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Abstract

The periconceptional period, encompassing the embryonic phase, is a critical window where a majority of
reproductive failures, pregnancy complications, and adverse pregnancy outcomes arise. The Carnegie staging
system comprises 23 stages which are based on embryonic morphological development. This allows for the
assessment of normal and abnormal embryonic development during this critical period. In-utero Carnegie
staging using three-dimensional (3D) ultrasound scans visualized with virtual reality offers valuable insights
but is currently a time-consuming manual process. To address this, we propose a deep learning approach
for Carnegie staging in 3D ultrasound scans.
We used a dataset comprising 1413 3D ultrasound scans from the Rotterdam Periconceptional Cohort,
annotated with Carnegie stages spanning from stages 13 to 23, including fetal subjects. Various training
strategies were explored. We compared a metric regression approach, which considers the ordered nature of
the Carnegie stages by treating the Carnegie stages as a continuous variable, with a multi-class classification
approach, treating stages as independent categories. Additionally, we evaluated the influence of using a loss
function accommodating the categorical nature of the Carnegie stages in the metric regression approach and
examined the impact of incorporating embryonic size in the model input. Ultimately, a regression approach
using the Mean Squared Error (MSE) loss function emerged as the optimal choice.
This model achieved a classification accuracy of 0.59 and a Root Mean Squared Error (RMSE) of 0.62 on
the test set. This performance is comparable to an intermediate human rater, which achieved an accuracy
of 0.63 and a RMSE of 0.65. Our findings represent a significant step towards the development of an
automated Carnegie staging method, offering the potential for a more comprehensive evaluation of the
critical embryonic phase in the clinic.

1 Introduction

The pregnancy is divided into an embryonic and a
fetal period. During the embryonic period, which
consists of the first 8 weeks of pregnancy, many fea-
tures, including most of the organs in the human
body, start to develop rapidly [1]. The embryonic
period is part of the periconceptional period, which
spans from 14 weeks before conception to 10 weeks af-
ter conception. The majority of reproductive failures,
pregnancy complications, and adverse pregnancy out-
comes stem from this period [2].

The Carnegie staging system facilitates the assess-
ment of normal embryonic development in terms of
morphology during this critical period [3]. Addition-
ally, it enables the identification of abnormalities by
comparing the embryonic size or age with those asso-
ciated to the corresponding Carnegie stage [4]. The
system comprises 23 stages that describe the entire
embryonic period, starting at a fertilized oocyte and

ending with an embryo in which all essential internal
organ systems are present. Although the Carnegie
stages are correlated with embryonic size and age,
they are based only on the internal and external mor-
phological characteristics of the embryo [5]. Exam-
ples of each of the Carnegie stages are shown in Fig-
ure 1. Additionally, 3D renderings of segmented em-
bryos in 3D ultrasound are shown in Figure 2.

3D ultrasound scans made during the embryonic
period allow for in-utero Carnegie staging. Currently,
manual rating of these scans involves the use of a vir-
tual reality system, as described by Rousian et al.
[7], which enables depth perception. However, this
approach is labor-intensive and time-consuming. To
enable the use of Carnegie staging on a larger scale
without relying on an elaborate virtual reality sys-
tem, there is a need for the development of an auto-
mated Carnegie staging method.

To address this challenge, we aim to develop a deep
learning method that predicts the Carnegie stage
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Figure 1: Illustrative images showcasing embryos at all 23 Carnegie stages obtained from Flierman et
al. [6]. Microscope images were used for stages 1 and 2, 3D reconstructions based on histological sections
for stages 3-8, and photos from subjects in the Carnegie collection for stages 9-23. Additionally, the mean
embryonic age and length for each stage are provided. Red arrows indicate the upper and lower limbs in
stage 14.

based on the 3D ultrasound scan. We opted for a
deep convolutional neural network (CNN) due to its
established effectiveness in medical imaging [8], using
an architecture inspired by the Densely Connected
Convolutional Network (DenseNet) by Huang et al.
[9].

We hypothesized that a metric regression ap-
proach, mentioned by Niu et al. [10], which considers
the ordered nature of Carnegie stages, would out-
perform a multi-class classification approach treat-
ing the classes as independent. To test this, both
methods were implemented. In the metric regression
approach, the Carnegie stages, although categorical,
were treated as a continuous variable, with network

output rounded to the nearest stage for accuracy cal-
culation. We further hypothesized that employing a
loss function accommodating this rounding would en-
hance model accuracy. Thus, multiple networks were
trained under identical conditions but with varying
loss functions to assess this hypothesis.

Efforts were undertaken to prevent the model from
accessing information regarding embryonic size, as it
should rely solely on morphological features for pre-
dicting Carnegie stages. Nonetheless, the inclusion of
embryonic size information could potentially enhance
the model’s performance. To explore this possibility,
we examined the impact of incorporating embryonic
size into the model input on its overall performance.
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Figure 2: Examples of 3D renderings of 3D ultrasound images of different not-to-scale embryos of the
Carnegie stages present in the dataset. The embryonic volumes were segmented and used to mask the 3D
ultrasound scan. The red arrows indicate the upper and lower limbs in stage 17.

A literature review was conducted to provide an
overview of relevant literature about Carnegie stag-
ing in 3D ultrasound, regularization techniques, and
datasets with ordered labels and is included as the
appendix of this thesis.
To the best of our knowledge, this is the first

attempt to develop a deep learning-based Carnegie
staging method, which could pave the way for the
broader application of Carnegie staging in research
and clinical practice.

2 Data

2.1 Dataset

The dataset for this project was obtained from the
Rotterdam Periconceptional Cohort from the Eras-
mus MC, University Medical Center Rotterdam, the
Netherlands. This ongoing cohort study investigates

the effects of maternal and paternal health during
the periconceptional period of pregnancy [11]. In
this cohort study, ultrasound examinations were per-
formed multiple times during the pregnancy. Dur-
ing the embryonic period, transvaginal 3D ultrasound
scans were acquired between 6 and 12 weeks of ges-
tational age (GA). These scans were made using a
handheld 4.5 - 11.9 MHz vaginal probe of a Volu-
son E8 or E10 (GE Healthcare, Austria) [12]. All
scans had isotropic voxels, however, the voxel size,
number of voxels in the scans, and field-of-view of
the scans varied. Because of the natural variation
in the location and orientation of the embryo in the
uterus and the variation in scan acquisition, the ori-
entation of the embryo in the scan also varied. Figure
3 displays examples of all Carnegie stages present in
the dataset, illustrating the variability in ultrasound
scans and embryo orientation.

The Carnegie stage was known for 1609 of these
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Figure 3: Examples of mid-sagittal planes of 3D ultrasound images of embryos with different Carnegie
stages. The segmentation of the embryonic volume is displayed with a brighter hue.
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Figure 4: Picture of the BARCO I-space virtual
reality system retrieved from Verwoerd-Dikkeboom
et al. [3]. A 3D ultrasound scan of an embryo is
displayed with the V-scope volume rendering appli-
cation.

ultrasound examinations. The Carnegie staging was
performed by two trained human observers. This
was done by visually inspecting the 3D ultrasound
scans in the BARCO I-space virtual reality system
[13]. Here, the observer was surrounded by stereo
images that allow for depth perception and 3D in-
teraction with the data, as described in more detail
by Verwoerd-Dikkeboom et al. [3, 14]. The V-Scope
volume rendering application was used to generate a
dynamic holographic representation of the embryo,
allowing manipulation and measurement in three di-
mensions. A picture of the I-space can be seen in
Figure 4.

The Carnegie staging was done according to the
Carnegie stage criteria by O’Rahilly and Müller [1,
15], using only morphological characteristics of the
embryo. The limb development and curvature of the
trunk were mostly used as external characteristics,
while the brain ventricle development was used as in-
ternal characteristic [12, 13]. Embryonic staging gen-
erally took 1-2 minutes per embryo [13]. Next to the
Carnegie stage, embryonic volume (EV), crown-rump
length (CRL), and GA of the embryo were known for
94% of the scans in the dataset.

The EV and CRL were measured semi-

automatically in the I-space virtual reality system
by trained human observers [12]. For naturally
conceived pregnancies (63% of scans), GA was
determined from the first day of the last menstrual
period (LMP), with adjustments for irregular cycles
outside the 25 to 31-day range [16]. When there was
a discrepancy of over 7 days between LMP-derived
GA and CRL-based GA, or in the absence of LMP
data, GA was estimated using the CRL from the
9-week ultrasound. For in-vitro fertilization (IVF) or
intracytoplasmic sperm injection (ICSI) pregnancies
(37% of scans), GA was calculated by adding 14
days to the date of oocyte retrieval. In cases of
cryopreserved embryo use (12% of scans), GA was
determined by adding 19 days to the transfer date.

2.2 Preprocessing

The embryonic volumes were segmented using the
method by Bastiaansen et al. [17], which is based
on the nnU-Net proposed by Isensee et al. [18]. We
only included scans for which the relative volume er-
ror of the automatically segmented embryo compared
to the measured EV was below 0.3. In case multiple
scans per ultrasound examination were available, we
included the scan with the lowest relative volume er-
ror.

This resulted in a dataset of 1413 3D ultrasound
scans of embryos with known Carnegie stage, GA,
EV, and CRL. A histogram of the number of scans
available per Carnegie stage is shown in Figure 5.
The Carnegie stage labels ranged from stage 13 to
stage 23. Additionally, some embryos had surpassed
the embryonic stage and were labeled as fetuses. Ul-
trasound examinations were performed at multiple
time points during the pregnancy. This resulted in
the number of included scans per subject at different
time points ranging from one to three. However, for
most subjects, only one scan per subject is available.

The preprocessing steps for two example scans are
shown in Figure 6. The segmented embryonic vol-
umes were used to mask the original scans. The
masked scan was cropped to contain only the seg-
mentation, with an extra margin of five voxels to each
side, see Figure 6c and 6g. The number of voxels in
the cropped scans varied from 21 to 257 in the first
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Figure 5: Histogram of the number of labeled scans
available per Carnegie stage. The scans labeled as a
fetus are also included.

dimension, 19 to 211 in the second dimension, and
24 to 231 in the third dimension. The two smallest
dimensions of the masked scans were symmetrically
padded with zeros until they were the same size as
the largest dimension of the scan. All scans were
isotropically resized to 200x200x200 voxels using tri-
linear interpolation, see Figure 6d and 6h. Lastly,
all image intensities were normalized to be between
0 and 1.

These preprocessing steps were implemented to
mitigate the influence of embryonic size on the net-
work input. By removing the surroundings of the
embryo from the input and ensuring that the num-
ber of voxels comprising the embryo is unrelated to its
size, efforts were made to prevent the network from
inferring embryonic size and incorporating this infor-
mation into the Carnegie stage prediction process.

2.3 Dataset split

The dataset was split into a training, validation, and
test set, containing 60%, 20%, and 20% of the data
respectively. This split was performed on the subject
level to ensure that the validation and test set did
not include scans of subjects in the training set. Ad-
ditionally, it was ensured that the Carnegie stage and

GA distributions in all three sets were similar so that
all sets are representative and to ensure a reliable
evaluation of the model performance. This resulted
in a training, validation, and test set of 845, 296, and
272 samples respectively.

2.4 Data augmentation

To address the issue of class imbalance, as is visible in
Figure 5, label-stratification was performed by over-
sampling the under-represented classes in the train-
ing set. This was done by uniformly drawing 300
random samples from each class in the training set.
All samples were then randomly rotated by a multiple
of 90 degrees in all three directions. This was done
with equal probability for either 0, 90, 180, or 270 de-
grees rotation, resulting in 43 = 64 possibilities. This
type of data augmentation was chosen because of the
existing variation in embryo orientation in the input
scan. Only multiples of 90-degree rotations were used
to prevent part of the segmented embryo from end-
ing up outside the cropped scan. This resulted in an
augmented training set of 12 · 300 = 3600 samples.

3 Methods

3.1 Problem definition

We are given a set of 3D input images x with ground
truth Carnegie stage labels y. y ranges from Carnegie
stage 13-23, including fetal subjects, so that the num-
ber of classes in the dataset is C = 12. The goal is to
train the network fθ : x → ŷ, with parameters θ and
output Carnegie stage ŷ, so that ŷ = y for as many
x in the validation or test set.

3.2 Network architecture

We used the 3D DenseNet-121 from the Medical
Open Network for Artificial Intelligence (MONAI)
version 1.2.0 (code available at https://github.

com/Project-MONAI). DenseNets employ direct con-
catenation of feature maps between layers of match-
ing sizes to ensure that each layer has direct access to
gradients from the loss function and the original in-
put signal, leading to improved training efficiency [9].
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(a) Original scan (b) Segmentation
(c) Masked and cropped

(d) Resized scan

(e) Original scan (f) Segmentation (g) Masked and cropped

(h) Resized scan

Figure 6: Example of preprocessing steps for an embryo of Carnegie stage 17 (a-d) and Carnegie stage 22
(e-h). Only a sagittal slice of the 3D ultrasound scan is displayed.

Additionally, DenseNets require fewer parameters for
training due to their efficient feature propagation and
reuse, resulting in a regularizing effect [19].

A general overview of the DenseNet-121 architec-
ture can be seen in Figure 7. The input image is
shown on the left. First, convolution (C1) and max
pooling (P1) operations are performed [9]. These are
followed by dense blocks (Dx) and transition layers
(Tx). Each dense block consists of multiple dense
layers, namely 6, 12, 24, and 16 dense layers for D1,
D2, D3, and D4 respectively. Each dense layer con-
sists of a batch norm (BN), a rectified linear unit
(ReLU), a 1x1x1 convolution, a BN, a ReLU, and a
3x3x3 convolution, in this order. Each dense layer
performs these operations on the input feature map
and concatenates the result to the feature map. This
increases the number of feature maps in the feature
space by 32 for each dense layer. The transition lay-
ers apply a 1x1x1 convolution and max-pooling op-

eration, reducing feature map dimensionality by one-
half. After the last dense block, a global average
pooling is performed to form the final feature map,
which is connected to a fully connected layer (FC).

Three approaches for the network output were
used:

1. The metric regression approach, shown on the
top in Figure 7, used a single output channel
that directly gives the Carnegie stage prediction
as a continuous variable. This was done by con-
necting the last fully connected layer directly to
the output channel and using the Carnegie stages
directly as labels.

2. In the multi-class classification approach, a Soft-
max function was first applied and the number of
output channels was the same as C. This is dis-
played as the middle output approach in Figure
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Figure 7: Schematic overview of DenseNet-121 with different output structures. The rectangular blocks
represent the feature spaces. The value below the feature spaces represents both the height, width, and
depth of the feature space and the value above represents the number of feature maps in the feature space,
along with the derivation. The arrows indicate connections between layers. Image adapted from [20].

7. The Carnegie stage labels were transformed
into one-hot encoded vectors.

3. A third network architecture was used, displayed
at the bottom of Figure 7, that allows for sec-
ondary input variables, such as EV or the voxel
size. This was done by adding two fully con-
nected layers, FC1 and FC2 with layer widths
WFC1 and WFC2, after the last layer of the
DenseNet. The secondary input variable was
then concatenated to the output of the DenseNet
to create the input to the extra layers. A ReLU
function was added after the first extra fully con-
nected layer to allow non-linear relations in the
network. The network output is calculated from
FC2 in the same manner as in the metric regres-
sion approach.

This approach was inspired by Wang et al. [21].
Here, a 3D regression CNN was implemented
to predict the brain age, where 3D gray matter
brain images were used as input. In addition, the
sex of the subject was provided as a secondary
input to allow the network to adjust for gray
matter differences between males and females.

3.3 Loss functions

Different loss functions were used during training.
These are described separately below. The loss
L(ŷ, y) against the prediction error for a single case
|ŷn − yn| is plotted in Figure 8a for the different loss
functions.

3.3.1 Metric regression

The following loss functions were used in the metric
regression approach:

• Mean Squared Error (MSE) loss LMSE(ŷ, y):
The MSE loss function is given in Equation 1,
where N represents the number of predictions.
In Figure 8a, it can be seen that the gradi-
ent of LMSE(ŷ, y) keeps increasing as the er-
ror increases, thereby penalizing outliers more
severely.

• Huber loss LHuber(ŷ, y): The Huber loss func-
tion is given in Equation 2, where δ denotes the
transition point between a squared loss and a
linear loss. This way, LHuber(ŷ, y) is similar to
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LMSE(ŷ, y) =
1

N

N∑
n=1

(ŷn − yn)
2 (1)

LHuber(ŷ, y) =
1

N

N∑
n=1

{
1
2 (ŷn − yn)

2 if |ŷn − yn| < δ

δ
(
|ŷn − yn| − δ

2

)
otherwise

(2)

Lround(ŷ, y) =
1

N

N∑
n=1

(
1

2
+

1

2
tanh

(
k

(
|ŷn − yn| −

1

2

)))
(3)

LCE(ŷ, y) =
1

N

N∑
n=1

(
−

C∑
c=1

log

(
exp(ŷn,c)∑C
i=1 exp(ŷn,i)

yn,c

))
(4)

(a) Loss against the prediction error for different loss
functions. δ = 1 for LHuber(ŷ, y) and k = 5 for
Lround(ŷ, y).

(b) Loss over the training epochs for Lshift(ŷ, y) with dif-
ferent prediction errors. k = 5 for Lround(ŷ, y).

Figure 8: Plots of loss functions used in the regression approach.
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LMSE(ŷ, y) whenever |ŷn − yn| < δ, but is a lin-
ear loss scaled with δ otherwise. This causes this
loss to penalize prediction errors larger than δ
less than LMSE(ŷ, y).

3.3.2 Rounding loss

The rounding loss function, Lround(ŷ, y), is described
in Equation 3, where k controls the steepness of the
loss. As can be seen in Figure 8a, Lround(ŷ, y) has a
maximum gradient at |ŷn−yn| = 1

2 , which is the point
up till where a rounded prediction yields a correct
result. The goal of using Lround(ŷ, y) was that the
network optimization specifically penalizes cases that
have a prediction error of just above 1

2 , causing these
scans to be misclassified after rounding.
The gradient of Lround(ŷ, y) vanishes when |ŷn −

yn| becomes much larger than 1
2 , potentially mak-

ing training with stochastic gradient descent diffi-
cult. To overcome this, combined loss functions
were used. These are defined as Lcombined(ŷ, y) =
λrLround(ŷ, y)+λmLMSE(ŷ, y), where λr and λm are
weight factors. Lcombined(ŷ, y) is plotted in Figure 8a
with λr = 1, λm = 1 and λr = 1, λm = 1

10 . Here it
can be seen that Lcombined(ŷ, y) yields an increased
gradient magnitude at |ŷn − yn| = 1

2 , without having
the issue of having a very small gradient magnitude
when |ŷn − yn| becomes much larger than 1

2 .

3.3.3 Shifting loss

Using Lround(ŷ, y) from the start of the training com-
plicates optimization since many scans have a large
prediction deviation, which makes the optimization
susceptible to vanishing gradients. LMSE(ŷ, y), on
the other hand, causes the optimization to prioritize
large deviations, making this a suitable loss to use
at the beginning of training. To combine the ad-
vantages of these two losses, a shifting loss function
Lshift(ŷ, y) was used where the loss function changes
over the epochs. This was done by starting with a
Lcombined(ŷ, y) with λr = 0 and λm = 1 for the first
100 epochs and linearly reducing λm to 0 between
epochs 100 and 300, while linearly increasing λr from
0 to 1. The last 100 epochs were trained with λr = 1
and λm = 0.

The loss values over the epochs for different pre-
diction errors are shown in Figure 8b. Note that this
does not represent an actual training but rather the
adjustment of loss weights during training. The dif-
ference in loss between large and small prediction er-
rors is very large in the first 100 epochs when the
LMSE(ŷ, y) is used. This difference becomes smaller
as λm is decreased and λr is increased until it is quite
small for the last 100 epochs when only Lround(ŷ, y)
is used.

3.3.4 Multi-class classification approach

The multi-class classification approach used the
cross-entropy loss LCE(ŷ, y), shown in Equation 4.

3.4 Training specifications

All networks were trained on an Nvidia A40 48GB
GPU with 504 GB of RAM. An Adam optimizer
with a learning rate of 10−4 was used. The train-
ing was done in batches of 12 scans per batch, where
the model weights were updated after each batch. All
models were trained for 400 epochs.

While training the model over 400 epochs, the
weights of the last 50 epochs were stored and aver-
aged. This was done to alleviate the effect of the fluc-
tuations in the validation performance metrics during
training.

3.5 Performance metrics

The resulting averaged models were evaluated in
terms of accuracy and root-mean-squared error
(RMSE). The accuracy is defined by the number of
correctly predicted Carnegie stages divided by the
total number of scans. Since the network output is
continuous in the metric regression approach, the net-
work output was first rounded to the nearest Carnegie
stage. The RMSE is given by Equation 5, where N
is the number of scans over which the metric is cal-
culated.

RMSE(ŷ, y) =

√√√√ 1

N

N∑
n=1

(ŷn − yn)2 (5)
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95% confidence intervals were calculated for both
metrics by bootstrap resampling the validation or
test set. This was done by randomly selecting
samples from the validation or test set 103 times,
with replacement, and calculating the metrics on
these datasets. The 95% confidence intervals were
computed using the percentile method described by
Sanchez-Lengeling et al. [22], by finding the 2.5th
and 97.5th percentile of the resulting metric values.
The performance of two models was considered sig-
nificantly different when their performance metrics
fell outside each other’s 95% confidence intervals.

4 Experiments

Experiment 1: loss function

To test whether a metric regression approach outper-
forms a multi-class classification approach, both ap-
proaches were implemented. The metric regression
approach used the metric regression network output
architecture and was trained with LMSE(ŷ, y). The
multi-class classification approach used the multi-
class classification output architecture with 12 out-
put channels and was trained with LCE(ŷ, y), with
C = 12.

The effect of using different loss functions was
evaluated by comparing the performance of net-
works trained with different loss functions in the
metric regression approach. These were LMSE(ŷ, y),
LHuber(ŷ, y) with δ = 1, Lround(ŷ, y), Lcombined(ŷ, y),
with λr = 1, λm = 1 and λr = 1, λm = 1

10 , and
Lshift(ŷ, y), where k = 5 for all functions that used
Lround(ŷ, y). The networks were evaluated on the val-
idation set.

Experiment 2: embryonic size

To investigate the effect of incorporating the embry-
onic size in the model input, the isotropic voxel size
of the input scans was given as secondary input to the
network. Since the embryonic size is correlated to the
voxel size of the preprocessed input image, this infor-
mation is implicitly provided to the network. Dif-
ferent layer widths were used for the fully connected

layers that take the DenseNet output and voxel size
as input: WFC1 = 1000, WFC2 = 500; WFC1 = 1000,
WFC2 = 100; and WFC1 = 100, WFC2 = 50.

Experiment 3: performance on test set

The best model from Experiment 1, based on the
performance on the validation set, was evaluated on
the test set. The same model was also trained on
only stages 16-23 of the training set. This was done
to assess the impact of stages 13-15, which have a
limited amount of data available and lower scan res-
olution due to smaller embryos, on the model per-
formance. The fetus class is also challenging since it
contains more morphological variability, encompass-
ing all cases beyond the Carnegie stages. Accord-
ingly, the performance of this model was evaluated
on a subset of the test set containing only stages 16-
23 and compared to the performance on the same
subset of the test set of the model trained on the
entire training set.

Graphs were created by plotting the predicted
Carnegie stages against the ground truth Carnegie
stages for the test set. Additionally, to examine the
relationship between prediction deviation and mea-
sured EV, these graphs were made for two subsets of
the test set. These subsets were made by dividing
the test set based on the EV for each ground truth
Carnegie stage. Scans with an EV below the median
per Carnegie stage were grouped into the “below-
median EV” subset, while those with an EV above
the median per Carnegie stage were assigned to the
“above-median EV” subset.

Experiment 4: human performance

To provide context, we compared the model’s perfor-
mance to that of a human rater. A medical doctor,
who was learning how to perform Carnegie staging in
virtual reality, evaluated 46 embryonic scans ranging
from stage 13 to 23 in a blind test. These ratings
were then compared to the ratings of an expert rater
and evaluated in terms of accuracy and RMSE.
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Experiment 5: comparison to Carnegie
stages literature

Although Carnegie stages are not based on length
measurements, ranges of common values for the CRL
are described by O’Rahilly and Müller [1]. The man-
ually rated Carnegie stages of the ground truth la-
bels were related to these CRL ranges by Rousian et
al. [12], showing a generally good fit despite slightly
higher CRL in 3D ultrasound-rated Carnegie stages.
Likewise, we assessed whether the model’s predicted
Carnegie stages correlated with CRL similarly to the
ground truth Carnegie stages. This was done by plot-
ting the measured CRL against both ground truth
and predicted Carnegie stages on the test set and
comparing them to the CRL ranges per Carnegie
stage described by O’Rahilly and Müller [1].

Experiment 6: linear regression using
embryonic variables

To serve as a benchmark for comparing our
ultrasound-based approach, a linear regression using
embryonic variables was used to predict the Carnegie
stage. Three distinct linear regression models were
developed, fitting the Carnegie stage against GA,
CRL, and 3

√
EV within stages 13-23 of the training

set. Cases labeled as fetuses were not used as the
range of GA, CRL, and EV for these subjects was
much wider. The regression models were evaluated
on the test set.

Experiment 7: influence of scan quality

To evaluate the impact of ultrasound scan quality
on model performance, a subset of scans in the test
set underwent quality scoring. The same human
raters responsible for Carnegie staging conducted this
assessment. Scans were categorized as ‘excellent’,
‘good’, or ‘moderate’ depending on their effectiveness
in facilitating Carnegie staging. The performance
metrics of the best model were then compared across
these three subsets.

Experiment 8: inspection of outliers

To gain insight into the causes of mispredictions by
the model, scans in the validation and test sets for
which the prediction deviation of the best model was
greater than 1.5 were reconsidered by a human ex-
pert rater. These predictions were compared to the
ground truth Carnegie stage and the model predic-
tions. Additionally, the ultrasound scan quality and
segmentation quality were evaluated to find possible
causes of mispredictions.

5 Results

Experiment 1: loss function

The results for training with different loss functions
are presented at the top of Table 1. When com-
paring the metric regression approach trained with
LMSE(ŷ, y) to the multi-class classification approach
trained with LCE(ŷ, y), there is no significant differ-
ence in accuracy. However, the metric regression ap-
proach demonstrates a significantly lower RMSE than
the multi-class classification approach. This discrep-
ancy is attributed to the multi-class classification’s
inability to differentiate between the severity of mis-
takes, leading to larger prediction errors and a higher
RMSE.

Among all loss functions, Lround(ŷ, y) exhibits the
poorest performance. The network’s inability to opti-
mize effectively, likely due to a low gradient when the
prediction error is substantial, results in it remaining
at its initialization state.

We hypothesized that employing LHuber(ŷ, y)
would lead the model to downplay the influence of
outliers, potentially yielding higher accuracy at the
expense of increased RMSE. However, this effect is
not clearly observed. This observation applies simi-
larly to Lcombined(ŷ, y) and Lshift(ŷ, y).

The MSE loss, being the most straightforward op-
tion for metric regression, yielded the highest accu-
racy on the validation set. As none of the other losses
surpassed its accuracy or RMSE, the MSE loss was
selected as the optimal choice and used for subse-
quent experiments.
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Table 1: Results metrics for different experiments. The accuracy and root mean squared error
(RMSE) are given with their 95% confidence intervals. N represents the number of scans over which the
metrics are calculated. When this is not specified, the metrics are calculated over the entire validation
(N = 296) or test (N = 272) set.

Experiment Result specification Accuracy RMSE

1: loss function

LMSE(ŷ, y) 0.65 (0.59; 0.70) 0.65 (0.55; 0.78)
LCE(ŷ, y) 0.61 (0.56; 0.66) 0.86 (0.74; 1.01)
LHuber(ŷ, y) 0.63 (0.56; 0.68) 0.64 (0.54; 0.76)
Lround(ŷ, y) 0.00 (0.00; 0.00) 20.1 (19.8; 20.4)
Lcombined(ŷ, y), λm = 1 0.61 (0.56; 0.67) 0.67 (0.57; 0.78)
Lcombined(ŷ, y), λm = 0.1 0.58 (0.53; 0.64) 0.69 (0.59; 0.81)
Lshift(ŷ, y) 0.61 (0.56; 0.67) 0.64 (0.55; 0.75)

2: embryonic size
WFC1 = 1000, WFC2 = 500 0.58 (0.53; 0.64) 0.66 (0.59; 0.75)
WFC1 = 1000, WFC2 = 100 0.57 (0.52; 0.63) 0.68 (0.60; 0.78)
WFC1 = 100, WFC2 = 50 0.63 (0.57; 0.68) 0.66 (0.57; 0.76)

3: performance on
Entire set 0.59 (0.54; 0.65) 0.62 (0.55; 0.68)

test set
Eval on stages 16-23 (N = 242) 0.60 (0.54; 0.66) 0.60 (0.53; 0.67)
Train/eval on stages 16-23 (N = 242) 0.65 (0.59; 0.71) 0.56 (0.51; 0.61)

4: human performance Intermediate rater (N = 46) 0.63 (0.50; 0.76) 0.65 (0.49; 0.80)

6: linear regression using
GA 0.39 (0.33; 0.45) 1.08 (0.99; 1.19)

embryonic variables
CRL 0.65 (0.60; 0.71) 0.93 (0.68; 1.17)
3
√
EV 0.61 (0.55; 0.67) 0.84 (0.65; 1.05)

Total (N = 138) 0.57 (0.49; 0.65) 0.63 (0.56; 0.71)
7: influence of Excellent (N = 45) 0.60 (0.47; 0.73) 0.60 (0.49; 0.71)
US scan quality Good (N = 63) 0.56 (0.44; 0.68) 0.63 (0.52; 0.74)

Moderate (N = 30) 0.57 (0.40; 0.73) 0.69 (0.52; 0.85)

Experiment 2: embryonic size

Table 1 presents the outcomes for the network archi-
tecture with voxel size as a secondary input, across
various fully connected layer widths. None of the re-
sults surpass the performance of the LMSE(ŷ, y) net-
work, which was trained without voxel size as a sec-
ondary input. This indicates that the addition of
embryonic size as secondary input did not offer the
model sufficient new information to improve its per-
formance. Consequently, the LMSE(ŷ, y) model was
selected as the optimal choice.

Experiment 3: performance on test set

The results on the complete test set of the model
trained with LMSE(ŷ, y), as well as the results on

stages 16-23 of the test set are displayed in Table 1.
Additionally, the results of the model trained solely
on stages 16-23 of the training set are provided.

The results on the test set and validation set are
comparable, as the metrics fall within each other’s
95% confidence intervals.

No significant performance increase is found when
evaluating the model trained on the entire training
set on only stages 16-23 of the test set. This can be
explained by the small influence of the, often mispre-
dicted, stages 13-15 on the evaluation metrics because
of their small number of scans in the test set.

There is no significant improvement when com-
paring the evaluation on stages 16-23 of the model
trained on the entire training set to that of the model
trained solely on stages 16-23 of the training set.
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Figure 9: Graph depicting the model-predicted
Carnegie stage plotted against the ground truth
Carnegie stage for the test set.

The predicted Carnegie stages on the test set are
plotted against the ground truth Carnegie stages in
Figure 9. In this representation, it is apparent that
the distribution of predictions is centered around the
Carnegie stage label for the middle classes (stages 16-
22). There is a bias towards higher classes for stages
13-15 and towards lower classes for stage 23 and the
fetus class.

Figures 10a and 10b display plots of the predicted
Carnegie stage against the ground truth Carnegie
stage for the below-median EV and above-median EV
per Carnegie stage subsets of the test set. In these
plots, it is visible that prediction deviations are more
biased toward lower stages for the small EV scans
and toward higher stages for the large EV scans.

Experiment 4: human performance

The performance metrics for the human rater are
shown in the corresponding row of Table 1. The
found accuracy and RMSE, with 95% confidence in-
tervals, are 0.63 (0.50; 0.76) and 0.65 (0.49; 0.80)
respectively. These results are similar to the results
of the CNN model, which had an accuracy of 0.59
(0.54; 0.65) and a RMSE of 0.62 (0.55; 0.68) on the
test set.

Experiment 5: comparison to Carnegie
stages literature

The measured CRL is plotted against the ground
truth Carnegie stage (Figure 11a) and predicted
Carnegie stage respectively (Figure 11b). The ex-
pected CRL ranges per Carnegie stage described by
O’Rahilly and Müller [1] are included. The predicted
Carnegie stages follow the same CRL distribution as
the ground truth Carnegie stages. This is an indi-
cation that the model assigns Carnegie stages in a
manner that relates to the CRL ranges in the same
way as the ground truth.

Experiment 6: linear regression using
embryonic variables

The ground truth Carnegie stage is plotted against
the GA, CRL, and 3

√
EV for stages 13-23 of the train-

ing set in Figure 12. Here, the linear fit is also plotted
for each model.

The performance metrics for the regression mod-
els fitted on GA, CRL, and 3

√
EV are displayed in

Table 1. The fitted trained on CRL and 3
√
EV out-

perform the model fitted on GA in accuracy. The
model fitted on CRL outperforms the CNN model in
accuracy, however, it performs worse than the CNN
model in RMSE. The CNN model outperforms the
model fitted on 3

√
EV in RMSE.

Experiment 7: influence of US scan
quality

Table 1 presents the performance metrics for three
subsets of the test set categorized by ultrasound scan
quality: excellent, good, and moderate. Additionally,
the performance metrics for all scored scans are in-
cluded. Based on the confidence intervals, we cannot
conclude that the model’s performance differs across
subsets. However, there appears to be a noticeable
trend, particularly regarding the RMSE, which de-
creases as scan quality improves. This suggests a cor-
relation between model performance and scan qual-
ity.
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(a) Below median EV subset (b) Above median EV subset

Figure 10: Graphs depicting the predicted Carnegie stage by the CNN model plotted against the ground
truth Carnegie stage for two subsets of the test set. The below median EV set comprises scans with the
lowest half of EV per Carnegie stage, while the above median EV set includes scans with the highest half of
EV per Carnegie stage.

(a) Ground truth Carnegie stage (b) Predicted Carnegie stage

Figure 11: Plot of measured CRL against ground truth Carnegie stage and predicted Carnegie stage. The
expected CRL ranges per Carnegie stage described by O’Rahilly and Müller [1] are indicated with the red
boxes.
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(a) Gestational age (b) Crown-rump length

(c) Embryonic volume

Figure 12: Ground truth Carnegie stage plotted against embryonic measures for stages 13-23 of the training
set. The linear regression model fitted on the measures is included as the red line. The formula that describes
the linear fit is indicated in the legends.
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Experiment 8: inspection of outliers

Table 2 displays the outcomes of the second rating
of outliers in both the validation and test sets. The
second rating corresponded with the first rating in
four instances, corresponded with the CNN model
once, and fell between ground truth and CNN model
prediction five times. Among the outliers, nine scans
had poor scan quality. These were characterized by a
low contrast-to-noise ratio (CNR) six times and a low
resolution five times. Issues with segmentation were
observed, including six instances of missing parts of
the limbs, two cases of including part of the yolk sac,
and one instance of missing the embryo completely.

6 Discussion

The Carnegie staging system facilitates the assess-
ment of embryonic development in terms of morphol-
ogy during a critical period in its development. How-
ever, manual in-utero Carnegie staging using 3D ul-
trasound scans is time-consuming. To overcome this,
we proposed an automated Carnegie staging method
using deep learning. A 3D MONAI DenseNet-121
was trained on a dataset of 1413 embryonic 3D ultra-
sound scans labeled with Carnegie stages obtained
from the Rotterdam Periconceptional Cohort. Em-
bryonic volumes were automatically segmented from
the data. Segmented scans were cropped and resized
to a standard dimension to prevent the model from
using the embryonic size in its prediction.

The model trained with the MSE loss emerged as
the best model. This model gave an accuracy of 0.59
(0.54; 0.65) and a RMSE of 0.62 (0.55; 0.68), with
95% confidence intervals, on the test set. This per-
formance was similar to the performance of an inter-
mediate human rater, who achieved an accuracy of
0.63 (0.50; 0.76) and a RMSE of 0.65 (0.49; 0.80) on
a selection of 46 scans.

To assess possible causes of mispredictions by the
CNN model, the model was tested on subsets of ultra-
sound scans with image quality visually rated from
excellent to moderate. A trend was observed that
suggests that increased scan quality decreased the
model RMSE, indicating that poor scan quality was

a possible cause of mispredictions. This is supported
by the fact that, upon evaluating the outlier scans,
nine out of ten were classified as having poor scan
quality.

Six out of ten outlier scans had missing parts of
the limbs in the embryonic segmentation. Given the
significance of limbs in Carnegie staging using 3D ul-
trasound [12], accurate limb segmentation likely plays
a pivotal role. Therefore, it would be valuable to fur-
ther investigate the correlation between segmentation
quality and prediction performance, as well as to es-
tablish a measure for segmentation quality.

Furthermore, it is noteworthy that only 20% of
scans labeled as stage 22 are correctly classified,
whereas 53% are categorized as stage 23. Addition-
ally, 28% of scans labeled as stage 23 are misclassified
as stage 22. This considerable overlap between the
predictions of these two stages aligns with Carnegie
staging by human observers, who often find distin-
guishing between these two stages particularly chal-
lenging. This is partly because the common GA
range for these stages overlap: 54-58 days for stage
22 and 56-60 days for stage 23, see Figure 1 [6]. Fur-
thermore, the common CRL range for stage 22 lies
completely within the common CRL range for stage
23, as can be seen in Figure 11.

Although the model performance was compared to
the performance of a human rater who was learning
how to perform Carnegie staging in virtual reality,
an exact measure for the inter-observer variability of
the human raters who established the ground truth
dataset is lacking. The fact that the second rating of
the outlier scans coincided with the first rating only
four out of ten times, emphasizes the importance of
knowing the inter-observer variability. Addressing
this limitation could involve having the raters de-
termine the Carnegie stage for multiple scans in a
double-blind experiment. This knowledge could pro-
vide insights into the maximum achievable accuracy
for the model.

Various training strategies incorporating different
loss functions and network output architectures were
explored. Custom loss functions, designed to in-
crease the gradient at a prediction error of 0.5 and
potentially enhance accuracy at the cost of an in-
creased RMSE, were employed. However, none of

17



Table 2: Results of the second rating by a human expert rater of outliers in the validation and
test set. The scan and segmentation quality evaluation are included, where the scan quality is characterized
by the contrast-to-noise ratio (CNR) and resolution (res).

Carnegie stage
Scan quality Segmentation quality

Ground truth CNN Second rating
13 15.19 14 poor (low CNR, res) part yolk sac segmented
13 15.14 14 poor (low CNR, res) part yolk sac segmented
14 15.66 15 poor (low res) part of limbs missing
14 15.65 14 moderate good
17 14.53 17 poor (low res) part of limbs missing
18 13.53 17 poor (low CNR) embryo not in segmentation
21 17.91 21 poor (low res) part of limbs missing
23 21.47 22 poor (low CNR) part of limbs missing
23 21.10 23 poor (low CNR) part of limbs missing

fetus 22.31 22 poor (low CNR) part of limbs missing

these custom loss functions demonstrated improved
performance compared to the default MSE loss. One
potential explanation for this outcome is that while
the custom loss functions were designed to influence
network optimization, their impact may have been
overshadowed by broader challenges related to gen-
eralization to unseen data. Factors such as dataset
variability and the complexity of the task may have
had a much larger impact on the network optimiza-
tion, limiting the impact of the custom loss functions
in improving the accuracy.

When assessing the best model by selecting per
Carnegie stage the below- and above-median EV sub-
sets of the test set, a trend was observed. Predictions
tend to be biased towards lower stages for the below-
median EV subset and towards higher stages for the
above-median EV subset. This phenomenon sug-
gests that embryonic size plays a role in influencing
the model’s predictions. Although the preprocessing
steps aimed to blind the model to information about
embryonic size, it cannot be definitively stated that
this information is entirely excluded from the input.
Given that cropped scans of smaller embryos gener-
ally have fewer voxels, resulting in increased oversam-
pling compared to larger embryos, the information is
distributed across a greater number of voxels. This
oversampling effect could have been leveraged by the
model to infer embryonic size.

Another possible explanation for the observed cor-
relation between EV and prediction deviation lies in
the creation of the ground-truth labels. In case the
human rater misclassified a scan in the test set to be
one stage higher/lower, the ground truth of this scan
is one stage too high/low, resulting in the EV for that
stage being lower/higher than the median EV for that
stage. If the CNN model correctly classifies this scan,
it is below/above the inaccurate ground truth. As
such, a scan that is above the ground truth is likely to
be in the above median subset and vice-versa. There-
fore, we cannot definitively conclude whether embry-
onic size influenced the model predictions, however,
it is likely that this information was used to some
degree.

Incorporating embryonic size into the model in-
put did not lead to improved performance. This
could mean that the model was already able to find
the embryonic size from the input scans and ex-
ploited its correlation to Carnegie stages for its pre-
dictions. Another explanation for the lack of perfor-
mance improvement is that the correlation between
the Carnegie stage and embryonic size was insufficient
to further improve the model performance. This idea
is supported by noticing that linear regression mod-
els trained on CRL and EV did not surpass the per-
formance of the model trained solely on ultrasound
scans.
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Particularly for stages 22 and 23, the measured
CRL was large compared to the ranges described by
O’Rahilly and Müller [1] for both the ground truth
and the model predictions. This indicates a potential
discrepancy between the ground truth and Carnegie
stages literature. This could be caused by the absence
of histological examinations of the embryos, which
form part of the basis for Carnegie staging, as high-
lighted by Rousian et al. [12].
While Carnegie stage predictions were centered

around true stages, mispredictions were more com-
mon towards higher stages for earlier stages and to-
wards lower stages for later stages. This trend likely
stems from the regression approach implemented,
where predictions towards the middle classes gener-
ally result in lower losses compared to predictions to-
wards the outer classes. This causes the model to be
biased towards the middle classes since this generally
has a lower risk of misprediction.
Although the Carnegie stages are categorical, rep-

resenting distinct developmental stages, our model’s
output gives a continuous value that represents the
Carnegie stage. Embryonic development is a con-
tinuous process, where the Carnegie stages represent
selected points on this evolving timeline [5]. Using
the continuous output of the model may provide a
more nuanced representation of the changing embry-
onic morphology, requiring further investigation.
Notably, only a few scans displayed prediction de-

viations larger than one stage in the test set, leading
to an accuracy of 0.98 when a one-stage deviation
is allowed. This suggests that the model could be
useful for identifying statistical correlations in large
datasets, using for example the aforementioned con-
tinuous alternative for Carnegie stages, where precise
Carnegie staging is not essential.
The inconsistency of embryo orientation in the in-

put scans stemmed from the natural variation of em-
bryo orientation in the uterus. This challenge was
addressed with data augmentation by random mul-
tiples of 90-degree rotations in all three dimensions
to enhance the model’s robustness to embryo orien-
tation. However, this variation could be eliminated
through embryonic alignment techniques, potentially
enhancing model performance. This is because cor-
rect alignment causes better overlap in the dataset

of structures such as the brain ventricles and limbs,
making it easier to identify these structures.

The under-represented classes in the dataset were
oversampled to ensure a balanced presence of sam-
ples from all classes in the training set, mitigating the
model’s bias towards over-represented classes. How-
ever, this adjustment likely led to a decrease in model
performance on the over-represented classes. This
trend is visible in the results of the model trained
solely on stages 16-23, which, while not surpassing
the model trained on the entire dataset according to
our significance criteria, exhibits a trend indicating
this effect. Exploring alternative methods like cost-
sensitive learning, where costs are assigned to mis-
classifications of different classes, may help alleviate
this issue [23].

Additionally, a limitation exists concerning the
data augmentation process, which allows for 64 pos-
sible augmentation operations. In each epoch, the
smallest classes are oversampled to a greater extent,
resulting in the presence of duplicates in the dataset.
This challenge could be mitigated by incorporating a
more diverse range of augmentation techniques and
ensuring that each scan receives a unique augmenta-
tion.

Another limitation involves the limited inter-
pretability of the model, as it is unclear which ex-
act information is used for the model predictions. To
improve interpretability, one potential approach is to
have the model base its predictions on distinct parts
of the embryo. This could be achieved by segment-
ing particular areas of the embryo, such as the limbs
or head, and training the model specifically on these
regions. Such an approach could give insights into
the Carnegie stage assigned by the model to individ-
ual embryo parts, which could be compared with the
features used by a human rater.

Another potential solution to enhance inter-
pretability is to employ a deep ordinal regression
framework described by Niu et al. [10]. In this frame-
work, the network predicts, for each Carnegie stage,
whether an input scan belongs to a higher stage than
that Carnegie stage or not. This modification makes
the network output more informative by incorporat-
ing a measure for uncertainty.

Alternatively, employing a machine learning ap-
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proach, such as support vector regression, with care-
fully selected image-based features could also improve
interpretability. These features should match those
used in Carnegie staging by human observers, for in-
stance, the curvature of the trunk or the shape of
the limbs and brain ventricles. By doing so, it be-
comes clearer which information the model uses for
its prediction, thus enhancing interpretability. More-
over, this strategy may help mitigate potential biases
associated with embryonic volume.

7 Conclusion

This study marks a significant step towards au-
tomating Carnegie staging in 3D ultrasound. The
3D MONAI DenseNet-121 trained with the Mean
Squared Error (MSE) loss emerged as the most ef-
fective. The model achieved an accuracy of 0.59 and
a Root Mean Squared Error (RMSE) of 0.62 on the
test set. This was comparable to an intermediate hu-
man rater, who achieved an accuracy of 0.63 and a
RMSE of 0.65. Challenges related to segmentation
quality, inter-observer variability, and model inter-
pretability require further investigation to improve
automated Carnegie staging. Furthermore, exploring
the application of this model in research or clinical
practice could enhance the assessment of normal and
abnormal development during the critical embryonic
period.
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Abstract

The majority of reproductive failures, pregnancy
complications, and adverse pregnancy outcomes stem
from the periconceptional period. This is the period
that spans from 14 weeks before conception to 10
weeks after conception. This period contains the em-
bryonic period in which most of the organs in the
human body develop rapidly. The Carnegie staging
system consists of 23 stages that describe the entire
embryonic period based on the morphological char-
acteristics of the embryo. The Carnegie stage is used
as an alternative measure for embryonic development
during this critical period, next to embryonic size and
age. A convolutional neural network will be trained
on a dataset of labeled 3D ultrasound scans of em-
bryos to perform in-utero Carnegie staging. This re-
port gives an overview of relevant literature about
Carnegie staging in 3D ultrasound. It was found that
the most important embryonic features for staging
are limb development, trunk curvature and brain ven-
tricle development. Furthermore, this report gives an
overview of often-used regularization methods to im-
prove training a neural network with limited data.
Data augmentation and batch normalization seem
like the most promising regularization techniques for
this project. Finally, the study addresses datasets
with ordered labels. It is suggested that this is done
most efficiently by implementing a deep ordinal re-
gression framework, using either conditional training
sets or soft ordinal vectors as labels.

1 Introduction

The pregnancy is divided into an embryonic and a fe-
tal period. During the embryonic period, which con-
sists of the first 8 weeks of pregnancy, many features,
including most of the organs in the human body, start
to develop rapidly [1]. The Carnegie staging system
facilitates the assessment of normal embryonic de-
velopment in terms of morphology. Additionally, it
enables the identification of abnormalities [2]. The
Carnegie staging system describes the entire embry-
onic period based on the internal and external physi-
cal characteristics of the embryo, e.g. limbs and brain
ventricle development. It comprises 23 stages start-
ing at a fertilized oocyte (stage 1) and ending with an
embryo in which all essential internal organ systems
are present (stage 23), marking the end of the em-
bryonic period and the start of the fetal period. The
system is based solely on the morphological charac-
teristics of the embryo and not on embryonic size or
age [3].

The embryonic period, that the Carnegie stages de-
scribe, is part of the periconceptional period, which
spans from 14 weeks before conception to 10 weeks af-
ter conception. The majority of reproductive failures,
pregnancy complications, and adverse pregnancy out-
comes stem from this period [4]. The Rotterdam
Periconceptional Cohort was initiated as a cohort
study to investigate the effects of maternal and pa-
ternal health during this critical period of pregnancy
[5]. In this study, transvaginal 3D ultrasound scans of
the embryo are made between 6 and 12 weeks of ges-

22



tational age [5]. Currently, in-utero Carnegie staging
is done by human raters using a virtual reality 3D
projection system, which is time-consuming [2, 6].
Therefore, an automated Carnegie staging method
would be helpful for more efficient staging.

To address this, a deep learning method was stud-
ied that predicts the Carnegie stage directly from the
3D ultrasound scan. This was based on a deep convo-
lutional neural network (CNN) since this has shown
good performance in a wide range of applications [7].
This network was trained on a dataset that consists
of 1413 labeled 3D ultrasound scans, encompassing
stage 13 to beyond stage 23, in which subjects are la-
beled as fetuses. This method should preferably give
some insights into the embryonic features that are
important for the staging. On top of that, the model
should base its predictions only on the embryo’s mor-
phology, not size or age. In this way, the Carnegie
stage can be compared to other embryonic variables,
like size or age, as an independent characteristic of
embryonic development.

For this project, only limited labeled data is avail-
able. A small dataset can reduce the performance
of a neural network as the network has many pa-
rameters to optimize. To mitigate this issue, regu-
larization techniques are employed. Regularization
techniques introduce a bias into the model by incor-
porating knowledge about parameters that the model
cannot effectively learn due to the limited available
data [8]. In general, any component of the model
that alleviates the problem of limited data is called
regularization. Hence, this literature study provides
an overview of relevant regularization techniques.

Finally, we address the question of whether to treat
the problem as a classification or a regression prob-
lem. This problem arises from the fact that Carnegie
stages are ordered and not independent classes, as
is assumed in a multi-class classification approach.
However, the scale can not be considered continuous,
as is assumed in a typical regression approach. An
overview is given of literature that deals with this
issue of datasets with ordered classes.

2 Methods

The first objective of this literature study is to pro-
vide an overview of relevant literature about the
Carnegie staging system and how the staging is done
using 3D ultrasound. This is done with the goal of
better understanding how the ground truth Carnegie
stage labels are determined. First, some information
about discrepancies in the use of Carnegie stages is
described. Then, literature about Carnegie staging
in 3D ultrasound is explored. Lastly, relevant embry-
onic features for Carnegie staging in 3D ultrasound
are discussed.

Secondly, a literature search was done for deep
learning regularization techniques to alleviate the is-
sue of data shortage. This was done to create a
broad overview of regularization techniques for simi-
lar problems as in this project. Papers that described
an overview of techniques were searched in Google
Scholar with the search words: “review deep learning
regularization”. Only papers published since 2017
were considered. Techniques that were described in
at least two of these review papers were investigated
further and are described in more detail.

Finally, this literature study addresses the chal-
lenge of effectively utilizing datasets with ordered
classes in deep learning classification/regression
tasks. First, a brief overview of the more standard
multi-class classification and metric regression strate-
gies is given. After this, an overview of techniques
for performing deep ordinal regression is given. For
this, literature was found in Google Scholar with
search words: “ordinal regression AND deep learn-
ing”. Papers were selected based on number of cita-
tions (>100) or relevance.

3 Carnegie staging system

3.1 Discrepancies in Carnegie staging

After multiple iterations since the beginning of the
20th century, the currently used Carnegie staging sys-
tem was described by Ronan O’Rahilly and Fabiola
Müller in 1987 [9]. As such, it became the first widely
recognized human embryonic staging system [10]. Al-
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though the Carnegie staging system is used univer-
sally for the staging of ex vivo human embryos, lit-
erature concerning the distinctions between Carnegie
stages is inconsistent [10]. While embryonic age and
length are not the main features on which the staging
system is based, one would expect to find a consistent
mean age and length for each stage in the literature;
however, this is not the case.
Possible reasons for this could be the differences

in the interpretation of normal development between
observers. Furthermore, uncertainty exists in deter-
mining the embryonic age, since the exact moment of
fertilization is often difficult to pinpoint.
Although room for improvement still exists, Flier-

man et al. [10] propose Hill’s 2007 paper [3] as the
gold standard for embryological staging because of
the use of embryonic samples from multiple collec-
tions and modern technologies and data collection
techniques.

3.2 Carnegie staging in 3D ultrasound

Verwoerd-Dikkeboom et al. [2] have shown to accu-
rately stage embryos using 3D ultrasound scans dis-
played in a 3D virtual reality system. This was done
by only examining external morphological features,
mainly limb development. O’Rahilly and Müller [1]
raise the concern that using only external features
has serious limitations. This is because it incorrectly
uses a system designed for both internal and external
features and is not precise enough for accurate stag-
ing. O’Rahilly and Müller [1] therefore claim that,
in most cases, only an approximation of the Carnegie
stage can be determined without considering internal
features. Rousian et al. [6] staged embryos based on
both internal and external features in a 3D virtual
reality system. The limb development and torso cur-
vature were used as external features, while the brain
ventricle development was primarily used as internal
features.

3.3 Features describing Carnegie
stages

Examples of embryos of all the 23 stages are shown in
figure 1. Since the Carnegie stages in our dataset are

based on 3D ultrasound data, we only focus on 3D
ultrasound features for stages 13-23. These features
are based on the review paper by Flierman et al. [10]
and are described in more detail below.

One of the features of Carnegie staging in 3D ul-
trasound is limb development [6]. The upper limbs
start appearing at stage 12, where they are only small
bulges. The same holds for the lower limbs, although
they are usually slightly behind in development com-
pared to the upper limbs. The upper and lower
limbs become better visible at stage 14, as is indi-
cated in figure 1. Throughout the following stages,
both limbs grow further and develop more features,
such as a handplate/footplate, fingers/toes, and an
elbow/knee. Simultaneously, the length of the limbs
and their position and orientation continue to develop
in the subsequent stages.

Another important feature is the curvature of the
trunk [6]. As can be seen in figure 1, the trunk is very
curved at stage 13 and becomes less curved during the
next stages.

Lastly, the brain ventricle development is used as
the main internal feature [6]. Here, the distinction
between stages mainly lies in the size comparison be-
tween the different brain ventricles.

4 Regularization techniques for
deep learning

CNNs have proven to give promising results for a
wide variety of medical image classification tasks [7].
Many CNN-based methods for medical image clas-
sification had to deal with data shortage since data
annotation is often time-consuming and costly [11].
Techniques that are used to enhance the performance
of a model on an unseen test set in the presence of
data shortage are called regularization techniques [8].
Regularization aims to improve the generalization to
unseen data and minimize the risk of overfitting on
the training data. A wide variety of regularization
techniques exist. The surveys by Moradi et al. [8],
Kukacka et al. [12] and Nusrat and Jang [13] were
used to get an overview of the most popular regu-
larization methods. Techniques that are described
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Figure 1: Illustrative images showcasing embryos at all 23 Carnegie stages obtained from Flierman et al.
[10]. Microscope images were used for stages 1 and 2, 3D reconstructions based on histological sections
for stages 3-8, and photos from subjects in the Carnegie collection for stages 9-23. Additionally, the mean
embryonic age and length for each stage are provided. Red arrows indicate the upper and lower limbs in
stage 14.

in at least two of these three review papers are dis-
cussed separately below. These are data augmenta-
tion, weight decay, regularization by network archi-
tecture (e.g. weight sharing, dropout, noise injection
and multi-task learning), batch normalization, weight
initialization and early stopping.

4.1 Data augmentation

Data augmentation involves modifying images in the
training set to generate additional representative
samples. It is a very popular way of improving the
performance of a deep learning model [12, 14]. The
modifications are carried out in a manner that mim-

ics differences in the acquisition and anatomical vari-
ances among patients [8, 14]. This is done to pre-
vent the model from concentrating on overly precise
characteristics from the initial training set, thereby
making it more resilient to variations in the training
data. Simultaneously, it helps to enhance the model’s
overall ability to generalize.

Data augmentation can also help with class imbal-
ance, where one or more classes are under-represented
in the dataset, potentially causing the model to have
a bias towards the over-represented classes. By using
data augmentation to create more training samples
for the under-represented classes, this effect can be
reduced.
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Three main categories for data augmentation tech-
niques exist: basic, deformable and deep learning
augmentation techniques. These categories are dis-
cussed below.

Basic augmentation techniques: Several basic
techniques can be used to modify images and create
new training samples [14, 15]. These techniques in-
clude geometric transformations like zooming, trans-
lation, flipping, and rotation. Another technique is
cropping, where random patches of the image are se-
lected to create new inputs. Occlusion is another
technique, where random patches are removed from
an image. Additionally, pixel intensity operations
such as modifying the brightness or contrast can be
used. Noise injection and filtering or mixing origi-
nal images to create new ones are also common tech-
niques. The latter can be done by simply adding two
images together.

Deformable augmentation techniques: De-
formable augmentation techniques are different from
basic augmentation techniques as they do not main-
tain the shape of objects [14]. In effect, this cre-
ates even more variability in the data augmenta-
tion process. There are several types of deformable
augmentation techniques, including randomized dis-
placement field, spline interpolation, deformable im-
age registration, and statistical shape models. A ran-
domized displacement field is a technique that ran-
domly shifts each pixel in an image. Spline interpo-
lation, on the other hand, uses a piecewise polyno-
mial function to interpolate new values between ex-
isting data points. Deformable image registration is
a method that can be used to map existing images to
create new ones. Statistical shape models utilize the
shape variability of objects in the dataset to create
deformations of existing images.

Deep learning-based augmentation tech-
niques: Deep learning-based augmentation tech-
niques learn the representation of the original data
to create new synthetic data [14]. These techniques
usually use a generative adversarial network (GAN),
which consists of a generator and a discriminator

[16]. The generator is a deep network that tries to
map a fixed random, generally unstructured, distri-
bution to the distribution of the target data. The
discriminator, on the other hand, aims to estimate
whether the samples that are presented are truly
drawn from the training distribution or artificially
generated by the generator, so if they are ‘real’ or
‘fake’. The discriminator is trained in such a way
that it is encouraged to correctly classify real and
fake images, while the generator is encouraged to
generate samples that the discriminator incorrectly
classifies as real. This competition causes both
networks to improve each other’s performance.
Eventually, the generator should be able to gen-
erate realistic synthetic data for the target data
distribution, while the discriminator is unable to
discriminate real from synthetic data. By sampling
from a random distribution as input to the generator,
it is possible to generate realistic synthetic data.

Perez et al. [17] found that, although deep
learning-based data augmentation techniques are
promising, they do not perform much better than
traditional augmentation techniques, while consum-
ing much more computing time. Furthermore, it is
important to note that the type of data augmenta-
tion used should match the existing variation present
in the dataset, as noted by Kukacka et al. [12].
One should thus inspect the available data and use
data augmentation appropriately. Therefore, for this
project, it is necessary to examine the input data and
identify the variations present in it, such as ultra-
sound quality and acquisition, anatomical variations,
and orientation and position of the embryo in the in-
put scan and choose a data augmentation technique
accordingly.

4.2 Weight decay

Another commonly used regularization technique is
weight decay. This technique uses a penalty func-
tion applied to the model weights to constrain the
model’s capacity [8]. The most used versions are the
L1 penalty norm, which takes the absolute magni-
tudes of the weights, and the L2 penalty norm, which
takes the squared magnitudes. Generally, L1 regu-
larization is used to guide the model to more sparse
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solutions, reducing the computational costs, while L2

regularization tends to work better for reducing the
risk of overfitting on the training data. Nusrat and
Jang [13] found that L1 regularization, although com-
monly used as a regularization technique, is not as
effective as data augmentation and batch normaliza-
tion.

4.3 Network architecture

Apart from data manipulation and penalty terms,
regularization techniques can also be implemented in
the network architecture. Different strategies for this
are discussed below.

Choosing the right model complexity: One way
to perform regularization in the network architecture
is by reducing the model complexity. Model com-
plexity denotes the capacity of models to effectively
approximate complex distribution functions and the
complexity of the functions that are represented by
the model [18]. Less complex models generally have
fewer parameters to learn, for instance, the number of
filters in a CNN [19]. It is generally thought that less
complex models tend to be less prone to overfitting
with small datasets. Brigato et al. [19] found that
less complex models indeed generalize better when
trained with smaller datasets and tend to overfit less
on the training data. However, they found that more
complex models start performing better when using
basic data augmentation.

Weight sharing: Another way of making a model
less complex is by reusing several trained parame-
ters throughout the network, known as weight shar-
ing [12]. By imposing the network to use the same
weights in multiple locations in the network, the
amount of trainable parameters decreases, causing
the network to be more robust and reducing the risk
of overfitting. Weight sharing is standardly used in
CNNs in the form of convolution kernels, which are
applied to every part of the input image with the
same weights [8].

Dropout: Dropout comprises the deactivation of
randomly chosen neurons during training to prevent
the decision-making process of the model from be-
ing dominated by a single feature [20]. By doing so,
dropout performs a model ensembling by averaging
over the smaller subnetworks that are created by the
randomly (de)activated neurons [21, 22]. This pre-
vents the neurons in the network from becoming too
dependent on each other, which can lead to overfit-
ting. Srivastava et al. [21] found that using dropout
in training significantly increases generalization to
unseen data in a wide variety of classification prob-
lems. Furthermore, they showed that dropout works
better than other regularization methods, such as the
L1 and L2 penalty norm.

Noise injection: Another way of inducing variabil-
ity in the model, next to dropout, is by injecting
random noise into various parts of the model dur-
ing training [12]. This can be done by injecting noise
in the input data, as mentioned in section 4.1, or by
adding noise to the model weights or activation lay-
ers [23]. Similar to data augmentation, this helps the
network to be more robust against input variations
and thus functions as a regularization technique. He
et al. [23] show that using a deep neural network
with Gaussian noise injection at each layer yields im-
proved accuracy on both clean and perturbed input
test data. Moradi et al. [8], on the other hand, did
not see any improvement in generalization by adding
noise to either the input or the weights of the model.

Multi-task learning: Multi-task learning is a
method in which the network aims to solve multi-
ple tasks at once. The idea behind this concept is
that the model generalization improves by having the
model solve both the original task and related tasks
[24]. This is because the representations learned for
the related tasks are often useful for the primary task.
This way, multi-task learning helps to steer the net-
work into using information that is considered useful
for making a prediction. Simultaneously, the amount
of freedom for the network and regularizes the net-
work optimization.

Thung and Wee [25] mention neurodegenerative
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disease diagnosis as an example of an application of
multi-task learning. A model can be trained to pre-
dict multiple target outputs describing the disease
progression at once. They state that learning to pre-
dict all these outputs together yields better perfor-
mance than learning them separately, as these are
related tasks. This idea can be applied to the pre-
diction of Carnegie stages similarly. This can for in-
stance be done by having the model predict Carnegie
stage, gestational age and embryonic volume at once.
This might steer the model in using more relevant
information and have a regularizing effect.

4.4 Batch normalization

Batch normalization addresses the problem of inter-
nal covariate shift [26]. This shift occurs because the
statistical characteristics of inputs to each layer vary
during training when the network is trained in dis-
tinct batches. This slows down the training process
since the layers need to constantly adapt to a new
distribution of the input data. Batch normalization
reduces this effect by fixing the means and variances
of layer inputs, which aids in faster convergence and
allows higher learning rates.
Ioffe and Szegedy [26] show that using batch nor-

malization with a higher learning rate and without
using dropout achieves the same performance with 5
times fewer training steps. Furthermore, they state
that, when using batch normalization, dropout can
be removed to speed up training, without increasing
the risk of overfitting. Bjorck et al. [27] argue that
using a higher learning rate increases the noise in a
stochastic gradient descend step, which has a regu-
larization effect. They argue that the regularization
effect of batch normalization comes from the higher
learning rates that it allows.

4.5 Weight initialization

Another way to implement regularization is by weight
initialization. Weight initialization deals with choos-
ing the best initial weights of the model before train-
ing. Most often, this is done by sampling the weights
from a random distribution, such as a Gaussian dis-
tribution [12, 28]. It is also possible to pre-train the

network for a different but similar task. An example
of this is transfer learning.

Transfer learning is a method that is often used
when limited data is available, in which a model
is first trained on a larger amount of data that is
similar to the target data [29, 30]. After this, the
model is fine-tuned on the target data. This way,
the model should already have learned useful features
before training on the target domain [12]. The fine-
tuning is most often done by fixing the first layers
of the CNN (the feature extractor) and training the
fully connected last layers on the target data. Sev-
eral CNN models that were pre-trained with the Im-
ageNet dataset, a dataset consisting of millions of
natural images, are publicly available online.

4.6 Early stopping

Early stopping is a relatively simple method for reg-
ularization that prevents overfitting on the training
set. Overfitting occurs when the error on the val-
idation set starts to increase during training, while
the error on the training set is still decreasing [20].
Early stopping halts the training process when this
happens thereby reducing the generalization error.

5 Techniques for datasets with
ordered classes

5.1 Multi-class classification and met-
ric regression

The dataset for this project comprises 3D ultrasound
scans with ordered Carnegie stage labels. If we ap-
proach this as a multi-class classification problem,
we would treat the Carnegie stages as independent
classes and use a loss function that doesn’t penal-
ize larger deviations between predicted and ground
truth stages more. Because the inherent order in the
labels is not used, this may lead the model to overlook
meaningful relationships between classes and miss
important characteristics for predicting the Carnegie
stage [31].

Metric regression, on the other hand, works by hav-
ing the model output a single continuous value. This
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way, it treats the labels as numerical values [32]. The
optimization is then usually performed with a loss
such as the mean squared error, which utilizes the
order of the labels because larger deviations from the
ground truth are punished more than smaller devia-
tions. However, this approach can come with some
issues when dealing with ordered labels. An exam-
ple of this is in age estimation from facial images.
Chang et al. [31] argue that using metric regression
for age estimation from facial images is usually diffi-
cult since it is prone to overfitting. This is because
the features that are related to the maturing of the
face rely heavily on the person’s age [32]. Facial shape
is for instance an important feature to predict age for
children, as the shape of the face changes a lot at a
younger age. At an older age, on the other hand,
this feature is less important since the facial shape
does not change much during adulthood. Skin tex-
ture can tell a lot more about a person’s age during
this period, making this a more important feature.
This change in the importance of features causes the
feature space that describes age to be non-stationary,
which is difficult to deal with for a regression model.
As described in section 3.3, the features that char-

acterize the different Carnegie stages are quite non-
stationary. Specifically, the features that are impor-
tant for predicting earlier stages are very different
from features that are important for predicting later
stages. The orientation of the limbs is for instance
very important for discerning stages 19 until 23, while
this is less relevant for the earlier stages. Using met-
ric regression might therefore cause similar issues as
for age estimation.
In conclusion, neither multi-task classification nor

metric regression seems fit for the task of embryonic
Carnegie staging.

5.2 Deep ordinal regression

An often-used technique that overcomes the issues of
multi-task learning and metric regression is ordinal
regression. Ordinal regression generally learns how
to predict labels with an ordinal scale, where only the
relative order between labels is important [33]. Ordi-
nal regression has been applied in numerous ways in
machine learning, including for deep learning (deep

ordinal regression).
This has been done in the field of age estimation.

Niu et al. [32] propose a multiple-output CNN ap-
proach, with the same number of CNN outputs as
the number of classes, which are called ranks, in
the dataset minus one. Each output node is then
trained with the binary classification task of predict-
ing whether a sample has a higher rank than the one
corresponding to that output node (output should be
1) or not (output should be 0). This means that the
labels should be transformed into vectors with ones
for each rank that the label surpasses and zeros when
it doesn’t. The output nodes are jointly trained with
an absolute cost matrix that finds the absolute dif-
ference between prediction and ground truth for each
node. Eventually, the model calculates the rank of an
unseen sample by counting the number of nodes that
are activated and adding one. Niu et al. [32] show
that this ordinal regression CNN outperforms a met-
ric regression CNN (with a single output node trained
with the mean squared error) on two different facial
image datasets.

A potential issue of this method, however, is the
possibility of classifier inconsistency [34]. This hap-
pens when individual binary classifiers disagree, caus-
ing a contradiction. For example, when one classifier
predicts that the stage of a subject is not higher than
20, while another predicts that the stage is higher
than 21. In this case, there is no clear output of the
model. Cao et al. [34] propose the consistent rank
logits (CORAL) framework to solve this issue. This
framework uses a weight-sharing constraint in the last
layer so that all binary classification tasks share the
same weight parameters.

This method, however, restricts the neural net-
work’s flexibility since the amount of trainable pa-
rameters is reduced. To overcome this, Shi et al. [35]
introduce the conditional ordinal regression for neural
networks (CORN) framework. Their framework uses
an adapted training scheme with conditional train-
ing sets to ensure rank consistency. Instead of having
each output node predict an unconditional probabil-
ity, the output nodes predict the conditional proba-
bility of a rank being higher than the specific rank
of that node, given that the rank is higher than that
of the previous output node. The eventual uncon-
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ditional probability is then found using the chain
rule, by multiplying the conditional probability of
this output node by the conditional probabilities of
the lower-rank output nodes. To ensure that the out-
put nodes render these conditional probabilities, an
adapted training scheme is needed. This training
scheme works by training the model output nodes
separately, where each is trained on a subset of train-
ing data of which the ranks are at least larger than the
rank of the output node below this node. Shi et al.
[35] show that the CORN method does indeed have
an improved performance over the CORAL method
described by Cao et al. [34].
Another method that applies a form of ordinal re-

gression for deep learning is described by Dı́az and
Marathe [36]. Their method uses soft ordinal vectors
as labels instead of hard labels, such as one-hot en-
coded labels or rank labels as described in [32, 34, 35].
These labels are created by using a Softmax function
that gives probability-like values to all ranks based
on how far the rank of the sample is from each rank
that corresponds to the element in the vector. This
way, the highest value is given to the rank that cor-
responds to the sample and smaller values are given
to ranks that are farther away. Hence, the order in
the classes is implemented in the labels. The training
procedure then follows that of a multi-class classifi-
cation task, without the need for modification of the
network architecture. The authors show that this
method outperforms the ordinal regression CNN de-
scribed by Niu et al. [32], however, it is unclear if
this method works better than the CORAL [34] or
CORN [35] methods.

6 Discussion

To the extent of our knowledge, this was the first
project that attempted to develop a method for au-
tomated Carnegie staging of the human embryo based
on 3D ultrasound. This literature study gave a broad
overview of the literature on the most relevant topics
for this project.
It was found that human raters mainly look at the

limb development, curvature of the torso, and brain
ventricle development for embryonic staging. It is

expected that these features are also important for
a neural network trained for this task. However, a
neural network might also discover other features de-
scribing the Carnegie stages. This could be done by
comparing the regions of the input scan that are im-
portant for the prediction of the model, using Grad-
CAM [37] for instance, with the relevant features for
that stage from literature. This can create insight
into why the model might make a wrong prediction.

A variety of regularization techniques for deep
learning classification tasks was discussed in section
4. According to the no-free-lunch theorem, however,
it is not possible to come up with the best regular-
ization strategy that works equally well for all clas-
sification tasks [8]. As such, an appropriate regular-
ization strategy should be picked, based on the given
task. This literature provides an overview of often-
used methods to help a model generalize better to
unseen data when only limited data is available.

As a starting point, Moradi et al. [8] recom-
mend the use of weight decay and data augmenta-
tion for regularization. Furthermore, they recom-
mend dropout or batch normalization in case there
are enough computational resources. Kukacka et al.
[12] recommend using data augmentation that mim-
ics natural transformations in the data. Furthermore,
they recommend experimenting with out pre-trained
or random weight initializations and different opti-
mizers and learning rates. Additionally, Nusrat and
Jang [13] have shown that batch normalization and
data augmentation lead to better performance than
L1 regularization. Ioffe and Szegedy [26] state that
batch normalization reduces the need for dropout as
it provides similar benefits as dropout.

Based on these recommendations, data augmen-
tation and batch normalization seem like the most
promising regularization techniques for this project.
Additionally, multi-task learning could be used to
have the model predict both the Carnegie stage and
other relevant embryonic variables at the same time.
This could help steer the model in using more rele-
vant information and thereby improve generalization.
Furthermore, different optimizers, learning rates, and
weight initializations could be tried.

For the case of deep learning applications, Shi et
al. [35] have shown that their framework with con-
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ditional training sets solves the rank inconsistency
problem and the reduced model capacity problem,
introduced by Cao et al. [34]. It is therefore recom-
mended to use this method. However, it is unclear if
this method works better than the soft ordinal vector
labels method by Dı́az and Marathe [36]. Therefore,
it is recommended to try both methods.

7 Conclusion

The most relevant embryonic features for Carnegie
staging in 3D ultrasound by human raters are limb
development, trunk curvature, and brain ventricle de-
velopment. Data augmentation and batch normal-
ization seem like the most promising regularization
techniques for this project. Furthermore, it is rec-
ommended to implement a deep ordinal regression
framework, either with conditional training sets or
with soft ordinal vectors as labels.
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