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1. Introduction

To solve coastal sediment transport and morphology problems, it is necessary
to construct a hydrodynamics model to simulate the fluid flow. The
hydrodynamics model is then used to calculate sediment transport rates and in
turn, these sediment transport rates are used to determine morphology.

The hydrodynamics model is based on the Equation of Motion,

. dmv) "
X F*Tam L

and the Equation of Continuity,

aM 2
=7 0 (2)

where F denotes force, M is mass, v is velocity and t is time.

The forces included in Equation 1 are normally gravity, pressure, bottom
friction, lateral exchange of momentum and wave induced forces, although
others can be included such as Coriolis force, wind stress, tidal
fluctuation, etc. Such a hydrodynamics model normally uses time averaged
wave information. The input required for such a model is the complete wave
field, everywhere over the calculation domain and estimates of bottom
friction and lateral momentum exchange. The output of the model is current
velocities and water levels.

The hydrodynamics model can be written to incorporate various levels of
sophistication. The most elegant solution uses the Equation of Motion and the
Equation of Continuity expressed along three Cartesian co-ordinates,
producing a three-dimensional (3-D) model. Properties are defined and
computed on a three-dimensional computation grid. To compute sediment
transport, it is necessary to use a sediment entrainment function. This is
not easy. Most entrainment functions are derived from unidirectional flow
over smooth beds. A properly formulated entrainment function must include
effects of bottom bedform, accelerations in the flow and liquefaction. To
simulate bed morphology, it is necessary to use a conservation of sand mass
expression and to repeat the calculation over and over in time. This complete
3-D approach is rarely used in practice because of the large operating costs
of such models.

The next lower level of sophistication is a two-dimensional (2-D) model. Two
basic types of 2-D models exist. One model assumes that neither velocities
nor gradients exist in the alongshore direction. This is normally called a
Two-Dimensional (Vertical) model (2-DV). The 2-DV model yields velocities and
water levels. Again sediment transport and bed morphology are calculated
using an entrainment function and conservation of (sand) mass. Examples of
such 2-DV numerical sediment transport models are the cross-shore transport
models of Dally and Dean (1984), Stive and Battjes (1984), Stive (1986),
Roelvink (1991) and Broker Hedegard et al (1991).
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The second type of 2-D model is the Two-Dimensional (Horizontal) model
(2-DH). These models use depth integrated versions of Equations 1 and 2. Such
a model is normally calculated on a grid with its axes directed parallel and
perpendicular to the shoreline. Referring to Figure 1, the 2-DH Equation of
Motion may be written (Phillips, 1977) as:

g‘é= ?m-_(?¢as-:1) (3)
where ¥V is the horizontal gradient operator, u is the horizontal depth-
averaged velocity vector, d is the mean water depth (= h + n), h is the still
water depth and n is the mean free surface displacement. In this case the
forces per unit mass of fluid represented on the right-hand side of Equation
3 are respectively: the hydrostatic pressure force caused by a gradient in
mean water level 5, shear stress r, due to friction on the bottom, the wave-
induced force expressed in terms of the gradient of radiation stress tensor
S, and the lateral shear stress r; also called lateral turbulent mixing.

The continuity equation accounts for the changes in mean water level:

M. 5.3 : )

where q = ud is the mass flux vector.

In order to solve for the velocity and mean water elevation in a numerical
scheme, it is necessary to decompose the velocity vector u into its
alongshore and on-offshore components, V and U respectively. The axes are
defined in Figure 1 and Equations 3 and 4 may be rewritten as:

U _ _ ﬁl-‘_bx-_(as +aiv)+‘41 (5a)
Dt 9% pd ax dy pd

DV _ _o9n _ Ty L(_xzas . 95y ) . Six (5b)
Dt dy pd pd\ ox dy pd

& , d(ud) , a(vd) _ 5
at T T oax dy 0 e

The left-hand side of Equation 3 represents the total acceleration which may
be expressed as the sum of a local and a non-linear convective term:

Du _ 3d ) (6)
Dt dt il .
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Reviews of such 2-DH models may be found in Basco (1983) and de Vriend
(1987). Most models are plagued by stability problems. It is generally agreed
that Finite Difference solutions are preferable over Finite Element methods
when solving propagational problems. Explicit finite difference solutions do
not work well because of the short time steps required, and thus the most
efficient method to solve the 2-DH equations appears to be the Alternate
Direction Implicit (ADI) scheme. For a staggered grid as shown in Figure 2
values are first calculated for U and 5 along alternate cross-shore profiles,
(i.e. in the X direction) using implicit finite difference approximations of
Equations 5a and 5c. This involves iteration from some initial condition.
Once U and n have been determined, an implicit finite difference form of
Equation 5b, written for the Y direction, calculates V at the alternate
profile positions.

The input requirements for the 2-DH hydrodynamic model are similar to the 3-D
model. The output is time- and depth averaged velocities in the X and Y
directions and time averaged water levels at the grid points. To compute
sediment transport in a 2-DH model, the calculated fluid velocities must be
combined with wave orbital velocities and introduced into a properly
formulated sediment entrainment expression which ideally includes effects of
bedform, acceleration and liquefaction. To calculate morphology, a
conservation of (sand) mass expression is used and the model is calculated
over and over in time.

Because depth averaged velocities are not really related to sediment
transport at the bottom, the 2-DH model cannot be very successful as a
sediment transport model and the next logical approximation is to
re-introduce some vertical structure into the 2-DH model. It is possible to
stack 2-DH models for various layers of the flow, but for sediment transport
computations a more elegant solution is what is normally identified as a
"Quasi Three-Dimensional" model (Q3-D). Examples are Briand and Kamphuis
(1990) and Katopodi and Ribberink (1990). Ideally, the vertical structure
would itself be calculated using a 2-DV model, but most present Q3-D models
still introduce analytically derived expressions for vertical velocity
distributions.

2. Example of a Quasi Three-Dimensional Model

As an example,the Q3-D model, by Briand and Kamphuis (1990) will be discussed
briefly. This model is discussed in more detail in Briand (1990) and shown
schematically in Figure 3.

2.1 GENERAL DESCRIPTION

The underlying hydrodynamic model is based on the 2-DH equations (Equations
5). The calculation domain is divided into a staggered two dimensional
horizontal grid as shown in Figure 2. Each of the terms in Equations 5 must
be introduced carefully and many versions of the relevant expressions exist.

For bottom friction, some authors introduce non-linear expressions (Ebersole
and Dalrymple, 1980, Nishimura, 1981, Watanabe, 1982 and Liu and Dalrymple,
1978) . Longuet-Higgins (1970), Liu and Dalrymple (1978), Kraus and Sasaki
(1979) and Baum and Basco (1986) introduce linearized formulations. Briand
and Kamphuis use the general non-linear expression

9-5
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I,=-pCe < |7 |™ where =T+ O, (7)

The velocity vV represents the vectorial sum of the depth-averaged current u
and the instantaneous wave orbital velocity wa at the bottom, p is the fluid
density, C; is a time-averaged friction coefficient depending on the bottom
roughness and < > means averaged over a wave period.

The wave induced force is normally represented by radiation stress tensor
(Longuet-Higgins and Stewart, 1964).

s= | S So
Sxy Syy
E{(3+cosZa)n -1} E n sine cosa
=| 2 (8)
E n sina cosa —2€((3—c032a)n -1)

where E is the wave energy density, a is the angle of wave approach with the
x axis and n is the ratio of wave group velocity over phase velocity.
Calculation of these terms is addressed in the next section.

Lateral mixing is introduced using a turbulent eddy viscosity term such as
Longuet-Higgins (1970), Jonsson et al (1974), Battjes (1983) or de Vriend and
Stive (1987). The model uses de Vriend and Stive'’'s approximation:

2
v.=K h (2)1/3 + 189 Toos2g 9
P 4n?h

where D is the energy dissipation rate, H is the wave height and T is the
wave period.

Wind induced stresses, Coriolis accelerations and atmospheric pressure
gradient terms could be introduced into Equations 5 to complete the
calculation, but were not.

Calculations of the Q3-D model of Briand and Kamphuis (1990) proceed as
follows:

2.2 WAVE MODULE

The wave driving forces (radiation stress gradients) are computed at each of
the grid points.

a. Outside the breaking zone, this involves wave transformation (shoaling,
refraction, diffraction, percolation, friction and reflection).

9-7
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b. In the surf zone, this involves locating and defining the breaker and
the energy dissipation rate.

€. Random wave spectra are assumed to be made up of a train of individual
sinusoidal waves and the calculations are carried out for each of
these. g

To model the swash zone, translational velocities resulting from the wave
action must be computed.

Because the model needs wave information at regularly spaced grid points and
because wave reflection and diffraction are considered to be of secondary
importance, the present model calculates wave angles and heights using a
domain-based refraction calculation, similar to Perlin and Dean (1983).

Assuming small amplitude waves, refraction is represented by the Wave
Propagation Equation:

¥xk=0 ()

and the Conservation of Wave Energy:

Y(Ec) =-D (11)

where K the wave number vector, ¢, the group velocity or speed of wave
energy propagation, and D is the energy dissipation rate.

Energy dissipation rate is assumed to be zero outside the breaker zone. For
the breaker zone itself, several expressions exist. For regular waves one
could use Svendsen (1984), Stive (1984), Sakai et al (1986), or Basco and
Yamashita (1986). For random waves Battjes and Stive (1984), Goda (1975) or
Leont'ev (1988) could be used. For the present model, the relationship of
Dally, Dean and Dalrymple (1984)

R,
D=2 [(E-E,) c] (12)

was found to yield the best results. Equation 12 is applied to individual
wave frequencies in the spectrum, as proposed by Dally and Dean (1986).
Recent research at Queen'’'s (Kamphuis, 1993) has found that Equation 12 can be
applied directly to wave spectrum using Hg and Tp to define E and c,. This
greatly simplifies calculations. Eg is the energy density related to a
locally stable wave height as in the work of Horikawa and Kuo (1966).

To delineate the two energy dissipation conditions, it is necessary to define

where the breaker occurs and what its characteristics are. The model used
Goda (1970) relationship:

9-8
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H L
22 20,17 =241 -exp| -1.529 (1 + 15m4/3)
d, d, L.,

(13)

Kamphuis (1991) indicates that for significant breaking wave height, Hy, the
coefficient in Equation 13 should be 0.12. He also derives other breaking
criteria:

Hy, = 0.095 49" [, tanh(2xd,/L,) 14
and
H, = 0.56 e d, (15)

The subscripts s, b, o and p denote "significant", "breaking", "deepwater"
and "peak" respectively and m is the beach slope.

2.3 2-DH MODULE

To achieve rapid stability in the ADI calculation, a first estimate for U and
n is obtained by assuming an infinitely long beach with parallel bottom
contours,i.e., the alongshore gradients of all parameters are zero. (2-DHI
calculation). This reduces Equations 5 for any profile (since they are all
the same now) to:

w , U, ., 1 98 | _ (16a)
7;E + Ui%; +g + [ Tex *+ _?EF-] 0

vV, ydv, 1 95y _ 8 v | . (16b)
ot "V * pd['by" o ax(“ca)] 0
an , aWd) _, (16c)

JE T ax

These first estimates of U and 5 are then introduced into the ADI scheme to
solve Equations 5a and 5c. Stable values of U and n and shoreline position
at alternate profiles are calculated by iteration (see Figure 2).

When stable values of U and n have been achieved, V is calculated using
Equation 5b.

Finally, the calculations using Equations 5a and 5¢ (to calculate U and n)
and Equation 5b (to calculate V) are alternately stepped forward in time
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until an equilibrium solution is reached for the particular wave condition.
2.4 VERTICAL VELOCITY DISTRIBUTION MODULE

To simulate vertical velocity distribution, the three layer theoretical
undertow model by Svendsen and Hansen (1988) was extended. For the surface
layer, the volume of fluid contained in the surface roller as expressed
empirically by Svendsen (1984a) was used. A thin bottom boundary layer in
which fluid viscosity is considered, includes the effect of bottom friction
on the flow and accounts for steady streaming due to the wave oscillatory
flow. The middle layer flow is governed by the imbalance between the excess
momentum flux induced by the breaking wave in the surface layer and the
hydrostatic excess pressure created by the local mean water level gradient,
or wave set-up.

2.5 SEDIMENT TRANSPORT MODULE

Vertical profiles of wave-induced sediment concentrations in the water column
are calculated locally to be combined with vertical profiles of velocities
from the vertical velocity distribution module to yield a quasi 3-D sediment
transport pattern over the study area.

The vertical profile of sediment concentration is assumed to follow an
exponential shape:

c(2) = C, exp (x.‘_z'zi’ ) an
. A

where C is concentration, z is vertical distance above the bottom and the
subscript A refers to the top of the bottom boundary layer.

K, = -1n(Cy/C,) (18)

where z, is the bottom boundary layer thickness and Cg is the concentration
at which the sediment starts moving as bed load.

The reference concentration C, at the upper limit of the bottom boundary
layer is estimated from a mobility number made up of two terms representing
the individual influences of the local wave-current bottom shear stress and
the turbulence created by the breaking wave:

c, =5 (v./d) + K (1,./p)? (19)
We

where K5 and Kg are calibration constants, v, is the turbulent eddy viscosity,
Twc is the shear stress resulting from waves and currents combined and wy is
the sediment fall velocity.

9-10
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The above sediment concentration profiles are multiplied by the local
velocity profiles and integrated over the depth to yield the local sediment
transport rates, in bed-load and suspended load modes.

h
O, = f u,(z) Cl(z)dz (20)

z=0

where Qg is the sediment transport rate in direction i. Thus a "Quasi 3-D"
description of sediment transport is obtained which is both practical and
easy to solve on a micro-computer.

In the swash zone, the sediment transport relationships are not well
understood and are still under development for this model. The wave motion
in the swash zone is a time-dependent process that is not described by the
above numerical model. However, the sediment transport contribution from the
swash zone is important as shown in Figure 4 and must be included in some way
for comparison with laboratory results. A global formulation based on the
assumption that sediment concentration in the swash zone is caused only by
wave energy dissipation, is used:

H, 7/3
One = 10 (50 (Lur?( 2] o

where K; is a calibration constant, Sgw is the swash zone width, Ly, is the
wave length at the original still water shoreline, Hy, is the wave height at
the original shoreline.

2.6 MORPHOLOGY MODULE

To calculate bed morphology, the sediment transport rates are introduced into
the equation for conservation of (sediment) mass:

ast ast _ _ _ oh (22)
x "—a-; = (1 p)(ps P)'a—t

where p is the sediment porosity and p; is the sediment density.
2.7  RESULTS OF CALCULATIONS

The above Q3-D model was calibrated against hydraulic model results and some
typical results are shown in Figures 5 to 8.

Figure 5 indicates that the model predicts the wave decay well for both
regular and random waves. Figures 6 and 7 show that the alongshore velocities
and sediment transport distributions are predicted reasonably well in the
surf zone, but in the swash zone the model underpredicts both velocities and
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sediment transport rates. Obviously more work needs to be done on the
important aspect of swash zone transport. Figure 8 demonstrates profile
evolution. In general, the swash zone erosion is underpredicted because the
swash zone sediment transport rate is too low.

The results certainly look promising and with some more work, the model will
be able to perform well and give good results. However, how useful is it for
practical engineering computations of shore morphology?

2.8 FRANK DISCUSSION
First of all, the results of a Q3-D model similar to the one discussed here

can by definition never come close to reality. Although the Q3-D model
incorporates random waves and yield the results typical of field response to

irregular incident wave conditions, it has several shortcomings. For
example:
a. Calculations are time averaged and do not take into account the effects

of variations within a wave period such as wave asymmetry, non-linear
wave-wave interactions and sediment transport by infragravity
components (e.g. de Vriend, 1991).

b. The influence of bedform on the actual sediment transportation process
is not taken into account.

c. Wave diffraction and reflection are not taken into account.

To predict morphology in the vicinity of structures, the domain refraction
routine can be replaced by a Refraction-Diffraction calculation. For shore
morphology problems, wave reflection is normally small, which means that the
computer-hungry Mild Slope Equation for wave transformation (Berkhoff, 1972)
can be reduced at least to its Parabolic Approximation (Radder, 1979),
perhaps taking into account local reflection with a mirror-imaging scheme.
Such a modification would add to the execution time of the model and can only
be considered for portions of the model close to structures, leaving the far
field wave conditions to be calculated with a refraction calculation.

The Q3-D model, however, is handicapped by much more serious practical
limitations than those mentioned above.

First, the model as described above calculates sediment and beach response to
one single incident wave condition (although this condition could be
represented by a directional wave spectrum). In practice, sediment transport
and shore morphology are a response to long term wave conditions. Thus for
any practical engineering problem, the calculation would need to be performed
many times for wave conditions spanning many years. Such a calculation with
a Q3-D model, even for short time series of wave data would quickly become
prohibitive for most projects.

At the same time, any long term time series of incident waves is normally
based on hindcasts from long term time series of wind. Ideally a wave
hindcast has been extensively calibrated against observed wave data, but
often that is not the case, yielding very questionable input wave data.
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Particularly wave directions are inaccurate (both in the measurements and the
hindcast). Yet directional information is absolutely vital in determining
coastal circulation and sediment transport and morphology with any accuracy.

With such (normally very poor) input wave data, a repeated, detailed Q3-D
calculation of sediment transport is a waste of effort unless one needs to
compute detailed sediment transport characteristics such as bar formation or
cross-shore velocity or sediment transport gradients, for specific, well
known situations.

Finally, the lengthy, involved computations of the Q3-D model may not allow
the project engineer to "play" with the model, obtaining a "feel" for the
various sensitivities of the computation. Such interactive problem solving
techniques are very necessary for coastal morphology problems for which both
the basic assumptions and the input data are so poor that sensitivity testing
and trial and error methods form a vital part of a proper engineering
solution.

Hence, for most practical computations, the sophistication of a repeated 3-D
calculation far exceeds the quality of the data while the per-run cost does
not allow for the many runs necessary to define vital problem parameters.
Hence, a simpler sediment transport and shore morphology calculation which
allows many and interactive calculations is very useful.

3. The One-dimensional Model

The remainder of this lecture discusses the simpler one-dimensional model and
focusses in detail on the one-dimensional general model "ONELINE" developed
specifically to illustrate this lecture. It is a stripped model which
performs the basic computations and which must be tailored to each specific
problem with its own complexities. Other examples of one-dimensional models
are GENESIS (Hanson and Kraus, 1989) and KUST (Willis, 1978).

3.1 THE EQUATIONS
A new set of coordinate axes is introduced (Figure 9).

The One-Dimensional (1-D) model essentially solves two simple simultaneous
equations; the equation of conservation of (sand) mass and the equation of
(sand) motion.

The first is a 1-D version Equation 22 und will be called the 1-D morphology
equation. The second usually takes the form of a "bulk" sediment transport
rate expression in which detailed fluid flow relationships are ignored and
alongshore sediment transport rate is expressed directly as a simple function
of the relevant wave climate and beach characteristics.

3.2 THE 1-D MORPHOLOGY EQUATION

The usual form of the 1-D morphology equation assumes that a beach profile
retains constant shape as erosion or accretion takes place, i.e., the profile
moves on- or offshore unchanged. The actual beach profile in the calculation
can be any shape, as long as the shape moves in the cross-shore direction
without change. This means that all the contours move at the same rate and
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can be represented by one single contour line as shown in Figure 10. Hence
this method is also known as a "l-Line" model. Expressing conservation of
(sand) mass as defined in Figure 10 results in:

where the total depth of the profile, consists of dune (or berm) height (hy)
plus closure depth (h;), Q is the bulk alongshore sediment transport rate and
q; is the net cross-shore loss of sand per unit distance in the alongshore
direction.

The beach profile is essentially assumed to slide along a horizontal base
located at closure depth h,. It is the depth at which beach profiles are not
changed by normally occurring wave conditions. This closure depth may be
measured from beach profiles. If no measured information is available,
closure depth may be estimated from the wave climate using a long-term beach
shaping wave height. Following Hallermeier (1981),and making some basic
assumptions about beach and wave characteristics, h, may be estimated as:

h.=1.6 H,,, (26)

where H; i, is the significant wave height that occurs on average 12 hours per
year.

3.3 SEDIMENT TRANSPORT RATE

3.3.1 Potential Rate

Alongshore sediment transport rate essentially functions as an integration of
all pertinent fluid flow and sediment entrainment properties. Thus its use
allows for relatively simple introduction of many years of wave data. Since
the input wave data is normally of poor quality, such a simplification is
usually justified.

The most commonly used sediment transport rate expression is the CERC
expression (Shore Protection Manual, 1984)

0. = K. H? sin 24, e

where Q. is the CERC rate of sediment transport (n3/yr), Hy, is the breaking
significant wave height and a, is the angle of breaking. The constant K is
a function of breaking index (Hg/dy), fluid and sand densities and beach
porosity. For a medium dense sand with porosity 0.32 and a breaking index of
0.60 (obtained by using Equation 15), the coefficient is 3. 6x106,

A more recent expression by Kamphuis (1991a) is more versatile sincé it takes
into account the separate effects of wave height, wave period, wave
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steepness, wave angle, beach slope and sediment grain size.

H.,\1-25 H_, \%-25

LI; =1.3x1072 (_'b) mg"® (_‘_") sin®¢(2a,) 2
P Hyp Lop Dso W
Tp

where Q; is the immersed mass of sediment transported (kg/s), T, is the peak
period, m, is the slope through the breaking zone (dy/y,) where y, is the
distance from the shoreline to the breaker and Dsy is the median grain size
of the beach material.

Equation 26 may be expressed more usefully for the present discussion as:
0 = K, Hp Tp™® mp"® Dgs"?® 8in® ¢ (2a,) 27)

where Q is in m3/yr and K = 6.4 x 10 for a sand with porosity of 0.32.

If a longshore gradient in wave height exists, such as in the shadow of

structures, that effect may be incorporated by changing the wave angle term
to:

aH,
[sin2ay - K L cosa "b] (28)
B b

The coefficient Kg is a matter of discussion (Gourlay, 1978; Ozasa and
Brampton, 1980; Kraus and Harikai, 1983). Hanson and Kraus (1989) suggest
values of Kg between 1 and 2.

3.3.2 Actual Rate

Equations 25 and 27 calculate what is known as Potential Sediment Transport
Rate, the rate if an infinitely long storm of constant incident conditions
acts upon infinite amounts of sand present everywhere. In fact, in most
practical cases, storm conditions vary rapidly and the sand is of limited
extent and volume. This means the above equations overestimate the Actual
Sediment Transport Rate. Normally this discrepancy is taken into account by
using Ko in Equation 27 as a calibration constant to match the calculated
rates to actually measured rates. A more elegant method considers the actual
limits of sand coverage (Kamphuis, 1990) and will not be discussed here.

3.4 WAVE COMPUTATIONS

3.4.1 Refraction and Breaking

To solve longer-term beach morphology problems,( i.e. many repetitive
computations are required) a 1-Line model needs to use relatively simple wave
computations. We will discuss a single incoming wave. Adding the effects of
many wave conditions to present a practical wave climate is a rather simple
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matter, once the morphology computations for a single wave condition are
understood. Assume this wave approaches with a deep water significant wave
height Hy,, a peak period Tp and an angle of incidence a,.

Since the bulk sediment transport expressions need input breaking wave
conditions, it is necessary to transform the deep water waves:

H = K,K,K4H, (29)

where K is the shoaling coefficient, K; the refraction coefficient and Ky the
diffraction coefficient. -Because each calculation normally must be repeated
many times for a single computation and because large simplifying assumptions
have been made, the computations must be kept simple and it is normal to use
small amplitude wave theory and assume straight, parallel beach contours.
This yields:

ol ) @

and

‘K, = (cosa,/cosa)/? ' (31)

where C8 is the group velocity and a at any location is determined using
Snell’s Law:

sin a = S sin a, (32)
co

The diffraction coefficient is not important as long as the shoreline is
regular (a basic assumption of the 1l-Line method anyway) and there are no
obstructions to the incoming waves. If offshore structures, long breakwaters
or groins are present, it is necessary to include diffraction. In this
section we will first treat the case without diffraction.

Equation 29 is valid until the wave breaks. Thus a breaking criterion must
be introduced and solved simultaneously with Equation 29. A number of such
breaking conditions have been proposed and some are reviewed in Kamphuis
(1991). One set of commonly used conditions are a variation of the so-called
limiting steepness condition (Miche, 1944)

Hy/L, = 0.14 tanh k,d, (33)

where k, is the breaking wave number (= 2x/Ly) and L, is the breaking wave
length. Another commonly used set of expressions incorporates the solitary
wave criterion Munk (1952).
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Y = Hy/d, = 0.78 (34)

Kamphuis (1991) derives two criteria, similar to these expressions and based
on from a large series of carefully controlled hydraulic model tests with

irregular waves. These have been presented earlier and will be repeated
here.
H, = 0.095e%" Loy tanh (kpbdb) (14)

where Lpb and kpb refer to the peak of the spectrum, and

H, = 0.56 357 d, (15)

Note that m is the effective beach slope for the breaking process. This
slope is representative of the offshore as well as the breaking zone and is
different from m, in Equation 27.

3.4.2 Diffraction

If offshore structures, long breakwaters or groins obstruct the incoming
waves, it is necessary to include diffraction calculations in the 1l-Line
model. The offshore structures case has been covered in detail in Hanson and
Kraus (1989) and other publications related to the "GENESIS" model. As an
example, of the type of reasoning and simplifications that go into the
development of simplified refraction-diffraction computations, the
refraction-diffraction relations near a groin are developed in Appendix I.

Classical calculation of the diffraction coefficient, such as Penney and
Price (1951) is lengthy and only applies to regular waves. For example, the
Penney and Price method gives a Ky of 0.5 at the edge of the shadow zone, but
Goda, Takayama and Suzuki (1978) state this overestimates diffraction for
irregular waves. Based on this earlier work, Goda (1985) describes an
"angular spreading method" in which it is simply assumed that the obstruction
blocks out a portion of the incoming directional wave spectrum. This method
arrives at a more reasonable diffraction coefficient of 0.7 at the edge of
the shadow zone.

Using Goda's method and some simple additional assumptions, the following
simple expressions for refraction-diffraction behind a groin are developed in
Appendix I.

Referring to Figure 11, the angle from the shadow line to any point is
defined as # and ag is the wave angle at the seaward end of the structure.

Using angle # as parameter, it is possible to approximate K, as
Kg = 0.69 + 0.008 ¢ for 0=46>-90 (35)

where 6 is expressed in degrees, and
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Kg = 0.71 + 0.37 sind for 4024 >0 (36)
Kg=0.83 + 0.17 sind for 90 =2 ¢ > 40 (37)

Breaking wave height may then be estimated by:

Hgp = Ky Hgp, (38)

where Hg,, is the significant breaking wave height without diffraction as
determined in the previous section.

The breaking wave angle behind the groin is modified by two processes:
diffraction around the structure and additional refraction because the
breaking wave height is smaller than without the structure. The combination
of these two effects yields:

@y, = a, K378 (39)
except when

PB 1
6 < 0 and T < 7{t:ancx_,+t:an(0.88¢:q,)}

in which case

2 PB

0.375
a,=a
ba = @5 Ka l,{tana,+tan(0.88a,))

(40)

Of course, greater sophistication, could be used in the refraction and
diffraction computations. However, the poor quality of the input data and
the number of assumptions made to arrive at the 1-Line model normally would
make greater sophistication unnecessary and the large number of such
computations required necessitates this type of "ingenious simplification".

4. Analytical Solutions

To permit an analytical solution of Equations 23 and 25 or 27, boundary
conditions must be simple and two basic assumptions must be made.

4.1  EFFECTIVE ANGLE ASSUMPTION

To incorporate the interaction between the waves and changing shoreline
configuration, an "effective" breaking wave angle is defined as:
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(a, - dy/dx) (41)

where ap, is the breaking angle with respect to the basic shoreline "trend" as
defined in Figure 9 and dy/dx represents the local shoreline orientation.
When this assumption is introduced into Equations 25 or 27 they become: ’

Q= f { sin 2(a, - dy/dx)} (42)

4.2 SMALL ANGLE ASSUMPTION

This effective wave angle is then further assumed to be small so that

Q=f {2(a, - dy/dx)} (43)

Equation 43 in effect assumes that both ap and (dy/dx) are small.

Equations 23 and 43 may now be combined into a form of diffusion equation,
which has many well known analytical solutions for various imposed boundary
conditions.

4.3 EQUATIONS

Pelnard-Considere (1956) solved the diffusion equation for three simple
boundary conditions: a complete interruption of the alongshore transport, a
bypassing barrier and an instantaneous release of sand on a beach. Le
Mehaute and Brebner (1960) also discuss analytical solutions and an excellent
recent discussion of those and other analytical solutions may be found in
Larson, Hanson and Kraus (1987). They treat several examples of sand supply
through beach fills and river discharges and solve shoreline evolution by
groins, detached breakwaters and seawalls.

The above 1l-Line analytical solutions may be extended to include profiles
that change shape. Willis (1977, 1978) proposes a profile that rotates.
Bakker (1968) postulates a 2-Line model (Figure 12). This method was derived
specifically to calculate the effect of groins on a beach. Essentially, two
1-Line models are stacked together. The connection between the two models is
the cross-shore exchange of sediment between them, which according to Bakker
is linearly related to the difference between the existing beach profile and
its equilibrium shape. Bakker solves these equations for zero net sediment
input from external sources in the cross-shore direction.

Other analytical solutions of the l-Line equations are those by Le Mehaute
and Soldate (1978) who included refraction and diffraction and by Borah and
Ballofet (1985) who solve the equations for a large incident wave angle.



COMPUTATION OF COASTAL MORPHOLOGY 237

Control Volume 1

Control Volume 2
Sediment Exchange

A e —

2|
Beach Profile

e
Line 1

FIGURE 12 TWO LINE MODEL

. SHORELINE

SECTION i+1

FIGURE 13 DISCRETIZATION OF SHORELINE FOR 1 LINE MODEL
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5. Numerical Solutions
T § USUAL NUMERICAL SCHEME

If the equations or boundary conditions cannot be simplified sufficiently to
result in analytical solutions, Equation 23 together with Equations 25 or 27
must be solved numerically. This can be done for 1-Line and 2-Line models
and the scheme may easily be extended to the "N-Line" model (Perlin and Dean,
1983; Johnson and Kamphuis, 1988). The 1-line computation called "ONELINE’
which was developed specifically to provide examples for this lecture uses
Equations 23 and 27.

Such a 1-Line numerical computation requires the shoreline to be discretized
into a series of sections of finite length as shown in Figure 13.
Calculation of sediment transport rate, using Equation 27 takes place at the
ends of the sections and shoreline position is calculated with Equation 23 at
their centres.

The computation uses finite difference techniques and is stepped forward in
time using increments of At. The finite difference methods are explained in
many standard texts, for example Abbott (1979). The simplest finite
difference scheme to program is the Explicit Finite Difference Scheme.
However, that scheme severely limits the 1length of the time step that can
be used. Once the time step exceeds a limit which may be expressed by a
Courant condition, the computation becomes unstable. Implicit Finite
Difference Schemes, which are somewhat more difficult to program, do not pose
a serious limitation on At and are generally used. ONELINE also uses an
implicit computation scheme.

For each of the N sections, Equation 23 may be written in finite difference
form as:

At

Yi = Yo1d,i ~ m

(Qs01 -0; ~GAX) (44)

where y,q; is the value of y; defined or calculated for the previous time
increment.

At each of the section ends Q is either specified (as an exterior or
interior boundary condition) or calculated using Equation 27. Any implicit
method, however, uses (linear) matrix algebra to solve for y and Q
simultaneously at each time step. This means Equation 27 must be linear in
y and Q. This entails that an implicit solution must make both the effective
breaking angle and the small angle assumptions discussed for the analytical
solutions, i.e. it uses Equation 43. In Equation 27, Q varies with
[sin06 2ap]. To linearize this expression, Equation 43 requires the following
further modification and becomes:

-0.4 45
2(ab-gx) @

g, =& {z(a,,-ﬂ’)i} 2|

dx
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where

2 1.5 0.75 -0.25
Ci = Ko Haps Tp,§ mp,]® DSS i
and where the subscript (old) refers to previously calculated values. The
subscript i is necessary to distinguish between the various sections where

the wave conditions will vary because of diffraction.

Equation 45 may be written in finite difference form as:

2¢;
5 Q.1 ™ Ax ¥y = ¥is) (47)
i F,
where
0,,=2¢ a, (48)
5 0.4
Fy =|2ay - Ax Yordi = Yord, i) “

Equations 44 and 47, expressed for each of the N shoreline sections results
in a tri-diagonal matrix. This matrix is solved easily and rapidly.

1 o, | [x
A, 1 A i S,
-B, 1 B, o, R,
-A, 1 a4, Y2 S,
-B, 1 B, 0, R,
= (50)
"By, 1 By, On-1 Ry-y
“Aya 1 Ay, V-1 Sy-1
By, 1 =By, Oy Ry
“Ay 1 Ayl | YN Sy
- ' ] _o"’fJ | Ry
A" ThATER v
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. 2C 5
! Ax F; k%
o Lo ,

R, - (53)

Si = Yoiai * A 9 8% (54)

5.2 BOUNDARY CONDITIONS
Two types of boundary conditions may occur - external and internal. The
external boundary conditions occur at the two ends of the model and internal
ones can occur anywhere within the model.
It is clear from the previous section that for the external boundary

conditions, Q needs to be specified. One specification is a constant
sediment transport condition at the ends of the model.

Q=-Q (55)
This condition indicates that whatever the situation is within the model, the
ends for which Equation 55 is specified are not affected; the sediment
transport rate there is as if there are no changes in conditions. ONELINE
specifies Equation 55 as Qj pey and hence incorporates Equation 55 directly
into the computational scheme by slightly changing the matrix.

Another boundary condition which may be either external or internal is the
complete barrier.

Q-0 (56)

This condition describes the effect a structure that is sufficiently long to
prevent any sediment from passing it.

In time, however, as beach accretes against such a structure, Equation 56
will become invalid and a bypassing condition/needs to be specified. One
such expression is developed in Appendix II. It is based on an exponential
beach profile shape defined by

h = a y?3 (57)

where a is a profile parameter which is a function of grain size.

The bypassing sediment transport rate is:

1 5/3
oo [<32)- 13"

where I, is the effective structure length
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e =I5 - vy (59)

I; is the structure length, y; is the accretion against the structure, and y,
is the distance from the shoreline to the point of intersection of the
exponential beach profile with the closure depth h..

Equation 58 is only valid until the groin fills up on the one side. At that
time the groin condition should be replaced by a constant shoreline position
(Equation 64, below). If the groin is filled on both sides, the groin
condition must be removed entirely and replaced by a regular shoreline
calculation.

Once Equation 57 is used in the computation, it should also be used to
define the beach slopes needed in Equations 14, 15 and 27, in order to be
consistent. The relevant slopes are derived in Appendix III, resulting in:

3/2
m = -"-17; (60)
hc
_ a3/2
m, = hl? (61)

The above conditions all define Q values.

The shoreline location can also be specified anywhere within the model as a
function of time

yi = £(8) (62)

6. The Effective Breaking Angle and Small Angle Assumptions

The above description and the usual algorithms for one line modelling are
based on the assumptions that both the incident wave breaking angles and the
shoreline changes with respect to a general shoreline "trend" are small and
that they may be added to give an effective breaking angle. The small angle
assumption is, however, not valid in many computations; o, is large, for
example, along the Great Lakes, where the prevailing winds blow along the
lake and dy/dx is large for long term computations. Even when all angles are
small, it can readily be shown that the effective angle concept leads to
incorrect results.

To include non-small ap or dy/dx in the calculation and to base Q on the
actual breaking angle, rather than the effective angle, it is necessary to
calculate sediment transport rate explicitly, based on the calculated
breaking angle at the particular location and time, i.e. based directly on
Equation 27, rather than on Equation 43. Such an explicit calculation causes
immediate instability however, for any reasonable time increments.
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With ONELINE it was found that stable calculation is possible for reasonable
values of At through continuing to use the above matrix method. Instead of
computing y, however, y, is calculated, where y, is the small change in
shoreline from the previous shoreline y. This means re-writing Equation 54
as:

S; = A;q Ax (63)

In this method, y, and (dyp/dx) are always small while ap is defined by the
actual shoreline direction (ygq4) rather than by the "trend" of the shoreline.
In addition, the small angle restriction was removed from a, by reintroducing
sin ap into Equations 48 and 49. The matrix solution then provides new values
of Q and Yp at time (t+At). The calculated values of Q then are discarded and
new values of Q are computed explicitly using Equation 27 with values of y at
time (t+At), where

Ynou-yold+yp (64)

For greater flexibility, it is not necessary in ONELINE to compute Q
explicitly, for every At. It is possible to specify a ratio of the number of
Implicit to Explicit computations to bring about stability or a better fit
with measured data. Equation 64 and the explicit computation of Q are used
as described above but subsequently a specified number of completely implicit
calculations are performed in which y, (which is still small) is calculated
based on the previous value of Yp- The Q calculated by the matrix method is
kept as the new Q value for the next computation. Once the specified number
of implicit calculations is reached, y is calculated using Equation 64 and Q
is calculated explicitly for the next computation. Then the cycle is
repeated.

Using alternate implicity and explicit calculations makes good practical
sense. In the explicit computation, Q is assumed to be a function of the
local value of ap only as if it does not relate to adjacent Q values. This
is physically not correct. The implicit method on the other hand relates Q
to adjacent Q values only and no longer to the local a,. This is also
incorrect. The combination of the two yields a stable as well as a sensible
solution.

Although this calculation method yields a stable solution for most instances,
it still has problems with very large incident wave angles in which a slight
change in shoreline direction causes Q to change suddenly from a large value
to zero, resulting in almost impossible stability requirements.

ONELINE introduces two simple smoothing procedures to remove such local,
quirky shoreline conditions. Such a smoothing procedure is not simply an
artifice to bring about a good solution. Smoothing also simulates nature
which itself smooths out large local abnormalities. Smoothing does, however,
affect the final shoreline position by violating the conservation of (sand)
mass. Therefore smoothing should be optimized to result in a smooth, but
physically sensible shoreline which is not so smeared out that it no longer
represents the practical problem at hand.
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The two smoothing options in ONELINE are the application of a simple
smoothing function

Aj= (A;, +2A;, +A,,,)/4 (65)

where A represents either the computed y values or Q values. Smoothing of y
values has more drastic effect on the final solution than smoothing Q values,
but in extreme situations both are necessary and the user must be careful to
recognize the limitations such smoothed solutions.

7. Examples

Practical examples using ONELINE are presented with this lecture. The
shortcomings of programs using the effective breaking angle and small angle
assumptions are demonstrated.

The immediate instabilities resulting from a pure explicit solution of
Equations 23 and 27 are shown. ONELINE solutions are presented for simple
shorelines with simple wave climates and these are compared with analytical
solutions. Finally, complicated shoreline examples subjected to multi-year,
multi-directional wave climates are treated. The effects of the ratio of
Implicit to Explicit computations and the effect of Q and y smoothing are
demonstrated.
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SYMBOLS

General parameter

Beach profile coefficient

Vertical time-averaged sediment concentration profile
Reference concentration at level z,

Sediment concentration at initiation of sediment motion
Time averaged friction coefficient

Average suspended sediment concentration in the swash zone
Wave phase velocity

Wave phase velocity at breaking

Wave group velocity

Wave energy dissipation rate

Median sediment grain size

Mean water depth

Mean water depth at breaking

Wave energy density

Stable wave energy density for a constant depth

Driving force term for surf zone currents

Gravitational acceleration

Wave height

Breaking wave height

Deep water wave height

Significant wave height

Significant breaking wave height

Wave height at original shoreline

Significant wave height occurring 12 hrs/yr

Still water depth

Closure depth

Dune (or berm) height

Calibration constant for CERC Bulk sediment transport expression
Diffraction coefficient

Constants

Calibration constant for Queen’s bulk sediment transport
expression

Refraction coefficient

Shoaling coefficient

Wave number

Wave length

Breaking wave length

Deep water wave length

Breaking wave length associated with peak period

Wave length at original shoreline

Effective structure length

Structure length

Mass of fluid contained in a given control volume

Beach slope :

Beach slope in breaking zone (=db/db)

Ratio of wave group velocity over phase velocity (-CS/C)
Porosity of sediment

Bulk sediment transport rate (volume)

Depth- and time-integrated local rate of sediment transport
(submerged mass) in the direction of coordinate i
Global swash sediment transport rate
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Mass flux

Net cross-shore sediment loss per unit distance along shore
Wave radiation stress tensor

Swash zone width

Wave period

Peak period

time

Horizontal, time-averaged velocity in x-direction
Horizontal time- and depth-averaged velocity

u in direction of coordinate i

Wave orbital velocity at the bottom

Horizontal, time-averaged velocity in y-direction (m/sec)
Velocity

Vectorial sum of current u and u,

Sediment fall velocity

Horizontal direction (cross-shore in Section 2 and alongshore in
Section 3)

Horizontal direction (alongshore in Section 2, cross-shore in
Section 3)

Distance from shoreline to the breaker

Distance from shoreline to h,

Incremental shoreline change

Accretion against structure

vertical axis

reference level

Wave angle of approach

Breaking wave angle

Diffracted breaking wave angle

Wave angle with respect to a structure

Breaking index

Wave set-up or set-down

Diffraction angle

Turbulent eddy viscosity

Fluid density

Sediment density

Shear stress due to bottom friction

Lateral shear stress or lateral turbulent mixing

Shear stress developed under the combined action of waves and
currents
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APPENDIX I
COMPUTATION OF DIFFRACTION

In this appendix, some simple equations are developed to calculate
refraction-diffraction in the shadow of a breakwater or substantial groin:
The structure is assumed to be perpendicular to the shore.

In Figure I-1, the incoming wave ray at the structure makes an angle a4 with
the structure. It is desired to calculate the breaking wave conditions at a
point which may or may not lie outside the shadow zone defined by the
straight line extension of the wave ray from the end of the groin (AO0). An
angle # with respect to the shadow line AO is defined as shown in Figure I-1.

Goda (1985) states that analytical methods such as Penney and Price (1951),
developed for calculation of diffraction for regular waves, cannot properly
describe irregular wave diffraction. Goda proposes instead an "angular
spreading method" which simply assumes that part of the directional wave
spectrum is blocked by the structure.

He assumes a cosine spreading function and calculates the portion of this
energy to which the point of interest is exposed. In Fig. I-1, the portion
of energy reaching P is related to angle 6§ = 90 + 4. From this, the
following table may be drawn up:

TABLE I-1: APPROXIMATE DIFFRACTION COEFFICIENTS

Kg

[’ For 6=0 For 6=<0
0 0.71 0.71

5 0.75 0.66
10 0.78 0.62
15 0.81 0.58
20 0.84 0.54
25 0.87 0.49
30 0.89 0.45
35 0.92 0.40
40 0.94 0.35
45 0.95 0.32
50 0.96 0.27
55 0.97 0.23
60 0.98 0.20
65 0.985 0.17
70 0.99 0.14
75 0.995 0.10
80 1.0 0.07
85 1.0 0.03
90 1.0 0.00

Regression analysis for the negative values of # (Figure I-2) yields a very
simple relationship:

Kg = 0.69 + 0.008 ¢ for 026> -9 (I-1)
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where § is expressed in degrees. Similarly outside the shadow zone (Figure
I-3,4) regression analysis yields two strong relationships:

Kg = 0.71 + 0.37 sind for 40 =246 >0 (1-2)
Kg = 0.83 + 0.17 sind for 90 > 4 > 40 (I-3)

The calculated values of Ky will reduce the wave heights behind the structure
and as a result the breaking angle in this area will be reduced, since the
breaking wave heights and depths of breaking are smaller.

When this phenomenon was tested for ranges of structure length, ag, T,, h
and v, the ratio of the breaking angle adjusted for this diffraction effect
(apq) to the breaking angle without diffraction (ap) was found not to be
sensitive to the variation of all the above parameters. A relationship was
then developed between the ratio (apg/ap) and Ky as shown in Figure I-5:

apg = ap K035 (1-4)
Equation I-4 is valid both inside and outside the shadow zone.

Inside the shadow zone, however, a further decrease in breaking angle
resulting directly from wave diffraction must also be taken into account.
The wave ray from the end of the groin is refracted and according to Equation
I-4 its breaking angle is:

apo = ap (0.71)9375 = 0.88 q (1-5)

It was assumed that this wave ray from the end of the groin, makes landfall
halfway between the shadow line AO and the line AQ which makes an angle of apo
with the groin. Since the breaking angle at the structure is zero, a simple
proportionality ratio was introduced:

0375 2PB
= K -6
apd = ap Ky T, [tana, + tan(088ap)) Lo f<0 KE-53
when
22 < Z{tana, + tan(0.88a,)) (1-7)

where I5 is the length of the structure.
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FIGURE I-1 REFRACTION-DIFFRACTION APPROXIMATION NEAR GROIN
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APPENDIX II
COMPUTATION OF BYPASSING
If the beach profile shape is assumed to be:
h = ay 23 (I1-1)

and if this shape is assumed to slide along a base at closure depth, h; then,

referring to Figure II-1, the distance to the end of the active profile may
be computed as:

hc 3/2
Ve == (11-2)

The parameter ’'a’ is a function of grain size and may be determined from
measured profiles. In the absence of measured data, 'a’ may be approximated
(Hanson and Kraus, 1989) by:

a = 0.41 (Dgp)0%, for Dsg < 0.4

a = 0.23 (Dsp)%32, for 0.4 < Dgg < 10.0 (11-3)
a = 0.23 (D508, for 10.0 < Dgg < 40.0

a = 0.46 (Dsp)0!1, for 40.0 < Dgg

where a is in m!? and Dsg in mm.
The structure has an effective length 1, defined as:
le = I - ¥s
where I; is the structure length and y; is the accumulation of sediment

against the structure.

It is assumed that the portion of Q bypassing the structure is related to the
ratio:

Area of the beach profile above h;, between I, and y,
K. =

Total area of the beach profile above h

Integration of the profile leads to

s/3
Qy = Q 1-;%]”3[71:] for (I, <y
and

Qby =0 for (1. = y.)

(II-4)
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v

BEACH PROFILE

h=ay2/3

FIGURE II-1 DEFINITIONS FOR BYPASSING COMPUTATION
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APPENDIX III
BEACH SLOPE CALCULATION

If the beach profile is assumed to be

h=-ay? (I1I-1)
then the relevant beach slopes may be calculated as
h h 3/2
m=—S = £ g%2 =2 (I11-2)
Ve B2 ni’?
and
h, _ a32
m, = —2 = (III-3)
Py hif?
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