
other and never attempts to merge them. A larger distance_para-
meter will lead to larger multiplicity blocks, which means HAT con-
nects areas that are further apart together. However, there will be
less read support for some of these areas because they are far, mean-
ing some areas remain unphased. On top of that, errors might affect
the phasing if the distance_parameter is too large because there will
be less read support, and the sequencing error might affect the ma-
jority voting. Based on our experience, the average read length of
the long reads is a good trade-off between accuracy and the block
length.

The main limitation of HAT is that it uses alignments of short
and long reads to the reference. Similar to other haplotype assembly
tools, HAT’s performance greatly depends on the quality of this
alignment and the subsequent variant calling. Moreover, HAT uses
only the SNPs for phasing, thus it may not be able to reconstruct
haplotypes in genomes with high levels of insertions, deletions and
structural variations. Meanwhile, we do not expect different long
reads error rates to affect HAT’s accuracy, since HAT starts with
seeds created using NGS accurate reads and requires high support at
all steps.

Like all other reference-based haplotype reconstruction methods,
HAT suffers from reference genome errors. Errors in the reference
genome can lead to inaccurate variant calling, which immediately
affects the haplotype reconstruction, as it is the primary source of in-
formation that HAT uses for the phasing. As an example, collapsed
repeats can affect the ploidy estimation. The region with the col-
lapsed repeat can have seeds with more combinations of alleles than
the actual multiplicity of the region. That will create a small multi-
plicity block with a higher multiplicity than the region and lead to
extra, wrong haplotypes for that region. However, it is worth men-
tioning that this region will be small because the seed with more
combinations of alleles will not be joined with any other seed to cre-
ate a more extended multiplicity block, and the multiplicity block
will be around two times the distance_parameter.

Another potential limitation is that in rare cases, HAT may in-
correctly assign a lower than actual multiplicity number. This occurs
when there is a group of seeds in close proximity where the number
of combinations of alleles in any of the seeds is smaller than the ac-
tual multiplicity level. When each seed is viewed separately, some of
the haplotypes appear to be identical in that region. However, it is
possible that these are different groups of identical haplotypes, and
the ploidy level of the region may be higher if all of these seeds are
viewed as a whole. This can be solved by creating seeds and identify-
ing multiplicity blocks using long reads. However, considering all
consecutive SNP loci in the reads as seeds requires significant com-
puting power since each long read might cover hundreds of SNPs.
Additionally, allelic combinations in the seeds may be affected by
the high error rate of long reads. Another way to mitigate erroneous
multiplicity assignment is to adjust multiplicity levels during the it-
erative part of HAT when long reads are used to phase the SNPs. In
principle, by solving the mentioned problem it should be possible to
create the seeds with HiFi reads, which will lead to longer multipli-
city blocks and higher contiguity.

There are not many polyploid haplotype-resolved genomes at the
chromosome scale, which hinders the development of novel haplo-
type assembly algorithms. Hence, haplotype simulators are limited
and the simulated haplotypes differ significantly from the real ones.
We observed this when we compared the multiplicity blocks of real
and simulated data (compare Supplementary Figs S2 and S3). There
are many regions in the real data where the multiplicity level is
smaller than the chromosome’s actual ploidy level, contrary to simu-
lated data. This might change with HiC reads since they provide
long-range information and link regions of the chromosome that are
far apart. In addition to inconsistencies in the ploidy levels, the large
variation deserts in CBS1483 genome cannot be simulated due to
the limitations of current haplotype simulators.

Although we demonstrate the performance of HAT on only two
yeast strains S.pastorianus CBS1483 and B.bruxellensis GB54, HAT
can also phase different polyploid genomes. Since HAT performed

Table 5. HAT results on GB54 real data

Chromosome % of phased regions Alleles within blocks

Phased Unphased

Chr 1 36 628 84 96 764 2001

Chr 2 23 756 82 60 066 2586

Chr 3 18 902 86 35 728 1807

Chr 4 19 377 89 50 616 884

Chr 5 10 609 63 17 867 1673

Chr 6 15 762 72 32 877 1295

Chr 7 3581 92 10 482 216

Chr 8 1327 72 2949 305

5358 R.Shirali Hossein Zade et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/24/5352/6779972 by Technische U
niversiteit D

elft user on 05 January 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac702#supplementary-data


consistently well on various levels of ploidy and heterozygosity, we
expect our results to generalize to other genomes of varying ploidy
and that HAT can readily be adopted to different use cases.

Moreover, we presume that HAT can find applications in metage-
nomics assembly since the haplotype and metagenomics assembly

problems are comparable at the strain level. In metagenomics assem-
bly, the goal is to reconstruct the genome of every single strain of
the metagenomics community, which can be up to thousands of

genomes. These strains, like haplotypes, are quite similar to each
other. Furthermore, as a result of horizontal gene transfers, some of

the species within the community share genomic content, complicat-
ing their read separation. Moreover, the sequencing coverage of
strains varies significantly, which might lead to the underrepresented

strains not being reconstructed in the assembly process.
Ultimately, HAT enables us to reconstruct haplotypes of poly-

ploid genomes reliably, investigate the relationship of phenotypic
features to the underlying haplotype alleles and gain a better under-
standing of genetic diversity.

Acknowledgements

We thank Erin Jordan and Stephanie Pillay for reviewing the article.

Financial support: none declared.

Conflict of Interest: none declared.

References

Abou Saada,O. et al. (2021) nPhase: an accurate and contiguous phasing

method for polyploids. Genome Biol., 22, 126.

Bhat,J.A. et al. (2021) Features and applications of haplotypes in crop breed-

ing. Commun. Biol., 4, 1–12.

Crawford,D.C. and Nickerson,D.A. (2005) Definition and clinical importance

of haplotypes. Annu. Rev. Med., 56, 303–320.

Garg,S. (2021) Computational methods for chromosome-scale haplotype re-

construction. Genome Biol., 22, 1–24.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics, 34, 3094–3100.

Moeinzadeh,M.-H. et al. (2020) Ranbow: a fast and accurate method

for polyploid haplotype reconstruction. PLoS Comput. Biol., 16,

e1007843.

Motazedi,E. et al. (2018) Exploiting next-generation sequencing to solve the

haplotyping puzzle in polyploids: a simulation study. Brief. Bioinform., 19,

387–403.

Ng,S.B. et al. (2009) Targeted capture and massively parallel sequencing of 12

human exomes. Nature, 461, 272–276.

Ramsey,J. and Schemske,D.W. (1998) Pathways, mechanisms, and rates of

polyploid formation in flowering plants. Annu. Rev. Ecol. Syst., 29,

467–501.

Salazar,A.N. et al. (2019) Chromosome level assembly and comparative gen-

ome analysis confirm lager-brewing yeasts originated from a single hybrid-

ization. BMC Genomics, 20, 1–18.

Schrinner,S.D. et al. (2020) Haplotype threading: accurate polyploid phasing

from long reads. Genome Biol., 21, 1–22.

Vaser,R. et al. (2017) Fast and accurate de novo genome assembly from long

uncorrected reads. Genome Res., 27, 737–746.

Walker,B.J. et al. (2014) Pilon: an integrated tool for comprehensive microbial

variant detection and genome assembly improvement. PLoS One, 9,

e112963.

Wick,R. (2019) Badread: simulation of error-prone long reads. J. Open Source

Softw., 4, 1316.

HAT: haplotype assembly tool using short and error-prone long reads 5359

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/24/5352/6779972 by Technische U
niversiteit D

elft user on 05 January 2023


	tblfn1
	tblfn2
	tblfn3
	tblfn4

