
Predicting True
Vulnerabilities from
Static Analyzer
Warnings in
Industry
An Attempt to Faster
Releasing Software in
Industry
S.P.D. Bisesser

Predicting True
Vulnerabilities from Static Analyzer Warnings

in
Industry

An Attempt to Faster
Releasing Software in

Industry
by

S.P.D. Bisesser
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday December 14, 2020 at 11:00.

Student number: 1512250
Project duration: April 15, 2019 – December 14, 2020
Thesis committee: Dr. A. Panichella, TU Delft, Supervisor

Dr. ir. S. E. Verwer, TU Delft, Committee Member
Prof. dr. ir. R. L. Lagendijk, TU Delft, Chair

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
An increasing digital world, comes with many benefits but unfortunately also many draw-
backs. The increase of the digital world means an increase in data and software. Developing
more software unfortunately also means a higher probability of vulnerabilities, which can be
exploited by adversaries. Adversaries taking advantage of users and software vulnerabilities,
by stealing data to cause harm, steal money, etc. This makes the digital world a dangerous
environment.

To ensure software has a minimal number of vulnerabilities, companies invest in software
tools and experts to check their software for vulnerabilities. One such company is ING, the
largest bank of The Netherlands. At ING they use Fortify, a static analyzer. The problem with
this tool is that it gives many false positives. Therefore, pentesters and developers have to
manually check all the warnings given by Fortify, which takes a lot of time and slows down
the whole software development process.

In this study, we propose to use supervised machine learning techniques to predict true
vulnerabilities from static analyzer warnings. Using ING’s data from Fortify, two highly imbal-
anced datasets with code metrics are created on class and method level. Various classifiers
and sampling techniques are compared to determine which techniques perform the best.
Next to that, we also compared the performance at different levels of granularity. Finally, we
also investigate whether a dataset with different types of vulnerabilities performs better than
a dataset consisting of only one vulnerability type.

From our study, it is clear that Bagging in combination with ClassBalancer gives the best
f-measure (0.618) for the class-level dataset, which is slightly good. Random Forest with
SMOTE gives the best f-measure (0.412) for the method-level dataset, which we consider
weak. Depending on the type of vulnerability, the performance can benefit from a dataset
per vulnerability type. Overall, the performance found in this study shows slightly promis-
ing results when using Fortify in combination with supervised machine learning, especially
compared to only using Fortify.

iii

Preface
With this report, not only does my pursuing for the Master degree in Computer Science
ends, it is also the end of me being a student at TU Delft. The end of an era. I met many
people, students and staff alike, which I have fond memories with. Friendships that will last
forever, hopefully. We had a lot of fun times. Not only studying, but also watching movies,
playing video games, watching and discussing Dragon Ball Super, playing foosball, going to
concerts, eating out, etc. Unfortunately, some times were also tough. Failing some courses
and retaking them, working all night to meet deadlines, etc.

Although most of the master program I consider a good experience, the Master thesis was
definitely the hardest part. Not everything went as smooth as one might hope and on top of
that we had to deal with the university closing due to the COVID-19 pandemic. Fortunately,
for me, I had many people around me to support me and get me through this thesis. I am
therefore very grateful to all my friends and family, especially my parents, for supporting me.
There are, however, a few people I would like to thank especially, for they helped make this
master thesis to what it is today.

So first of all I want to thank my supervisor, Dr. Annibale Panichella, for all the time he
spend on making sure I will have a good thesis. Whenever times got tough, he would always
know how we should continue. He thought me so much and made me have a better scientific
mindset. I always liked our meetings, especially when we discussed pizza or movies and TV
shows.

I also would like to thank Dr. ir. Sicco Verwer, who helped out whenever we got stuck
from time to time. Especially in the beginning of the thesis, his point of view and that of
Annibale could give us some clarity in how to progress.

Next, I would like to thank Hennie Huijgens, for giving me the opportunity to do a master
thesis at ING. He helped us out by making sure we were treated well at ING and were able to
do our thesis in the best environment possible.

Last, but not least, I would like to thank my ”partner in crime”, Ka-Wing Man. A fellow
Computer Science student and a good friend, who did his master thesis at ING with me at
the beginning. We spend a lot of time together, trying to figure out how to do this thesis the
best way possible. In doing so, we had a lot of fun and stress. We also worked together on
various courses throughout the master program, giving us fond memories and experiences.

Although this is definitely the end of an era, it is also a start of a new chapter in my
life. Wherever it will take me, I will always cherish this time and I know now that I am fully
prepared for it.

S.P.D. Bisesser
Delft, December 2020

v

Contents

1 Introduction 1
1.1 Background . 3
1.2 Problem Statement . 3
1.3 Research Questions . 4
1.4 Contributions . 4

1.4.1 Fortify Overview . 5
1.5 Report Overview . 5

2 Related Work 7
2.1 Software Vulnerabilities Causes . 7
2.2 Most Common Software Vulnerabilities . 8
2.3 Vulnerability Detection Methods . 10

2.3.1 Fuzzing . 10
2.3.2 Web Application Scanners . 10
2.3.3 Static Analysis Techniques. 10
2.3.4 Brick. 11
2.3.5 CRED . 11
2.3.6 Manual Testing . 11

2.4 State-of-the-Art Tools for Vulnerability Detection . 13
2.5 Software Vulnerability Prediction using Machine Learning 14

2.5.1 Software Metrics . 14
2.5.2 Feature Selection. 16
2.5.3 Class Imbalance . 16
2.5.4 Machine learning techniques . 17

2.6 Other Approaches . 17

3 The Datasets 19
3.1 Data Origin . 19
3.2 Gathering Data . 20
3.3 Building the datasets . 20
3.4 Analysing the datasets . 21

3.4.1 Datasets visualised. 21
3.4.2 Metrics . 24

3.5 Preprocessing the datasets . 28
3.5.1 Normalization . 28
3.5.2 Feature Selection. 28
3.5.3 Class Imbalance . 30

4 Research Design 31
4.1 RQ1 . 31

4.1.1 J48 . 31
4.1.2 Random Forest . 32
4.1.3 Naive Bayes . 33
4.1.4 Support-vector machine (SVM) . 33
4.1.5 Multilayer perceptron (MLP) . 34
4.1.6 Bagging . 35

4.2 RQ2 . 38
4.3 RQ3 . 39

4.3.1 Statistical Comparison . 40

vii

viii Contents

5 Research Results 43
5.1 RQ1 . 43

5.1.1 Class-level Dataset . 43
5.1.2 Method-level Dataset. 45
5.1.3 Research Question Answer . 47

5.2 RQ2 . 47
5.2.1 Research Question Answer . 47

5.3 RQ3 . 47
5.3.1 Overall Classifier comparison . 51
5.3.2 Overall Dataset comparison . 52
5.3.3 Research Question Answer . 53

6 Discussion 57
6.1 Main findings . 57
6.2 Comparison with Related Work . 58
6.3 Implications . 58

6.3.1 Design. 58
6.3.2 Recommendations . 59

7 Threats to Validity 61
7.1 Internal Validity . 61
7.2 External Validity. 61

8 Conclusion & Future Work 63
8.1 Future Work. 63

8.1.1 Limitations . 64
8.1.2 Security Metrics. 64
8.1.3 Fuzzing . 64
8.1.4 Deep learning. 64

A Additional Graphs & Tables 65
A.1 Code metrics . 66
A.2 Research Results. 68

Bibliography 89

1
Introduction

The digital world is becoming bigger and more important everyday. On the one hand, people
are usingmore software everyday, sharingmore (sensitive) data, while on the other handmore
software is developed daily. This is also interesting for adversaries who want to hack into
software to steal data or money from people, companies, and organizations or gain control
over software.

Cyber attacks can have different types of risks. Business Insider reported in 2018, that
billions of user accounts had been compromised in the top 21 biggest data breaches [38].
Adversaries can use these compromised data to sell it on the black market or blackmail peo-
ple and companies. In July 2015, for instance, a group of adversaries stole the user data of
the dating/affairs website Ashley Madison. Adversaries could use this data to blackmail or
publicly shame users, for most users would have their affairs in secret [43]. In May 2017,
a ransomware cryptoworm named WannaCry was released worldwide and targeted comput-
ers with Windows OS [48]. Ransomware infection is another type of risk. The idea behind
ransomware is that computers infected with a malware, having all its files encrypted in such
a way that the files cannot be accessed and decrypted by the users themselves. If the user
paid the hacker within a given time limit, the files would be decrypted and thus releasing the
computer as a hostage. If the time limit is expired without payment, the files are destroyed.
Data, however, is not the only important digital asset. One of the most recent hacks with
big monetary losses happened in 2018. During this hack, 12000 VISA cards were stolen
from Cosmos Bank in India, which were used for 15000 transactions, totaling in a loss of
$13.4 million [44]. The Carbanak group is one of the biggest hacks concerning banks. They
stole almost $1 billion from over 100 banks around the world [36]. Another hack at a fi-
nancial institute happened in February 2016, when hackers issued a fraudulent transfer of
almost $1 billion from the Federal Reserve Bank of New York’s account at the Central Bank
of Bangladesh. Even though a total of $870 million was refused or halted, $81 million were
successfully transferred1, of which only $18 million has been recovered up till today2.

To attack a system or application, an adversary needs to exploit a vulnerability in the soft-
ware. There are many definitions of software vulnerability. Liu et al. [40] defined a software
vulnerability by: ”An instance of a mistake in the specification, development, or configuration
of software such that its execution can violate the explicit or implicit security policy”.

Thus, cybersecurity is becoming more important everyday. Looking at figure 1.1, it is
clear from the NIST (National Institute of Standards and Technology) study3 that the number
of vulnerabilities in IT has been increasing the last couple of years.

Developing more software unfortunately also means a higher probability of bugs in soft-
ware. Some of these bugs can be vulnerabilities. More and more software is being developed

1https://nypost.com/2016/03/22/congresswoman-wants-probe-of-brazen-81m-theft-from-new-york-fed/
2https://newsinfo.inquirer.net/807690/ex-rcbc-branch-manager-free-on-bail
3https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/
cvss-severity-distribution-over-time

1

https://nypost.com/2016/03/22/congresswoman-wants-probe-of-brazen-81m-theft-from-new-york-fed/
https://newsinfo.inquirer.net/807690/ex-rcbc-branch-manager-free-on-bail
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

2 1. Introduction

Figure 1.1: The Common Vulnerability Scoring System (CVSS) Severity Distribution Over Time3

and thus it is highly likely that more bugs and vulnerabilities in software exists.4 These
vulnerabilities can form risks, some more than others, when attackers try to exploit them.
These risks can harm people and companies. Take, for instance, a log-in page on a web-
site. A potential vulnerability on this page could be SQL injection. With SQL injection, an
adversary can use the user input, in this case the login text fields, on a web page to exe-
cute an SQL statement. By sending an SQL statement through the login form, an adversary
can temper with the database. Information about clients and the company could be stolen,
deleted, edited, etc. In 2008, the Heartland Payment Systems had a data leak of 134 million
credit cards being exposed due to a SQL injection attack. This cost the company $145 million
in compensation for fraudulent payments5. Another example of SQL injection vulnerability
being exploited was during the USA elections of 2016. The personal data of 200000 Illinois
voters were breached6. The consequences of such vulnerabilities are thus severe.

To overcome these problems, vulnerabilities in software need to be tackled as soon as
possible during the development of software, as bug fixes become more costly over time [56].
To ensure that most vulnerabilities are not present after release, developers have to test and
check their code for vulnerabilities. This can be done by the developers themselves or by
security experts. However, this process is time consuming [31] and can create delays for the
development of the rest of the software.

There are various techniques for detecting software vulnerabilities [4]. One such tech-
nique is static analysis. This technique identifies weaknesses in the source code before the
application is used in the user’s environment. This is done by first assessing the code and
then applying a rule set or algorithms. After that, a list of warnings (potential vulnerabili-
ties)are generated, which are present in the code.

A major problem with static analysis is the high number of false positives [6]. This means
that those warnings, more than 23% of all the warnings in Antunes and Vieira [6] research,
are not actual vulnerabilities. Thus all the warnings need to be manually checked by devel-
opers and security experts to decide whether or not they need to fix a vulnerability.

Looking at current research, Park et al. [57] suggest to use dynamic information like
snapshots of execution environments, logs of dynamically loaded files, and type-based mod-
eling to eliminate false positives in JavaScript Web Applications. Whereas Junker et al. [33]
suggests to use SMT (Simultaneous multithreading) to compute infeasible paths, by viewing
static analysis as a model checking problem and adding observer automata to exclude such
paths.

To overcome this problem, we propose to implement supervised machine learning for pre-

4https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today
5https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.
html

6https://www.econotimes.com/SQL-Injections-Continue-to-Embarrass-Big-Names-690349

https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.econotimes.com/SQL-Injections-Continue-to-Embarrass-Big-Names-690349

1.1. Background 3

dicting true vulnerabilities from static analyzer warnings. Supervised machine learning is
a technique that predicts the outcome by using a dataset with a set of features and labels
as the input [73]. In this case, the labels are the two classes: true or false vulnerable. By
training such a supervised model, we can predict which warnings of a static analysis tool are
true vulnerabilities.

Previous research has shown some promising results. Ruthruff et al. [69], for instance,
used logistic regression models to accurately predict false positive warnings over 85% of the
time on average. We will use different types of supervised machine learning techniques on a
dataset from fintech (financial technology) industry in this research.

In this paper, we thus study how to predict true vulnerabilities from static analyzer warn-
ings, given a pool of a large number of different software applications by industry standards.

1.1. Background
This research is done at ING, the largest bank of The Netherlands7 and active worldwide.
They also provided the penetration test data and the corresponding source code that was
used in this research.

Within ING, there are many different teams, the so called ”squads”, which all develop their
own applications. All of these ”squads” depend on the security officers for deployment. This,
so software vulnerabilities are taken care of before deployment of the software. Various tools
are used for penetration testing and code reviewing the software. Depending on the risks of
the vulnerabilities, certain actions must be taken before the software can be deployed.

To ensure attackers can not exploit applications, software vulnerabilities need to be found
and taken care of before applications are released. ING uses penetration testing teams to
ensure that their applications do not contain software vulnerabilities.

The ING pentesting process works as follows: Automated static analysis tools such as
CheckMarx8 and Fortify SCA9 are used to look for potential software vulnerabilities. The way
static analysis tools work, is by looking through the source code for vulnerabilities. These
vulnerabilities are not only related to the code itself, but can also be related to libraries,
network, OS, etc. By comparing the source code with some rules, possible vulnerabilities
could be detected. These rules check not only bugs, but also types, style, etc. [15]. An
example of a rule would be to check the code for a call to the strcpy() function. The use of
this function in C could result in a buffer overflow in case the second argument points to a
very long string. The developer teams run these application security testing tools after every
ready-to-deploy version of the application. The potential software vulnerabilities are ignored
by the development team, if deemed to have low or no risk at all, or an alert is risen for the
pentesting team to see if the application is actually vulnerable to being exploited.

Next to code reviewing, using the above two tools, the pentesting teams also use Burp
Suite10 for the actual penetration testing. This is done by the pentesting teams, when a
developing team wants to deploy their application. If there are no high risks, they can deploy
their software.

1.2. Problem Statement
The security officers at ING have to check all the code that is developed for software vulner-
abilities, before they get deployed. This process is time consuming, which causes delays in
the development of software, due to the fact that squads can not continue until their code is
checked for any major vulnerability.

Besides, most of the validation is done manually, leading to a very laborious and intensive
activity. Some static analysis tools are used for detecting software vulnerabilities, but the
problem with most of these tools is that they have a high false positive rate [6].

7Based on total assets:
https://www.banken.nl/nieuws/20909/ranglijst-grootste-nederlandse-banken-2018

8https://www.checkmarx.com/
9https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
10https://portswigger.net/burp

https://www.banken.nl/nieuws/20909/ranglijst-grootste-nederlandse-banken-2018
https://www.checkmarx.com/
https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview
https://portswigger.net/burp

4 1. Introduction

Static analysis tools do, however, give more true positives than pentesting tools [71] and
tend to have a low number of false negatives [32]. Most of these tools use rule-based solutions.
Machine learning could help speed up this process and deal with the manually checking of
the high number of false positives.

The problem statement can thus be stated as:

and software deployment within ING.
vulnerabilities from static analyzer warnings to speed up the security check
Developing one or multiple models using machine learning that predict true

1.3. Research Questions
We investigate three research questions that steer our research.

First, different classifiers need to be compared to see how each of them perform. These
different classifiers use supervised learning, meaning that the training data is labeled. This
will also help understand which classifiers work better for finding true vulnerabilities in a
dataset that contain static analyzer warnings of various types of vulnerabilities. The first
research question is thus:

vulnerabilities from static analyzer warnings using a dataset from ING?
RQ1: How accurate are supervised machine learning methods in detecting true

The dataset can be split into various granularity levels. Both class level and method level
are available. These two datasets have different metrics and values. Given the various clas-
sifiers, it is interesting to know at which granularity level these classifiers are more accurate.
Therefore the second research question will be:

dataset from ING?
RQ2: How do classification methods perform at different levels of granularity on a

Various types of vulnerabilities exist within the dataset. Although they are mixed and used
as binary (vulnerable or not), it is interesting to explore how this model compares to models
built with only one vulnerability type. To explore if it is better to combine the vulnerabilities
or to make a model for each vulnerability, the last research question states:

compared to models built on datasets per vulnerability type?
RQ3: How accurate is a model built on a dataset with various types of vulnerabilities

1.4. Contributions
Looking into the current research, it is lacking real-world data usage with machine learning
for predicting software vulnerabilities. Most research uses open source data, which is not
very representative for big companies like ING. Next to that, software vulnerability predic-
tions are usually done on method level instead of class level and the models are built per
project [27]. This research will help overcome these problems and unknowns. Thus, the
main contributions of this research are:

1. Comparing different classifiers: First, this research will compare the performance
of various classifiers. This will help give an insight on the state-of-the-art supervised
machine learning techniques, when applied to predict true vulnerabilities from static
analyzer warnings, to see how well they perform and see if they are worth it to implement
in a corporate setting.

2. Comparing different granularity levels: Next, this research will compare the perfor-
mance of models built at class level with models built at method level. This will help
in choosing the right level of granularity when performing true vulnerability from static
analyzer warnings prediction.

3. Comparing different models based on vulnerability type: Different models will be
created for various vulnerability types. The performance of these models will then be
compared to a model with all vulnerabilities combined. This will give an insight into
whether it is best to focus on finding certain vulnerability types or to find them all using
just one model.

1.5. Report Overview 5

4. Cross-project closed data performance of detecting true positives among different
warning types using machine learning: Finally, this research uses a dataset con-
taining data from various projects from ING. These projects are anonymised and mixed
together into one big dataset. Thus, instead of looking at just one project for one model,
a model is built from various projects (cross-project). The performance of this model is
determined in this research.

1.4.1. Fortify Overview
Figure 1.2 is an overview of the Fortify process combined with supervised machine learning.
The source code is deployed to Fortify and checked for vulnerabilities. Pentesters will label
these vulnerabilities as true or false. Both the source code as well as the vulnerability data
from Fortify are extracted from Fortify. From the source code, code metrics are created. These
code metrics are combined with the vulnerability data into one dataset. After preprocessing
the dataset, it can be used by supervised machine learning algorithms. These algorithms will
create models that detect true vulnerabilities from static analyzer warnings.

Figure 1.2: Schema of Fortify combined with supervised machine learning

1.5. Report Overview
The report consists of the following chapters.

First, we discuss the related work in chapter 2. In this chapter, we state the current
most common software vulnerabilities and vulnerability detection methods. Next to that, the
state of the art in vulnerability detection tools and the current state of research on the topic
of software vulnerability prediction using software metrics are explained. Last, we discuss
benchmark metrics and other approaches for decreasing software vulnerabilities. After that,
we describe and visualise the dataset in chapter 3. How the data was retrieved and what
it consists of are also explained in this chapter. In chapter 4, we illustrate the research
design. This chapter will explain the experiment setup. The research results are shown in
chapter 5. We discuss the results in chapter 6. This chapter will connect the results with the
research questions and hypothesis. After that, we discuss the threats to validity in chapter
7. Both internal and external threats are mentioned and how they are handled. A conclusion
is drawn in chapter 8. Finally, we discuss future work in section 8.1. This final section will
look into how to improve this study.

2
Related Work

This chapter will look into the related work for predicting software vulnerabilities. First, the
causes of software vulnerabilities are explained. Then, the most common software vulnera-
bilities are discussed. Next, the methods for detecting software vulnerabilities are explained
and the state of the art is discussed for software vulnerability detection tools. After that,
the current state of research on the topic of software vulnerability prediction using software
metrics is summarised. Finally, benchmark metrics and other approaches for decreasing
software vulnerabilities are discussed.

2.1. Software Vulnerabilities Causes
To understand which software vulnerabilities exists and how to detect them, it is important
to understand what may cause software vulnerabilities.

According to Ping et al.[61] there are four causes which can create software vulnerabilities
when building software.

Design
When designing software, designers may leave some defects in the software logical workflow
because of negligence and inconsiderateness. These faults may cause crashes and become
an exploitation point for attackers and are hard to fix. Because of the high risks, much
attention is given to assure that these vulnerabilities do not exists. Thus the number of vul-
nerabilities by design are relatively small.

Encoding and Test
Because programs are becoming larger and larger, programmers only understand their part
of the code. The program flow of their part may conflict with predefined security policies.
When integrating all the code into one large system, vulnerabilities may then occur.

Operating Environment
Software is usually tested in different environments. However, when software is released, it
will be run in multiple different software and hardware environments, which cannot be all
tested. Software vulnerabilities will then inevitably appear in time.

Software Patches
To fix software vulnerabilities, patches will be released which will effect the whole system.
These patches may thus cause new software vulnerabilities in the system.

7

8 2. Related Work

2.2. Most Common Software Vulnerabilities
The Open Web Application Security Project (OWASP)1 is an open community, dedicated to
enabling organizations to conceive, develop, acquire, operate, and maintain applications that
can be trusted. According to OWASP, attackers can use different paths to attack businesses.
Each of these paths are potential risks, with different outcomes from zero consequences to
putting a business out of business. Figure 2.12 shows such a path.

Figure 2.1: Application Security Risks Path

OWASP has studied vulnerabilities from hundreds of organizations and over 100000 real-
world applications and APIs. From that study, the software vulnerabilities in table 2.7 are
considered the top 10 most common software vulnerabilities as of 2017 for web applications.3

The column exploitable shows how exploitable the vulnerability is. Security weakness
shows how prevalence and detectable the vulnerability is. Last, technical impacts show the
level of impact and thus the consequences an attack on that vulnerability has. The meaning
of each value and color is described in table 2.8.

For each of the risk aspect levels, three is considered high, two medium and one low.
Common Weakness Enumeration (CWE) created a list in 2011 of the top 25 most common

vulnerabilities4. Comparing their top 10 with the OWASP top 10, we see that they include
Classic Buffer Overflow, Unrestricted Upload of File with Dangerous Type, and Reliance on
Untrusted Inputs in a Security Decision.

Atashzar et al. [7] examined common software vulnerabilities and described countermea-
sures for them. They also discuss common hacking tools and tools for security improvement.
The common software vulnerabilities are based on OWASP 2010. The differences can be seen
in table 2.1.
1https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project
2https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
3https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
4https://cwe.mitre.org/top25/

https://www.owasp.org/index.php/About_The_Open_Web_Application_Security_Project
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://cwe.mitre.org/top25/

2.2. Most Common Software Vulnerabilities 9

OWAPS TOP 10 - 2007 OWAPS TOP 10 - 2010
A1 - Cross Site Scripting (XSS) A1 - Injection
A2 - Injection Flaws A2 - Cross Site Scripting (XSS)
A3 - Malicious File Execution A3 - Broken Authentication and Session Management
A4 - Insecure Direct Object Reference A4 - Insecure Direct Object References
A5 - Cross Site Request Forgery (CSRF) A5 - Cross Site Request Forgery (CSRF)
A6 - Information Leakage and Improper Error Handling A6 - Security Misconfiguration (NEW)
A7 - Broken Authentication and Session Management A7 - Insecure Cryptographic Storage
A8 - Insecure Cryptographic Storage A8 - Failure to Restrict URL Access
A9 - Insecure Communications A9 - Insufficient Transport Layer Protection
A10 - Failure to Restrict URL Access A10 - Invalidated Redirects and Forwards (NEW)
OWAPS TOP 10 - 2013 OWAPS TOP 10 - 2017
A1 - Injection A1 - Injection
A2 - Broken Authentication and Session Management A2 - Broken Authentication and Session Management
A3 - Cross-Site Scripting (XSS) A3 - Sensitive Data Exposure
A4 - Insecure Direct Object References A4 - XML External Entity (XXE)
A5 - Security Misconfiguration A5 - Broken Access Control
A6 - Sensitive Data Exposure A6 - Security Misconfiguration
A7 - Missing Function Level Access Control A7 - Cross-Site Scripting (XSS)
A8 - Cross-Site Request Forgery (CSRF) A8 - Insecure Deserialization (NEW)
A9 - Using Components with Known Vulnerabilities A9 - Using Components with Known Vulnerabilities
A10 - Invalidated Redirects and Forwards A10 - Insufficient logging and monitoring (NEW)

Table 2.1: OWASP top 10 2007-20175

Tables 3.2 and 3.3 show the top 10 vulnerabilities found in the class-level and method-
level dataset. These are the vulnerabilities that occur most often in the dataset. Table 2.2
describes all these vulnerabilities according to the documentation of Fortify6.

Vulnerability Type Description

System Information Leak: Internal Disclosing the IP addressing scheme of the internal network can allow
attackers to discover internal systems and expand the attack surface.

J2EE Bad Practices: Threads Thread management in a web application is forbidden in some
circumstances and is always highly error prone.

Log Forging Writing unvalidated user input to log files can allow an attacker to forge
log entries or inject malicious content into the logs.

Password Management: Hardcoded Password Hardcoded passwords can compromise system security in a way that is
not easy to remedy.

Path Manipulation Allowing user input to control paths used in file system operations could
enable an attacker to access or modify otherwise protected system resources.

Rare Condition: Singleton Member Field Servlet member fields might allow one user to see another user’s data.
Unreleased Resource: Streams The program can potentially fail to release a system resource.

Dynamic Code Evaluation: Unsafe Deserialization
Deserializing user-controlled object streams at runtime can allow attackers
to execute arbitrary code on the server, abuse application logic, and/or lead
to denial of service.

Missing XML Validation Failure to enable validation when parsing XML gives an attacker the
opportunity to supply malicious input.

System Information Leak Revealing system data or debugging information helps an adversary learn
about the system and form a plan of attack.

Insecure Randomness Standard pseudorandom number generators cannot withstand cryptographic
attacks.

Header Manipulation
Including unvalidated data in an HTTP response header can enable
cache-poisoning, cross-site scripting, cross-user defacement, page hijacking,
cookie manipulation or open redirect.

SQL Injection
Constructing a dynamic SQL statement with input that comes from an
untrusted source could allow an attacker to modify the statement’s
meaning or to execute arbitrary SQL commands.

Table 2.2: Top vulnerabilities in the dataset6

5https://www.incibe-cert.es/en/blog/owasp-publishes-top-10-2017-web-application-security-risks
6 https://vulncat.fortify.com/en/weakness

https://www.incibe-cert.es/en/blog/owasp-publishes-top-10-2017-web-application-security-risks
https://vulncat.fortify.com/en/weakness

10 2. Related Work

2.3. Vulnerability Detection Methods
There are quite a few methods to detect several different vulnerabilities in software. This can
be done statically (before the code is compiled) or dynamically (after the code is compiled and
up and running). Table 2.3 shows the differences between static and dynamic testing.

Characteristic Dynamic detection Static detection
Determine the position of overflow vulnerabilities No Yes
Proceed in early period No Yes
Need input Yes No
Need source code Partly need Yes
Have relation to programming language No Yes
Precision of detection High General
Amount of misinformation Low High

Table 2.3: Comparison of static and dynamic detection[61]

Amankwah et al.[4] states five different vulnerability detection methods:

2.3.1. Fuzzing
Fuzzing [4] [39] [42] uses a random or invalid input to test an application and outputs the
unexpected behavior, errors, and possible vulnerabilities in the program. For example, if
you have a program where the user can choose between three options, 0, 1, and 2. By
transmitting a different option, like 3, the program may crash in case the default switch case
in not implemented securely. This could lead to buffer overflow, ddos, etc.7 A fuzzer is able
to find such a bug automatically.

Black-box fuzzers generate input data without knowledge of the application details (like
source code, structure, etc.), whereas White-box fuzzers have full knowledge of the applica-
tion details. Random fuzzing is the most simplest way of fuzzing. It streams a random input
to the program under test. Mutation-based fuzzing uses previous data to generate new data,
making it a more efficient fuzzer than random fuzzing. Generation-based fuzzing has higher
coverage than random fuzzing by creating input based on some specifications. For instance,
having valid SQL statements as input instead of just random text. The control flow of the
program is used as a direction for the fuzzing in Direction-based fuzzing.

2.3.2. Web Application Scanners
Web Application Scanners [4] scan applications on the web for security vulnerabilities. With
white box testing, the source code of the application is analysed, while black box testing uses
fuzzing to detect vulnerabilities. By going through the web pages with malicious input, the
web application scanners check which response the application gives and analyses that. By
using web application scanners in the testing phase, it must identify vulnerabilities, report
how to carry out the vulnerabilities, and have a low false positive ratio.

2.3.3. Static Analysis Techniques
Static Analysis Techniques [4] identify weaknesses in the source code before the application
is used in the user’s environment. This is done by first assessing the code. Then applying
a rule set or algorithms, which is also called inference. Last, a list of warnings (potential
vulnerabilities) are generated, which are present in the code.

There are many different categories of static analysis tools. Tools can focus on type check-
ing, style checking, program understanding, program verification, property checking, bug
finding, security review, etc. Most static analysis tools focus on various of these categories.
Static analysis tools that target security mostly, are often a hybrid of property checkers and
bug finders. Fortify is such a static analysis tool, that focus on security mainly. Due to the
7https://owasp.org/www-community/Fuzzing

https://owasp.org/www-community/Fuzzing

2.3. Vulnerability Detection Methods 11

high false positives, static analysis that focus on security requires human review of the static
analyzer warnings for best results [15].

2.3.4. Brick
Brick [4] stands for Binary Run-time Integer Based Vulnerability Checker and checks integer
based vulnerabilities at runtime by converting the binary code to an intermediate represen-
tation VEX on Valgrind [52], intercepting integer related statements at runtime and record-
ing the necessary information and detecting and locating vulnerabilities with a set checking
scheme.

2.3.5. CRED
CRED C Range Error Detector [4] finds buffer overruns attacks. Where Dynamic Buffer
Overrun Detector lacks the power to protect against all buffer overrun attacks, break existing
code, and produce too high overhead, CRED proved to be the only tool to guard against 20
buffer overflow attacks [84].

2.3.6. Manual Testing
Manual Testing is observing the state and output of a program, after manually constructing
an input for the program [83]. Depending on the skills, knowledge and experience of the
analyst, manual testing can have a high accuracy.

Liu et al. [40] state the advantages and disadvantages of several techniques. They also in-
cluded a technique called Vulnerability Discovery Models (VDM), a way to predict vulnerabil-
ities using previous discovery event data. Table 2.4 shows these advantages and disadvan-
tages.

12 2. Related Work

Technique Advantages Disadvantages

Static analysis

No requirements of
executing target programs;
Sound to describe
properties of programs;
easily integrated into the
whole software
development circle; Able to
find most of implement
bugs before the release of
software.

Not precise enough to describe
program properties; High false
positive; Need human to verify
the results and can not be
entirely automatic; Most of such
methods depend on source
code; Unable to detect design
bugs; Unable to detect
vulnerabilities caused by
configurations or environment.

Fuzzing

Simple idea; Easy to be
understood; No false
positive; High automation
degree.

High randomness; High false
negative; Low degree of
generalization and long
construction circle of Fuzzing
tools.

Penetration
Testing

No false positive and
vulnerability discovery
equal to vulnerability
exploit; Based on practical
user environments; Able to
expose vulnerabilities hard
to be detected by other
tools; Take social
engineering factors into
consideration.

Heavily depend on human and
the results depend to a great
extent on testers’ abilities, skills
and experience; May do harm to
the tested system.

VDMs

A new method to make use
of the discovered
vulnerabilities; In theory,
able to predict the rate of
vulnerability discovery and
the total amount of
vulnerabilities in a single
software. Help to assess
threats.

Some assumptions some VDMs
base on need to be validated;
Only apply to a single software;
Lack general valid VDMs.

Table 2.4: Advantages and disadvantages of vulnerability detection techniques [40]

Austin and Williams [8] found that systematic manual penetration testing is more effec-
tive in finding vulnerabilities (and design flaws) than exploratory manual penetration testing.
Static analysis found different types of vulnerabilities and automated penetration testing is
the most efficient way of finding vulnerabilities. However, one cannot rely on static analysis
and automated penetration testing alone, for that would leave many vulnerabilities undis-
covered.

Ghaffarian and Shahriari [27] conducted a survey on machine learning and data mining
techniques and algorithms for predicting software vulnerabilities. Conventional approaches
consists of the following categories: Static, Dynamic and Hybrid Analysis. Software Penetra-
tion Testing, Fuzz-Testing and Static Data-Flow Analysis and more established approaches
in the industry. There are four categories, in which previous work in the field of software vul-
nerability analysis and discovery, can be categorized: Vulnerability Prediction Models based
on Software Metrics, Anomaly Detection Approaches, Vulnerable Code Pattern Recognition,
Miscellaneous Approaches.

2.4. State-of-the-Art Tools for Vulnerability Detection 13

As is clear from the related research, there are many different methods for detecting soft-
ware vulnerabilities. All of these techniques have advantages and disadvantages, thus there
is no holy grail for detecting software vulnerabilities. Using static analysis, like Fortify, is
therefore not a bad idea, despite the high number of false positives. By focusing on lowering
that number using machine learning, as our research does, we might make static analysis
as a tool for detecting software vulnerabilities more useful.

2.4. State-of-the-Art Tools for Vulnerability Detection
At ING pentesters manually check the code for software vulnerabilities. They do however,
use some tools.

For penetration testing, the pentesters at ING use Burp Suite. When developers want to
deploy their software, the pentesters first use Burp Suite to pentest the code. If there are no
high risks, the code is approved and can be deployed.

For code reviewing, both the developers and the pentesters use Checkmarx and Fortify.
Developers first use the tools for code reviewing. The results are then shared with the pen-
testers, who then check the results. If there are any software vulnerabilities they are reported
back to the developers. Together they try to fix any vulnerability.

The various tools used by ING are not the only tools available. Table 2.5 lists the current
state-of-the-art tools for software vulnerability detection.

Source Code Analysis Tools8 9 Vulnerability Scanning/Dynamic Analysis Tools10 11 Fuzzing Tools12
heckmarx Burp Suite American Fuzzy Lop
Fortify Netsparker Peach
SonarQube Acunetix Radamsa
RipsTech Probely
PVS-Studio Indusface WAS
Kiuwan Zed Attack Proxy
Reshift Sqlmap
Veracode Canvas
Parasoft Social Engineering Toolkit
Coverity BeEF
Cast
Codesonar
Microfocus

Table 2.5: State-of-the-art tools

Much research has been done in finding tools to detect software vulnerabilities. Given
the fact that the tools at ING do not perform optimal, for their results have a high amount of
false positives, we will look into some of that research to determine how well state-of-the-art
tools perform in different environments.

Awang and Manaf [9] uses a combination of black-box automatic detection and manual
penetration testing to filter out false positives. IBM Rational AppScan is used as a black box.
After checking the detected vulnerabilities, there were no false positives found.

Medeiros et al. [45] creates an approach that uses data mining to predict false positive vul-
nerabilities after an initial step that uses taint analysis to flag candidate vulnerabilities. The
tool also corrects the code by inserting fixes, currently sanitization and validation functions.

Bau et al. [10] studied 8 black-box web application scanners for vulnerabilities. They
looked at which class of vulnerability they detect, how effective they are against these vul-
nerabilities, and the relevance of target vulnerabilities to vulnerabilities found in the wild.
They found that Cross-Site Scripting, SQL Injection, other forms of Cross-Channel Scripting,
and Information Disclosure are the most prevalent classes of vulnerabilities. As good as they
8https://www.softwaretestinghelp.com/tools/top-40-static-code-analysis-tools/
9https://www.owasp.org/index.php/Source_Code_Analysis_Tools
10https://www.softwaretestinghelp.com/penetration-testing-tools/
11https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
12https://www.owasp.org/index.php/Fuzzing#Fuzzing_tools

https://www.softwaretestinghelp.com/tools/top-40-static-code-analysis-tools/
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.softwaretestinghelp.com/penetration-testing-tools/
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/Fuzzing#Fuzzing_tools

14 2. Related Work

are for finding historical vulnerabilities and textbook cases of Cross-Site Scripting and SQL
Injection, there is room for improvement in other classes of vulnerabilities, such as advanced
and second-order forms of XSS and SQLI, other forms of Cross-Channel Scripting, Cross-Site
Request Forgery, and Malware Presence.

Nunes et al. [55] [53] [54] used four different scenarios to test combining different Au-
tomated Static Analysis Tools (ASAT) to improve the overall detection of SQLi and XSS vul-
nerabilities. Five different ASATs (RIPS, Pixy, phpSAFE, WAP, WeVerca) were tested under
two datasets (Wordpress plugins and PHP synthetic test cases). They found that combining
different ASATs doesn’t necessarily increase the overall detection over one ASAT and that it
depends on the scenario which tools are most useful to combine.

Algaith [2] uses five different SATs (phpSAFE, RIPS, WAP, Pixy, and WeVerca) to see which
combination of SATs gives the best results in detecting SQli and XSS vulnerabilities. Com-
bining phpSAFE with WAP gave the best improvement, with higher detection and lower false
positives for a setup where an alarm is raised when any SAT finds something. With a setup
where the alarm is raised only when all SAT find the vulnerability, both TP and FP increase.
In a setup with the majority finding a vulnerability, TP improves but FP deteriorates.

Curphey and Arawo [18] introduced a framework to decide which tools to use for detecting
vulnerabilities in web application and websites. The security framework covers the following
aspects: Configuration management, Authentication, Authorization, Data protection, User
and session management, Data validation, Error handling and exception management and
Auditing and event logging. The following types of tools are listed: Source-code analyzers,
Web application (black-box) scanners, Database scanners, Binary analysis tools, Runtime
analysis tools, Configuration analysis tools, Proxies, and Miscellaneous tools (mix of white
and black box tools). Before deciding on a tool, the tool needs to be tested on an application
or website for which the tester knows the vulnerabilities.

Shahriar and Zulkernine [72] suggests four ways to mitigate vulnerabilities in software:
Program security testing, Static analysis, Monitoring and Hybrid analysis.

Yan et al. [85] created ExploitMeter, a fuzzing framework to quantify software exploitabil-
ity. ExploitMeter is a Bayesian reasoning engine, which first uses machine learning to predict
exploits in software, using static features. Then it uses various dynamic fuzzers to update
its findings[70].

From the previous work, it is clear that many different tools and methods exist for detect-
ing software vulnerabilities in source code. Depending on the dataset, tools might perform
good or bad. Most research is done on open source data. This research will look into different
supervised learning models to find true vulnerability warnings from the static analysis tool
Fortify. Comparing these machine learning models and using industrial data, will add to the
research of detecting software vulnerabilities.

2.5. Software Vulnerability Prediction using Machine Learning
2.5.1. Software Metrics
Suresh et al. [79] looked into the effectiveness of software metrics for object-oriented sys-
tems. They found that Cyclomatic complexity is best used for assessing the complexity of
the system and estimate the number of test cases needed to achieve maximum code cover-
age. Chidamber and Kemerer metrics are best used for indicating the fault sensitivity of the
system. R. C. Martin’s metrics is used to compare the systems to the ideal models of abstrac-
tion and dependency. In our study Chidamber and Kemerer metrics are thus best suited,
compared to the other two software metric suites. This because software vulnerabilities are
types of software faults that can be exploited.

Moshtari et al. [50] used complexity metrics on both within-project (1 project with different
releases) and cross-project (5 different projects) open source data to predict vulnerabilities.
Using 8 different classifiers, they found that 92% of vulnerable files were detected on the
within-project dataset, whereas 70% were detected on cross-project dataset. The within-
project had a false positive rate of 0.12% and the cross-project dataset had a false positive
rate of 26%, thus showing that complexity metrics are good predictors for vulnerabilities
between different projects and different releases of the same project.

2.5. Software Vulnerability Prediction using Machine Learning 15

Shin and Williams [74] used nine code complexity metrics and binary logistic regression to
predict vulnerable functions. This was done on six versions of Mozilla JSE. Nesting complex-
ity was the best distinguishing factor among the nine complexity metrics in JSE. Prediction
of vulnerabilities from source code using complexity metrics is a feasible approach with fewer
false positives, however, still misses many vulnerabilities.

Catal and Diri [12] found that most research is done on method level. However, class level
shows above acceptable levels and should be used more in research. Mostly public datasets
are used.

Harer et al. [30] uses lexicon based features. They then compare methods applied directly
to the source code with methods applied to artifacts extracted from the build process. This
resulted in source-based models performing better. They also compare more traditional mod-
els, such as random forests, with the application of deep neural network models. Combining
the features learned by tree-based models with deep models turns out to result in the best
performance. Their highest performing model has an area under the ROC curve of 0.87 and
an area under the precision-recall curve of 0.49. This research will use random forest. Deep
learning is out of the scope of this research, however.

In Alves et al. [3], a large dataset to evaluate several state-of-the-art vulnerability pre-
diction techniques (Log reg, Bayesian Network, Decision Tree, Random Forest, Naive-Bayes)
was used. The dataset contains information of 2186 vulnerabilities from five open source
projects. The results show that the dataset can be used to determine the best techniques
and that some of the techniques can predict nearly all vulnerabilities present in the dataset,
although with very low precision. Recall, precision, and accuracy are not the most effec-
tive to characterize the effectiveness of these tools. Although other studies show that these
evaluation metrics are effective.

In Walden et al. [82], a public dataset was provided, containing 223 vulnerabilities from
three web applications. This dataset was used to compare vulnerability prediction models
based on text mining with models using software metrics as predictors, using Random Forest
and cross validation. They found that for all three applications text mining models had a
higher recall than software metrics based models. Although this research focus on software
metrics, text metrics could be added in future research.

Ghaffarian and Shahriari [27] surveyed recent work on vulnerability prediction models
based on software metrics. Table 2.6 summaries their findings. The table shows for each
research the type of metrics they used, the granularity of the code, whether one or multiple
projects were used, and how the vulnerabilities were found for labeling. They consider the
following topics lacking in current work and suggest these to be important for future work:

• Imbalance class data.

• A semi-automated framework for vulnerability detection, gives higher precision and re-
call than gathering information available via public advisories and vulnerability databases.

• Cross-project studies in the field of vulnerability prediction models are few.

• Most studies in the field of vulnerability prediction based on software metrics report
poor results. One possible conclusion is that traditional software metrics are not suit-
able indicators for software vulnerabilities. Henceforth, defining security-specific met-
rics, such as the Security Resources Indicator (SRI) proposed by Doyle and Walden
(2011) [21] is another area for future studies. Due to time constraints, security metrics
were not included in this study. The unique nature of this study (cross-project, closed
source, imbalanced dataset, etc.) makes it interesting to see how well code metrics
based datasets perform. Especially the fact that this study is done at ING. Using an
industry standard dataset based on code metrics is interesting enough to study.

• An uncharted area in this field, is using deep learning methods for vulnerability predic-
tion. Deep learning is however not used in this study, for it is expensive to use. It needs
much power to perform and a larger set of data points. This study will thus use more
related machine learning techniques, however deep learning should be considered for
future research.

16 2. Related Work

Paper Metrics Granularity Within/
Cross Project Vulnerability info

(Zimmerman et al. 2010)[89] Code-chrun, complexity, coverage, dependency, organizational Binary modules Within-project Public advisories
(Meneely and Williams 2010)[46] Developer-activity Source file Within-project Public advisories
(Doyle and Walden 2011)[21] Code complexity, Security Resources Indicator Source file Within-project Tool-based detection
(Shin and Williams 2013)[76] Complexity, code-churn, fault-history Source file Within-project Public advisories
(Shin and Williams 2011)[75] Code complexity, dependency network complexity, execution complexity Source file Within-project Public advisories
(Shin et al 2011)[77] Complexity, code-churn, developer-activity Source file Within-project Public advisories
(Moshtari et al. 2013)[50] Unit complexity, coupling Source file both Self-developed detection
(Meneely et al. 2013)[47] Code-churn, developer-activity Code commits Within-project Public advisories
(Bosu et al. 2014)[11] Developer-activity Code commits Within-project Public advisories
(Perl et al. 2015)[60] Code-churn, developer-activity, GitHub meta-data Code commits Cross-project Public advisories
(Walden et al. 2014)[82] Code complexity Source file both Public advisories
(Morrison et al. 2015)[49] Code-chrun, complexity, coverage, dependency, organizational Binary modules, source file Within-project Public advisories
(Younis et al. 2016)[87] Code complexity, Information Flow, Functions, Invocations Functions Within-project Public advisories

Table 2.6: Summary of Recent Works on Vulnerability Prediction Models Based on Software Metrics [27]

As suggested by Ghaffarian and Shahriari [27], this research will use an industrial im-
balanced dataset to predict true vulnerabilities from Fortify warnings. The dataset consists
of code metrics from various different software projects, thus we will perform a cross-project
study. Next to that, we will look and compare both on class and method level.

2.5.2. Feature Selection
According to both Chandrashekar and Sahin [13] and Khalid et al. [34] it is hard to determine
the best methods or algorithms for feature selection. This because it really depends on the
dataset and the classifier that is going to be used. Khalid et al. [34] found that feature selec-
tion methods that handle elimination of both redundant and irrelevant features at once are
much more robust and beneficial for the learning process. mRMR (Minimal Redundancy and
Maximal Relevance) [59] is a method that eliminates both redundant and irrelevant features.
Yun and Yang [88] compared 9 different feature selection methods and found that mRMR
was the most powerful and had the most stable performance overall.

2.5.3. Class Imbalance
There are three common sampling techniques for the imbalanced class problem[37]:

• Random Over-Sampling (ROS): Duplicate minority class instances randomly.

• Random Under-Sampling (RUS): Remove majority class instances randomly.

• Synthetic Minority Over-Sampling Technique (SMOTE) [14]: Creates new minority
class instances by interpolating between several minority class instances that lie rela-
tively close to each other.

Fernández et al. [23] compared the performance of these three techniques using Big Data
with MapReduce framework. Both RUS and ROS have better classification results than
SMOTE, with ROS performing better than RUS.

Rodriguez et al. [67] used software metrics for their datasets to predict software defects.
Comparing ROS, RUS, and SMOTE, ROS performed the worst out of the three. On aver-
age, RUS and SMOTE performed rather equally. Ensemble methods, like SMOTEBoost and
RUSBoost, perform best. These methods, however, do not provide inside information on the
decision making, which can help identify important metrics. Next to that, ensemble methods
are computationally costly.

García et al. [26] found that on average, oversampling techniques outperform undersam-
pling techniques, when the data is highly imbalance. Using 17 real datasets and 8 different
classifiers, they also found that the classifier has a poor influence on the effect of sampling.

Elrahman and Abraham [22] gives an overview of research on techniques for the imbalance
class problem. From the various research, it is clear that different techniques work best in
different circumstances.

Given the previous research, we see that oversampling techniques perform better than
undersampling techniques and SMOTE performs better than ROS. Thus, we will use SMOTE
in combination with the various classifiers to deal with the imbalance class problem of the
datasets. Next to SMOTE, we will also use Weka’s ClassBalancer13.
13https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/ClassBalancer.html

https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/ClassBalancer.html

2.6. Other Approaches 17

2.5.4. Machine learning techniques
Chug and Dhall [17] found that Random Forest performs best using various code metrics.
It scored the highest accuracy, Recall, F-Measure and ROC, and had the lowest Root Mean
Square error. J48 and Naive Bayes are the second and third, respectively. Next to these
performance evaluators, they also used Precision, Mean absolute error (MAE), and Mean
absolute error (MAE).

Muhammad and Yan [51] state that Neural Networks and Support Vector Machine (SVM)
perform better when dealing with continuous and multidimensional features. These, how-
ever, require a large dataset, whereas a smaller dataset suffices with Logic-based systems.
These systems also tend to perform better when dealing with discrete/categorical features.

Aleem et al. [1] compared various classifiers using code metrics, in order to predict bugs
in code. They found that SVM, Multi-layer Perceptron (MLP), and bagging performed best.
For performance comparison they used accuracy, Precision, Recall and F-Measure.

Prasad et al. [63] looked at different supervised learning techniques and how they are used
in research for predicting software defects using code metrics. Bayesian Network, Ensemble
Method, Random Forests, SVM and Decision Tree were all used in different studies. They
found that each of these techniques can perform best, depending on different datasets.

Thus, the following supervised classifiers will be used: J48, Random Forest, Naive Bayes,
SVM, MLP and Bagging.

2.6. Other Approaches
Next to predicting and detecting software vulnerabilities, there has also been research in other
approaches for decreasing software vulnerabilities. Tevis and Hamilton [80] suggests that a
shift in the programming paradigm from imperative programming to functional programming
might solve any existence of software vulnerabilities. They list some tools for vulnerability
detection and some common types of vulnerabilities.

Yang et al. [86] created an approach called Priv to improve static application security test-
ing (SAST) techniques by decreasing false positives. Priv helps prioritize developers’ quality-
assurance efforts, identifies actionable warnings by locating relevant warnings for database-
and attribute related warnings, and improves the current remediation pages in a commercial
SAST product with customized remediation which includes the customized fix suggestion
for each detected vulnerability warning. Priv focuses mainly on visualising the warnings in
groups and providing automatically-generated fix suggestions. This is different from this
research, which focuses on reducing the false positives and workload of pentesters and de-
velopers by using various supervised machine learning techniques. Priv also only focuses on
database-related and attribute-related vulnerability warnings, whereas this research looks
at multiple vulnerability types.

18
2.R

elated
W
ork

Vulnerability Description Exploitable Security Weakness Prevalence Security Weakness Detectability Technical Impacts
Injection Attacker uses user input to execute code. 3 2 3 3
Broken Authentication Attacker can pretend to be someone else and access their data. 3 2 2 3
Sensitive Data Exposure Attackers can access sensitive data and read the data. 2 3 2 3
XML External Entities (XXE) Attackers can upload or exploit XML. 2 2 3 3
Broken Access Control Attackers can manipulate sessions or urls to gain unauthorised access. 2 2 2 3
Security Misconfiguration Attackers can exploit unpatched flaws, default pages, etc. 3 3 3 2
Cross-Site Scripting (XSS) Attackers can run scripts on website visitors browser. 3 3 3 2
Insecure Deserialization Attackers can use untrusted data to abuse an application. 1 2 2 3
Using Components with Known Vulnerabilities Attackers can exploit known vulnerabilities that are used in components of the application. 2 3 2 2
Insufficient Logging & Monitoring Attackers can attack indefinitely without being detected. 2 3 1 2

Table 2.7: Top 10 most common vulnerabilities

Value Color Exploitable Security Weakness Prevalence Security Weakness Detectability Technical Impacts
1 Yellow Difficult Uncommon Difficult Minor
2 Orange Average Common Average Moderate
3 Red Easy Widespread Easy Severe

Table 2.8: Legend for table 2.714

14https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_Application_Security_Risks

https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_Application_Security_Risks

3
The Datasets

To speed up the overall software deployment process within ING, we first need to create
datasets. These datasets are going to be used by the machine learning models for training
and testing.

Figure 3.1 shows the pipeline for the prediction of true vulnerabilities. It shows that we
first gather the data from Fortify and extract the code metrics from that data. This data
consists of the source code, vulnerability type, line of vulnerability, and the vulnerable label.
After that, we normalise the data and select some features for further classification. Last, we
apply sampling to overcome class imbalance and train the model to classify the data.

This chapter describes and visualises the dataset. How the dataset is built and what it
consists of are both explained. We discuss all the steps from figure 3.1 in this chapter, except
for the classification part.

Figure 3.1: Pipeline of true vulnerabilities prediction

3.1. Data Origin
Various teams develop all different kinds of software within ING. When they deem their soft-
ware ready for deployment, the software needs to be checked for security issues. Within ING,
there are several ways software is checked for vulnerabilities. Next to pentesting, code review
is an important part of this process. Software developing teams upload their Java code to
Fortify SCA1 for code checks. Fortify SCA is a static analyzer for mainly Java code, which
checks the source code for vulnerabilities.

The process is as follows. When the teams upload their projects to Fortify SCA, Fortify
SCA identifies classes with potential software vulnerabilities. For each vulnerability, it shows
1https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview

19

https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview

20 3. The Datasets

the full code of the class and highlights the line with the potential vulnerability. It also states
the type of vulnerability and how severe the vulnerability is according to Fortify SCA. The
teams go through these results. They write comments on whether or not they agree with the
results and why. The pentesters check these comments. If they agree that there is a false
positive, they will label the finding as ”approved”. Thus the warning from Fortify is deemed
false positive. If they find the finding of Fortify SCA to be a true vulnerability, they label it as
”not approved”. Discussions might happen between the developers and pentesters in case of
disagreement.

3.2. Gathering Data
To build the datasets, data from Fortify SCA needed to be extracted. To this aim, we used
web scraping. We built a script in Python2, which uses the Selenium WebDriver3 to scrape
the data from the Fortify SCA server. The data consisted of:

1. Project Name: Name of the project the class belongs to.

2. Class location: The path of the class within the project.

3. Vulnerability Type: The type of the vulnerability.

4. Class name: The name of the class.

5. Vulnerability Location: The line number of the vulnerability.

We built two datasets with these properties, one with the ”approved” vulnerabilities and one
with the ”not approved” vulnerabilities. Next to these properties, we also extracted the source
code of each.

The extraction of the dataset was done together with Ka-Wing Man, who used the same
dataset for his thesis that focused on predicting true vulnerabilities using unsupervised
learning [41]. We extracted the ”not approved” dataset first, so we could already look into
projects that had true vulnerabilities and approach the developers to get access to their full
project. The ”not approved” dataset was larger, so we split up the work of extracting that
dataset. Finally, all the data was combined into one large dataset with true and false vulner-
abilities.

3.3. Building the datasets
Now that the source code and vulnerability information are extracted from Fortify SCA, code
complexity metrics can be extracted from the source code of each class. These metrics will
be used for the research. Using a tool called CK [5], which includes the famous Chidamber
and Kemerer metrics for object-oriented code [16], two datasets were built. One on class level
and one on method level. Next to the code metrics, the vulnerability metrics from Fortify SCA
were included in the datasets. That is the vulnerability type and the vulnerability location.

Because some classes may have multiple vulnerabilities, duplicates need to be removed.
Some classes have both true and false vulnerabilities. In these cases, the class will be labeled
as being truly vulnerable in the dataset. For the method-level dataset, only the method with
the true vulnerability will be labeled as true.

Last, we came up with an additional metric. This metric is related to the vulnerabilities:

1. Nested: The level of nesting of the line of code of the potential vulnerability in the code.

This metric describes what level of nesting the potential vulnerability is in the class or in the
method. A higher level of nesting might indicate more complexity and thus a higher chance
of a potential vulnerability being a true vulnerability. Listing 3.1 shows an example code
with a potential vulnerability on line 6. Counting the left curly brackets up to line 6 gives a
nesting level of 3. If the potential vulnerability would have been on line 5, then the nesting
level would have been 2.
2https://www.python.org/
3https://selenium.dev/

https://www.python.org/
https://selenium.dev/

3.4. Analysing the datasets 21

1 class Example {
2 private int parameter ;
3
4 public void method () {
5 i f (parameter == 0) {
6 System. out . println (” Potential vulnerabi l i ty here ”) ;
7 }
8 }
9 }

Listing 3.1: Nested metric example

3.4. Analysing the datasets
Now that it is clear how the datasets were built, initial analysis can be performed on the
datasets. This section will visualise the datasets and discuss the different metrics of the
datasets.

3.4.1. Datasets visualised
Table 3.1 shows the number of vulnerable and not vulnerable instances in the class dataset
and method dataset, respectively. It is clear from table 3.1 that in the dataset 12% of the
classes are actual vulnerabilities, whereas 98% of the methods do not contain any vulnera-
bility. The precision of Fortify for the class dataset is thus 0.122 and 0.018 for the method
dataset. Recall can not be computed, for the negatives are missing in the Fortify dataset.

Dataset False Vulnerabilities True Vulnerabilities Total Precision
Class 10593 (87.8%) 1474 (12.2%) 12067 0.122
Method 97672 (98.2%) 1741 (1.8%) 99413 0.018

Table 3.1: Amount of vulnerabilities

Table 3.2 shows the top 10 vulnerability types found in the class dataset.

Vulnerability Type False Vulnerabilities True Vulnerabilities Total
System Information Leak: Internal 4563 64 4627
J2EE Bad Practices: Threads 1511 104 1615
Log Forging 582 45 627
Password Management: Hardcoded Password 478 2 480
Path Manipulation 299 36 335
Rare Condition: Singleton Member Field 305 5 310
Unreleased Resource: Streams 217 48 582
Dynamic Code Evaluation: Unsafe Deserialization 110 82 192
Missing XML Validation 130 55 185
System Information Leak 79 106 185

Table 3.2: Top 10 vulnerability types in class dataset

The following table 3.3 shows the top 10 vulnerability types found in the method dataset.

22 3. The Datasets

Vulnerability Type False Vulnerabilities True Vulnerabilities Total
System Information Leak: Internal 34821 73 34894
J2EE Bad Practices: Threads 15202 115 15317
Password Management: Hardcoded Password 6836 1 6837
Log Forging 6668 68 6736
Path Manipulation 3595 46 3641
Rare Condition: Singleton Member Field 2065 3 2068
Insecure Randomness 1503 5 1511
Header Manipulation 1481 3 1484
SQL Injection 1188 251 1439
System Information Leak 1238 144 1382

Table 3.3: Top 10 vulnerability types in method dataset

The top 5 vulnerability types from tables 3.2 and 3.3 will be used to create individual
models for RQ3.

System Information Leak: Internal reveals system data or debug information by send-
ing that to console, screen or local file. This can occur by logging or printing that data or
information. An attacker might get some useful information of the system to exploit. For
instance an SQL error message indicates that the system is vulnerable for SQL injection. In
listing 3.2 the printed exception could leak information about the program, OS, and other
applications.4

1 try {
2 //some code
3 } catch (Exception e) {
4 e . printStackTrace () ;
5 }

Listing 3.2: System Information Leak: Internal example

J2EE Bad Practices: Threads occurs when thread management is detected in the code.
By the J2EE standard, thread management is forbidden in web applications in some circum-
stances. It is highly error prone, for it is difficult and leads to bugs that are hard to diagnose
and detect. For instance race conditions, deadlock, and other synchronization errors5. In
listing 3.3 the doGet() method creates and invokes a new thread. Because it is a Java servlet,
whenever doGet() is called, a thread is already created6.

4https://vulncat.fortify.com/en/detail?id=desc.dataflow.abap.system_information_leak_
internal#Java%2fJSP

5https://vulncat.fortify.com/en/detail?id=desc.semantic.java.j2ee_badpractices_threads#Java%
2fJSP

6https://cwe.mitre.org/data/definitions/383.html

https://vulncat.fortify.com/en/detail?id=desc.dataflow.abap.system_information_leak_internal#Java%2fJSP
https://vulncat.fortify.com/en/detail?id=desc.dataflow.abap.system_information_leak_internal#Java%2fJSP
https://vulncat.fortify.com/en/detail?id=desc.semantic.java.j2ee_badpractices_threads#Java%2fJSP
https://vulncat.fortify.com/en/detail?id=desc.semantic.java.j2ee_badpractices_threads#Java%2fJSP
https://cwe.mitre.org/data/definitions/383.html

3.4. Analysing the datasets 23

1 public void doGet (HttpServletRequest request , HttpServletResponse response)
2 throws ServletException , IOException {
3
4 // Perform serv le t tasks .
5 . . .
6
7 // Create a new thread to handle background processing .
8 Runnable r = new Runnable () {
9 public void run () {
10
11 // Process and store request s ta t i s t i c s .
12 . . .
13 }
14 } ;
15
16 new Thread (r) . start () ;
17 }

Listing 3.3: J2EE Bad Practices: Threads example

Password Management: Hardcoded Password occurs when passwords are visible in the
code. People who have access to the code will be able to see the password. It is also hard
to repair, for the code must be patched after production. Listing 3.4 shows a line of code
that shows the username and password for connecting to a database. When an attacker has
access to the bytecode of the program, that can get access to the disassembled code. As can
be seen from listing 3.5, both the username and password are visible from the disassembled
code.7

1 DriverManager . getConnection (url , ” scott ” , ” t i ger ”) ;

Listing 3.4: Password Management: Hardcoded Password example

1 javap −c ConnMngr. class
2
3 22: ldc #36; //Str ing jdbc :mysql:// ixne .com/rxsql
4 24: ldc #38; //Str ing scot t
5 26: ldc #17; //Str ing t i ge r

Listing 3.5: Disassembled code with password

Log Forging occurs when an application gets data from an untrusted source and writes
that data to a system or application log file. An attacker could then temper with the log file or
corrupt it so it is no longer available. This way the attacker can cover its traces or put traces
of someone else being the adversary. Depending on the log processing utility, an attacker
might also be able to inject code or commands into the log file. Listing 3.6 logs an error when
the code fails to parse an integer. Line 1 in listing 3.7 shows that error, when an attacker
submits ”twenty-one”. If an attacker would submit
”twenty-one%0a%0aINFO:+User+logged+out%3dbadguy”, it will show line 3 of listing 3.7.
The log file would then say that user ”badguy” has logged out, while this is not the case.8

7https://vulncat.fortify.com/en/detail?id=desc.semantic.abap.password_management_hardcoded_
password#Java%2fJSP

8https://vulncat.fortify.com/en/detail?id=desc.dataflow.abap.log_forging#Java%2fJSP

https://vulncat.fortify.com/en/detail?id=desc.semantic.abap.password_management_hardcoded_password#Java%2fJSP
https://vulncat.fortify.com/en/detail?id=desc.semantic.abap.password_management_hardcoded_password#Java%2fJSP
https://vulncat.fortify.com/en/detail?id=desc.dataflow.abap.log_forging#Java%2fJSP

24 3. The Datasets

1 String val = request . getParameter (” val ”) ;
2 try {
3 int value = Integer . parseInt (val) ;
4 }
5 catch (NumberFormatException nfe) {
6 log . info (” Failed to parse val = ” + val) ;
7 }

Listing 3.6: Log Forging code example

1 INFO: Failed to parse val=twenty−one
2
3 INFO: User logged out=badguy

Listing 3.7: Log Forging log example

Path Manipulation occurs when an attacker can specify a path used in an operation on
the file system and by specifying the resource so that the attacker gains a non permitted
capability. In listing 3.8 a file name is created from a HTTP request. By using a file name
such as ”../../tomcat/conf/server.xml”, an attacker could overwrite or delete a configuration
file.9

1 String rName = request . getParameter (”reportName”) ;
2 Fi le rF i l e = new Fi le (”/usr/local/apfr/reports/” + rName) ;
3 . . .
4 rF i l e . delete () ;

Listing 3.8: Path Manipulation example

3.4.2. Metrics
Next to the metrics and labels discussed in the previous two sections (vulnerability type,
vulnerability location, and nested), we need to get metrics related to the source code for the
dataset. As stated before, the CK [5] tool was used to gather these code metrics. This tool
can extract both class level and method level related metrics and has important complexity-
related metrics like Chidamber and Kemerer metrics. To better understand some of the more
complex metrics, they will be explained after listing all the used metrics. The list of class-level
metrics with their definitions are reported in Table 3.4.
9https://vulncat.fortify.com/en/detail?id=desc.dataflow.abap.path_manipulation#Java%2fJSP

https://vulncat.fortify.com/en/detail?id=desc.dataflow.abap.path_manipulation#Java%2fJSP

3.4. Analysing the datasets 25

Metric Description
Type The type of the instance.

CBO (Coupling Between Objects) Counts the number of dependencies a class has,
ignoring dependencies to Java itself.

WMC (Weight Method Class) Counts the number of branch instructions in a class.
DIT (Depth Inheritance Tree) Counts the number of ”fathers” a class has.
RFC (Response For Class) Counts the number of unique method invocations in the class.
LCOM (Lack of Cohesion of Methods) Number of method pairs who are not similar.
totalMethods Total amount of methods in the class.
staticMethods Total amount of static methods in the class.
publicMethods Total amount of public methods in the class.
privateMethods Total amount of private methods in the class.
protectedMethods Total amount of protected methods in the class.
defaultMethods Total amount of default methods in the class.
abstractMethods Total amount of abstract methods in the class.
finalMethods Total amount of final methods in the class.
synchronizedMethods Total amount of synchronized methods in the class.
totalFields Total amount of fields in the class.
staticFields Total amount of static fields in the class.
publicFields Total amount of public fields in the class.
privateFields Total amount of private fields in the class.
protectedFields Total amount of protected fields in the class.
defaultFields Total amount of default fields in the class.
finalFields Total amount of final fields in the class.
synchronizedFields Total amount of synchronized fields in the class.
NOSI (Number of Static Invocations) Counts the number of invocations to static methods.
LOC (Lines Of Code) Counts the lines of actual code in the class.
returnQty Counts the number of return instructions.
loopQty Counts the number of loops.
comparisonsQty Counts the number of comparisons.
tryCatchQty Counts the number of try/catches.
parenthesizedExpsQty Counts the number of expressions inside parenthesis.
stringLiteralsQty Counts the number of string literals.
numbersQty Counts the amount of numbers literals.
assignmentsQty Counts the amount of assignment statements.
mathOperationsQty Counts the number of math operations.
variablesQty Counts the number of declared variables.
maxNestedBlocks Highest number of blocks nested together.
anonymousClassesQty Counts the number of anonymous classes.
subClassesQty Counts the number of subclasses.
lambdasQty Counts the number of lambda expressions.
uniqueWordsQty Counts the number of unique words in the source code.
modifiers Counts the number of modifiers in the class.

Table 3.4: Metrics for class dataset

For the method-level dataset, Table 3.5 list all method-level metrics with their definitions.

26 3. The Datasets

Metric Description
method The name of the method.
constructor Boolean if the method is a constructor.
line Line number of the method.

CBO (Coupling Between Objects) Counts the number of dependencies a method has, ignoring
dependencies to Java itself.

WMC (Weight Method Class) Counts the number of branch instructions in a method.
RFC (Response For Class) Counts the number of unique method invocations in the method.
LOC (Lines Of Code) Counts the lines of actual code in the method.
returns Counts the number of return instructions.
variables Counts the number of declared variables.
parameters Counts the number of parameters.

startLine The line number where the method starts, which is the same as
the line metric.

loopQty Counts the number of loops.
comparisonsQty Counts the number of comparisons.
tryCatchQty Counts the number of try/catches.
parenthesizedExpsQty Counts the number of expressions inside parenthesis.
stringLiteralsQty Counts the number of string literals.
numbersQty Counts the amount of numbers literals.
assignmentsQty Counts the amount of assignment statements.
mathOperationsQty Counts the number of math operations.
maxNestedBlocks Highest number of blocks nested together.
anonymousClassesQty Counts the number of anonymous classes.
subClassesQty Counts the number of subclasses.
lambdasQty Counts the number of lambda expressions.
uniqueWordsQty Counts the number of unique words in the source code.
modifiers Counts the number of modifiers in the class.

Table 3.5: Metrics for method dataset

CBO is the dependency between classes. From figure 3.2 it is clear that even tough class
D does not depend on any other class, the CBO is still 1, for class C depends on class D.

Figure 3.2: Example of CBO10

WMC is the sum of methods in a class or the sum of complexities of those methods [68].
Figure 3.3 shows three classes. Because the Clothing class has only one method, the WMC
10https://stackoverflow.com/questions/27515541/cbo-coupling-between-object

https://stackoverflow.com/questions/27515541/cbo-coupling-between-object

3.4. Analysing the datasets 27

is 1. Appliances has three methods and thus the WMC is 3.

Figure 3.3: Example of WMC [68]

DIT is the maximum number of steps from the class node to the root of the tree and is
measured by the number of ancestor classes within the inheritance hierarchy [68]. Looking
at figure 3.3, Store Departments is the root and thus has a DIT of 0, whereas both Clothing
and Appliances have DIT of 1. Those two classes inherent attributes and methods from Store
Department.

RFC is the count of the set of all methods that can be invoked by some method in the class
or in response to a message to an object of the class [68]. So from figure 3.3 the class Store
Departments has 3 methods of its own, 1 method from the Clothing class and 4 methods
from the Appliances class it can message. Thus the RFC of the Store Department class is 8.

LCOM is the dissimilarity of methods in a class by instance variable or attributes [68].
Figure 3.4 shows that two objects, Auto Parts and Cosmetics, depend on the class Store
Department. Both objects however do not need all the methods of Store Department and
thus have few methods in common. In this case LCOM is therefore high.

Figure 3.4: Example of LCOM [68]

Table A.1 summarizes all the metrics used for the class-level dataset, whereas table A.2
summarizes the metrics for the method-level dataset.

28 3. The Datasets

3.5. Preprocessing the datasets
Before the data can be used by the classifiers, the data needs to be preprocessed. The pre-
processing of the data consists of three steps: Normalization, Feature Selection and Class
Imbalance. This can also be seen in figure 3.1.

3.5.1. Normalization
First the data needs to be normalized. This because various metrics have different ranges,
which can effect the way certain metrics are prioritized by certain classifiers, feature selec-
tion, and sampling algorithms. Normalization is not necessary for all the classification algo-
rithms, for instance, Random Forest does not need normalization of the data, because it is
tree based. Tree based algorithms require partitioning, whereas distance-based algorithms,
which require Euclidean Distance, do need scaling/normalization. SVM, for instance, does
need data normalization.11

There are two ways of normalization:

• Standardization: Rescaling the metrics to have a mean around 0 and a standard de-
viation of 1. The formula is given by equation 3.1, with 𝑣 as the numeric value of the
feature, 𝑣 as the standardised value, 𝜇 as the mean of the feature values, and 𝜎 as the
standard deviation of the feature values.

𝑣 = 𝑣 − 𝜇
𝜎 (3.1)

• Normalization: Changing the metrics values to be in a specific range, for instance,
scaling the metrics to be in a range between 0 and 1. This way the difference in range
is kept, but the values between metrics will not differ too much. For example, metrics
age and income. The age metric will have lower values than income. Classifiers might
then become bias towards income in this case, when no normalization is applied.

Depending on the classifier, it can be more beneficial to use standardization instead of
normalization.12 Because the distribution of the metrics is unknown and no classifier is used
which assumes a Gaussian distribution, normalization is used.

We use Weka’s normalization function13 (Min-Max normalization), to scale all the nu-
meric values to be in the range between 0 and 1. The Min-Max normalization also scales
each feature independently of all other features. This is done by checking the minimum
and maximum value for each attribute. Then the function takes the difference between the
numeric value and the minimum value and divides that with the difference between the max-
imum value and the minimum value. Thus, we have the following equations, with 𝑣 as the
numeric value of the feature, 𝑣 as the normalised value, and 𝑚𝑖𝑛 and 𝑚𝑎𝑥 as the minimum
and maximum of the feature respectively:

𝑣 = 𝑣 −𝑚𝑖𝑛
𝑚𝑎𝑥 −𝑚𝑖𝑛 (3.2)

3.5.2. Feature Selection
With the two datasets now normalized, we need to remove somemetrics that are not useful for
this research. The project name, class location, class name, and method name are irrelevant
for this research and they may also introduce biases towards classes and methods with
certain names. Therefore, we removed them from the dataset.

Next, we need to select the right features. Using Pearson correlation14, two heatmaps
are created. Figure 3.5 shows a heatmap of the features in the class-level dataset, whereas
figure 3.6 shows a heatmap for the features in the method-level dataset. Green blocks in-
dicate a strong correlation and red blocks show no correlation. For instance, loc is corre-
lated with many of the quantity related features, 9 out of 14. This because more lines of
11https://towardsdatascience.com/understand-data-normalization-in-machine-learning-8ff3062101f0
12https://medium.com/@swethalakshmanan14/how-when-and-why-should-you-normalize-standardize-rescale-your-data-3f083def38ff
13https://weka.sourceforge.io/doc.dev/weka/filters/unsupervised/attribute/Normalize.html
14https://www.statstutor.ac.uk/resources/uploaded/pearsons.pdf

https://towardsdatascience.com/understand-data-normalization-in-machine-learning-8ff3062101f0
https://medium.com/@swethalakshmanan14/how-when-and-why-should-you-normalize-standardize-rescale-your-data-3f083def38ff
https://weka.sourceforge.io/doc.dev/weka/filters/unsupervised/attribute/Normalize.html
https://www.statstutor.ac.uk/resources/uploaded/pearsons.pdf

3.5. Preprocessing the datasets 29

code means more variables, more strings, etc. Or totalmethods being strongly correlated
with publicmethods, which indicates that there are more public methods than other types of
methods. Looking at the vulnerable label, we see that no other feature is correlated with it.
Thus, it is not trivial to predict static analyzer warnings with this dataset.

Figure 3.5: Heatmap of correlation between class-level features

Figure 3.6: Heatmap of correlation between method-level features

30 3. The Datasets

It is clear from both figures that quite many of the features are correlated and feature
selection can reduce the dimension of features. From the related work, it is clear that mRMR
was the most powerful method for feature selection and had the most stable performance
overall. Using this method15, the following features are ranked highest for the class dataset
(score above 0.04):

Ranking Feature Score
1 loc 0.128
2 wmc 0.117
3 assignmentsQty 0.109
4 totalFields 0.098
5 rfc 0.095
6 totalMethods 0.086
7 variablesQty 0.079
8 uniqueWordsQty 0.067
9 privateMethods 0.056
10 stringLiteralsQty 0.050
11 returnQty 0.046
12 privateFields 0.044

Table 3.6: Ranked features for class-level dataset

A threshold of 0.04 was chosen to get a decent number of features. With a threshold of
0.05, we would have only had 5 features for the method-level dataset. A threshold of lower
than 0.04 would give to many features for the class-level dataset. For the method dataset,
mRMR ranked the following features highest (score above 0.04):

Ranking Feature Score
1 loc 0.110
2 maxNestedBlocks 0.087
3 variables 0.077
4 rfc 0.058
5 wmc 0.050
6 startLine 0.045
7 assignmentsQty 0.040

Table 3.7: Ranked features for method-level dataset

3.5.3. Class Imbalance
As is clear from table 3.1 in section 3.4.1, the datasets are imbalanced. One of the classes
(not vulnerable) is over represented in the datasets. To overcome this problem, sampling
must be applied to the datasets.

Given previous research, we saw that oversampling techniques perform better than un-
dersampling techniques and SMOTE performs better than ROS. Thus, we will use SMOTE
in combination with the various classifiers to deal with the imbalance class problem of the
datasets. Next to SMOTE, we will also use Weka’s ClassBalancer16. The ClassBalancer al-
gorithm reweights the instances, so that both classes have the same total weight. Thus,
we will compare SMOTE and ClassBalancer to see which sampling technique gives a better
performance with the different classifiers.

15http://home.penglab.com/proj/mRMR/
16https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/ClassBalancer.html

http://home.penglab.com/proj/mRMR/
https://weka.sourceforge.io/doc.dev/weka/filters/supervised/instance/ClassBalancer.html

4
Research Design

Now that the datasets are created and ready, the actual research can be executed. The re-
search consists of multiple experiments, according to the three research questions:

RQ1: How accurate are supervised machine learning methods in detecting true vulnerabil-
ities from static analyzer warnings using a dataset from ING?

RQ2: How do classification methods perform at different levels of granularity on a dataset
from ING?

RQ3: How accurate is a model built on a dataset with various types of vulnerabilities com-
pared to models built on datasets per vulnerability type?

This chapter will explain the setup of these experiments. For each research question, the
methodology is explained to understand the approach for answering these questions.

4.1. RQ1
RQ1 is about comparing different supervised classifiers.

To answer RQ1, the following supervised classifiers will be used. Each of these classifiers
represents one of the various categories of classifiers and are applicable for binary classifica-
tion, as is our case. The default settings in Weka are used for these algorithms. The results
were hardly effected by changing these settings. A summary of the algorithms can be found
in table 4.1.

4.1.1. J48
J48 is a Java implementation of the C4.5 decision tree algorithm. It is therefore part of the
decision tree or trees type machine learning algorithms1 [24] [65]. Figure 4.1 shows a simple
example of a decision tree.
1https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

31

https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

32 4. Research Design

Figure 4.1: A simple example of a decision tree for classifying code

J48 creates decision trees by first checking for three base cases. If all the samples belong
to the same class, it creates a leaf node which corresponds to that same class. If none of
the features provide any information gain or the algorithm encounters a previously unseen
class, then a decision node is created higher in the tree using the expected value of the
class. After checking these base cases, the algorithm finds the normalised information gain
for each attribute in the dataset. This information gain is the difference in entropy. A larger
information gain means smaller entropy. The best attribute is then chosen by taking the
attribute with the highest normalised information gain. A decision node is created, which
splits at the best attribute. The algorithm then recurses on the sublists obtained by splitting
and those nodes are added as children of the created decision node. Once the tree is created,
J48 goes through the tree to remove branches that do not help and replace them by leaf
nodes. This is the pruning the tree procedure and helps avoid overfitting.23

In Weka, the confidence factor used for pruning is set to 0.25 and the minimum number
of instances per leaf is set to 2.

4.1.2. Random Forest
Random Forest is both part of the ensemble machine learning algorithms and decision trees
algorithms1 [25].

The way Random Forest works is by first creating multiple decision trees. To find the best
split in the trees, each decision tree only considers a random number of features to select
from instead of all the features. This way, diversity is created between the trees, so that they
are less correlated4. The decisions of the trees are then aggregated and the majority vote is
chosen as the prediction. Figure 4.2 shows a diagram of Random Forest.
2https://towardsdatascience.com/what-is-the-c4-5-algorithm-and-how-does-it-work-2b971a9e7db0
3https://en.wikipedia.org/wiki/C4.5_algorithm
4https://towardsdatascience.com/understanding-random-forest-58381e0602d2

https://towardsdatascience.com/what-is-the-c4-5-algorithm-and-how-does-it-work-2b971a9e7db0
https://en.wikipedia.org/wiki/C4.5_algorithm
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

4.1. RQ1 33

Figure 4.2: Random Forest5

The parameters used in Weka are set to 100 for the bagSizePercent and batchSize. The
number of execution slots, the minimum number of instances, and the seed are set to 1. The
minimum variance for splitting is set to 0.001 and the number of randomly chosen attributes
is set to 0. These are the default parameters in Weka.

4.1.3. Naive Bayes
Naive Bayes is a Bayesian machine learning algorithm1 [25]. It is based on Bayes theorem:

Pr(𝐴|𝐵) = Pr(𝐵|𝐴)Pr(𝐴)
Pr(𝐵) (4.1)

In the equation above, 𝐴 represents the class to be predicted and 𝐵 = (𝑏 ,… , 𝑏) represents
the set of features. Thus, given the chain rule, we get the new equation:

Pr(𝐴|𝑏 , … , 𝑏) = Pr(𝑏 |𝐴)…Pr(𝑏 |𝐴)Pr(𝐴)
Pr(𝑏)…Pr(𝑏) (4.2)

Using the dataset, the above equation can be calculated to predict the class.6
The default parameters used in Weka are 100 for the batchSize and 2 for the numDeci-

malPlaces.

4.1.4. Support-vector machine (SVM)
SVM is a regression machine learning algortihm1 [25]. It is a non-probabilistic binary linear
classifier7.

By creating a hyperplane, SVM divides the dataset in two different classes. The data point
closes to the hyperplane on each side, is called the support vector. To get the best possible
hyperplane, and thus division between the classes, the distance between the support vectors
and the hyperplane, called margins, needs to be as large as possible. This way, there is a
higher chance of new datapoints being classified correctly8. Figure 4.3 shows an example of
5https://en.wikipedia.org/wiki/Random_forest
6https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
7https://en.wikipedia.org/wiki/Support-vector_machine
8https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Support-vector_machine
https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496

34 4. Research Design

the hyperplane in ℝ and the support vectors. The hyperplane in this case is a line. When
dealing with more than 2 features, like in this study, the hyperplane is an actual plane. This
can be seen in figure 4.4.

Figure 4.3: Example of SVM in ℝ 9

Figure 4.4: Hyperplanes in 2D and 3D feature space10

The default following parameters were used in Weka for SVM. batchSize = 100, cache-
size = 40, coef0 = 0, cost = 1, degree = 3, eps = 0.001, gamma = 0, loss = 0.1, nu = 0.5,
numDecimalPlaces = 2 and seed = 1.

4.1.5. Multilayer perceptron (MLP)
MLP is an artificial neural network algorithm1 [64].

There are three layers in MLP, input, hidden, and output, with the possibility of multiple
hidden layers between the input and output layer, as can be seen in figure 4.5. The input
layer passes the data from the dataset to the hidden layer. The hidden and output layers
consist of neurons that uses an activation function. Each neuron has weights for the inputs
and a weight to deal with the bias of the inputs. The activation function sums the weights
of the neuron and checks it against threshold to decide what the output will be. In Weka,
9https://www.mitosistech.com/support-vector-machine/
10https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

https://www.mitosistech.com/support-vector-machine/
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

4.1. RQ1 35

ApproximateSigmoid is used for the activation function, which approximates the logistic sig-
moid activation function11:

𝑓(𝑥) = 1
1 + 𝑒() (4.3)

Before training the MLP, the data must be prepared. MLP requires data to be numerical and
scaled. During training, each row of the dataset is exposed to the network at a time as the
input. After processing the input, an output is generated. This output is then compared to the
expected class of the input and an error is calculated. This error is then passed back through
the network, layer by layer, to update the weights. This process is called backpropagation
and is the learning part of MLP, where depending on the influence a weight has on a error,
it is updated accordingly.12

Figure 4.5: MLP layers13

Using Weka, the following parameters were used for MLP. batchSize = 100, learningRate =
0.3, momentum = 0.2, numDecimalPlaces = 2, seed = 0, trainingTime = 500, validationSetSize
= 0 and validationTreshold = 20.

4.1.6. Bagging
Bagging is an ensemble machine learning algorithm, which uses sampling with replacement
on the training set and will be applied to J48114 [25].

Using the J48 algorithm with Bagging, the algorithm works similar to random forest. The
main difference is Bagging selects from all the features to find the best split. Random Forest
on the other hand, uses a random number of features to select from.

Figure 4.6 shows the three main steps of bagging. First the dataset is split in various
smaller datasets. These datasets are built with replacements, so instances can appear more
than once in the datasets. Then for each dataset a classifier is built and the results of each
classifier is combined.15

11https://weka.sourceforge.io/doc.packages/multiLayerPerceptrons/weka/classifiers/functions/
activation/ApproximateSigmoid.html

12https://machinelearningmastery.com/neural-networks-crash-course/
13https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
14https://en.wikipedia.org/wiki/Bootstrap_aggregating
15https://medium.com/data-science-group-iitr/bagging-unraveled-8141ca078ccc

https://weka.sourceforge.io/doc.packages/multiLayerPerceptrons/weka/classifiers/functions/activation/ApproximateSigmoid.html
https://weka.sourceforge.io/doc.packages/multiLayerPerceptrons/weka/classifiers/functions/activation/ApproximateSigmoid.html
https://machinelearningmastery.com/neural-networks-crash-course/
https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://medium.com/data-science-group-iitr/bagging-unraveled-8141ca078ccc

36 4. Research Design

Figure 4.6: Bagging16

In Weka, the bagSizePercent and batchSize are set to 100. The number of execution slots
and seed are set to 1, with the number of iterations being set to 10. As mentioned before,
the J48 algorithm is used with Bagging in Weka.

16https://medium.com/data-science-group-iitr/bagging-unraveled-8141ca078ccc

https://medium.com/data-science-group-iitr/bagging-unraveled-8141ca078ccc

4.1. RQ1 37

Algorithm Type Parameters

J48/C4.5 Decision Tree confidence factor=0.25
min number instances=2

Random Forest Ensemble/Tree

bagSizePercent=100
batchSize=100
execution slots=1
min number instances =1
seed=1
min variance splitting=0.001
randomly chosen attributes=0

Naive Bayes Bayesian batchSize=100
numDecimalPlace=2

SVM Regression

batchSize = 100
cachesize = 40
coef0 = 0
cost = 1
degree = 3
eps = 0.001
gamma = 0
loss = 0.1
nu = 0.5
numDecimalPlaces = 2
seed = 1

MLP Artificial Neural Network

batchSize = 100
learningRate = 0.3
momentum = 0.2
numDecimalPlaces = 2
seed = 0
trainingTime = 500
validationSetSize = 0
validationTreshold = 20

Bagging(J48) Ensemble

bagSizePercent=100
batchSize=100
execution slots=1
seed=1
iterations=10

Table 4.1: The chosen machine learning algorithms

Each of these classifiers will be tested by using cross-validation with 10 folds. By using
k-fold cross validation, the classifiers can be evaluated on each data point with low bias.
Each data point will be used for both training and testing, depending on the iteration [58].
Within each iteration, SMOTE/ClassBalancer will be applied to the training set. SMOTE will
balance the data with a ratio of 54% FALSE and 46% TRUE. Figure 4.7 shows this process.
Weka (version 3.8.3) [24] will be used to build the models. Because of the non-deterministic
character of k-fold cross validation, we tried it multiple times with some classifiers. However,
this did not give a large enough difference in performance, so we did not apply it to this
research.

38 4. Research Design

Figure 4.7: Classification schema with k-fold cross-validation and SMOTE[35]

Regarding evaluating the results of the classifiers, some metrics will not hold up because
of the imbalance class problem. Accuracy, for instance, is not a good measurement when
the data is imbalanced [78] [28]. A high accuracy could occur, because the model decided
in favour of the class with the higher occurrence. This could mean that the model just
deems everything FALSE, which will give it a high accuracy, but will not help predict real
vulnerabilities.

Given the related work above and the benchmarking metrics described in Verma [81]
and Haixiang et al. [29], the following benchmarking metrics will be used for performance
comparison, with TP = True Positive, FP = False Positive and FN = False Negative:

• Precision =

• Recall = =

• F-Measure = 2 ∗ ∗ = ∗
∗

• ROC AUC = Integral of ROC, gives the trade-off between True Positive Rate and False
Postive Rate.

Precision gives information about the amount of false positives and is an appropriate
evaluation metric when minimizing the false positives is the top priority. Having the issue of
a high false positive rate right now with Fortify, it is important to try get a low false positive
rate.

The false negative rate is also crucial, because these are the actual vulnerabilities that
are deemed not vulnerable. It is thus essential to keep this rate at close to zero, for else true
vulnerabilities will be missed and these could be exploited in the future. In this case, recall
is the appropriate evaluation metric.

Because both precision and recall are important in this case, we will use f-measure to
compare the performance of the various classifiers, for f-measure combines both precision
and recall by calculating the harmonic mean of the precision and recall.

The ROC AUC gives the trade-off between true positive rate and false positive rate. It tells
the probability that a randomly chosen positive instance is ranked higher than a randomly
chosen negative instance by using different thresholds. This metric can thus tell how good
the model is at ranking predictions17.

4.2. RQ2
Two different datasets were made, one based on class level and one on method level. To
see how the two different models compare in performance, both datasets are used with the
various classifiers stated above. With SMOTE, the distribution will be 58% FALSE and 42%
TRUE. The benchmark metrics from above will also be used to compare the performance
between the two datasets.
17https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc#3

https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc#3

4.3. RQ3 39

4.3. RQ3
The top 5 most common software vulnerability types for each of the two datasets will be
used to make 10 different datasets. 5 on class level and 5 on method level. The classifiers
discussed in section 4.1 are then used on these 10 datasets, with 10-fold cross-validation.
The results are then compared to the two datasets, class level and method level, containing
all software vulnerabilities, to see whether it is better to create datasets by vulnerability type
or datasets with various vulnerability types.

For the class-level dataset, the top 5 vulnerabilities are:

1. System Information Leak: Internal

2. J2EE Bad Practices: Threads

3. Log Forging

4. Password Management: Hardcoded Password

5. Path Manipulation

The datasets are first normalized using the method discussed in section 3.5.1. For each
of the datasets, feature selection must then be performed using mRMR. Because the datasets
have different values and number of instances, the scores may vary in value. The criterion
for selecting the right number of features in this case is therefore selecting the top 10 highest
ranked features. This gives the following top 10’s features for each of the datasets.

System Information
Leak: Internal

J2EE Bad
Practices: Threads Log Forging Password Management:

Hardcoded Password Path Manipulation

assignmentsQty loc loc abstractMethods wmc
totalMethods uniqueWordsQty totalMethods modifiers assignmentsQty
rfc totalMethods assignmentsQty lcom loc
wmc wmc wmc wmc totalMethods
totalFields totalFields uniqueWordsQty staticMethods variablesQty
loc privateFields rfc totalMethods finalFields
variablesQty returnQty totalFields privateMethods mathOperationsQty
privateFields privateMethods returnQty stringLiteralsQty uniqueWordsQty
returnQty assignmentsQty variablesQty returnQty rfc
privateMethods defaultMethods comparisonsQty rfc staticFields

Table 4.2: Top 10 features for the top 5 vulnerabilities in the class-level dataset

For the method-level dataset, the top 5 vulnerabilities are:

1. System Information Leak: Internal

2. J2EE Bad Practices: Threads

3. Password Management: Hardcoded Password

4. Log Forging

5. Path Manipulation

Using feature selection, the following top 10s features are ranked highest by mRMR.

40 4. Research Design

System Information
Leak: Internal

J2EE Bad
Practices: Threads

Password Management:
Hardcoded Password Log Forging Path Manipulation

loc wmc variables wmc assignmentsQty
maxNestedBlocks loc maxNestedBlocks loc maxNestedBlocks
variables maxNestedBlocks loc maxNestedBlocks loc
rfc startLine assignmentsQty assignmentsQty wmc
startLine rfc startLine rfc startLine
wmc variables cbo startLine rfc
assignmentsQty mathOperationsQty wmc variables variables
stringLiteralsQty uniqueWordsQty rfc uniqueWordsQty mathOperationsQty
cbo assignmentsQty comparisonsQty modifiers tryCatchQty
nested returns stringLiteralsQty mathOperationsQty comparisonsQty

Table 4.3: Top 10 features for the top 5 vulnerabilities in the method-level dataset

Table 4.4 shows the SMOTE ratio for these datasets.

Dataset(Vulnerability) Class
FALSE(%)

Class
TRUE(%)

Method
FALSE(%)

Method
TRUE(%)

System Information Leak: Internal 54 46 58 42
J2EE Bad Practices: Threads 57 43 57 43
Log Forging 54 46 - -
Password Management: Hardcoded Password 58 42 58 42
Path Manipulation 54 46 56 44

Table 4.4: SMOTE ratios for the datasets

With the datasets ready and the top features known, we can build the classifiers.

4.3.1. Statistical Comparison
To compare the performance of the different classifiers and different datasets, statistical tests
are computed on the f-measure. The Friedman test is used with the Nemenyi test as post-
hoc analysis [20]. This hypothesis test is preferred over other non-parametric (data is not
normally distributed) tests, when the same parameter has been measured under different
conditions on the same subject18. In our case, the dependent parameter would be the f-
measure and the dependent conditions are the different classifiers. The subjects are the
independent classifiers.

The Friedman test is a non-parametric statistical test. It determines if there is a sta-
tistically significant difference between the performance of the classifiers/datasets. If 𝑝-
value≤ 0.05, then the difference is statistically significant. In this case, a post-hoc analysis
can be performed to find the groups of data that differ. The Nemenyi test makes pair-wise
tests of the performance. If 𝑝-value> 0.05, the difference is not statistically significant. This
means that the performance of the comparisons on the groups of data is similar and the
groups are statistical incompatible19.

The Friedman test consists of the following 5 steps when comparing the datasets [66]:

1. Name the number of datasets (≥ 3) 𝑘 and blocks (e.g. classifiers) 𝑛

2. Rank the data within each block (e.g. rank the datasets for each classifier)

3. Add the ranks for each dataset separately; name the sums 𝑇1, 𝑇2,…, 𝑇𝑘

4. Calculate the Friedman 𝐹 statistic, which is distributed as chi-square, by

𝐹 = 12
𝑛𝑘(𝑘 + 1)(𝑇 + 𝑇 +⋯+ 𝑇) − 3𝑛(𝑘 + 1) (4.4)

18https://sixsigmastudyguide.com/friedman-non-parametric-hypothesis-test/
19https://en.wikipedia.org/wiki/Nemenyi_test

https://sixsigmastudyguide.com/friedman-non-parametric-hypothesis-test/
https://en.wikipedia.org/wiki/Nemenyi_test

4.3. RQ3 41

5. 𝐹 is is approximately chi-squared (𝜒) distributed and the 𝑝-value is given by 𝑃(𝜒 ≥
𝐹)20 [62]

If the Friedman test indicates significance, the Nemenyi test can be employed. The critical
difference can then be calculated by [62]:

|𝑅𝑛 −
𝑅
𝑛 | > 𝑞 ; 𝑘; 𝛼

√2
√𝑘(𝑘 + 1)

6𝑛 (4.5)

𝑘 and 𝑛 are again the datasets and blocks, respectively. 𝑅 and 𝑛 denote the sum of
Friedman-ranks and the sample size of the 𝑗-th group. 𝑞 has a studentized range q dis-
tribution21. The critical values for 𝑞 are presented in the Studentized Range q Table22, with
significance level 𝛼, 𝑘 and 𝑑𝑓 = ∞. If the inequality is met, then a difference between two
groups is significant on the level of 𝛼 [19].23

20https://en.wikipedia.org/wiki/Friedman_test
21https://www.real-statistics.com/one-way-analysis-of-variance-anova/kruskal-wallis-test/
nemenyi-test-after-kw/

22https://www.real-statistics.com/statistics-tables/studentized-range-q-table/
23https://www.rdocumentation.org/packages/PMCMR/versions/4.3/topics/posthoc.friedman.nemenyi.
test

https://en.wikipedia.org/wiki/Friedman_test
https://www.real-statistics.com/one-way-analysis-of-variance-anova/kruskal-wallis-test/nemenyi-test-after-kw/
https://www.real-statistics.com/one-way-analysis-of-variance-anova/kruskal-wallis-test/nemenyi-test-after-kw/
https://www.real-statistics.com/statistics-tables/studentized-range-q-table/
https://www.rdocumentation.org/packages/PMCMR/versions/4.3/topics/posthoc.friedman.nemenyi.test
https://www.rdocumentation.org/packages/PMCMR/versions/4.3/topics/posthoc.friedman.nemenyi.test

5
Research Results

Having executed the experiments, this chapter will focus on the results of the experiments.
The results for each research question will be shown and displayed in the next three sections,
with the research questions being the following:

RQ1: How accurate are supervised machine learning methods in detecting true vulnerabil-
ities from static analyzer warnings using a dataset from ING?

RQ2: How do classification methods perform at different levels of granularity on a dataset
from ING?

RQ3: How accurate is a model built on a dataset with various types of vulnerabilities com-
pared to models built on datasets per vulnerability type?

The results will also be analysed and discussed in this chapter.

5.1. RQ1
5.1.1. Class-level Dataset
Table 5.1 shows the results of the different classifiers using the class-level dataset.

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,526 0,685 0,595 0,923 9.24
J48(SMOTE) 0,507 0,731 0,599 0,838 3.39
Naive Bayes(SMOTE) 0,315 0,184 0,232 0,592 2.07
SVM(SMOTE) 0,534 0,043 0,079 0,519 54.49
MLP(SMOTE) 0,334 0,550 0,416 0,765 31.43
Bagging(SMOTE) 0,519 0,708 0,599 0,922 10.94
Random Forest(ClassBalancer) 0,536 0,714 0,612 0,922 3
J48(ClassBalancer) 0,483 0,782 0,598 0,835 0.59
Naive Bayes(ClassBalancer) 0,297 0,149 0,199 0,578 0.06
SVM(ClassBalancer) 0,130 0,512 0,208 0,519 17.76
MLP(ClassBalancer) 0,227 0,656 0,337 0,728 14.72
Bagging(ClassBalancer) 0,514 0,777 0,618 0,925 4.07

Table 5.1: Performance of classifiers on class dataset

From this table, it is clear that Bagging in combination with ClassBalancer, gives both
the highest f-measure and ROC AUC. Thus, it can be considered the best overall perform-
ing classifier, given the class dataset. Random Forest with ClassBalancer gives the highest

43

44 5. Research Results

precision, whereas J48 with ClassBalancer gives the highest recall. The fastest classifier is
Naive Bayes with ClassBalancer.

ClassBalancer can be deemed the better sampling technique, compared to SMOTE in this
case. Using ClassBalancer gives the highest precision, recall, f-measure, and ROC AUC.

With a higher recall than precision, Bagging with ClassBalancer has a lower false negative
rate compared to the false positive rate. So true vulnerabilities are more likely to be found,
but at the cost of an increase in false vulnerabilities.

Looking at the lowest values, we see that SVM with ClassBalancer has the lowest precision
and SVM with SMOTE has the lowest recall and f-measure and the highest run time. SVM
also has the lowest ROC AUC, thus SVM performs the worst with the class dataset.

Compared to Fortify as a stand alone, we see that the precision of each classifier (using
Fortify data) is higher than the precision of Fortify (0.122). This means that the classifiers
are better at classifying the positives, which are true vulnerabilities, than Fortify alone. The
highest precision is 0.536 and is of the Random Forest(ClassBalancer) classifier. The lowest
precision is also still higher than that of Fortify, which is 0.130 for the SVM(ClassBalancer)
classifier.

Looking at the curve in figure 5.1, it is clear that to get 80% of the true positives, around
20% of the sample size needs to be checked. This implies that the pentesters and develop-
ers at ING only need to manually check 20% of the Fortify warnings to find 80% of the true
vulnerabilities.

Figure 5.1: TPR vs Sample Size curve Bagging with ClassBalancer for class dataset

The precision, recall, and f-measure of the top 5 vulnerabilities for the class dataset are
listed in table 5.2.

5.1. RQ1 45

Vulnerability Type Precision Recall F-Measure
System Information Leak:
Internal 0,145 0,391 0,216

J2EE Bad Practices:
Threads 0,529 0,885 0,662

Log Forging 0,378 0,689 0,488
Password Management:
Hardcoded Password 0,071 0,5 0,125

Path Manipulation 0,337 0,806 0,475

Table 5.2: Precision, recall and f-measure of the top 5 vulnerabilities in the class dataset

From this table, it is clear that Bagging with ClassBalancer is better at finding J2EE Bad
Practices: Threads vulnerabilities, but bad at finding actual PasswordManagement:Hardcoded
Password vulnerabilities. The model also performs not that well on the other top vulnerability
types, with a f-measure of < 0.5. This could be because these types of vulnerabilities are not
reflected by code metrics. A hardcoded password, for instance, is not really represented by
any of the code metrics used in this dataset.

Figures A.1-A.4 are a graphical view of the different performance of the classifiers and
how different evaluation metrics compare with each other. Tables A.3-A.14 are the confusion
matrices for the classifiers. Figure A.9 shows the time for each classifier to be build by Weka.

5.1.2. Method-level Dataset
Table 5.3 shows the results of the different classifiers using the method dataset. Because
SVM took too much time to execute (> 3 days), the results could not be retrieved and therefore
are not present in the table.

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,345 0,512 0,412 0,909 86.59
J48(SMOTE) 0,216 0,553 0,310 0,801 20.43
Naive Bayes(SMOTE) 0,093 0,055 0,304 0,649 2.5
SVM(SMOTE) - - - - -
MLP(SMOTE) 0,064 0,455 0,113 0,741 123.13
Bagging(SMOTE) 0,257 0,538 0,348 0,892 26.23
Random Forest(ClassBalancer) 0,210 0,535 0,301 0,900 18.82
J48(ClassBalancer) 0,170 0,608 0,266 0,786 5.7
Naive Bayes(ClassBalancer) 0,056 0,289 0,094 0,661 0.16
SVM(ClassBalancer) - - - - -
MLP(ClassBalancer) 0,018 0,898 0,035 0,521 55.84
Bagging(ClassBalancer) 0,194 0,585 0,291 0,875 53.11

Table 5.3: Performance of classifiers on method dataset

From this table, it is clear that Random Forest in combination with SMOTE, gives both
the highest f-measure and ROC AUC. Thus, it can be considered the best overall performing
classifier, given the method dataset. Random Forest with SMOTE gives the highest precision,
whereas MLP with ClassBalancer gives the highest recall. The fastest classifier is Naive Bayes
with ClassBalancer.

SMOTE can be deemed the better sampling technique compared to ClassBalancer in this
case, although MLP with ClassBalancer has the highest recall.

With a higher recall than precision, Random Forest with SMOTE has a lower false negative
rate compared to the false positive rate. Therefore, true vulnerabilities are more likely to be
found, but at the cost of an increase in false vulnerabilities.

The overall best f-measure is 0.412 < 0.5 and can thus be considered weak. Therefore,
even though Random Forest with SMOTE performs the best, it is not a good model for clas-

46 5. Research Results

sifying vulnerabilities given the method-level dataset. A reason could be the fact that the
method-level dataset is much more skewed than the class-level dataset. For each class hav-
ing multiple methods, with only one method being potentially vulnerable.

Looking at the lowest values, we see that MLP with ClassBalancer has the lowest precision,
f-measure, and ROC AUC and Naive Bayes with SMOTE has the lowest recall. MLP with
SMOTE has the highest run time.

The precision of the classifiers are again higher than the precision of Fortify as a stand
alone(0.018), meaning that the classifiers combined with Fortify are better at classifying the
true vulnerabilities, than Fortify alone. Only for the MLP(ClassBalacer) classifier is the pre-
cision equal to that of Fortify. The highest precision is 0.345 for the Random Forest(SMOTE)
classifier.

The TPR vs Sample Size curve can be seen in figure 5.2. Looking at the ranking principle,
it is clear that to get 80% of the true positives, 10% of the sample size needs to be checked.
Thus only 10% of the Fortify warnings needs to be checked manually by pentesters, to get
80% of true vulnerabilities.

Figure 5.2: TPR vs Sample Size curve Random Forest with SMOTE for method dataset

The precision, recall, and f-measure of the top 5 vulnerabilities for the method dataset are
listed in table 5.4.

Vulnerability Type Precision Recall F-Measure
System Information Leak:
Internal 0,084 0,247 0,125

J2EE Bad Practices:
Threads 0,428 0,565 0,487

Password Management:
Hardcoded Password 0 0 -

Log Forging 0,195 0,221 0,207
Path Manipulation 0,153 0,478 0,232

Table 5.4: Precision, recall and f-measure of the top 5 vulnerabilities in the method dataset

5.2. RQ2 47

From this table, it is clear that Random Forest with SMOTE is the best at finding J2EE
BadPractices: Threads vulnerabilities, but bad at finding actual PasswordManagement:Hardcoded
Password vulnerabilities. The model overall also performs not that well with the top 5 vul-
nerability types, with all the f-measures being < 0.5. Again, this probably has to do with the
fact that some of these vulnerability types, like Password Management: Hardcoded Password
are not represented well by code complexity metrics.

Figures A.5-A.8 are a graphical view of the different performance of the classifiers and
how different evaluation metrics compare with each other.The confusion matrices for the
classifiers are represented by tables A.15-A.24. Figure A.10 shows the time for each classifier
to be built by Weka.

5.1.3. Research Question Answer
Given the results found in this section, we can now answer the following research question:

RQ1: How accurate are supervised machine learning methods in detecting true vulnerabil-
ities from static analyzer warnings using a dataset from ING?

Looking at the f-measure, we see that the class-level dataset has the highest f-measure
(0.618) for Bagging with ClassBalancer. This classifier also has the highest ROC AUC of
0.925. The classifier is therefore good at finding false vulnerabilities, but misses quite some
of the true vulnerabilities from static analyzer warnings. Thus, the overall performance is
well enough, but there is still room for improvement.

For the method-level dataset, the highest f-measure and ROC AUC was found by Random
Forest with SMOTE, respectively, 0.412 and 0.909. Because of the very low f-measure (less
than 0.5), the method-level dataset is not very accurate in finding true vulnerabilities from
static analyzer warnings.

5.2. RQ2
Looking at the results from the previous section, we see that the best performing classifier
for the class-level dataset is Bagging with ClassBalancer, having a f-measure of 0.618. For
the method-level dataset, Random Forest with SMOTE has the highest f-measure of 0.412.
The highest precision and ROC AUC was found using the class-level dataset, whereas the
highest recall was found using the method-level dataset. Overall, the class-level dataset has
a better performance than the method-level dataset.

The classifiers using class-level dataset are faster overall, compared to the method-level
dataset. One reason for this difference is the fact that the method-level dataset is more than
8 times larger than the class-level dataset.

5.2.1. Research Question Answer
Given the research question and the results, we can now answer the following:

RQ2: How do classification methods perform at different levels of granularity on a dataset
from ING?

The classifiers have an overall better performance on class level, compared to method
level. The highest f-measure, precision and ROC AUC can be found using the class-level
dataset, whereas the highest recall can be found using the method-level dataset.

5.3. RQ3
For each of the 5 vulnerability types, datasets were created. Both the class level and method
level were filtered for each vulnerability type. The remaining instances were then used as
the corresponding dataset. So for example, to create the Log Forging class-level dataset, all
the instances with vulnerability type equal to Log Forging were taken from the class-level
dataset. Each of these datasets were used on different classifiers to see which performs

48 5. Research Results

better. Table 5.5 shows the f-measure of the top 5 vulnerabilities in the class-level dataset.
Table 5.6 shows the time in seconds of the top 5 vulnerabilities in the class-level dataset.
The Password Management: Hardcoded Password does not have SMOTE, because there are
too few minority instances to use SMOTE.

Classifier System Information Leak:
Internal

J2EE Bad Practices:
Threads Log Forging Password Management:

Hardcoded Password Path Manipulation

Random Forest(SMOTE) 0,181 0,659 0,447 - 0,641
J48(SMOTE) 0,189 0,652 0,365 - 0,605
Naive Bayes(SMOTE) 0,042 0,349 0,314 - 0,318
SVM(SMOTE) 0,058 0,374 0,321 - 0,329
MLP(SMOTE) 0,051 0,643 0,368 - 0,581
Bagging(SMOTE) 0,187 0,674 0,396 - 0,568
Random Forest(ClassBalancer) 0,024 0,681 0,400 0,000 0,623
J48(ClassBalancer) 0,048 0,662 0,362 0,000 0,530
Naive Bayes(ClassBalancer) 0,051 0,387 0,271 0,000 0,309
SVM(ClassBalancer) 0,051 0,332 0,304 0,089 0,314
MLP(ClassBalancer) 0,029 0,405 0,400 0,011 0,431
Bagging(ClassBalancer) 0,043 0,644 0,375 0,000 0,533

Table 5.5: F-Measure of classifiers on class-level dataset per vulnerability type

Classifier System Information Leak:
Internal

J2EE Bad Practices:
Threads Log Forging Password Management:

Hardcoded Password Path Manipulation

Random Forest(SMOTE) 0.51 0.51 0.19 - 0.07
J48(SMOTE) 0.03 0.03 0.01 - 0.01
Naive Bayes(SMOTE) 0.02 0.02 0 - 0
SVM(SMOTE) 0.56 0.56 0.1 - 0.03
MLP(SMOTE) 2.69 2.69 1.07 - 0.55
Bagging(SMOTE) 0.23 0.23 0.12 - 0.03
Random Forest(ClassBalancer) 0.16 0.16 0.06 0.02 0.04
J48(ClassBalancer) 0.01 0.01 0.01 0 0
Naive Bayes(ClassBalancer) 0 0 0 0 0
SVM(ClassBalancer) 0.24 0.24 0.04 0.01 0.01
MLP(ClassBalancer) 1.61 1.61 0.62 0.48 0.33
Bagging(ClassBalancer) 0.12 0.12 0.05 0.01 0.02

Table 5.6: Time in s of classifiers on class-level dataset per vulnerability type

Figures A.11-A.15 show the time for each classifier to be build by Weka for each of the
datasets.

Table 5.7 shows the f-measure for the top 5 vulnerability types in the method-level dataset.
Table 5.8 shows the time in seconds of the the top 5 vulnerability types in the method-level
dataset. The Password Management: Hardcoded Password does not have SMOTE and SVM
with ClassBalancer, because there are too few minority instances to use those algorithms.

Classifier System Information Leak:
Internal

J2EE Bad Practices:
Threads

Password Management:
Hardcoded Password Log Forging Path Manipulation

Random Forest(SMOTE) 0,112 0,574 - 0,277 0,465
J48(SMOTE) 0,087 0,460 - 0,267 0,408
Naive Bayes(SMOTE) 0,014 0,070 - 0,063 0,163
SVM(SMOTE) - 0,092 - 0,065 0,121
MLP(SMOTE) 0,024 0,198 - 0,120 0,188
Bagging(SMOTE) 0,081 0,498 - 0,275 0,458
Random Forest(ClassBalancer) 0,053 0,613 0,000 0,286 0,222
J48(ClassBalancer) 0,065 0,420 0,000 0,218 0,211
Naive Bayes(ClassBalancer) 0,013 0,078 0,000 0,068 0,157
SVM(ClassBalancer) 0,018 0,080 - 0,051 0,110
MLP(ClassBalancer) 0,004 0,015 0,000 0,020 0,030
Bagging(ClassBalancer) 0,061 0,515 0,000 0,262 0,202

Table 5.7: F-Measure of classifiers on method-level dataset per vulnerability type

5.3. RQ3 49

Classifier System Information Leak:
Internal

J2EE Bad Practices:
Threads

Password Management:
Hardcoded Password Log Forging Path Manipulation

Random Forest(SMOTE) 18.45 6.62 - 2.46 0.98
J48(SMOTE) 2.35 0.82 - 0.18 0.08
Naive Bayes(SMOTE) 0.14 0.06 - 0.03 0.01
SVM(SMOTE) - 43.68 - 8.93 1.8
MLP(SMOTE) 61.19 29.67 - 12.33 6.56
Bagging(SMOTE) 17.9 4.07 - 1.51 0.61
Random Forest(ClassBalancer) 4 1.35 0.16 0.58 0.3
J48(ClassBalancer) 0.5 0.21 0.01 0.05 0.04
Naive Bayes(ClassBalancer) 0.06 0.02 0.01 0.01 0.01
SVM(ClassBalancer) 120.82 17.03 - 3.41 0.71
MLP(ClassBalancer) 35.02 15.9 7 7.18 3.78
Bagging(ClassBalancer) 5.06 1.63 0.12 0.75 0.27

Table 5.8: Time in s of classifiers on method-level dataset per vulnerability type

Figures A.16-A.20 show the time for each classifier to be built by Weka for each of the
datasets.

Looking at table 5.9, the following classifiers perform best for the 5 different vulnerability
types on class level:

1. J48 with SMOTE

2. Random Forest with ClassBalancer

3. Random Forest with SMOTE

4. SVM with ClassBalancer

5. Random Forest with SMOTE

On method level, the following classifiers perform best for the 5 different vulnerability types:

1. Random Forest with SMOTE

2. Random Forest with ClassBalancer

3. Random Forest & J48 with ClassBalancer, comparing the ROC AUC

4. Random Forest with ClassBalancer

5. Random Forest with SMOTE

Because there are too few minority classes in the ”Password Management: Hardcoded Pass-
word” dataset, classifiers, classifies all the minority instances as negative.

Again Naive Bayes with ClassBalancer is the fastest in all cases or tied with other classi-
fiers on both class and method level. For the class-level datasets, MLP with SMOTE takes the
most time. On method level, SVM with ClassBalancer is the slowest for System Information
Leak: Internal and MLP with ClassBalancer for Password Management: Hardcoded Pass-
word. SVM with SMOTE takes the most time for J2EE Bad Practices:Threads, Log Forging,
and Path Manipulation..

Figure 5.3 shows the comparison of the precision and figure 5.4 shows the comparison of
the recall between the class-level, method-level, and the vulnerability per type datasets. For
the comparison, we used the precision and recall of the classifiers with the highest f-measure.

It is clear from figure 5.4, that the recall is overall better in the class-level dataset. Only
for J2EE Bad Practices Threads and Password Management: Hardcoded Password does the
class-level per vulnerability type dataset have a better recall.

For precision, the class-level per vulnerability type datasets perform best, with Password
Management: Hardcoded Password being the exception. In that case, the class-level dataset
has a slightly higher precision.

The highest precision for each of the datasets per vulnerability type is also higher than
that of Fortify as stand alone, with Password Management: Hardcoded Password being the
exception again.

50 5. Research Results

Figure 5.3: Comparison of precision between datasets

Figure 5.4: Comparison of recall between datasets

Figure 5.5 shows the comparison of the f-measure between the class-level, method-level,
and the individual vulnerability type datasets. From this figure, it is clear that the class-level
dataset performs best for the System Information Leak: Internal, Password Management:
Hardcoded Password and Log Forging vulnerabilities. The class-level per individual vulner-
ability type datasets perform better in case of the J2EE Bad Practices: Threads and Path
Manipulation vulnerabilities.

5.3. RQ3 51

Figure 5.5: Comparison of f-measure between datasets

5.3.1. Overall Classifier comparison
In order to compare the performance between all the classifiers and all the datasets, the
Friedman test method with the post-hoc test (Nemenyi) from Demšar [20] is used. For this
test, the data from table 5.9 is used. In this dataset, each row represents one of the datasets
and each column represents the classifiers.

Performing the Friedman test gives 𝑝-value = 9.234𝑒 < 𝛼 = 0.05. Thus, the differences
between the f-measure values are statistically significant. We use the post-hoc test to get a
ranking. From the ranking in table 5.10, it is clear that Random Forest with SMOTE has
the best performance and SVM with SMOTE has the worst performance. In figure 5.6 you
can see that the critical distance is 4.810. This means that classifiers with that amount of
distance between them have a high enough statistical difference. So, Random Forest with
SMOTE has a statistical difference with everything above MLP with SMOTE, meaning that
the difference is not by chance alone. The grey area shows the classifiers that have a low
critical distance with the best performing classifier, Random Forest with SMOTE.

52 5. Research Results

Figure 5.6: Ranking of classifiers using f-measure

5.3.2. Overall Dataset comparison
Next to the classifiers, the datasets are also compared to see which one performs best. For
this, table 5.11 is used. This table consists of the ranking of each dataset per classifier. Each
row represents a classifier and each column represents a dataset.

Using the Friedman test again, 𝑝-value = 2.2𝑒 < 𝛼 = 0.05, thus the differences between
the f-measure values are statistically significant. From the post-hoc tests it is clear that
the class J2EE Bad Practices: Threads dataset performs the best. Both Password Manage-
ment: Hardcoded Password datasets performed the worst with the Method System Informa-
tion Leak: Internal as third worst. Between the class-level and the method-level datasets, the
class-level dataset has a higher rank than the method-level dataset. The ranking of the post-
hoc tests can be seen in table 5.12. You can see from figure 5.6, that the critical distance
is 4.810. This means that the datasets with that amount of distance have a large enough
statistical difference. So, the class-level J2EE Bad Practices: Threads dataset has a statis-
tical difference with everything above method-level J2EE Bad Practices: Threads, meaning
that the difference is not by chance alone. Every dataset in the grey area, however, has a low
critical distance with the best performing dataset. Meaning that they do not have a statisti-
cal difference with the class-level J2EE Bad Practices: Threads dataset. Thus, the difference
between class level and method level are not statically different enough, even though the
class-level dataset has an overall better performance. The same goes for the best two per-
forming vulnerability types (J2EE Bad Practices: Threads and Path Manipulation), compared
to the class-level and method-level dataset.

5.3. RQ3 53

Figure 5.7: Ranking of datasets using f-measure

5.3.3. Research Question Answer
Taking in the results from this section, the last research question can be answered:

RQ3: How accurate is a model built on a dataset with various types of vulnerabilities com-
pared to models built on datasets per vulnerability type?

Depending on the type of vulnerability, datasets per vulnerability type can have better
performance than a dataset with various vulnerability types. J2EE Bad Practices: Threads
and PathManipulation have an overall better performance, than the datasets with the various
vulnerability types. This might be due to the fact that these types of vulnerabilities are better
represented by the code metrics used in the datasets.

54
5.R

esearch
R
esults

Classifier Random Forest
(SMOTE)

J48
(SMOTE)

Naive Bayes
(SMOTE)

SVM
(SMOTE)

MLP
(SMOTE)

Bagging
(SMOTE)

Random Forest
(ClassBalancer)

J48
(ClassBalancer)

Naive Bayes
(ClassBalancer)

SVM
(ClassBalancer)

MLP
(ClassBalancer)

Bagging
(ClassBalancer)

Class 0.595(6.0) 0.599(3.5) 0.232(9.0) 0.079(12.0) 0.416(7.0) 0.599(3.5) 0.612(2.0) 0.598(5.0) 0.199(11.0) 0.208(10.0) 0.337(8.0) 0.618(1.0)
Method 0.412(1.0) 0.31(5.0) 0.304(6.0) 0(11.5) 0.113(9.0) 0.348(3.0) 0.301(7.0) 0.266(8.0) 0.094(10.0) 0(11.5) 0.035(2.0) 0.291(7.0)
Class-System Information
Leak: Internal 0.181(3.0) 0.189(1.0) 0.042(10.0) 0.058(4.0) 0.051(5.5) 0.187(2.0) 0.024(12.0) 0.048(8.0) 0.051(5.5) 0.051(5.5) 0.029(11.0) 0.043(9.0)

Class-J2EE Bad Practices:
Threads 0.659(4.0) 0.652(5.0) 0.349(11.0) 0.374(10.0) 0.643(7.0) 0.674(2.0) 0.681(1.0) 0.662(3.0) 0.387(9.0) 0.332(12.0) 0.405(8.0) 0.644(6.0)

Class-Log Forging 0.447(1.0) 0.365(7.0) 0.314(10.0) 0.321(9.0) 0.368(6.0) 0.396(4.0) 0.4(2.5) 0.362(8.0) 0.271(12.0) 0.304(11.0) 0.4(2.5) 0.375(5.0)
Class-Password Management:
Hardcoded Password 0(3.5) 0(3.5) 0(3.5) 0(3.5) 0(3.5) 0(3.5) 0(3.5) 0(3.5) 0(3.5) 0.089(1.0) 0.011(2.0) 0(3.5)

Class-Path Manipulation 0.641(1.0) 0.605(3.0) 0.318(10.0) 0.329(9.0) 0.581(4.0) 0.568(5.0) 0.623(2.0) 0.53(7.0) 0.309(12.0) 0.314(11.0) 0.431(8.0) 0.533(6.0)
Method-System Information
Leak: Internal 0.112(1.0) 0.087(2.0) 0.014(9.0) 0(12.0) 0.024(7.0) 0.081(3.0) 0.053(6.0) 0.065(4.0) 0.013(10.0) 0.018(8.0) 0.004(11.0) 0.061(5.0)

Method-J2EE Bad Practices:
Threads 0.574(2.0) 0.46(5.0) 0.07(11.0) 0.092(8.0) 0.198(7.0) 0.498(4.0) 0.613(1.0) 0.42(6.0) 0.078(10.0) 0.08(9.0) 0.015(12.0) 0.515(3.0)

Method-Password Management:
Hardcoded Password 0 0 0 0 0 0 0 0 0 0 0 0

Method-Log Forging 0.277(2.0) 0.267(4.0) 0.063(10.0) 0.065(9.0) 0.12(7.0) 0.275(3.0) 0.286(1.0) 0.218(6.0) 0.068(8.0) 0.051(11.0) 0.02(12.0) 0.262(5.0)
Method-Path Manipulation 0.465(2.0) 0.408(3.0) 0.163(8.0) 0.121(10.0) 0.188(7.0) 0.458(1.0) 0.222(4.0) 0.211(5.0) 0.157(9.0) 0.11(11.0) 0.03(12.0) 0.202(6.0)

Table 5.9: F-Measure of classifiers with ranking

Classifier Random Forest
(SMOTE)

J48
(SMOTE)

Naive Bayes
(SMOTE)

SVM
(SMOTE)

MLP
(SMOTE)

Bagging
(SMOTE)

Random Forest
(ClassBalancer)

J48
(ClassBalancer)

Naive Bayes
(ClassBalancer)

SVM
(ClassBalancer)

MLP
(ClassBalancer)

Bagging
(ClassBalancer)

p-value(rank) 0.3823333(1.0) 0.3525(3.0) 0.2068333(8.0) 0.1386667(12.0) 0.2651667(7.0) 0.3673333(2.0) 0.3363333(4.0) 0.3226667(6.0) 0.167(10.0) 0.164(11.0) 0.2028333(9.0) 0.3285(5.0)

Table 5.10: Post-hoc tests ranking of classifiers

5.3.R
Q
3

55

Dataset Class Method
Class-
System Information Leak:
Internal

Class-
J2EE Bad Practices:
Threads

Class-
Log Forging

Class-
Password Management:
Hardcoded Password

Class-
Path Manipulation

Method-
System Information Leak:
Internal

Method-
J2EE Bad Practices:
Threads

Method-
Password Management:
Hardcoded Password

Method-
Log Forging

Method-
Path Manipulation

Random Forest
(SMOTE) 0.595(3.0) 0.412(7.0) 0.181(9.0) 0.659(1.0) 0.447(6.0) 0(11.5) 0.641(2.0) 0.112(10.0) 0.574(4.0) 0(11.5) 0.277(8.0) 0.465(5.0)

J48
(SMOTE) 0.599(3.0) 0.31(7.0) 0.189(9.0) 0.652(1.0) 0.365(6.0) 0(11.5) 0.605(2.0) 0.087(10.0) 0.46(4.0) 0(11.5) 0.267(8.0) 0.408(5.0)

Naive Bayes
(SMOTE) 0.232(5.0) 0.304(4.0) 0.042(9.0) 0.349(1.0) 0.314(3.0) 0(11.5) 0.318(2.0) 0.014(10.0) 0.07(7.0) 0(11.5) 0.063(8.0) 0.163(6.0)

SVM
(SMOTE) 0.079(6.0) 0(9.5) 0.058(8.0) 0.374(1.0) 0.321(3.0) 0(9.5) 0.329(2.0) 0(9.5) 0.092(5.0) 0(9.5) 0.065(7.0) 0.121(4.0)

MLP
(SMOTE) 0.416(3.0) 0.113(8.0) 0.051(9.0) 0.643(1.0) 0.368(4.0) 0(11.5) 0.581(2.0) 0.024(10.0) 0.198(5.0) 0(11.5) 0.12(7.0) 0.188(6.0)

Bagging
(SMOTE) 0.599(2.0) 0.348(7.0) 0.187(9.0) 0.674(1.0) 0.396(6.0) 0(11.5) 0.568(3.0) 0.081(10.0) 0.498(4.0) 0(11.5) 0.275(8.0) 0.458(5.0)

Random Forest
(ClassBalancer) 0.612(4.0) 0.301(7.0) 0.024(10.0) 0.681(1.0) 0.4(6.0) 0(11.5) 0.623(2.0) 0.053(5.0) 0.613(3.0) 0(11.5) 0.286(8.0) 0.222(9.0)

J48
(ClassBalancer) 0.598(2.0) 0.266(6.0) 0.048(10.0) 0.662(1.0) 0.362(5.0) 0(11.5) 0.53(3.0) 0.065(9.0) 0.42(4.0) 0(11.5) 0.218(7.0) 0.211(8.0)

Naive Bayes
(ClassBalancer) 0.199(4.0) 0.094(6.0) 0.051(9.0) 0.387(1.0) 0.271(3.0) 0(11.5) 0.309(2.0) 0.013(10.0) 0.078(7.0) 0(11.5) 0.068(8.0) 0.157(5.0)

SVM
(ClassBalancer) 0.208(4.0) 0(11.5) 0.051(8.5) 0.332(1.0) 0.304(3.0) 0.089(6.0) 0.314(2.0) 0.018(10.0) 0.08(7.0) 0(11.5) 0.051(8.5) 0.11(5.0)

MLP
(ClassBalancer) 0.337(4.0) 0.035(5.0) 0.029(7.0) 0.405(2.0) 0.4(3.0) 0.011(10.0) 0.431(1.0) 0.004(11.0) 0.015(9.0) 0(12.0) 0.02(8.0) 0.03(6.0)

Bagging
(ClassBalancer) 0.618(2.0) 0.291(6.0) 0.043(10.0) 0.644(1.0) 0.375(5.0) 0(11.5) 0.533(3.0) 0.061(9.0) 0.515(4.0) 0(11.5) 0.262(7.0) 0.202(8.0)

Table 5.11: F-Measure of datasets with ranking

Dataset Class Method
Class-
System Information Leak:
Internal

Class-
J2EE Bad Practices:
Threads

Class-
Log Forging

Class-
Password Management:
Hardcoded Password

Class-
Path Manipulation

Method-
System Information Leak:
Internal

Method-
J2EE Bad Practices:
Threads

Method-
Password Management:
Hardcoded Password

Method-
Log Forging

Method-
Path Manipulation

p-value(rank) 0.42(3.0) 0.2478333(7.0) 0.118(9.0) 0.5585(1.0) 0.3685(4.0) 0(11.5) 0.507(2.0) 0.053(10.0) 0.3153333(5.0) 0(11.5) 0.1778333(8.0) 0.3005(6.0)

Table 5.12: Post-hoc tests ranking of datasets

6
Discussion

This chapter will discuss the results from the previous chapter, by summing up the main
findings and comparing the results with the related work. Next to that, the implications of
the results are discussed.

6.1. Main findings
Bagging with ClassBalancer is the best classifier for the class dataset. Comparing the
f-measure gives the highest f-measure for Bagging with ClassBalancer technique. This also
gave the best ROC AUC score. The highest precision could be found by Random Forest with
ClassBalancer and the highest recall with J48 with ClassBalancer.

Random Forest with SMOTE is the best classifier for the method dataset. Compar-
ing the f-measure gives the highest f-measure for Random Forest with SMOTE technique,
which also gave the best ROC AUC score and the highest precision. The highest recall could
be found by MLP with ClassBalancer.

Class-level dataset performs better than method-level dataset. The highest f-measure
was found in the class-level dataset. Using the post-hoc test to compare the overall perfor-
mance, the class-level dataset outperformed the method-level dataset again. The statistical
difference was however not large enough.

Random Forest with SMOTE is the overall best algorithm. Comparing the f-measures
of all the datasets and algorithms using the post-hoc test, the highest ranked algorithm is
Random Forest with SMOTE.

SMOTE is the better overall technique for sampling. Looking at the ranking given by
the post-hoc test for comparing the classifiers, the top two techniques uses SMOTE as sam-
pling technique to overcome the class imbalance problem.

The Class-J2EE Bad Practises: Threads dataset gives the best overall performance.
Using the post-hoc test to compare all the datasets, the Class-J2EE Bad Practises: Threads
is ranked the highest. Thus, this dataset gives the highest f-measure.

Datasets per vulnerability perform better, depending on the vulnerability type. The
datasets built for the vulnerabilities J2EE Bad Practises: Threads and Path Manipulation,
have better performance than the datasets with all vulnerabilities. This applies for both the
class as well as the method dataset. The other datasets per vulnerability type perform worse
than the datasets with all the vulnerabilities.

Naive Bayes with ClassBalancer is the fastest. This algorithm takes the least time to

57

58 6. Discussion

train and test and create a model in all different cases.

Overall performance is not very good. The highest f-measure is just under 0.7, which
is for the Class-J2EE Bad Practises: Threads dataset. For the class dataset the highest f-
measure is 0.62. These are both not just slightly good performance, but it still means that
many cases are wrongly classified. In most cases of high f-measure, the recall score is good,
but the precision is low. This means that the classifier detects many false vulnerabilities,
but also predicts many true vulnerabilities as false vulnerabilities.

Less false positives and higher precision are found than stand-alone Fortify. The num-
ber of false positives compared to Fortify as stand alone is for both the class-level andmethod-
level dataset lower. The precision is also higher for both the class-level and method-level
dataset. Only for the method-level dataset is the lowest precision equal to that of Fortify. For
the datasets per vulnerability, the highest precision are all higher than that of Fortify for both
class and method. The only exception is the dataset for Password Management: Hardcoded
Password. For both the class and method dataset of that vulnerability, the precision is lower
than the precision of Fortify as stand alone.

6.2. Comparison with Related Work
Ghaffarian and Shahriari [27] mentioned, many studies were conducted on using code met-
rics to predict vulnerabilities. The following topics were lacking in current research, and were
tackled in this research:

• Imbalance class data: Most research does not deal with the class imbalance problem.
They either do not have that problem or do not deal with it. In this research we overcome
this problem by using two sampling techniques, SMOTE and ClassBalancer.

• Cross-project studies: Studies usually use codemetrics from the same project. Moshtari
et al. [50] showed promising results for both within-project as well as cross-project vul-
nerability detection. Within-project did have a better result. Our study created datasets
from various projects within ING.

• Class level: Catal and Diri [12] found that most research, uses code metrics on method
level. We compared both class and method-level datasets with code metrics. In our
case the class-level datasets perform better than the method-level datasets. Thus, more
research should be done on class level, for this results in better performance of detecting
true vulnerabilities from static analyzer warnings.

• Closed sourced: Open source projects are mostly used in studies for vulnerability de-
tection with code metrics [12]. In our case, we used data from industry.

Overall, our conclusion is similar to that of related work, even though we predict true vulner-
abilities from static analyzer warnings. Code metrics can help find vulnerabilities, but they
still miss many vulnerabilities and code metrics that are more security related might help
overcome this problem.

6.3. Implications
Looking at the results, we found that supervised learning in combination with code metrics
does indeed help in finding vulnerabilities. To that end, we can sum up the implications for
design and recommendations for the pentesters and developers.

6.3.1. Design
The following design implications can be deducted from the results of this study:

• Class level: When creating a code metrics dataset for detecting vulnerabilities, it is bet-
ter to extract code metrics on class-level rather than method-level. Manually checking
a class does, however, take more time than manually checking a method.

6.3. Implications 59

• Random Forest: Choosing the right supervised learning technique is crucial to getting
a good performance. Random Forest was deemed the overall best classifier.

• SMOTE: For sampling, the better technique between ClassBalancer and SMOTE in this
case is SMOTE. Using SMOTE for sampling will help overcome the class imbalance
problem.

• Dataset per vulnerability type: When using the supervised learning model with For-
tify, it might help to create datasets based on vulnerability type. This might increase
the performance depending on the vulnerability compared to using a dataset with all
kinds of vulnerabilities.

6.3.2. Recommendations
With Fortify giving such a high false positive rate, it slows down the process of deploying soft-
ware. With the results from this study at hand, we can give the following recommendations
to both pentesters and developers:

• Log negatives: Missing both false and true negatives makes it hard to decide whether
or not Fortify is doing a good job. Pentesters need to ensure that classes deemed not
vulnerable by Fortify are really not vulnerable. These classes need to be added to the
dataset. This will also help train a supervised learning model by adding this information
to the dataset.

• Extract code metrics: Developers can extract the code metrics on class level them-
selves after writing code to create a dataset. Additional code and security metrics can
be researched and added. This dataset can then be used for aiding vulnerability de-
tection in combination with Fortify. By making developers deliver the dataset of code
metrics, the workload for pentester would not increase when using supervised learning
with Fortify.

• Use a supervised learning algorithm: Pentesters should use a supervised learning
algorithm next to using Fortify. This way there are fewer false positives they have to
manually check. By expanding the dataset given by developers with data from Fortify,
they can either use one of the machine learning techniques from this research or do
research in a supervised learning technique with even better performance. Either way,
the speed of deployment will increase when combining Fortify with supervised learning.

7
Threats to Validity

During the research, some threats to validity was observed. This chapter will discuss these
limitations by separating the threats to validity in two different categories: internal and ex-
ternal validity.

7.1. Internal Validity
Internal validity concerns the conditions of the experiment and how that influence the out-
come.

The labels for the datasets were provided by the pentesters at ING. These labels were
added manually and can thus be biased as what the pentesters deem vulnerable or not.
Fortify indicates what might be vulnerable in the code and why, but it is up to the developers
and pentesters to figure out what they deem actual vulnerable. Thus, the labels for the
dataset are not 100% independent and unbiased.

Because the data was extracted from the Fortify web server, the false and true negatives
were missing, for the Fortify web server only has the true and false positives. The true
vulnerabilities that Fortify did not detect were not accessible to us and could thus not be
included in this research. Next to the false negatives, true negatives are also missing. This
because Fortify does not state what it actually deems not vulnerable. If we had full access
to the projects, we could have deemed all the other classes that Fortify did not flag as true
negative in case these classes were checked by the pentesters. Thus, the full performance of
Fortify could not be taken into account, which makes it difficult to compare the performance
of Fortify with the other classifiers.

Another internal threat is the fact that the datasets are unbalanced. This problem would
cause the models being biased toward the majority class. To overcome this problem, special
sampling techniques were used like SMOTE, so that the data would be more in balance.

To compare the performance of the classifiers, an evaluation metric must be selected.
With different evaluation metrics available and each of them representing a different aspect
of the performance, it is hard to choose one to compare the classifiers. After going through
different literature, the f-measure metric seems the most used for comparing the performance
of different classifiers when dealing with imbalanced data.

Because of the non-deterministic nature of Random Forest and k-fold cross-validation, it
is better to perform the experiment multiple times and then look at the average. After seeing
no significant difference in the performance, when doing some of the experiments multiple
times, we dropped this part of experiment.

7.2. External Validity
External validity concerns the generalization of the outcome of the experiment.

Because the study was done with data from ING, it is important to consider that there are
some limitations to the generalization of the experiment. Because the data comes from one

61

62 7. Threats to Validity

organization, it has to be considered that the results of this research might be more valid for
similar companies who operate in the same way and are specialized in the same type of field
as ING.

Next to that, the data was generated from the static analysis tool Fortify. The performance
and results found in this research might thus be different from other static analysis tools.

8
Conclusion & Future Work

This research consisted of predicting true vulnerabilities from static analyzer warnings, using
supervised learning in an industrial setting. With the evaluated results at hand, the initial
research questions can thus be answered.

static analyzer warnings using a dataset from ING?
RQ1: How accurate are machine learning methods in detecting true vulnerabilities from

Six different classifiers have been used, with two different sampling methods. From these
classifiers, it is clear that Bagging in combination with ClassBalancer gives the best results in
terms of f-measure for the class dataset. For the method level, the best performing classifier
was Random Forest with SMOTE.

With a f-measure of 0.618, the model for the class-level dataset can be considered slightly
good. The model for the method-level dataset has a f-measure of 0.412, which is weak.

dataset from ING?
RQ2: How do classification methods perform at different levels of granularity with a

Two datasets were created, one on class level and one on method level. Bagging with SMOTE
was considered the best overall classifier between the class and method datasets. Compar-
ing the two datasets, the class-level dataset scored an overall higher f-measure compared to
method-level dataset.

using a dataset from ING?
built per vulnerability type in detecting true vulnerabilities from static analyzer warnings
RQ3: How accurate is a model built on the entire dataset compared to several models

Comparing the two datasets with the individual datasets per vulnerability, gives Random For-
est with SMOTE as the best overall classifier. The class-level J2EE Bad Practices: Threads
dataset is deemed the dataset with the best results. Overall, the class-level dataset performs
better, except for the Password Management: Hardcoded Password datasets, due to the fact
that there are too few true vulnerabilities in these datasets.

In the end, the performance of these classifiers and datasets can be considered bad to
slightly good. This because the overall performance of the classifiers are not really high.
Compared to the outcome of only using the Fortify tool, currently used by ING, the false pos-
itives are lower and the precision of the classifiers are actually quite higher. Using supervised
learning combined with Fortify could aid in speeding up the deployment process within ING
and could potentially save some time and effort for pentesters and developers alike.

8.1. Future Work
Even though this research is complete, there are several ways these research can be either
improved on or extended. This chapter will discuss the various limitations and topics that

63

64 8. Conclusion & Future Work

could enhance this research by future work.

8.1.1. Limitations
First the limitations of this research are discussed. These limitations could be improved on
in future work.

Full Projects
The datasets used in this research, were built by extracting data from the static analysis
tool Fortify. This tool consists of Java classes and vulnerabilities within these classes. The
full projects that these classes originated from were however, not accessible. Thus, coupling
metrics were mostly incomplete. For future work, it would therefore be interesting to use the
full projects of the software in development, instead of only the classes there are flagged by
Fortify and compare those results with the current results.

Negatives in Fortify
From the Fortify tool, it was possible to extract false and true vulnerabilities. These are
the false and true positives. However, there was no access to the false negatives. These
are the classes that Fortify did not flag as vulnerable, but the pentester or developer found
vulnerable by either manually checking or using some other tool. Fortify does have a feature
to add these findings, but unfortunately these were restricted and could therefore not be
extracted. True negatives for the class-level dataset would be the other classes within the
full project, for which access was also restricted as discussed in the previous subsection
8.1.1. For the method-level dataset, all the methods that do not have a vulnerability could
be considered true negative.

8.1.2. Security Metrics
The datasets used in this study only used code metrics. Because we are dealing with vul-
nerability warnings, it might be better to use security-related metrics. As related work has
shown, security metrics tend to give better results. Thus, for future research, security met-
rics should be used to perform this kind of study.

8.1.3. Fuzzing
When access to full projects is granted and they can be compiled and executed, it would
be interesting to combine the machine learning prediction with fuzzing. By using machine
learning to predict the high risk vulnerabilities and fuzzing for validating these predictions.
This way, the whole process of finding vulnerabilities can be automated. The advantage of
fuzzing is that it has low false positives, for all the findings are actual crashes. The downside
is that it can take quite some time to go through all the random inputs. The advantage of
machine learning is that it is fast. However, it can give many false positives. By using the
output of the classifier as input for fuzzing, the fuzzing can be sped up.

8.1.4. Deep learning
This research focused only on supervised classification. Man [41] used unsupervised clus-
tering for predicting true vulnerabilities from static analyzer warnings, using the class-level
dataset. For future work, one could consider using deep learning. Deep learning has the
potential to have the best results. The downsides of deep learning is that it is hard to explain
the results, for it is a black box, and it is expensive, for deep learning requires much power
to perform and a larger set of data points.

A
Additional Graphs & Tables

65

66 A. Additional Graphs & Tables

A.1. Code metrics

Metric Description
Type The type of the instance.

CBO(Coupling Between Objects) Counts the number of dependencies a class has, ignoring
dependencies to Java itself.

WMC(Weight Method Class) Counts the number of branch instructions in a class.
DIT(Depth Inheritance Tree) Counts the number of ”fathers” a class has.
RFC(Response For Class) Counts the number of unique method invocations in the class.
LCOM(Lack of Cohesion of Methods) Number of method pairs who are not similar.
totalMethods Total amount of methods in the class.
staticMethods Total amount of static methods in the class.
publicMethods Total amount of public methods in the class.
privateMethods Total amount of private methods in the class.
protectedMethods Total amount of protected methods in the class.
defaultMethods Total amount of default methods in the class.
abstractMethods Total amount of abstract methods in the class.
finalMethods Total amount of final methods in the class.
synchronizedMethods Total amount of synchronized methods in the class.
totalFields Total amount of fields in the class.
staticFields Total amount of static fields in the class.
publicFields Total amount of public fields in the class.
privateFields Total amount of private fields in the class.
protectedFields Total amount of protected fields in the class.
defaultFields Total amount of default fields in the class.
finalFields Total amount of final fields in the class.
synchronizedFields Total amount of synchronized fields in the class.
NOSI(Number of Static Invocations) Counts the number of invocations to static methods.
LOC(Lines Of Code) Counts the lines of actual code in the class.
returnQty Counts the number of return instructions.
loopQty Counts the number of loops.
comparisonsQty Counts the number of comparisons.
tryCatchQty Counts the number of try/catches.
parenthesizedExpsQty Counts the number of expressions inside parenthesis.
stringLiteralsQty Counts the number of string literals.
numbersQty Counts the amount of numbers literals.
assignmentsQty Counts the amount of assignment statements.
mathOperationsQty Counts the number of math operations.
variablesQty Counts the number of declared variables.
maxNestedBlocks Highest number of blocks nested together.
anonymousClassesQty Counts the number of anonymous classes.
subClassesQty Counts the number of subclasses.
lambdasQty Counts the number of lambda expressions.
uniqueWordsQty Counts the number of unique words in the source code.
modifiers Counts the number of modifiers in the class.
Vulnerable Label of the instance. False if not vulnerable, True if vulnerable.
Vulnerability Type The type of the vulnerability.
Vulnerability Location The line number of the vulnerability.

Nested The level of nesting of the line of code of the potential
vulnerability in the code.

Table A.1: Metrics for the class-level dataset.

A.1. Code metrics 67

Metric Description
method The name of the method.
constructor Boolean if the method is a constructor.
line Line number of the method.

CBO(Coupling Between Objects) Counts the number of dependencies a method has,
ignoring dependencies to Java itself.

WMC(Weight Method Class) Counts the number of branch instructions in a method.
RFC(Response For Class) Counts the number of unique method invocations in the method.
LOC(Lines Of Code) Counts the lines of actual code in the method.
returns Counts the number of return instructions.
variables Counts the number of declared variables.
parameters Counts the number of parameters.

startLine The line number where the method starts, which is the same as
the line metric.

loopQty Counts the number of loops.
comparisonsQty Counts the number of comparisons.
tryCatchQty Counts the number of try/catches.
parenthesizedExpsQty Counts the number of expressions inside parenthesis.
stringLiteralsQty Counts the number of string literals.
numbersQty Counts the amount of numbers literals.
assignmentsQty Counts the amount of assignment statements.
mathOperationsQty Counts the number of math operations.
maxNestedBlocks Highest number of blocks nested together.
anonymousClassesQty Counts the number of anonymous classes.
subClassesQty Counts the number of subclasses.
lambdasQty Counts the number of lambda expressions.
uniqueWordsQty Counts the number of unique words in the source code.
modifiers Counts the number of modifiers in the class.
Vulnerable Label of the instance. False if not vulnerable, True if vulnerable.
Vulnerability Type The type of the vulnerability.
Vulnerability Location The line number of the vulnerability.

Nested The level of nesting of the line of code of the potential
vulnerability in the code.

Table A.2: Metrics for the method-level dataset.

68 A. Additional Graphs & Tables

A.2. Research Results

Figure A.1: Precision vs Recall class-level dataset

Figure A.2: F-measure vs MCC class-level dataset

A.2. Research Results 69

Figure A.3: ROC AUC vs AUCPR class-level dataset

Figure A.4: False Positive Rate vs False Negative Rate class-level dataset

70 A. Additional Graphs & Tables

FALSE TRUE <– classified as
9682 911 FALSE
465 1009 TRUE

Table A.3: Confusion Matrix of Random Forest(SMOTE) on class-level dataset

FALSE TRUE <– classified as
9545 1048 FALSE
396 1078 TRUE

Table A.4: Confusion Matrix of J48(SMOTE) on class-level dataset

FALSE TRUE <– classified as
10005 588 FALSE
1203 271 TRUE

Table A.5: Confusion Matrix of Naive Bayes(SMOTE) on class-level dataset

FALSE TRUE <– classified as
10538 55 FALSE
1411 63 TRUE

Table A.6: Confusion Matrix of SVM(SMOTE) on class-level dataset

FALSE TRUE <– classified as
8979 1614 FALSE
663 811 TRUE

Table A.7: Confusion Matrix of MLP(SMOTE) on class-level dataset

FALSE TRUE <– classified as
9627 966 FALSE
431 1043 TRUE

Table A.8: Confusion Matrix of Bagging(SMOTE) on class-level dataset

FALSE TRUE <– classified as
9681 912 FALSE
421 1053 TRUE

Table A.9: Confusion Matrix of Random Forest(ClassBalancer) on class-level dataset

FALSE TRUE <– classified as
9361 1232 FALSE
321 1153 TRUE

Table A.10: Confusion Matrix of J48(ClassBalancer) on class-level dataset

A.2. Research Results 71

FALSE TRUE <– classified as
10072 521 FALSE
1254 220 TRUE

Table A.11: Confusion Matrix of Naive Bayes(ClassBalancer) on class-level dataset

FALSE TRUE <– classified as
5560 5033 FALSE
719 755 TRUE

Table A.12: Confusion Matrix of SVM(ClassBalancer) on class-level dataset

FALSE TRUE <– classified as
7302 3291 FALSE
507 967 TRUE

Table A.13: Confusion Matrix of MLP(ClassBalancer) on class-level dataset

FALSE TRUE <– classified as
9509 1084 FALSE
329 1145 TRUE

Table A.14: Confusion Matrix of Bagging(ClassBalancer) on class-level dataset

Figure A.5: Precision vs Recall method-level dataset

72 A. Additional Graphs & Tables

Figure A.6: F-measure vs MCC method-level dataset

A.2. Research Results 73

Figure A.7: ROC AUC vs AUCPR method-level dataset

74 A. Additional Graphs & Tables

Figure A.8: False Positive Rate vs False Negative Rate method-level dataset

FALSE TRUE <– classified as
95976 1696 FALSE
849 892 TRUE

Table A.15: Confusion Matrix of Random Forest(SMOTE) on method-level dataset

FALSE TRUE <– classified as
94172 3500 FALSE
778 963 TRUE

Table A.16: Confusion Matrix of J48(SMOTE) on method-level dataset

FALSE TRUE <– classified as
88594 9078 FALSE
1212 529 TRUE

Table A.17: Confusion Matrix of Naive Bayes(SMOTE) on method-level dataset

FALSE TRUE <– classified as
86118 11554 FALSE
948 793 TRUE

Table A.18: Confusion Matrix of MLP(SMOTE) on method-level dataset

A.2. Research Results 75

FALSE TRUE <– classified as
94969 2703 FALSE
805 936 TRUE

Table A.19: Confusion Matrix of Bagging(SMOTE) on method-level dataset

FALSE TRUE <– classified as
94163 3509 FALSE
810 931 TRUE

Table A.20: Confusion Matrix of Random Forest(ClassBalancer) on method-level dataset

FALSE TRUE <– classified as
92504 5168 FALSE
682 1059 TRUE

Table A.21: Confusion Matrix of J48(ClassBalancer) on method-level dataset

FALSE TRUE <– classified as
89190 8482 FALSE
1237 504 TRUE

Table A.22: Confusion Matrix of Naive Bayes(ClassBalancer) on method-level dataset

FALSE TRUE <– classified as
11301 86371 FALSE
178 1563 TRUE

Table A.23: Confusion Matrix of MLP(ClassBalancer) on method-level dataset

FALSE TRUE <– classified as
93437 4235 FALSE
723 1018 TRUE

Table A.24: Confusion Matrix of Bagging(ClassBalancer) on method-level dataset

76 A. Additional Graphs & Tables

Figure A.9: Time in seconds for each classifier to be build with the class-level dataset

Figure A.10: Time in seconds for each classifier to be build with the method-level dataset

A.2. Research Results 77

Figure A.11: Time in seconds for each classifier to be build with the class-level ”System Information Leak: Internal” dataset

Figure A.12: Time in seconds for each classifier to be build with the class-level ”J2EE Bad Practices: Threads” dataset

78 A. Additional Graphs & Tables

Figure A.13: Time in seconds for each classifier to be build with the class-level ”Log Forging” dataset

Figure A.14: Time in seconds for each classifier to be build with the class-level ”Password Management: Hardcoded Password”
dataset

A.2. Research Results 79

Figure A.15: Time in seconds for each classifier to be build with the class-level ”Path Manipulation” dataset

Figure A.16: Time in seconds for each classifier to be build with the method-level ”System Information Leak: Internal” dataset

80 A. Additional Graphs & Tables

Figure A.17: Time in seconds for each classifier to be build with the method-level ”J2EE Bad Practices: Threads” dataset

Figure A.18: Time in seconds for each classifier to be build with themethod-level ”PasswordManagement: Hardcoded Password”
dataset

A.2. Research Results 81

Figure A.19: Time in seconds for each classifier to be build with the method-level ”Log Forging” dataset

Figure A.20: Time in seconds for each classifier to be build with the method-level ”Path Manipulation” dataset

82 A. Additional Graphs & Tables

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,147 0,234 0,181 0,797 2.29
J48(SMOTE) 0,152 0,250 0,189 0,582 0.43
Naive Bayes(SMOTE) 0,022 0,375 0,042 0,585 0.02
SVM(SMOTE) 0,033 0,250 0,058 0,573 8.15
MLP(SMOTE) 0,028 0,391 0,051 0,649 8.52
Bagging(SMOTE) 0,150 0,250 0,187 0,742 1.57
Random Forest(ClassBalancer) 0,013 0,125 0,024 0,727 0.51
J48(ClassBalancer) 0,027 0,281 0,048 0,568 0.14
Naive Bayes(ClassBalancer) 0,028 0,344 0,051 0,599 0.01
SVM(ClassBalancer) 0,027 0,375 0,051 0,594 2.35
MLP(ClassBalancer) 0,015 0,750 0,029 0,537 4.79
Bagging(ClassBalancer) 0,024 0,234 0,043 0,670 0.74

Table A.25: Performance of classifiers on class ”System Information Leak: Internal” dataset

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,556 0,808 0,659 0,964 0.51
J48(SMOTE) 0,523 0,865 0,652 0,922 0.03
Naive Bayes(SMOTE) 0,388 0,317 0,349 0,644 0.02
SVM(SMOTE) 0,569 0,279 0,374 0,632 0.56
MLP(SMOTE) 0,505 0,885 0,643 0,944 2.69
Bagging(SMOTE) 0,537 0,904 0,674 0,967 0.23
Random Forest(ClassBalancer) 0,547 0,904 0,681 0,969 0.16
J48(ClassBalancer) 0,510 0,942 0,662 0,941 0.01
Naive Bayes(ClassBalancer) 0,588 0,288 0,387 0,596 0
SVM(ClassBalancer) 0,287 0,394 0,332 0,663 0.24
MLP(ClassBalancer) 0,261 0,904 0,405 0,907 1.61
Bagging(ClassBalancer) 0,497 0,913 0,644 0,962 0.12

Table A.26: Performance of classifiers on class ”J2EE Bad Practices: Threads” dataset

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,397 0,511 0,447 0,916 0.19
J48(SMOTE) 0,300 0,467 0,365 0,700 0.01
Naive Bayes(SMOTE) 0,232 0,489 0,314 0,748 0
SVM(SMOTE) 0,239 0,489 0,321 0,684 0.1
MLP(SMOTE) 0,275 0,556 0,368 0,799 1.07
Bagging(SMOTE) 0,333 0,489 0,396 0,876 0.12
Random Forest(ClassBalancer) 0,400 0,400 0,400 0,901 0.06
J48(ClassBalancer) 0,317 0,422 0,362 0,676 0.01
Naive Bayes(ClassBalancer) 0,205 0,400 0,271 0,750 0
SVM(ClassBalancer) 0,206 0,578 0,304 0,703 0.04
MLP(ClassBalancer) 0,329 0,511 0,400 0,812 0.62
Bagging(ClassBalancer) 0,313 0,467 0,375 0,848 0.05

Table A.27: Performance of classifiers on class ”Log Forging” dataset

A.2. Research Results 83

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(ClassBalancer) 0,000 0,000 0,000 0,723 0.02
J48(ClassBalancer) 0,000 0,000 0,000 0,495 0
Naive Bayes(ClassBalancer) 0,000 0,000 0,000 0,744 0
SVM(ClassBalancer) 0,047 1,000 0,089 0,957 0.01
MLP(ClassBalancer) 0,005 1,000 0,011 0,382 0.48
Bagging(ClassBalancer) 0,000 0,000 0,000 0,494 0.01

Table A.28: Performance of classifiers on class ”Password Management: Hardcoded Password” dataset

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,595 0,694 0,641 0,877 0.07
J48(SMOTE) 0,575 0,639 0,605 0,814 0.01
Naive Bayes(SMOTE) 0,200 0,778 0,318 0,761 0
SVM(SMOTE) 0,209 0,778 0,329 0,712 0.03
MLP(SMOTE) 0,500 0,694 0,581 0,805 0.55
Bagging(SMOTE) 0,511 0,639 0,568 0,850 0.03
Random Forest(ClassBalancer) 0,585 0,667 0,623 0,864 0.04
J48(ClassBalancer) 0,468 0,611 0,530 0,767 0
Naive Bayes(ClassBalancer) 0,193 0,778 0,309 0,719 0
SVM(ClassBalancer) 0,194 0,833 0,314 0,708 0.01
MLP(ClassBalancer) 0,333 0,611 0,431 0,790 0.33
Bagging(ClassBalancer) 0,444 0,667 0,533 0,849 0.02

Table A.29: Performance of classifiers on class ”Path Manipulation” dataset

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,089 0,151 0,112 0,842 18.45
J48(SMOTE) 0,056 0,192 0,087 0,760 2.35
Naive Bayes(SMOTE) 0,007 0,562 0,014 0,784 0.14
SVM(SMOTE) - - - - -
MLP(SMOTE) 0,012 0,630 0,024 0,827 61.19
Bagging(SMOTE) 0,055 0,151 0,081 0,832 17.9
Random Forest(ClassBalancer) 0,030 0,233 0,053 0,847 4
J48(ClassBalancer) 0,035 0,438 0,065 0,710 0.5
Naive Bayes(ClassBalancer) 0,007 0,370 0,013 0,767 0.06
SVM(ClassBalancer) 0,009 0,781 0,018 0,800 120.82
MLP(ClassBalancer) 0,002 1,000 0,004 0,517 35.02
Bagging(ClassBalancer) 0,033 0,356 0,061 0,770 5.06

Table A.30: Performance of classifiers on method ”System Information Leak: Internal” dataset

84 A. Additional Graphs & Tables

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,517 0,643 0,574 0,972 6.62
J48(SMOTE) 0,357 0,643 0,460 0,929 0.82
Naive Bayes(SMOTE) 0,038 0,417 0,070 0,799 0.06
SVM(SMOTE) 0,050 0,591 0,092 0,753 43.68
MLP(SMOTE) 0,112 0,826 0,198 0,913 29.67
Bagging(SMOTE) 0,388 0,696 0,498 0,967 4.07
Random Forest(ClassBalancer) 0,500 0,791 0,613 0,968 1.35
J48(ClassBalancer) 0,284 0,809 0,420 0,899 0.21
Naive Bayes(ClassBalancer) 0,043 0,417 0,078 0,799 0.02
SVM(ClassBalancer) 0,042 0,635 0,080 0,763 17.03
MLP(ClassBalancer) 0,008 1,000 0,015 0,545 15.9
Bagging(ClassBalancer) 0,380 0,800 0,515 0,947 1.63

Table A.31: Performance of classifiers on method ”J2EE Bad Practices: Threads” dataset

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(ClassBalancer) 0,000 0,000 0,000 0,496 0.16
J48(ClassBalancer) 0,000 0,000 0,000 0,496 0.01
Naive Bayes(ClassBalancer) 0,000 0,000 0,000 0,325 0.01
SVM(ClassBalancer) - - - - -
MLP(ClassBalancer) 0,000 0,000 0,000 0,088 7
Bagging(ClassBalancer) 0,000 0,000 0,000 0,496 0.12

Table A.32: Performance of classifiers on method ”Password Management: Hardcoded Password” dataset

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,290 0,265 0,277 0,923 2.46
J48(SMOTE) 0,205 0,382 0,267 0,793 0.18
Naive Bayes(SMOTE) 0,034 0,485 0,063 0,751 0.03
SVM(SMOTE) 0,034 0,603 0,065 0,715 8.93
MLP(SMOTE) 0,065 0,750 0,120 0,849 12.33
Bagging(SMOTE) 0,215 0,382 0,275 0,904 1.51
Random Forest(ClassBalancer) 0,333 0,250 0,286 0,912 0.58
J48(ClassBalancer) 0,150 0,397 0,218 0,687 0.05
Naive Bayes(ClassBalancer) 0,037 0,456 0,068 0,797 0.01
SVM(ClassBalancer) 0,027 0,706 0,051 0,721 3.41
MLP(ClassBalancer) 0,010 1,000 0,020 0,621 7.18
Bagging(ClassBalancer) 0,228 0,309 0,262 0,831 0.75

Table A.33: Performance of classifiers on method ”Log Forging” dataset

A.2. Research Results 85

Classifier Precision Recall F-Measure ROC AUC Time(s)
Random Forest(SMOTE) 0,500 0,435 0,465 0,827 0.98
J48(SMOTE) 0,368 0,457 0,408 0,791 0.08
Naive Bayes(SMOTE) 0,093 0,652 0,163 0,847 0.01
SVM(SMOTE) 0,067 0,609 0,121 0,750 1.8
MLP(SMOTE) 0,114 0,543 0,188 0,768 6.56
Bagging(SMOTE) 0,440 0,478 0,458 0,869 0.61
Random Forest(ClassBalancer) 0,149 0,435 0,222 0,815 0.3
J48(ClassBalancer) 0,132 0,522 0,211 0,748 0.04
Naive Bayes(ClassBalancer) 0,089 0,652 0,157 0,849 0.01
SVM(ClassBalancer) 0,060 0,652 0,110 0,761 0.71
MLP(ClassBalancer) 0,015 0,870 0,030 0,551 3.78
Bagging(ClassBalancer) 0,128 0,478 0,202 0,799 0.27

Table A.34: Performance of classifiers on method ”Path Manipulation” dataset

Figure A.21: ROC curve Bagging with ClassBalancer for class-level dataset

86 A. Additional Graphs & Tables

Figure A.22: ROC curve Random Forest with SMOTE for method-level dataset

Figure A.23: Density of the classifiers

A.2. Research Results 87

Figure A.24: CD plot of comparison between the classifiers

Figure A.25: Density of the datasets

88 A. Additional Graphs & Tables

Figure A.26: CD plot of comparison between the datasets

Bibliography
[1] Saiqa Aleem, Luiz Fernando Capretz, and Faheem Ahmed. Benchmarking machine

learning technologies for software defect detection. arXiv preprint arXiv:1506.07563,
2015.

[2] Areej Algaith. Assessing the security benefits of defence in depth. PhD thesis, City,
University of London, 2019.

[3] Henrique Alves, Baldoino Fonseca, and Nuno Antunes. Experimenting machine learning
techniques to predict vulnerabilities. In 2016 Seventh Latin-American Symposium on
Dependable Computing (LADC), pages 151–156. IEEE, 2016.

[4] Richard Amankwah, Patrick Kwaku Kudjo, and Samuel Yeboah Antwi. Evaluation of
software vulnerability detection methods and tools: A review. International Journal of
Computers and Applications, 169(8):22–27, 2017.

[5] Maurício Aniche. Java code metrics calculator (CK), 2015. Available in
https://github.com/mauricioaniche/ck/.

[6] Nuno Antunes and Marco Vieira. Comparing the effectiveness of penetration testing and
static code analysis on the detection of sql injection vulnerabilities in web services. In
2009 15th IEEE Pacific Rim International Symposium on Dependable Computing, pages
301–306. IEEE, 2009.

[7] Hasty Atashzar, Atefeh Torkaman, Marjan Bahrololum, and Mohammad H Tadayon.
A survey on web application vulnerabilities and countermeasures. In 2011 6th Interna-
tional Conference on Computer Sciences and Convergence Information Technology (ICCIT),
pages 647–652. IEEE, 2011.

[8] Andrew Austin and Laurie Williams. One technique is not enough: A comparison of vul-
nerability discovery techniques. In 2011 International Symposium on Empirical Software
Engineering and Measurement, pages 97–106. IEEE, 2011.

[9] Nor Fatimah Awang and Azizah Abd Manaf. Detecting vulnerabilities in web applications
using automated black box and manual penetration testing. In International Conference
on Security of Information and Communication Networks, pages 230–239. Springer, 2013.

[10] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the art: Automated
black-box web application vulnerability testing. In 2010 IEEE Symposium on Security
and Privacy, pages 332–345. IEEE, 2010.

[11] Amiangshu Bosu, Jeffrey C Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni.
Identifying the characteristics of vulnerable code changes: An empirical study. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 257–268, 2014.

[12] Cagatay Catal and Banu Diri. A systematic review of software fault prediction studies.
Expert systems with applications, 36(4):7346–7354, 2009.

[13] Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Com-
puters & Electrical Engineering, 40(1):16–28, 2014.

[14] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research,
16:321–357, 2002.

89

90 Bibliography

[15] Brian Chess and Jacob West. Secure programming with static analysis. Pearson Edu-
cation, 2007.

[16] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476–493, 1994.

[17] Anuradha Chug and Shafali Dhall. Software defect prediction using supervised learning
algorithm and unsupervised learning algorithm. 2013.

[18] Mark Curphey and Rudolph Arawo. Web application security assessment tools. IEEE
Security & Privacy, 4(4):32–41, 2006.

[19] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7(1):1–30, 2006. URL http://jmlr.org/papers/v7/
demsar06a.html.

[20] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine learning research, 7(Jan):1–30, 2006.

[21] Maureen Doyle and James Walden. An empirical study of the evolution of php web
application security. In 2011 Third International Workshop on Security Measurements
and Metrics, pages 11–20. IEEE, 2011.

[22] Shaza M Abd Elrahman and Ajith Abraham. A review of class imbalance problem. Jour-
nal of Network and Innovative Computing, 1(2013):332–340, 2013.

[23] Alberto Fernández, Sara del Río, Nitesh V Chawla, and Francisco Herrera. An insight
into imbalanced big data classification: outcomes and challenges. Complex & Intelligent
Systems, 3(2):105–120, 2017.

[24] Eibe Frank and A Mark. Hall, and ian h. witten (2016). the weka workbench. online
appendix for” data mining: Practical machine learning tools and techniques, 2016.

[25] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learn-
ing, volume 1. Springer series in statistics New York, 2001.

[26] Vicente García, José Salvador Sánchez, and Ramón Alberto Mollineda. On the effec-
tiveness of preprocessing methods when dealing with different levels of class imbalance.
Knowledge-Based Systems, 25(1):13–21, 2012.

[27] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. Software vulnerability analy-
sis and discovery using machine-learning and data-mining techniques: A survey. ACM
Computing Surveys (CSUR), 50(4):56, 2017.

[28] Qiong Gu, Li Zhu, and Zhihua Cai. Evaluation measures of the classification perfor-
mance of imbalanced data sets. In International symposium on intelligence computation
and applications, pages 461–471. Springer, 2009.

[29] Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and Gong Bing.
Learning from class-imbalanced data: Review of methods and applications. Expert Sys-
tems with Applications, 73:220–239, 2017.

[30] Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur Ozdemir, Leonard R Kosta, Akshay
Rangamani, Lei H Hamilton, Gabriel I Centeno, Jonathan R Key, Paul M Ellingwood,
et al. Automated software vulnerability detection with machine learning. arXiv preprint
arXiv:1803.04497, 2018.

[31] Jon Heffley and Pascal Meunier. Can source code auditing software identify common
vulnerabilities and be used to evaluate software security? In 37th Annual Hawaii Inter-
national Conference on System Sciences, 2004. Proceedings of the, pages 10–pp. IEEE,
2004.

http://jmlr.org/papers/v7/demsar06a.html
http://jmlr.org/papers/v7/demsar06a.html

Bibliography 91

[32] Martin Johns and Moritz Jodeit. Scanstud: a methodology for systematic, fine-grained
evaluation of static analysis tools. In 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops, pages 523–530. IEEE, 2011.

[33] Maximilian Junker, Ralf Huuck, Ansgar Fehnker, and Alexander Knapp. Smt-based
false positive elimination in static program analysis. In International Conference on For-
mal Engineering Methods, pages 316–331. Springer, 2012.

[34] Samina Khalid, Tehmina Khalil, and Shamila Nasreen. A survey of feature selection
and feature extraction techniques in machine learning. In 2014 Science and Information
Conference, pages 372–378. IEEE, 2014.

[35] Pieter Kubben, Michel Dumontier, and Andre Dekker. Fundamentals of Clinical Data
Science. Springer, 2019.

[36] Kaspersky Lab. Carbanak apt: The great bank robbery. Securelist, 2015.

[37] Joffrey L Leevy, Taghi M Khoshgoftaar, Richard A Bauder, and Naeem Seliya. A survey
on addressing high-class imbalance in big data. Journal of Big Data, 5(1):42, 2018.

[38] Paige Leskin. The 21 scariest data breaches of 2018, Dec 2018. URL https://www.
businessinsider.nl/data-hacks-breaches-biggest-of-2018-2018-12/.

[39] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 1(1):6, 2018.

[40] Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. Software vulnerability discovery
techniques: A survey. In 2012 Fourth International Conference on Multimedia Information
Networking and Security, pages 152–156. IEEE, 2012.

[41] KW Man. Predicting software vulnerabilities with unsupervised learning techniques.
2020.

[42] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. The art, science, and engineering of
fuzzing: A survey. IEEE Transactions on Software Engineering, 2019.

[43] Steve Mansfield-Devine. The ashley madison affair. Network Security, 2015(9):8–16,
2015.

[44] Trust Tshepo Mapoka, Keneilwe Zuva, and Tranos Zuva. Hack the bank and best prac-
tices for secure bank.

[45] Ibéria Medeiros, Nuno F Neves, and Miguel Correia. Automatic detection and correc-
tion of web application vulnerabilities using data mining to predict false positives. In
Proceedings of the 23rd international conference on World wide web, pages 63–74. ACM,
2014.

[46] Andrew Meneely and Laurie Williams. Strengthening the empirical analysis of the rela-
tionship between linus’ law and software security. In Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement, pages 1–
10, 2010.

[47] Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez Tejeda,
Matthew Mokary, and Brian Spates. When a patch goes bad: Exploring the properties
of vulnerability-contributing commits. In 2013 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pages 65–74. IEEE, 2013.

[48] Savita Mohurle andManisha Patil. A brief study of wannacry threat: Ransomware attack
2017. International Journal of Advanced Research in Computer Science, 8(5), 2017.

[49] Patrick Morrison, Kim Herzig, Brendan Murphy, and Laurie Williams. Challenges with
applying vulnerability prediction models. In Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security, pages 1–9, 2015.

https://www.businessinsider.nl/data-hacks-breaches-biggest-of-2018-2018-12/
https://www.businessinsider.nl/data-hacks-breaches-biggest-of-2018-2018-12/

92 Bibliography

[50] Sara Moshtari, Ashkan Sami, and Mahdi Azimi. Using complexity metrics to improve
software security. Computer Fraud & Security, 2013(5):8–17, 2013.

[51] Iqbal Muhammad and Zhu Yan. Supervised machine learning approaches: A survey.
ICTACT Journal on Soft Computing, 5(3), 2015.

[52] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In ACM Sigplan notices, volume 42, pages 89–100. ACM, 2007.

[53] Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel Correia, and Marco
Vieira. On combining diverse static analysis tools for web security: An empirical study.
In 2017 13th European dependable computing conference (EDCC), pages 121–128. IEEE,
2017.

[54] Paulo Nunes, Ibéria Medeiros, José C Fonseca, Nuno Neves, Miguel Correia, and Marco
Vieira. Benchmarking static analysis tools for web security. IEEE Transactions on Reli-
ability, 67(3):1159–1175, 2018.

[55] Paulo Nunes, Ibéria Medeiros, José Fonseca, Nuno Neves, Miguel Correia, and Marco
Vieira. An empirical study on combining diverse static analysis tools for web security
vulnerabilities based on development scenarios. Computing, 101(2):161–185, 2019.

[56] National Institute of Standards & Technology. The economic impacts of inadequate
infrastructure for software testing, may 2002. Accessed: 27th July 2019.
Available at: https://www.nist.gov/sites/default/files/documents/director/
planning/report02-3.pdf.

[57] Joonyoung Park, Inho Lim, and Sukyoung Ryu. Battles with false positives in static
analysis of javascript web applications in the wild. In 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C), pages 61–70. IEEE, 2016.

[58] Refaeilzadeh Payam, Tang Lei, and Liu Huan. Cross-validation. Encyclopedia of
database systems, pages 532–538, 2009.

[59] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans-
actions on pattern analysis and machine intelligence, 27(8):1226–1238, 2005.

[60] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi, Konrad
Rieck, Sascha Fahl, and Yasemin Acar. Vccfinder: Finding potential vulnerabilities in
open-source projects to assist code audits. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 426–437, 2015.

[61] Liu Ping, Su Jin, and Yang Xinfeng. Research on software security vulnerability detec-
tion technology. In Proceedings of 2011 International Conference on Computer Science
and Network Technology, volume 3, pages 1873–1876. IEEE, 2011.

[62] Thorsten Pohlert. The pairwise multiple comparison of mean ranks package (pmcmr).
R package, page 27, 2016. https://cran.r-project.org/web/packages/PMCMR/
vignettes/PMCMR.pdf.

[63] MC Prasad, Lilly Florence, and Arti Arya. A study on software metrics based software
defect prediction using data mining and machine learning techniques. International
Journal of Database Theory and Application, 8(3):179–190, 2015.

[64] Jose C Principe, Neil R Euliano, and W Curt Lefebvre. Neural and adaptive systems:
fundamentals through simulations, volume 672. Wiley New York, 2000.

[65] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[66] RH Riffenburgh. Chapter 11—tests on ranked data. Statistics in Medicine, 3rd ed.;
Elsevier Inc.: San Diego, CA, USA, pages 221–248, 2012.

https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
https://cran.r-project.org/web/packages/PMCMR/vignettes/PMCMR.pdf
https://cran.r-project.org/web/packages/PMCMR/vignettes/PMCMR.pdf

Bibliography 93

[67] Daniel Rodriguez, Israel Herraiz, Rachel Harrison, Javier Dolado, and José C Riquelme.
Preliminary comparison of techniques for dealing with imbalance in software defect pre-
diction. In Proceedings of the 18th International Conference on Evaluation and Assess-
ment in Software Engineering, pages 1–10, 2014.

[68] Linda Rosenberg. Applying and interpreting object oriented metrics. In Software Tech-
nology Conference, Utah, April 1998, 1998.

[69] Joseph Ruthruff, John Penix, J Morgenthaler, Sebastian Elbaum, and Gregg Rothermel.
Predicting accurate and actionable static analysis warnings. In 2008 ACM/IEEE 30th
International Conference on Software Engineering, pages 341–350. IEEE, 2008.

[70] Gary J Saavedra, Kathryn N Rodhouse, Daniel M Dunlavy, and Philip W Kegelmeyer.
A review of machine learning applications in fuzzing. arXiv preprint arXiv:1906.11133,
2019.

[71] Riccardo Scandariato, James Walden, and Wouter Joosen. Static analysis versus pene-
tration testing: A controlled experiment. In 2013 IEEE 24th international symposium on
software reliability engineering (ISSRE), pages 451–460. IEEE, 2013.

[72] Hossain Shahriar and Mohammad Zulkernine. Mitigating program security vulnerabil-
ities: Approaches and challenges. ACM Computing Surveys (CSUR), 44(3):11, 2012.

[73] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[74] Yonghee Shin and Laurie Williams. An empirical model to predict security vulnerabilities
using code complexity metrics. In Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement, pages 315–317, 2008.

[75] Yonghee Shin and Laurie Williams. An initial study on the use of execution complexity
metrics as indicators of software vulnerabilities. In Proceedings of the 7th International
Workshop on Software Engineering for Secure Systems, pages 1–7, 2011.

[76] Yonghee Shin and Laurie Williams. Can traditional fault prediction models be used for
vulnerability prediction? Empirical Software Engineering, 18(1):25–59, 2013.

[77] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne. Evaluating
complexity, code churn, and developer activity metrics as indicators of software vulner-
abilities. IEEE transactions on software engineering, 37(6):772–787, 2010.

[78] Yanmin Sun, Andrew KC Wong, and Mohamed S Kamel. Classification of imbalanced
data: A review. International journal of pattern recognition and artificial intelligence, 23
(04):687–719, 2009.

[79] Yeresime Suresh, Jayadeep Pati, and Santanu Ku Rath. Effectiveness of softwaremetrics
for object-oriented system. Procedia technology, 6:420–427, 2012.

[80] Jay-Evan J Tevis and John A Hamilton. Methods for the prevention, detection and
removal of software security vulnerabilities. In Proceedings of the 42nd annual Southeast
regional conference, pages 197–202. ACM, 2004.

[81] Archit Verma. Evaluation of classification algorithms with solutions to class imbalance
problem on bank marketing dataset using weka. International Research Journal of En-
gineering and Technology, pages 54–60, 2019.

[82] James Walden, Jeff Stuckman, and Riccardo Scandariato. Predicting vulnerable com-
ponents: Software metrics vs text mining. In 2014 IEEE 25th international symposium
on software reliability engineering, pages 23–33. IEEE, 2014.

[83] Wang Wei. Survey of software vulnerability discovery technology. In 2017 7th Interna-
tional Conference on Social Network, Communication and Education (SNCE 2017). Atlantis
Press, 2017.

94 Bibliography

[84] John Wilander and Mariam Kamkar. A comparison of publicly available tools for dy-
namic buffer overflow prevention. In The 10th Network & Distributed System Security
Symposium 2003 (NDSS), San Diego, California, USA, page 149. Internet Society, 2003.

[85] Guanhua Yan, Junchen Lu, Zhan Shu, and Yunus Kucuk. Exploitmeter: Combining
fuzzing with machine learning for automated evaluation of software exploitability. In
2017 IEEE Symposium on Privacy-Aware Computing (PAC), pages 164–175. IEEE, 2017.

[86] Jinqiu Yang, Lin Tan, John Peyton, and Kristofer A Duer. Towards better utilizing static
application security testing. In Proceedings of the 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice, pages 51–60. IEEE Press, 2019.

[87] Awad Younis, Yashwant Malaiya, Charles Anderson, and Indrajit Ray. To fear or not to
fear that is the question: Code characteristics of a vulnerable functionwith an existing
exploit. In Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, pages 97–104, 2016.

[88] Chulmin Yun and Jihoon Yang. Experimental comparison of feature subset selection
methods. In Seventh IEEE International Conference on Data Mining Workshops (ICDMW
2007), pages 367–372. IEEE, 2007.

[89] Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Searching for a
needle in a haystack: Predicting security vulnerabilities for windows vista. In 2010
Third International Conference on Software Testing, Verification and Validation, pages
421–428. IEEE, 2010.

	Introduction
	Background
	Problem Statement
	Research Questions
	Contributions
	Fortify Overview

	Report Overview

	Related Work
	Software Vulnerabilities Causes
	Most Common Software Vulnerabilities
	Vulnerability Detection Methods
	Fuzzing
	Web Application Scanners
	Static Analysis Techniques
	Brick
	CRED
	Manual Testing

	State-of-the-Art Tools for Vulnerability Detection
	Software Vulnerability Prediction using Machine Learning
	Software Metrics
	Feature Selection
	Class Imbalance
	Machine learning techniques

	Other Approaches

	The Datasets
	Data Origin
	Gathering Data
	Building the datasets
	Analysing the datasets
	Datasets visualised
	Metrics

	Preprocessing the datasets
	Normalization
	Feature Selection
	Class Imbalance

	Research Design
	RQ1
	J48
	Random Forest
	Naive Bayes
	Support-vector machine (SVM)
	Multilayer perceptron (MLP)
	Bagging

	RQ2
	RQ3
	Statistical Comparison

	Research Results
	RQ1
	Class-level Dataset
	Method-level Dataset
	Research Question Answer

	RQ2
	Research Question Answer

	RQ3
	Overall Classifier comparison
	Overall Dataset comparison
	Research Question Answer

	Discussion
	Main findings
	Comparison with Related Work
	Implications
	Design
	Recommendations

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion & Future Work
	Future Work
	Limitations
	Security Metrics
	Fuzzing
	Deep learning

	Additional Graphs & Tables
	Code metrics
	Research Results

	Bibliography

