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In this work, we present a mass, energy, enstrophy and vorticity conserving (MEEVC) mixed 
finite element discretization for two-dimensional incompressible Navier-Stokes equations as an 
alternative to the original MEEVC scheme proposed in A. Palha and M. Gerritsma (2017) [5]. 
The present method can incorporate general boundary conditions. Conservation properties are 
proven. Supportive numerical experiments with both exact and inexact quadrature are provided.

1. Introduction

We consider the dimensionless rotational or Lamb form of two-dimensional incompressible (or, more strictly speaking, constant 
density) Navier-Stokes equations in a space-time domain, see for example [1–3],

𝜕𝑡𝒖+ 𝜔 × 𝒖+Re−1∇ × 𝜔 +∇𝑃 = 𝒇 in Ω× (0, 𝑇 ], (1a)

𝜔 −∇× 𝒖 = 𝟎 in Ω× (0, 𝑇 ], (1b)

∇ ⋅ 𝒖 = 0 in Ω× (0, 𝑇 ], (1c)

where Ω ⊂ ℝ2, is a bounded, contractible domain with a Lipschitz boundary 𝜕Ω, 𝜕𝑡 ∶=
𝜕
𝜕𝑡

, 𝒖 is the velocity field, 𝜔 is the vorticity 
field, 𝑃 ∶= 𝑝 + 1

2𝒖 ⋅ 𝒖 is the total pressure (with 𝑝 being the static pressure), 𝒇 is the external (body) force, and Re denotes the 
Reynolds number. (1) is supplemented with an initial condition,

𝒖0 = 𝒖(𝒙, 𝑡0), (2)

and two pairs of boundary conditions,
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𝒖 ⋅ 𝒏 = 𝑢̂⟂ on Γ⟂ × (0, 𝑇 ]

𝑃 = 𝑃 on Γ𝑃 × (0, 𝑇 ]
,{

𝜔 = 𝜔̂ on Γ𝜔̂ × (0, 𝑇 ]

𝒖 × 𝒏 = 𝑢̂∥ on Γ∥ × (0, 𝑇 ]
,

(3)

where 𝒏 is the unit outward norm vector. In each pair, the boundary sections are disjoint; the boundary conditions are not active at 
the same boundary section, i.e., Γ⟂ ∩ Γ𝑃 = Γ𝜔̂ ∩ Γ∥ = ∅, and each pair is active over the whole boundary, Γ⟂ ∪ Γ𝑃 = Γ𝜔̂ ∪ Γ∥ = 𝜕Ω, 
also see [4, Table 1]. Note that, when Γ𝑃 = ∅, there is a singular mode in the total pressure of (1); the total pressure is determined 
up to a constant.

Recall that we have assumed constant density. The divergence free condition of velocity, (1c), then implies mass conservation. 
For two-dimensional incompressible flows, integral quantities of interest include

total kinetic energy (or simply energy)  ∶= 1
2 ∫

Ω

𝒖 ⋅ 𝒖 dΩ,

total enstrophy (or simply enstrophy)  ∶= 1
2 ∫

Ω

𝜔 ⋅ 𝜔 dΩ,

total palinstrophy (or simply palinstrophy)  ∶= 1
2 ∫

Ω

(∇ × 𝜔) ⋅ (∇ × 𝜔) dΩ.

In the absence of external body force,1 i.e., 𝒇 = 𝟎, and if there is no net flux of energy and enstrophy over the domain boundary, 
two-dimensional incompressible flows dissipate energy at a rate,

𝜕𝑡 = −2Re−1 , (4)

and, additionally dissipate enstrophy at a rate,

𝜕𝑡 = −2Re−1 . (5)

Furthermore, if the two-dimensional incompressible flow is in the inviscid limit (Re→∞), namely, the flow is ideal, from (4) and 
(5), it conserves energy and enstrophy over time [5]. And the relation (1b) implies

 ∶= ∫
Ω

𝜔 dΩ = ∮
𝜕Ω

𝒖 × 𝒏 dΓ, (6)

where  is called the total vorticity. (6) shows that the total vorticity no matter whether the flow is ideal or not, is a conserved 
quantity over time provided ∮𝜕Ω 𝒖 × 𝒏 dΓ is not time dependent.

The first scheme that is mass, energy, enstrophy and vorticity conserving (MEEVC) was proposed in [5] where two evolution 
equations for velocity and vorticity are employed. The two evolution equations are staggered in time such that information can be 
transferred between each other through a midpoint temporal discretization scheme. As a result, both equations are linearized and 
the unknowns are decoupled to separate time instant sequences, which significantly lowers the computational cost. A drawback of 
this scheme is that the inclusion of no-slip boundary conditions requires indirect approaches and the suggested approach destroys 
the vorticity conservation property [6].

Olshanskii and Rebholz have discussed the role of adjoint discrete vorticity for structure preservation in their work [7]. For 
examples of mass and energy conserving scheme for incompressible flows, we refer to the work of Hanot [8], Schroeder et al. [9] and 
Evans and Hughes [10]. An extensive literature study on structure-preserving methods is given in [5]. For a more recent summary 
on structure-preserving methods for incompressible flows, we refer to, for example, [11]. And a comprehensive introduction to the 
mixed finite element method is given in the book of Boffi, Brezzi and Fortin [12].

In this work, we present a mixed high-order finite element discretization of two-dimensional incompressible Navier-Stokes equa-

tions that is also MEEVC, can incorporate general boundary conditions but avoids the evolution equation for vorticity. The functional 
setting will be given in Section 2. In Section 3, properties of the formulation are analyzed, which is followed by the introduction of 
the temporal discretization in Section 4. Numerical tests are presented in Section 5. Finally, conclusions are drawn in Section 6.
2

1 Or when the external body force is conservative.
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2. The mixed weak formulation

2.1. A brief introduction to function spaces employed

The space of square integrable functions, is

𝐿2(Ω) ∶=
{

𝑓 || ⟨𝑓 , 𝑓⟩Ω < +∞
}

,

where ⟨⋅, ⋅⟩Ω denotes the 𝐿2-inner product (or simply inner product) over the domain Ω. In ℝ2, we will also use Sobolev spaces

𝐻(curl;Ω) ∶=
{

𝜔
|||𝜔 ∈ 𝐿2(Ω), ∇× 𝜔 ∈

[
𝐿2(Ω)

]2}
,

𝐻(div;Ω) ∶=
{
𝒖
|||𝒖 ∈ [

𝐿2(Ω)
]2

, ∇ ⋅ 𝒖 ∈ 𝐿2(Ω)
}

,

𝐻1(Ω) ∶=
{

𝜙
|||𝜙 ∈ 𝐿2(Ω), ∇𝜙 ∈

[
𝐿2(Ω)

]2}
,

𝐻(rot;Ω) ∶=
{
𝝈
|||𝝈 ∈

[
𝐿2(Ω)

]2
, ∇× 𝝈 ∈ 𝐿2(Ω)

}
.

They form two de Rham complexes [13] in two dimensions written as

ℝ↪ 𝐻(curl;Ω)
∇×
⟶ 𝐻(div;Ω)

∇⋅
⟶ 𝐿2(Ω)→ 0, (7)

ℝ↪ 𝐻1(Ω)
∇

⟶ 𝐻(rot;Ω)
∇×
⟶ 𝐿2(Ω)→ 0. (8)

In ℝ2, 𝐻(curl; Ω) and 𝐻1(Ω) are the same space at the continuous level. Two notations are used to indicate in which de Rham 
complex, i.e. (7) or (8), they play a role. Also see (1) and (2) of [14]. The trace operator, denoted by  , restricts a function to a 
boundary section, Γ ⊆ 𝜕Ω. The trace operator acting on 𝜔 ∈ 𝐻(curl; Ω), 𝜙 ∈ 𝐻1(Ω), 𝒖 ∈ 𝐻(div; Ω) and 𝝈 ∈ 𝐻(rot; Ω) is, respectively,

 𝜔 = 𝜔|Γ ,  𝜙 = 𝜙|Γ ,

 𝒖 = 𝒖 ⋅ 𝒏|Γ ,  𝝈 = 𝝈 × 𝒏|Γ .

The trace spaces are

 𝐻(curl;Ω,Γ) ∶= { 𝜔 | 𝜔 ∈ 𝐻(curl;Ω)} ,

 𝐻 (div;Ω,Γ) ∶= { 𝒖 | 𝒖 ∈ 𝐻(div;Ω)} ,

𝐻1∕2(Ω,Γ) ∶=
{ 𝜙 | 𝜙 ∈ 𝐻1(Ω)

}
,

 𝐻(rot;Ω,Γ) ∶= { 𝝈 | 𝝈 ∈ 𝐻(rot;Ω)} .

For a complete introduction on Sobolev spaces, we refer to [15].

We use notations 𝐶(Ω), 𝐷(Ω), 𝐺(Ω), 𝑅(Ω) and 𝑆(Ω) to express finite dimensional conforming function spaces which are subsets 
of Sobolev spaces, i.e.,

𝐶(Ω) ⊂ 𝐻(curl;Ω), 𝐷(Ω) ⊂ 𝐻(div;Ω), 𝑆(Ω) ⊂ 𝐿2(Ω),

𝐺(Ω) ⊂ 𝐻1(Ω), 𝑅(Ω) ⊂ 𝐻(rot;Ω),

and form discrete de Rham complexes in two-dimensional space,

ℝ↪ 𝐶(Ω)
∇×
⟶ 𝐷(Ω)

∇⋅
⟶ 𝑆(Ω)→ 0, (9)

ℝ↪ 𝐺(Ω)
∇

⟶ 𝑅(Ω)
∇×
⟶ 𝑆(Ω)→ 0.

Note that, although 𝐻(curl; Ω) and 𝐻1(Ω) indicate the same space at the continuous level, their discrete counterparts, 𝐶(Ω) and 
𝐷(Ω), are distinct. And they possess sufficient regularity such that

𝜔ℎ × 𝒖ℎ ∈
[
𝐿2(Ω)

]2
, ∀

(
𝜔ℎ,𝒖ℎ

)
∈ 𝐶(Ω) × 𝐷(Ω). (10)

Trace spaces of finite dimensional spaces 𝐶(Ω, Γ) and 𝐷(Ω, Γ) on boundary section Γ are denoted by

 𝐶(Ω,Γ) ∶=
{ 𝜔ℎ

|| 𝜔ℎ ∈ 𝐶(Ω)
}

,

 𝐷(Ω,Γ) ∶=
{ 𝒖ℎ

|| 𝒖ℎ ∈ 𝐷(Ω)
}

.

And we will also use following subspaces,

𝐶0(Ω,Γ) ∶=
{

𝜔ℎ
|| 𝜔ℎ ∈ 𝐶(Ω),  𝜔ℎ = 0 ∈  𝐶(Ω,Γ)

}
,{ }
3

𝐷0(Ω,Γ) ∶= 𝒖ℎ
|| 𝒖ℎ ∈ 𝐷(Ω),  𝒖ℎ = 0 ∈  𝐷(Ω,Γ) .
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2.2. The formulation

We introduce a trilinear form

𝑎
(

𝜌ℎ,𝝑ℎ,𝒆ℎ

)
∶= ∫

Ω

(
𝜌ℎ × 𝝑ℎ

)
⋅ 𝒆ℎ dΩ,

for 
(

𝜌ℎ,𝝑ℎ,𝒆ℎ

)
∈ 𝐶(Ω) × 𝐷(Ω) × 𝐷(Ω). Because 𝜌ℎ × 𝝑ℎ is pointwise perpendicular to 𝝑ℎ, we know that

𝑎
(

𝜌ℎ,𝝑ℎ,𝝑ℎ

)
= 0. (11)

A spatially discrete weak mixed formulation of (1) is written as follows: Given 𝒇 ∈
[
𝐿2(Ω)

]2
and natural boundary conditions, 𝑃 ∈

𝐻1∕2(Ω, Γ𝑃 ) and 𝑢̂∥ ∈  𝐻(rot; Ω, Γ∥), seek 
(
𝒖ℎ, 𝜔ℎ, 𝑃ℎ

)
∈ 𝐷(Ω) × 𝐶(Ω) × 𝑆(Ω), such that, ∀ 

(
𝒗ℎ, 𝜉ℎ, 𝑞ℎ

)
∈ 𝐷0(Ω, Γ⟂) × 𝐶0(Ω, Γ𝜔̂) ×

𝑆(Ω),

⟨𝜕𝑡𝒖ℎ,𝒗ℎ⟩Ω + 𝑎
(

𝜔ℎ,𝒖ℎ,𝒗ℎ

)
+Re−1 ⟨∇× 𝜔ℎ,𝒗ℎ⟩Ω − ⟨𝑃ℎ,∇ ⋅ 𝒗ℎ⟩Ω = ⟨𝒇 ,𝒗ℎ⟩Ω −

⟨
𝑃 , 𝒗ℎ

⟩
Γ

𝑃

, (12a)

⟨𝒖ℎ,∇× 𝜉ℎ⟩Ω − ⟨𝜔ℎ, 𝜉ℎ⟩Ω =
⟨

𝑢̂∥, 𝜉ℎ

⟩
Γ∥

, (12b)

⟨∇ ⋅ 𝒖ℎ, 𝑞ℎ⟩Ω = 0, (12c)

subject to essential boundary conditions,  𝒖ℎ = 𝑢̂⟂ ∈  𝐷(Ω, Γ⟂) and  𝜔ℎ = 𝜔̂ ∈  𝐶(Ω, Γ𝜔̂), and initial conditions 
(
𝒖0

ℎ
, 𝜔0

ℎ

)
∈ 𝐷(Ω) ×

𝐶(Ω).
One can show that solutions to the continuous version of (12) weakly solves the incompressible Navier-Stokes equations (1). A 

similar setup can be found in the work of Gawlik and Gay-Balmaz, see the fluid part of (48)–(53) in [16], where a mass, energy, cross-

helicity and ∇ ⋅ 𝑩 = 0 (divergence-free magnetic field) preserving formulation for incompressible magnetohydrodynamics (MHD) 
problems is introduced. And Hanot has used a three-dimensional counterpart of the present spatial discretization in [8].

3. Dissipation and conservation properties

In this section, we study dissipation and conservation properties of the formulation (12). The equivalence between (12) and the 
formulation used in the original MEEVC scheme, see (19) of [5], will also be shown. Thus, we will prove that the formulation (12) is 
also MEEVC. To this end, analyses conducted here are under conditions that (i) the domain is periodic (𝜕Ω = ∅) and (ii) there is no 
external force as in [5].

3.1. Mass conservation

Pointwise mass conservation is obviously satisfied; 𝒖ℎ is selected to be in 𝐷(Ω) ⊂ 𝐻(div; Ω) and the relation (12c) strongly 
enforces ∇ ⋅ 𝒖ℎ = 0 everywhere in Ω. This is a consequence of the fact that ∇⋅ maps 𝐷(Ω) into 𝑆(Ω), see (9).

3.2. Energy dissipation and conservation

For the energy balance, if we replace 𝒗ℎ in (12a) by 𝒖ℎ ∈ 𝐷(Ω), we will obtain

⟨𝜕𝑡𝒖ℎ,𝒖ℎ⟩Ω + 𝑎
(

𝜔ℎ,𝒖ℎ,𝒖ℎ

)
+Re−1 ⟨∇× 𝜔ℎ,𝒖ℎ⟩Ω − ⟨𝑃ℎ,∇ ⋅ 𝒖ℎ⟩Ω = 0. (13)

The second and fourth terms vanish because of (11) and the pointwise mass conservation, i.e., ∇ ⋅ 𝒖ℎ = 0, respectively. This leads to

⟨𝜕𝑡𝒖ℎ,𝒖ℎ⟩Ω + Re−1 ⟨∇× 𝜔ℎ,𝒖ℎ⟩Ω = 0.

And from (12b), we know

⟨𝒖ℎ,∇× 𝜔ℎ⟩Ω = ⟨𝜔ℎ, 𝜔ℎ⟩Ω ,

because 𝜔ℎ ∈ 𝐶(Ω). Combining these two relations gives a (semi-)discrete energy balance,

𝜕𝑡ℎ = ⟨𝜕𝑡𝒖ℎ,𝒖ℎ⟩Ω = −Re−1 ⟨𝜔ℎ, 𝜔ℎ⟩Ω = −2Re−1ℎ, (14)

where ℎ = 1
2
⟨𝒖ℎ,𝒖ℎ⟩Ω and ℎ = 1

2
⟨𝜔ℎ, 𝜔ℎ⟩Ω are the discrete (total kinetic) energy and (total) enstrophy, respectively. It is con-

sistent with (4), the energy balance of the strong form. Thus, (14) clearly implies discrete energy conservation in the inviscid limit 
4

(Re→∞).
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3.3. Enstrophy dissipation and conservation

If we take the time derivative of (12b), we obtain

⟨𝜕𝑡𝒖ℎ,∇× 𝜉ℎ⟩Ω = ⟨𝜕𝑡𝜔ℎ, 𝜉ℎ⟩Ω , ∀𝜉ℎ ∈ 𝐶(Ω) . (15)

And, from (12a), we know that, ∀ 𝜉ℎ ∈ 𝐶(Ω), (12a) must hold for ∇ × 𝜉ℎ ∈ 𝐷(Ω), namely,

⟨𝜕𝑡𝒖ℎ,∇× 𝜉ℎ⟩Ω + 𝑎
(

𝜔ℎ,𝒖ℎ,∇× 𝜉ℎ

)
+Re−1 ⟨∇× 𝜔ℎ,∇× 𝜉ℎ⟩Ω − ⟨𝑃ℎ,∇ ⋅∇× 𝜉ℎ⟩Ω = 0, (16)

where the term ⟨𝑃ℎ,∇ ⋅∇× 𝜉ℎ⟩Ω vanishes because ∇ ⋅∇ × (⋅) ≡ 0. If we further insert (15) into (16), we obtain

⟨𝜕𝑡𝜔ℎ, 𝜉ℎ⟩Ω + 𝑎
(

𝜔ℎ,𝒖ℎ,∇× 𝜉ℎ

)
+Re−1 ⟨∇× 𝜔ℎ,∇× 𝜉ℎ⟩Ω = 0, ∀𝜉ℎ ∈ 𝐶(Ω) . (17)

We can replace 𝜉ℎ in (17) by 𝜔ℎ ∈ 𝐶(Ω) and get

⟨𝜕𝑡𝜔ℎ, 𝜔ℎ⟩Ω + 𝑎
(

𝜔ℎ,𝒖ℎ,∇× 𝜔ℎ

)
+Re−1 ⟨∇× 𝜔ℎ,∇× 𝜔ℎ⟩Ω = 0 . (18)

As 𝒖ℎ ∈ 𝐷(Ω) and ∇ ⋅ 𝒖ℎ = 0 is satisfied pointwise, we can find a stream function 𝜓ℎ ∈ 𝐶(Ω) on a contractible domain such that 
𝒖ℎ =∇ × 𝜓ℎ. Recall the following vector calculus identity,

𝜔ℎ ×∇× 𝜓ℎ =∇
(

𝜔ℎ𝜓ℎ

)
− 𝜓ℎ ×∇× 𝜔ℎ.

Thus, we know

𝑎
(

𝜔ℎ,𝒖ℎ,∇× 𝜔ℎ

)
= ∫

Ω

∇
(

𝜔ℎ𝜓ℎ

)
⋅
(
∇× 𝜔ℎ

)
dΩ− 𝑎

(
𝜓ℎ,∇× 𝜔ℎ,∇× 𝜔ℎ

)
= −∫

Ω

𝜔ℎ𝜓ℎ

(
∇ ⋅∇× 𝜔ℎ

)
dΩ− 𝑎

(
𝜓ℎ,∇× 𝜔ℎ,∇× 𝜔ℎ

)
,

where we have performed integration by parts with respect to the gradient operator for the first term of the second equality and use 
the periodic boundary condition. Obviously, these terms vanish because of property ∇ ⋅∇ × (⋅) ≡ 0 and (11). Therefore, we know that

𝑎
(

𝜔ℎ,𝒖ℎ,∇× 𝜔ℎ

)
= 0, (19)

and (18) leads to the following (semi-)discrete enstrophy balance,

⟨𝜕𝑡𝜔ℎ, 𝜔ℎ⟩Ω = −Re−1 ⟨∇× 𝜔ℎ,∇× 𝜔ℎ⟩Ω = −2Re−1ℎ , (20)

where ℎ ∶= 1
2
⟨∇× 𝜔ℎ,∇× 𝜔ℎ⟩Ω is the discrete (total) palinstrophy. (20) correctly reflects the enstrophy balance of the strong form, 

see (5). And, in the inviscid limit (Re→∞), (20) leads to enstrophy conservation.

3.4. Vorticity conservation

For conservation of (total) vorticity, if we select 𝜉ℎ = 1 in (16), it is straightforward to find that

𝜕𝑡ℎ = ⟨𝜕𝑡𝜔ℎ,1⟩Ω = 0,

which implies that vorticity is conserved over time. Moreover, by selecting 𝜉ℎ = 1 in (12b), we know that in periodic domains

ℎ ≡ 0,

which is consistent with (6) of the strong form.

3.5. Equivalence to the original MEEVC formulation

In addition to the regularity (10), suppose the finite dimensional spaces ensure

𝜔ℎ × 𝒖ℎ ∈ 𝐻 (rot;Ω) ⊂
[
𝐿2(Ω)

]2
, ∀

(
𝜔ℎ,𝒖ℎ

)
∈ 𝐶(Ω) × 𝐷(Ω). (21)

Then if we apply integration by parts to the second term of (17), we obtain

⟨𝜕𝑡𝜔ℎ, 𝜉ℎ⟩Ω +
⟨
∇×

(
𝜔ℎ × 𝒖ℎ

)
, 𝜉ℎ

⟩
Ω + Re−1 ⟨∇× 𝜔ℎ,∇× 𝜉ℎ⟩Ω = 0. (22)

Recall that the identity, providing ∇ ⋅ 𝒖ℎ = 0,( ) ( ) ( )

5

∇× 𝜔ℎ × 𝒖ℎ = 1
2

𝒖ℎ ⋅∇ 𝜔ℎ + 1
2
∇ ⋅ 𝜔ℎ𝒖ℎ , (23)
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is valid in two-dimensions. Using this identity, the following substitution can be employed in the weak form of the vorticity evolution 
equation (22),⟨

∇×
(

𝜔ℎ × 𝒖ℎ

)
, 𝜉ℎ

⟩
Ω = 1

2
⟨(

𝒖ℎ ⋅∇
)

𝜔ℎ, 𝜉ℎ

⟩
Ω + 1

2
⟨
∇ ⋅

(
𝜔ℎ𝒖ℎ

)
, 𝜉ℎ

⟩
Ω

= −1
2
⟨

𝜔ℎ,∇ ⋅
(

𝜉ℎ𝒖ℎ

)⟩
Ω + 1

2
⟨
∇ ⋅

(
𝜔ℎ𝒖ℎ

)
, 𝜉ℎ

⟩
Ω ,

(24)

where the following integration by parts was used,⟨(
𝒖ℎ ⋅∇

)
𝜔ℎ, 𝜉ℎ

⟩
Ω = −

⟨
𝜔ℎ,∇ ⋅

(
𝜉ℎ𝒖ℎ

)⟩
Ω .

Thus, ∀𝜉ℎ ∈ 𝐶(Ω), (22) can be written as

⟨𝜕𝑡𝜔ℎ, 𝜉ℎ⟩Ω − 1
2
⟨

𝜔ℎ,∇ ⋅
(

𝜉ℎ𝒖ℎ

)⟩
Ω + 1

2
⟨
∇ ⋅

(
𝜔ℎ𝒖ℎ

)
, 𝜉ℎ

⟩
Ω +Re−1 ⟨∇× 𝜔ℎ,∇× 𝜉ℎ⟩Ω = 0, (25)

which is the weak evolution equation for vorticity (as a replacement of (12b)) in the original MEEVC scheme, see (19) of [5]. If we 
select 𝜉ℎ to be 𝜔ℎ in (25), the second and third terms cancel, we again get the same enstrophy balance, i.e., (20).

In the original MEEVC work, the reason behind using the identity (23) is to replace the weak nonlinear advection term by (24). By 
doing so, it is possible to construct another trilinear form for the nonlinear advection term in the weak vorticity evolution equation 
which is skew-symmetric with respect to entries 𝜔ℎ and 𝜉ℎ, i.e.,

𝑏(𝜔ℎ,𝒖ℎ, 𝜉ℎ) = −𝑏(𝜉ℎ,𝒖ℎ, 𝜔ℎ),

see second and third terms in (25). This then implies that

𝑏(𝜔ℎ,𝒖ℎ, 𝜔ℎ) = 0,

which, for the original MEEVC work, is a key requirement to obtain enstrophy conservation even when the numerical quadrature is 
inexact. However, this prevents the direct incorporation of boundary conditions for the tangential component of velocity because the 
port, i.e., the boundary integral term in (12b) which is used to impose them weakly, is missing. In this present work, we surprisingly 
find that, to setup a MEEVC scheme, we can bypass the construction of the skew-symmetric advection term as in the original MEEVC 
scheme and, thus, it is not necessary to introduce a second evolution equation for vorticity. This simplifies the formulation and also 
enables the direct application of no-slip boundary conditions.

4. Temporal discretization

For the temporal discretization, the classic implicit midpoint method [17] is used. The fully discrete version of (12) is writ-

ten as: Given 𝒇 ∈
[
𝐿2(Ω)

]2
and natural boundary conditions, 𝑃 ∈ 𝐻1∕2(Ω, Γ𝑃 ) and 𝑢̂∥ ∈  𝐻(rot; Ω, Γ∥), for 𝑘 ∈ {1,2,3,⋯}, seek (

𝒖𝑘
ℎ

, 𝜔𝑘
ℎ

, 𝑃
𝑘− 1

2
ℎ

)
∈ 𝐷(Ω) × 𝐶(Ω) × 𝑆(Ω), such that, ∀ 

(
𝒗ℎ, 𝜉ℎ, 𝑞ℎ

)
∈ 𝐷0(Ω, Γ⟂) × 𝐶0(Ω, Γ𝜔̂) × 𝑆(Ω),⟨

𝒖𝑘
ℎ
− 𝒖𝑘−1

ℎ

Δ𝑡
,𝒗ℎ

⟩
Ω

+ 𝑎

(
𝜔𝑘−1

ℎ
+ 𝜔𝑘

ℎ

2
,
𝒖𝑘−1

ℎ
+ 𝒖𝑘

ℎ

2
,𝒗ℎ

)
+Re−1

⟨
∇×

𝜔𝑘−1
ℎ

+ 𝜔𝑘
ℎ

2
,𝒗ℎ

⟩
Ω

−
⟨

𝑃
𝑘− 1

2
ℎ

,∇ ⋅ 𝒗ℎ

⟩
Ω

(26a)

=
⟨
𝒇

𝑘− 1
2 ,𝒗ℎ

⟩
Ω
−
⟨

𝑃 𝑘− 1
2 , 𝒗ℎ

⟩
Γ

𝑃

,⟨
𝒖𝑘

ℎ,∇× 𝜉ℎ

⟩
Ω −

⟨
𝜔𝑘

ℎ, 𝜉ℎ

⟩
Ω =

⟨
𝑢̂𝑘
∥, 𝜉ℎ

⟩
Γ∥

, (26b)⟨
∇ ⋅ 𝒖𝑘

ℎ, 𝑞ℎ

⟩
Ω = 0, (26c)

where Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1 > 0, 𝒖𝑘
ℎ
= 𝒖ℎ(𝒙, 𝑡𝑘) (see (2)), subject to essential boundary conditions,  𝒖𝑘

ℎ
= 𝑢̂⟂ ∈  𝐷(Ω, Γ⟂) and  𝜔𝑘

ℎ
= 𝜔̂ ∈

 𝐶(Ω, Γ𝜔̂), and initial conditions 
(
𝒖0

ℎ
, 𝜔0

ℎ

)
∈ 𝐷(Ω) × 𝐶(Ω).

At the fully discrete level, if we repeat the analysis in Section 3 now for the fully discrete formulation (26), we can find that 
pointwise conservation of mass is satisfied at each time instant, see (26c), i.e.,

∇ ⋅ 𝒖𝑘
ℎ = 0

everywhere in Ω. And we can also obtain dissipation rates,

𝑘
ℎ
−𝑘−1

ℎ

Δ𝑡
=

⟨
𝒖𝑘

ℎ
− 𝒖𝑘−1

ℎ

Δ𝑡
,
𝒖𝑘−1

ℎ
+ 𝒖𝑘

ℎ

2

⟩
Ω

= −Re−1
⟨

𝜔
𝑘− 1

2
ℎ

, 𝜔
𝑘− 1

2
ℎ

⟩
Ω
= −2Re−1𝑘− 1

2
ℎ

, (27)

𝑘
ℎ
− 𝑘−1

ℎ =

⟨
𝜔𝑘

ℎ
− 𝜔𝑘−1

ℎ ,
𝜔𝑘−1

ℎ
+ 𝜔𝑘

ℎ

⟩
= −Re−1

⟨
∇× 𝜔

𝑘− 1
2 ,∇× 𝜔

𝑘− 1
2

⟩
= −2Re−1𝑘− 1

2 ,
6

Δ𝑡 Δ𝑡 2
Ω

ℎ ℎ
Ω

ℎ (28)
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Fig. 1. Illustrations of meshes implied by (29) for 𝐾 = 25, deformation factor 𝑐 = 0 (left) and 𝑐 = 0.25 (right).

and

𝑘
ℎ
−𝑘−1

ℎ

Δ𝑡
=

⟨
𝜔𝑘

ℎ
− 𝜔𝑘−1

ℎ

Δ𝑡
,1

⟩
Ω

= 0,

where 𝜔
𝑘− 1

2
ℎ

∶=
𝜔𝑘−1

ℎ
+𝜔𝑘

ℎ

2 . This shows that at the fully discrete level the proposed scheme is also MEEVC in the inviscid limit, Re→∞.

5. Numerical tests

Five tests are conducted in this work. The accuracy of the method is investigated with an analytical solution in Section 5.1. 
Conservation and dissipation properties are tested in Section 5.2. The original MEEVC scheme experiences difficulties of handling 
no-slip boundary conditions [6] while imposing different boundary conditions including the no-slip ones is straightforward for the 
method studied in this work. This is demonstrated in Section 5.1, Section 5.3 and Section 5.4. Numerical evidences of (19) are given 
by the test in Section 5.5.

We use the mimetic polynomial spaces, which satisfy the discrete de Rham complex (9), the regularity (10) and the regularity 
(21), as the finite dimensional spaces under the framework of the mimetic spectral element method, see, for example, [18] or 
[19, Chapter 2]. The degree of the polynomial spaces is denoted by 𝑁 . The Newton-Raphson method is employed for solving the 
nonlinear systems. Note that any set of finite elements that forms the discrete de Rham complex (9) and satisfies the regularity (10)

works. For example, in a triangulated conforming grid, Lagrange elements of degree 𝑁 , Raviart–Thomas elements of degree 𝑁 and 
discontinuous Lagrange elements of degree (𝑁 −1) are a classic option. They are also the function spaces used in the original MEEVC 
scheme, see (13)-(18) of [5].

Both orthogonal and curvilinear meshes will be used in this work. Suppose a reference domain is Ω̊ ∶= (𝑟, 𝑠) ∈ [0, 1]2. A uniform 
orthogonal mesh of 𝐾 × 𝐾 square elements is generated in the reference domain. This mesh is then distorted with a mapping, 
Φ ∶ (𝑟, 𝑠)→ (𝑥, 𝑦), expressed as

⎧⎪⎨⎪⎩
𝑥 = 𝛼

(
𝑟 + 1

2
𝑐 sin(2𝜋𝑟) sin(2𝜋𝑠)

)
𝑦 = 𝛼

(
𝑠 + 1

2
𝑐 sin(2𝜋𝑟) sin(2𝜋𝑠)

), (29)

where 𝛼 > 0 and 0 ≤ 𝑐 ≤ 0.3. It gives a mesh in Ω = (𝑥, 𝑦) ∈ [0, 𝛼]2, and the factor 𝑐 is a deformation factor. When 𝑐 = 0 the mesh 
is orthogonal and uniform, and when 𝑐 > 0 the mesh is curvilinear. See Fig. 1 for illustrations of this mesh. And see [20] for an 
introduction on mesh deformation.

Implementations of the present work are done in Python.

5.1. Accuracy test: Taylor–Green vortex

We test the accuracy of the method using a classic analytical solution of two-dimensional incompressible Navier-Stokes equations 
in the absence of external force, the Taylor–Green vortex, written as

𝑢(𝑥, 𝑦, 𝑡) = −sin(𝜋𝑥) cos(𝜋𝑦)𝑒−2𝜋2𝑡∕Re,

𝑣(𝑥, 𝑦, 𝑡) = cos(𝜋𝑥) sin(𝜋𝑦)𝑒−2𝜋2𝑡∕Re,

𝑝(𝑥, 𝑦, 𝑡) = 1
4
(cos(2𝜋𝑥) + cos(2𝜋𝑦)) 𝑒−4𝜋2𝑡∕Re,
7

𝜔(𝑥, 𝑦, 𝑡) = −2𝜋 sin(𝜋𝑥) sin(𝜋𝑦)𝑒−2𝜋2𝑡∕Re.
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Fig. 2. 𝐻(div)-error of 𝒖ℎ , 𝐻(curl)-error of 𝜔ℎ and 𝐿2-error of 𝑃ℎ at 𝑡 = 1 of the Taylor–Green vortex test with periodic boundary conditions under 𝑝ℎ-refinements 
for 𝑁 ∈ {1,2,3}, 𝑐 ∈ {0,0.25}, 𝐾 ∈ {10,12,14⋯ ,24}, Δ𝑡 = 1

25
and Re = 100.

Fig. 3. 𝐻(div)-error of 𝒖ℎ , 𝐻(curl)-error of 𝜔ℎ and 𝐿2-error of 𝑃ℎ at 𝑡 = 1 of the Taylor–Green vortex test with no-slip boundary conditions under 𝑝ℎ-refinements for 
𝑁 ∈ {1,2,3}, 𝑐 ∈ {0,0.25}, 𝐾 ∈ {10,12,14,⋯ ,24}, Δ𝑡 = 1

25
and Re = 100.

The domain is set to Ω = (𝑥, 𝑦) ∈ [0, 2]2. We use the meshes described by (29) of 𝑐 ∈ {0,0.25} and solve the Taylor–Green vortex from 
𝑡 = 𝑡0 = 0 to 𝑡 = 1 under 𝑝ℎ-refinements for 𝑁 ∈ {1,2,3} and 𝐾 ∈ {10,12,14,⋯ ,24} with Re = 100 and Δ𝑡 = 1

25 . Two sets of tests are 
conducted. The first set is with periodic boundary conditions and the second one is with following no-slip boundary conditions,

Γ𝑃 ∶= Γlef t ∪ Γbottom, Γ∥ = 𝜕Ω,

where Γlef t and Γbottom are the left and bottom faces of the square domain. Results are presented in Fig. 2 and Fig. 3. Optimal 
convergence rates are observed in both sets of results.

5.2. Conservation and dissipation tests: Shear layer roll-up

The shear layer roll-up is a two-dimensional ideal flow whose components of the initial condition, 𝒖0 =
[

𝑢0 𝑣0
]𝖳

, are given by

𝑢0 =

⎧⎪⎪⎨⎪⎪⎩
tanh

(
𝑦 − 𝜋∕2

𝛿

)
, 𝑦 ≤ 𝜋

tanh
(
3𝜋∕2 − 𝑦

𝛿

)
, 𝑦 > 𝜋

, 𝑣0 = 𝜖 sin(𝑥),

where 𝛿 = 𝜋
15 and 𝜖 = 0.05, see [5,21]. The domain is Ω = (𝑥, 𝑦) ∈ [0, 2𝜋]2 with periodic boundary conditions. Meshes as described 

in (29) for 𝑐 ∈ {0,0.25} and 𝐾 = 48 are used. The polynomial degree is set to 𝑁 = 2 and the time interval is Δ𝑡 = 1
50 . The flow is 

computed from 𝑡 = 𝑡0 = 0 to 𝑡 = 8. To limit the error caused by the Newton-Raphson method, the tolerance of outer iterations is set to 
10−12. The vorticity field 𝜔ℎ at 𝑡 ∈ {0,4,8} for 𝑐 = 0 is shown in Fig. 4. In Fig. 5, results showing the conservation laws are satisfied 
to machine precision on both orthogonal and curvilinear meshes are presented. And throughout this section we use ‖‖∇ ⋅ 𝒖ℎ

‖‖𝐿2 , i.e. 
the 𝐿2-norm of ∇ ⋅ 𝒖ℎ, to identify mass conservation. Since the basis functions have normal continuity, if ‖‖∇ ⋅ 𝒖ℎ

‖‖𝐿2 = 0 (to machine 
precision), pointwise mass conservation is satisfied everywhere.

We repeat the above test now for a viscous flow of Re = 500. The results are presented in Fig. 6. It is seen that, to machine 
precision, (i) mass and vorticity conservation and (ii) energy and enstrophy balances, (27) and (28), are satisfied for both orthogonal 
8

and curvilinear meshes.
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Fig. 4. Vorticity field 𝜔ℎ of the ideal shear layer roll-up test at 𝑡 ∈ {0,4,8} with contour lines for 𝜔ℎ ∈ {±1,±2,±3,⋯ ,±6}. The color scheme is from blue (−6 ← 𝜔ℎ) 
to red (𝜔ℎ → 6). The simulation is conducted for 𝑁 = 2, 𝑐 = 0, 𝐾 = 48, Δ𝑡 = 1

50
. (For interpretation of the colors in the figure(s), the reader is referred to the web 

version of this article.)

Fig. 5. Discrete mass, energy, enstrophy and vorticity conservation over time of the ideal shear layer roll-up test for 𝑁 = 2, 𝑐 = 0 (left), 𝑐 = 0.25 (right), 𝐾 = 48 and 
Δ𝑡 = 1

50
.

Fig. 6. Discrete mass conservation, energy and enstrophy balances, and vorticity conservation over time of the viscous shear layer roll-up test for 𝑁 = 2, 𝑐 = 0 (left), 
𝑐 = 0.25 (right), 𝐾 = 48, Δ𝑡 = 1

50
and Re = 500.

5.3. General boundary condition test 1: Normal dipole collision

The normal dipole collision is a viscous flow in the domain Ω = (𝑥, 𝑦) ∈ [−1, 1]2 with no-slip boundary conditions on all four walls 
[22]. The unscaled initial velocity field, 𝒖0 =

[
𝑢0 𝑣0

]𝖳
, is given by

𝑢0 = −1
2
||𝜔𝑒

|| (𝑦 − 𝑦1
)

𝑒−(𝑟1∕𝑟0)2 + 1
2
||𝜔𝑒

|| (𝑦 − 𝑦2
)

𝑒−(𝑟2∕𝑟0)2 ,( ) 2 ( ) 2
9

𝑣0 = −1
2
||𝜔𝑒

|| 𝑥 − 𝑥2 𝑒−(𝑟2∕𝑟0) + 1
2
||𝜔𝑒

|| 𝑥 − 𝑥1 𝑒−(𝑟1∕𝑟0) ,
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Fig. 7. Left: The mesh of 5148 elements used in the normal dipole collision test. Right: The mesh of 1296 elements used in the lid-driven cavity test.

Fig. 8. Vorticity field 𝜔ℎ at 𝑡 ∈
{
0, 1

5
, 2
5

,⋯ ,1
}

of the normal dipole collision test in a mesh of 5148 elements for 𝑁 = 2, Δ𝑡 = 1
200

and Re = 625.

where ||𝜔𝑒
|| = 320, (𝑥1, 𝑦1) = (0, 0.1) and (𝑥2, 𝑦2) = (0, −0.1), 𝑟1 and 𝑟2 are distances to (𝑥1, 𝑦1) and (𝑥2, 𝑦2), respectively, and 𝑟0 = 0.1. 

This velocity field leads to a vorticity field expressed as

𝜔0 =
∑

𝑖∈{1,2}
𝜔𝑒,𝑖

(
1 −

(
𝑟𝑖

𝑟0

)2
)

𝑒−(𝑟𝑖∕𝑟0)2 ,

where 𝜔𝑒,1 = 320, 𝜔𝑒,2 = −320, which is a combination of two monopoles centered at (𝑥1, 𝑦1) and (𝑥2, 𝑦2), respectively. The initial 
velocity is then scaled such that the initial kinetic energy is 0 = 2. The scaling factor is 𝑓 ≈ 0.936026. The corresponding initial 
enstrophy and palinstrophy are 0 ≈ 800 and 0 ≈ 441855, respectively. The flow is absent of external body force. For the present 
test, we use a non-uniform orthogonal mesh of 5148 elements, see the left mesh in Fig. 7, Re = 625, polynomial degree 𝑁 = 2 and 
Δ𝑡 = 1

200 . This setup is similar to that in [6] except that [6] uses an unstructured mesh and much smaller time steps, Δ𝑡 = 1
2000 .

The dipole is initialized at 𝑡 = 𝑡0 = 0. It will move under a self-induced velocity in 𝑥+-direction with an induced wake moving in { }

10

the opposite direction. The simulation is performed until 𝑡 = 1. The vorticity field 𝜔ℎ at 𝑡 ∈ 0, 1
5 , 2

5 ,⋯ ,1 is presented in Fig. 8.
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Fig. 9. Vorticity field 𝜔ℎ in region (𝑥, 𝑦) ∈ [0.4, 1] × [−0.6, 0] at 𝑡 = 1 with contour lines for 𝜔ℎ ∈ {−90,−70,−50,⋯ ,70} and on the boundary section (𝑥, 𝑦) ∈
−1 × [−0.6, 0] at 𝑡 ∈ {0.4,0.6,1} compared to reference results taken from [22, Fig. 5] for Re = 625. The present simulation has 1452 degrees of freedom for vorticity. 
The reference simulation uses a pseudospectral method and has 2562 degrees of freedom for vorticity.

Fig. 10. Discrete energy, enstrophy, palinstrophy over time compared to reference results taken from [6, Fig. 8] and reference results at 𝑡 ∈ {0.25,0.5,0.75} taken 
from [22], and mass and vorticity conservation over time.

The original MEEVC scheme uses indirect approaches to impose no-slip boundary conditions, and the suggested approach, called 
the kinematic Neumann approach, destroys vorticity conservation, see [6, Fig. 9]. In contrast, the present method can handle no-slip 
boundary conditions (and other general boundary conditions) naturally, see the formulation (12) or (26). In Fig. 9, local distributions 
of vorticity field in region (𝑥, 𝑦) ∈ [0.4, 1] × [−0.6, 0] at 𝑡 = 1 and on boundary section (𝑥, 𝑦) ∈ −1 × [−0.6, 0] at different time instants 
(with comparisons to results in [22]) are shown. The discrete energy, enstrophy and palinstrophy over time are presented and 
compared to results taken from [6,22] in Fig. 10 where mass and vorticity conservation is also shown. These results show an improved 
match with the reference than those in [6, Fig. 10] and also indicate that no-slip boundary conditions are correctly incorporated by 
the present method without destroying vorticity conservation.

5.4. General boundary condition test 2: Lid-driven cavity

In this section, we test the proposed method with the lid-driven cavity flow which is a classic benchmark of no-slip boundary 
conditions and singularities. The computational domain is a unit square, Ω = (𝑥, 𝑦) ∈ [0, 1]2, and has four infinite no-slip walls. 
The flow is at rest initially. And from 𝑡 = 𝑡0 = 0, the top wall (𝑦 = 1), namely, the lid, moves left with a constant speed −1, i.e. 
𝒖lid =

[
−1 0

]𝖳
, and drives the viscous flow. Singularities appear at two top corners where vorticity and pressure approach infinity. 

The external body force is set to zero.

We do this test for Re = 1000. A mesh of 1296 elements that are locally refined near the walls is used, see the right mesh in Fig. 7. 
Other parameters are the polynomial degree 𝑁 = 3 and the time interval Δ𝑡 = 1

100 . The simulation terminates when the flow reaches 
the steady state whose criterion is

‖‖‖𝒖𝑘
ℎ − 𝒖𝑘−1

ℎ
‖‖‖𝐿2 ≤ 10−7.

Results with comparisons to reference results from [23] are shown in Fig. 11 where we can see that the present method produces 
11

results matching the reference results well.
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Fig. 11. Vorticity field 𝜔ℎ (left, contour lines for 𝜔ℎ ∈ {−3, −2, −1, −0.5, 0, 0.5, 1, 2, 3, 4, 5}), solutions 𝑣ℎ , 𝜔ℎ and 𝑝ℎ along the horizontal centerline (middle) and 
solutions 𝑢ℎ , 𝜔ℎ and 𝑝ℎ along the vertical centerline (right) at the steady state of the lid-driven cavity flow for Re = 1000 with comparisons to reference results from 
[23, Table 9, Table 10]. 𝑢ℎ and 𝑣ℎ are two components of velocity, i.e. 𝒖ℎ = [𝑢ℎ 𝑣ℎ]𝖳 . The reference results use polynomials of extremely high degrees, 160 and 158, 
for the approximation of velocity and pressure, respectively.

Table 1

𝑎 (𝜔ℎ,𝒖ℎ,∇× 𝜔ℎ

)
for 𝑐 ∈ {0,0.25}, 𝐾 = 12, 𝑁 ∈ {2,3,4} and 𝑁𝑄 ∈ {1,2,3,4,5,6}.

𝑁𝑄
𝑐 0 0.25

𝑁 2 3 4 2 3 4

1 1.05𝑒 − 12 4.72𝑒 − 12 −7.59𝑒 − 11 −1.91𝑒 + 02 −6.93𝑒 + 00 1.25𝑒 + 01
2 −1.60𝑒 − 12 2.25𝑒 − 12 1.04𝑒 − 12 −5.19𝑒 − 12 7.43𝑒 + 00 3.22𝑒 − 01
3 2.81𝑒 − 13 −1.01𝑒 − 12 3.65𝑒 − 14 6.51𝑒 − 12 1.55𝑒 − 03 −7.90𝑒 − 02
4 1.65𝑒 − 12 7.96𝑒 − 13 1.01𝑒 − 13 −7.46𝑒 − 14 −9.95𝑒 − 14 −1.48𝑒 − 04
5 −5.22𝑒 − 12 1.86𝑒 − 12 −7.21𝑒 − 14 1.70𝑒 − 12 5.68𝑒 − 13 −1.42𝑒 − 13
6 3.46𝑒 − 14 5.59𝑒 − 15 1.71𝑒 − 13 1.19𝑒 − 13 −2.52𝑒 − 13 2.23𝑒 − 13

5.5. Convective term for enstrophy conservation

This subsection provides numerical evidences for (19) as it is a key for the enstrophy balance of the present method. Given two 
random smooth scalar fields,

𝜔 = 2𝜋 sin(2𝜋𝑥 + 𝑒) sin(2𝜋𝑦 + 𝑓 )

and

𝜓 = 2𝜋 sin(2𝜋𝑥 + 𝑔) sin(2𝜋𝑦 + ℎ),

where 𝑒, 𝑓 , 𝑔, ℎ ∈ (0, 1) are random real numbers, in the periodic unit square, Ω = (𝑥, 𝑦) ∈ [0, 1]2. Meshes as described in (29) for 
𝑐 ∈ {0,0.25} and 𝐾 = 12 are used. 𝜔 and 𝜓 are projected to finite dimensional polynomial spaces as 𝜔ℎ and 𝜓ℎ, see [18] or 
[19] for details of these projections. The finite dimensional velocity is 𝒖ℎ = ∇ × 𝜓ℎ and thus ∇ ⋅ 𝒖ℎ = 0. Then the trilinear form 
𝑎 
(

𝜔ℎ,𝒖ℎ,∇× 𝜔ℎ

)
is computed with Gauss quadrature, see [24], of different degrees, 𝑁𝑄.

The results are presented in Table 1. We can see that, for the orthogonal mesh (𝑐 = 0), the trilinear form is zero (to machine 
precision) even when the quadrature is very inexact, for example, 𝑁 = 4 and 𝑁𝑄 = 1 (numerical quadrature of degree 𝑁𝑄 is exact 
for polynomials of degree lower than or equal to 2𝑁𝑄 − 1). While for the curvilinear mesh (𝑐 = 0.25), as the metric of the mapping, 
see (29), cannot be captured by polynomials, the quadrature is always inexact and the trilinear form is still zero for quadrature 
degree that is significantly high. These results support the statement that, for ∇ ⋅ 𝒖ℎ = 0, the trilinear form 𝑎 

(
𝜔ℎ,𝒖ℎ,∇× 𝜔ℎ

)
can be 

zero even with inexact numerical quadrature.

6. Conclusions

In this work, we present a mass, energy, enstrophy and vorticity conserving (MEEVC) mixed finite element discretization for 
the rotational form of the incompressible Navier-Stokes equations on both orthogonal and curvilinear meshes. Comparing to the 
original MEEVC method, the present method uses a formulation of a single evolution equation and, more importantly, can naturally 
adapt no-slip boundary conditions without violating vorticity conservation. However, it does not linearize the discrete systems as the 
12

original MEEVC scheme does; a more expensive nonlinear method has to be employed to solve the systems.
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Appendix A

In this appendix, we analyze mass and vorticity conservation, and balance of energy and enstrophy for the presented formulation 
under general boundary conditions, (12), as a complement to Section 3. Without the loss of generality, we use 𝑢̂⟂ = 0 and Γ∥ = 𝜕Ω
(i.e. Γ𝜔̂ = ∅ as Γ𝜔̂ ∪ Γ∥ = 𝜕Ω and Γ𝜔̂ ∩ Γ∥ = ∅).

Mass conservation Pointwise mass conservation, see Section 3.1, is always satisfied regardless of the boundary conditions.

Energy balance For the energy balance, if we replace 𝒗ℎ in (12a) by 𝒖ℎ ∈ 𝐷0(Ω, Γ⟂), we will obtain

⟨𝜕𝑡𝒖ℎ,𝒖ℎ⟩Ω + 𝑎
(

𝜔ℎ,𝒖ℎ,𝒖ℎ

)
+Re−1 ⟨∇× 𝜔ℎ,𝒖ℎ⟩Ω − ⟨𝑃ℎ,∇ ⋅ 𝒖ℎ⟩Ω = ⟨𝒇 ,𝒖ℎ⟩Ω −

⟨
𝑃 , 𝒖ℎ

⟩
Γ

𝑃

,

which leads to

⟨𝜕𝑡𝒖ℎ,𝒖ℎ⟩Ω + Re−1 ⟨∇× 𝜔ℎ,𝒖ℎ⟩Ω = ⟨𝒇 ,𝒖ℎ⟩Ω −
⟨

𝑃 , 𝒖ℎ

⟩
Γ

𝑃

,

for the same reasons as in Section 3.2. And from (12b), since 𝐶(Ω) = 𝐶0(Ω, Γ𝜔̂) when Γ𝜔̂ = ∅, we know

⟨𝒖ℎ,∇× 𝜔ℎ⟩Ω = ⟨𝜔ℎ, 𝜔ℎ⟩Ω +
⟨

𝑢̂∥, 𝝎ℎ

⟩
Γ∥

,

for 𝜔ℎ ∈ 𝐶(Ω). Combining these two relations gives a (semi-)discrete energy balance,

𝜕𝑡ℎ = −2Re−1ℎ
⏟⏞⏞⏞⏟⏞⏞⏞⏟
(i) dissipation

+ ⟨𝒇 ,𝒖ℎ⟩Ω
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(ii) work body force

−
⟨

𝑃 , 𝒖ℎ

⟩
Γ

𝑃
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(iii) work normal force

−Re−1
⟨

𝑢̂∥, 𝝎ℎ

⟩
Γ∥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(iv) work shear force

. (A.1)

This equation states that the time rate of change of kinetic energy is equal to the summation of (i) the amount of energy dissipation 
within the domain Ω per unit time and the amount of work done on the fluid per unit time. And the work is separated into (ii) the 
work done by the body force within the domain, (iii) the work done by the prescribed pressure along Γ𝑃 , and (iv) the work done by 
the shear stress along Γ∥, respectively.

In the special case where periodic boundary conditions are employed and the body force is set to zero, the energy balance, (14), 
is retrieved.

Enstrophy balance If we take the time derivative of (12b), we obtain

⟨𝜕𝑡𝒖ℎ,∇× 𝜉ℎ⟩Ω = ⟨𝜕𝑡𝜔ℎ, 𝜉ℎ⟩Ω +
⟨

𝜕𝑡𝑢̂∥, 𝜉ℎ

⟩
Γ∥

, ∀𝜉ℎ ∈ 𝐶0(Ω,Γ𝜔̂) .

However, since 𝜉ℎ ∈ 𝐶0(Ω, Γ𝜔̂) does not guarantee that ∇ × 𝜉ℎ ∈ 𝐷0(Ω, Γ⟂), a replacement similar to the one used for (16) is no 
longer valid. Furthermore, inconsistency will arise again when we perform a replacement similar to the one used to derive (18). As 
a consequence, an enstrophy balance like the energy balance, i.e. (A.1), cannot be found by the authors for the current formulation. 
13

Although the results have supported it on handling general boundary conditions, this lack is an obvious limit of this work.
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Vorticity conservation For vorticity conservation, we can derive, when 𝑢̂∥ = 0, from (12b) that

ℎ ≡ 0

by selecting

𝜉ℎ = 1.

This is inline with the results shown in the right diagram of Fig. 10.
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