

Delft University of Technology

Unified Binary Generative Adversarial Network for Image Retrieval and Compression

Song, Jingkuan; He, Tao; Gao, Lianli; Xu, Xing; Hanjalic, Alan; Shen, Heng Tao

DOI
10.1007/s11263-020-01305-2
Publication date
2020
Document Version
Final published version
Published in
International Journal of Computer Vision

Citation (APA)
Song, J., He, T., Gao, L., Xu, X., Hanjalic, A., & Shen, H. T. (2020). Unified Binary Generative Adversarial
Network for Image Retrieval and Compression. International Journal of Computer Vision, 128(8-9), 2243-
2264. https://doi.org/10.1007/s11263-020-01305-2

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11263-020-01305-2
https://doi.org/10.1007/s11263-020-01305-2

International Journal of Computer Vision (2020) 128:2243–2264
https://doi.org/10.1007/s11263-020-01305-2

Unified Binary Generative Adversarial Network for Image Retrieval and
Compression

Jingkuan Song1 · Tao He2 · Lianli Gao1 · Xing Xu1 · Alan Hanjalic3 · Heng Tao Shen1

Received: 21 April 2019 / Accepted: 5 February 2020 / Published online: 18 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Binary codes have often been deployed to facilitate large-scale retrieval tasks, but not that often for image compression. In this
paper, we propose a unified framework, BGAN+, that restricts the input noise variable of generative adversarial networks to be
binary and conditioned on the features of each input image, and simultaneously learns two binary representations per image:
one for image retrieval and the other serving as image compression. Compared to related methods that attempt to learn a single
binary code serving both purposes, we demonstrate that choosing for two codes leads to more effective representations due
to less concessions needed when balancing the requirements. The added value of using a unified framework compared to two
separate frameworks lies in the synergy in data representation that is beneficial for both learning processes. When devising
this framework, we also address another challenge in learning binary codes, namely that of learning supervision. While the
most striking successes in image retrieval using binary codes have mostly involved discriminative models requiring labels, the
proposed BGAN+ framework learns the binary codes in an unsupervised fashion, yet more effectively than the state-of-the-art
supervised approaches. The proposed BGAN+ framework is evaluated on three benchmark datasets for image retrieval and
two datasets on image compression. The experimental results show that BGAN+ outperforms the existing retrieval methods
with significant margins and achieves promising performance for image compression, especially for low bit rates.

Keywords Binary codes · Image retrieval · Image compression · Generative adversarial network

Communicated by Li Liu, Matti Pietikäinen, Jie Qin, Jie Chen, Wanli
Ouyang, Luc Van Gool.

B Lianli Gao
lianli.gao@uestc.edu.cn

B Heng Tao Shen
shenhengtao@hotmail.com

Jingkuan Song
jingkuan.song@gmail.com

Tao He
tao.he@monash.edu

Xing Xu
xing.xu@uestc.edu.cn

Alan Hanjalic
a.hanjalic@tudelft.nl

1 Center for Future Media and School of Computer Science and
Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, Sichuan, China

2 Monash University, Clayton, VIC 3800, Australia

3 Delft University of Technology, Delft, The Netherlands

1 Introduction

Image retrieval and compression have both been extensively
studied, however mostly as two disjointed research topics
due to their distinct key techniques and applications. Image
retrieval makes use of the representation of visual content
to identify relevant images, and image compression searches
for ways to achieve efficient image representation to lower
the cost of storage and transmission. In this paper we investi-
gate the possibility to address both challenges using a unified
framework. This possibility offers itself in the form of binary
codes, or hashes.

In the context of image retrieval, binary codes have been
deployed for approximate nearest-neighbor (ANN) search,
which has proven itself as a tractable alternative for the
nearest-neighbor search (NN) on large image collections.
ANN search is more practical and can achieve orders of mag-
nitude in speed-up compared to exact NN search (Jégou et al.
2011; Wang et al. 2018). Recently, learning-based hashing
methods (Wang et al. 2018; Irie et al. 2014; Lin et al. 2014;
Song et al. 2013; Shen et al. 2017; Duan et al. 2017) have

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-020-01305-2&domain=pdf
http://orcid.org/0000-0002-2549-8322

2244 International Journal of Computer Vision (2020) 128:2243–2264

become the mainstream for scalable image retrieval due to
their compact binary representation and efficient Hamming
distance calculation. Such approaches embed data points to
compact binary codes by hash functions, which can be gen-
erally expressed as:

b = h(x) ∈ {0, 1}L (1)

where x ∈ R
D×1, h(.) are the hash functions, and b is a

binary vector with code length L.
According to whether labels are leveraged when learning

a hashing function, we roughly divide the hashing methods
into two categories, supervised and unsupervised. An unsu-
pervised method is aimed at preserving similarity properties
of the original data points in the binary codes. Typical tech-
niques preserving the similarity include pairwise similarity
(Weiss et al. 2008; Liu et al. 2014), and multi-wise similar-
ity (Norouzi and Fleet 2013; Wang et al. 2013b) or implicit
preservation, which means that we do not need to calculate
the explicit similarity between the inputs and the compact
codes (Heo et al. 2015; Jin et al. 2013). Unsupervised hash-
ing methods show many practical problems, such as how
to construct the pairwise data points and how to measure
and model different aspects of similarity in training data.
Aiming at resolving the problems of unsupervised methods,
supervised hashing methods (Lin et al. 2014; Ge et al. 2014;
Strecha et al. 2011) have been well studied in recent years.
While they usually significantly outperform unsupervised
methods, the information that can be used for supervision
is also typically scarce.

More recently, deep learning has been introduced in the
development of hashing algorithms (Xia et al. 2014b; Lin
et al. 2016; Do et al. 2016; Gu et al. 2016; Wang et al. 2017),
leading to a new generation of deep hashing algorithms.
Due to powerful feature representation, remarkable image
retrieval performance has been reported using the hashes
obtained in this way. However, a number of open issues have
still remained open. The most successful deep hashing meth-
ods are usually supervised and require labels. The labels are,
however, scarce and subjective. Unsupervised approaches,
on the other hand, cannot take full advantages of the current
deep learning models, and thus yield unsatisfactory perfor-
mance (Lin et al. 2016). Another issue is a non-smooth sign
function used to generate the binary codes, which, despite
several ideas being proposed to tackle it (Li et al. 2016; He
et al. 2019; Gao et al. 2019; Song et al. 2019), still makes
the standard back-propagation infeasible. Meanwhile, GAN-
based hashmethods (Cao et al. 2017; Zieba et al. 2018;Wang
et al. 2017) have been recently proposed. Compared to them,
one advantage of ourmethod is that BGAN+ is unsupervised,
i.e., without requiring the label information. For example,
HashGAN (Cao et al. 2017) is implemented by a condi-
tional GAN, which needs additional supervised information.

However, BGAN+ can be easily modified to the supervised
version by incorporating the label information. In addition,
most of GAN-based hash methods proposed to reconstruct
the original image in order to transform original image infor-
mation into the referring feature. Their reconstructed images
are only used in the training stage and they are not required
to be similar to their source images. To remedy this defect,
our BGAN+ can make the best use of the generated images
and reconstruct highly vivid images which are comparable
to some classical image compression methods, such as JPEG
and JPEG 2000.

The research field of image compression has already
developed over many decades. The key challenge here is to
find a pair ofwell-matched encoder and decoder. The encoder
is used to transform the original large discrete data into low
dimensional codes with minimal entropy (Shannon 2001),
while the decoder acts as a translator which decodes the com-
pressed codes into new data that should be identical as the
original. In fact, the compression system is heavily associ-
ated with the probabilistic structure of the original data so the
solution is similar tomodeling a probabilistic source. In prac-
tice, since the compression codes always have finite entropy,
we can not avoid the constructed errors. In this context, lossy
compression problem has been studied for many years and
generally, we must trade off two costs: the loss from the
quantization (distortion) and the entropy of the discretized
representation (rate). To be specific, low compression rate
results in high entropy loss and high distortion directly leads
to low-quality constructed data. However, joint learning of
rate and distortion is difficult. Farvardin (1994) has demon-
strated that it is intractable to optimize vector quantization
without other constraints.Wintz (1972) utilized linear projec-
tion to transform the original data into a continuous-valued
image representation, and then independently quantized its
elements and finally encoded the discrete representation in
a lossless fashion. The widespread compression technique,
JPEG (Wallace 1991) deploys cosine transform on each pixel
block,while another popular technique, JPEG2000 (Rabbani
and Joshi 2002), applies a multi-scale orthogonal wavelet
decomposition of the original data. On the other hand, there
is another direction of image compression, i.e., to encode
images into binary codes and then decode them to original
images, such as Toderici et al. (2015), Rippel and Bourdev
(2017) and Li et al. (2018). Specifically, Toderici et al. (2015)
proposed a RNN-based encoder and decoder to deal with
variable compression rates after only once training, and Rip-
pel and Bourdev (2017) proposed aGANbased auto-encoder
framework to efficiently compress images into binary codes.
However, in this work, our work is focusing on how to com-
bine two tasks, image compression and retrieval into a unified
framework instead of separating them. To the best of our
knowledge, we are the first to combine the two tasks into a
unified network.

123

International Journal of Computer Vision (2020) 128:2243–2264 2245

Anotherwidely-used technique ismulti-tasks learning (Col-
lobert and Weston 2008; Ruder 2017). It has been demon-
strated that multi-tasks learning is an efficient strategy in
lots of fields, such as speech recognition (Deng et al. 2013),
computer vision (Girshick 2015) and natural language pro-
cessing (Collobert andWeston 2008). Ruder (2017) explains
why the multi-tasks learning is effective from five per-
spectives: data augmentation, attention focusing, eavesdrop,
representation bias and regularization. One main feature of
multi task learning is that the learned tasks should be related
or have some overlap parts with each other, whichmeans that
they should share some parameters in the unified network,
such as feature learning layers. Take Fast-rcnn (Girshick
2015) as an example. In fact, Faster-rcnn has implemented
several tasks in a unified framework, such as region pro-
posal selection, object detection and object recognition, all of
which are relevant. Specifically, region proposal selection is
to recognize whether the bounding box contains a object and
the task of object recognition is to classify the objection in the
box. Both of the tasks interact with each other and the former
can be also regarded as the base task of the latter. In terms of
the implementation of multi tasks, there are two ways: hard
parameters sharing and soft parameters sharing, and more
details can be found in Deng et al. (2013). In this paper, we
focus on solving two tasks, image retrieval and compression
in a multi-task learning fashion, due to the fact that the tasks
are not independent. More concretely, image retrieval task is
a procedure to deal with semantic or high-level feature com-
pression while image compression is to compress the raw
pixel image, i.e., low-level feature. As a matter of fact, learn-
ing the low-level feature is the basis of learning high-level
representation. Thus, in this paper, we propose to use a binary
generative adversarial network (BGAN+) to convert images
to binary codes for both image retrieval and compression in
a multi-task learning fashion and an unsupervised way.

While, ideally, one could try to find a binary code that is
usable for both tasks, our preliminary study has shown that
optimizing a hash-function learning from both perspectives
requires the learning algorithms to make too many conces-
sions towards one of the objectives, making either retrieval or
compression less effective than the common state-of-the-art.
However, we hypothesize that we can come far in unifying
the two binary-code learning processes. In this way, we can
produce two different codes that are individually optimized
for their different purposes, but in a way that the two learn-
ing procedures optimally benefit from each other in terms of
learning efficiency and effectiveness. In view of the analysis
above, our contribution can be threefold:

• We propose a binary generative adversarial network
(BGAN+) to convert images to binary codes for both
image retrieval and compression in a multi-task learning

fashion. To the best of our knowledge, this is the first
attempt to combine the two tasks into a unified network.

• We take the challenge of learning these codes in an unsu-
pervised way in order not to rely on typically scarce
training data. Alternatively, BGAN+ can also be easily
modified to supervised version to significantly improve
the retrieval performance. We also propose several solu-
tions to address the gradient vanishing problem caused by
sign function in the hash-learning process,which enables
our method to be trained in an end-to-end strategy.

• We conduct extensive experiments to evaluate the per-
formance of the binary codes generated by BGAN+ in
terms of image retrieval and compression. A wide range
of results show that our BGAN+ outperforms the existing
retrieval methods with significant margins and achieves
competitive performance for image compression, espe-
cially for low bit rates. Besides, substantial ablation
studies also show the proposed each part in BGAN+ is
effective and able to contribute to the referring task’s per-
formance.

The remainder of this paper is organized as follows. We
first review the related work in Sect. 2. Then, we provide
the details of our proposed model in Sect. 3, followed by
the experimental results in Sect. 5. Section 6 concludes the
paper.

2 RelatedWork

In this section, we briefly review the related work, and
then specifically discuss the work on hashing for image
retrieval, image generation, image compression and multi-
tasks learning. Regarding image retrieval using binary codes,
supervised methods generally use information to learn hash-
ing codes in three different formats: point-wise, pair-wise
and rank orders. Representative point-wise hashing methods
include CCA-ITQ (Gong et al. 2013), supervised discrete
hashing (SDH) (Shen et al. 2015), deep hashing (Liong et al.
2015), and BinGan (Zieba et al. 2018). Pair-wise hashing
can best be illustrated by the methods, such as SPLH (Wang
et al. 2010), which utilizes sequential projection learning
strategy to generate efficient hashing codes, and KSH (Liu
et al. 2012), which uses kernel function to learn hashing
function and outperforms other supervised methods, the fast
supervised hashing (Lin et al. 2014) and two-step hashing
(TSH) (Lin et al. 2013). At the same time, many other meth-
ods based on deep learning have been developed, like the
convolutional neural network hashing (Xia et al. 2014a), in
which it is proposed to automatically learn convolutional
image representation instead of the previouswork using hand
draft features as input. Furthermore, DPSH (Li et al. 2016)
directly combines two independent tasks, learning image

123

2246 International Journal of Computer Vision (2020) 128:2243–2264

representation and hashing function, into a deep end-to-end
network. The representative rank-label methods include col-
umn generation hashing (Li et al. 2013), ranking-based
supervised hashing (Wang et al. 2013a), discretely semantic
rank orders (DSeRH) (Liu et al. 2017) and ranking preserv-
ing hashing (Zhao et al. 2015). In our work, we use pair-wise
similarity as the hashing-learning strategy. Unlike previous
work, we do not use the ground truth labels to construct pair-
wise labels. Instead, we adopt two ways, via hand-crafted
feature and deep feature, to create the similarity matrix. In
this sense, our proposed method can be treated as the unsu-
pervised method.

Regarding the research on image generation, generative
adversarial networks (GAN) (Goodfellow et al. 2014) has
played a critical role recently. GAN usually consists of two
networks, a generator and a discriminator network, which
are involved in a min–max optimization game. There, the
discriminator acting as an adversary to the generator is used
to judge whether the generated image from the generator is
real or fake, that is, whether it matches the criteria imposed
by the input image or not. This is why the goal of the genera-
tor is to generate images that resemble the input image in the
best possible way so it can ‘fool’ the discriminator. Theoret-
ically, when the discriminator cannot distinguish the source
of the image (original or from the generator), we can con-
sider the overall GAN optimization as converged. Recently,
a vast number of image generation methods based on GAN
have been explored (Larsen et al. 2016; Ledig et al. 2017).

Lossy image compression has been widely used for data
storage and transmission. JPEG (Wallace 1991) and JPEG
2000 (Rabbani and Joshi 2002) are two commonly used
methods of lossy compression for digital images. The degree
of compression can be adjusted, allowing a selectable trade-
off between storage size and image quality. JPEG typically
achieves 10:1 compression with little perceptible loss in
image quality. After that, more sophisticated compression
methods have been proposed, e.g., WebP (Google 2017),
JPEG 420, Better Portable Graphics (BPG) (Bellard 2017).
Recently, with the wide application of deep learning, there
are numerous novel compression methods based on CNN
or Recurrent Neural Network (RNN) (Toderici et al. 2016;
Li et al. 2018; Ballé et al. 2016). In Toderici et al. (2016)
proposed a deep RNN network, which can provide variable
compression rates during deployment, and introduced a new
hybrid of GRU and ResNet. In Li et al. (2018) explored a
content-aware compression method based on the convolu-
tional network, which can generate an importance map of
the image content and optimize the compression quality. It
can also retain as much detail as possible and in the low bit
rate their method outperforms JPEG and JPEG 2000. Baig
et al. (2017) proposed multi-stage progressive encoders,
whose structure resembles a bottleneck, like VAE (Kingma
and Welling 2013). Ballé et al. (2016) proposed an image

compression framework, consisting of a nonlinear encoding
transformation, a uniform quantizer, and a nonlinear decod-
ing transformation, which only contains three convolutional
layers. With the great performance achieved in Gong et al.
(2013), the residual block has been proved to be a remark-
ably efficient way in the aspect of reducing information
loss due to deep layers network (Baig et al. 2017). Firstly,
the residual block allows the deeper layers to know how
to utilize information which could not be generated by the
previous stage. Secondly, these connections reduce the dis-
tance of the path that information travels, which brings better
joint optimization. In Agustsson et al. (2017) proposed to
learn compressible representations using deep architectures,
which can be trained end-to-end. In Theis et al. (2017) uti-
lized the derivative of a smooth approximation to replace the
derivative in the backward pass of back-propagation and opti-
mized the autoencoder network. Outstanding performance
was reported.

Multi-task learning has also attracted significant attention.
In the application of deep neural network, Long and Wang
(2015) proposed an explicit multi-task framework, Multi-
linear Relationship Networks (MRN), to discover the task
relationships in deep convolutional networks and achieve a
promising performance in the multi-task learning datasets.
Lu et al. (2017) proposed a compact multi-task deep learn-
ing architecture which was initialized with a thin network
and dynamically widened during training.Misra et al. (2016)
designed a frame thatwas firstly trained in a separate strategy,
and then explored cross-stitch units to predict how to use the
knowledge of the other task. On the other hand, multi-task
learning also inspires the non-neural models. For example,
Argyriou et al. (2007) has proposed to learn a feature rep-
resentation by sharing across a set of multiple related tasks,
based on a 1-norm regularization to control the number of
learned features for all the tasks.

3 Proposed Framework

Given N images, I = {Ii }N
i=1 without labels, our goal is to

learn their compact binary codes B and Bc such that: (a)
the original image can be reconstructed from Bc, (b) similar
images can be retrieved using B, and (c) both Bc and B can
be computed directly without relaxation.

We illustrate our proposed BGAN+ framework by the
scheme inFig. 1. The framework consists of twocomponents:
(1) a binary generative adversarial compression network
(BGANc), and (2) a binary generative adversarial retrieval
network (BGANr). Both parts learn their binary codes in
an unsupervised fashion. In the BGANc part, Bc is learned
through the interplay between a generator and a discrimina-
tor. Specifically, the generator takes an image as input and
represents it by a binary code. Then, this code is decoded

123

International Journal of Computer Vision (2020) 128:2243–2264 2247

A Training Image

T
raining Im

ages

Shared
Feature ~

-1 -1 1
-1 1 1
-1 1 1

-1 1 1
 1 1 1
-1 1 1

FakeReal

Neighborhood
Structure Loss

1 -1

1

1-1

...

...

... ...

Neighborhood
Matrix

G
enerated Im

ages

A Generated Image

 Neighborhood
Structure

Construction D

 Shared Encoder

Encoder2

Decoder
Hashing Code

for Compression

Hashing Code
 for Retrieval

Constant
Neuron

Discriminator Network

Mse loss

Fig. 1 An overview of our proposed BGAN+ framework for simulta-
neously learning binary codes for image retrieval and compression. Our
framework contains two major networks, i.e., image compression net-
work and image retrieval network. For the image compression network
(BGANc), there are four key components: (1) a shared encoder, for
learning low-level image representations, (2) a constant neuron layer,
for learning the binary codes for image compression, (3) a decoder, to

reconstruct the original images, and (4) a discriminator, to distinguish
between real and reconstructed images. For the image retrieval net-
work (BGANr), there are three key components: (1) a shared encoder,
(2) encoder2, for learning high-level image representations, and (3) a
hashing layer, for learning the binary codes for image retrieval. As a pre-
processing step, we construct the neighborhood structure of the training
images

to reconstruct the image, which enters the verification pro-
cess in the discriminator to be compared with the original
image. The BGANr part learns binary code B by also taking
into account the visual neighborhood structure of the image
in order to make sure that the proper notion of image sim-
ilarity propagates into the similarity of the learned binary
codes for retrieval. The two learning processes are coupled
by the output of the shared encoder. In this way, the crite-
ria used to learn binary code in one part of the framework
helps in learning the binary codes in the other part. Although
we learn two separate codes for two different purpose, we
hypothesize that this synergetic effect is beneficial for both
learning processes and justifies their integration into a single
framework, as opposed to creating two binary codes using
separate frameworks. In addition, through shared modules,
both codes are learned in a more efficient manner than if
they are learned independently. Related to the latter, for the
learning of the parameters, we train the entire framework at
once by a joint training strategy. In the remainder of this sec-
tion, we provide detailed information about the our proposed
BGAN+ framework.

3.1 Binary Generative Adversarial Compression
Network (BGANc)

The binary codes Bc learned from I = {Ii }N
i=1 by BGANc

have the task to represent an image such that it can be recon-
structed as well as possible back to its original state. We

model this goal by the following expression:

�(I) = min
f

||I − f (I)|| (2)

where f denotes the transformation function transforming
the original image Ii into the reconstructed image IR . The
transformation function consists of the elements of the shared
encoder, the proposed constant neuron and the decoder. We
explain these components in more detail in Sects. 3.1.1, 3.1.2
and 3.1.3, respectively. Then, in Sect. 3.1.4. we come back
with an elaborate version of the above expression, taking into
account the realizations of the three components.

3.1.1 Shared Encoder

VGG network (Simonyan and Zisserman 2014) utilizing an
architecture with 3 × 3 convolution filters is able to achieve
good performance for large scale image classificationwith 19
weight layers. In this paper, we build our shared encoder with
the first five convolution layers ofVGG,with the details illus-
trated in Table 1. Following the architecture of Ledig et al.
(2017) and Radford et al. (2015), we avoid two max-pooling
operations throughout the shared encoder to allow our net-
work to learn its own spatial downsampling. Specifically, we
set the stride of the first four convolutional layers as 2, and
thus each convolutional layer has the size (i.e., width and
height) of the input feature map. The stride of the last convo-

123

2248 International Journal of Computer Vision (2020) 128:2243–2264

Table 1 The architecture for
feature extraction

Layer Size of filter Filters Others

conv1_1 3×3 64 Stride=1, padding=1, relu

conv1_2 3×3 64 Stride=2, padding=1, relu

conv2_1 3×3 128 Stride=1, padding=1, relu

conv2_2 3×3 128 Stride=2, padding=1, relu

conv3_1 3×3 256 Stride=1, padding=1, relu

conv3_2 3×3 256 Stride=1, padding=1, relu

conv3_3 3×3 256 Stride=1, padding=1, relu

Max pooling 2×2 2

conv4_1 3×3 512 Stride=1, padding=1, relu

conv4_2 3×3 512 Stride=1, padding=1, relu

conv4_3 3×3 512 Stride=1, padding=1, relu

Max pooling 2×2 2

conv5_1 3×3 512 Stride=1, padding=1, relu

conv5_2 3×3 512 Stride=1, padding=1, relu

conv5_3 3×3 512 Stride=1, padding=1, relu

Max pooling 2×2 2

FC6 None 4096 relu

FC7 None 4096 relu

lutional layer is set as 1, which can be considered as a fully
convolutional layer. Given an image Ii with the size ofW ×H
(i.e., W as width and H as height), we can obtain C feature
map with the size of W

16 × H
16 ×3 through our shared encoder,

where C denotes the number of feature map channels.

3.1.2 Constant Neuron

To compress an image into a hash code and then reconstruct
the image from the generated hash code, the issue related to
binary constraints becomes relevant. The problem of binary
constraints has been addressed by relaxing the constraints
from {0, 1} (Weiss et al. 2008) or by adopting alternating opti-
mization strategies (Gong et al. 2013, 2012). However, they
either cause a large optimality gap between non-relaxed and
relaxed objectives or substantially weaken the model flexi-
bility, respectively. As a result, in Dai et al. (2017) proposed
to define a function h to re-parameterize Bernoulli distribu-
tion over the binary variables to avoid directly working with
binary variables. h is referred to as stochastic neuron:

h(z) =
{
1 i f z ≥ ξ

0 i f z < ξ
(3)

where ξ ∼ μ (0, 1). Inspired by the stochastic neuron, in this
paper, we propose a constant neuron, which is defined as:

h(z) =
{
1 i f z ≥ 0.5
0 i f z < 0.5

(4)

Since h is not smooth, it is still difficult to apply stochastic
gradient descent to calculate the gradient of the parameters.
To solve this problem, we firstly defineWe,be as the param-
eters of our shared encoder. As a result, the intermediate
compressed hash codes can be formulated as:

Bc = h(En(I;We,be, δ)) (5)

where δ is the active function of the convolutional layers and
En is our encoding function. Then, we set the active function
of the last convolution layer of shared encoder as sigmoid
and the other four layers are set as ReLu. Finally, we define
our constant neuron as:

h(I;�) = sign(En(I;We,be, δ) − 0.5) + 1

2
(6)

Unfortunately, the sign function is non-smooth and gra-
dient of sign is zero. Following Grubb (2008), we use
distributional derivative to estimate the stochastic gradient
by:

∇�h(I;�) = ∇�(I;�)En(I;�, δ)•(1−En(x;�, δ))IT (7)

where • denotes a point-wise product, and where � =
{We,be} and ∇�(I;�) is the gradient from our objective
function. More specifically, we utilize chain rules to cal-
culate it. To conduct optimization, we leverage standard
stochastic gradient descent algorithm to optimize Bc by fol-
lowing Nemirovski et al. (2009) and Kingma and Ba (2014).

123

International Journal of Computer Vision (2020) 128:2243–2264 2249

3.1.3 Decoder

The decoder of BGANc takes the output of the constant neu-
ron as input to reconstruct the original image. Therefore,
the input for the decoder is Bc

i and the output is an image
IR

i . Transferring such low dimensional features Bc
i to a high

dimensional feature is a challenging task. In previous work,
most auto-encoding systems (Larsen et al. 2016; Kingma and
Welling 2013) use a fully connected layer as the first layer
of a decoder for transforming a low dimensional feature into
a high dimensional feature by a non-linear projection, but
this substantially reduces the model flexibility: the input size
must be fixed. However, cropping or wrapping an image into
a fixed size can lead to a loss of image information (He et al.
2015). More importantly, in reality, we need to provide an
efficient approach to compress images with an arbitrary size.
Previouswork (Gong et al. 2013; Ledig et al. 2017; Baig et al.
2017) demonstrated that residual blocks have a significant
effect on reducing the information loss as the network deep-
ening. Inspired by this observation, we design our decoder
network by integrating deconvolutional layers (Odena et al.
2016), residual blocks with fully convolutional layers, for
efficiently reconstructing images from binary codes. Specif-
ically, the decoder consists of four deconvolutional layers
(i.e., setting as 3 × 3 × 512, 3 × 3 × 256, 3 × 3 × 128 and
3× 3× 64) and three residual blocks, each with two convo-
lutional layers, followed by a convolutional layer (3×3×64
and two fully convolutional layers (1×1×64, and 1×1×3).
The structure of our proposed decoder is shown in Fig. 2.

3.1.4 BGANc Optimization Objective

Based on the realizations of the three BGANc components
as explained above, we can now define the expression Eq. (2)
more concretely. What we minimize in Eq. (2) is actually the
loss of reconstructing the input image. The definition of the
corresponding loss function as the optimization objective is
critical for the performance of our generator network. In this
subsection, we define two loss functions that contribute to
the optimization objective of the BGANc network.

Content Loss The first component is the content loss, which
directly measures the deviation of the reconstructed image
from the original. While both l1 loss and l2 loss are applied
for image generation task and previous work (Ledig et al.
2017) has proven that l1 loss performs better than l2 loss,
thus we define our content loss function as below:

�De = min
�

N∑
i=1

∥∥Ii − De(Bc
i ;�)

∥∥ (8)

where De denotes the decoding operation, � denotes the
parameters of decoder and Bc is seen as the compressed
hashing codes generated by our encoder. Furthermore, we
can rewrite Eq. 8 as the following pixel-wise l1 loss:

�De (I;�) = min
�

1

W H

N∑
i=1

W∑
p=1

H∑
q=1

∥∥∥Ii,p,q − I R
i,p,q

∥∥∥ (9)

Obviously, Eq. 9 is continuous and can be directly optimized
by the stochastic gradient descent algorithm.

Adversarial Loss In order to make the optimization of
BGANc more robust, we also take the quality of the recon-
structed image from another perspective. Following the
approach by Goodfellow et al. (2014), we define a “Discrim-
inator” network D in such a way that it is optimized using
criteria conflicting with those of G. G is the “Generator”
network (i.e., the decoder Dc shown in Fig. 1). In this way,
D can act as adversary to G in the overall min–max opti-
mization process. The goal of this optimization is to improve
G such to be able to generate the images as well as pos-
sible. The process being adversarial to image generation is
the process of trying to distinguish between the original and
reconstructed images. If G manages to generate the images
so well to “fool” D, then it “wins” the min–max game and
the overall GAN optimization has converged. In view of this,
given a model of the image classifier D assessing the original
(I) and reconstructed (IR) image, we can formally define the
min–max game resulting in the optimal system parameters
as follows:

D
econv:3 ×3×512

C
onv :3×3× 512

C
onv :3×3× 512

D
econv: 3×3×256

+

C
onv:3×3× 256

C
onv:3 ×3×256

D
econv:3×3×128

+

Residual Block Residual Block

C
onv:3 ×3 × 128

C
onv:3 ×3× 128

D
econv :3× 3×64

+

Residual Block

C
onv :3 ×3 ×64

C
onv:1×1×64

C
onv :1× 1× 3

Binary
Code

Generated
Image

-1 -1 1
-1 1 1
-1 1 1

Fig. 2 Configuration of the decoder. Bc
i ∈ R

W
16 × H

16 ×C is the input code,
where C controls the bit-rate, and IR

i ∈ R
W×H×3 is the output image.

The input image Ii is firstly compressed toBc
i . The decoder reconstructs

an image IR
i fromBc

i using several Deconv andConv layers, and ensures
that the final output image IR

i has the same size as the original image
Ii . Skip connection works as the shortcut in residual network

123

2250 International Journal of Computer Vision (2020) 128:2243–2264

�A(Ii ;�,�,�) = min
�,�

max
�

log(D(Ii)) + log(1 − D(IR
i))

(10)

where �,� are, respectively, the parameters of the encoder
and decoder network, and � is the vector of the parameters
of the discriminator.

Here we follow the architecture design summarized by
Radford et al. (2015). We use ReLU activation and avoid
max-pooling throughout the network. It contains 4 convo-
lutional layers with an increasing number of 5 × 5 filter
kernels (32, 128, 256, and 512). Strided convolutions are
used to reduce the image resolution and each time the num-
ber of features is doubled. The resulting 512 feature maps
are followed by a dense layer with the size of 1024 and a
final sigmoid activation function to obtain a probability for
sample classification.

We can formulate the objective function of compression
network as the weighted sum of the pixel-wise l1 loss and
the adversarial loss as:

�C = �De + λ�A (11)

where λ is the weighted factor to balance the impact of pixel-
wise loss and adversarial loss.

3.2 Binary Generative Adversarial Retrieval Network
(BGANr)

The task of our retrieval networkBGANr is to generate a hash
code Bi from an image Ii . The structure of BGANr consists
of two parts: shared encoder, the encoder2 and the hashing
layer (see Fig. 1).

3.2.1 Encoder2

Specifically, our BGANr is based on the VGG network and
the specific configuration is defined in Table 1. Theoreti-
cally, we can directly use Bc to retrieve images. However,
it is unlikely to acquire excellent results due to the reason
that compression network only encodes low-level informa-
tion without high-level semantic information. To conduct an
efficient search, hash codeBmust encode both low-level and
high-level semantic information. As a result, we design our
BGANr by sharing the encoder of G to extract better low-
level information.

3.2.2 Construction of Neighborhood Structure

Moreover, for the training of the system, we first conduct
the neighborhood structure of images and then train the net-
work. Neighborhood structure is beneficial to exploiting the
manifold structure of the training data, and can improve the

performance of image retrieval (Wang et al. 2018). Next, we
introduce our approach to construct a similarity matrix by an
unsupervised method.

In our unsupervised approach, we propose to exploit the
neighborhood structure of the images in feature space as
information source steering the process of hash learning.
Specifically, we propose a method based on the K-Nearest
Neighbor (KNN) concept to create a neighborhood matrix
of S. We use two types of features to construct S: non-
deep features and deep features. For non-deep features, we
use the hand-crafted features provided with the dataset. For
deep features, we extract 2048-dimensional features from the
pool5-layer based on He et al. (2016). This results in the set
X = {xi }N

i=1 where xi is the feature vector of image Ii .
For the representation of the neighboring structure, our

task is to construct a matrix S = {si j }N
i, j=1, whose elements

indicate the similarity (si j =1) or dissimilarity (si j =−1) of
any two images i and j in terms of their features xi and x j .

We compare images using cosine similarity of the feature
vectors. For each image, we select K1 images with the high-
est cosine similarity as its neighbors. Then we can construct
an initial similarity matrix S1:

(S1)i j =
{
1, if x j is K1-NN of xi

− 1, otherwise
(12)

The precision curve (evaluated using the labels) in Fig. 3
indicates the quality of the constructed neighborhood for
different values of K1. Due to rapidly decreasing precision
with increasing K1, creating a large-enough neighborhood
by simply increasing K1 is not the best option. In order to
find a better approach, we borrow ideas from the domain of
graph modeling. In an undirected graph, if a node v is con-
nected to a node u and if u is connected to a node w, we can
infer that v is also connected to w. Inspired by this, if we
treat every training image as a node in an undirected graph,
we can expand the neighborhood of an image i by exploring
the neighbors of its neighbors. Specifically, if xi connects to
x j and x j connects to xk , we can infer that xi has the potential
to be also connected to xk .

In view of the above, we use the initial similarity matrix
S1 to expand the neighborhood structure. Specifically, based
on S1, we calculate the similarity of two images by compar-
ing the corresponding columns in S1 using the expression

1
||(S1)i −(S1) j ||2 . Then we again construct a ranked list of K2

neighbors, based on which we generate the second similarity
matrix S2 as:

(S2)i j =
{
1, if x j is K2-NN of xi

− 1, otherwise
(13)

Finally, we construct the neighborhood structure by com-
bining the direct and indirect similarities from the two

123

International Journal of Computer Vision (2020) 128:2243–2264 2251

0 1000 2000 3000 4000 5000

Number of Neighbors

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

KNN
Ours

Fig. 3 Precision of constructed labels on cifar-10 dataset with different
K, and different methods (deep features are used)

Algorithm 1 Construction of neighborhood structure

Input: Images X = {xi }N
i=1, the number of neighbors K1, the number

of neighbors K2 for the neighbors expansion;
Output: Neighborhood matrix S = {si j };
1: First ranking: Use cosine similarity to generate the index of K1-NN

of each image L1, L2, . . . , L N ;
2: Neighborhood expansion:
3: for j=1,…,N do
4: Initialize num ← 0;
5: for j=1,…N do
6: num j ← the size of Li ∩ L j ;
7: end for
8: Sort num by descending order and keep the top K2 {L j };
9: Set new L ′

i ← union of the top K2 {L j };
10: end for
11: for j=1,…,N do
12: Construct S with new L ′

i based on Eq. 14;
13: end for
14: return S;

matrices together. This results in the final similarity matrix
S:

Si j =
{
1, if (S1)i j = 1 or x j is a K1-NN of xi ’s K2-NN
− 1, otherwise

(14)

The whole algorithm is shown in Algorithm 1. We note
here that we could have also omitted this preprocessing step
and construct the neighborhood structure directly during the
learning of our neural network. We found, however, that the
construction of neighborhood structure is time-consuming,
and that updating of this structure based on the updating
of image features in each epoch does not have a significant
impact on the performance. Therefore, we chose to obtain
this neighborhood structure as described above and fix it for
the rest of the process.

3.2.3 Neighborhood Structure Loss

The last section describes how to construct the similarity
matrix and in this section we will present our objective
function to preserve pair-wise similarity into hashing codes.
LikeWanget al. (2018),wedefineour neighbor loss as below:

�N (x;	,�) = min
	,�

∑
si j ⊂S

1

2

(
1

L
bT

i b j − si j

)2

(15)

where 	 denotes the parameters of the retrieval network
and S is constructed by Algorithm 1 and si j ∈ S. Unfor-
tunately, in Eq.15 bi is discrete, whose gradient is zero for
all nonzero inputs and leads to the failure of training the deep
network by disabling the back propagation. A wide range of
works have proposed many novel methods to solve this prob-
lem. Lin et al. (2016) and Zhang et al. (2014) proposed to
use an approximate solution to relax the binary codes, how-
ever, which would certainly bring a large quantization error.
Therefore, relaxation the binary code is not an efficient way
to solve the discrete hashing problem.

Inorder to address this problemof optimizingbinary codes
with non-smooth sign activation, we acquire the inspiration
from recent works (Cao et al. 2017; Shen et al. 2015). These
studiesmainly focus on how to convert the difficult optimiza-
tion problems into several easily optimized subproblems by
changing the smoothness of the original function. Specifi-
cally, we can gradually reduce the degree of the smoothness
of function, which results in a sequence of subproblem opti-
mizations converging to the original optimization problem.
Following this idea, if we figure out the similar or approxi-
mate smooth function with sign(.), and then gradually make
the smooth function non-smooth during the training process,
and finally, the results will converge to the desired target.

Motivated by this, we define a function app(.) to approx-
imate sign(.):

app(z) =
⎧⎨
⎩

+ 1, i f z > 1
z, i f 1 ≥ z ≥ − 1
− 1, i f z < − 1

(16)

Obviously, there is a relationship between sign(.) and app(.)

function:

sign(z) = lim
β→∞ app(βz) (17)

In Fig. 4, we illustrate how app(.) function approximates
the original sign(.). In addition, we also introduce an alter-
native tanh(.):

sign (z) = lim
β→+∞ tanh (βz) (18)

123

2252 International Journal of Computer Vision (2020) 128:2243–2264

-2 -1 1 2

-1

1
h

x

y=sgn(x)

y=app(3x)

y=app(x)

(a) tanh(.)

-2 -1 1 2 x

-1

1
h

y=sgn(x)

y=tanh(3x)
y=tanh(x)

(b) app(.)

Fig. 4 Illustrative process of how app(.) and tanh(.) approximate sign(.)

Algorithm 2 Leaning parameters

Input: Images X = {xi }N
i=1

1: Initialize {�,�,�} randomly and 	 with the pre-trained model
in Simonyan and Zisserman (2014).

2: for j=1,…,t do
3: Sample xi uniformly from {xi }N

i=1.
4: Compute the stochastic gradient ∇�C in 11.
5: Update decoder parameters as
6: �i+1 = �i − τi ∇��C
7: Compute the stochastic gradient ∇�h(x; �) in 7.
8: Update encoder parameters as
9: �i+1 = �i − τi ∇�h(x; �)

10: Compute the stochastic gradient ∇�A in 10.
11: Update discriminator parameters as
12: �i+1 = �i − τi ∇��A(x; �)

13: Compute the stochastic gradient ∇�N in 19.
14: Update encoder2 parameters as
15: 	i+1 = 	i − τi ∇	�N (x;)

16: end for

Therefore, as for Eq.15,we can optimizeZ instead of directly
modeling the neighbors structure loss on the binary codes B.
Then Eq.15 can be reformulated as:

�N (x;	,�) = 1

2
min
	,�

∑
si j ⊂S

(
1

L
zT

i z j−si j

)2

+α‖Z−B‖2

(19)

where α is the hyper-parameter to balance the terms.

4 Learning

Using the loss functions in Eqs. 9, 10 and 19, we train our
network.

The forward propagation is as follows. First, we use a deep
convolutional network as the encoder to extract the features
and then use the constant neuron layer to embed the real-
valued features into binary codes:

Bc
i = h(En(Ii ;�)) (20)

where Ii is an input image,� is the parameter of the encoder,
En is the encoder operation and h is the constant neuron
layer. Then, Bc

i is the input for a generator (decoder) De to
reconstruct an image IR :

IR
i = De(Bc

i ;�) (21)

where� stands for the parameters of the generator (decoder)
De. Finally, a discriminator D assigns the probability

p = D(IR
i ;�) (22)

if IR
i is an actual training sample and probability 1− p if IR

i
is generated by our model IR

i = De(Bc
i ;�). � stands for the

parameters of the discriminator G.
Similarly, for the retrieval network, given Ii , we can obtain

its binary codes by:

Bi = sign (En2(En(Ii ;�);)) (23)

where En2 is encoder2, and 	 represents its parameters.
As shown in Fig. 1, the compression network and retrieval

network shared the top 5 convolutional layers, which allow
us to train the entire network through a joint training strat-
egy. In our network, we have parameters of {�,�,�,	}
to learn. All parameters can be learned by back-propagation
(BP). In particular, we randomly initialize {�,�,�} and
use the pre-trained model (Simonyan and Zisserman 2014)
on ImageNet to initialize 	. During each iteration, we sam-
ple a mini-batch of the images from the training data and
use forward propagation to obtain the value of {�C , �N }, and
then apply BP rules to update the associated parameters. The
updated formulation is below:

�i+1 ← �i − τi∇��C

�i+1 ← �i − τi∇�h(x;�)

�i+1 ← �i − τi∇��A(x;�)

{	i+1,�i+1} ← {	i ,�i+1} − τi∇	,��N (x;	,�)

(24)

where ∇ is the gradient and τi is the learning rate. Details
are shown in Algorithm 2.

For the retrieval hashing codes, we set the β = 1 at the
beginning. For each stage, after the retrieval network con-
verges, we enlargeβ for the next stage and use the parameters
converging in the last stage to initialize the current stage
parameters. By involving app(βz)with β ≈ ∞, the retrieval
network obtains the same results as using sign(z), which can
learn exact binary hash codes as we desire. In the experiment,
when we increase β to 10, the network can converge to the
expected degree. In addition, we set λ = 0.1.

123

International Journal of Computer Vision (2020) 128:2243–2264 2253

5 Experiments

We evaluate our BGAN+ on the task of large-scale image
retrieval and image compression. Firstly,we compareBGAN+
with the state of the art methods both in image retrieval and
compression. Secondly, we conduct an ablation study to eval-
uate the effect of each major component.

5.1 Datasets and Settings

To evaluate our method, we conduct our experiments on
six public datasets: The Oxford 17 Category Flower (Nils-
back and Zisserman 2006), Stanford Dogs-120 (Khosla et al.
2011), CIFAR-10 (Krizhevsky and Hinton 2009), Flickr-
25K (Huiskes and Lew 2010), NUS-WIDE (Chua et al.
2009), and Kodak (Franzen 1999). Specifically, the first five
datasets are used for retrieval, and NUS-WIDE and Kodak
are used for image compression.

The Oxford 17 Category Flower dataset (Nilsback and
Zisserman 2006) contains 17 categories and each class con-
sists of 80 images, resulting in a total of 1360 images of
flowers.

Brown Brown et al. (2010) consists of three datasets,
namely Liberty, Yosemite and Notredame dataset, each of
which includesmore than 400,000 gray-scale patches, result-
ing in more than one million patches.

Stanford Dogs-120 Khosla et al. (2011) dataset consists
of 20,580 images in 120mutually categories. Each class con-
tains about 150 images of dogs.

CIFAR-10 dataset consists of 60,000 labeled tiny colored
image (32 × 32). It is a single labeled dataset. Each image
has a unique class label belonging to one of the 10 classes.

Flickr-25K contains 25,000 images from Flickr-25K,
where each image is labeled with one of the 38 concepts.
We resize images of this subset into 256 × 256.

NUS-WIDE is a Web image dataset containing 269,648
images downloaded fromFlickr. Tagging ground-truth for 81
semantic concepts is provided for evaluation. We follow the
settings in Zhu et al. (2016) and use the subset of 195,834
images from the 21 most frequent concepts, where each con-
cept consists of at least 5000 images.

Kodak contains 25 uncompressed color images of size
768 × 512. They are used as a standard test suite for com-
pression testing.

In terms of retrieval, we split the Oxford Flower-17 into
the training (40 images per class), validation (20 images per
class), and test (20 images per class) sets. The StanfordDogs-
120 is divided into two parts: the train set (100 images per
class) and test set (totally 8580 images for all categories). In
NUS-WIDE and CIFAR-10, we randomly select 100 images
per class as the test query set and 1000 images per class as
the training set. In Flickr, we randomly select 1000 images
as the test query set and 4000 images for training.

In terms of compression, we randomly select 21,000
images (1000 per class) to train our compression network.
After the training, we apply the trained model to evaluate
the performance on two testing datasets: (1) randomly select
10,000 from NUS-WIDE dataset as the first testing dataset
and (2) the Kodak dataset.

5.1.1 Evaluation Metric

For retrieval task, the hamming ranking is used as the search
protocol to evaluate our proposed approaches, and two indi-
cators are reported. (1) Mean Average Precision (mAP): for
a single query, Average Precision (AP) is the average of the
precision value obtained for the set of top-k results, and this
value is then averaged over all the queries. (2) Precision:
we further use the precision-recall curve and precision@K
to evaluate the precision of retrieved images.

For compression task, we use MS-SSIM (Wang et al.
2003) to test the quality of the image. The higher MS-SSIM
means a better quality.

5.1.2 Compared Methods

For retrieval Task, we compare our BGAN+with other state-
of-the-art hashing algorithms. Specifically, we compare with
four non-deep hashing methods [iterative quantization (ITQ)
hashing (Gong et al. 2013), spectral hashing (SH) (Heo et al.
2015), Locality Sensitive Hashing (LSH) (Datar et al. 2004),
Spherical Hashing (Heo et al. 2015)], PGDH (Yuan et al.
2018), DTH (Wang et al. 2016), and two unsupervised deep
hashing methods [DeepBit (Lin et al. 2016) and Deep Hash-
ing (DH) (Liong et al. 2015)]. To make a fair comparison,
we also apply the non-deep hashing methods on deep fea-
tures extracted by the VGG network [VGG-fc7 (Simonyan
and Zisserman 2014)].

For non-deep hashing algorithms, we use the features
provided with the dataset. By constructing the neighbor-
hood structure using the labels, our method can be eas-
ily modified as a supervised hashing method, named as
(BGAN+_s). Therefore, we also compare with some super-
vised hashing methods, e.g., iterative quantization hashing
(ITQ-CCA) (Gong et al. 2013), KSH (Liu et al. 2012),
minimal loss hashing (MLH) (Norouzi and Blei 2011),
CNNH (Xia et al. 2014b) and Deep Hashing Network
(DHN) (Zhu et al. 2016). For compression task, we com-
pare with four widely used image compression approaches:
JPEG (Wallace 1991), JPEG 2000 (Rabbani and Joshi 2002),
Theis et al. (2017) and JPEG 420.

5.1.3 Implementation Details

When constructing the neighborhood structure, we use two
different types of features: non-deep features provided with

123

2254 International Journal of Computer Vision (2020) 128:2243–2264

Table 2 mAP on CIFAR-10 using different optimization methods

mAP

Methods 24-bit 32-bit 48-bit

Two-step solution 0.344 0.362 0.373

sign (z)= limβ→+∞ tanh (βz) 0.387 0.398 0.413

sign (z)= limβ→+∞app (βz) 0.363 0.371 0.389

Bold values indicate the best result

the dataset, and 2048-dimensional deep features extracted
usingResNet.Wedenote themasBGAN+_non andBGAN+
respectively. The average number of the neighbors for each
image is 400, 1021, 1168 for the three datasets: CIFAR-10,
NUS-WIDE, and Flickr-25K. By default, we set λ = 0.1 and
the learning rate as 0.001.

5.2 Results on Image Retrieval

5.2.1 The Effect of Binary Optimization

As discussed above, both BGAN and BGAN+ can learn
binary hash codes directly while previous hashing meth-
ods first learn continuous representations and then generate
hash codes using a sign function (denoted as two-step solu-
tion). The previous study on BGAN has verified that the
two-step solution is sub-optimal, and binary optimization
can achieve better performance. In this section, we further
study the effect of binary codes optimization on the perfor-
mance of hash codes to verify the robustness of our binary
optimization approach. The performance results of BGAN+
on the CIFAR-10 are shown in Table 2. As shown in Table 2,
our binary optimization can improve the performance of
the learned binary codes. Specifically, the first app solution
(Eq. 17) outperforms two-step solution by 1.9%, 0.9%, and
1.6% for 24, 32, and 48-bit hash codes,while the second solu-
tion tanh (Eq. 18) improves it by 4.3%, 3.6%, and 4.0%. This
verifies our argument on BGAN+ that two-step solution is
sub-optimal, and binary optimization can achieve better per-

formance. These experimental results show the robustness of
our proposed binary optimization approach.

5.2.2 Comparison with State-of-the-Art Methods for
Fine-Grained Image Retrieval

In this section, we compare our BGAN+ with state-of-the-
art methods for fine-grained image retrieval on two datasets.
The mAP results are shown in Table 3.

It shows that our method (BGAN+) significantly out-
performs the other unsupervised hashing methods (SH and
ITQ+CCA) in both datasets. In Oxford 17 Category Flower
dataset, BGAN+ outperforms the best counterpart (SH) by
11.7%, 12.3%, 14.7% and 15.2% for 12, 24, 32 and 48 bits,
respectively. On the other hand, both SH and ITQ+CCA have
unsatisfactory performance in Stanford Dogs-120 dataset.
Their mAP is 0.008 for different bits, which is almost ran-
dom. This indicates that hashing methods for general image
retrieval may not work well on the task of fine-grained image
retrieval. Compared with several supervised hashing meth-
ods, e.g., SDH (Shen et al. 2015), KSH (Liu et al. 2012),
FastH (Lai et al. 2015), DQN (Cao et al. 2016), DQN (Cao
et al. 2016), our BGAN+, as an unsupervised method,
achieves even better performance in Oxford 17 Category
Flower dataset. BGAN+ outperforms the best counter-part
(DSH) by 14.0%, 9.8%, 9.8% and 5.8% for 12, 24, 32 and 48
bits, respectively.However, in theStanfordDogs-120dataset,
FastH has better performance in general, and it is better than
BGAN+ by 3.1%, 14.9% and 15.8% for 24, 32 and 48 bits.
Nevertheless, FastH is a supervised hashing method while
our BGAN+ is unsupervised.

5.2.3 Comparison with State-of-the-Art Methods for
General Image Retrieval

In this section, we evaluate our hashing method performance
on three datasets. The mAP results are shown in Tables 4
and 5 and Precision-Recall curves are shown in Fig. 5. From
Tables 4 and 5, we can obtain the following conclusions.

Table 3 mAP results for
fine-grained image retrieval
using different number of bits on
Oxford Flower-17 and Stanford
Dogs-120. Note that our method
is unsupervised while FashH is a
supervised method

Oxford Flower-17 Stanford Dogs-120

Bits 12 24 32 48 12 24 32 48

SH (Weiss et al. 2008) 0.589 0.589 0.588 0.587 0.008 0.008 0.008 0.008

ITQ-CCA (Gong et al. 2013) 0.585 0.587 0.587 0.586 0.008 0.008 0.008 0.008

SDH (Shen et al. 2015) 0.108 0.140 0.117 0.145 0.009 0.018 0.090 0.037

KSH (Liu et al. 2012) 0.243 0.501 0.253 0.355 0.014 0.123 0.136 0.193

FastH (Lai et al. 2015) 0.402 0.524 0.528 0.536 0.044 0.223 0.364 0.393

DQN (Cao et al. 2016) 0.476 0.537 0.562 0.573 0.009 0.013 0.035 0.053

DSH (Liu et al. 2016) 0.566 0.614 0.637 0.680 0.012 0.012 0.012 0.012

BGAN+ 0.706 0.712 0.735 0.738 0.163 0.192 0.215 0.235

Bold values indicate the best result

123

International Journal of Computer Vision (2020) 128:2243–2264 2255

Table 4 mAP for different
unsupervised hashing methods
using different bits on two
datasets. The first four methods
are non-deep hashing methods,
and the second the four methods
are based on deep networks

Cifar-10 NUS-WIDE

Bits 12 24 32 48 12 24 32 48

ITQ (Gong et al. 2013) 0.162 0.169 0.172 0.175 0.452 0.468 0.472 0.477

SH (Weiss et al. 2008) 0.131 0.135 0.133 0.130 0.433 0.426 0.426 0.423

LSH (Datar et al. 2004) 0.121 0.126 0.120 0.120 0.403 0.421 0.426 0.441

Spherical (Heo et al. 2015) 0.138 0.141 0.146 0.150 0.413 0.413 0.424 0.431

ITQ+VGG 0.196 0.246 0.289 0.301 0.435 0.435 0.548 0.435

SH+VGG 0.174 0.205 0.220 0.232 0.433 0.426 0.426 0.423

LSH+VGG 0.101 0.128 0.132 0.169 0.401 0.442 0.480 0.471

Spherical+VGG 0.212 0.247 0.256 0.281 0.549 0.614 0.653 0.678

DeepBit (Lin et al. 2016) 0.185 0.218 0.248 0.263 0.383 0.401 0.403 0.412

DH (Liong et al. 2015) 0.160 0.164 0.166 0.168 0.422 0.448 0.480 0.493

BGAN_non (Song et al. 2018) 0.361 0.369 0.375 0.395 0.518 0.541 0.545 0.568

BGAN (Song et al. 2018) 0.401 0.512 0.531 0.558 0.675 0.690 0.714 0.728

BGAN+_non 0.375 0.387 0.398 0.413 0.544 0.552 0.561 0.579

BGAN+ 0.531 0.543 0.564 0.586 0.682 0.719 0.723 0.736

Bold values indicate the best result for non-deep and deep methods

Table 5 mAP for different unsupervised hashing methods using a dif-
ferent number of bits on Flickr. The first four methods are non-deep
hashing methods, and the second four methods are based on deep net-
works

Flickr

Bits 12 24 32 48

ITQ (Gong et al. 2013) 0.544 0.555 0.560 0.570

SH (Weiss et al. 2008) 0.531 0.533 0.531 0.529

LSH (Datar et al. 2004) 0.499 0.513 0.521 0.548

Spherical (Heo et al. 2015) 0.552 0.547 0.546 0.545

ITQ+VGG 0.553 0.548 0.545 0.560

SH+VGG 0.550 0.544 0.541 0.545

LSH+VGG 0.543 0.549 0.555 0.551

Spherical+VGG 0.569 0.559 0.583 0.572

DeepBit (Lin et al. 2016) 0.501 0.505 0.511 0.513

DH (Liong et al. 2015) 0.553 0.548 0.543 0.556

BGAN_non (Song et al. 2018) 0.591 0.601 0.607 0.626

BGAN (Song et al. 2018) 0.683 0.702 0.703 0.703

BGAN+_non 0.599 0.612 0.618 0.636

BGAN+ 0.715 0.719 0.723 0.736

Bold values indicate the best result

First, our method (BGAN+) significantly outperforms the
other deep or non-deep hashing methods in all datasets. In
CIFAR-10, the improvement of BGAN+ over other meth-
ods is more significant, compared with NUS-WIDE and
Flickr dataset. Specifically, it outperforms the best counter-
part (Spherical+VGG) by 31.9%, 29.6%, 30.8% and 30.5%
for 12, 24, 32 and 48-bit codes. One possible reason is
that CIFAR-10 contains simple images, and the constructed
neighborhood structure is more accurate than in the other

two datasets. BGAN+ improves the state of the art method
by 13.3%, 10.5%, 7.0% and 5.8% in the NUS-WIDE dataset,
and 14.6%, 16.0%, 14.0% and 16.4% in Flicker dataset.

Second, comparing with BGAN (or BGAN+), the per-
formance of BGAN_non (or BGAN+_non) is worse. This
indicates that the similarity graph plays an important role in
the learning of hashing codes, and the non-deep features are
not as good as deep features.

Third, from Tables 4 and 5, we observe that Spheri-
cal+VGG is a strong competitor in terms of mAP. On the
other hand, the performance of deep hashing methods (i.e.,
DeepBit and DH) is not superior. A possible reason is that
the deep hashing methods use only 3 fully connected layers
to extract the features, which is not powerful enough.

Fourth, when we run the non-deep hashing method on
deep features, the performance is usually improved compared
with the hand-craft features. The performance gap is larger in
CIFAR-10 and NUS-WIDE datasets than in Flicker dataset.

Fifth, with the increase of hash code length, the perfor-
mance of most hashing method is improved accordingly.
More specifically, the mAP improvements using deep fea-
tures are generally more significant than that of non-deep
features in CIFAR-10 dataset and NUS-Wide dataset. An
exception is SH,which has no improvementwith the increase
of code length.

Sixth, compared with BGAN (or BGAN_non), BGAN+
(or BGAN+_non) achieves better performance. In particular,
the increase of BGAN+ of 12-bit on the CIFAR-10 dataset
is 13.0%. In addition, BGAN+ improves BGAN by 3.2%,
1.7%, 2% and 3.3% of 12, 24, 32 and 48-bit on the Flick
dataset.

From Fig. 5, we have the following observations. In terms
of the precision-recall curve, the results indicate that BGAN

123

2256 International Journal of Computer Vision (2020) 128:2243–2264

0.05 0.2 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

Pr
ec

is
io

n
VGG+SH
DeepBit
VGG+LSH
VGG+ITQ
VGG+PACH
BGAN
BGAN+

0.05 0.2 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

Pr
ec

is
io

n

VGG+SH
DeepBit
VGG+LSH
VGG+ITQ
VGG+PACH
BGAN
BGAN+

0.05 0.2 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

Pr
ec

is
io

n

VGG+SH
DeepBit
VGG+LSH
VGG+ITQ
VGG+PACH
BGAN
BGAN+

0.5 1 1.5 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of retrieved samples x10,000

Pr
ec

is
io

n

VGG+SH
DeepBit
VGG+LSH
VGG+ITQ
VGG+PACH
BGAN
BGAN+

0.5 1 1.5 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of retrieved samples x10,000

Pr
ec

is
io

n

VGG+SH
DeepBit
VGG+LSH
VGG+ITQ
VGG+PACH
BGAN
BGAN+

0.5 1 1.5 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of retrieved samples x10,000

Pr
ec

is
io

n

VGG+SH
DeepBit
VGG+LSH
VGG+ITQ
VGG+PACH
BGAN
BGAN+

(c)

16 bits

(d)

(a) (b) 32 bits

(e)

64 bits

(f)

16 bits

32 bits 64 bits

Fig. 5 Precision for different unsupervised hashing methods using different bits on CIFAR-10 dataset

123

International Journal of Computer Vision (2020) 128:2243–2264 2257

and BGAN+ significantly outperform existing approaches.
In general, BGAN+ performs better than BGAN, especially
when the hash code is 16-bit. In addition, the bottom row
of Fig. 5 shows the precision curves when we set a differ-
ent number of retrieved samples (times of 10,000) and then
train themodel with 16, 32 and 64-bit, separately.When code
length is 16-bit, BGAN+ achieves better performance.When
code length is set as 32 or 64-bit and the number of retrieved
samples is 5000, BGAN and BGAN+ obtain the same value
of precision. In addition, when the number of retrieved sam-
ples gradually increases from 5000, the gap between BGAN
and BGAN+ enlarges gradually.

Additionally, we also conduct the experiment to eval-
uate the quality of binary representation on the Brown
dataset (Brown et al. 2010). The experimental setting fol-
lows DeepBit (Lin et al. 2016) and Table 6 shows the results
of image matching by binary descriptor in terms of 95%
error rates. Our method shows a slightly lower performance
compared with DeepBit and DBD-MQ (Duan et al. 2017).
The possible reason is that each patch in Brown dataset only
has 3–5 matched images. So it is hard to construct pair-wise
labels by Algorithm 1, i.e., most of matched patches are
treated as the mismatched cases, and vice versa. In fact, we
also compute the accuracy of the constructed similarity, only
about 3% close to random constructing results. In contrast,
on the real-world dataset, such as NUS-WIDE and CIFAR-
10, BGAN+ can show a great advantage due to the fact that
each image has sufficient pairs, even when there are many
miss-matched pairs.

We also compare with supervised hashing methods, and
present the mAP results on CIFAR-10 dataset in Table 7.
It is observed that our BGAN+ reaches the highest mAP
scores across hashing code length ranging from 12-bit to
48-bit. Compared with the best deep supervised hashing
method DHN, BGAN+ has an increase of 17.6%, 15.0%,
14.4% and 13.6% over 12, 24, 32 and 48-bit. In gener-
ally, BGAN+ increases the BGAN by around 2.0% and the
improvement is contributed by our compression network.
This indicates that the performance improvement of BGAN
is not only due to the constructed neighborhood structure,
but also the other components. Similarly, HashGAN (Cao
et al. 2018) also adapts GAN to learn binary codes in a
supervised manner, but BGAN+ still outperforms HashGAN
averagely about 11.05% on each bit length. It is worth noting
that PGDH (Yuan et al. 2018) shows competitive results and
is also a relaxation-free method by a reinforcement learning
strategy. However, our method still significantly outperforms
it by about 14% in terms of each bits. However, our method is
mainly designed for unsupervised learning of hashing codes,
and it has a large room to be improved for the task of super-
vised hashing.

Ta
bl
e
6

95
%

er
ro
r
ra
te
s
(E
R
R
)
co
m
pa
re
d
w
ith

th
e
bi
na
ry

de
sc
ri
pt
or
s
on

B
ro
w
n
da
ta
se
t(
%
),
w
he
re

SS
C
,D

B
D
-M

Q
,B

ri
sk
,a
nd

D
ee
pB

it
ar
e
un
su
pe
rv
is
ed

bi
na
ry

re
pr
es
en
ta
tio

n
w
hi
le
L
D
A
H
as
h
is

su
pe
rv
is
ed

T
ra
in

Te
st

R
ea
l-
va
lu
ed

B
in
ar
y

SI
FT

(L
ow

e
20
04
)

SS
C
(S
ha
kh
na
ro
vi
ch

20
05
)

L
D
A
H
(S
tr
ec
ha

et
al
.2
01
1)

D
ee
pB

it
(L
in

et
al
.2
01
6)

D
B
D
-M

Q
(D

ua
n
et
al
.2
01
7)

B
G
A
N
+

Y
os
em

ite
N
ot
re
da
m
e

28
.0
9

72
.2
0

51
.5
8

29
.6
0

27
.2
0

32
.1
4

Y
os
em

ite
L
ib
er
ty

36
.2
7

71
.5
9

49
.6
6

34
.4
1

33
.1
1

36
.1
1

N
ot
re
da
m
e

Y
os
em

ite
29
.1
5

76
.0
0

52
.9
5

63
.6
8

57
.2
4

60
.2
4

N
ot
re
da
m
e

L
ib
er
ty

36
.2
7

70
.3
5

49
.6
6

32
.0
6

31
.1
0

40
.5
1

L
ib
er
ty

N
ot
re
da
m
e

28
.1
6

72
.9
5

51
.3
4

26
.6
6

25
.7
8

30
.2
6

L
ib
er
ty

Y
os
em

ite
28
.1
5

77
.9
9

52
.9
5

57
.6
1

57
.1
5

54
.6
4

A
ve
ra
ge

31
.1
7

73
.5
1

51
.4
0

40
.6
7

38
.5
9

42
.1
2

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
re
su
lt

123

2258 International Journal of Computer Vision (2020) 128:2243–2264

Table 7 mAP for different
supervised hashing methods
using different number of bits
on CIFAR-10

CIFAR-10

Method 12 bits 24 bits 32 bits 48 bits

ITQ-CCA (Gong et al. 2013) 0.435 0.435 0.435 0.435

KSH (Liu et al. 2012) 0.556 0.572 0.581 0.588

MLH (Norouzi and Blei 2011) 0.500 0.514 0.520 0.522

DNNH (Lai et al. 2015) 0.674 0.697 0.713 0.715

CNNH (Xia et al. 2014b) 0.611 0.618 0.625 0.608

DHN (Zhu et al. 2016) 0.708 0.735 0.748 0.758

HashGAN (Cao et al. 2018) 0.668 0.731 0.735 0.749

DTH (Wang et al. 2016) 0.710 0.750 0.765 0.774

PGDH (Yuan et al. 2018) 0.736 0.741 0.747 0.762

BGAN_s 0.866 0.874 0.876 0.877

BGAN+_s 0.884 0.889 0.892 0.894

Bold values indicate the best result

Table 8 MS-SSIM on
NUS-WIDE at different bit-rate

MS-SSIM

Methods 0.15 bit/px 0.25 bit/px 0.5 bit/px

JPEG (Wallace 1991) 0.875 0.894 0.922

JPEG 2000 (Rabbani and Joshi 2002) 0.925 0.937 0.945

BGAN+ 0.927 0.939 0.948

Bold values indicate the best result

5.3 Results on Image Compression

JPEG is an image compression standard approach, while
JPEG 200 is an improvement on JPEG. They are both widely
used for image compression. Additionally, we also compare
our method with other deep neural network methods, such
as RNN-based (Toderici et al. 2017). However, due to the
code access problem, we do not compare our method with
RAIC (Rippel and Bourdev 2017) and CWIC (Li et al. 2018).
To evaluate the performance of our compression network,
we use NUS-WIDE dataset to train our compression model
and then evaluate it on two datasets: NUS-WIDE and Kodak
dataset.

The experimental results obtained from the NUS-WIDE
dataset are shown in Table 8, which demonstrates that our
BGAN+ obtains the best performance in terms ofMS-SSIM.
Compared with JPEG, BGAN+ has an increase of 5.2%,
4.5% and 2.6% for 0.15, 0.25 and 0.5 bit/px. Specifically,
the improvement gap becomes narrow with the increase of
bit-rate. The lower the bit-rate is, the harder the compression
operation is. Furthermore, ourBGAN+performs slightly bet-
ter than JPEG2000.

In order to test the robustness of our compression network,
we further run the trained model on the image compression
benchmark dataset Kodak and the experimental results are
shown in Table 9. From Table 9, we can find BGAN+ per-
forms the best, except at the 0.5 bit/px where BGAN+ is

slightly lower than RNN-based (Toderici et al. 2017), about
0.003. It is worth noting that RNN-based also compresses
images into binary codes but on the low compression rate.
BGAN+ outweighs RNN-based obviously, about 4.9% and
1.1%. In terms of the non-deep learning method, our method
still outperforms them on the low compression rate, such as
JPEG and JPEG 2000, by about 10.4%, 8.0% and 0.4% for
0.15, 0.25 and 0.5 bit/px compared with JPEG, respectively.
As for JPEG2000, the improvement is relatively lower, about
0.3% and 0.2% on 0.15 bit/px and 0.25 bit/px, respectively.
Generally speaking, our method is more competitive at a
lower bit rate because the reconstructed image is generated
from the binary codes, which are highly compact codes.

To evaluate the ability of image reconstruction using
BGAN+ and to compare with the previous BGAN proposed
in Song et al. (2018), we demonstrate some qualitative results
on CIFAR-10 dataset in Fig. 6. From Fig. 6, we can see that
the images reconstructed fromBGANwith 256-bit hash code
are blurry comparedwith the ground-truth images.Compared
with the images reconstructed from BGAN with 256-bit,
BGAN+ can generate images of high quality with only 128-
bit hash code. This indicates the effectiveness of our BGAN+
for image compression.With longer hash code (i.e., 256-bit),
it can produce even better quality images, which is as good
as the ground-truth images from the human visual aspect.

In addition, more visual examples are provided in Fig. 7
and Fig. 8. All the images are randomly selected from the

123

International Journal of Computer Vision (2020) 128:2243–2264 2259

Table 9 MS-SSIM on Kodak at
different bit-rate

MS-SSIM

Methods 0.15 bit/px 0.25 bit/px 0.5 bit/px

JPEG (Wallace 1991) 0.802 0.844 0.945

JPEG 2000 (Rabbani and Joshi 2002) 0.903 0.922 0.951

Theis et al. (2017) 0.901 0.920 0.948

RNN-based (Toderici et al. 2017) 0.857 0.913 0.952

JPEG 420 0.824 0.891 0.950

BGAN+ 0.906 0.924 0.949

Bold values indicate the best result

Ground
Truth

BGAN
256-bits

BGAN+
128-bits

BGAN+
256-bits

Fig. 6 Reconstructed images on CIFAR-10 using binary codes

NUS-WIDE and Kodak dataset respectively. In Fig. 7, each
image is compressed by JPEG, JPEG 2000 and our BGAN+,
and their corresponding MS-SSIM values are provided. The
higher the MS-SSIM is, the better the compression results
are. All the examples indicate that our BGAN+ performs the
best. While for some examples (i.e., the third row), JPEG
performs better than JPEG 2000. In terms of human visual
visualization, the images generated by the JPEG are usually
blurring, while BGAN+ and JPEGprovide imageswith high-
resolution. Figure 8 shows that our BGAN+ can reconstruct
images with photo-realistic details.

5.4 Evaluation of Individual Component

To verify the effects of individual components (i.e., retrieval
network and compression network) in our framework and

show contribution of each part they made to the performance
boost, we evaluate two variants of our approaches. Instead
of using multi-task learning (MTL), we assume tasks are
independent and learn retrieval network and compression
network separately. The resulting retrieval model (�N) is
acquired based on single task learning (STL) by utilizing �N

loss only to train the retrieval network. In this way, STL trains
its retrieval model separately without sharing the first five
conv layers with compression network. For the retrieval task,
the experiments are conducted on the CIFAR-10 dataset and
the experimental results are shown in Table 10. The results
by STL is worse than byMTLwith a decrease of 3.2%, 3.1%
and 1.9% over 24, 32 and 48-bit, respectively.

In the second experiment conducted on the NUS-WIDE
dataset, we compare BGAN+ trained by MTL with BGAN+

123

2260 International Journal of Computer Vision (2020) 128:2243–2264

Fig. 7 Samples from
NUS-WIDE dataset for
visualization (0.15 bit/px)

Ground Truth JPEG JPEG 2000 Ours

MS-SSIM: 0.9689MS-SSIM: 0.9078 MS-SSIM: 9756

MS-SSIM: 0.9719MS-SSIM: 0.9236 MS-SSIM: 0.9721

MS-SSIM:0.8268MS-SSIM: 0.8933 MS-SSIM: 9049

MS-SSIM: 0.9509MS-SSIM: 0.9412 MS-SSIM: 0.9666

MS-SSIM: 0.9364MS-SSIM: 0.9246 MS-SSIM: 0.9567

trained by STL for compressing images and the results are
shown in Table 11. The results show that MTL-BGAN+
outperforms STL-BGAN+ by 1.3%, 1.0% and 1.6% for
0.15, 0.25 and 0.5 bit/px respectively. These two exper-
iments indicate that multi-task learning framework using
the retrieval and compression network is beneficial for both

image retrieval and compression tasks. This is due to the
reason that learning-related tasks simultaneously can suc-
cessfully exploit shared features among tasks and increase
the discriminative ability of the learned models. As we can
see from the experimental results, our method is able to

123

International Journal of Computer Vision (2020) 128:2243–2264 2261

Fig. 8 Samples from Kodak dataset for visualization. Ground truth, JPEG, JPEG 2000 and Ours BGAN+ are from left to right (0.15 bit/pix)

Table 10 The mAP of BGAN+ on CIFAR-10 using different combi-
nations of components (Without/with joint learning using compression
net)

mAP

Components 24-bit 32-bit 48-bit

STL-BGAN+ 0.511 0.533 0.567

MTL-BGAN+ 0.543 0.564 0.586

Bold values indicate the best result

Table 11 MS-SSIM on NUS-WIDE at different bit-rate

MS-SSIM

Methods 0.15 bit/px 0.25 bit/px 0.5 bit/px

STL-BGAN 0.914 0.929 0.932

MTL-BGAN+ 0.927 0.939 0.948

Bold values indicate the best result

Table 12 MS-SSIM on NUS-WIDE based on different dimensions
with/without the layer of constant neuron

MS-SSIM

Methods 7k 12k 25k

Real value 0.943 0.950 0.962

BGAN+ 0.926 0.937 0.948

Bold values indicate the best result

simultaneously generate binary codes for image retrieval and
compression.

Table 13 MS-SSIM on NUS-WIDE under different compression rate
by different reconstruction strategies

MS-SSIM

Methods 0.15 bit/px 0.25 bit/px 0.5 bit/px

Real value 0.801 0.824 0.856

Two steps 0.643 0.669 0.695

BGAN+ 0.927 0.939 0.948

Bold values indicate the best result

Furthermore, we also test the efficiency of the constant
neuron layer and conduct three different experiments as
showing in Tables 12 and 13. To be specific, we test the
quality of reconstructed images from real value vectors and
binary codes, which is optimized by the two steps relax-
ation optimizing strategy. From Table 12, we can see that
our results from binary codes do not degrade much com-
pared with the real value compression codes. Obviously, in
the condition of the same dimension, BGAN+ just declines
0.017, 0.013 and 0.014 on four dimensions 7k, 12k and 25k,
respectively. It is worth noting that those results are based on
the same compression dimension but not the same compres-
sion rate. It is reasonable that the compression strategy of
binary codes is worse than the real value because the binary
codes lose more information compared to the real value with
the same dimension. Table 13 shows the results from the
real value vector under the same compression rate. Here,
we should note that the dimension of compression codes
depends on the size of the input image, and set the input

123

2262 International Journal of Computer Vision (2020) 128:2243–2264

image size as 224× 224. However, when based on the same
compression rate, our method shows a significant superiority
to the real value codes and improves the compression perfor-
mance about 0.126, 0.115 and 0.092 on the 0.15, 0.25 and
0.5 bit/px. The last experiment is to evaluate different strate-
gies to generate binary codes. From Table 13, we can see that
our constant neuron has a huge benefit to the binary learn-
ing compared to the two steps relaxation method and has
about 0.283, 0.27 and 0.254 improvement on the three com-
pression rates. The reason for this scenario is that two steps
approximate strategy can lead to huge quantization errors.
To sum up, through the three experiments, we can gain the
following conclusions: (1) compared with the reconstruction
from the real value vector, BGAN+ has the comparable per-
formance but less storage cost. (2) The constant neuron layer
can directly optimize binary codes and avoid large quantiza-
tion errors, which is the key unit to ensure the high quality
reconstructed image and low storage space.

6 Conclusion

In this paper, we propose a unified binary generative adver-
sarial networks (BGAN+) to simultaneously convert images
to binary codes for both image compression and retrieval in
a multi-task fashion and an unsupervised way. By restricting
the input noise variable of generative adversarial networks
(GAN) to be binary and conditioned on the features of each
input image, BGAN+ can simultaneously learn two binary
representations per image: one for image retrieval and one
for image compression. To equip the binary representation
with the ability of accurate image retrieval and compression,
we design a novel loss function. We also propose several
solutions to address the gradient vanishing problem caused
by sign function. Extensive experiments are conducted for
image retrieval and compression. The results show that our
BGAN+ outperforms the existing retrieval methods with sig-
nificant margins and achieves competitive performance for
image compression, especially for low bit-rates. And the
multi-task strategy is beneficial for both tasks. As far as we
know, this is the first work of using binary codes for simul-
taneous image retrieval and image compression.

Acknowledgements This work is supported by the Fundamental
ResearchFunds for theCentralUniversities (GrantNo.ZYGX2019J073),
theNationalNatural ScienceFoundationofChina (GrantNo. 61772116,
No. 61872064,No.61632007,No. 61602049), TheOpenProject of Zhe-
jiang Lab (Grant No.2019KD0AB05).

References

Agustsson, E., Mentzer, F., Tschannen, M., Cavigelli, L., Timofte, R.,
Benini, L., et al. (2017). Soft-to-hard vector quantization for end-

to-end learned compression of images and neural networks. CoRR
arXiv:1704.00648.

Argyriou, A., Evgeniou, T., & Pontil, M. (2007). Multi-task feature
learning. In Advances in neural information processing systems
(pp. 41–48).

Baig, M. H., Koltun, V., & Torresani, L. (2017). Learning to inpaint for
image compression. In NIPS (pp. 1246–1255).

Ballé, J., Laparra, V., & Simoncelli, E. P. (2016). End-to-end optimized
image compression. CoRR arXiv:1611.01704.

Bellard, M. (2017). BPG image format. http://bellard.org/bpg/.
Retrieved January 30, 2017 (1, 2).

Brown, M., Hua, G., & Winder, S. (2010). Discriminative learning of
local image descriptors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(1), 43–57.

Cao, Y., Liu, B., Long, M., & Wang, J. (2018). Hashgan: Deep learn-
ing to hash with pair conditional wasserstein GAN. In CVPR (pp.
1287–1296).

Cao, Y., Long, M., Wang, J., Zhu, H., & Wen, Q. (2016). Deep
quantization network for efficient image retrieval. In AAAI (pp.
3457–3463).

Cao, Z., Long,M.,Wang, J., & Yu, P. S. (2017). Hashnet: Deep learning
to hash by continuation. In ICCV (pp. 5609–5618).

Chua, T. S., Tang, J., Hong, R., Li, H., Luo, Z., &Zheng, Y. (2009). Nus-
wide: A real-world web image database from National University
of Singapore. In Proceedings of the ACM international conference
on image and video retrieval (p. 48). ACM.

Collobert, R., & Weston, J. (2008). A unified architecture for natural
language processing: Deep neural networks with multitask learn-
ing. In ICML (pp. 160–167). ACM.

Dai, B., Guo, R., Kumar, S., He, N., & Song, L. (2017). Stochastic
generative hashing. In ICML (pp. 913–922).

Datar, M., Immorlica, N., Indyk, P., &Mirrokni, V. S. (2004). Locality-
sensitive hashing scheme based on p-stable distributions. In
Symposium on computational geometry.

Deng, L., Hinton, G., &Kingsbury, B. (2013). New types of deep neural
network learning for speech recognition and related applications:
An overview. In 2013 IEEE international conference on acoustics,
speech and signal processing (pp. 8599–8603). IEEE.

Do, T. T., Doan, A. D., & Cheung, N. M. (2016). Learning to hash
with binary deep neural network. In ECCV (pp. 219–234). Berlin:
Springer.

Duan, Y., Lu, J., Wang, Z., Feng, J., & Zhou, J. (2017). Learning deep
binary descriptor with multi-quantization. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp.
1183–1192).

Farvardin, N. (1994). Review of ’vector quantization and signal com-
pression’ (gersho, a., and gray, r.m.; 1992). IEEE Transactions
Information Theory, 40(1), 287.

Franzen, R. (1999).Kodak lossless true color image suite (Vol. 4). http://
r0k.us/graphics/kodak.

Gao, L., Li, X., Song, J., & Shen, H. T. (2019). Hierarchical LSTMs
with adaptive attention for visual captioning. IEEE Transactions
on Pattern Analysis and Machine Intelligence,. https://doi.org/10.
1109/TPAMI.2019.2894139.

Ge, T., He, K., & Sun, J. (2014). Graph cuts for supervised binary
coding. In ECCV (pp. 250–264).

Girshick, R. (2015). Fast r-cnn. In Proceedings of The IEEE interna-
tional conference on computer vision (pp. 1440–1448).

Gong, Y., Kumar, S., Verma, V., & Lazebnik, S. (2012). Angular
quantization-based binary codes for fast similarity search. In NIPS
(pp. 1205–1213).

Gong, Y., Lazebnik, S., Gordo, A., & Perronnin, F. (2013). Iterative
quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(12), 2916–2929.

123

http://arxiv.org/abs/1704.00648
http://arxiv.org/abs/1611.01704
http://bellard.org/bpg/
http://r0k.us/graphics/kodak
http://r0k.us/graphics/kodak
https://doi.org/10.1109/TPAMI.2019.2894139
https://doi.org/10.1109/TPAMI.2019.2894139

International Journal of Computer Vision (2020) 128:2243–2264 2263

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,Warde-Farley, D.,
Ozair, S., et al. (2014). Generative adversarial nets. In NIPS (pp.
2672–2680).

Google. (2017). Webp: Compression techniques. http://developers.
google.com/speed/webp/docs/compression. Retrieved January
30, 2017 (1, 2, 5).

Grubb, G. (2008). Distributions and operators (Vol. 252). Berlin:
Springer.

Gu,Y.,Ma,C.,&Yang, J. (2016). Supervised recurrent hashing for large
scale video retrieval. In ACM multimedia (pp. 272–276). ACM.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pool-
ing in deep convolutional networks for visual recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(9),
1904–1916.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR (pp. 770–778).

He, T., Li, Y., Gao, L., Zhang, D., & Song, J. (2019). One network for
multi-domains: Domain adaptive hashing with intersectant gener-
ative adversarial networks. In IJCAI (pp. 2477–2483).

Heo, J., Lee, Y., He, J., Chang, S., &Yoon, S. (2015). Spherical hashing:
Binary code embedding with hyperspheres. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(11), 2304–2316.

Huiskes, M. J., & Lew, M. S. (2010). New trends and ideas in visual
concept detection: TheMIRFlickr retrieval evaluation initiative. In
MIR ’10: Proceedings of the 2010 ACM international conference
on multimedia information retrieval (pp. 527–536).

Irie, G., Li, Z., Wu, X., & Chang, S. (2014). Locally linear hashing for
extracting non-linear manifolds. In CVPR (pp. 2123–2130).

Jégou, H., Douze, M., & Schmid, C. (2011). Product quantization for
nearest neighbor search. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(1), 117–128.

Jin, Z., Hu, Y., Lin, Y., Zhang, D., Lin, S., Cai, D., et al. (2013). Com-
plementary projection hashing. In ICCV (pp. 257–264).

Khosla, A., Jayadevaprakash, N., Yao, B., & Fei-Fei, L. (2011). Novel
dataset for fine-grained image categorization. InFirst workshop on
fine-grained visual categorization, IEEE conference on computer
vision and pattern recognition. Colorado Springs, CO.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic opti-
mization. CoRR arXiv:1412.6980.

Kingma, D. P., &Welling, M. (2013). Auto-encoding variational bayes.
CoRR arXiv:1312.6114.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of fea-
tures from tiny images. Master’s thesis, University of Toronto.

Lai, H., Pan,Y., Liu, Y.,&Yan, S. (2015). Simultaneous feature learning
and hash coding with deep neural networks. In CVPR (pp. 3270–
3278).

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., &Winther, O. (2016).
Autoencoding beyond pixels using a learned similarity metric. In
ICML (pp. 1558–1566).

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta,
A., et al. (2017). Photo-realistic single image super-resolution
using a generative adversarial network. In CVPR (pp. 105–114).

Li, M., Zuo, W., Gu, S., Zhao, D., & Zhang, D. (2018). Learning con-
volutional networks for content-weighted image compression. In
CVPR.

Li,W.,Wang, S.,&Kang,W. (2016). Feature learning based deep super-
vised hashing with pairwise labels. In IJCAI (pp. 1711–1717).

Li, X., Lin, G., Shen, C., van den Hengel, A., & Dick, A. R. (2013).
Learning hash functions using column generation. In ICML (pp.
142–150).

Lin, G., Shen, C., Shi, Q., van den Hengel, A., & Suter, D. (2014). Fast
supervised hashing with decision trees for high-dimensional data.
In CVPR (pp. 1971–1978).

Lin, G., Shen, C., Suter, D., & Van Den Hengel, A. (2013). A general
two-step approach to learning-based hashing. In ICCV (pp. 2552–
2559). IEEE.

Lin, K., Lu, J., Chen, C., & Zhou, J. (2016). Learning compact binary
descriptors with unsupervised deep neural networks. InCVPR (pp.
1183–1192).

Liong, V. E., Lu, J., Wang, G., Moulin, P., & Zhou, J. (2015). Deep
hashing for compact binary codes learning. In CVPR (pp. 2475–
2483).

Liu,H.,Wang,R., Shan, S.,&Chen,X. (2016).Deep supervisedhashing
for fast image retrieval. In CVPR (pp. 2064–2072).

Liu, L., Shao, L., Shen, F., &Yu,M. (2017). Discretely coding semantic
rank orders for supervised image hashing. In CVPR (pp. 5140–
5149).

Liu, W., Wang, J., Ji, R., Jiang, Y., & Chang, S. (2012). Supervised
hashing with kernels. In CVPR (pp. 2074–2081).

Liu, X., He, J., Deng, C., & Lang, B. (2014). Collaborative hashing. In
CVPR (pp. 2147–2154).

Long, M., & Wang, J. (2015). Learning multiple tasks with deep rela-
tionship networks (Vol. 2). arXiv preprint arXiv:1506.02117.

Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2), 91–
110.

Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., & Feris, R. (2017).
Fully-adaptive feature sharing in multi-task networks with appli-
cations in person attribute classification. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp.
5334–5343).

Misra, I., Shrivastava, A., Gupta, A., & Hebert, M. (2016). Cross-
stitch networks for multi-task learning. InProceedings of the IEEE
conference on computer vision and pattern recognition (pp. 3994–
4003).

Nemirovski, A., Juditsky, A., Lan, G., & Shapiro, A. (2009). Robust
stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19(4), 1574–1609.

Nilsback, M. & Zisserman, A. (2006). A visual vocabulary for flower
classification. In CVPR (pp. 1447–1454).

Norouzi, M., & Blei, D. M. (2011). Minimal loss hashing for compact
binary codes. In ICML (pp. 353–360).

Norouzi, M., & Fleet, D. J. (2013). Cartesian k-means. In CVPR (pp.
3017–3024).

Odena, A., Dumoulin, V., & Olah, C. (2016). Deconvolution and
checkerboard artifacts. Distill, 1(10), e3.

Rabbani, M., & Joshi, R. L. (2002). An overview of the JPEG 2000 still
image compression standard. Signal Processing: Image Commu-
nication, 17(1), 3–48.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised repre-
sentation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434.

Rippel, O., & Bourdev, L. (2017). Real-time adaptive image com-
pression. In Proceedings of the 34th international conference on
machine learning (Vol. 70, pp. 2922–2930). JMLR.org.

Ruder, S. (2017). An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098.

Shakhnarovich, G. (2005). Learning task-specific similarity. Ph.D. the-
sis, Massachusetts Institute of Technology.

Shannon, C. E. (2001). A mathematical theory of communication.
Mobile Computing and Communications Review, 5(1), 3–55.

Shen, F., Mu, Y., Yang, Y., Liu, W., Liu, L., Song, J., et al. (2017).
Classification by retrieval: Binarizing data and classifiers. In SIGIR
(pp. 595–604).

Shen, F., Shen, C., Liu, W., & Shen, H. T. (2015). Supervised discrete
hashing. In CVPR (pp. 37–45).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional net-
works for large-scale image recognition. CoRR arXiv:1409.1556.

Song, J., He, T., Gao, L., Xu, X., Hanjalic, A., & Shen, H. T. (2018).
Binary generative adversarial networks for image retrieval. In
AAAI.

123

http://developers.google.com/speed/webp/docs/compression
http://developers.google.com/speed/webp/docs/compression
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1506.02117
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1409.1556

2264 International Journal of Computer Vision (2020) 128:2243–2264

Song, J., Guo, Y., Gao, L., Li, X., Hanjalic, A., & Shen, H. T. (2019).
From deterministic to generative: Multimodal stochastic RNNS
for video captioning. IEEE Transactions on Neural Networks and
Learning Systems, 30(10), 3047–3058.

Song, J., Yang, Y., Yang, Y., Huang, Z., & Shen, H. T. (2013). Inter-
media hashing for large-scale retrieval from heterogeneous data
sources. In SIGMOD (pp. 785–796).

Strecha, C., Bronstein, A., Bronstein, M., & Fua, P. (2011). Ldahash:
Improved matching with smaller descriptors. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(1), 66–78.

Theis, L., Shi, W., Cunningham, A., & Huszár, F. (2017). Lossy image
compression with compressive autoencoders. In ICLR.

Toderici, G., O’Malley, S. M., Hwang, S. J., Vincent, D., Minnen, D.,
Baluja, S., et al. (2015). Variable rate image compression with
recurrent neural networks. arXiv preprint arXiv:1511.06085.

Toderici, G., Vincent, D., Johnston, N., Hwang, S. J., Minnen, D., Shor,
J., et al. (2016). Full resolution image compression with recurrent
neural networks. CoRR arXiv:1608.05148.

Toderici, G., Vincent, D., Johnston, N., Hwang, S.J., Minnen, D., Shor,
J., et al. (2017). Full resolution image compression with recur-
rent neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 5306–5314).

Wallace, G. K. (1991). The JPEG still picture compression standard.
Communications of the ACM, 34(4), 30–44.

Wang, B., Yang, Y., Xu, X., Hanjalic, A., & Shen, H. T. (2017). Adver-
sarial cross-modal retrieval. In Proceedings of the 2017 ACM on
multimedia conference (pp. 154–162).

Wang, J., Kumar, S., &Chang, S. (2010). Sequential projection learning
for hashing with compact codes. In ICML (pp. 1127–1134).

Wang, J., Liu, W., Sun, A. X., & Jiang, Y. (2013a). Learning hash codes
with listwise supervision. In ICCV (pp. 3032–3039).

Wang, J., Wang, J., Yu, N., & Li, S. (2013b). Order preserving hashing
for approximate nearest neighbor search. In ACM multimedia (pp.
133–142). ACM.

Wang, J., Zhang, T., Song, J., Sebe, N., & Shen, H. T. (2018). A survey
on learning to hash. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 40(4), 769–790.

Wang, X., Shi, Y., & Kitani, K. M. (2016). Deep supervised hashing
with triplet labels. In Asian conference on computer vision (pp.
70–84). Berlin: Springer.

Wang, Z., Simoncelli, E. P., &Bovik, A. C. (2003).Multiscale structural
similarity for image quality assessment. In Conference record of
the thirty-seventh asilomar conference on signals, systems and
computers, 2004 (Vol. 2, pp. 1398–1402).

Weiss, Y., Torralba, A., & Fergus, R. (2008). Spectral hashing. In NIPS
(pp. 1753–1760).

Wintz, P.A. (1972). Transformpicture coding.Proceedings of the IEEE,
60(7), 809–820.

Xia, R., Pan, Y., Lai, H., Liu, C., & Yan, S. (2014a). Supervised hashing
for image retrieval via image representation learning. In AAAI (pp.
2156–2162).

Xia, R., Pan, Y., Lai, H., Liu, C., & Yan, S. (2014b). Supervised hash-
ing for image retrieval via image representation learning. In AAAI
(Vol. 1, p. 2).

Yuan, X., Ren, L., Lu, J., & Zhou, J. (2018). Relaxation-free deep hash-
ing via policy gradient. In The European conference on computer
vision (ECCV).

Zhang, P., Zhang, W., Li, W., & Guo, M. (2014). Supervised hashing
with latent factor models. In SIGIR (pp. 173–182).

Zhao, F., Huang, Y.,Wang, L., & Tan, T. (2015). Deep semantic ranking
based hashing for multi-label image retrieval. In CVPR (pp. 1556–
1564). IEEE.

Zhu, H., Long, M., Wang, J., & Cao, Y. (2016). Deep hashing network
for efficient similarity retrieval. In AAAI (pp. 2415–2421).

Zieba,M., Semberecki, P., El-Gaaly, T., & Trzcinski, T. (2018). Bingan:
Learning compact binary descriptors with a regularized GAN. In
Advances in neural information processing systems (pp. 3608–
3618).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1511.06085
http://arxiv.org/abs/1608.05148

	Unified Binary Generative Adversarial Network for Image Retrieval and Compression
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Binary Generative Adversarial Compression Network (BGANc)
	3.1.1 Shared Encoder
	3.1.2 Constant Neuron
	3.1.3 Decoder
	3.1.4 BGANc Optimization Objective

	3.2 Binary Generative Adversarial Retrieval Network (BGANr)
	3.2.1 Encoder2
	3.2.2 Construction of Neighborhood Structure
	3.2.3 Neighborhood Structure Loss

	4 Learning
	5 Experiments
	5.1 Datasets and Settings
	5.1.1 Evaluation Metric
	5.1.2 Compared Methods
	5.1.3 Implementation Details

	5.2 Results on Image Retrieval
	5.2.1 The Effect of Binary Optimization
	5.2.2 Comparison with State-of-the-Art Methods for Fine-Grained Image Retrieval
	5.2.3 Comparison with State-of-the-Art Methods for General Image Retrieval

	5.3 Results on Image Compression
	5.4 Evaluation of Individual Component

	6 Conclusion
	Acknowledgements
	References

