
Final report
Improving the Plugify Admin Panel

Authors
B.A.P. de Jonge
M.J.J. Oudshoorn
M. van de Ruit

Final report
Improving the Plugify Admin Panel

Authors
B.A.P. de Jonge
M.J.J. Oudshoorn
M. van de Ruit

Coordinator: O. Visser, TU Delft
Coaches: Assist. Prof. dr. ir. G. Gousios, TU Delft

Ir. J Hejderup, TU Delft
Client: Ir. K. Grigorjancs, Plugify

Preface
This report is written by Bart de Jonge, Mark van de Ruit and Menno Oudshoorn for the
bachelor project of the Computer Science program at Delft University of Technology. For the
past 10 weeks, we have worked on improving the administration panel and customer service
workflow of Plugify.

We would like to thank everyone at Plugify for their enthusiasm and support, with a spe-
cial thanks to Karens Grigorjancs, our official Plugify supervisor and daily source of help,
Peter Bosma, for his input, feedback and thoughts on the systems we built, Harriet Greve,
for testing our application and providing us with useful feedback, and Oscar Westerhof for
his assistance in building the new Plugify dashboard.

We would also like to thank our TU supervisors, Georgios Gousios and Joseph Hejderup,
for their continued support and feedback throughout the project.

Delft, June 2017

iii

Summary
In this report, we present our work on improving the administration software and automating
parts of the customer service work for Plugify, a young Dutch startup that provides an online
music act booking platform. We first analyze Plugify’s needs, and then discuss how we
design, develop, and iterate the systems they require. We leverage and customize pre-existing
administration software named ForestAdmin to provide us with a stable administration panel
to create and modify data. Furthermore, we rework Plugify’s existing internal notification
system to be smarter. Then, we create a small number of custom web pages for Plugify’s
customer service to more easily process relevant data. Finally, we provide Plugify with a
system for metrics in an intelligent way. We also discuss how we perform unit, integration
and usability testing, to ensure, among others, the stability, reliability, usability, performance
and completeness of the systems we have built.

v

Contents

1 Introduction 1

2 Research 3
2.1 Overview . 3
2.2 Problem definition and analysis . 3
2.3 Project goals . 4
2.4 Requirements analysis . 5

2.4.1 User interviews . 5
2.4.2 Current system analysis . 6

2.5 Requirements definition . 8
2.5.1 Functional requirements definition . 8
2.5.2 Non-functional requirements definition . 10

2.6 Approach . 11
2.6.1 Process . 11
2.6.2 Tools and techniques . 12

2.7 Research conclusion . 13

3 Background knowledge 15
3.1 Plugify background . 15

3.1.1 The Plugify funnel . 15
3.2 ForestAdmin background . 16

3.2.1 Default ForestAdmin features . 16
3.2.2 Extending ForestAdmin with custom functionality. 17

4 Design 19
4.1 Architecture design . 19

4.1.1 Back end architecture . 19
4.1.2 ForestAdmin architecture . 20

4.2 Feed design. 21
4.2.1 Base feed initial design. 21
4.2.2 Messages feed considerations. 22
4.2.3 Notifications feed considerations . 23
4.2.4 Request feed design considerations. 23

4.3 Forest team design . 23

5 Implementation 25
5.1 Smart actions . 25
5.2 Dashboard and metrics . 26

5.2.1 Fetching and processing the data . 26
5.2.2 Layout and excel output . 27
5.2.3 Speed improvements. 28
5.2.4 Predictions . 28
5.2.5 Graphs . 28

5.3 Notification logic . 28
5.3.1 Notifications for new users and artists . 29
5.3.2 Notifications for requests that don’t seem to be converting to a booking 29
5.3.3 Miscellaneous notifications. 30
5.3.4 Properties and actions . 30
5.3.5 Implementation . 31

vii

viii Contents

5.4 Feeds . 31
5.4.1 Limitations and similarities . 31
5.4.2 Initial layouts . 32

5.5 Other features . 33
5.5.1 CRUD operations. 33
5.5.2 Settings . 34
5.5.3 Warnings . 34

6 SIG Feedback 35
6.1 Issues for delivering the code . 35
6.2 First SIG feedback . 35
6.3 Processing the SIG feedback . 36

7 Testing and QA 37
7.1 Unit testing . 37

7.1.1 Model testing . 37
7.1.2 Controller testing . 38
7.1.3 Forest collection testing . 39

7.2 Manual testing . 39
7.3 Usability testing with RITE . 40

7.3.1 Rules . 40
7.3.2 Participants . 40
7.3.3 Measurements . 41
7.3.4 Procedures . 41
7.3.5 Test results . 41

7.4 Usability testing through measurements . 43

8 Final Product Evaluation 45
8.1 Functional requirements assessment . 45

8.1.1 Dropped or modified functional requirements . 45
8.1.2 Missed functional requirements . 46

8.2 Project goals assessment . 46
8.3 Ethical implications . 48

9 Conclusion 49

10 Discussion and recommendations 51
10.1 Improvements and additions . 51
10.2 Regarding ForestAdmin . 51

A UML diagrams 53

B Interview questions 57

C Project description 59
C.1 What do we do? . 59
C.2 What will you do?. 59
C.3 Which technologies do we use. 59
C.4 Company description . 60

Bibliography 61

1
Introduction

Plugify [4] is a Dutch start-up that provides an online platform where users can book all kinds
of live music acts. As a user, you can make a request for an artist, after which artists and
users can have a chat, come to an agreement, receive an invoice and make a booking. The
whole process needs to be monitored by the customer service of Plugify, so they can intervene
when needed, for example when an artist does not respond to requests fast enough.

For this, Plugify has an administration panel (AP), which has a notification system that
notifies the customer service of issues that may arise among users and artists. However,
the existing AP is outdated and does not contain all the functionality that Plugify desires.
Therefore, the project’s aim is to improve the current administration panel. Following from
this, the main goals are to improve on existing features such as the notification system, and
to extend the panel with new features. Another goal of the project is to improve the reliability
and maintainability of the software.

This report is structured as follows: chapter 2 contains the research report, in which the
problems Plugify is running into, and possible solutions, are analyzed. Chapter 3 provides
the necessary background information. Chapter 4 discusses design choices that were made
during the project, and chapter 5 shows the implementation of the different features. Chap-
ter 6 is devoted to analyzing the feedback from the Software Improvement Group (SIG), and
how the issues in the code that they pointed out were handled. In chapter 7 we discuss how
the system was tested, and based on this we evaluate the final product in chapter 8. We
conclude in chapter 9, and discuss and give recommendations in chapter 10.

1

2
Research

2.1. Overview
The first two weeks of this project are dedicated entirely to the research phase, in which
we formally define and discuss the details of what this project encompasses. This chapter
summarizes this phase. In section 2.2, we first define and analyze the problem presented to
us by Plugify. In section 2.3, we separate the key goals of this project. Afterwards, we analyze
the current system and its shortcomings in section 2.4 and write down the requirements that
follow in section 2.5. section 2.6 highlights the approach we want to take to solve the problem
succesfully.

2.2. Problem definition and analysis
The current administration panel was designed with Plugify’s needs and requirements at the
time kept in mind. As Plugify is an active platform with a rapidly growing customer-base,
however, its requirements for data-management are rapidly shifting.

Currently, Plugify is heavily occupied with managing its community. Plugify’s Customer
Happiness Officers (CHOs), for example, are responsible for maintaining day-to-day contact
with users of the platform, and resolving issues that occur. They make phone calls, assist
users and artists, monitor communications, manage customer data, and generally ensure
that Plugify’s community remains healthy and satisfied. The AP has a notifications feed,
which CHOs manage, processing each notification individually. Notifications are triggered
by a number of different events, such as users communicating, or new bookings being made.

As Plugify’s customer base is growing so much, it is vital that the CHOs keep working at
an efficient pace. According to Plugify, however, their work is becoming quite a cumbersome
process, due to the panel. The panel has a sometimes unintuitive, overly manual and slug-
gish design, is missing critical usability features, is riddled with minute bugs, and performs
slowly.

Furthermore, Plugify has managed to collect large sums of data over time, and is trying to
extract useful information from said data, mostly by hand. It has a dire need for automating
these processes and making the extracted information more accessible. This information can
help Plugify optimize and improve their products.

Plugify feels that the administration panel, in its current form, no longer serves its needs
and requirements as well as it could, making an update desirable. From this, we identify a
number of issues with the panel:

• The panel is missing critical features that Plugify needs.

• The panel often presents information unclearly, due to a sometimes counter-intuitive
user interface.

• The panel is riddled with small software bugs.

3

4 2. Research

• The panel performs slowly, due to long average loading times.

• There are tasks that have to be performed manually in the panel that could be auto-
mated.

2.3. Project goals
From the problems that were previously defined, we can derive a number of goals for the
project. These are defined with solving the aforementioned problems kept in mind.

These goals are important, and must be considered throughout the entire project. To sup-
port this, we use the Goal-Question-Metric (GQM) approach [1], which allows us to measure
progress towards achieving these goals. This means that, for every conceptual goal we define,
we also define a set of accompanying questions to assess said goal, and a set of metrics to
help answer these questions in a measurable way.

The derived goals, questions and metrics are displayed below:

• Feature-completeness

– Goal: Ensure the system is operational for the next phase in the startup, serving
Plugify’s needs.

– Questions: Are all features Plugify’s members need present in the system? Are any
features Plugify’s members need missing?

– Metrics: Proportion of missing features vs implemented features.

• Usability

– Goal: Improve the usability of the system for its users.
– Questions: Is the performance and efficiency of CHOs and other users improving?
Is the satisfiability of CHOs and other users with the systems improving?

– Metrics: Time taken per task user has to complete, number of clicks taken per
task user has to complete, and (subjectively) general satisfiability of users with the
system.

• Maintainability

– Goal: Improve the maintainability of the system for developers.
– Questions: Is the system maintainable? Is it well structured? Does it follow com-
mon software design principles?

– Metrics: Percentage of code duplication, average cyclomatic complexity, maximum
cyclomatic complexity, test coverage, and (subjectively) number of other code smells.

• Reliability

– Goal: Improve the reliability of the system for its users.
– Questions: Is the system reliable? How are bugs and failure scenarios tackled? Is
the system well tested?

– Metrics: Test coverage, number of encountered errors while using the product in a
production environment

• Performance

– Goal: Improve the runtime performance of the system.
– Questions: How performant is the system? How fast does it render content for
CHOs? What is the performance during stress and high load?

– Metrics: loading times of system, loading times of views that require large amounts
of data.

2.4. Requirements analysis 5

2.4. Requirements analysis
It is vital that we derive requirements allowing us to achieve the project goals efficiently.
Hence, we first perform a number of interviews with actual users of the administration panel,
to get more detailed information on previously identified issues. Afterwards, we perform an
analysis of the current system, to get a detailed overview of how it is assembled and what the
shortcomings are.

2.4.1. User interviews
In this section, we perform a semi-structured interview [10], in order to identify shortcomings
of the current product and better tailor to the needs of product users. This implies that we
define a set of questions covering topics we wish to explore, but allow actual questions and
answers to divert during the interview, if they elaborate more on the topics. As we interview
CHOs and other users of the administration panel, the interview structure is concerned al-
most entirely with their work and actual use of the software. For CHOs, this is currently
mostly the processing of notifications, so we dedicate a large part of the interview to this
topic. The actual structure is defined in Appendix B.

The interviews loosely followed the described structure, and were performed with two users
of the AP. These users are a CHO, who uses the panel daily, and an administrator, who uses
the panel from a business-perspective. As the interviews followed the defined structure only
loosely, we simply provide the points identified during the interviews, even if these do not
answer any of the above questions, as long as they are concerned with the topics covered.

CHO Interview
The following issues, remarks and suggestions were identified by the CHO during the inter-
view:

CH1: It is difficult to distinguish processed notifications from unprocessed notifications.

CH2: Snoozing or rejecting a notification could be easier and faster.

CH3: Some notifications, requests specifically, are always snoozed. This can be done auto-
matically.

CH4: Views in the AP need to be constantly refreshed to update information.

CH5: Notifications page displays very little information about the notification in question,
making notifications hard to identify at times.

CH6: Checking whether a user’s whose request was closed, had any other pending requests,
is rather devious.

CH7: Loss reasons for clients are rarely filled in.

CH8: Notifications for communication between an artist and a client after they have already
made a booking, may be unnecessary.

CH9: The AP redirects users a lot. After one notification, six tabs may be open in the browser.

CH10: Many fields the user has to enter for notifications, should have default values, as they
are almost always the same.

Administrator interview
The following issues, remarks and suggestions were identified by the administrator during
the interview:

A1: There are many options per message: can be reduced to accepting, rejecting, marking
as request, snoozing, and automatically warning an artist.

A2: The AP is missing the ability to group together requests that belong together.

6 2. Research

A3: The AP is missing the ability to mark requests as unique, or not grouped together.

A4: Notifications can be heavily simplified. There are too many of some kinds, and too few
of others.

A5: There should be notifications for detected upsell possibilities, such as when a booking
is completed.

A6: There should be notifications for detected long-term inactivity, from users and artists.

A7: There should be notifications for detected potential loss of a client, such as when all of
a user’s requests are rejected.

The points raised are all considered when defining the requirements in section 2.5.

2.4.2. Current system analysis
In this section a general overview of the existing administration panel is given. First, we

will look at the structure of the code and its different compartments. Next, we will analyze the
current performance and usability of the system. Finally, the reliability and maintainability
of the system will be looked into, by means of analyzing the test coverage and code quality.
The goal of this analysis is to provide a broad overview of how different parts of the system
work together, as well as to help define non-functional requirements and provide an easy
way to confirm improvements in different areas. The UML diagram belonging to this section
can be found in Appendix A.

Code structure
The overall class diagram of the current system can be seen in figure A.1. The system uses
an Angular 2 front end and a Ruby on Rails 5.0 back end. The different Angular components
perform API calls that are handled by the responsible Ruby controller. The controllers fetch
necessary data from the PostgreSQL database, and return it as JSON to the Angular com-
ponents. For readability, not all components, controllers, and relations are shown, but this
should provide a good overview of how the different parts work together.

Performance and usability analysis
We will now analyze the speed and ease of performing some actions that are often done in
the existing administration panel. These are

• Checking if a new request is unique, and otherwise deciding what other unique request
it belongs to

• Handling a ’new message’ notification

• Handling a ’1 open or all rejected’ notification

We will check the following things

• The amount of clicks needed to perform the action

• The total (average) time waiting for pages to load

• A (subjective) judgement whether the action is intuitive to perform

Checking if a new request is unique, and otherwise deciding what other unique request it
belongs to
The sequence of actions to do this is as follows:

1. Click ’new request’ notification on notifications page

2. Click the name of the user to go to the user page. This page opens in a new tab

2.4. Requirements analysis 7

3. Check the other requests of this user. Decide if this request is unique or not

4. Go back to notification tab. Write judgement in text box.

5. Set snooze date (this takes two clicks most of the time, sometimes more if the snooze
date lies far ahead).

6. Click ’save and snooze’

7. Close user tab

8. Go back to notifications overview

This action requires 9 clicks. The total average time spent waiting for loading pages is 22.9
seconds. The action is quite unintuitive, as it requires the user to go the the page of the
user that made the request. It would be better if the other requests of that user were already
shown on the notification page.

Handling a ’new message’ notification
The sequence of actions to do this is as follows:

1. Click ’new message’ notification on notifications page. This gets you to the correspond-
ing request page

2. Scroll down to read the message. Decide if you want to accept or reject the message

3. Click corresponding button.

4. Go back to notifications screen.

This action requires 3 clicks. The total average time spent waiting for loading pages is 17.3
seconds. A flaw that was found when performing this action was the fact that the message
the notification was about is not highlighted. This makes it difficult to see what message is
the relevant one sometimes. Also, it would be better if the messages were shown before other
info to avoid having to scroll down all the way. It is currently not possible to set a snooze
time when rejecting a message.

Handling a ’1 open or all rejected’ notification
The sequence of actions to do this is as follows:

1. Click ’1 open or all rejected’ notification on notifications page.

2. Click name of user to get to user page, so you can see other notifications and/or requests
of this user.

3. Possibly click on other requests. We assume checking 1 other request here.

4. Click on notification tab, fill in text field. Choose snooze date, and click ’save and
snooze’.

5. Close other tabs that were opened in the process

This action requires 11 clicks. The total average time spent waiting for loading pages is 23.1
seconds. Just like the first action, this action is unintuitive because the requests of a user are
not shown on the notification page. It would be better if these are shown on the notification
page.

8 2. Research

Software engineering analysis
We will now analyze the reliability and maintainability of the system. This is done by looking
at test coverage and static code analysis. The results are summarized below

• Test coverage: There are no tests at all written for the front end. The back end has
a few tests, but the coverage for all AP-specific code is 13.2%. We therefore find this
part of the code to be tested quite poorly, and not up to par with the back end code as
a whole, which has a test coverage of 80%.

• Code duplication: We ran Simian, a popular and versatile code-duplication detection
tool, on the front-end code. By default, it marks any duplications of at least six lines
as actual duplications. With these settings, it detects 1714 duplicate lines of code,
spanning 150 instances of actual duplications. Most of these concern instances of
HTML files that are remarkably similar.

• Front end linter: We ran the Angular2 linter ts-lint on the front end code. 40 warnings
were generated, however, they all complained about exceeding the maximum line length
of 140 characters. There were no other warning types. This shows that the front end
code is written according to the standards of the language.

• Back end linter: We ran the Ruby linter Rubocop on the back end code. In the parts of
the code that are specifically written for the AP, there were 50 offenses of varying types.
This shows that there is some improvement possible in static code quality.

• Rubycritic: Rubycritic is a Ruby static analysis gem. It assigns different ratings to
each file, while also indicating code smells, duplications and complexity. The rating for
AP-specific code is about a C on average, which shows improvement can be made to the
static quality of the code. There are an average of 13 code smells and 42 duplications
per file, and the average complexity is 106. This shows that there is quite some room
for improvement in the static code quality.

2.5. Requirements definition
Based on the user interviews and system analysis performed in ??, we now specify the re-
quirements for the system. We divide these into functional and non-functional requirements.

2.5.1. Functional requirements definition
Functional requirements are requirements that describe what the system should do. The
functional requirements are derived from the interview remarks in subsection 2.4.1. We
divide these into four parts: existing functionality, notifications, custom actions and the
dashboard. Some basic existing functionality should continue to exist. The notifications
section covers all kinds of feeds and triggers to manage different aspects, such as artists,
users, requests, and bookings. It also contains some automation and data collection. The
custom actions section contains special actions that are not necessarily part of a standard
CRUD operation, such as combining two user entries because they are actually the same
user that registered in two different ways. The dashboard is for data visualization, to provide
more insight in how the company is doing.
The functional requirements are as follows:

1. Existing functionality

(a) It should be possible to perform standard operations such as create, update, delete,
on data such as users, artists, and requests

(b) Access to the administration panel should be restricted to Plugify employees only.
(c) Applicable pages should have a search, filter and sort functionality, to provide easy

lookup of data.
(d) It should be possible to assign an admin to a conversation/notification/request. It

should be possible to show only notifications of a certain admin.

2.5. Requirements definition 9

2. Notifications

(a) A message feed should exist.
• The message feed should contain all messages and conversations that are not
associated with a booking yet. These consists of both messages with and with-
out a request

• It should be possible to accept a message with a single button click so that it
will not appear as a new message again.

• It should be possible to label a message as a request. This should only be
possible when a request does not exist yet

• It should be possible to reject or revoke a request.
• It should be possible to snooze the conversation for a certain amount of time,
so that the user will be reminded again at that time. This snooze may be inter-
rupted by certain triggers, such as the creation of a booking.

(b) A new request feed should exist.
• This feed should contain all requests that are possibly unique.
• It should be possible to match a request to another unique request, if the re-
quest belongs to this unique request

• It should be possible to label a request as a unique request.
(c) A notification feed exists

• This feed lists all notifications that are not yet handled.
• The necessary actions differ per notification. The different notification types are
discussed below.

(d) Different notifications should be generated
i. New customer notification

• This notification should trigger when a customer enters his or her phone
number.

• It should be possible to add customer information that is retrieved when
calling the customer, such as the type of customer and how the customer
found the platform

• It should be possible to signal that there are no upsell possibilities for this
customer.

ii. New artist notification
• This notification should trigger when an artist receives his or her first re-
quest

• This notification should trigger when an artist receives a request and it has
been three months since someone from Plugify last spoke to this artist is
nu ’since artist got a request’

• It should be possible to indicate when this artist was last spoken to, and
what was discussed.

iii. Possible deletion notification
• This notification should trigger when an artist has received two warnings
for leakage; trying to book around Plugify’s back.

• This notification should trigger when there have been three other warnings,
such as
– Not responding within 24 hours
– Mentioning travel costs or VAT
– Mentioning the Plugify service fee
– Negative comments about Plugify

• The given warnings need to be kept track of and displayed
• It should be possible to delete a warning.

10 2. Research

iv. Potential loss notification
• Triggers when the last request is revoked
• It should be possible to indicate why this loss occurred
• It should be possible to indicate which other artist was booked on what
platform, if applicable

v. Fear of missing out notification
• Triggers when only a single request is open
• Triggers when the last request is revoked, and nothing has been done with
automatically sent suggestions

• It should be possible to indicate what action was taken
• It should be possible to set a snooze for such a notification
• It should be able to assign a status, for example to not bother anymore.

vi. New booking notification
• Triggers when a new booking occurs and upsell was not turned off (see new
customer notification).

• It should be possible to indicate what other bands were recommended and
when

• It should be possible to snooze such a notification

3. Custom actions

(a) It should be possible to perform certain custom actions, such as, but not limited
to:
• Merging two user entries into one if they are actually the same user
• Sending a message in a conversation in the name of the user or artist
• Rejecting or revoking a request
• Rejecting a quotation

(b) These actions need to be intuitive to perform
(c) These actions need to be available at the correct place

4. Dashboard

(a) The dashboard should contain several graphs, concerning, but not limited to:
• Number of unique requests
• Percentage of unique requests that are booked/quoted/still open
• Total revenue (per booking)
• Number of new users/artists

(b) It should be possible to adjust the start and end point of the graph
(c) It should be possible to adjust the interval of measurements in the graph
(d) It should be possible to filter results, for example filtering new artists on only DJs

2.5.2. Non-functional requirements definition
Non-functional requirements specify how the system works, and serve as quality attributes
for the system. Some of these requirements are derived from the interviews and system
analysis, others are a result of best practices that we learned during our bachelor studies.
The non-functional requirements are as follows:

1. The system should comply with Plugify’s current software system and data models.

2. The system should be maintainable, meaning that it has well written, well documented
code that follows common programming standards. Therefore

• The number of code smells should be as low as possible, with a maximum of two
per file

2.6. Approach 11

• The amount of code duplication should be as low as possible

3. The system should be reliable, and therefore well-tested. Therefore

• The existing tests should keep passing
• New unit-tests will be created for new features in the back end
• The back end test coverage must be at least 80% so it complies with the test cov-
erage in the existing back end

• The front end will be tested by user testing, through RITE. Front end logic should
also be tested well.

4. The system should be fast, meaning it has short loading times, and responds quickly
even under heavy load

5. The system should be secure and accessible only by those granted access.

6. The system should have an easy to use interface that can be understood by employees
with a non-technical background.

2.6. Approach
In this section we discuss our approach to this project. First, we discuss how we will ensure a
reliable development process happens, so requirements are met, in subsection 2.6.1. Second,
in subsection 2.6.2 we discuss the tools and techniques we will use in this project to make
sure requirements are met and the process is as smooth as possible, and why we choose
them specifically.

2.6.1. Process
A stable development process is vital for creating a good system rapidly. Therefore, we will
adhere to a number of points, to ensure an effective development process happens.

• Agile. We will use agile development in the form of SCRUM, with a sprint duration of
1 week. A sprint plan will be made before every sprint, and after each sprint we will
reflect on the planning and performance during that sprint. At the end of each sprint,
a stable version of the system must exist. An agile development process provides room
for early testing, and is adaptable to changing requirements. The latter allows us to
tweak requirements to ensure the product we deliver perfectly fits the needs of Plugify’s
employees.

• Continuous integration. To safeguard the reliability of our system, we will use con-
tinuous integration. This means we will instantly notice if some tests fail, resulting in
those tests being fixed shortly after It will not be possible to merge new code into the
existing master branch if the continuous integration checks fail.

• Working on location. We will work in the office of Plugify four days a week. This entails
good communication, which is vital in adhering to the needs of the company. It also
provides easy user testing possibilities.

• Version control and pull-based development. A version control system is vital in
writing collaborative software. Pull-based development ensures all new code is reviewed
thoroughly before being added to the definite code-base. This means the overall software
quality will be higher, and it is likely that less bugs will be present.

• Rapid Iterative Testing (RITE) [9]. To ensure that we meet the requirements, we will
use RITE as soon as a sufficient working version has been established. This means
we let our users test the product and have them engage in a verbal protocol. We then
update the product as soon as possible, after which we do another testing round. This
should improve the overall user experience.

12 2. Research

2.6.2. Tools and techniques
Current System
As our project is an extension of the Plugify software package, we need to comply with their
currently used techniques. The choice between extending the current AP or building a new
one from scratch is explained below, so in this section we will focus on anything not related
to the front-end. Since the entire back-end of the Plugify is built using Ruby on Rails 5.0
and Ruby 2.3 we will use that for the AP part of the back-end as well. This choice ensures
consistency and improves maintainability. Plugify uses a PostgreSQL 9.5 database to store
their data, which means we need to use that as well. For code sharing, version control, and
code review Plugify is currently using GitHub. We are happy to use this for our project, since
this would be our own choice as well due to our extensive experience with the platform, and
the good code review features it offers on top of the Git framework. Finally, Travis CI is used
for continuous integration. This ensures all tests will be run before code can be merged,
meaning the master branch can always provide a working version of the software product.

Process Tools
We will use two tools to improve our development process, which is discussed in subsec-
tion 2.6.1. The first tool is Trello, a card-based tool to get insights in the different tasks of
your agile sprint, therefore improving organization and productivity. Another similar alter-
native for Trello would be Waffle.io which has the extended functionality of integrating with
GitHub. However, we will not use our own GitHub repository for this project, as most of the
code will be an extension of Plugify’s current back end. Therefore Waffle.io would clutter
their GitHub, something that should be avoided.

The second tool is Slack, a messaging service that has many features to support project
work. We have had good experiences with this tool in the past because it enables clear
communication with everyone involved in the project, such as team members and supervi-
sors. Another reason Slack is a good choice for communication is the fact that Plugify also
uses Slack to discuss projects throughout the company, which means using Slack ourselves
provides consistency for a smoother workflow.

Front end framework
The final decision explained in this section covers the front end of the AP software. This
is arguably the most important choice, as the framework used for the back end is already
established to comply with Plugify’s system. A number of plausible options are present,
which, together with their main strengths and weaknesses, are discussed below:

• Improving and extending the current front end, which was developed in Angular 2. This
seems to be the best choice at first glance, as we would not have to start from scratch,
and most of the basic features have been implemented. These advantages however, are
countered by the fact that while the current AP implements most features, it suffers
from some issues as discussed in subsection 2.4.2. The design lacks polish, pages take
long to load and actions are unintuitive and take a lot of clicks. It would take up a hight
portion of the available development time to fix these issues.

• Creating a new front end using a front end framework like Angular 2, React or Poly-
mer. As we have experience developing front ends using such frameworks, particularly
Polymer, this would allow us to generate a front end that perfectly matches the client’s
needs. However, generating a front end from scratch takes a large amount of develop-
ment work, and would cause us to focus less on the automation and notification parts
in the back end.

• Creating a new front end using Ruby on Rails. Creating a front end in Ruby on Rails,
the same framework that is used for the back end, would allow us to develop a working
version rapidly. However, styling such a front end appears to be challenging, among
other issues because no one of our team has experience with developing front ends
using Ruby on Rails. Another disadvantage, when compared to front end frameworks
like Polymer or Angular2, is that Ruby on Rails does not by default support updating
views without reloading the page.

2.7. Research conclusion 13

• Setting up an existing AP front end framework such as ForestAdmin, BlurAdmin, or
ActiveAdmin. Such a framework generates the standard datamanipulation possibilities,
and then allows for custom actions, views, and settings to be used while developing a
user experience that fits your business. An advantage is that we can make a suitable
user interface with little development time and focus on more complicated back end
features such as automation and notification triggering. The logic of such a front end
framework is already well tested. A disadvantage would be that it is less customizable
than developing a front end from scratch, and it, in the case of ForestAdmin, is usually
hosted by ForestAdmin itself [7], which introduces an unwarranted dependency on the
software vendor.

After reviewing and discussing the options with our client, we conclude that using an ex-
isting AP framework is currently the most beneficial choice for the final product. The current
AP suffers from a number of issues we would have to address before starting on any of the re-
quested new features. The right framework, however, provides us with an intuitive interface,
and addresses many of the original issues with the AP, allowing us to focus on new features
such as automation. The question that remains is then which framework best fits our re-
quirements. After analyzing the possibilities, we conclude that ForestAdmin and ActiveAdmin
suit our needs, due to their reliable service and easy setup possibilities. ActiveAdmin has
been around longer than ForestAdmin [2]. However, ForestAdmin is a rapidly growing service
that constantly adds new and exciting features. Furthermore, we had talk with a member
of ForestAdmin, to alleviate our concerns. Hence, we are convinced that ForestAdmin is a
reliable service that suits our needs, and choose to use it during the remainder of the project.

2.7. Research conclusion
We can now conclude the research phase by giving an overview of our proposed solution to
the problem. The administration panel of Plugify, in its current form, no longer serves the
needs of the company. It is slow, has missing features and actions are often unintuitive to
perform. Therefore, the goals of the project were to make a system that meets Plugify’s new
requirements and has a high usability, maintainability, reliability, and performance. Based
on interviews with some of the future users of the system, and an analysis of the existing
administration panel, we have derived a set of functional and non-functional requirements.
To achieve the project goals, we will develop a new administration panel, using ForestAdmin
as a front end framework, and extending the existing Ruby on Rails back end to suit the
new requirements. As one of our goals was to achieve a high usability, we will use RITE for
quick user evaluation, so we can find flaws in the design of the system quickly. A stable
development process is ensured by using SCRUM and continuous integration. This also
helps in achieving a high reliability in our system.

3
Background knowledge

This section provides the necessary background knowledge to fully understand the project
and this report. It explains the basic funnel of Plugify, the different steps that are taken from
a user doing a request, to a booking being made. It also gives a basic explanation of Forest
Admin, the front-end framework that is used to build the new administration panel.

3.1. Plugify background
Plugify as a company is already explained in chapter 1, subsequently in this chapter we will
go into further details on how Plugify operates, and what the general process is that preceeds
a booking. Plugify has a small employee base (10-15 people) that is divided into several teams.
One of the aims of this project is to improve the efficiency of the Customer Happiness Office
(CHO) team. The main job of the CHO team is to make sure the Plugify funnel is operating
smoothly, bookers and requesters understand the platform and each other, and that all
actions taken on the platform comply with Plugify’s Terms of Service (TOS) [11]. Hence, it is
important to understand the different stages that the Plugify funnel is composed of.

3.1.1. The Plugify funnel
In Plugify’s case, the funnel encloses the entire process between a user visiting the platform
for the first time, a performance, and (hopefully) a review. The steps a user will encounter in
this funnel, in the most common order, are:

• Search for an artist

• Sign up for the platform

• Create a request

• Discuss the details with the artist

• Receive a quotation from the artist

• Confirm the booking, and make the payment

• Listen to the artist

• Leave a review

As users are uncertain whether an artist is available, Plugify encourages them to create a
request for multiple artists, to have the highest chance at a successful booking. As only one of
these requests can result in a booking, Plugify marks them as a group with a single ”master-
request”. This is useful for both the CHO team, as they know what requests are coupled, and
for business intelligence, as looking at the number and price of master requests provides a
valuable insight in the transaction value that is generated on the platform.

15

16 3. Background knowledge

Because Plugify is growing, the CHO team is unable to go through every request manually
every day to check that everything is still going smoothly. Therefore, as part of the previous
Admin Panel, a notification system was implemented to provide updates to the CHO team
when certain events occur, so they can check in to see if everything is alright. The triggers
for funnel-specific notifications in the old notification system are:

• A user’s phone number is updated - this allows the CHO team to welcome them to the
platform and ask if they have feedback or need anything.

• A new request is created.

• A new message is added to a request’s conversation - this provides possibilities to check
if the request is still going smoothly, and whether the contents of the message are in
line with Plugify’s TOS. That last point is to detect and prevent leakage, which occurs
when an artist tries to process a request outside of Plugify, so he/she does not have to
pay the commission.

• A quotation is generated.

• All requests/quotations in a master request are rejected/withdrawn - this means a user
was not able to find an artist, and he/she might need some help.

• A booking is created.

Even with this notifications system, the CHO team still has to perform many actions per
request. Therefore a major goal of the new AP is to improve this system. An improvement that
could be made is to generate notifications only when a master request is stuck, for example
due to one party not responding. This means the data for the individual requests must be
analyzed in greater detail, and in smarter ways.

3.2. ForestAdmin background
As discussed in chapter 2 we decided to use the ForestAdmin framework [7] to rapidly build
an AP front end. This section will explain how ForestAdmin works, what it provides by default,
and how it can be personalized. This is important as it shows what front end work we have
and have not done ourselves.

ForestAdmin is divided into two parts:

1. The actual front end which is served by the ForestAdmin servers. This front end first
fetches the table layouts, which are stored on one of the ForestAdmin servers as well,
as is discussed below. The client then fetches the data from the Plugify servers.

2. An open source back end framework which crawls the data model and sets up the stan-
dard CRUD API endpoints, including getting lists of records, full details of one record,
and updating a record. It also makes a copy of the data layout and sends it to the
ForestAdmin server for improved loading times. This framework is available for multi-
ple back end options like Express, Django and Ruby on Rails, however the latter is the
one that is best supported. The default CRUD implementations already support Ruby
on Rails validations, and display an error message when these fail.

3.2.1. Default ForestAdmin features
These two parts combined give ForestAdmin the default features of showing data, editing
data, creating data and deleting data. By default all defined collections and their fields
are shown, but irrelevant (or secured) collections or fields can be hidden using the layout
editor in the ForestAdmin front end. ForestAdmin supports development and production
environments by default, but more can be added manually. ForestAdmin also supports dif-
ferent teams, so certain collections can only be viewed and edited by certain people. Finally,
ForestAdmin has a dashboard page on which you can show single value, percentage, pie, or
time based charts of your data. Simple charts based on a direct field in your data can be
added in the front end.

3.2. ForestAdmin background 17

3.2.2. Extending ForestAdmin with custom functionality
As every company operates differently, ForestAdmin provides some ways to customize the
AP. First of all, for fields, collections and charts, smart versions can be added. These smart
versions are displayed identical to default ones in the front end, but their content can be
determined dynamically in the back end. This means we can add aggregated fields, add
charts that depend on multiple fields/data entries, and show custom collections that are not
immediately available from the database. All of these improve the user interface and data
visualization, and therefore increase the efficiency of the employees.

Secondly, ForestAdmin allows for the creation of so-called smart views. These smart views
are custom views that are defined on a collection and built in EmberJS. They allow us to fully
customize how interaction with the data is handled.

4
Design

This section provides a detailed overview of the design choices made to fulfill the require-
ments for this project. It details the code and architecture design process for the system in
section 4.1, discusses the UX design process behind the set of feeds that are present in the
AP in section 4.2, and finally brings to light the design choices behind the team layouts in
ForestAdmin in section 4.3.

4.1. Architecture design
This section discusses the overall architectural design of our polyglot implementation of the
new AP. Since our implementation spans both the Ruby on Rails back end and the ForestAd-
min related implementations, they are discussed separately. A total overview of the system
can be found in figure A.2. This overview shows how the ForestAdmin front end, Ruby on
Rails back end, PostgreSQL database and Exact API communicate. For some parts of the
system an example is given, rather than all components. For example, the communica-
tion between the front end artists page and the Forest::ArtistsController displays the general
structure for all smart actions. The communication between the front end notification feed
and a number of ForestLiana controllers display the fact that the front end feeds get data
from different controllers (to fetch related data), and are also able to call smart actions. The
actual interaction with the database is extracted in Ruby on Rails, via the use of ActiveRe-
cord. Therefore the Rails back end as a whole communicates with the database, instead of
every controller individually. The overview also shows that both the DashboardController
and the MetricsController get data from the Exact API. However if one of them fetches the
data, it is cached to improve loading times on both related pages.

4.1.1. Back end architecture
As Plugify already has a fully operational Ruby on Rails back end, and the code for the new AP
should be merged into this project, we were not able to design the architecture from scratch.
However, Ruby on Rails has detailed guidelines/best-practices for the architecture of an api
application, and the existing Plugify back end follows these principles really well. Models
and controllers are nicely separated to create a Model-View-Controller (MVC) model, with the
front end website as view. Other than that, there are a number of jobs, to be run periodically
or on a certain trigger, and helpers, for shared functionalities.

We tried to follow this pattern as best as we could, however some ForestAdmin specific
code had to be placed in predefined locations for ForestAdmin to recognize it. This concerns
the code for smart actions and fields, as well as CRUD overrides. To still follow the Ruby on
Rails design patterns we divided that code up into models and controllers as well. All test
code was separated following the same principles.

19

20 4. Design

4.1.2. ForestAdmin architecture
The architecture of the ForestAdmin part of our implementation concerns both the ForestAd-
min data flow, the ForestAdmin MVC model, and our own implemented custom smart views.

ForestAdmin data flow
The ForestAdmin data flow is not something we designed ourselves, but it is a key point for
Plugify as it concerns the security of their data. As discussed in section 3.2 the ForestAd-
min servers store a copy of the layout of the Plugify data model, which is generated by the
ForestLiana Ruby gem. That data layout is fetched by the client after the general ForestAdmin
front end has been loaded. After this the client fetches the data from the Plugify server, which
runs on the Amazon Web Services (AWS) platform. This means only a copy of the data layout
is ever stored on a ForestAdmin server, and the data is, secured with our own secret keys,
strictly sent from the Plugify servers to the clients, never passing through the ForestAdmin
server. Therefore ForestAdmin’s general data flow satisfies Plugify’s need for securing their
data. A visualization of both the initialization process and general ForestAdmin architecture
is given in figure 4.1

ForestAdmin MVC model
As discussed above, our custom ForestAdmin code has to be placed in predefined locations,
which slightly hinders a perfect MVC model. However we managed to still divide the code
into parts that make sense. First of all, all custom front end code, in the form of smart views,
is separated as discussed in subsection 5.4.1. Secondly, all controllers that process smart
actions, declare smart charts, or declare smart collections, are grouped together in the Forest
namespace of the existing controller package. Controllers that overwrite existing ForestAd-
min functionality, like overwriting the general CRUD operations for custom logic and checks
on updates, are grouped into the controller section of the lib/forest_liana package. These con-
trollers can not be moved to the general controller package as that would prevent forest_liana
from recognizing the overwrites. Finally, the extensions of the ForestAdmin collections that
declare smart fields and segments, are grouped together into the collections section of the
lib/forest_liana package, again to make sure forest_liana recognizes the extensions.

The coupling between the ForestAdmin front end and our back end code happens through
a url format specified by ForestAdmin. In config/routes.rb all of these routes are mapped
to the corresponding controllers for smooth processing of smart actions and smart chart
requests.

Figure 4.1: ForestAdmin initalization process and architecture
Source: http://doc.forestadmin.com/developers-guide/

4.2. Feed design 21

4.2. Feed design
In this section, we detail the initial design for the three feeds, as defined in the functional
requirements in chapter 2. We provide details and motivations behind basic design choices
such as content layout and grouping, location of vital functionality, and the intentional cre-
ation of similarities between feeds.

For clarity, the three feeds are summarized below:

• A message feed, which allows users to process messages between Plugify’s users, ap-
proving them, archiving them for a set time, or rejecting their associated requests.

• A new request feed which allows users to match separate incoming requests by one user
on the same day together, or separate requests that were already matched, if necessary.

• A notification feed, which lists all as-of-yet unprocessed notifications thrown by the noti-
fication system, together with all the necessary attached information and the capability
to modify that information.

As the feeds clearly share core similarities, we provide an initial design for a base feed
that fulfills shared layout requirements, and then define more specific requirements per feed
with regards to content representation.

4.2.1. Base feed initial design
When we analyze the feeds’ requirements, a set of similarities between the feeds is identified.
For each feed, the following holds:

• The feed must display a number of records at the same time. (messages, requests,
notifications)

• The records displayed most prominently by the feed must ordered in a pre-determined
manner.

• For each record, related data must be shown. (Every message relates to a request, every
request relates to a group of other requests, every notification has a supply of attached
information that is necessary to process the notification.)

• For each record, a status must be shown. (Messages are approved, disapproved, and
their requests rejected or nonexistent. Notifications can be closed, archived, et cetera.)

Starting from these similarities, we provide an initial layout design of a feed, depicted in
figure 4.2, where content is structured into two major sections, each taking up half of the
feed’s space. To the left, a list of most recent records is displayed, each of which can be
selected. Upon selection of a record, to the right, a list of details regarding this record is
displayed. Details can include relevant information about the record, related data that may
be of purpose to the user, as well as necessary actions the user can undertake that influence
this record, such as modifying, adding, or deleting the record or its related data.

22 4. Design

Figure 4.2: The basic feed layout

All three feeds will share this same layout design, as this allows us to more efficiently
develop the feeds. However, as the feeds differ on certain points, we must take note of some
considerations per feed.

4.2.2. Messages feed considerations
The messages feed shows new unapproved messages between artists and users, and allows
an administrator to process them. In order to do so, the administrator requires direct access
to relevant information. We identify key information that must be displayed in the feed:

• The message itself.

• Other messages in the conversation, to provide context.

• Information about the user, such as their contact information.

• Information about the artist, such as their contact information and whether they have
received warnings in the past.

Furthermore, the administrator must be able to process messages quickly. We identify
key actions the administrator must be able to undertake:

• Approving a message. After this, the message is processed and disappears from the
feed.

• Marking a message as being a request.

• Marking a message as representing a withdrawal by a user, implying that they withdraw
from the request they initially made for the artist. After this, the message is processed,
and disappears from the feed.

• Marking a message as representing a rejection by an artist, implying that they reject
the request a user initially made for them. After this, the message is processed and
disappears from the feed.

4.3. Forest team design 23

• Adding a message to the message’s conversation, which can be set as represented by
an artist or a user.

4.2.3. Notifications feed considerations
The notifications feed shows all as-of-yet unclosed or unsnoozed notifications in order of the
most recently created notification. Administrators must be able to rapidly process incoming
notifications.

As every notification concerns a certain event, administrators must have access to key
information regarding said event, which we identify below:

• The type of notification thrown.

• When the notification was thrown. This can impact the deadline for processing the
notification.

• The assigned administrator for the notification.

• Relevant related information for the notification. This can include the following: a user,
an artist, a request of number of requests, a conversation or number of conversations,
a quotation, and a booking.

Furthermore, to process a notification, administrators must be able to perform a number
of key actions, which we identify below:

• Closing a notification. After this, the notification is processed, and disappears from the
feed.

• Snoozing a notification, for a configurable amount of days and hours. After this, the
notification is processed (for a while), and disappears from the feed.

• Assigning an administrator to the notification. This can be done manually, if necessary.

4.2.4. Request feed design considerations
The request feed shows groups of user requests in most-recent order. If a user makes four
requests on the same day, it will appear as a single group. As the feed’s purpose is to look at
groups of requests only, it will not show any groups consisting of just a single request. Next
to these groups, administrators require access to the following information:

• The number of requests made inside a group.

• Per request, relevant information about the request, such it’s date, time, duration and
type of artist.

Furthermore, to monitor and adjust these request groups, administrators must be able
to perform a number of key actions, which we identify below:

• Splitting off a request or number of requests from another group of requests as these
are separate and count as multiple requests.

• Merging together two or more requests into a single group as these are related and count
as one request.

4.3. Forest team design
As ForestAdmin supports teams, which allow us to customize the experience for sets of peo-
ple, we can ensure that certain content is only visible to users with the proper rights, and
can ensure that the right content is visible to the right user at a glance.

Plugify currently has at least two kinds of internal users: administrators and CHOs. We
define teams for each of these. Administrators have, for one, complete access to all data, as

24 4. Design

well as the right to modify the team layouts. CHOs have limited access, as we hide data fields
that are of no importance to them.

Furthermore, we define a third team, named All, to which every member of Plugify has di-
rect access. For now, this team provides access to collected metrics only, as most of Plugify’s
members require access to this data, but not the rest of the data.

5
Implementation

In this section, we discuss the implementation of the system. We explain the implementa-
tion of the different components, implementation choices we considered and difficulties we
encountered.

5.1. Smart actions
Since every business needs more logic than just creating, deleting and editing, ForestAdmin
allows the definition of so-called ’smart actions’ on collections. These smart actions are
defined in the back end, and can include an input form when necessary. An example of an
implementation of a smart action can be found in figure 5.1. We have implemented a number
of smart actions to facilitate Plugify’s needs:

• Artist: give warning - This action is used to give a warning to an artist, when he/she
does not comply with Plugify’s code of conduct. Examples are: talking negatively about
Plugify or asking for traveling costs. The required fields in the input form are: the type
of warning, and the reason this warning was given.

• Conversation: this is a request - As users of the platform can make contact with an
artist by either creating a request or asking for more information, this is a way to mark
these requests for more information as a actual request in the back end. This is then
used for generating notifications and more accurate business intelligence data. The ac-
tion requires some input for defining the date, occasion and location of the performance.

• Conversation: send message - This action gives CHO employees the possibility to send
a message in a conversation. The required form inputs are: the body of the message, if
the message must be sent as user or artist, and whether to email the recipient.

• Message: reject request with message - This actions marks a request as rejected, with
the body of the message as reject reason. The form allow the initiator of the action to
specify if the user and/or artist should receive an email notifying them of this rejection.

• Notification: edit notification admin - This action can be used to edit the admin
of a notification. The form can be used to select an admin using a dropdown. In the
back end logic, the admin of the corresponding user is also updated to keep the data
consistent.

• Quotation: reject quotation - This action can be used to reject a quotation, and the
corresponding request if specified in the input form. The form also allows specifying the
reject reason and whether the user and/or artist should receive an email.

• Request: reject request - This action can be used to reject a request. The input form
can be used to specify the reject reason, the rejection date (default today), if the request
should be rejected as user or artist, and whether the user and/or artist should receive
an email.

25

26 5. Implementation

• User: impersonate - This is an action that is a duplication of an action in the old AP. It
can be used to log into the platform as a specific user, to check what the see when they
open the platform. This is very useful for testing purposes and helping with specific
problems.

• User: merge users - This action is actually defined on two users, and is used when a
user created two accounts by accident. The action merges the most important infor-
mation of the second user into the first user, if it is not already present. After this the
second user is deleted.

Figure 5.1: Example of a smart action. Gives a warning to an artist

5.2. Dashboard and metrics
The metrics view and dashboard give a quick and easy overview of the performance and
growth of Plugify and as a company. It displays both financial data as well as other metrics
such as the number of requests and bookings over time. Predictions for the future are also
being made.

5.2.1. Fetching and processing the data
The necessary data to calculate the different metrics is stored in two separate places. In-
formation about requests and bookings is in the Plugify database, and the financial data is
in the Exact database. Exact is an accounting platform that provides a means to store and
process financial data. [3]

We fetch the Exact data from the REST API, using the Elmas [5] gem. Data from the Plugify
database is fetched by using regular SQL queries, aided with Rails ActiveRecord actions. We
then use this data to calculate all the different metrics that are shown in the dashboard. This
is done by sending the separate logic for each different metric in a lambda to a helper method
that uses this logic, and returns the correct data format. Figure 5.2 shows an example of a
helper method, figure 5.3 shows how this method is used to calculate a metric

5.2. Dashboard and metrics 27

Figure 5.2: Helper method for the calculation of the metrics. Takes logic as an input, and uses it to calculate all different values

Figure 5.3: Example of calculating a metric.

5.2.2. Layout and excel output
The data is displayed in Forest, by defining a smart collection ’Metrics’, and treating each
metric as if it was a record in a ’regular’ collection. This way, each metric is displayed on its
own row. The dashboard automatically adapts to show the current year. Figure 5.4 shows
part of the dashboard in ForestAdmin.

Figure 5.4: Part of the dashboard as shown in ForestAdmin. Values are not representative of the real world situation.

Forest has very limited styling possibilities that make the dashboard a bit hard to read
sometimes. However, we also have created the possibility to automatically generate a nicely

28 5. Implementation

formatted excel spreadsheet. This also gives the people from Plugify a means to download
the data to an offline location, so they are not dependent on accessing the online dashboard
every time. A part of the excel output can be seen in figure 5.5

Figure 5.5: Part of the generated excel file. Values are not representative of the real world situation

5.2.3. Speed improvements
A problem that was soon encountered was the fact that fetching and processing the data
takes quite a while (> 10 seconds). To avoid very long waiting times for the user, we use
a caching system to store the data. The data is fetched automatically every hour and kept
in cache. This does mean that the data might be outdated a bit, but a delay of an hour
outweighs the long waiting times that would otherwise be present.

5.2.4. Predictions
As Plugify is a fast-growing company, a solid prediction of the revenue and profit for the
upcoming months is a key feature, that is therefore also present in the dashboard. It predicts
certain values, using the most recent historical data. This gives Plugify an idea of where they
will stand at the end of the year.

5.2.5. Graphs
Next to the dashboard with the numeric values, we have also utilized the dashboard page of
ForestAdmin to display the most important metrics in a graph. This provides the opportunity
to see how the company is doing at a glance. Also, visualizing data often gives a better picture
than just looking at raw numbers. Figure 5.6 shows the visual dashboard.

Figure 5.6: The graphic visualization part of the dashboard.

5.3. Notification logic
The process of booking an artist does not always go smoothly. To improve on the conversion
rate, the Customer Happiness Team of Plugify can intervene when they notice that something

5.3. Notification logic 29

might be going wrong. To keep an overview of what is going on, a notification system exists.
Notifications were thrown on events such as the creation of a new request, a message being
sent, or an artist rejecting a request

To improve on the efficiency of the CHO team of Plugify, the notification system has been
completely revamped, to avoid unnecessary notifications that take a long time to handle. In
the new notification system, there are two main categories of events for which a notification
should be thrown, as well as some miscellaneous notifications.

5.3.1. Notifications for new users and artists
The first category contains notifications that are related to new users and/or artists. Plugify
wants to personally call every new artist and user, to welcome them to the platform, an-
swer any initial questions they might have, and gain information about the origin of their
customers, and how they found the platform. Three notifications exist in this category:

• First request for new artist. This notification triggers when an artist receives his or
her first request. We decided not to throw this notification when an artist registers on
the platform, as the artist only becomes relevant for Plugify when he/she starts getting
requests.

• First request for artist in three months. This notification triggers when it has been
a long time (default: three months) since the artist received a request. Maybe the artist
forgot the exact procedure, or things have changed on the website. Therefore, the people
of Plugify want to call the artist again at this time.

• New active user with phone number. This notification triggers when a user with a
request history adds a phone number, or when a user with a phone number does his
or her first request. This notification is dependent on a phone number being present,
as Plugify want to call the customer, and decided upon the fact that sending an e-mail
often does not have the desired effects.

5.3.2. Notifications for requests that don’t seem to be converting to a booking
The second, and arguably most important category of notifications, are the notifications that
are thrown when it seems something is going wrong. The ultimate goal of Plugify is to get as
many bookings through their platform as possible, so when a request seems to be stuck, for
example due to one party not responding, there should be some manual intervention. There
are two notifications in this category:

• Last request withdrawn by user. This notification triggers when the last request within
a master request is withdrawn by the user. This situation likely means that the user
found an artist somewhere else. Plugify likes to know their competition, and what they
offer that Plugify does not, so at this point they want to call the client to ask what
happened.

• Fear of missing out. This notification is the most diverse and sophisticated out of all
notifications in the new system. This request is thrown when there is no single request
in a group of master request in which everything seems to be going well. If all requests
have a problem, there seems to be a high chance that a booking will not come from this
group of requests. The following problems related to a request have been identified:

– No artist response for 24 hours: An artist is obliged to respond to a request within
24 hours. If this does not happen, a request can get stuck rapidly, as the user can’t
do anything except sending a reminder message.

– Radiosilence: Radiosilence refers to the situation where there has already been
at least one message from the artist, but it has been a while since messages have
been sent. Detecting when a request suffers from radiosilence is not trivial. When
planning an event 6 months ahead, a week of silence is absolutely not a problem.
However, when the performance is due next week, even a period of two days without
a single message can already be a problem. To try and throw the least amount of

30 5. Implementation

false positives and negatives, we decided on the following rule: A request suffers
from radiosilence when there have been no messages for 20% of the time between
the last message, and the performance date. To avoid notification spam for requests
that have a performance date very close by, we use a minimum of 12 hours, and to
avoid too many false negatives for requests that have a performance date far away,
we use a maximum of two weeks. Because these values are an initial estimate, they
are easily changeable in the AP, so Plugify can tweak them when they have formed
a better idea on their ideal value.

– Rejected / Withdrawn: When a request is rejected (by the artist) or withdrawn (by
the user) there is obviously a low chance that this request will result in a booking.
Therefore, this is also classified as a problem case.

The fear-of-missing-out (FOMO) notifications are thrown hourly. Every hour, all re-
quests are checked for their status. New FOMO notifications are thrown where neces-
sary, and old FOMO notifications that now have an ’Okay’ status are removed.

5.3.3. Miscellaneous notifications
Next to these important groups, there are some miscellaneous notifications that do not really
belong together, but still serve an important purpose. These notifications are:

• Artist received too many warnings. This notification triggers when an artist has re-
ceived too many warnings, for example for not responding on time. Currently, an artist
can get a maximum of two warnings for leakage, or three other warnings. These values
are also easily changeable in the AP.

• Performance date passed. This notification triggers when an active request is found
that has a performance date that lies in the past. Often, an artist or user forgets to re-
ject/withdraw a request even though they agree a booking will not be made, for example
via the message system. This can lead to a lot of outdated data in Plugify’s database,
distorting the conversion analysis. This notification notifies the people of Plugify that
they should, in all likelihood, close this request manually.

• Negative review given. This notification triggers when a negative review is given by
a user. A negative review means a score lower or equal to 6 (on a scale of 10) for
Plugify as a whole, or a score lower or equal to 2 (on a scale of 5) for an artist. Plugify
wants to improve their service continuously, so when a user is dissatisfied with Plugify,
some research should be performed on why this was the case, and how this can be
improved. An artist can, of course, receive a negative review occasionally, but when
this happens too often, Plugify should consider talking to the artist, or removing them
from the platform. This way, they can guarantee a high quality of artists.

• New booking with upsell possibilities. This notification triggers when a new booking
is made. At this point, Plugify wants to try and sell another booking. For example, if
someone booked an artist for their wedding ceremony, they might also want to book
someone for the party afterwards.

5.3.4. Properties and actions
Notifications are handled in the notifications feed, which is explained in section 5.4. When
a notification is being handled, it can be snoozed or closed. Snoozing a notification means
that you want to look at it again after a set amount of time, whereas closing a notification
means you are done with it and will never see it again.

Snoozing and closing with FOMO notifications is a little more sophisticated, as request
statuses change all the time. Therefore, we have implemented the following logic, to avoid
too little or too many notifications:

• Closing a FOMO notification means you will never get a FOMO notification for that
master request again, even if the status changes from OK to not OK again. Therefore,
such a notification should only be closed if you are either certain that everything will

5.4. Feeds 31

be alright and this request will result in a booking, or are convinced that this request is
definitely lost.

• When snoozing a FOMO notification, an ’override’ check-box is given.

– When a FOMO notification is snoozed with override, and the status changes from
bad to good, the notification is automatically closed.

– When a FOMO notification is snoozed with override, and the notification was auto-
matically closed, and the status changes from good to bad, it is reopened.

– When a FOMO notification is snoozed without override, the notification will always
come back, even if the status is OK.

Every notification can be assigned an admin, generally a member of the Customer Hap-
piness Team of Plugify. Being an admin happens on a user level, so when a notification is
thrown, the admin of the user that the notification is related to is automatically assigned as
the admin of that notification. The admin can leave comments, to remind him/herself of the
situation the next time the notification comes by, for example after the snooze period has
passed.

5.3.5. Implementation
Notifications are thrown in the notification jobs. These jobs are called on certain ActiveRecord
callbacks. For example, when a booking is created, a job runs that checks if a ’new booking’
notification should be thrown. An example of such a job can be found in figure 5.7

Figure 5.7: Example of a notification job. This job is called whenever a new booking is created

5.4. Feeds
To implement the feeds designed in section 4.2, we use ForestAdmin’s Smart Views. Smart
Views are customEmberJS components [8], which implies that they are entirely self-contained
views. They have direct access to sets of paginated data which ForestAdmin provides. These
pages consists of a small collection of objects and their relations, which smart views can
update and delete. Furthermore, ForestAdmin provides several extensions that can be used
to, among others, trigger Smart Actions, and fetch more pages of data.

5.4.1. Limitations and similarities
The Smart View’s code must be provided in the form of only a single pair of HTML and
JavaScript files, which implies that there are several limitations we must consider:

1. There is no way for us to create custom EmberJS components, other than the Smart
View. This hampers efficient code-reuse almost entirely, as we cannot, for example,
define a small component for a certain data item and then use it in multiple separate
places.

2. There is no way for us to extend EmberJS, which implies custom controllers, templates,
routes, models and tests cannot be used. This limits functionality we can create, limiting

32 5. Implementation

us to modifying available data and calling Smart Actions only. Furthermore, this limits
the testability of our Smart Views, as we cannot create or run software tests on them.

Keeping these limitations in mind, we can still somewhat prevent code duplication. As is
discussed in section 4.2, all feeds share a similar two-section layout, with a list view showing
paginated data to the left, and a detail view showing selected data to the right. The feeds not
only share a similar layout, but can also have similar architectures. They share a number of
default methods that perform actions that are entirely identical. These actions are:

• Fetching or refreshing arbitrary data from the Ember Store.

• Fetching or refreshing related information when paginated data is refreshed, or another
page is fetched. This refreshes data in the list view section.

• Fetching or refreshing related information for a specific data item, such as when this is
selected by a user. This refreshes data in the detail view section.

The triggers for these actions are completely identical in each feed. For example, paginated
data is refreshed on a page switch or reload, while selected data is fetched when a new item
is selected, and when the item is modified by a user.

5.4.2. Initial layouts
By leveraging Forest Smart Views, and considering the limitations and similarities discussed
above, we provide samples of the initial working versions of the three feeds in figure 5.8,
figure 5.9 and figure 5.10.

Figure 5.8: Message feed initial version

5.5. Other features 33

Figure 5.9: Notification feed initial version

Figure 5.10: Request feed initial version

5.5. Other features
In this section we discuss some smaller features that were also implemented during this
project. While small, these features are still key to the usability of our system.

5.5.1. CRUD operations
Creating, reading, updating and deleting data is a big part of every administration panel.
CRUD operations are available by default in ForestAdmin, however, there were some issues

34 5. Implementation

with the default behaviour as it was provided.

Enumerated values
There exist quite some enumerated values in the data model of Plugify, where a set list of
options each have their own integer, that is used to store the value in the database. However,
this does not provide a good user experience, as the numbers by themselves don’t mean a lot
to most users of the admin panel. Therefore we created smart fields for each of these enums,
providing a simple drop-down menu with the options to the users.

Custom update logic
As the Plugify data model contains some dependencies between relations that are not specifi-
cally modeled in validations, these are not automatically checked by the default ForestAdmin
update logic. The back end code of the old AP already contained some of this custom logic,
and we extended this with some more logic. As ForestAdmin provides an example of how to
overwrite their default CRUD operations in their documentation [7], the actual implementa-
tion was trivial. As the list of custom update logic is rather long, only a few examples are
given:

• Update the admin on all notifications connected to a user, when the user’s admin is
updated.

• Updating the user and artist on either request or conversation, when one of them is
updated in the other collection. This has to be done to ensure consistency in the data.

• Deleting new message notifications when all messages in a conversation are approved.
As the notifications for new messages is not present in the new AP, this is just for
backwards compatibility.

5.5.2. Settings
A small but nice to have feature that we implemented is a global settings system using the gem
rails-settings-cached [12]. This allows some constants to be changed easily within ForestAd-
min, such as the maximum number of warnings an artist may receive before a notification
is thrown. These kinds of values do not need to be changed in code anymore, but can be
changed easily in the AP

5.5.3. Warnings
We have developed a simple warnings system, that allows for the possibility of giving warnings
to artists. This provides an easy way to keep track of artists that are not acting in line with
Plugify’s TOS, therefore keeping the overall quality of artists on the platform high. There are
a set amount of warning types, and an administrator can also add comments to provide his
or her own view on the situation. Some warnings, such as the ’no artist response for 24
hours’ warning, are checked and generated automatically.

6
SIG Feedback

In the 6th week of the project we were required to send our codebase to the Software Im-
provement Group (SIG) [14]. We then had to incorporate this feedback into our system, and
send our codebase again for evaluation at the end of the project.

6.1. Issues for delivering the code
When we had to deliver the code to SIG, we experienced some minor challenges. First, all
of our back-end code was written in the existing back-end of Plugify. This made it hard to
distinguish our code from their code. To fix this, we made a separate project, to which we
moved the files that we wrote ourselves completely, or in which we made relevant changes.
Second, due to limitations in Forest Admin, our front end code for the smart views contained
some major flaws that we, unfortunately, could not fix. We discussed this with the people
from SIG, and explained our problem in a README file. In this way, they could account for
this when giving feedback.

6.2. First SIG feedback
The first SIG feedback reads as follows (translated, original Dutch version below):

The code of the system has scored 3 stars on our maintainability model, which means
that the code is averagely maintainable. The highest possible score was not reached due to
low scores for Unit Size and Unit Complexity.

For Unit Size, we look at the percentage of code that is excessively long. Splitting up
these kinds of methods in smaller pieces results in a better understandability, testability
and maintainability of every single part. Within the longer methods in this system, such as
the ’Request.fomo_status’-method, separate pieces of functionality can be found that can be
re-factored to their own methods. Comment-lines such as ’Minimum 12 hours, longer than
20 percent of remaining time or 2 weeks’ are a good indication that an autonomous piece of
functionality is present. We advice to look critically to the longer methods within this system,
and split these up where possible.

For Unit complexity, we look at the percentage of code that is excessively complex. Here it
holds as well that splitting up these kinds of methods results in a better understandability,
testability and maintainability of every individual component. In this case, the most complex
methods are also the longest one, so fixing the first problem will also fix this one.

Finally, the presence of test-code is promising, hopefully the amount of test code will also
grow when new functionality is added.

Generally, the code scores average. Hopefully you can bring this level up a bit during the
rest of the development phase.

Original:
De code van het systeem scoort 3 sterren op ons onderhoudbaarheidsmodel, wat betekent

35

36 6. SIG Feedback

dat de code gemiddeld onderhoudbaar is. De hoogste score is niet behaald door lagere scores
voor Unit Size en Unit Complexity.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is.
Het opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel
makkelijker te begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. Binnen
de langere methodes in dit systeem, zoals bijvoorbeeld de ’Request.fomo_status’-methode,
zijn aparte stukken functionaliteit te vinden welke ge-refactored kunnen worden naar aparte
methodes. Commentaarregels zoals bijvoorbeeld ’Minimum 12 hours, longer than 20 percent
of remaining time or 2 weeks’ zijn een goede indicatie dat er een autonoom stuk functionaliteit
te ontdekken is. Het is aan te raden kritisch te kijken naar de langere methodes binnen dit
systeem en deze waar mogelijk op te splitsen.

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemiddeld
complex is. Ook hier geldt dat het opsplitsen van dit soort methodes in kleinere stukken
ervoor zorgt dat elk onderdeel makkelijker te begrijpen, makkelijker te testen en daardoor
eenvoudiger te onderhouden wordt. In dit geval komen de meest complexe methoden ook
naar voren als de langste methoden, waardoor het oplossen van het eerste probleem ook dit
probleem zal verhelpen.

Tot slot is de aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het
volume van de test-code ook groeien op het moment dat er nieuwe functionaliteit toegevoegd
wordt.

Over het algemeen scoort de code dus gemiddeld, hopelijk lukt het om dit niveau nog iets
te laten stijgen tijdens de rest van de ontwikkelfase.

6.3. Processing the SIG feedback
To improve the maintainability of our system, we have primarily looked at splitting up long
and complex methods. We have split up the main example of the first SIG feedback iteration:
Request.fomo_status. Furthermore we have analyzed what methods were (too) long in the
code we sent to SIG in the first iteration, and refactored them accordingly. This refactoring
meant making our code more concise, splitting some methods up, and extracting duplicated
logic from other methods. Through the remainder of the project we have kept the advices from
SIG in mind and have written shorter and less complex units of code, extracting duplicated
logic wherever possible.

7
Testing and QA

To ensure a reliable system that contains as little bugs as possible, a good testing process
is of utmost importance during a software development project. We have employed three
different ways of testing: Unit testing using Rspec, manual integration testing in the system
itself, and usability testing using RITE In this chapter, we explain how we used these different
forms of testing, and how they have improved the reliability of our system.

7.1. Unit testing
For unit testing we have used Rspec [13]. Rspec is an often-used testing framework for Ruby
on Rails. As the existing tests for Plugify’s back end were written using this framework, we
have done this as well. To set up test objects with some data easily, without having to write
them to the database ourselves, and manage relations with other classes, we have used the
factory_girl [6] gem. This gem provides easy to set up factories for the different models in
your system.

We have used Rspec to test both model classes and controller classes, as well as ForestAd-
min collection classes. There are some major differences in the way these groups are tested,
so we explain them separately.

7.1.1. Model testing
Models and model methods have everything to do with data manipulation. Therefore, tests
that test model methods are often of the form:

1. Create an object, possibly with some predefined data like an e-mail address

2. Call the model method on this object

3. Check that some value has changed, or has remained equal, whichever the intended
behavior.

An example of a model method test can be found in figure 7.1

37

38 7. Testing and QA

Figure 7.1: An example of an Rspec model test

7.1.2. Controller testing
Controllers exist to receive requests, handle them, and provide a response with (optional)
data. Because controllers themselves generally do not manipulate data, their tests look dif-
ferent too. A controller test generally has (some of) the following steps:

1. Set up the response parameters, and execute the call to the controller

2. Check that a certain model method is called on the correct object, based on the given
parameters.

3. Check that the correct status code is returned

4. Check that a correct JSON response is returned.

An example of a controller test can be found in figure 7.2

Figure 7.2: An example of an Rspec controller test

7.2. Manual testing 39

7.1.3. Forest collection testing
The Forest collection classes are classes in which smart fields, actions and segments are
defined. Testing these with Rspec was a bit of a hassle, as forest initializes its smart fields,
actions and segments on server start. Next to that, setters for smart fields are lambdas that
are not easily called from a test class. To fix this, we have extracted the functionality to
regular methods, which we then call both from the forest initialization methods, and from
the test methods.

A test for a smart field generally has the following format:

• Getter testing

1. Set up a model object with certain predefined data.

2. Call the smart field getter method on the object.

3. Check for a correct response.

• Setter testing

1. Set up a model object with certain predefined data.

2. Call the setter with the object, and the data that should be set.

3. Check the data has indeed changed.

An example of a Forest collection test can be found in figure 7.3

Figure 7.3: An example of an Rspec Forest collection test

7.2. Manual testing
As many features are hard to test with automated tests, we have also performed extensive
manual tests in

1. The old Plugify Admin Panel, to ensure we did not break any existing functionality. This
is also due to the fact that the old AP barely contained any test code.

2. The Plugify website, as front-end code is hard to test automatically.

3. Our new admin panel, to test specific ForestAdmin functionalities that were customized
for our needs. We expect the ForestAdmin tool to be heavily tested on its own, however,
our own custom scenarios are new and should therefore be tested. This cannot be done
automatically, because we do not have access to all the ForestAdmin code, and a lot of
it influences the front end.

40 7. Testing and QA

A perfect example of something that cannot be tested with automated tests is a smart
view. Getting and setting data through a smart view is done via generated Forest controllers
that are not accessible in test classes. Therefore, this is tested through manual testing, by

1. Checking the correct data is fetched

2. Changing some data

3. Checking that the new data is stored on database, and correctly re-fetched before, and
after reload.

Next to this, it is also not possible to detect certain actions happening on the click of a
button automatically. For example, a click on the ’Reject request’ button should prompt a
window with some fields that should be filled in. However, this cannot be tested automati-
cally. Therefore, we have tested the calling of smart actions manually, by

1. Clicking the button that should trigger the smart action

2. Checking the correct action window is opened

3. Filling in the necessary data, and executing the action

4. Checking the action had the expected effect on the data

7.3. Usability testing with RITE
To properly test the usability of our system, with concerns to the feeds and the components
we have put in place for each feed, we perform usability testing with a small number of
members of Plugify that use our product in their day-to-day work.

We choose to use a variation of the RITE (Rapid Iterative Testing and Evaluation) usability
testing method [9], as its formal creators advocate its advantages well. In RITE testing, as
with many other forms of usability testing, test participants usually engage with the testable
product in a verbal (think aloud) manner. The major difference in RITE is that the emphasis
lies on rapid changes and adjustments that are iteratively made to the product during the
testing process, which can then immediately be verified by test participants.

7.3.1. Rules
For our testing process, we set some simple rules in advance, in compliance with the rules
Medlock et al. [9] recommended for RITE testing. These rules defined below:

1. We agree beforehand with testers on the tasks they must perform. In this case, we
agree to test general usage of the three feeds, to assess their usage and effectiveness for
a CHO’s daily work. Examples of tasks CHOs perform daily are: approving messages,
processing notifications, and monitoring users’ requests.

2. We agree to solve issues that have an obvious cause or add missing features that have
an obvious solution, within at most two hours during test periods, or before the next
period of testing. Issues and features with either a non-obvious cause or solution may
be processed at a later time, after testing.

3. We agree to set time aside after each period of testing, to review documented results
concerning changes and adjustments made to the product.

4. We agree to run a sufficient number of tests on the product, for at least two weeks or
until obvious issues and requests are processed.

7.3.2. Participants
The sole audience of ForestAdmin and the three feeds consists of Plugify’s members. As
Plugify is a small company, and our product has a limited user base, we attempt to include
at least two CHOs and one administrator of Plugify in our testing process.

7.3. Usability testing with RITE 41

7.3.3. Measurements
The primary source of data are the testers’ observations and encounters, which we divide
into the following types:

• Errors. Errors encountered where the product itself fails critically, that result in failure
to complete CHO tasks.

• Issues. Issues encountered with the design of the product, or failure by a tester to
properly use the product, that result in failure to complete CHO tasks.

• Critiques. Critiques given of features or design choices of the product.

• Requests. Requests given for features or design choices to be included in the product.

7.3.4. Procedures
Prior to testing we discuss with testers the tasks they have to complete, namely general
CHO tasks such as approving user messages, processing thrown notifications, or monitoring
users’ requests. We also discuss with testers the manner in which they have to communicate.
Preferably, we use think-aloud. However, to maximally leverage the testing process, and to
remain flexible towards testers, we agree with testers that they can also send us feedback
while using the feeds in their daily work routine. We also discuss with testers what they
can expect from us, i.e. constant iterations and changes being made to the product during
testing periods. As both the group of testers and the group of developers is small, we ensure
that at least one developer is constantly working on fixes and improvements for the product
during testing periods, iteratively pushing out new builds.

7.3.5. Test results
Below, we list all errors, issues, requests and critiques that are encountered during testing,
as well as the direct adjustments made or not made as a result. We show results per feed
separately. Results are shown in the direct order in which they have been encountered.

Notification feed measured results
• Issue: tester has a hard time reading and comparing request data for FOMO notifica-
tions.
Adjustment: added more detailed information pop-ups per request in FOMO notifica-
tions specifically.

• Request: tester wishes to have ability to assign or reassign an administrator to a noti-
fication.
Adjustment: tester can now assign or reassign an administrator in a small form input
in the view.

• Critique: tester does not clearly understand difference between request field and FOMO
status field, and mentions the request field may be unnecessary information.
Adjustment: The request field is no longer shown for FOMO notifications.

• Request: tester wishes to have ability to directly click on an e-mail address, and have
an e-mail form show up.
Adjustment: e-mail addresses can now be clicked on, after which an e-mail form will
show up, and a user can directly send an e-mail.

• Request: tester requests ability to view relevant messages sent between users in the
feed if a notification concerns a certain request.
Adjustment: If a single request is provided, at all times a special Conversation field is
added with the accompanying conversation.

• Request: tester wishes to be able to see the value of a request in the request’s data, as
well as specifically the average value of a group of requests for a FOMO notification.
Adjustment: a request’s value is now shown together with the request, and for a group
of requests the average value is shown.

42 7. Testing and QA

• Error: tester encounters notifications for which no conversation field is shown, even
though it should be.
Adjustment: the error has been tracked down, and conversation fields are now always
shown at the right moment.

• Issue: tester does not understand the difference between Snooze for and Save changes
button.
Adjustment: The Snooze for button is removed, and the Save changes button now both
saves any changes made, and snoozes the notification if data for this is entered.

• Issue: tester has trouble finding a user’s (or an artist’s) relevant contact information.
Adjustment: the user and artist contact information fields have been moved to the very
top, and are now always the first visible items for a selected record.

• Request: tester wishes to see all of a user’s previous requests if a user field is shown.
Adjustment: none made, as this was determined to be an issue with a non-obvious or
easy to implement solution that might impact the system’s performance drastically.

• Error: tester notices that archived notifications, once their archival date has passed,
appear in the feed in the exact position they disappeared from, instead of appearing at
the top.
Adjustment: sorting for notifications was incorrect, and has been adjusted to correctly
show unarchived notifications in position at the date and time on which they were unar-
chived.

Message feed measured results
• Error: not all messages in a conversation are shown.
Adjustment: this is an error with pagination. Now all messages are fetched successfully.

• Critique: tester has comments on the way marking a request as rejection is currently
handled. They imply that it would be easier if, in the list view, artists’ messages could be
marked as rejections with a single button press, and users’ messages could be marked
as withdrawals with a single button press. Currently, they have to select a notification,
select rejection, and enter a form where they select whether the relevant artist rejected
or the user withdrew. This process, according to the tester, is cumbersome, and could
be simplified.
Adjustment: Messages can now be marked as a rejection/withdrawal with a single but-
ton press and form field. Required button pressed have hence been reduced.

• Request: tester wishes to have ability to white-list an artist, so some artists’ messages
never appear, as these can be considered safe.
Adjustment: feature implemented. User can now white-list an artist, after which mes-
sages that concern them are never displayed.

• Critique: tester notes that they always have to select (and thus load) a message, to
check if there are other messages in the relevant conversation which need approving,
for each and every message. They recommend that a count is added to every message
that shows whether there are other unapproved messages in the relevant conversation,
so they can skip selecting most messages and just approve them directly.
Adjustment: feature implemented. User now sees a count of other unapproved mes-
sages in a conversation, per message.

• Issue: tester cannot find user/artist data in messages feed.
Adjustment: while the tester could click on an artist’s id (and similar for a user), we
added two fields showing artist/user contact information to the top of the feed.

• Issue: tester cannot set attribution data for a user in the messages feed.
Adjustment: tester assumed this feature already existed, while it did not. Feature
added.

7.4. Usability testing through measurements 43

Request feed measured results
• Critique: tester notes that request are grouped by creation date on the same day, while
they should be grouped by performance date.
Adjustment: requests are now grouped by performance date.

• Request: tester requires ability to flag requests as completed so they can be hidden.
Otherwise, requests that are fine will remain visible in the feed for no reason.
Adjustment: at time of writing, none are made. Will be adjusted after report deadline.

• Issue: tester cannot see type of artist per request.
Adjustment: this has been added, and can now be viewed at a glance.

7.4. Usability testing through measurements
As can be seen in subsection 2.4.2, we have previously gathered performance and usability
metrics for the old system, with regards to how actions are performed, the number of clicks
required per action, as well as the general time taken for each action. To objectively measure
the usability of our system, we will now revisit these same actions, and perform the same
measurements in the new system, with regards to the three feeds.

We will analyze the speed and ease of performing the following actions in our system, with
specific regards to the three feeds. These are adapted slightly from their previous specifica-
tions, because of design changes to the system. For example, a ’new message’ notification no
longer exists, but the ’message’ feed fulfills the same and more purposes. The actions are:

• Checking if a new request is unique, and otherwise deciding what other unique request
it belongs to.

• Handling a new message. (’new message’ notifications no longer exist, and are replaced
by the message feed)

• Handling a ’FOMO’ notification. (’1 open or all rejected’ notifications no longer exist,
and are replaced by ’FOMO’ notifications)

We will not measure (subjective) intuitiveness of actions to perform, as we have gathered
enough information on this in section section 7.3. We will only measure the following:

• The number of clicks required to perform the action.

• The total (average) waiting time for pages to load.

Checking if a group of new requests is unique, and otherwise deciding what other group
some requests belongs to

1. Click to select request group.

2. Read contents (date, time, type) of all requests, and decide whether there should be
subgroups for different requests.

3. Group requests if necessary, by clicking on the ’Select’ button for all groupable requests,
and then clicking on the ’Group requests’ button.

This action requires at least one click, and at most the number of requests that must
be separated. The total average time spent waiting for the feed to load data is 3.8 seconds.
Selecting requests does not influence load times, as data has been fetched already.

Handling a new message
The sequence of actions to do this in the new message feed is as follows:

1. Read message content.

44 7. Testing and QA

2. If message is ok, click ’approve’, ’mark as request’, ’mark as withdrawal’, or ’mark as
rejection’ button. Otherwise, continue.

3. Click to select message.

4. Read other messages in conversation.

5. If message is ok, click ’approve’, ’mark as request’, ’mark as withdrawal’, or ’mark as
rejection’ button.

6. If a form appears, fill in required data and complete form.

This action requires between one and four clicks, depending on the message. The total
average time spent waiting for the feed to load data is 4.0 seconds. Selecting messages does
not influence load times, as data has been fetched already.

Handling a ’FOMO’ notification
The sequence of actions to do this in the new notifications feed is as follows:

1. Click to select ’FOMO’ notification in notifications feed.

2. Read through available user data, and read through available request data for each
associated request. No clicks are necessary, as all data is presented instantly.

3. If the situation is okay, click the ’Close’ button.

4. Otherwise, fill in text field, choose snooze date if necessary, and click ’Save changes’.

This action requires between 2 and 5 clicks, depending on the situation. The total average
time spent waiting for the feed to load data is 4.5 seconds. Selecting notifications does not
influence load times, as data has been fetched already.

8
Final Product Evaluation

At the end of the development process, after we have designed, implemented, tested and
iterated the product, we now step back to assess and evaluate what has become the final
product. First, in section 8.1, we analyze which functional requirements that we set in sec-
tion 2.5 have been modified or missed. Then, in section 8.2, we take another look at the
goals we set in section 2.3. Then, in section 8.3, we assess the ethical implications of the
final product.

8.1. Functional requirements assessment
In this section, we identify and discuss functional project requirements that we have either
not completed, or were decided not to be part of the actual product during development due
to requirements and design changes.

8.1.1. Dropped or modified functional requirements
We first discuss functional requirements that, due to changes in how the design would turn
out, have been dropped or modified.

• In the message feed, it should be possible to snooze the conversation for a certain amount
of time, so that the user will be reminded again at that time. This snooze may be inter-
rupted by certain triggers, such as the creation of a booking.
This requirement was dropped, because it was deemed inconsistent with the feed’s final
design. Messages are dealt with directly in the message feed.

• In the request feed, the feed should contain all requests that are possibly unique.
This requirement was dropped, because it was deemed inconsistent with the feed’s final
design.

• A new artist notification should trigger when an artist receives a request and it has been
three months since someone from Plugify last spoke to the artist.
This requirement was dropped, as it was considered harmful to a CHOs productivity if
they had to mark when they spoke to an artist every time they did.

• A FOMO notification should trigger when nothing has been done with automatically sent
suggestions.
This was dropped as, in the end, automatic suggestions fell outside the scope of the
project.

• For dashboard graphs, it should be possible to indicate start and end points.
This was dropped, as the dashboard graphs function differently from how we envisioned
them.

45

46 8. Final Product Evaluation

• For dashboard graphs, it should be possible to adjust the intervals of measurements.
This was dropped, as the dashboard graphs function differently from how we envisioned
them.

• For dashboard graphs, it should be possible to filter results.
This was dropped, as the dashboard graphs function differently from how we envisioned
them.

8.1.2. Missed functional requirements
We now discuss those requirements that we have missed due to factors such as loss of scope,
time constraints, and shifting priorities.

• For a potential loss notification, it should be possible to indicate why this loss occurred.

• For a potential loss notification, it should be possible to indicate which other artist was
booked, on what platform, if possible.

• For a FOMO notification, it should be possible to mark what actions have been taken.

8.2. Project goals assessment
We return to the project goals that were defined in section 2.3. For thes goals, we used the
Goal-Question-Metric approach [1]. Hence, can assess our progress towards achieving the
goals we set beforehand by answering the questions defined for these goals, through use of
the metrics for which we have gathered data.

The goals we defined concern the following areas: feature-completeness, usability, main-
tainability, reliability, and performance. Per goal, whose original definitions are repeated
below, we add an assessment concerning that goal’s completion.

• Feature-completeness

– Goal: Ensure the system is feature-complete, serving Plugify’s needs.
– Questions: Are all features Plugify’s employees need present in the system? Are
any features Plugify’s employees need missing?

– Metrics: Number of missing features indicated by Plugify’s employees.
– Assessment: as evident from RITE testing in section 7.3, which identified missing
features in the product, as well as the fulfilled functional requirements discussed
in section 8.1, we can confidently state that, while not all requirements have been
fulfilled, we have brought the system to a sufficiently usable state where it is re-
garded as complete. It not only encapsulates all functionality of the old system, but
contains all vital requested functionality, as evident from testing. The goal is hence
considered achieved.

• Usability

– Goal: Improve the usability of the system for its users.
– Questions: Is the performance and efficiency of CHOs and other users improving?
Is the satisfiability of CHOs and other users with the systems improving?

– Metrics: Time taken per task user has to complete, number of clicks taken per
task user has to complete, and (subjectively) general satisfiability of users with the
system.

– Assessment: as evident from RITE testing in section 7.3 and other gathered metrics
in section 7.4, we see a definitive improvement in usability.
Objectively, we see the required number of mouse clicks per task decrease drasti-
cally. For example, when dealing with a complex ’FOMO’ notification, relevant data
is available at a glance and mouse clicks have dropped from 11 to at least two and
at most five clicks.

8.2. Project goals assessment 47

Subjectively, feedback from users during RITE testing has been positive, with very
little critique being given, and all feature requests and encountered issues having
been responded to.
The goal is hence considered achieved.

• Maintainability

– Goal: Improve the maintainability of the system for developers.
– Questions: Is the system maintainable? Is it well structured? Does it follow com-
mon software design principles?

– Metrics: Percentage of code duplication, average cyclomatic complexity, maximum
cyclomatic complexity, test coverage, and (subjectively) number of other code smells.

– Assessment: following the same tools as described in 2.4.2, we analyzed the final
code base of our project. We only considered the parts of the code base that we
touched or wrote to ensure the analysis is accurate. We reduced the number of
duplicated lines according to Simian to 1190 over 71 cases of code duplication,
compared to 1714 lines over 150 cases in the old AP. Only 26 of our duplicated
lines are in the crucial Ruby on Rails back end code. We drastically improved
the test coverage, from 13% in the old Rails AP code, to 87% in the new Rails
AP code. We also used Rubycritics to analyze the Rails code, which concluded
with an average complexity of 28 per file, 13 duplications per file and 5 smells per
file. This is a major improvement compared to the average complexity of 106 per
file, 42 duplication per file and 13 smells per file in the old AP. As these metrics
show a major improvement to the maintainability of the AP codebase, this goal is
considered achieved.

• Reliability

– Goal: Improve the reliability of the system for its users.
– Questions: Is the system reliable? Are bugs present in the system? Is the system
well tested?

– Metrics: Test coverage, number of encountered errors during general usage.
– Assessment: As discussed in the analysis of the maintainability goal, we improved
the test coverage from a bare 13% in the old AP code, to 87% in the new AP code.
This increase in coverage provides a major improvement to the reliability of the
system, as confidence in well-tested code is generally heightened. Furthermore, all
errors that were encountered in usability testing, as few as they were, have been
resolved. Hence, the system is considered reliable. The goal is hence considered
achieved.

• Performance

– Goal: Improve the runtime performance of the system.
– Questions: How fast is the system? Does it display data quickly? Does it perform
well under load?

– Metrics: loading times of system, loading times of views that require large amounts
of data.

– Assessment: we see a definitive improvement in performance of the system. For
example, in section 7.4, we gathered load time metrics of specific pages that proved
to be bottlenecks in the old system. For handling a ’FOMO’ notification or similar,
we see a dramatic decrease from 23.11 seconds loading pages to 4.5 seconds.
The goal is hence considered achieved.

As discussed above, we consider all the major project goals achieved. We attribute this to
the GQM method, which provided us not only with a clear goal-set from the beginning, but
also allowed us to constantly revisit the project goals during development.

48 8. Final Product Evaluation

8.3. Ethical implications
To assess the ethical implications of our product, we consider the following questions:

• What influences does the product or use of the product have on people?

• What consequences does the product or use of the product imply for people?

While most parts of the product influence people on a minimal scale - the product is, after
all, contained within Plugify and for use by its members only - there is one small part of
the product that is exempt from this rule. This exception is the message feed, which both
influences and bears consequence for artists and users.

The message feed allows a CHO or an admin to directly read all the conversations be-
tween Plugify’s artists and users. Furthermore, it has the capability for modifying - and even
sending - messages. This serves a two-fold purpose. CHOs can monitor for inappropriate
messages to safeguard users and artists, and they can better monitor requests, to ensure that
these convert to a booking. This bears consequence for users that violate Plugify’s policies.

These features were and always have been present, as the previous administration soft-
ware shared these capabilities. Furthermore, artists and users should be aware of these
capabilities, as Plugify has ensured to clearly mention their rights to these, paired with a
thorough explanation, in their terms of service [11].

9
Conclusion

When we started this project 10 weeks ago, the people of Plugify were managing their data
model and funnel with the existing administration panel. Although the functionality of this
panel worked as expected, there were some serious usability issues, as well as some outdated
or missing features identified by Plugify over the last year.

We have managed to build a new administration panel that perfoms well and is intuitive
to use. The new notification system ensures the notification feed is no longer overloaded
with message related notifications, but instead allows users to focus on converting as many
requests to a booking as possible, while not forgetting to welcome new users and artists to
the platform.

The three new feeds allow for rapid processing of all relevant data that comes through the
platform, something that took a lot of time in the old administration panel. This allows the
CHOs to work more efficiently, something that is key to a fast-growing business like Plugify.

The new dashboard functionality provides an easy way for everyone inside the company to
see how the company is doing at any time. Instead of manually fetching data from different
places, as was previously the case, this now happens automatically, making sure the most
recent data is always shown.

The people of Plugify are enthusiastic about the new system we developed. Although the
CHOs still need to get used to the new system, during usability testing it became clear that
some trivial tasks that took a lot of time in the old administration panel, are now performed
fast and with ease.

We are thus content with the end results of the project, and look forward to seeing Plugify
put the project to good use in the future.

49

10
Discussion and recommendations

As the project is finished, we step back and offer some recommendations regarding improve-
ments and additions that can be made to the system in the future. Furthermore, we take
some time to look back at our choice to use the ForestAdmin administration software for a
base administration panel. We discuss ForestAdmin specifically, as it has had a defining
impact on the project as a whole.

10.1. Improvements and additions
While the system we implemented is wholly usable by Plugify as is, there are areas to the
system where improvements can be made or features can be added that Plugify may need in
the future, that we did not cover. For example, one area that fell outside the scope of our
project is the automatic generation and sending of artist suggestions to Plugify’s users. This
provides benefits which Plugify can leverage to better funnel users towards a booking.

Another area we did not touch, mostly due to time constraints, is the storage and analysis
of data surrounding a CHO’s work and interaction with clients. For example, data regarding
call time with users, or even just data regarding what tasks take up a CHO’s time the most,
can be invaluable to Plugify.

10.2. Regarding ForestAdmin
About ForestAdmin, we can say the following: any and all requirements of basic administra-
tion software, such as data creation and updating, are included in ForestAdmin by default.
As such, the use of ForestAdmin has bootstrapped our project, saved us weeks of work, and
allowed us to focus entirely on the specific features that Plugify needs, such as a smarter
notification system, accessible data metrics, and more usable software for CHOs.

We do have to mention, however, that projects should only use ForestAdmin if they do
not have very specific requirements of the software. As ForestAdmin is not completely open
source software, it may be difficult to tailor it to specific needs. Furthermore, ForestAdmin
is under active development by a small team, and as such may suffer from a number of
issues such projects often have. Still, considering these drawbacks, we can recommend
ForestAdmin as it is a capable piece of administration software.

51

A
UML diagrams

53

54 A. UML diagrams

55

Figure A.1: Class diagram of the existing administration panel

56 A. UML diagrams

Figure A.2: Class diagram of the new administration panel

B
Interview questions

The following topics and covering questions are used for a semi-structured interview.

• Topic: regarding your work:

– Can you describe, in short, what your work entails?
– How much of this work is done using the AP?
– Are there things you do manually outside the AP, that you feel can/must be incor-
porated in the AP?

• Topic: regarding notifications in the AP:

– Can you describe, in short, how you process a notification?
⋄ Are there steps during this process that you feel are unnecessary or too com-
plicated?

⋄ Are there steps or data that are similar, for all or most notifications?
⋄ Are there steps or data that you feel are missing, for all or most notifications?

– What notifications take the most time to process, and why?
– Do you feel there are notifications missing, and why?
– Do you feel there are unnecessary notifications, and why?

• Topic: regarding the AP, excluding notifications:

– Can you describe, in short, how you use the AP outside notifications?
⋄ Are there parts of the AP that you feel are unnecessary or too complicated?
⋄ Are there parts of the AP that you feel are buggy, or broken?
⋄ Are there parts not in the AP, that you feel should be in the AP?

– What part of your work in the AP, excluding notifications, takes up most of your
time?

57

C
Project description

C.1. What do we do?
Plugify is the online marketplace for the viewing, listening and booking of live music. From
bands to dj’s to ensembles to solists, something for every occasion. Plugify was founded
because booking a performance can be made so much easier. As an artist you are able to
create an artist page in an approachable manner, after which all information that is relevant
for customers is presented in an attractive form. As a customer you get in touch with your
chosen artist, who you can then book online, including the necessary technology. Plugify is
the new way to book live music.

C.2. What will you do?
Because Plugify is a web platform, the entire application depends on the database which
stores all data regarding users, artists, requests, bookings, etc. To maintain this database
and easily edit user information we use an AP(Admin Panel). Our CHO (Customer Happines
Office) team also uses the notification system that is built into this AP to keep track of the
actions of users and artist, so they can assist when necessary.

Our current AP is getting out-of-date, and could use some bug-fixes, updates and new
features, as this would improve the efficiency of our CHO team. Some things you could think
about:

• new (smarter and faster) information system for our CHO team

• improvements on loading times and reliability

• automation of many trivial tasks

• intelligent processing of data

• giving insights into company financials and making forecasts based on historical data

Whether you will update the existing AP, or create a new one is up to you.

C.3. Which technologies do we use
When I did my own BEP, my topmost priority was to know which technologies I would be
working with. If you get to work with a startup, you get the chance to work with the newest
web technologies. At Plugify those are:

• AngularJS and Angular2

• Ruby on Rails 5.0

• Amazon Web Services

And of course you are free to introduce something new.

59

60 C. Project description

C.4. Company description
Plugify is a young and ambitious startup with an office opposite Amsterdam Central Station.
Since the launch of the platform in March 2016 and a funding round in September 2016
we have been growing rapidly. With a 12-man team we are working on modernizing the
nontransparent world of live music every day.

Also check our website: https://www.plugify.nl

Bibliography
[1] Victor R. Basili, Gianluigi Caldiera, and Dieter H. Rombach. The Goal Question Metric

Approach, volume I. John Wiley & Sons, 1994.

[2] Greg Bell. The administration framework for business critical ruby on rails applications.
2011. https://activeadmin.info/ (visited: 04-05-2017).

[3] Exact Software Nederland B.V. Exact website. 2017. www.exact.nl (visted: 27-06-
2017.

[4] Plugify b.v. Plugify website. 2017. https://www.plugify.nl (visited: 26-06-2017).

[5] Elmas. Elmas exact api wrapper gem. 2017. https://github.com/exactonline/
exactonline-api-ruby-client (vistited: 27-06-2017).

[6] factory girl. factory-girl gem for setting up ruby objects as test data. 2017. https:
//github.com/thoughtbot/factory_girl (visited: 27-06-2017).

[7] ForestAdmin. Developers guide. 2017. http://doc.forestadmin.com/
developers-guide/ (visited: 04-05-2017).

[8] Tilde Inc. Ember.js - ember.component documentation. 2017. https://www.emberjs.
com/api/classes/Ember.Component.html (visited: 21-06-2017).

[9] Michael C. Medlock, Dennis Wixon, Mark Terrano, R. Romero, and Bill Fulton. Using the
rite method to improve products: A definition and a case study. Usability Professionals
Assocation, 51, 2002.

[10] Michael D. Myers and Michael Newman. The qualitative interview in {IS} research: Ex-
amining the craft. Information and Organization, 17(1):2 – 26, 2007. ISSN 1471-7727.
doi: https://doi.org/10.1016/j.infoandorg.2006.11.001.

[11] Plugify. Terms of service. 2017. https://www.plugify.nl/ondersteuning/
gebruiksvoorwaarden/ (visited: 27-06-2017).

[12] rails-settings cached. Rails settings gem. 2017. https://github.com/huacnlee/
rails-settings-cached (visited: 27-06-2017).

[13] Rspec. Rspec testing framework. 2017. http://rspec.info/ (visited: 27-06-2017).

[14] SIG. Software improvement group. 2017. https://www.sig.eu/ (visited: 27-06-2017).

61

https://activeadmin.info/
www.exact.nl
https://www.plugify.nl
https://github.com/exactonline/exactonline-api-ruby-client
https://github.com/exactonline/exactonline-api-ruby-client
https://github.com/thoughtbot/factory_girl
https://github.com/thoughtbot/factory_girl
http://doc.forestadmin.com/developers-guide/
http://doc.forestadmin.com/developers-guide/
https://www.emberjs.com/api/classes/Ember.Component.html
https://www.emberjs.com/api/classes/Ember.Component.html
https://www.plugify.nl/ondersteuning/gebruiksvoorwaarden/
https://www.plugify.nl/ondersteuning/gebruiksvoorwaarden/
https://github.com/huacnlee/rails-settings-cached
https://github.com/huacnlee/rails-settings-cached
http://rspec.info/
https://www.sig.eu/

	Introduction
	Research
	Overview
	Problem definition and analysis
	Project goals
	Requirements analysis
	User interviews
	Current system analysis

	Requirements definition
	Functional requirements definition
	Non-functional requirements definition

	Approach
	Process
	Tools and techniques

	Research conclusion

	Background knowledge
	Plugify background
	The Plugify funnel

	ForestAdmin background
	Default ForestAdmin features
	Extending ForestAdmin with custom functionality

	Design
	Architecture design
	Back end architecture
	ForestAdmin architecture

	Feed design
	Base feed initial design
	Messages feed considerations
	Notifications feed considerations
	Request feed design considerations

	Forest team design

	Implementation
	Smart actions
	Dashboard and metrics
	Fetching and processing the data
	Layout and excel output
	Speed improvements
	Predictions
	Graphs

	Notification logic
	Notifications for new users and artists
	Notifications for requests that don't seem to be converting to a booking
	Miscellaneous notifications
	Properties and actions
	Implementation

	Feeds
	Limitations and similarities
	Initial layouts

	Other features
	CRUD operations
	Settings
	Warnings

	SIG Feedback
	Issues for delivering the code
	First SIG feedback
	Processing the SIG feedback

	Testing and QA
	Unit testing
	Model testing
	Controller testing
	Forest collection testing

	Manual testing
	Usability testing with RITE
	Rules
	Participants
	Measurements
	Procedures
	Test results

	Usability testing through measurements

	Final Product Evaluation
	Functional requirements assessment
	Dropped or modified functional requirements
	Missed functional requirements

	Project goals assessment
	Ethical implications

	Conclusion
	Discussion and recommendations
	Improvements and additions
	Regarding ForestAdmin

	UML diagrams
	Interview questions
	Project description
	What do we do?
	What will you do?
	Which technologies do we use
	Company description

	Bibliography

