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Abstract

Hybrid RANS-LES methods have become a popular numerical approach for a wide variety of flows.

This is due to dissatisfaction with the RANS modelling paradigm in separated flows along with the

prohibitive computational cost of pure LES, especially in wall-bounded flows at high Reynolds numbers.

However, these methods are susceptible to the grey area problem, where the modeling approach is

neither RANS nor LES: rather it is a region with an ambiguous modeling approach. In zonal approaches

that function as embedded wall-modeled LES (WMLES), the transition from RANS to LES can be

accelerated by improving the synthetic turbulence and its injection into the flow. In this work, a

systemic assessment of the two aspects of zonal grey area mitigation methods was carried out. The

synthetic turbulence was generated by the synthetic turbulence generator (STG) and injected into the

flow using two different forcing terms. To ensure accurate second-order statistics of synthetic turbulence,

a priori estimations of the bias error associated with a specific realization of a random number set

were implemented and used. This resulted in smaller deviations between the statistics of the synthetic

turbulence and the target Reynolds stresses. Furthermore, a modified synthetic turbulence forcing that

ensures more accurate estimation of the total shear stress in close proximity to the RANS-LES interface

was proposed. Moreover, a dynamic forcing that selectively enhances the production of underestimated

Reynolds stresses was implemented and evaluated. These aspects resulted in a faster transition from

RANS to LES in terms of both skin friction coefficients and Reynolds stresses. In addition, the WMLES

capabilities of the subgrid length scale Δ̃𝜔 together with the subgrid-scale 𝜎-model were explored. This

work revealed that this combination is troublesome when used as embedded WMLES with synthetic

turbulence, especially in stable flows. This is due to excessively decreased levels of eddy viscosity in the

near-wall RANS region.
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1
Introduction

There has been an increasing interest in hybrid RANS-LES methods (HRLM), motivated by several

reasons. Firstly, there is dissatisfaction with the RANS modeling approach, particularly for separated

flows, where its accuracy suffers despite years of development efforts [1]. Secondly, pure LES methods,

while more accurate than RANS, are computationally prohibitive, especially for wall-bounded flows at

high Reynolds numbers. Additionally, there is a growing interest in unsteady flow characteristics, most

notably in aeroacoustics research. Furthermore, there is a need for more precise flow predictions near

the limits of the design envelope, where separation and unsteadiness are characteristic. As a result,

several new hybrid methods have emerged, the most widely used being Detached-Eddy Simulations

(DES) [2].

In DES, attached boundary layers are treated entirely by RANS, whereas separated flows are treated

by LES. When switching from RANS to LES, an area of undefined modeling approach may exist, where

the modeling approach is neither RANS nor a proper LES. This is referred to as the Grey Area (GA)

problem and is extensively studied in the literature (see [3] and [4]). The grey area is the result of

switching the modeling approach from RANS to LES without sufficient resolved turbulent content. The

severity of the grey area problem depends on the flow, where flows with shallow separation are more

severely affected as opposed to massively separated flows with their strong natural instabilities. As a

result, flows with shallow separation typically require the injection of synthetic turbulence to stimulate

the development of turbulent content.

Based on the definition of the RANS-LES interface, whether defined manually by the user or

automatically by the HRLM itself, two modeling approaches are distinguished, zonal and non-zonal.

Non-zonal approaches rely on intrinsic flow instabilities, such as the ones in separated shear layers, as

the source of resolved turbulent content. In these approaches, the delay in transitioning from modeled

to resolved turbulence is due to the high levels of subgrid-scale (SGS) viscosity in the initial regions of

the shear layers. Such high levels of SGS viscosity dampen the intrinsic flow instabilities of free shear

layers, hindering their development into resolved turbulence. These large magnitudes of SGS viscosity

are due to one of the following reasons. The first is the anisotropic grids (large spanwise spacing),

typically used in the initial shear layers region, combined with using Smagorinsky-like models that are

calibrated for isotropic cells. The second reason is the Smagorinsky-like model itself, which is unable to

recognize quasi-2D flows and decrease its viscosity level accordingly [3].

To mitigate the grey area problem in non-zonal approaches, a considerable decrease in the SGS

viscosity in the early shear layer regions is required. This can be achieved by modifying the subgrid

length scale or the SGS model. Chauvet et al. [5] introduced the concept of sensitizing the subgrid

length scale to the orientation of the vorticity vector in the grid. The formulation was later generalized

to be used for unstructured grids by Deck [6]. Shur et al. [3] improved the formulation by decreasing the

influence of the smallest grid spacing and proposed Δ̃𝜔. On the other hand, Mockett et al. [4] proposed

using the 𝜎−model of [7] as the SGS model.

In contrast, zonal approaches when used as embedded wall-modeled LES (WMLES) rely on the

injection of synthetic turbulence into the flow field as the source of turbulence content. These zonal

approaches should be distinguished from the zonal DES (ZDES) by Deck [8], which may not always

involve the injection of synthetic turbulence. The former is the focus of this work and is referred to as

1
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zonal approaches for short. In such zonal approaches, the delay in the transition from fully modeled

to resolved turbulence is determined by the quality of the injected synthetic turbulence and how it

is introduced into the flow. It is believed that a good approximation of the low-order statistics of

wall-bounded flows can be obtained when injecting turbulent structures whose shapes are representative

of physically coherent structures in the boundary layer [9]. Thus, shortening the RANS-LES transition in

zonal approaches requires improving the quality of the synthetic turbulence itself as well as its injection

methods [10]. Examples of synthetic turbulence generators include the Synthetic Eddy Method (SEM)

and the Synthetic turbulent generator (STG), proposed by Jarrin et al. [11] and Adamian et al. [12],

respectively.

Even though non-zonal methods may seem more attractive, as they do not require injecting synthetic

turbulence, their effectiveness highly depends on the flow problem. In the literature, non-zonal grey

area mitigation methods are extensively applied in flow cases with strong natural instabilities, typically

free shear layers resulting from abrupt separation. Examples of such flow cases include a spatially

developing plane mixing layer, a backward-facing step, and an unheated jet, studied by Mockett et al.

[4] and Shur et al. [3]. There is a consensus that non-zonal grey area mitigation methods will struggle

in more challenging flow cases, such as adverse-pressure gradient (APG) separations. In this work,

non-zonal grey area mitigation methods, specifically 𝜎-DDES and Δ̃𝜔, are applied to such challenging

flow cases, where their inadequacy is illustrated.

In this work, zonal grey area mitigation methods are assessed, some of which are improved. Zonal

approaches have two main aspects: the first is the synthetic turbulence itself, and the second is the

forcing term used to inject it into the flow. This work analyzes the STG of [12] and the modified variant

NTS-STG of [13]. Furthermore, the source term proposed by Probst [14] as well as that by Shur et al. [15]

are evaluated. In the literature, synthetic turbulence generation methods are often treated as a black

box, where their direct output is rarely analyzed. This work presents a systematic assessment of the

quality of the synthetic turbulence and its injection methods. First, the statistics of synthetic turbulence

are evaluated when varying two input parameters, the target Reynolds stress and the random number

set used in both variants of the STG. The aim of the latter is to reduce the bias errors associated with

a specific realization of random numbers [16]. Then, the two source terms are evaluated, where the

advantages and limitations of each are discussed. Two modifications to the source terms are proposed

to address the encountered shortcomings.

This thesis starts with the description of the modeling framework by presenting DES and its different

versions in chapter 2. Thereafter, a brief study, highlighting the limitations of non-zonal grey area

mitigation methods, is carried out in chapter 3. This is followed by a presentation of the different aspects

of the research activities in chapter 4. The main research activities of this thesis start with discussing the

synthetic turbulence generation and analyzing two main parameters that affect its quality in chapter 5.

With the ensured quality of the synthetic turbulence, its sensitivity to two input parameters, the random

number set and the target Reynolds stresses, is evaluated and discussed in chapter 6. Then, chapter 7

assesses different synthetic forcing methods, with a focus on the resolved stresses in close proximity

to the forcing region. Based on the shortcomings encountered with the assessed source terms, two

modifications are proposed in chapter 8. In chapter 9, 𝜎-DDES and Δ̃𝜔 are used to perform WMLES

and embedded WMLES to assess their WMLES capabilities. In chapter 10, conclusions of the research

are highlighted and recommendations for future work are presented.



2
Modelling Approach

Detached Eddy Simulation (DES) is a popular hybrid RANS-LES method (HRLM) in the industrial

CFD community. The principle of this method is to treat the entire attached turbulent boundary layer

with RANS and apply LES to regions with large flow separations. Therefore, having the RANS-LES

interface inside the boundary layer is not the intended use of the method, which Mockett [17] refers to

as extended uses of DES. Extended use of DES includes using DES as (embedded) wall-modeled LES,

where only the near-wall region is modeled with RANS and the rest of the boundary layer is treated

by LES. This is possible, in principle, through grid design in a manner that the modeling paradigm

switches in the boundary layer. However, this does not provide the desired behavior in stable flows

because the upstream region RANS lacks resolved turbulent content, leading to the grey area problem

discussed in section 2.1.

The original formulation of DES was proposed by Spalart [2] and is commonly referred to as DES97.

Since it is aimed to use the same model for both the RANS and LES regions, the RANS model with wall

distance in its formulation is a natural choice for DES97. In DES97 formulation, a DES length scale was

introduced to replace the Spalart–Allmaras (SA) wall distance (𝑑𝑤). The length scale in DES97 is as

follows:

𝑙DES97 = min (𝑑𝑤 ; 𝑙LES) , 𝑙LES = 𝐶DESΔ, Δ = max (Δ𝑥;Δ𝑦;Δ𝑧) . (2.1)

In the near-wall region, where 𝑑𝑤 < 𝑙LES, , the DES length scale is set to the RANS model length

scale, and the model formulation is identical to the SA RANS model. Far from the wall, 𝑑𝑤 > 𝑙LES, and

hence the LES length scale (𝑙LES) is used. 𝑙LES is a function of only the local grid cell size, Δ, multiplied

by a model constant 𝐶DES. This non-zonal switching between RANS and LES modes is theoretically a

valuable feature of DES97, but it turned out to be problematic. Undesired switching between RANS and

LES can occur on ambiguous grids. This problematic behavior along with other shortcomings of DES97

are discussed in section 2.1.

2.1. DES Shortcomings
Several shortcomings have been identified with DES97. While some of them were expected from the

beginning, others have been revealed in subsequent studies [17]. The first issue with DES97 is the

erroneous activation of near-wall damping terms in the LES mode. Some RANS models, including the

SA model, have dampening terms in their formulation to ensure correct near-wall behavior. When these

RANS models are applied in DES97, the activation of the LES length scale could erroneously activate

these damping terms, which will in turn decrease the subgrid-scale (SGS) viscosity to near-zero levels.

Another issue with DES97 is the activation of the LES mode inside the boundary layer, which is a

result of the length scale definition. DES97 formulation assumes that tangential grid spacings near the

wall are much larger than the boundary layer thickness (𝛿), more specifically Δ𝑥, Δ𝑧 ≫ 𝛿/𝐶DES . If this

is the case, the switching from RANS to LES, where 𝑑𝑤 = 𝐶DESΔ, will be located outside the boundary

layer, as intended. Otherwise, the switching from RANS to LES will take place in the boundary layer,

resulting in excessively reduced levels of eddy viscosity in the LES region due to the activation of the

LES mode. In the latter case, the grid is too fine for the correct functioning of DES97, but too coarse

3
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for LES to resolve the turbulent boundary layer structures. This ambiguous grid resolution leads to a

decrease in modeled Reynolds stresses and is therefore referred to as modeled stress depletion (MSD).

MSD is one of the most serious problems encountered in DES97, especially in industrial applications.

This is because obtaining such large tangential grid spacing (e.g. in the streamwise direction) is not

always practical in terms of an accurate representation of the geometry. Furthermore, the fact that the

results deteriorate as the mesh is refined is not only undesirable but also paradoxical.

The Grey Area problem is another shortcoming of DES97. It is a region where the modeling mode is

neither RANS nor a fully developed LES; rather, it is a region with an undetermined modeling mode. To

demonstrate this problem, consider a boundary layer flow that separates from a surface and transforms

into a free shear layer. In the initial part of the separated boundary layer, LES mode should be active,

and the turbulent kinetic energy should be mostly resolved. However, resolved turbulent content is

required for LES mode to operate correctly, which cannot be provided by the upstream RANS region.

Therefore, the modeling mode in this region is not LES due to the lack of resolved turbulence, nor is

it RANS due to the reduced eddy viscosity as a result of using the reduced length scale of LES (𝑙LES).
This is aggravated by the transport of eddy viscosity from the upstream RANS region. The severity

of the grey area problem depends on the flow case and the strength of the shear layer instabilities.

The problem is more severe in stable flows, such as shallow separations, which lack strong natural

instabilities that could quickly develop into resolved turbulence. On the contrary, unstable flows, such

as massively separated flows, can quickly develop such natural instabilities. As a result, unstable flows

can show resolved turbulence relatively quickly downstream of the RAN-LES interface, thus they are

not severely affected by the grey area problem.

A final drawback of DES97 is the Log Layer Mismatch (LLM). The LLM appears as a kink in the

velocity profile between the RANS and LES logarithmic layers, resulting in an underestimation of the

skin friction coefficient of the order of 15% [17]. LLM is a common issue even in zonal HRLM, which

the IDDES formulation attempts to solve as discussed in section 2.3.

2.2. Delayed Detached-eddy Simulation (DDES)
Delayed Detached-Eddy Simulation (DDES) is an enhanced version of DES97 that addresses some of

the aforementioned shortcomings. First, the issue of the damping terms being active in the LES mode is

addressed with a correction function Ψ. The reader is directed to [18] for the exact formulation of Ψ.

Briefly, Ψ restores the Smagorinsky model behavior for all values of eddy viscosity, and is included in

the length scale definition as follows:

𝑙LES = 𝐶DESΨΔ. (2.2)

Next, the issue of the LES incursion within the boundary layer that causes modeled stress depletion

is resolved using a shielding/delay function ( 𝑓𝑑). In DES97, the switching from RAN to LES is based

solely on the grid spacings, which results in the grid ambiguity issue. To solve this issue, it is natural to

formulate a new length scale to be dependent on the solution. Spalart et al. [18] proposed a sensor that

is able to detect the boundary layer, and is defined as follows:

𝑟𝑑 =
𝜈𝑡 + 𝜈

𝜅2𝑑2

𝑤 max

(√
𝜕𝑈𝑖

𝜕𝑥 𝑗
𝜕𝑈𝑖

𝜕𝑥 𝑗
; 10

−10

) (2.3)

The sensor 𝑟𝑑 is based on the function 𝑟 from the SA model but modified to be applicable to any eddy

viscosity model. Using this sensor, the delay function 𝑓𝑑 blends between the RANS region and the LES

region and reads

𝑓𝑑 = 1 − tanh

[
(𝑐𝑑𝑟𝑑)3

]
(2.4)

where 𝑐𝑑 is a coefficient with a value of 8, unless stated otherwise. The ideal behavior of the delay

function is such that 𝑓𝑑 = 0 inside turbulent boundary layers, and blends smoothly to 𝑓𝑑 = 1 at the edge

of the boundary layer. As a result, 𝑓𝑑 prevents the activation of the LES mode inside the boundary layer

using a hybrid length scale that is defined as follows:

𝑙DDES = 𝑙RANS − 𝑓𝑑 max (0; 𝑙RANS − 𝑙LES) (2.5)

With this length scale definition, DDES addresses most of the shortcomings of DES97, with the exception

of the LLM issue. However, the boundary layer is still fully modeled by RANS, rendering DDES
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incapable of performing WMLES. An Improved version of DDES (IDDES) that addresses the LLM issue

and allows for WMLES capabilities was proposed in [19].

2.3. Improved Delayed Detach Eddy Simulation (IDDES)
Improved Delayed Detach Eddy Simulation (IDDES) is an improved version of DDES proposed by Shur

et al. [19]. The IDDES formulation has two branches: DDES and WMLES. The WMLES branch was

proposed to solve the LLM issue. The main components of this method are a new formulation of the

near-wall LES subgrid length scale Δ and a faster switching between RANS and LES modes compared

to DES97 and DDES.

First, a new subgrid length scale was proposed. This was done as an alternative to changing

the Smagorinsky constant, depending on whether the flow is homogeneous or sheared. The new

formulation of the subgrid length scale reads as follows:

ΔIDDES = min [max (𝐶𝑤𝑑𝑤 ;𝐶𝑤ℎmax; ℎ𝑤𝑛) ; ℎmax] (2.6)

where ℎmax is the maximum grid spacing in all three directions, i.e., the standard Δmax. ℎ𝑤𝑛 is the

spacing in the wall-normal direction, and 𝐶𝑤 is an empirical constant with a value of 0.15.

The second component of the IDDES formulation is the rapid switching from RANS to LES within

the boundary layer. This enables IDDES to perform WMLES, where a large part of the boundary layer is

resolved. The WMLES branch is intended to be active only when turbulent content is present and the

grid is fine enough to resolve the large turbulent structures in the boundary layer. The WMLES branch

merges between RANS and LES through a new hybrid length scale 𝑙WMLES, defined as follows:

𝑙WMLES = 𝑓B (1 + 𝑓e) 𝑙RANS + (1 − 𝑓B) 𝑙LES (2.7)

where 𝑓B and 𝑓e are the two ingredients of the new hybrid length scale definition. 𝑓B is an empirical

blending function that switches rapidly between RANS ( 𝑓B = 1) and LES ( 𝑓B = 0) modes. It is a function

of the ratio 𝑑w/ℎmax and reads

𝑓B = min

{
2 exp

(
−9𝛼2

)
, 1.0

}
, 𝛼 = 0.25 − 𝑑w/ℎmax. (2.8)

The second empirical function, 𝑓𝑒 , aims to eliminate the LLM issue by preventing excessive reduction

of modeled Reynolds stresses near the RANS-LES interface. This is achieved by increasing the RANS

length scale near the interface. 𝑓e is known as the elevation function since it increases the modeled

Reynolds stresses and is given by

𝑓e = max {( 𝑓e1 − 1) , 0}Ψ 𝑓e2 (2.9)

𝑓e consists of two components, one is grid-dependent and the other solution-dependent. The grid-

dependent component, 𝑓e1, is defined as follows:

𝑓e1 (𝑑w/ℎmax) =
{

2 exp

(
−11.09𝛼2

)
if 𝛼 ≥ 0

2 exp

(
−9.0𝛼2

)
if 𝛼 < 0

(2.10)

The solution-dependent component is defined similarly to Equation 2.4, however, the turbulent viscosity

𝜈𝑡 and the laminar viscosity 𝜈 are separated into two different terms and renamed 𝑟𝑑𝑡 and 𝑟𝑑𝑙 , respectively.

The reader is referred to [19] for their detailed formulation.

The final aspect of the IDDES formulation is to combine the newly developed WMLES branch and

the DDES branch. The DDES length scale Equation 2.5 and that of the WMLES branch Equation 2.7 are

combined in a manner that ensures the proper selection of the branch based on the presence of turbulent

content and the grid resolution. To achieve this, Shur et al. [19] proposed a modified formulation of

𝑙DDES, which is practically equivalent to the original formulation in Equation 2.5. The modified 𝑙DDES,

denoted 𝑙DDES, reads:

𝑙DDES = 𝑓d𝑙RANS +
(
1 − 𝑓d

)
𝑙LES (2.11)

where the blending function 𝑓d is defined as follows:

𝑓d = max {(1 − 𝑓dt) , 𝑓B} (2.12)
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with 𝑓dt = 1 − tanh

[
(8𝑟dt)3

]
. Using Equation 2.11, the hybrid IDDES length scale that combines the

DDES branch and the WMLES branch is then:

𝑙hyb = 𝑓d (1 + 𝑓e) 𝑙RANS +
(
1 − 𝑓d

)
𝑙LES (2.13)

The choice to operate in one of the branches is assessed as follows: in case the flow field contains

turbulent content, 𝑟dt ≪ 1; 𝑓dt is close to 1.0 ; therefore 𝑓d is equal to 𝑓B; and so 𝑙
hyb

= 𝑙WMLES . Otherwise,

𝑓𝑒 becomes zero, and then 𝑙
hyb

= 𝑙DDES. In this work, the WMLES branch is enforced by manually

setting 𝑓dt = 1.

From DES97 through DDES and subsequently IDDES, it is evident that complexity has been rising.

However, IDDES is regarded as the most suitable formulation for wall-bounded flows, which is of

major relevance in this work, because of its capacity to address the LLM issue. Furthermore, the IDDES

formulation provides proper WMLES capability in the sense that most of the turbulent structures in

boundary layers are resolved.



3
Non-zonal Approaches: A Brief Study

Non-zonal DES-like methods rely on the natural instabilities of the flow, such as in free shear layers or

separated flows, as the source of resolved turbulence. This makes them attractive as they do not require

injecting synthetic turbulence. However, these instabilities get typically dampened, which results in a

delayed transition from modeled to resolved turbulence, especially in stable flows. The dampening

of the instabilities occurs due to two reasons. The first is the convection of eddy viscosity from the

upstream attached boundary layer treated by RANS, while the second is the excessively large modeled

turbulence in the initial part of the separated flow region treated by LES. The latter is caused by the

anisotropy of the grid or the Smagorinsky-like subgrid-scale models, typically used in DES-like methods

[3]. Two strategies that address the latter are the subgrid length scale Δ̃𝜔 [3] and subgrid-scale (SGS)

𝜎−model [7], which are discussed in this chapter.

Although using 𝜎-DDES with Δ̃𝜔 as a non-zonal grey area mitigation approach is common in the

literature, these studies only investigate cases with massive separation. It is believed that non-zonal

grey area mitigation approaches, such as the 𝜎-DDES and Δ̃𝜔, will struggle in more stable flow cases

(e.g. smooth body separation) due to the lack of sufficient natural instabilities. This is evaluated in this

brief study, where 𝜎-DDES with Δ̃𝜔 are applied to a test case with pressure-induced separation. In

this chapter, the rounded step test case, which is detailed in subsection 4.2.2, is used to illustrate the

limitations of non-zonal methods in stable flows. The rounded step is a shallow separation test case,

with an expansion of 1𝐻 (the step high), resulting in a pressure-induced separation and subsequent

re-attachment. Note that the subgrid length scale Δ̃𝜔 and the SGS 𝜎−model are also used in embedded

WMLES computations as part of the main research activities, detailed in section 4.1.

3.1. The Subgrid Length Scale: Δ̃𝜔
The first version of DES (DES97) is known to have a slow transition from modeled to resolved turbulence

in free and separated shear layers due to excessively large modeled turbulence [20]. The anisotropic

grids in these regions, which are fine across a shear layer but coarse in the spanwise direction, are one

main cause of the high levels of eddy viscosity. Such cells produce grids that differ greatly from the

isotropic cells assumed in LES functions within the DES approach. As a result, the subgrid length scale

Δ𝑚𝑎𝑥 , defined in the original DES formulation, produces too large modeled turbulence. This is far from

the intended functioning of DES, as it is intended to operate in LES mode in separated flow regions.

This issue, which was anticipated by Spalart [2] in their first introduction of DES, severely decreases the

accuracy of flow predictions, especially in flows with shallow boundary layer separations.

To address this shortcoming, new subgrid length scales that are dependent on the solution and not

merely on the grid resolution have been proposed in the literature. Chauvet et al. [5] introduced the idea

of sensitizing the subgrid length scale to the orientation of the vorticity vector. The formulation was

later generalized to be used for unstructured grids by Deck [6]. Shur et al. [3] improved the formulation

by limiting the influence of the smallest grid spacing and proposed Δ̃𝜔. For a cell-centered at r and its

vertices located at r𝑛 (for a hexahedral cell, r = 1...8), the new subgrid length scale Δ̃𝜔 reads:

Δ̃𝜔 =
1√
3

max

𝑛,𝑚=1,8
|(l𝑛 − l𝑚)| (3.1)

7
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where l𝑛 = n𝜔 × r𝑛 and n𝜔 is the unit vector aligned with the vorticity vector.

This subgrid length scale offers some advantages over the standard DES97 length scale Δ𝑚𝑎𝑥 and the

length scale of [5], Δ𝜔. To demonstrate these advantages, consider the example of a free shear layer

flowing in the x-y plane, with a large grid spacing in the z-direction. Since the vorticity vector is nearly

aligned with the z-direction at the beginning of the shear layer, Δ̃𝜔 reduces to
1√
3

(
Δ𝑥2 + Δ𝑦2

)
1/2

, i.e.,

it is 𝑂(max{Δ𝑥,Δ𝑦}) instead of Δ𝑧 that would have resulted when using Δ𝑚𝑎𝑥 formulation or

√
Δ𝑥Δ𝑦

when using the Δ𝜔 definition. In this flow case, a subgrid length scale of the order of 𝑂(max{Δ𝑥,Δ𝑦})
is the most physically plausible, because the eddies have a similar size in both x and y directions in that

region. Hence, the larger of the two dimensions limits the size of the eddies that can be resolved.

Furthermore, for fully-developed turbulence, Δ̃𝜔 reduces to the standard Δ𝑚𝑎𝑥 definition. Therefore,

the formulation in Equation 3.1, unlike Δ𝜔 of [5], does not result in a strong influence of the smallest grid

spacing while still being able to decrease the subgrid length scale (and hence the modeled turbulence)

in quasi-2D regions discretized using strongly anisotropic grids. Δ̃𝜔 is used as an alternative subgrid

length scale in this study.

Initial tests performed in [3] revealed that if the x-y grid cannot resolve the Kelvin Helmholtz

instabilities, replacing Δ𝑚𝑎𝑥 with Δ̃𝜔 is not enough to enable the desired effects. An addition in the form

of a kinematic measure was needed to quickly detect quasi-2D flows that require a near implicit LES

(ILES) treatment to facilitate the growth of the Kelvin Helmholtz instabilities and therefore accelerate

the transition to resolved turbulence. In their research, Shur et al. [3] introduced the Vortex Tilting

Measure (VTM), which is defined as follows:

VTM ≡
√

6|(S · 𝝎) × 𝝎 |
𝜔2

√
3 tr (S2) − [tr(S)]2

(3.2)

Where S is the strain tensor and tr is the trace. The reader is encouraged to consult the original

publication for more details regarding the formulation. In this study, the VTM is combined with Δ̃𝜔

to further decrease the eddy viscosity in an attempt to further accelerate the RANS-LES transition, as

discussed in subsection 3.3.1.

3.2. The Subgrid-scale Model: 𝜎-model
Another main cause of the excessively large modeled turbulence in the LES region is the use of

Smagorinsky-like SGS models. Such SGS models are incapable of recognizing areas with quasi-2D

flows and thereafter decreasing the SGS viscosity to the appropriate levels. This is of great importance

in DES-like methods, where the switching between the RANS mode in the upstream attached flow

region and the LES mode in the separated flow region is non-zonal. So, the subgrid-scale model should

be able to decrease the SGS viscosity in the separated flow region, where the modeling approach is LES.

The Smagorinsky SGS model is defined as follows:

𝜈Smag =
(
𝐶SmagΔ

)
2 𝒟Smag (3.3)

where 𝐶Smag is the Smagorinsky constant, Δ is a subgrid length scale, and 𝒟Smag is the differential

operator of the Smagorinsky model, which is based on the strain rate of the resolved velocity field:

𝒟Smag(𝑢) =
√

2𝑆𝑖 𝑗𝑆𝑖 𝑗 (3.4)

Nicoud et al. [7] proposed a new SGS model with an improved differential operator 𝒟𝜎 that is

capable of detecting quasi-2D flows. The improved operator makes use of the singular values of the

velocity gradient tensor and vanishes for two-component or two-dimensional flows. The differential

operator of the 𝜎−model and its associated SGS viscosity are then given by:

𝒟𝜎 =
𝜎3(𝜎1 − 𝜎2)(𝜎2 − 𝜎3)

𝜎2

1

(3.5)

𝜈𝜎 = (𝐶𝜎Δ)2 𝒟𝜎 (3.6)
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where 𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ 0 are the three eigenvalues of the velocity gradient tensor, 𝐶𝜎 is a calibration

constant, and Δ is a subgrid length scale.

The 𝜎-DDES approach uses 𝜎−model in a manner that maintains the original velocity scale unchanged

in the RANS region, but switches to the new formulation 𝐵𝜎𝒟𝜎 in the LES region, where 𝐵𝜎 is a calibrated

constant. The formulation of the 𝜎-DDES, which was proposed by Mockett et al. [4], reads

𝒟𝜎−𝐷𝐷𝐸𝑆 = 𝒟RANS − 𝑓𝑑 pos (𝐿RANS − 𝐿LES) (𝒟RANS − 𝐵𝜎𝒟𝜎) (3.7)

𝒟RANS is inherited from the underlying RANS model and represents a scale based on the strain rate or

the vorticity rate invariant. The delay function 𝑓𝑑 is maintained to prohibit the activation of the new

operator in the RANS region, which could result in MSD on ambiguous grids. The pos-function is

equal to 1 if its argument is positive, but null otherwise. Using the 𝜎−DDES formulation, a considerable

decrease in SGS viscosity is expected to be achieved in quasi-2D flow regions, which in turn reduced

the damping of the natural flow instabilities. The 𝜎−model is, unlike Δ̃𝜔, active even on isotropic cells.

In the next section, the effectiveness of 𝜎−DDES with Δ̃𝜔 in terms of facilitating the development of

natural flow instabilities is evaluated. They are applied to a challenging test case that does not have

strong natural instabilities as a result of the smooth APG-induced separation. In this regard, this test

case is different from the commonly investigated cases. The commonly studied test cases are with fixed

separation point as a result of abrupt changes in geometry, such as the backward facing steps test case

and the spatially developing plane mixing layer test case, studied by Shur et al. [3] and Mockett et al. [4].

3.3. Results
In this section, the rounded step test case is used to evaluate 𝜎−DDES with Δ̃𝜔. The flow conditions and

the grid are described in subsection 4.2.2. The aim is to evaluate whether the use of 𝜎−DDES with Δ̃𝜔

will facilitate the development of weak natural flow instabilities, resulting from APG-induced separation.

The setup used in subsection 3.3.1 and the one used in subsection 3.3.2 are shown in Figure 3.1a and

Figure 3.1b, respectively.

(a) Non-zonal rounded step setup (b) Semi non-zonal rounded step setup

Figure 3.1: Rounded step test setups used in this brief study

3.3.1. Non-zonal use of 𝜎-DDES with Δ̃𝜔

In this section, the performance of 𝜎−DDES with Δ̃𝜔 in a non-zonal manner is assessed. Since no

synthetic turbulence is used in this non-zonal assessment, the shielding function is kept active to shield

the attached boundary layer, preventing Modeled stress depletion (MSD). The non-zonal approaches

rely on the shielding/ delay function to automatically recognize detached boundary layers, increasing

its value from zero to around one, which would decrease the hybrid length scale, and hence the

turbulent viscosity. Such reduction in turbulent viscosity is desirable since it makes it possible to resolve

the turbulent structures in detached boundary layers. In this case, due to the shallow APG-induced

separation, it is not guaranteed to obtain such ideal behavior.

The shielding function 𝑓𝑑 in the whole computational field is shown in Figure 3.2a. Note, the upper

wall is predefined to be treated by RANS, and thus the shielding function is null in the boundary layer

of the upper wall. It was observed that the shielding is so strong that it remains active even over the

rounded step region, where the flow is separated, as shown in Figure 3.2a. As a result, the majority of

the boundary layer remains treated by the underlying SA RANS model. Such strong shielding will
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hinder the effectiveness of the 𝜎− model since it will obstruct its activation over the rounded step. As

given by Equation 3.7, 𝑓𝑑 values that are close to zero result in the differential operator maintaining

its RANS value, meaning, 𝒟𝜎−𝐷𝐷𝐸𝑆 ≈ 𝒟RANS. This is evident in the turbulent viscosity field shown in

Figure 3.2b.

Figure 3.2b shows the ratio between the turbulent and the laminar viscosity using 𝜎−DDES with Δ̃𝜔.

Indeed, the strong shielding over the initial part of the rounded step region results in large turbulent

viscosity levels, similar to that produced by the RANS model on the upper wall. The ideal behavior

of 𝑓𝑑, in this case, would have been to shield the attached boundary layer and treat it by RANS while

quickly decreasing the shielding to only the inner part of the boundary layer in the rounded step region.

However, 𝑓𝑑 did not exhibit this behavior, as the decrease in shielding took place later than desired.

(a) 𝑓𝑑 (b) 𝜈𝑡/𝜈

Figure 3.2: Shielding/ delay function used in DDES 𝑓𝑑 (left) and 𝜈𝑡/𝜈 computed using 𝜎−DDES with Δ̃𝜔 (right)

Even though it may seem logical to deactivate the shielding function to resolve the issue of treating

the majority of the separated boundary layer by RANS, this could be more problematic and has to be

handled properly. Furthermore, deactivating the shielding function would require a zonal treatment,

which is not aligned with the intent of the 𝜎−DDES formulation, yet still explored in this work. Such

zonal treatment could be achieved by either injecting synthetic turbulence (see section 9.2) or by

manually predefining the regions treated by RANS and the ones treated by LES. The latter is explored

in the next section.

Instead, in this section, two different approaches were considered, aiming at reducing the strength of

the shielding. More specifically, the intent of these two approaches is to limit the effect of the shielding

function to the inner part of the boundary layer in the rounded step region. The first approach is

to decrease the strength of the shielding by setting the coefficient 𝑐𝑑 to its original value of 8 (see

Equation 2.4). The second approach is to use the Vortex Tilting Measure (VTM) to further decrease the

eddy viscosity. The result of these two approaches along with the standard 𝜎−DDES with Δ̃𝜔 and the

standard SA-DDES are shown in Figure 3.3 and Figure 3.4

In the attached boundary layer region upstream of the rounded step, there is no difference between

the different explored approaches, as shown in Figure 3.3. This is expected since the attached boundary

layer is treated in its entirety by SA-RANS, regardless of the subgrid length scale Δ, and the SGS model.

As a result, there is no resolved turbulence, and the Reynolds stresses are completely modeled, as shown

in Figure 3.3b, and Figure 3.3c. The region around the rounded step is of more interest. Figure 3.4f

shows the shielding function using the aforementioned different approaches. Even though the two

proposed approaches result in a faster switching from RANS ( 𝑓𝑑 = 0 ) to LES ( 𝑓𝑑 = 1), the switching is

not sufficiently fast. This can be seen at the locations 𝑥/𝐻 = 0.5 and 1.5, where the shielding function

maintains the RANS mode ( 𝑓𝑑 = 0) for the majority of the boundary layer. As a result, the advantageous

characteristics of the 𝜎 model and Δ̃𝜔 subgrid length scale cannot be fully exploited.

The iso-surfaces of Q-criterion for the aforementioned computations are shown in Figure 3.5. When

using SA-DDES, structures similar to that obtained with URANS appear just downstream of the

rounded step. Such cylinder-like structures are not to be confused with proper turbulent structures.

When 𝜎-DDES is used, turbulent structures that are more physical appear, as shown in Figure 3.5b to

Figure 3.5d. In particular, with the two approaches of decreasing 𝑐𝑑 and using VTM, the decreased

shielding seems to accelerate the development of turbulent structure, as shown in Figure 3.5c and

Figure 3.5d. In these two cases, turbulent structures appear more upstream compared to the standard

𝜎−DDES with Δ̃𝜔. Nonetheless, there is a clear lack of sufficient turbulent structures in all computations.

This is due to the lack of sufficient natural instabilities that cannot be provided by such a shallow

separation.



3.3. Results 11

(a) 𝑢 at the first location (b) Resolved <𝑢′𝑣′>

(c) Modeled <𝑢′𝑣′> (d) Total <𝑢′𝑣′>

(e) 𝜈𝑡 (f) Shielding function 𝑓𝑑

Figure 3.3: Results of using 𝜎-DDES with Δ̃𝜔 in a non-zonal manner in the upstream region

The mean surface quantities are shown in Figure 3.6. All the computations fail to capture the

correct location of separation and reattachment, as shown in Figure 3.6a. It is interesting to see that

using 𝜎-DDES with Δ̃𝜔, especially combined with VTM and 𝑐𝑑 = 8, shows a closer agreement with the

reference 𝐶 𝑓 data far downstream of the reattachment. A similar behavior is observed with the pressure

coefficient shown in Figure 3.6b. This is in agreement with the results of Q-criterion. This reinforces the

idea that only with an appropriate rapid switching between the upstream RANS and the downstream

LES, the advantageous characteristics of 𝜎-DDES with Δ̃𝜔 can be exploited.

It is then instructive to investigate the following scenario: Had the shielding been less strong or even

absent, would the 𝜎-DDES with Δ̃𝜔 have shown better performance? This scenario is explored in the

next section.

3.3.2. Semi non-zonal use of 𝜎-DDES with Δ̃𝜔

To properly assess the performance of 𝜎-DDES with Δ̃𝜔, in terms of detecting quasi-2D flows and adjust

the eddy viscosity levels accordingly, the strong shielding observed with the 𝑓𝑑 function needs to be

decreased or eliminated. In an attempt to prevent this shielding from obstructing the activation of

𝜎-DDES with Δ̃𝜔, a "semi non-zonal" setup was analyzed. That is, the upstream attached boundary

layer was manually predefined to be treated by RANS, whereas the rounded step region was treated by
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(a) u (b) Resolved <𝑢′𝑣′>

(c) Modeled <𝑢′𝑣′> (d) Total <𝑢′𝑣′>

(e) 𝜈𝑡 (f) Shielding function 𝑓𝑑

Figure 3.4: Results of using 𝜎-DDES with Δ̃𝜔 in a non-zonal manner in the rounded step region

𝜎-DDES with a modified shielding function. In this manner, it is ensured that the shielding function

can no longer delay the activation of the 𝜎- model and Δ̃𝜔, which allows for a fair assessment of their

performance. The test setup is shown in Figure 3.1b. The modified shielding function considers only

the viscous part of the original 𝑓𝑑 function, and reads

𝑓𝑑visc
= 1 − tanh

[
(8𝑟𝑣𝑖𝑠𝑐)3

]
(3.8)

with 𝑟visc considering only the viscous component as follows:

𝑟visc =
𝜈

𝜅2𝑑2

𝑤 max

(√
𝜕𝑈𝑖

𝜕𝑥 𝑗
𝜕𝑈𝑖

𝜕𝑥 𝑗
; 10

−10

) (3.9)

The results of the "semi non-zonal" computation along with the two explored approaches in the typical

non-zonal 𝜎−DDES with Δ̃𝜔 setups are shown in Figure 3.7. Figure 3.7f shows the modified shielding

function 𝑓𝑑visc
compared to the standard shielding function 𝑓𝑑. Indeed, the modified shielding function

switches quickly from RANS in the near-wall region to LES in the rest of the boundary layer. However,

this switching takes place very close to the wall, it is almost as if there is no shielding at all. This is evident
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(a) SA-DDES (b) 𝜎-DDES

(c) 𝜎-DDES with 𝑐𝑑 = 8 (d) 𝜎-DDES with VTM

Figure 3.5: Iso-surfaces of Q-criterion (𝑄 = 2𝑈2/𝐻2
), colored by the streamwise velocity for the rounded step case

(a) 𝐶 𝑓 (b) 𝐶𝑝

Figure 3.6: Skin friction and pressure coefficient using 𝜎-DDES with Δ̃𝜔 in a non-zonal manner

in the eddy viscosity, shown in Figure 3.7e, where there is some eddy viscosity at 𝑥/𝐻 = 0, convected

from upstream, which quickly disappears downstream. While the large eddy viscosity maintained

by the original shielding function is unfavorable, the absence of eddy viscosity is problematic. Even

though resolved turbulent shear stress can be observed with the modified shielding function in the

"semi non-zonal" setup, the velocity profiles are completely unrepresentative of the flow, as shown in

Figure 3.7b and Figure 3.7a, respectively. These results are not encouraging, and they illustrate the

limitations of non-zonal approaches in flow cases with shallow separation.

The skin friction and the pressure coefficient are shown in Figure 3.8. Figure 3.8a shows unsatisfactory

results in terms of the location of separation and reattachment, even when the modified shielding

function was used in the "semi non-zonal" setup. Regarding the "semi non-zonal" setup, the sudden

decrease of eddy viscosity, with a lack of resolved turbulence content, has shown to be problematic. In

fact, this is the very issue this work is focused on, the grey area problem.

From this brief study, it can be concluded that non-zonal approaches are limited in terms of the type

of flows they can accurately predict. As illustrated in this brief study, non-zonal methods struggle in

flows with shallow pressure-induced separations. To achieve improvement in non-zonal methods, faster

switching between the RANS and the LES region, while still shielding the inner part of the boundary
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(a) u (b) Resolved <𝑢′𝑣′>

(c) Modeled <𝑢′𝑣′> (d) Total <𝑢′𝑣′>

(e) 𝜈𝑡 (f) Shielding function 𝑓𝑑

Figure 3.7: Results of using 𝜎-DDES with Δ̃𝜔 in a non-zonal and "semi non-zonal" manner in the rounded step region

(a) 𝐶 𝑓 (b) 𝐶𝑝

Figure 3.8: Skin friction and pressure coefficient using 𝜎-DDES with Δ̃𝜔 in a non-zonal and "semi non-zonal" manner

layer, is needed. The current shielding function 𝑓𝑑 fails in this aspect, as it is not sensitive to shallow

separation. To make use of the advantageous characteristic of 𝜎-DDES and Δ̃𝜔, a new shielding function
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is needed. Developing a less conservative shielding function could be an interesting area of research,

however not addressed in this work. Even with such an improved shielding function, the performance

of non-zonal methods could still remain dependent on the flow case and the instabilities of the free

shear layers. For this reason, this work focuses on zonal methods instead, in particular embedded

WMLES methods, where synthetic turbulence is used to provide turbulent content.



4
Zonal Approaches: Research Focus

and Activities

In this chapter, different aspects of the research activities are presented. First, the different aspects of the

research are stated, and the research questions are presented. Then, test cases are described, and the

numerical setup is discussed.

As illustrated in chapter 3, non-zonal methods are limited to massively separated flow, where the

natural instabilities can provide sufficient turbulent content for the LES region. For this reason, this work

focuses on zonal methods, more specifically embedded WMLES methods, where synthetic turbulence

is used to provide the needed turbulent content. In such zonal approaches, the delay in transitioning

from fully modeled turbulence in the upstream RANS region to mostly resolved turbulence in the

downstream WMLES region is governed by the quality of the injected synthetic turbulence. In such

approaches, the transition can be accelerated by improving the synthetic turbulence and the methods

used to introduce it into the flow [10]. The research activities can be divided into two categories. The

first focuses on the synthetic turbulence and its injection into the flow, whereas the second focuses on

the use of 𝜎-DDES and Δ̃𝜔 in an embedded WMLES manner.

4.1. Research objectives and Activities
One main aspect of zonal approaches, when used as embedded WMLES methods (zonal approaches for

short), is the synthetic turbulence generation. In this work, the synthetic turbulence generator (STG) of

Adamian et al. [12], and its successor NTS-STG of Shur et al. [13] are studied. Both methods are based on

the superposition of Fourier modes, such that the statistics of the generated synthetic velocities match

the prescribed target Reynolds stresses. To achieve this, both STG variants require random quantities

as well as statistical ones as input. The random quantities include the direction vectors and the phase

shift of each mode. These random quantities are referred to as the random numbers set hereafter. The

statistical quantities are the target Reynolds stresses, which are typically taken from upstream of the

RANS-LES interface.

Patterson et al. [16] found that the random number set could have a bias error, which results in a

large deviation between the statistics of the synthetic velocities and the target Reynolds stresses. This is

mainly because the random number set in both STG variants, unlike in the SEM, is drawn once and

kept constant during the whole computation. In this work, the influence of the random number set is

assessed by comparing the results of two different realizations of random numbers. The first is drawn

randomly from the appropriate density functions, and the second is selected to ensure a small bias

error. The a-priori bias error estimation by Patterson et al. [16] are implemented and used to choose

the random number set with the least associated bias error. Such set is denoted the selected set in this

work. Regarding the target Reynolds stresses, they can be either reconstructed from a RANS solution or

obtained from high-fidelity results (DNS or LES). The impact of using each on turbulence development

is also evaluated.

Regarding the STG implementation in DLR-TAU, it was found the skin friction results deteriorate

after large computational times. This issue is referred to as temporal decay, as an increasing deterioration

16
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in the outcome was observed with increasing computational time. The cause of this issue is explored

and identified. Furthermore, an assessment of two parameters used in the STG formulation is carried

out. These two parameters are the macro-scale velocity and the cut-off frequency.

Another crucial aspect of zonal approaches is the injection of synthetic turbulence. To introduce

synthetic turbulence into the flow, source terms are added to the momentum equations. In this work,

different forcing methods are evaluated. The performance of two source terms, the DLR source term

[14] and the VSTG source term [15], is assessed. To this end, based on the aforementioned aspects,

research questions that focus on synthetic turbulence generation and its injection into the flow were

identified. These are as follows:

• What are the main parameters that affect the quality of the synthetic turbulence, produced by the

STG/ NTS-STG?

• To what extent can the choice of a random number set in the STG decrease the bias errors associated

with a specific realization?

• What are the main strengths and shortcomings of different synthetic turbulence forcing approaches?

The research activities focused on the synthetic turbulence generation and its forcing into the flow

are shown in Figure 4.1. There are four blocks with grey boxes showing the process of providing the

STG with the needed input, generating the synthetic turbulence (ST) using the STG, and computing the

statistics of the synthetic velocities. Then, the third block entails injecting this synthetic turbulence into

the flow using source terms, and finally obtaining resolved stresses.

In this work, the research activities follow a systematic step-wise approach in which sources of

error are identified and eliminated to avoid error accumulation. Starting with the ST generation block,

an improvement to the synthetic turbulence is needed to address the temporal decay issue, which

is discussed in chapter 5. In the same chapter, two important aspects of the STG formulation, the

macro-scale velocity and the cut-off frequency, are analyzed. Secondly, to identify the most influential

factors affecting the quality of the generated synthetic turbulence, a sensitivity analysis of the STG input

is carried out. This is achieved by varying the source of target Reynolds stress and the random number

set, as discussed in chapter 6. With the improved synthetic turbulence at hand, its injection into the flow

is addressed by evaluating different source terms. The DLR source term [14] and the VSTG [15] are

assessed, where the strengths and shortcomings of each are identified. Two modifications to address

these shortcomings, namely the constrained forcing and the dynamic forcing, are proposed.

Figure 4.1: Research activities focused on the synthetic turbulence generation and its injection methods

Additionally, the WMLES capabilities of 𝜎-DDES with Δ̃𝜔 are evaluated. This is motivated by the

statement of Fuchs et al. [21], however, not much evidence was provided in their publication. This aspect

is assessed in two manners. The first is by providing an unsteady turbulent solution and observing

whether 𝜎-DDES with Δ̃𝜔 would drive the solution to a RANS-like solution or maintain its unsteadiness.

The second is to use 𝜎-DDES with Δ̃𝜔 in an embedded WMLES setup along with synthetic turbulence.
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The premise is that the decreased SGS viscosity levels could allow synthetic turbulence to rapidly

develop into physical turbulence, decreasing adaptation lengths. To this extent, the research questions

focusing on Δ̃𝜔 and 𝜎 − 𝐷𝐷𝐸𝑆, are as follows:

• To what extent can 𝜎-DDES with Δ̃𝜔 function as a WMLES method?

• To what extent can the use of 𝜎-DDES with Δ̃𝜔 as an embedded WMLES method accelerate the

RANS to LES transition?

The research activities focused on the WMLES capabilities of 𝜎-DDES with Δ̃𝜔 are presented in chapter 9.

4.2. Test Cases
In this work, three test cases were used, each serving a specific purpose. The test cases are a zero-pressure

gradient (ZPG) flat plate, an adverse-pressure gradient (APG) separation in a rounded step, and a

periodic channel flow. In this section, the different test cases are described.

4.2.1. Flat plat test case
A spatially developing zero-pressure-gradient (ZPG) boundary layer over a flat plate is a standard test

case in HRLM studies. In this work, a boundary layer with a zero-thickness at the inflow is considered.

The free-stream velocity is U = 70 m/s, the static pressure is set to P = 99120 Pa, and the temperature

equals 287 K, resulting in a Reynolds number per meter Re = 4.72 × 10
6

m
−1

and a Mach number

M0 = 0.2.

The interface from SA-RANS to WMLES takes place at 𝑅𝑒𝜃 = 3040, corresponding to 𝑥 = 0.3517.

This location has a boundary layer thickness 𝛿0 = 0.0058𝑚 and is used as the origin of a local coordinate

system 𝑥/𝛿0 = 0. The Reynolds numbers based on the momentum thickness 𝜃0 and the friction velocity

u𝜏0
at 𝑥/𝛿0 are respectively:

𝑅𝑒𝜃0
=

𝑈0𝜃0

𝑣
= 3040

𝑅𝑒𝜏0
=

𝑢𝜏0
𝛿0

𝑣
= 1065

The hybrid grid of Probst et al. [22] was used, which contains 5.8 · 10
6

grid points in the WMLES

region. This grid ensures Δ𝑥+ ≈ 100 − 200, Δ𝑦+ ≈ 1,Δ𝑧+ ≈ 50, and is similar to the structured grid

used in [14]. Note, mesh cells are stretched for 𝑥/𝛿0 > 77, in order to gradually dampen the turbulent

fluctuations. This procedure is standard practice in HRLM studies to ensure that the region of interest

is free of wave reflections. The whole grid, both the upstream RANS region and the WMLES region, is

shown in Figure 4.2. The time step is Δ = 8 × 10
−7

s, and normalized in wall units is Δ𝑡+ ≈ 0.4.

Figure 4.2: Flat plate test case grid

The reference Reynolds stresses are the target Reynolds stressed used by the synthetic turbulence

generator, which are reconstructed from a precursor RANS solution. The method M2 of Laraufie et al.

[23], which is based on Wilcoox’s hypothesis, was used to obtain the Reynolds stress tensor using the
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velocity and the eddy viscosity profiles. The reference skin friction coefficient is based on the widely

acknowledged Coles-Fernholz correlation [24], which reads:

𝐶𝐶𝐹
𝑓

= 2

(
1

0.384

ln (Re𝜃) + 4.127

)−2

(4.1)

Using the flow conditions, this correlation was adapted by [22] to provide a relation between 𝐶 𝑓 and the

local coordinate system 𝑥/𝛿0.

4.2.2. Rounded step test case
The rounded step is a shallow separation test case, studied by Bentaleb et al. [25] using highly-resolved

LES. An expansion of 1𝐻, the step height, leads to pressure-induced separation and subsequent

re-attachment. The Reynolds number, based on 𝐻 and the inlet free-stream velocity 𝑈in, is 13700. The

inlet is located at 𝑥/𝐻 = −7.34, at which the momentum-thickness Reynolds number is 𝑅𝑒𝜃 = 1190, and

the boundary layer thickness is 𝛿99 = 0.80𝐻. In this test case, only the lower wall was treated by HRLM,

while the upper wall was treated by pure SA-RANS. The synthetic turbulence injection take place at the

inlet, as the whole lower wall is treated by HRLM. The baseline setup is shown in Figure 4.3.

Figure 4.3: Standard rounded step test case setup

The step geometry is defined as follows:

𝑦
wall

= (1 − 𝑅1) +
√
𝑅2

1
− 𝑥2

for 0 < 𝑥/𝐻 < 2.3

𝑦
wall

= 𝑦2 −

√
𝑅2

1

4

− (𝑥2 − 𝑥)2 for 2.3 < 𝑥/𝐻 < 2.835

𝑦
wall

= 𝑅2 −
√
𝑅2

2
− (3 − 𝑥)2 for 2.835 < 𝑥/𝐻 < 2.937

(4.2)

with 𝑅1 = 4.03, 𝑅2 = 0.333, 𝑥2 = 3.449 and 𝑦2 = 1.936.

The hybrid grid of [26] was used. The grid consists of two structured blocks, separated by a prisms

block as shown in Figure 4.4. The structured WMLES block is of interest, which contains 350 × 96 × 64

points. In this block, the streamwise spacing varies such that Δ𝑥/𝐻 = 0.1 at the inlet, Δ𝑥/𝐻 = 0.042

in the separation region ( 𝑥/𝐻 = 0 − 5), and Δ𝑥/𝐻 = 0.15 at the outlet. Furthermore, it is ensured to

maintain 𝑦+ ≈ 1, with a stretching factor of 1.05 in the WMLES block.
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Figure 4.4: Rounded step test case grid

4.2.3. Channel flow test case
Periodic channel flow is a standard test case in HRLM studies. In this work, a channel flow at 𝑅𝑒𝜏 ≈ 4200

is used. The channel has a height of 2𝛿, a length of 2𝜋𝛿, and a width of 𝜋𝛿, where 𝛿 is the channel

half-height. The free-stream velocity is U = 50 m/s, and the temperature equals 287 K, resulting in a

Reynolds number based on 𝛿 𝑅𝑒𝛿 = 98300 and a Mach number M = 0.15. The reference data for this test

case is the DNS data of Lozano-Durán et al. [27].

The grid is that used by Probst et al. [28], containing 65×101×65 grid points. This grid has a constant

wall-tangential spacing of Δ𝑥+ = 416 and Δ𝑧+ = 206, with 𝑦+ = 0.8 and a wall-normal stretching factor

equal to 1.14. The grid is shown in Figure 4.5. The time step is Δ = 4.5 × 10
−5

s, and normalized by wall

units Δ𝑡+ = 0.4. The whole domain is treated by HRLM.

Figure 4.5: Channel flow test case grid

4.3. Numerical Setup
This work was performed using the German aerospace agency compressible solver DLR-TAU. DLR-

TAU is an unstructured compressible finite-volume solver. It uses 2nd-order spatial and temporal

discretization schemes, along with low-Mach number preconditioning for incompressible flows [29].

The inviscid fluxes are based on the LD2 scheme, which is a low dissipation, low dispersion scheme

suitable for scale-resolving simulations [30].
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In IDDES simulation, the WMLES branch of IDDES is always enforced by setting 𝑓𝑑𝑡 = 1. This

procedure is also followed in [22]. In this work, SA is used as the default underlying RANS model.

Furthermore, NTS-STG of Shur et al. [13] is used as the default synthetic turbulence generator, and the

DLR source term of Probst [14] is the default forcing term to inject the synthetic turbulence into the flow.

These default parameters are always used, unless explicitly stated otherwise.



5
Synthetic Turbulence Generation

In this chapter, synthetic turbulence generation methods are discussed. The synthetic turbulence

generator (STG) that was proposed by Adamian et al. [12] as well as a similar STG (NTS-STG), proposed

by Shur et al. [13], are studied. Two important aspects of their formulations are analyzed. Furthermore,

recommendations to ensure the quality of synthetic turbulence are provided.

The STG of Adamian et al. [12] is already implemented in DLR-TAU, and thus referred to as the

original STG hereafter. NTS-STG is a new variant of the original STG, with the only difference being in

the time-dependent term in Equation 5.1. Both the original STG and NTS-STG are synthetic turbulence

methods based on the superposition of random Fourier modes. In both formulations, the synthetic

velocities are defined such that their second-order moments at the RANS-LES interface/inflow are

equal to the prescribed target Reynolds stress tensor. This is achieved by superimposing a fixed number

N of spatiotemporal Fourier modes. In the original STG formulation, this reads as follows[12]:

𝑢′
𝑠𝑖
= 𝑎𝑖 𝑗2

√
3

2

𝑁∑
𝑛=1

√
𝑞𝑛𝜎𝑛

𝑗 cos

(
𝜅𝑛𝑑𝑛

𝑙
𝑥𝑙 + 𝜓𝑛 + 𝑆𝑛 𝑡

𝜏

)
(5.1)

with 𝑎𝑖 𝑗 being the Cholesky decomposition of the Reynolds stress tensor 𝑎𝑖𝑘𝑎 𝑗𝑘 = 𝑅𝑖 𝑗 , 𝜏 is a timescale,

and the random quantities are described as follows:

𝜎𝑛 = 𝜎𝑛
(
𝜃𝑛 , 𝜙𝑛

)
, 𝜎𝑛

𝑗 𝑑
𝑛
𝑗 = 0, 𝑑𝑛𝑖 = 𝑑𝑛𝑖

(
𝜃𝑛 , 𝜙𝑛 , 𝜂𝑛

)
. (5.2)

Here Einstein notation is used where the contraction is between spatial dimensions (subscripts), and a

sum symbol is used to sum over the Fourier modes.

𝑞𝑛 is the normalized amplitude of mode n, and 𝜅𝑛
is the amplitude of the wave number vector of the

mode n. The terms 𝜃𝑛 , 𝜙𝑛 , 𝜂𝑛 , and 𝜓𝑛
are sets of random variables defined by their probability density

functions and intervals. The two random sets of spherical angles 𝜃𝑛
and 𝜙𝑛

result in the unit vectors

𝜎𝑛
𝑗

being uniformly distributed over a unit sphere. A divergence-free velocity is imposed (𝜎𝑛
𝑗
𝑑𝑛
𝑗
= 0)

together with the requirement that 𝑑𝑛
𝑗

is also uniformly distributed over a unit sphere. This results in 𝑑𝑛
𝑗

being a function of 𝜎𝑛
𝑗

(and therefore 𝜃𝑛
and 𝜙𝑛

) and the angle 𝜂 in the plane perpendicular to 𝜎𝑛
𝑗
. 𝜓𝑛

is

the phase of the mode n. Finally, the last random variable is 𝑆𝑛
, which is multiplied by a time-dependent

term to add time dependency to the synthetic fluctuations. Note that these random quantities are

chosen only once at the start of the computation. One realization of these random quantities will be

referred to as the random number set hereafter.

The main difference between the original STG and NTS-STG is the time-dependent term. In

NTS-STG formulation, the wave-convection approach was used to add time-dependency to the synthetic

fluctuations [13]. The synthetic turbulence field is then computed as follows:

𝑢′
𝑠𝑖
= 𝑎𝑖 𝑗2

√
3

2

𝑁∑
𝑛=1

√
𝑞𝑛𝜎𝑛

𝑗 cos

(
𝜅𝑛𝑑𝑛

𝑙
�̂�𝑙 + 𝜓𝑛

)
(5.3)
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with the modified coordinates given by:

�̂�𝑖 ≡
{
(𝑥1 −𝑈0𝑡)𝜅min

𝑒 /𝜅𝑛 , 𝑥2 , 𝑥3

}
, (5.4)

𝑈0 is a macro-scale velocity at the RANS-LES interface, such as the maximum or bulk velocity. In this

work, the bulk velocity was used as a macro scale velocity. The macro-scale velocity accounts for the

bulk convection of the flow. The normalized amplitudes of each mode are computed as a fraction of the

total energy contained in the energy spectrum.

𝑞𝑛 =
𝐸 (𝜅𝑛)Δ𝜅𝑛∑𝑁
𝑛=1

𝐸 (𝜅𝑛)Δ𝜅𝑛
,

𝑁∑
𝑛=1

𝑞𝑛 = 1 (5.5)

where 𝐸(𝜅𝑛) is a prescribed turbulent kinetic energy spectrum. Both formulations of the STG use a

modified Von Karman spectrum, defined as follows:

𝐸 (𝜅𝑛) = (𝜅𝑛/𝜅𝑒)4 𝑓𝜂 𝑓cut

[
1 + 2.4 (𝜅𝑛/𝜅𝑒)2

]−17/6

, (5.6)

where 𝜅𝑒 is the wave number of the most energetic modes, 𝑓𝜂 and 𝑓cut are empirical functions that

modify the energy spectrum. The purpose of the 𝑓𝜂 function is to guarantee that the spectrum is

dampened around the wave number that corresponds to the Kolmogorov length scale, and reads

𝑓𝜂 = exp

[
−

(
12𝜅/𝜅𝜂

)
2

]
, 𝜅𝜂 = 2𝜋/𝑙𝜂 (5.7)

where 𝑙𝜂 =
(
𝑣3/𝜀

)
1/4

is the Kolmogorov length scale, 𝜀 is the turbulence dissipation rate, and 𝜈 is the

kinetic viscosity. The function 𝑓cut damps the energy spectrum at wave numbers larger than the Nyquist

value, 𝜅cut, and reads

𝑓cut = exp

(
−

[
4 max (𝑘 − 0.9𝜅cut , 0)

𝜅cut

]
3

)
, 𝜅cut = 2𝜋/𝑙cut , (5.8)

where 𝑙cut is the cut-off length scale and is defined as follows:

𝑙cut = 2 min

{[
max

(
ℎ𝑦 , ℎ𝑧 , 0.3ℎmax

)
+ 0.1𝑑𝑤

]
, ℎmax

}
, (5.9)

where ℎ𝑦 , ℎ𝑧 are the local grid steps at the interface, and ℎmax = max

(
ℎ𝑥 , ℎ𝑦 , ℎ𝑧

)
.

Two important aspects of the STG/NTS-STG formulation are discussed in the following sections.

These are the macro-scale velocity 𝑈0 and the cut-off frequency 𝑓cut . Recommendations are provided

to ensure high-quality synthetic turbulence in terms of the proper auto-correlation and the correct

normalized amplitudes distribution (𝑞𝑛). All computations in this chapter were performed using the

WMLES branch of IDDES with SA as the underlying RANS model. Furthermore, the DLR source term

was used as the synthetic turbulence injection method, which is detailed in section 7.1.

5.1. The Macro-scale Velocity
In this section, the first aspect of the STG formulation, the macro-scale velocity, is discussed. The STG

performance when using an instantaneous macro-scale velocity instead of a mean one is evaluated.

It was found that when the former is used, the results show what is referred to as temporal decay.

Temporal decay is a situation in which the quality of the solution deteriorates as the averaging time

period over which the solution is averaged increases. To illustrate this issue, Figure 5.1 shows the skin

friction coefficient of the flat plate test case, averaged over two different time periods, 3 convective

time units (CTU for short) and 7 CTU, where one CTU is equivalent to one domain flow-through. It is

apparent that the solution averaged over 7 CTU has a significant reduction in skin friction downstream

of the interface and requires a larger adaptation length to reach the reference 𝐶 𝑓 . Nonetheless, both

results show a very larger adaptation length to be with 5% of the reference.

A decline in the quality of the time-averaged solution as the averaging period increases indicates

that the instantaneous solution at later time steps is rapidly deteriorating. To further illustrate this point,



5.1. The Macro-scale Velocity 24

the Q-criterion was calculated using the instantaneous solutions at computation times of 2 CTU, 7 CTU,

10 CTU, and 12 CTU. The results of the Q-criterion calculation are presented in Figure 5.2, which depicts

the Q-criteria at increasing computation times from left to right. The results show that for the two largest

computation times, there is a lack of turbulent structures in the immediate vicinity of the interface.

Furthermore, the larger turbulent structures vanish immediately downstream of the interface, only to

reappear far downstream. These observations are consistent with the 𝐶 𝑓 results shown in Figure 5.1,

where the skin friction coefficient begins to recover approximately 15𝛿0 downstream of the interface.

It should be noted that these results were obtained using the original STG, but the NTS-STG exhibits

similar behavior. Therefore, the results are not included here to avoid repetition.

Figure 5.1: Skin friction coefficient of the flat plate case time-averaged for different time periods. Results were obtained using the

original STG with instantaneous 𝑈0 and the DLR source term.

Figure 5.2: Iso-surfaces of Q-criterion (Q = 1𝑈2/𝛿2

0
), colored by the streamwise velocity, at increasing computation time from left

to right. Results were obtained using the original STG with instantaneous 𝑈0 and the DLR source term.

To understand the mechanism of the temporal decay issue, recall that the macro-scale velocity 𝑈0

appears in the original STG through the timescale 𝜏, and is explicitly used in the NTS-STG in the

wave-convection-like approach, as shown in equation Equation 5.4. To demonstrate the impact of

using an instantaneous 𝑈0, consider the NTS-STG formulation given in Equation 5.3. Substituting

the definition of �̂�𝑖 into the synthetic velocity equation results in Equation 5.10. In this relation, 𝑈0 is
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multiplied by the time to add a time dependency to the generated synthetic velocities.

𝑢′
𝑠 = 𝑎1𝑗 2

√
3

2

𝑁∑
𝑛=1

√
𝑞𝑛𝜎𝑛

𝑗 cos

(
𝑑𝑛

1
(𝑥1 −𝑈0𝑡)𝜅min

𝑒 + 𝜓𝑛
)

(5.10)

An instantaneous 𝑈0 can be thought of as the sum of a mean component and a fluctuating component.

The use of an instantaneous time-varying 𝑈0 leads to an amplification of the fluctuating component as

time progresses, resulting in an increasing deviation from the mean 𝑈0. To demonstrate this effect, an

instantaneous velocity 𝑈test was used as the macro-scale velocity. 𝑈test is the sum of the mean 𝑈0 and

a time-varying random value drawn from a normal distribution centered around 0. With a different

random value drawn at each time step, 𝑈test was computed as follows:

𝑈test = 𝑈0(1 + 𝑁(0, 0.1)) (5.11)

Figure 5.3 compares the effect of using a time-varying macro-scale velocity, represented by 𝑈test, with

that of using a mean macro-scale velocity. At later times, the random component of the macro-scale

velocity is largely amplified, leading to the synthetic velocity approximating a white noise signal. Such

a synthetic velocity signal lacks the proper auto-correlation required to represent coherent turbulent

structures.

The auto-correlation was calculated using both the mean and the instantaneous macro-scale velocities

at a simulation time of 7 CTU. The results of the auto-correlation calculation are depicted in Figure 5.4.

The use of the mean 𝑈0 produced auto-correlation coefficients that exhibit the expected behavior,

characterized by a starting value of 1 and a gradual decrease as time progresses. In contrast, when

the instantaneous 𝑈0 was used, the auto-correlation was significantly distorted, indicating that the

generated synthetic velocities were not properly correlated, if at all.

Figure 5.3: Synthetic streamwise velocity with mean 𝑈0 and

instantaneous 𝑈0

Figure 5.4: Auto-correlation of synthetic streamwise velocity

using mean 𝑈0 and instantaneous 𝑈0

Based on this discussion, it is necessary to use the mean macro-scale velocity to avoid deteriorating

synthetic turbulence with large computation times. Using the mean macro-scale velocity effectively

avoids the temporal decay in both STG formulations. Figure 5.5 shows the skin friction coefficient

averaged for 10 CTU, calculated using both the original STG and NTS-STG. As the mean macro-scale

velocity is used, further averaging of the solution over extended periods produces minimal changes in

the results.

5.2. The Cut-off Frequency
A comparison between the obtained skin friction coefficients in Figure 5.5 and those present in the

literature revealed that the skin friction was overestimated, particularly when using the NTS-STG. This

deviation was founded to be due to the definition of the cut-off frequency. The previous result used

an erroneous definition of 𝑓cut. In this section, the effect of using the erroneous definition of 𝑓cut is
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Figure 5.5: Skin friction coefficient of the flat plate case time-averaged for 10 CTU. The results were obtained using the original

STG and NTS-STG with the mean 𝑈0 and the DLR source term.

discussed. First, the erroneous definition is a result of a typo in the translated version of the original

publication ([12]), and reads as follows:

𝑓cut erroneous = exp

(
−[4 max (𝑘 − 0.9𝜅cut , 0)]3

𝜅cut

)
(5.12)

It is evident that this definition is wrong, as 𝑓cut is a non-dimensional quantity. Figure 5.6a and

Figure 5.6b show the erroneous and the correct definition of 𝑓cut, respectively. The erroneous 𝑓cut

abruptly eliminates all modes with 𝑛 > 120, whereas the correct definition transitions gradually from a

value of 1 to a value of 0, encompassing modes with 𝑛 > 120 up to 𝑛 = 𝑁 = 136 near the wall. This

is of high significance because 𝑓cut determines the energy spectrum, which is used to compute the

normalized amplitudes of the different modes, as outlined in Equation 5.5. A comparison between

(a) Erroneous 𝑓cut (b) Correct 𝑓cut

Figure 5.6: Comparison between the erroneous and the correct 𝑓cut for the flat plate test case

the normalized amplitudes using the erroneous and correct definitions of 𝑓cut is shown in Figure 5.7a

and Figure 5.7b, respectively. The use of the erroneous definition results in modes with 𝑛 > 120

having negligible amplitudes near the wall, while the correct definition allows for proper distribution
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of amplitudes across all modes. The correct definition ensures that small turbulent structures in the

near-wall region have non-zero amplitudes, while larger structures are more prevalent farther away

from the wall. This is important, as using normalized amplitudes (𝑞𝑛) makes the computation of the

amplitudes of one mode have a direct impact on the amplitude distribution of the other modes. For

example, an error in computing the near-wall amplitudes of certain modes has a cascading effect on the

amplitude distribution of the other modes.

(a) 𝑞𝑛 with erroneous 𝑓cut (b) 𝑞𝑛 with correct 𝑓cut

Figure 5.7: Comparison between the normalized amplitude distribution using the erroneous and the correct 𝑓cut for the flat plate

test case

Incorrectly assigning zero amplitudes to certain modes leads to a distorted representation of the

overall amplitude distribution. This is because the amplitude distribution of the remaining modes

gets skewed, causing some of them to have exaggerated amplitude values. The effect of this error can

be seen in the normalized amplitude distribution at 𝑦 ≈ 15%𝛿0, as shown in Figure 5.8. As expected,

the erroneous assignment of zero amplitude to large mode numbers (𝑛 ≥ 116 at this specific y value)

results in exaggerated amplitudes of the rest of the modes. Using the correct definition of 𝑓cut shows

a significant improvement in the skin friction coefficient for both STG formulations, as depicted in

Figure 5.9. The adaptation length is significantly smaller compared to the results with the erroneous

definition of 𝑓cut .

Figure 5.8: The normalized amplitude distribution for the flat

plate test case at 𝑦 ≈ 15% 𝛿0

Figure 5.9: Skin friction with the correct 𝑓cut for the flat plate

test case. Results were obtained using the original STG and

NTS-STG with the mean 𝑈0 and the DLR source term.

In this chapter, two important aspects of the STG formulation were studied, namely, the macro-scale

velocity and the cut-off frequency. It was found that using instantaneous macro-scale velocity leads to

temporal decay in the quality of the synthetic turbulence. This is because the synthetic velocities do not

exhibit the correct auto-correlation when using instantaneous macro-scale velocity. Furthermore, the
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effect of using the erroneous definition of the cut-off frequency was analyzed. It was found that the

erroneous 𝑓cut distorts the normalized amplitude distribution. With these two aspects, an improvement

in the original STG of Adamian et al. [12] implementation was achieved. Moreover, a new variant of the

original STG, known as NTS-STG, was implemented and evaluated. A comparison between the two

variants showed comparable results, with the NTS-STG showing slightly better agreement with the

reference in terms of 𝐶 𝑓 . As a result, all the upcoming computations will use NTS-STG, unless explicitly

stated otherwise.



6
The Input of the Synthetic Turbulence

Generator: A Sensitivity Analysis

In this chapter, the sensitivity of the Synthetic Turbulence Generator (NTS-STG) to two of its inputs

is evaluated. The first input involves the random number set used to determine the direction and

phase shifts of the various modes, and the second is the target Reynolds stresses, which can either be

reconstructed from a RANS solution or taken for an existing DNS or LES results.

This chapter focuses on the direct output of the NTS-STG, more specifically, the statistics of the

synthetic velocities

〈
𝑢′
𝑠𝑖
𝑢′
𝑠 𝑗

〉
𝑡
, as opposed to the resolved stresses

〈
𝑢′
𝑖
𝑢′
𝑗

〉
𝑡
. The synthetic velocities are

produced by the NT-STG, while the resolved velocities are 𝑢′
𝑖
= 𝑢𝑖 − ⟨�̃�𝑖⟩𝑡 , such that

〈
𝑢′
𝑖
𝑢′
𝑗

〉
𝑡

are the

resolved Reynolds stresses. The resolved velocities (and thus the resolved Reynolds stresses) are the

result of injecting synthetic turbulence into the flow using a source/forcing term. Such source terms

take synthetic velocities as input and result in resolved velocities as output. A schematic illustrating this

distinction together with the focus of this chapter (highlighted in green) is shown in Figure 6.1. In this

chapter, the default DLR source term, detailed in section 7.1, is used in all computations.

Figure 6.1: Schematic showing the area of focus in this chapter

In NTS-STG, a limited number of wave modes and a predetermined set of random numbers are used,

which could lead to inaccuracies in the statistics of the synthetic velocities ⟨𝑢′
𝑠𝑖
𝑢′
𝑠 𝑗
⟩𝑡 . An increase in the

number of wave modes, which directly correlates to the number of random numbers, can enhance the

recovery of the properly normalized energy spectra or, in physical space, the auto-correlation functions.

However, increasing the number of wave modes is computationally expensive. To ensure small errors in

the statistics of the synthetic turbulence, while maintaining a relatively small number of modes, the

29
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random numbers have to be chosen properly. In this chapter, selection procedures are outlined to choose

a random number set in a manner that minimizes the discrepancy between the synthetic turbulence

statistics and the target Reynolds stresses.

Since one can only use a finite number of wave modes and time steps, two important aspects need

to be studied. The first pertains to the convergence of the synthetic turbulence statistics to the target

Reynolds stresses when averaged over an infinite time, i.e., whether lim𝑡→∞
〈
𝑢′
𝑠𝑖
𝑢′
𝑠 𝑗

〉
𝑡
= 𝑅𝑖 𝑗 . The second

aspect relates to the time required for convergence, namely, whether

〈
𝑢′
𝑠𝑖
𝑢′
𝑠 𝑗

〉
𝑡
− lim𝑡→∞

[〈
𝑢′
𝑠𝑖
𝑢′
𝑠 𝑗

〉
𝑡

]
is

sufficiently small for an appropriate averaging time, which is typically a few domain flow-through times.

The first aspect is referred to as the bias error, and the second is referred to as the time convergence

error [16].

The analysis starts with deriving mathematical expressions that isolate the bias and the time

convergence errors, associated with a particular realization of a random number set, relative to the

target Reynolds stress tensor. The covariance tensor of the synthetic velocities is,〈
𝑢′
𝑠𝑙
𝑢′
𝑠𝑚

〉
𝑡
= 𝑎𝑙𝑖𝑎𝑚𝑗

〈
𝑣′𝑖𝑣

′
𝑗

〉
𝑡
, (6.1)

where the Cholesky decomposition of the Reynolds stress tensor 𝑎𝑖 𝑗 provides the scaling of the random

fluctuations 𝑣′
𝑖
. Therefore, to study the aforementioned realization-dependent errors, one may consider

only the covariance of the fluctuation tensor

〈
𝑣′
𝑖
𝑣′
𝑗

〉
𝑡
, with 𝑣′

𝑖

𝑣′𝑖 = 2

√
3

2

𝑁∑
𝑛=1

√
𝑞𝑛𝜎𝑛

𝑖 cos

(
𝜅𝑛𝑑𝑛

𝑙
�̂�𝑙 + 𝜓𝑛

)
(6.2)

It is known from Kraichnan [31] that as the number of realizations (in this case, the number of wave

modes) increases, the covariance of the fluctuation tensor converges to 𝛿𝑖 𝑗 . Despite being more precise, a

large number of modes is not desirable due to the high computational effort associated with Equation 6.2.

Therefore, it is only practical to minimize the error associated with the specific realization of a finite

random set by ensuring small bias and time convergence errors.

The covariance of the fluctuation tensor

〈
𝑣′
𝑖
𝑣′
𝑗

〉
𝑡

is decomposed to a time-independent component

𝛼
𝑛𝑝

𝑖𝑗
and a time-dependent component 𝛽𝑛𝑝 . Based on this decomposition, Patterson et al. [16] defined

measures to a priori evaluate the errors associated with using a specific random number set, namely,

the bias and time convergence errors. The decomposition is as follows:〈
𝑣′𝑖𝑣

′
𝑗

〉
𝑡
=

𝑁∑
𝑛=1

𝑁∑
𝑝=1

𝛼
𝑛𝑝

𝑖𝑗
𝛽𝑛𝑝 (6.3)

with 𝛼
𝑛𝑝

𝑖𝑗
and 𝛽𝑛𝑝 given by

𝛼
𝑛𝑝

𝑖𝑗
≡ 6

√
𝑞𝑛𝑞𝑝𝜎𝑛

𝑖 𝜎
𝑝

𝑗
, 𝛽𝑛𝑝 ≡ 1

𝑡

∫ 𝑡

0

cos

(
𝛾𝑛𝑡′ + �̂�𝑛(𝑥)

)
cos

(
𝛾𝑝𝑡′ + �̂�𝑝(𝑥)

)
d𝑡′ (6.4)

The benefit of isolating the unsteady time-dependent error and the time-independent error is that the

contribution of the former to the overall error can be eliminated by computing the limit as 𝑡 → ∞, which

reads:

lim

𝑡→∞
𝛽𝑛𝑝 =

1

2

𝛿𝑛𝑝 (6.5)

Combining Equation 6.4 and Equation 6.5, the infinite time value of the covariance of the fluctuation

tensor is then ∑
𝑛

∑
𝑝

𝛼𝑛𝑝𝛿𝑛𝑝/2 =
∑
𝑛

𝛼𝑛𝑛/2 (6.6)

The error in the time-independent term 𝛼
𝑛𝑝

𝑖𝑗
, denoted (𝑒𝛼

𝑖 𝑗
), is then computed by finding the difference

between this infinite-time value of the covariance tensor and the 𝛿𝑖 𝑗 . Since the bias error (𝑒
𝑅𝑏

𝑖 𝑗
) is a
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measure of the deviation from the target Reynolds stress, 𝑒𝛼
𝑖 𝑗

is scaled with Cholesky decomposition

components. The bias error is then computed as follows:

𝑒𝛼𝑖 𝑗 = 𝛼𝑛𝑛
𝑖𝑗

1

2

− 𝛿𝑖 𝑗

𝑒
𝑅𝑏

𝑖 𝑗
= 𝑎𝑖𝑙𝑎 𝑗𝑚𝑒

𝛼
𝑙𝑚

(6.7)

Similarly, the error in the time-dependent term 𝛽𝑛𝑝 is simply the difference between its time-averaged

value and the infinite-time value given in Equation 6.5, therefore, 𝑒
𝑛𝑝

𝑡 = ⟨𝛽𝑛𝑝⟩𝑡 − 1

2
𝛿𝑛𝑝 . More importantly,

the time convergence error is the difference between the running averaged second-order moments and

the corresponding target Reynolds stress components

𝑒
𝑅𝑡

𝑖 𝑗
= 𝑎𝑖𝑙𝑎 𝑗𝑚

〈
𝑢′
𝑠𝑖
𝑢′
𝑠 𝑗

〉
𝑡
−

〈
𝑢′
𝑠𝑖
𝑢′
𝑠 𝑗

〉
𝑡→∞

(6.8)

With an estimation of bias and time convergence errors at hand, Patterson et al. [16] developed different

procedures for selecting an appropriate random number set, one of which is referred to as sequential

choosing, which is partially adopted in this work. The sequential choosing procedure is to choose the

two random sets 𝜃𝑛
and 𝜙𝑛

that produce 𝜎𝑛
in a way that minimizes the bias error. The sequential

choosing method then determines a third random set 𝜂𝑛 , which along with 𝜃𝑛
, produces 𝑑𝑛

𝑗
. The first

component 𝑑𝑛
1

determines 𝛾𝑛
, which should not be too small or too close to other 𝛾𝑝

in absolute value

to avoid slow time convergence.

It was found that minimizing both the bias and time convergence errors simultaneously, as opposed

to focusing on just one aspect, results in a larger error in one of the aspects [16]. So, it can be seen as a

compromise between the two errors. In this work, the focus is to minimize the bias error. The bias error

estimation in Equation 6.7 was used to evaluate the bias error for 10000 different random number sets

and select the one with the least bias error. This ensures that the selected random number set has a

sufficiently small bias error, resulting in a better representation of the target Reynolds stresses. This

selection of a specific realization of random numbers based on the bias error estimation will be referred

to as the selection procedures.

6.1. Results
To illustrate the influence of the realization-dependent bias error, two different realizations of random

numbers were drawn and used to generate synthetic velocities. The statistics of these two sets of

synthetic velocities were computed, which yields the synthetic Reynolds stresses. These are simply the

time averaged <𝑢′
𝑠𝑖
𝑢′
𝑠 𝑗

>. Note that this is the direct output of the NTS-STG, meaning that the synthetic

velocities are not yet injected in the flow. When the synthetic velocities are injected into the flow by

means of a source term, the resolved velocities and thus the resolved Reynolds stresses are obtained.

Eventually, we are interested in the resolved Reynolds stresses and how they are affected by errors in

the statistics of the synthetic turbulence, which are discussed in subsection 6.1.1 and subsection 6.1.2.

Figure 6.2 shows the time-averaged <𝑢′
𝑠𝑢

′
𝑠> and <𝑢′

𝑠𝑣
′
𝑠>, and the respective target Reynolds stresses

for the flat plate case. Note that the notation < . > is now adopted instead of < . >𝑡 for the sake of

simplicity. It can be seen that the statistics of the synthetic velocities exhibit substantial variations solely

due to the specific realization of random numbers, representing an undesirable source of error. This

error is the bias error, which remains present even when the averaging time approaches ∞. In the

next subsections, the influence of this error on the resolved Reynolds stresses and the mean surface

quantities is discussed. Furthermore, the selection procedures are implemented and used to obtain

synthetic velocities whose statistics exhibit small bias errors.

6.1.1. Influence of the random number set: the flat plate test case
In this subsection, the selection procedures are applied in the flat plate case. Figure 6.3 shows the

statistics of the synthetic turbulence (in green) as well as the second-order statistics of the resolved

velocities (in red) using two different realizations. One of these realizations was obtained using the

aforementioned selection procedures (indicated by the dashed lines), whereas the other was drawn

randomly (indicated by the solid lines). First, looking at the statistics of the synthetic velocities, the

selection procedures lead to smaller deviations between the statistics of the synthetic turbulence and the
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(a) <𝑢′𝑠𝑢
′
𝑠> (b) <𝑢′𝑠𝑣

′
𝑠>

Figure 6.2: Statistics of the synthetic turbulence using two different random number set realizations for the flat plate test case

target stresses. This is especially evident in the turbulent shear stress in Figure 6.3b, where the synthetic

turbulence computed with the selected random number set matches the target very well, whereas the

random realization produces synthetic velocities that severely underestimate their target.

Regarding the resolved stresses (in red), they demonstrate a consistent underestimation compared

to the target Reynolds stresses, even when the statistics of the synthetic velocities are accurate. For

instance, the wall-normal Reynolds stress exhibits a good agreement with the target stress, however, the

resolved stress still falls short as shown in Figure 6.3c. This behavior is also observed in other Reynolds

stresses, especially in <𝑢′𝑣′> and <𝑤′𝑤′
> as depicted in Figure 6.3b and in Figure 6.3d, respectively.

This deficit in resolved stresses is discussed in the upcoming chapters, as the focus of this chapter is

to study the input and the direct output of the NTS-STG itself, and not the resulting output of the

forcing term. The mean surface quantities, the skin friction coefficient and the pressure fluctuations,

using the two random number sets are shown in Figure 6.4. The skin friction coefficient results are

comparable, with both computations showing a large peak at the RAN-LES interface. When using the

selection procedures, a small underestimation in 𝐶 𝑓 is observed downstream of the interface, then it

rapidly approaches the reference value. Both realizations show a large spike in pressure fluctuations, an

indication of significant spurious noise at the interface. So, the mean surface quantities produced using

both random number sets are very comparable. Note, the peak observed in both 𝐶 𝑓 and the pressure

fluctuations is addressed in chapter 8. The flat plate test case has limitations in two aspects:

• The target Reynolds stresses are not very accurate since they are reconstructed from a RANS

solution.

• There is a lack of DNS/LES or experimental data in close proximity to the interface.

Even though the target Reynolds stresses reconstructed from a RANS are reasonably accurate, particularly

in the outer part of the boundary layer, they do not capture the detailed statistics of turbulent fluctuations

near the wall. This is evident in the streamwise Reynolds stress <𝑢′𝑢′
>, where the near-wall peak,

present in both DNS and experimental data, is not captured by reconstructed <𝑢′𝑢′
>. While it is not

strictly necessary to have an accurate estimate of the Reynolds stress in the vicinity of the wall, as this

region is treated by RANS, this still introduces a source of error that needs to be considered. With the

rounded step case, the target Reynolds stresses are available from DNS results at the same Reynolds

numbers.

The second limitation is the absence of high-fidelity data, which prohibits the assessment of

turbulence development in close proximity to the RANS-LES interface. The rounded step case, on

the other hand, provides a better opportunity for such assessment thanks to its well-resolved LES

solution of [25]. As a result, the rounded step test case is considered more attractive to study turbulence

development and is discussed in the next subsection.
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(a) Synthetic, resolved and target <𝑢′𝑢′> (b) Synthetic, resolved and target <𝑢′𝑣′>

(c) Synthetic, resolved and target <𝑣′𝑣′> (d) Synthetic, resolved and target <𝑤′𝑤′
>

Figure 6.3: Statistics of the synthetic turbulence and the resolved velocities for the flat plate. Solid lines: random realization,

dashed lines: with the selection procedures

(a) 𝐶 𝑓 (b) Pressure fluctuations

Figure 6.4: Skin friction coefficient and pressure fluctuations for the flat plate case using the DLR source term

6.1.2. Influence of the random number set and target Reynolds stresses:
the rounded step test case

In this subsection, the influence of the random number set is assessed for the rounded step case.

Furthermore, the availability of DNS target Reynolds stress allows assessing the influence of the target
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Reynolds stresses themselves, which are either taken from existing DNS results or reconstructed from a

RANS solution. Ideally, one would try to provide synthetic turbulence generators with target stresses

that are obtained using a high-fidelity method, such as LES or DNS. However, this is not always possible,

simply due to the lack of such high-fidelity data. Alternatively, target Reynolds stresses are typically

reconstructed using the underlying RANS model. This, of course, introduces a source of error that is

assessed in this subsection.

Similar to the flat plate case, RANS target Reynolds stresses were used to generate synthetic turbulence

with NTS-STG using both a random realization and a realization with the selection procedures. The

statistics of the synthetic turbulence along with the RANS target for both realizations are shown in

Figure 6.5. The random realization produces synthetic turbulence that matches fairly well the target

stresses, except for the turbulent shear stress. As shown in Figure 6.5b, the statistics of the synthetic

velocities that were computed using the random realization has a large peak (solid green line), whereas

that computed with the selected set match perfectly the target (dashed green line). On the other hand,

the statistics of the synthetic velocities that were computed using the selected set match perfectly all

target stresses except for <𝑤′𝑤′
>, with a slight underestimation, as shown in Figure 6.5d. So, using

the selected set is advantageous, as it results in a smaller bias error. Regarding the resolved stresses, a

consistent deficit in resolved stress is observed in both computations, as it is the case for the flat plate,

which is discussed in chapter 8. The mean surface quantities for the rounded step using RANS target

(a) Synthetic, resolved and target <𝑢′𝑢′> (b) Synthetic, resolved and target <𝑢′𝑣′>

(c) Synthetic, resolved and target <𝑣′𝑣′> (d) Synthetic, resolved and target <𝑤′𝑤′
>

Figure 6.5: Statistics of the synthetic turbulence and the resolved velocities with RANS target Reynolds stress for the rounded

step. Solid lines: random realization, dashed lines: with the selection procedures

Reynolds stresses combined with either a random or selected realization of random numbers are shown

in Figure 6.6. Both computations show comparable results. The specific realization of the random

number set appears to have less impact on the mean surface quantities compared to the Reynolds

stresses. Similarly, the DNS target Reynolds stresses were used to compute the synthetic velocity field
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(a) 𝐶 𝑓 (b) 𝐶𝑝

Figure 6.6: Skin friction and pressure coefficient using RANS target Reynolds stresses

along with either a random realization or a properly selected random set using the selection procedures.

Similar to the computation with RANS target stress, when the selected set is used, the statistics of

the synthetic velocities are in close agreement with the target stress. This is particularly clear in the

turbulent shear stress, shown in Figure 6.7b. Interestingly, even when using the selected random number

set, the near-wall physical peak in <𝑢′𝑢′
> could not be captured as shown in Figure 6.7a. Regarding the

wall-normal and spanwise stresses, the selected random number set shows good agreement with the

target, except for a small deviation in the latter, as shown in Figure 6.7d. Regarding the mean surface

(a) Synthetic, resolved and target <𝑢′𝑢′> (b) Synthetic, resolved and target <𝑢′𝑣′>

(c) Synthetic, resolved and target <𝑣′𝑣′> (d) Synthetic, resolved and target <𝑤′𝑤′
>

Figure 6.7: Statistics of the synthetic turbulence and the resolved velocities with DNS target Reynolds stress for the rounded step.

Solid lines: random realization, dashed lines: with the selection procedures

quantities, the results are shown in Figure 6.8. As shown in Figure 6.8a, there is no significant deviation



6.1. Results 36

between the two cases in terms of 𝐶 𝑓 in the upstream region. However, in the reattachment region,

the computation with the selection procedures shows closer agreement with the LES reference data.

Furthermore, the pressure coefficient shows a better agreement with the reference data in the upstream

region when the selection procedures are used.

(a) 𝐶 𝑓 (b) 𝐶𝑝

Figure 6.8: Skin friction and pressure coefficient using DNS target Reynolds stresses

In order to accurately evaluate the impact of the target Reynolds stresses and the choice of random

number set, it is necessary to examine the development of the resolved stresses downstream of the

RANS-LES interface. The results of varying these two factors for the upstream region of the rounded

step case are presented in Figure 6.9. It is observed that neither the source of the target Reynolds stresses

nor the realization of the random set has an effect on the mean velocity profile, as shown in Figure 6.9a

and Figure 6.9b. Regarding the Reynolds stresses, the impact of the target Reynolds stresses is evident,

particularly in the resolved <𝑢′𝑣′> and <𝑤′𝑤′
>, shown in Figure 6.9d and Figure 6.9h, respectively.

These stresses exhibit near-wall peaks that persist even far downstream of the interface.

Regarding the influence of the random number set realization, using the selection procedures results

in a smaller near-wall peak in the resolved stress compared to the case with a random realization even

with RANS target Reynolds stresses. This is particularly clear in Figure 6.9d and Figure 6.9h, where the

resolved <𝑢′𝑣′> and <𝑤′𝑤′
>, respectively, have a smaller peak near the wall. It is evident that the use of

the DNS target Reynolds stress along with the selection procedures results in the most agreement with

the LES reference data.

Figure 6.10 shows the result of the same computations in the vicinity of the rounded step. All

computations show comparable results, with no clear outperforming method. Given that the location

downstream of the rounded step is far from the location where the synthetic turbulence is forced and

because of the presence of natural instabilities caused by separation, the correlation between the injected

synthetic turbulence and the resolved stress in this region is not expected to be strong. The results are

presented for the sake of completeness.

In this chapter, the impact of two important input parameters for the NTS-STG was assessed. The

first is the random number set used to define the direction and the phase shifts of different modes,

while the second is the target Reynolds stresses, which can be either reconstructed from the underlying

RANS model or obtained from DNS results. It was found that using the selection procedures prevents

large bias errors that will otherwise be present when a random realization is used. The impact of these

large bias errors is not limited to the forcing region, but has long-lasting effects that remain present

downstream of the forcing region.

Furthermore, the influence of the target Reynolds stresses was evaluated in the rounded step case.

It was found that even when inaccurate RANS Reynolds stresses were used, the flow was still able to

adapt to the correct Reynolds stress levels. However, this adaptation length can be significantly large

compared to using DNS or, in general, more accurate target Reynolds stresses. It was also found that

using selection procedures along with inaccurate RANS stresses could slightly decrease the distance

needed for the stress levels to adapt to the correct values. On the other hand, the influence of these two

aspects on the velocity profiles and the mean surface quantities is not as severe as it is on the Reynolds

stresses. Nevertheless, for the rounded step case, 𝐶 𝑓 and 𝐶𝑝 showed a slightly better agreement with

the reference when the DNS target stresses along with the selection procedures were used.

To avoid accumulating sources of error, all the upcoming computations will use the selected random
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(a) 𝑢 at the interface (b) u

(c) Resolved <𝑢′𝑢′> (d) Resolved <𝑢′𝑣′>

(e) Modeled <𝑢′𝑣′> (f) Total <𝑢′𝑣′>

(g) Resolved <𝑣′𝑣′> (h) Resolved <𝑤′𝑤′
>

Figure 6.9: Comparison between using DNS and RANS as target Reynolds stresses with (dashed lines) and without (solid lines)

the selection procedures upstream the curved section

number sets that were used in this chapter, unless explicitly stated otherwise. Furthermore, DNS target

Reynolds stresses will be used for the rounded step test case. With an ensured high-quality synthetic

turbulence (see chapter 5) and an accurate input for the NTS-STG as discussed in this chapter, the

forcing of the synthetic turbulence can be studied, which is discussed in the next chapter.
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(a) 𝑢 at 𝑥/𝐻 = 0 (b) u

(c) Resolved <𝑢′𝑢′> (d) Resolved <𝑢′𝑣′>

(e) Modeled <𝑢′𝑣′> (f) Total <𝑢′𝑣′>

(g) Resolved <𝑣′𝑣′> (h) Resolved <𝑤′𝑤′
>

Figure 6.10: Comparison between using DNS and RANS as target Reynolds stresses with (dashed lines) and without (solid lines)

the selection procedures at the curved step



7
Synthetic Turbulence Forcing:

Assessment and Sensitivity

In this chapter, different forcing methods are evaluated. The aim is to assess the sensitivity of the

turbulence development to different factors, such as the source term, the underlying RANS model, and

the size of the forcing region. The source terms evaluated are the DLR source term of Probst [14] and

the VSTG source term of Shur et al. [15]. The analysis highlights the advantages and limitations of each

method and provides insight into the factors that influence the development of turbulence downstream

of the forcing region.

The synthetic turbulence is injected into the flow as a source term in the momentum equations. The

filtered momentum equation of LES for an incompressible flow with a forcing term 𝑓𝑖 is as follows:

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕�̃�𝑖
𝜕𝑥 𝑗

= − 1

𝜌

𝜕�̃�

𝜕𝑥𝑖
+ 𝑣

𝜕2�̃�𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
−

𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
+ 𝑓𝑖 (7.1)

where the .̃ denotes the LES filtering operator and 𝜏𝑖 𝑗 = 𝑢𝑖𝑢𝑗 − 𝑢𝑖𝑢𝑗 is the sub-grid scale tensor.

Source terms can be applied in two manners, namely, interface or volumetric. In interface forcing,

the synthetic turbulence is injected in a single plane perpendicular to the flow direction. In volumetric

forcing, the injection takes place over a volume that extends in the streamwise direction, commonly

referred to as the forcing region. Volumetric forcing has the ability to gradually increase the intensity of

the forcing in the downstream direction by using blending functions. As a result, volumetric forcing

could reduce spurious noise associated with the sudden onset of turbulence, typical of interface forcing,

without using additional tools (such as internal damping layer (IDL)) [15]. On the other hand, having a

large forcing region is undesirable, in particular in the case of rapidly varying flows, because the target

velocity profiles and Reynolds stresses may become unrepresentative of the flow. This is not a concern

in interface forcing, since the synthetic turbulence injection is applied in a plane, so the target quantities

are typically sampled from directly upstream of the interface.

7.1. The DLR Source Term
The first source term is based on computing the partial time derivative of the fluctuating velocity

component (𝑢′
𝑖
) [14]. It is donated the DLR source term, as it was proposed by DLR. In the formulation

of the DLR source term, an implicit 2nd-order time discretization scheme is used, which reads as

𝐹𝑖 =
𝜕
(
𝜌𝑢′

𝑖

)
𝜕𝑡

≈
3

(
𝜌𝑢′

𝑖

)𝑛+1 − 4

(
𝜌𝑢′

𝑖

)𝑛 + (
𝜌𝑢′

𝑖

)𝑛−1

2Δ𝑡
(7.2)

The fluctuating velocity 𝑢′𝑛+1

𝑖
is taken from the synthetic turbulence generator, so 𝑢′𝑛+1

𝑖
= 𝑢′𝑛+1

𝑠𝑖
. Thus, this

source term seeks to force the flow to generate fluctuations equal to those produced by the synthetic

turbulence generator at time step 𝑛 + 1. The fluctuating velocities at the previous times are computed as

the difference between the instantaneous and the running time-averaged velocities as follows:

𝑢′𝑛
𝑖 = 𝑢𝑛

𝑖 − ⟨𝑢𝑖⟩ , 𝑢′𝑛−1

𝑖 = 𝑢𝑛−1

𝑖 − ⟨𝑢𝑖⟩ (7.3)

39
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This treatment prevents the decoupling of the computed flow from the synthetic turbulence field,

however, it requires computing the running time averages.

The DLR source term can be applied in either a single plane (interface forcing) or in a volume

(volumetric forcing). When applied in a volume, a blending function can be used to gradually introduce

the synthetic velocities into the flow. Typically, such blending functions start with a value of zero at the

beginning of the forcing region, increase to a value of 1 near the center of the forcing region, and then

decrease back to zero at the end of the forcing region. In this work, the forcing region, when using the

volumetric DLR forcing, is always half of the boundary layer thickness (0.5𝛿0), which was shown to

produce good agreement with the reference [22].

7.2. The VSTG Source Term
The other forcing term analyzed in this work is the VSTG. It is a volumetric source term proposed

by Shur et al. [15] with the aim of reducing the spurious noise associated with the sudden onset of

turbulence when interface force is used. This forcing approach consists of introducing a source term

to the momentum equations and a sink term to the turbulent kinetic energy transport equations. The

VSTG is based on a purely empirical formulation of the source term in the momentum equation, which

reads:

𝐹𝑖 = 𝐶𝐵𝐹𝜌𝑈0𝑢
′
𝑠𝑖
(𝑥, 𝑦, 𝑧)𝛼VSTG(𝑥) (7.4)

where 𝐶𝐵𝐹 = 1.1 is an empirical constant, 𝛼VSTG(𝑥) is a blending function determining the spatial

distribution of the source term intensity. In addition to introducing a source term to the momentum

equations, a sink term is added to the turbulent kinetic energy transport equations. The VSTG was

originally formulated for IDDES with 𝑘 − 𝜔 SST as the underlying RANS model. Therefore, the sink

term is defined as follows:

𝐹𝑘−𝜔 = −𝜌𝑈0𝛼VSTG(𝑥)𝜔 max

{(
𝜈IDDES

𝑡 − 𝜈
Smag

𝑡

)
, 0

}
(7.5)

where 𝜈IDDES

𝑡 and 𝜈
Smag

𝑡 are the eddy viscosity computed using IDDES and Smagorinsky model,

respectively. 𝜔 is the specific dissipation rate. This sink term rapidly decreases the modeled turbulence

kinetic energy 𝑘 , and hence, 𝜈𝐼𝐷𝐷𝐸𝑆
𝑡 , until 𝜈IDDES

𝑡 is equal to 𝜈
Smag

𝑡 . This ensures a rapid transition from

the RANS SST eddy viscosity to the SGS viscosity levels within the forcing region.

Since the Spalart-Allmaras (SA) model was used as the main underlying RANS model in most of the

computations in this work, an equivalent sink term was used. The sink term associated with the SA

model reads as follows:

𝐹𝑆𝐴 = −𝜌𝑈0𝛼VSTG(𝑥)max

{(
𝜈IDDES

𝑡 − 𝜈
Smag

𝑡

)
, 0

}
(7.6)

This sink term serves the same purpose as the one proposed by Shur et al. [15] and is assessed in

subsection 7.3.2.

7.3. Results
In this section, the results of different forcing approaches are discussed. The sensitivity of the turbulence

development to different factors is performed in the following order. First, the effect of the underlying

RANS model is assessed in subsection 7.3.1. Next, the volumetric DLR and the VSTG source terms are

compared, where the influence of the additional sink term (Equation 7.6) is evaluated in subsection 7.3.2.

Lastly, the effect of the forcing region length is evaluated using the VSTG as the source term in

subsection 7.3.3.

For the flat plate case, results are always presented at two locations, the interface or the middle of the

forcing region (when volumetric forcing is used), and at a distance of 3 boundary layers thickness (3𝛿0)

downstream of the interface. This close distance to the RANS-LES interface was chosen, as one focus

of this work is to improve the quality of the synthetic turbulence, which can only be done by closely

monitoring its development. Due to the lack of DNS reference data at this location, the target RANS

Reynolds stresses are used as the reference data. These RANS reconstructed stresses are considered to

be reliable throughout the boundary layer, excluding the near-wall region, which is modeled by RANS

regardless.
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7.3.1. Interface forcing with the DLR source term
The DLR source term was used in an interface setup, with two different underlying RANS models,

SA and k-𝜔 SST (SST for short). The two different RANS models were used to assess the source term

sensitivity to different underlying RANS models and hence different turbulent viscosity distributions

in the boundary layer. The results of the flat plate case at the interface are shown in Figure 7.1. The

vertical dashed line indicates the RAN-LES interface location in the boundary layer. It is observed that

the velocity profile and the resolved stress profiles are identical, regardless of the underlying RANS

model. However, the modeled turbulent shear stress varies considerably as a result of the different

eddy viscosity produced by each model, as shown in Figure 7.1h and Figure 7.1d. SA-IDDES shows

large eddy viscosity compared to that computed by SST-IDDES throughout the whole boundary layer.

Consequently, the total shear stress is overestimated with SA-IDDES, as shown in Figure 7.1e.

The results at a distance of 3 boundary layers thickness (3𝛿0) downstream of the interface are shown

in Figure 7.2. It is evident that the development of the resolved stresses is affected by the different

underlying RANS models. When using SA as the underlying RANS model, larger resolved stresses are

consistently observed. Furthermore, using the SA model shows smaller eddy viscosity, especially in

the outer boundary layer, as depicted in Figure 7.2h. This indicates that the SA model, unlike the SST

model, quickly decreases its eddy viscosity relative to the upstream RANS, rapidly approaching the

SGS viscosity levels expected in the WMLES branch of IDDES. This can be clearly seen in Figure 7.3,

which shows the ratio between the eddy viscosity and the kinematic viscosity for each computation.

Nonetheless, the velocity profiles and the Reynolds stresses produced using the two underlying RANS

models are highly comparable.

(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 7.1: Results of interface forcing using the DLR source term for the flat plate case at the interface (𝑥 = 0)

The skin friction coefficient and pressure fluctuations are presented in Figure 7.4. The results in

Figure 7.4a indicate that the SA-IDDES provides a closer agreement with the reference skin friction
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(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 7.2: Results of interface forcing using the DLR source term for the flat plate case at 𝑥 = 3𝛿0

(a) SA-IDDES (b) SST-IDDES

Figure 7.3: 𝜈𝑡/𝜈 for the flat plate case, using SA and SST as the underlying RANS models. The synthetic turbulence was injected

using the DLR source term.

coefficient. Additionally, the skin friction produced by the SST-IDDES appears to have the wrong

slope, where the skin friction remains almost constant. With regard to pressure fluctuations, both the

SA-IDDES and the SST-IDDES exhibit large pressure disturbances, which is discussed and treated in

chapter 8.

The strange slope of 𝐶 𝑓 , observed with SST-IDDES in Figure 7.4a, can be partly attributed to the

specific random number set. In order to illustrate this, another computation using another random

number set was carried out. This random number set is the randomly-drawn set that was used in

subsection 6.1.1. The outcome of this computation along with the result in Figure 7.4 are shown in

Figure 7.5, with the former illustrated in blue. It can be observed that the skin friction coefficient

resulting from SST-IDDES with the random realization matches the reference slightly better, especially

far downstream (𝛿0 > 40). However, it still deviates from the result of SA-IDDES. The reason for this

deviation is due to the different underlying RANS models, and thus different eddy viscosity distribution
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especially in the vicinity of the interface, as shown in Figure 7.3. Such deviations in 𝐶 𝑓 are to be expected,

since even the pure SA-RANS and SST-RANS show such differences, which can be seen in (Figure 7.5a

just upstream of the interface (x< 0).

(a) 𝐶 𝑓 (b) Pressure fluctuations

Figure 7.4: Skin friction coefficient and pressure fluctuations for the flat plate case using interface forcing of the DLR source term

(a) 𝐶 𝑓 (b) Pressure fluctuations

Figure 7.5: Skin friction coefficient and pressure fluctuations for the flat plate case using interface forcing of the DLR source term

and a different random number set in SST-IDDES computation.

7.3.2. Volumetric forcing: the volumetric DLR source term and the VSTG
In this section, the performance of two volumetric source terms is evaluated. The first is the DLR source

term that is implemented in a volumetric manner, and the second is the VSTG. In this assessment, the

forcing region used for both source terms is half a boundary layer thickness (0.5𝛿0). The results of

volumetric forcing are always shown in the middle of the forcing region. Both source terms are applied

with and without the sink term described in Equation 7.6.

The outcomes of using the two volumetric source terms are shown in Figure 7.6. The sink term does

not result in any additional decrease in eddy viscosity with the DLR source term, and only a slight

decrease is observed with the VSTG. Nevertheless, this further decrease in eddy viscosity has minimal

impact on the resolved and modeled stresses as well as the velocity profile. This negligible decrease

in eddy viscosity is due to enforcing the WMLES branch of IDDES by setting 𝑓𝑑𝑡 = 1, which results in

already low eddy viscosity levels. A comparison between the VSTG and the volumetric DLR source

terms reveals that the latter produces resolved stresses which are in a better agreement with the target

stresses. This is to be expected, since the DLR source term forces the flow to generate fluctuations

that are equal to the synthetic velocities produced by the synthetic turbulence generator. Since the
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statistics of the synthetic velocities approximate the target Reynolds stresses, the generated (resolved)

fluctuations will also match the target Reynolds stresses.

The results of the volumetric forcing methods 3 𝛿0 downstream of the interface are shown in

Figure 7.7. The resolved stresses obtained from both forcing methods exhibit similarities, with the

result of VSTG showing higher values at around 𝑥/𝛿0 = 0.25 in both <𝑢′𝑣′> and <𝑣′𝑣′>, as depicted in

Figure 7.7c and Figure 7.7f, respectively. However, the resolved shear stress better aligns with the target

in the outer boundary layer when using the VSTG compared to the volumetric DLR source term.

(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 7.6: Results of volumetric forcing for the flat plate case at 𝑥 = 0.25𝛿0. The forcing region size is 0.5 𝛿0.

The skin friction coefficient and the pressure fluctuations obtained using the two volumetric forcing

terms are shown in Figure 7.8. Once again, the lack of influence of using the sink term to further decrease

the eddy viscosity is shown in both 𝐶 𝑓 and the pressure fluctuations. Moreover, the result of VSTG

exhibits a peak in 𝐶 𝑓 comparable to that of the interface forcing. The advantage of the VSTG is shown in

the pressure fluctuations in Figure 7.8b, where the spike in pressure fluctuations is significantly reduced

with the VSTG. It is also observed that even the volumetric DLR source term shows significant spurious

pressure fluctuations. So, even with the use of blending functions, the volumetric DLR source term still

fails to treat these spurious pressure fluctuations. This is in agreement with the original publication of

the volumetric DLR source term Probst et al. [22]. The issue of spurious pressure fluctuations is treated

in chapter 8.

In terms of the spurious pressure fluctuations, it is apparent that the VSTG source term has an

advantage over the DLR source term. In the VSTG publication, it was found that larger forcing regions,

exceeding the 0.5𝛿0 that is employed in this subsection, yield superior outcomes. Thus, it would be

unjust to solely evaluate suboptimal forcing regions for the VSTG. The effect of the forcing region size is

addressed in the next subsection.
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(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 7.7: Results of volumetric forcing for the flat plate case at 𝑥 = 3𝛿0. The forcing region size is 0.5 𝛿0.

(a) 𝐶 𝑓 (b) Pressure fluctuations

Figure 7.8: Skin friction coefficient and pressure fluctuations for the flat plate case using volumetric source terms. The forcing

region size is 0.5 𝛿0.

7.3.3. Effect of the forcing region in VSTG
The impact of increasing the forcing region with the VSTG is assessed in this subsection. The VSTG

source term was used in a forcing region of length 1𝛿0 and 2𝛿0 in addition to 0.5𝛿 that was already

presented in subsection 7.3.2. The results of these computations in the middle of the forcing region

of size 2𝛿0, namely at 𝑥 = 1𝛿0, can be found in Appendix A. More importantly, the results of these

computations at a distance of 3𝛿0 downstream of the interface are shown in Figure 7.9. Once again, the
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sink term shows no influence on the results. This is because the WMLES branch of IDDES is imposed,

and thus the eddy viscosity levels are already sufficiently low. The resolved stresses appear to match

the target slightly better when the forcing region = 1𝛿, as shown in Figure 7.9c. This is because the flow

had a greater distance downstream of the forcing region to adapt to the correct Reynolds stress values.

Nonetheless, the difference between the results using the two forcing regions is acceptable.

The surface quantities are of more interest, the results are shown in Figure 7.10. The peak in both 𝐶 𝑓

and the pressure fluctuations relaxes as the forcing region size increases. This is in agreement with the

original publication [15]. The sudden decrease in 𝐶 𝑓 , present with forcing region size = 2𝛿0, is also

consistent with the original publication. However, the original publication shows results at a smaller

𝑅𝑒𝜃 and over a smaller range of 𝑅𝑒𝜃, so it is hard to establish a one-to-one correlation. Nonetheless, the

presented results show good agreement with the original publication.

(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 7.9: Results of the VSTG forcing with different forcing region sizes for the flat plate case at 𝑥 = 3𝛿0. The forcing region

sizes are 1𝛿0and2𝛿0.

In this chapter, different synthetic turbulence forcing methods were evaluated. To summarize, using

SA and k-𝜔 SST as the underlying RANS models produced similar results in terms of velocity profiles

and resolved Reynolds stresses. However, the skin friction coefficient resulting from SST-IDDES, unlike

its counterpart, showed a larger deviation with respect to the reference. It was found that SST-IDDES

is more sensitive to the random number set used in the NTS-STG. Increasing the number of Fourier

modes by modifying the mode distribution could treat this issue. However, this is not explored in this

work, since SA is used as the main underlying RANS model.

Regarding the volumetric forcing, it was found that a further decrease in eddy viscosity by using

additional sink terms does not gain any benefit with any of the source terms. This is believed to be

because the eddy viscosity levels are already sufficiently low as a result of manually imposing the

WMLES branch (by setting 𝑓dt = 1). These sink terms could be more beneficial in cases where such

manual enforcement of the WMLES branch is not applied.
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(a) 𝐶 𝑓 (b) Pressure fluctuations

Figure 7.10: Skin friction coefficient and pressure fluctuations for the flat plate case using VSTG forcing with different forcing

region sizes. The forcing region sizes are 1, 2 𝛿0.

The DLR source term showed better agreement with the target stresses, in the forcing region/interface

and downstream of the interface, compared to the VSTG. Nonetheless, both source terms showed a

deficit in resolved stresses in the forcing regions. On the other hand, the VSTG source term clearly

exceeds over the DLR source term in terms of the lower level of spurious noise, indicated by significantly

smaller pressure fluctuations. The volumetric DLR source term did not show an improvement in this

respect, even though it uses a blending function to gradually introduce the synthetic velocities into the

flow. The issue of spurious noise with the DLR source term as well as the deficit in the resolved stresses

in the forcing region with both source terms is discussed in the next chapter.



8
Improved Synthetic Turbulence

Forcing

In this chapter, two improvements to the forcing methods are proposed. Even though the resolved

Reynolds stresses obtained using the DLR source term show good agreement with the target Reynolds

stresses compared to the VSTG, shortcomings were encountered. these shortcomings motivate the

proposed modifications. As discussed in chapter 7, the DLR interface forcing was found to cause a

spike in the skin friction coefficient at the interface, an issue partially treated by the volumetric forcing.

Furthermore, both DLR interface and volumetric source terms resulted in significant spurious noise,

indicated by a pressure fluctuations spike at the RANS-LES interface. Such nonphysical pressure

fluctuations pollute the computational domain, and could have a negative impact on the solution

downstream of the interface. The other shortcoming, which both the DLR source term and the VSTG

encountered, is that some resolved stresses were underestimated in and downstream of the forcing

region.

The first shortcoming is treated by limiting the forcing to the LES-treated region of the boundary

layer, which is referred to as constrained forcing. The second is treated by introducing additional

production terms that increase the production of the underestimated resolved stresses, which is achieved

through dynamic forcing. The constrained forcing and dynamic forcing are discussed in section 8.1 and

section 8.2, respectively.

8.1. Constrained Forcing
The first modification is based on the idea of not injecting synthetic turbulence in the near-wall RANS

region. This is thought to be a more physically sound approach, as the eddy viscosity in the RANS

region is sufficient to fully model the Reynolds stresses. In fact, when injecting synthetic turbulence

in the RANS region, resolved stresses are added to the already existing modeled stresses, which is

undesirable as it results in too large total stresses. Recall that in the IDDES formulation, the hybrid

length scale is deliberately increased near the RANS-LES interface in the boundary layer (using the

elevation function 𝑓𝑒) to prevent excessive reduction in the modeled stresses near the interface. This

ensures sufficiently large modeled stresses in the near-wall region up to the interface. Therefore, there

is no need to add resolved stresses in this region.

In this work, it is proposed to constrain the source term from being active in the near-wall RANS

region, which is referred to as the constrained forcing hereafter. With the constrained forcing, it is aimed

to obtain a more accurate estimation of the total turbulent shear stress. Furthermore, the constrained

forcing aims at reducing the peak in the skin friction coefficient and pressure fluctuations, appearing at

the interface. These nonphysical peaks were persistent even when using the volumetric DLR source

term.

Another approach that aims to avoid adding resolved stresses to modeled ones is that introduced

by Probst et al. [22]. In their publication, it was proposed to adjust the target Reynolds stress such

that the modeled stresses at the interface are subtracted from the target stresses. So, that approach

considered the whole boundary layer, not only the near-wall region. One concern with that approach

48
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is that the eddy viscosity downstream of the RANS-LES interface could be decreasing at a faster rate

than the rate at which synthetic turbulence is developing. That is, the modeled stress may vanish

quickly downstream of the interface, leaving only the resolved stresses to match the target stresses. This

would lead to total stresses that match the adjusted target stresses, but still underestimate the correct

Reynolds stress downstream of the interface. Because with the lower viscosity level downstream of

the interface, the adjusted target would underestimate the correct Reynolds stresses. This possible

issue is not reported in the original publication, but merely anticipated by the author of this work. The

approach presented in this work is simpler and not prone to this risk.

To differentiate between the RANS and the LES regions, the 𝑓𝐵 function that blends between the two

regions in IDDES was used. The source term is then scaled by the factor 1− 𝑓𝐵 to ensure no forcing takes

place in the near-wall RANS region, while rapidly increasing the source term intensity to 1 in the LES

region. Both 𝑓𝑏 and 1 − 𝑓𝑏 are shown in Figure 8.1. The vertical dashed line indicates the RANS-LES

interface in the boundary layer. The constrained forcing was applied to the DLR source term as follows:

𝐹𝑖 = (1 − 𝑓𝑏)
𝜕
(
𝜌𝑢′

𝑖

)
𝜕𝑡

≈ (1 − 𝑓𝑏)
3

(
𝜌𝑢′

𝑖

)𝑛+1 − 4

(
𝜌𝑢′

𝑖

)𝑛 + (
𝜌𝑢′

𝑖

)𝑛−1

2Δ𝑡
(8.1)

The results of this modified forcing are discussed in subsection 8.3.1.

Figure 8.1: 𝑓𝑏 and 1 − 𝑓𝑏 functions used in the constrained forcing

8.2. Dynamic Forcing
The second proposed modification has the purpose of addressing the deficit in resolved stresses,

observed in and downstream of the forcing region. The aim is to evaluate the impact of using an

additional source term that seeks to closely match the target Reynolds stresses in the forcing region.

This impact is not only limited to the resolved Reynolds stresses, but it also includes the skin friction

coefficient. The end goal is, as always, to achieve a faster adaptation in terms of both the resolved

stresses and the skin friction coefficient. The impact of this additional source term on the adaptation

length is evaluated. The additional source term is inspired by the dynamic forcing of [32].

As described in chapter 7, the forcing of synthetic turbulence is achieved through a source term

in the momentum equations. The filtered momentum equation for an incompressible flow with an

additional source term 𝑓𝑖 is considered,

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕�̃�𝑖
𝜕𝑥 𝑗

= − 1

𝜌

𝜕�̃�

𝜕𝑥𝑖
+ 𝑣

𝜕2�̃�𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
−

𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
+ 𝑓𝑖 (8.2)

The source term 𝑓𝑖 can be divided into a Reynolds-averaged part ⟨ 𝑓𝑖⟩ and its fluctuating part 𝑓 ′
𝑖

as,

𝑓𝑖 = ⟨ 𝑓𝑖⟩ + 𝑓 ′𝑖 (8.3)

Using this decomposition, the contribution of the source term to the mean flow and to the resolved

stresses are isolated. The contribution of the source term 𝑓𝑖 to the mean filtered momentum equation
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reads

𝜕 ⟨𝑢𝑖⟩
𝜕𝑡

+ 𝜕

𝜕𝑥 𝑗

(
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〉)
= − 1

𝜌

𝜕⟨�̃�⟩
𝜕𝑥𝑖

+ 𝑣
𝜕2 ⟨�̃�𝑖⟩
𝜕𝑥2
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𝑗

〉
−

𝜕
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𝜏𝑖 𝑗
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+ ⟨ 𝑓𝑖⟩ (8.4)

where 𝑢′
𝑖
= 𝑢𝑖 − ⟨�̃�𝑖⟩ , such that

〈
𝑢′
𝑖
𝑢′
𝑗

〉
are the resolved Reynolds stresses. It is to be expected that

only the averaged part of the source term affects the mean flow. It is of more interest to examine the

contribution of the fluctuating part of the source term 𝑓 ′
𝑖

to the resolved stresses, which reads,

𝜕
〈
𝑢′
𝑖
𝑢′
𝑗

〉
𝜕𝑡

+
〈
𝑢𝑗

〉 𝜕
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𝑖𝑗 + 𝑃

𝑓

𝑖 𝑗
+ 𝜙𝑟

𝑖𝑗 + 𝜒𝑖 𝑗 + 𝐷𝑇𝑟

𝑖 𝑗 + 𝐷𝜏
𝑖 𝑗 + 𝐷𝑣𝑟
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where 𝑃𝑟
𝑖𝑗
, 𝜙𝑟

𝑖𝑗
, 𝐷𝑇𝑟

𝑖𝑗
, 𝐷𝑣𝑟

𝑖𝑗
, and 𝜀𝑟

𝑖𝑗
are the resolved production, pressure-strain, turbulent diffusion, viscous

diffusion, and dissipation terms, analogous to those found in the unfiltered Reynolds stress equations.

The forcing term contribution appears in the additional term 𝑃
𝑓

𝑖 𝑗
:

𝑃
𝑓

𝑖 𝑗
=

〈
𝑓 ′𝑖 𝑢

′
𝑗

〉
+

〈
𝑓 ′𝑗 𝑢

′
𝑖

〉
(8.6)

Only the fluctuating part of the source term affects the development of the resolved stresses through

the source/sink term 𝑃
𝑓

𝑖 𝑗
. This term can increase or dampen the resolved stresses based on its sign. As

discussed in chapter 7, a deficit in resolved stresses was observed, especially in ⟨𝑢′𝑣′⟩ and

〈
𝑣′2

〉
. Adding

a source term that selectively increases the production of these underestimated stresses is expected to

fix this deficit.

Consider the dynamic forcing proposed by Laraufie et al. [32], and given by,

𝑓𝑖 = 𝑟𝑣′𝛿𝑖2 (8.7)

This forcing term has no direct effect on the mean flow since ⟨ 𝑓𝑖⟩ = 0. It only affects turbulent fluctuations,

as intended in this application. The resolved stress production tensor of this forcing term is

𝑃
𝑓

11
= 𝑃

𝑓

13
= 𝑃

𝑓

33
= 0, 𝑃

𝑓

22
= 2𝑟

〈
𝑣′2

〉
, 𝑃

𝑓

12
= 𝑟 ⟨𝑢′𝑣′⟩ , 𝑃

𝑓

23
= 𝑟 ⟨𝑣′𝑤′⟩ . (8.8)

The proportional integral control factor is

𝑟 = Γ

(
⟨𝑣′𝑣′⟩† − ⟨𝑣′𝑣′⟩

)
, (8.9)

where Γ is a dimensional parameter (Γ ≡ [mskg
−1]) that determines the intensity of the dynamic

forcing. The shear stress production 𝑃
𝑓

12
due to this source term is positive when ⟨𝑣′𝑣′⟩ is smaller than

the target value ⟨𝑣′𝑣′⟩†, tending to adjust the resolved wall normal stress to the target. Thus, from a

statistical perspective, the forcing selectively generates resolved stresses ⟨𝑢′𝑣′⟩,
〈
𝑣′2

〉
, and ⟨𝑣′𝑤′⟩, at a

rate dependent on the difference between the resolved and target wall normal stress ⟨𝑣′𝑣′⟩. The control

factor 𝑟 decreases to zero as the target is approached, causing the forcing term to vanish. This additional

forcing term was used to treat the deficit in resolved stress ⟨𝑢′𝑣′⟩, ⟨𝑣′𝑣′⟩, observed in the forcing region.

This dynamic forcing is based on the dynamic forcing of Spille-Kohoff et al. [33]. In the latter,

the proportional controller used Γ

(
⟨𝑢′𝑣′⟩† − ⟨𝑢′𝑣′⟩

)
instead of the controller given in Equation 8.9.

However, Laraufie et al. [32] found that using the proportional control in Equation 8.9 results in much

smaller adaptation lengths in terms of 𝐶 𝑓 . Therefore, this controller is used in this work.

The original publication found that the sum of non-dimensional Γ over the number of forcing planes∑
Γ · (𝜌𝑈𝛿0) = 19, 000, results in fast adaptation length in terms of 𝐶 𝑓 [32]. However, using this value in

the flat plate test case did not show significant effect. This could be attributed to multiple reasons. The

first is that when using the DLR source term, the resolved stresses already match the target stresses fairly

well. The second reason is that the forcing region used in this work is significantly smaller than that

used in [32]. In the former, the forcing region used is = 0.5𝛿0, whereas the latter used a forcing region

≈ 7𝛿0. Furthermore, the original publication used the synthetic eddy method (SEM) of Pamiès et al. [34]

as the method of generating synthetic turbulence, as opposed to the NTS-STG which is used in this work.

It was found that substantial impact of the dynamic forcing can be achieved with a non-dimensional Γ

with the value of

∑
Γ · (𝜌𝑈𝛿0) = 380, 000.



8.3. Results 51

8.3. Results
The results of the two proposed modifications are discussed in this section. First, the results of the

constrained forcing are presented for both the flat plate and the rounded step in subsection 8.3.1. Then,

the results of the dynamic forcing for the flat plate are discussed in subsection 8.3.2.

8.3.1. Results of the constrained forcing
In this subsection, the outcomes of the constrained forcing are discussed. The constrained forcing was

applied to the DLR source term in an interface forcing setup. The velocity profile, Reynolds stresses,

and turbulent viscosity at the interface are shown in Figure 8.2. Firstly, when using the constrained

forcing, the velocity profile no longer suffers from a mismatch with respect to the RANS target profile as

shown in Figure 8.2a. This mismatch can be attributed to disturbed velocity gradients in the near-wall

RANS region, observed when synthetic turbulence is injected in that region.

Secondly, there is a consistent lack of resolved stresses in the near-wall region, as expected, since no

synthetic turbulence was injected in that region. It is also observed that the RANS region still shows

some resolved content. When considering the total shear stress in Figure 8.2e, one can see that with

the constrained forcing, the total shear stress is much better estimated. This is a result of not adding

resolved and to the modeled stresses in the near-wall region, as intended. So, the proposed constrained

forcing does not seek to ensure resolved stresses in the RANS region, but only to maintain the sufficient

modeled stresses in that region. Finally, turbulent viscosity remains unaffected, as shown in Figure 8.2h

The results of the constrained forcing at a distance of 3𝛿0 downstream of the interface are shown in

(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 8.2: Results of the DLR source term and constrained forcing for the flat plate case at the interface (x = 0)

Figure 8.3. There is no observable difference between using the constrained forcing and the standard

interface forcing. So, the influence of not injecting synthetic turbulence in the near-wall region is local,

and the flow manages to produce resolved turbulence in a normal manner downstream of the interface.
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Therefore, when using the constrained forcing, one can avoid the undesirable effects of injecting synthetic

turbulence in the RANS-treated region without negatively impacting the development of turbulence

downstream of the interface.

Of high interest are the skin friction coefficient and pressure fluctuations, presented in Figure 8.4.

The large peak in 𝐶 𝑓 at the interface was significantly reduced when using the constrained forcing, as

shown in Figure 8.4a. Furthermore, the sudden decrease in 𝐶 𝑓 preceding the interface is no longer

present. These two effects can be attributed to less disturbed velocity gradients in the near wall region

when the constrained forcing is used. This is depicted in Figure 8.5, where the use of constrained forcing

results in much less distributed velocity gradients. Such disturbed velocity gradients with a constant 𝜈
at the wall lead to the disturbances observed in the skin friction coefficient.

Regarding the spurious noise, the spike in the pressure fluctuations is reduced to a fourth of its

typical value when the constrained forcing is used. This is because the near-wall RANS region is not

disturbed with injected synthetic turbulence when the constrained forcing is used. These results are

encouraging as they address the two issues associated with the sudden onset of turbulence, without

hindering the turbulence development downstream of the interface.

(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (closeup) (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 8.3: Results of the DLR source term and constrained forcing for the flat plate case at 𝑥 = 3𝛿0

The constrained forcing was also used in the rounded step case. The constrained forcing was

combined with both the interface and the volumetric forcing of the DLR source term, denoted DLR

source term and DLR volumetric, respectively, in Figure 8.6. The result of the DLR source term are

shown at the interface, whereas the results of the volumetric DLR are shown at the middle of the forcing

region, which has a size of 0.5 𝛿0. This makes the comparison unfair towards the interface forcing.

Nonetheless, the purpose is not compared the interface forcing and the volumetric forcing, but merely

to observe the behavior of the constrained forcing when combined with the volumetric forcing.

It can be seen the velocity profile at the interface is better captured by the volumetric forcing, whereas
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(a) 𝐶 𝑓 (b) Pressure fluctuations

Figure 8.4: Friction coefficient and pressure fluctuations for the flat plate case using The DLR source term and constrained forcing

(a) 𝑑𝑢/𝑑𝑦 (b) 𝑑𝑣/𝑑𝑥

Figure 8.5: Velocity gradients for the flat plate at 𝑥 = 0.25 𝛿0 using the DLR source term and constrained forcing

the interface forcing deviates from the LES profile even when the constrained forcing is used as shown

Figure 8.6a. Recall that the results of the volumetric forcing are more downstream compared to those of

the interface forcing. The difference in the velocity profiles is related to this reason. When the interface

forcing is combined with the constrained forcing, there is a lack of resolved stresses in the near-wall

region, which is expected, and depicted in Figure 8.6c and Figure 8.6d. This is mostly the case when

volumetric forcing is combined with constrained forcing, except for the resolved spanwise Reynolds

stress, shown in Figure 8.6h, which exhibits large magnitudes in the near-wall region. This behavior

is not expected, as no synthetic turbulence forcing was performed in this region. Nonetheless, these

large magnitudes vanish rapidly downstream of the forcing region. Figure 8.6f shows that using the

constrained forcing results in a smaller overestimation of the total turbulent shear stress for both the

interface and the volumetric forcing, thanks to less resolved turbulence in the RANS region.

The results of the constrained forcing around the rounded step are shown in Figure 8.7. The different

forcing approaches show very similar results. It is encouraging to see that the constrained forcing does

not hinder the development of turbulence in any form. In fact, constrained forcing results show a better

agreement with the LES data compared to their respective standard DLR forcing. This can be observed

especially downstream of the rounded step in the resolved Reynolds stresses, shown in Figure 8.7d,

Figure 8.7g, and Figure 8.7h.

Finally, the friction and pressure coefficients are shown in Figure 8.8. The peak in 𝐶 𝑓 is significantly

reduced when the constrained forcing is combined with interface forcing. However, such a result is not

achieved with volumetric forcing, which is another unexpected behavior appearing when combining

the volumetric DLR source term with the constrained forcing. Nonetheless, the skin friction computed

with the constrained forcing converges with that of its respective standard forcing rapidly downstream
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(a) 𝑢 at the interface (b) u

(c) Resolved <𝑢′𝑢′> (d) Resolved <𝑢′𝑣′>

(e) Modeled <𝑢′𝑣′> (f) Total <𝑢′𝑣′>

(g) Resolved <𝑣′𝑣′> (h) Resolved <𝑤′𝑤′
>

Figure 8.6: Results of the constrained forcing combined with both the interface and the volumetric forcing of the DLR source term

for the rounded step case. The results are shown at the upstream region.

of the interface/forcing region. That is to say, no negative effects of the constrained forcing are observed

downstream of the interface. Regarding the pressure coefficient, the results of the different forcing

methods agree to a large extent, as shown in Figure 8.8b.
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(a) 𝑢 at the first location (b) u

(c) Resolved <𝑢′𝑢′> (d) Resolved <𝑢′𝑣′>

(e) Modeled <𝑢′𝑣′> (f) Total <𝑢′𝑣′>

(g) Resolved <𝑣′𝑣′> (h) Resolved <𝑤′𝑤′
>

Figure 8.7: Results of the constrained forcing combined with both the interface and the volumetric forcing of the DLR source term

for the rounded step case. The results are shown at the curved step region

8.3.2. Results of dynamic forcing
In this subsection, the results of the dynamic forcing applied to the flat plate test case are presented.

The dynamic forcing was applied along with the volumetric DLR forcing to selectively increase the

production term of specific resolved Reynolds stresses that are consistently underestimated. The results

of the dynamic forcing at the middle of the forcing region are shown in Figure 8.9. Since the mean of the
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(a) 𝐶 𝑓 (b) 𝐶𝑝

Figure 8.8: Skin friction and pressure coefficients using the constrained forcing combined with both the interface and the

volumetric forcing of the DLR source term for the rounded step case.

dynamic forcing term is zero, it does not alter the velocity profile, as shown in Figure 8.9a. Furthermore,

the dynamic forcing results in a significant increase in the wall-normal stress, and a slight increase in

the turbulent shear stress, depicted in Figure 8.9f and Figure 8.9c, respectively. The larger increase in the

wall-normal stress compared to the turbulent shear stress is a direct consequence of the proportional

controller in Equation 8.9, which considers only wall-normal stress. Note that, the dynamic forcing

doesn’t increase the streamwise Reynolds stress, and barely increases the spanwise stress, as depicted in

Figure 8.9b and Figure 8.9g. This is to be expected, as the dynamic forcing term used in this work is

intended to increase the production term of only the wall-normal stress and the turbulent shear stress.

(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 8.9: Results of the volumetric DLR source term combined with the dynamic forcing for the flat plate case at 𝑥 = 0.25. The

forcing region size = 0.5𝛿0



8.3. Results 57

Figure 8.10 shows the results of the dynamic forcing at a distance of 3𝛿0 downstream of the forcing

region. Similar to the results at the forcing region, the velocity profile, streamwise and spanwise

stress are barely influenced by the dynamic forcing, which is desirable. The wall-normal stress and

the turbulent shear stress show larger amplitudes when dynamic forcing is used. So, the additional

dynamic forcing term selectively increases the production of the intended resolved stresses, and its

impact remains present downstream of the forcing region. This is exactly what was intended by using

dynamic forcing, however, whether this behavior is beneficial or not remains unclear. The increase in

the turbulent shear stress, caused by the dynamic forcing, appears to overestimate the target stress.

However, recall that these target stresses are not very accurate since they are reconstructed from a RANS

solution. More accurate reference data is needed to reach a clear conclusion.

(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 8.10: Results of dynamic forcing for the flat plate case at 𝑥 = 3𝛿0

The mean surface quantities are shown in Figure 8.11. Since the dynamic forcing term introduces

additional synthetic velocities near the wall, it results in a spike in the skin friction shown in Figure 8.11a.

This can possibly be mitigated by combining the dynamic forcing with the constrained forcing. however,

this is not explored in this work due to time constraints. Furthermore, the pressure fluctuations result

shows the typical peak with both computations, which can also be reduced using constrain forcing as

discussed in subsection 8.3.1. Except for the increased peak value in 𝐶 𝑓 , the dynamic forcing has no

negative impact on the mean surface quantities. .

In this chapter, two modifications to the synthetic turbulence forcing were proposed. The first is

to limit the synthetic turbulence forcing to the LES region, which was referred to as the constrained

forcing. This is a more physically sound approach, as the near-wall RANS region contains sufficient

eddy viscosity to fully model the Reynolds stresses. Combining the constrained forcing with the DLR

source term showed a better estimation of the total shear stress as a result of not superimposing resolved

stress to already existing modeled stress. Furthermore, using the constrained forcing resulted in a
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(a) 𝐶 𝑓 (b) Pressure fluctuations

Figure 8.11: Skin friction coefficient and pressure fluctuations for the flat plate case using the volumetric DLR source term

combined with dynamic forcing

significant decrease in the peak observed in both 𝐶 𝑓 and the pressure fluctuations at the interface.

The second modification is to use an additional forcing term that proportionally increases the

production of selective resolved Reynolds stresses. To achieve this, the dynamic forcing of [32] was

implemented in DLR-TAU and used together with the volumetric DLR source term. Indeed, the dynamic

forcing increased the resolved turbulent shear stress and spanwise resolved stress, which otherwise

suffered from a deficit in and downstream of the forcing region. However, it is not clear if such increase

downstream of the forcing region is desirable. Due to the lack of accurate reference results downstream

of the forcing region, no solid conclusions can be made. Furthermore, using dynamic forcing showed

𝐶 𝑓 peak, typically observed in interface forcing. This can be attributed to increasing the amplitudes

of the synthetic velocities in the near-wall region. It is expected that such peak can be significantly

reduced when combining dynamic forcing with constrained forcing. Finally, the interaction between the

dynamic forcing and the DLR volumetric source term was not studied. It is important to investigate the

effect each has on the other since both of them are applied simultaneously to momentum equations.



9
WMLES capabilities of 𝜎−DDES and Δ̃𝜔

In this chapter, 𝜎−DDES and Δ̃𝜔 are used as (embedded) wall-modeled LES (WMLES) methods. The

analysis in this chapter can be divided into two aspects. The first concerns assessing the WMLES

capabilities of combining 𝜎−DDES with Δ̃𝜔, reported in [21]. To evaluate this, 𝜎−DDES and Δ̃𝜔 are

applied in the periodic channel flow test case, detailed in subsection 4.2.3. In this case, the shielding

of DDES is maintained, similar to the original publication. The second aspect addresses the use of

𝜎−DDES with Δ̃𝜔 in an embedded WMLES manner. To achieve this, synthetic turbulence is injected

and the shielding function is either deactivated completely or modified. This was evaluated using the

flat plate and the rounded step test cases. The first and the second aspect are presented in section 9.1

and section 9.2, respectively.

9.1. WMLES capabilities of 𝜎−DDES with Δ̃𝜔
It is reported that combining 𝜎−DDES with Δ̃𝜔 has WMLES capabilities [21], however, no sufficient

results were provided in the original publication. These WMLES capabilities were evaluated in this work

using the periodic channel flow test case. To obtain an unsteady solution, the STG was used to inject

synthetic turbulence for only half a domain flow-through (0.5 CTU) while using the WMLES branch of

IDDES. Then, the injection of synthetic turbulence was deactivated, and the solution was computed

using the WMLES branch of IDDES for another 30 CTU, in order to obtain a well-developed turbulent

channel flow. This well-develop turbulent flow was used as the initial solution for the 𝜎−DDES with Δ̃𝜔.

With this initial solution, 𝜎−DDES with Δ̃𝜔 were used to compute the solution for another 50 CTU and

then the solution was time-averaged. The goal is to observe whether 𝜎−DDES with Δ̃𝜔 will drive the

well-developed turbulent initial solution to a RANS-like flow, or it will maintain its unsteady nature.

A comparison between IDDES and 𝜎−DDES with Δ̃𝜔 is shown in Figure 9.1. First, the velocity

profile shows no significant log-layer mismatch (LLM) with 𝜎−DDES, an issue typical of DDES [18]. In

fact, the velocity profile of 𝜎−DDES is smoother than that of IDDES as shown in Figure 9.1a. This could

be attributed to a less abrupt RANS-LES interface with 𝜎−DDES, as shown in Figure 9.1i. Furthermore,

𝜎−DDES shows some resolved turbulence content, but only in the outer part of the boundary layer. The

lack of resolved turbulence content in the inner part of the boundary layer when using 𝜎−DDES is a

result of the large turbulent viscosity levels in that region, as shown in Figure 9.1h.

Figure 9.2 shows the Q-criterion for both the IDDES and 𝜎−DDES computations. The impact of

modeling the majority of the boundary layer in the case of 𝜎−DDES is evident from the lack of turbulent

structures close to the wall. In fact, with 𝜎−DDES, turbulent structures can be seen only in the core of

the channel. On the other hand, IDDES results show resolved turbulent structures even very close to

the wall.

It is debatable whether or not the behavior obtained by 𝜎−DDES is considered a WMLES capability.

Even though the 𝜎−DDES velocity profile did not exhibit large LLM that standard SA-DDES suffers

from, it is hard to classify this as a WMLES capability given the absence of resolved turbulent content

in the inner boundary layer. With 𝜎−DDES, the RANS layer is much larger than with IDDES, so the

accuracy of computations is more dependent on the RANS model. This could negatively affect the

59
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flow prediction of challenging flows (e.g. APG) that are sensitive to the accuracy of the solution in the

near-wall region.

(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 9.1: Results comparing IDDES and 𝜎−DDES with Δ̃𝜔 for the channel flow case

(a) 𝜎−DDES with Δ̃𝜔 (b) WMLES branch of IDDES

Figure 9.2: Iso-surfaces of Q-criterion (𝑄 = 0.5𝑈2/𝛿), colored by the streamwise velocity for the channel flow

9.2. Embedded WMLES use of 𝜎−DDES with Δ̃𝜔
To further assess the WMLES capabilities of 𝜎−DDES with Δ̃𝜔, the combination is used along with

synthetic turbulence in an embedded WMLES manner. To this end, two test cases were studied, namely,

the flat plate test case and the rounded step test case. The hypothesis is that the development of the
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turbulence could be enhanced due to decreased levels of SGS viscosity (where appropriate), resulting in

smaller adaptation lengths. This hypothesis is tested in this section.

First, the flat plate case is addressed. Given the behavior of the shielding function 𝑓𝑑 in attached

boundary layers, the shielding function was deactivated in one computation and the modified shielding

function 𝑓𝑑visc
was used in another computation. Recall, the modified shielding function 𝑓𝑑visc

considers

only the laminar viscosity 𝜈 and is defined in Equation 3.8. As shown in subsection 3.3.1, 𝑓𝑑visc
is active

only in the very near-wall region, so its shielding is barely existent. When the shielding function is

deactivated, the switching from RANS to LES within the boundary layer solely depends on the grid.

The original STG was used to provide synthetic turbulence at the interface. For a fair comparison, a

standard IDDES computation was run with the original STG.

The results of using 𝜎−DDES with Δ̃𝜔 in an embedded WMLES manner for the flat plat are now

discussed. The results of all computations at the interface were very similar and thus kept to the

appendix Appendix A. The results at a distance of 3𝛿0 downstream of the interface are of more interest

and thus presented here in Figure 9.3. First, it was observed that the results of NTS-STG are in better

agreement with the target RANS values, in terms of both the mean velocity profile and the resolved

stresses. More importantly, using 𝜎−DDES with Δ̃𝜔 in an embedded WMLES setup resulted in large

deviations in both the velocity profile and resolved stresses. Contrary to expectations, using 𝜎−DDES

with Δ̃𝜔 in an embedded WMLES manner shows much less resolved turbulence compared to IDDES.

Furthermore, 𝜎−DDES with Δ̃𝜔 exhibit significant deviations in the velocity profile with respect to the

target RANS, as shown in Figure 9.3a.

The main issue with using 𝜎−DDES with Δ̃𝜔 as an embedded WMLES approach is the excessive

reduction of eddy viscosity in the near-wall region. The eddy viscosity in the near-wall region of

𝜎−DDES with Δ̃𝜔 is lower than that produced by IDDES, as shown in Figure 9.3h. This is caused by

a combination of insufficient near-wall shielding as a result of deactivating 𝑓𝑑 or using 𝑓𝑑visc
, and the

low turbulent viscosity levels produced by the 𝜎 model itself in such stable flow. A more appropriate

near-wall shielding is that used by IDDES, where the length scale is deliberately increased near the

RANS-LES interface in the boundary layer to avoid excessive reduction of modeled stresses. Otherwise,

such excessive decrease in eddy viscosity, and hence decreased modeled stresses, typically leads to LLM.

(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

Figure 9.3: Results of using 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner for the flat plate case at 𝑥 = 3𝛿0

The mean surface quantities of these computations are shown in Figure 9.4. Figure 9.4a shows a

significant drop in 𝐶 𝑓 downstream of the interface. This can be attributed to insufficient levels of eddy

viscosity in the near-wall region, depicted in Figure 9.3h, and discussed in the previous paragraph.
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(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure 9.3: Results of using 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner for the flat plate case at 𝑥 = 3𝛿0 (continued from

previous page)

(a) 𝐶 𝑓 (b) Pressure fluctuations

Figure 9.4: Results of using 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner for the flat plate case at 𝑥 = 3𝛿0

A similar analysis was performed using the rounded step case. Similar behavior to that encountered

in the flat plate case is observed, as depicted in Figure 9.5. Using 𝜎-DDES with Δ̃𝜔 in an embedded

WMLES manner does not accelerate the development of the synthetic turbulence into resolve one, but

rather the opposite. It shows mostly lower resolved stress compared to IDDES, as shown in Figure 9.5d,

Figure 9.5g, and Figure 9.5h. Furthermore, similar low levels of eddy viscosity are observed in the

near-wall region when using 𝜎-DDES with Δ̃𝜔, as shown in Figure 9.6e.

The results of these computations in the separated flow region are shown in Figure 9.6. Using

𝜎-DDES with Δ̃𝜔 shows larger deviations from the reference LES data in terms of the velocity profiles

and resolved stresses. Nevertheless, the results are comparable to those obtained with IDDES to a large

extent. One can attribute the improved results of 𝜎-DDES with Δ̃𝜔 in the separated flow region to the

correct turbulent viscosity levels, as shown in Figure 9.6e. It is evident that in the separated flow region,

the near-wall region no longer suffers from the excessive decrease in turbulent viscosity experienced in

the upstream region, as depicted in Figure 9.5e. This is because the eddy viscosity produced by the

𝜎− model is sufficiently large in the separated flow region, unlike the upstream attached flow region.

Furthermore, since the flow is separated, the lack of sufficient shielding, experienced in the upstream

region when deactivating 𝑓𝑑 or using 𝑓𝑑visc
, is no longer a concern.

The friction and pressure coefficients are shown in Figure 9.7. A drop in 𝐶 𝑓 , similar to that

experienced in the flat plat case, is present when using 𝜎-DDES with Δ̃𝜔. As discussed earlier, this is due

to the insufficient turbulent viscosity in the near-wall region of the upstream attached boundary layer.

However, in the downstream separated flow region, 𝜎-DDES with Δ̃𝜔 produce the appropriate levels of

turbulent viscosity. As a result, the combined models produce results that are very comparable to those

of IDDES (with NTS-STG). The pressure coefficient produced by 𝜎-DDES with Δ̃𝜔 is comparable to that

resulting from IDDES.

In this chapter, the WMLES capabilities of 𝜎-DDES with Δ̃𝜔 were assessed. In the periodic channel

test case, the combination did not show a significant LLM that is typical of DDES. However, 𝜎-DDES
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(a) 𝑢 at the interface (b) u

(c) Resolved <𝑢′𝑢′> (d) Resolved <𝑢′𝑣′>

(e) 𝜈𝑡 (zoomed-in) (f) Total <𝑢′𝑣′>

(g) Resolved <𝑣′𝑣′> (h) Resolved <𝑤′𝑤′
>

Figure 9.5: Results of using 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner for the rounded step

with Δ̃𝜔 modeled the majority of the boundary layer, which results in coherent structures appearing

only in the core of the channel. Regarding the use of 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner,

it was found this use is troublesome. This is mainly due to excessively decreased levels of eddy viscosity

in the near-wall region. This excess decrease in eddy viscosity is due to the insufficient shielding of

the near-wall region as a result of deactivating the shielding function, combined with the low eddy
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(a) 𝑢 at 𝑥/𝐻 = 0 (b) u

(c) Resolved <𝑢′𝑢′> (d) Resolved <𝑢′𝑣′>

(e) 𝜈𝑡 (zoomed-in) (f) Total <𝑢′𝑣′>

(g) Resolved <𝑣′𝑣′> (h) Resolved <𝑤′𝑤′
>

Figure 9.6: Results of using 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner for the rounded step

viscosity levels produced by the 𝜎-model.
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(a) 𝐶 𝑓 (b) 𝐶𝑝

Figure 9.7: Skin friction and pressure coefficient using 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner.



10
Conclusion and Recommendations

The grey area problem remains an extensively studied area of research in hybrid RANS-LES methods.

In this thesis, zonal grey area mitigation approaches were evaluated, some of which were improved.

The work on zonal methods focused on analyzing the quality of the synthetic turbulence and its forcing

methods. In this work, the STG of [12] and a slightly modified variant, the NTS-STG of [13], were

considered. Regarding the synthetic forcing methods, the DLR source term proposed by Probst [14]

as well as the VSTG source term proposed by Shur et al. [15] were evaluated. The research activities

followed a systemic step-wise approach, where the sources of error were identified and eliminated one

at a time. This prevented accumulating different sources of error, and thus allowed for a fair assessment

of each source of error.

Regarding synthetic turbulence, two important aspects of the synthetic turbulence generators, the

STG and the NTS-STG, were studied. These are the macro-scale velocity and the cut-off frequency.

It was found that using instantaneous macro-scale velocity leads to temporal decay in the quality of

the synthetic turbulence, due to the lack of proper auto-correlation. On the other hand, using a mean

macro-scale velocity ensures a consistent quality of synthetic turbulence that does not deteriorate with

time. Furthermore, it was found that using the correct definition of the cut-off frequency improves the

skin friction prediction, as a result of the correct mode amplitude distribution.

Secondly, an assessment of the STG input parameters that impact the statistics of the synthetic

turbulence was performed. The first parameter is the set of random numbers used to determine the

direction and phase shifts of various modes, while the second is the target Reynolds stresses, which can

be either reconstructed from a RANS computation or provided by DNS or LES. It was found that the

use of the selection procedures in [16] mitigates large bias errors that otherwise may arise if a random

realization is used. The impact of such large bias errors is not limited to the forcing region, but can

also have persistent effects downstream of the forcing region. Moreover, it was found that even when

inaccurate RANS Reynolds stresses were used, the flow was still able to adapt to the correct Reynolds

stress levels. However, this adaptation length can be significantly larger when compared to using more

accurate target Reynolds stresses obtained from DNS or LES. The impact of these two factors on velocity

profiles and skin friction was found to be minimal, as seen in the rounded step test case.

An assessment of different synthetic turbulence forcing strategies was carried out using the DLR

source term and the VSTG source term, where the underlying RANS model, the use of an additional

sink term to further decrease the eddy viscosity, and the size of the forcing region were varied. The

DLR source term showed better agreement with the reference data in terms of the velocity profile,

resolved stresses, and skin friction coefficient. However, it exhibited significantly larger spurious noise,

indicated by a large peak in pressure fluctuations, as seen in the flat plate test case. Furthermore, the

DLR interface forcing showed a peak in 𝐶 𝑓 at the interface, due to disturbed velocity gradients in the

near wall region.

Motivated by these shortcomings, two modifications were proposed. The first is the constrained

forcing, which aims to achieve a more accurate estimation of the total turbulent shear stress by avoiding

superimposing resolved stresses to the already existing modeled stresses in the near-wall region. This

was achieved by limiting the injection of the synthetic turbulence to the LES-treated region of the

boundary layer. With the constrained forcing, a better estimation of the total shear stress was achieved.
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Furthermore, using the constrained forcing significantly reduced the peak in both 𝐶 𝑓 and the pressure

fluctuations. This is a result of not disturbing the velocity gradients in the near-wall region by not

injecting synthetic turbulence in that region.

The second proposed modification aims at treating the deficit in some resolved stresses, observed in

and downstream of the forcing region. To achieve this, the dynamic forcing of [32] was implemented in

DLR-TAU and used as an additional source term together with the volumetric DLR source term. The

use of dynamic forcing slightly increased the resolved turbulent shear stress and significantly increased

the spanwise resolved stress, deceasing the deficit in both resolved stresses. It remains unclear whether

the increase in these resolved stresses downstream of the forcing region is desirable. Due to the lack of

accurate reference data downstream of the forcing region, this could not be concluded.

With the aforementioned work, a faster transition from RANS to LES in embedded WMLES methods

was achieved. This resulted in a faster adaptation in terms of both the skin friction coefficient and the

Reynolds stresses. Therefore, the presented work limited the negative impact associated with the grey

area problem. As a result, this allows for a more accurate flow prediction in challenging separated flows

at much lower computational cost compared to pure LES.

In addition, 𝜎-DDES with Δ̃𝜔 were used in an embedded WMLES manner together with synthetic

turbulence. The premise was that the lower levels of turbulent viscosity produced by the 𝜎− model

could facilitate the development of turbulence and hence decrease the adaptation lengths. This work

revealed that this is not the case. The notion that merely decreasing the turbulent viscosity would result

in shorter adaptation length has been proven flawed. Using 𝜎-DDES with Δ̃𝜔 in an embedded WMLES

manner resulted in excessively decreased turbulent viscosity in the near-wall region. This has been

shown to be problematic, as it makes the flow prone to the log-layer mismatch problem. As a result, a

sudden decrease in 𝐶 𝑓 of approximately 25% was observed immediately downstream of the interface.

Recommendations and future work
Even though the selection procedures resulted in small bias errors with respect to the target Reynolds

stresses, the skin friction coefficient is not considered when choosing the random number set. Therefore,

there is no guarantee that the selected set will produce sufficiently accurate 𝐶 𝑓 . It is worth investigating

criteria that take into account the skin friction coefficient.

Even though the dynamic forcing partially reduces the deficit in some resolved Reynolds stresses, it

resulted in a large peak in 𝐶 𝑓 . Combining both dynamic forcing and constrained forcing could show

improvement with regard to this issue. Furthermore, the interaction between the DLR source term

and the dynamic forcing was not investigated. It is important to analyze such possible interactions to

ensure that none of the source terms negatively affects the other. Lastly, it could be instructive to explore

the dynamic forcing of [33] since its proportional controller is based on the turbulent shear stress, as

opposed to the wall-normal stress used in [32]. As a result, the former is expected to better treat the

deficit in the turbulent shear stress, which is arguably the most important Reynolds stresses component

in the considered types of flow.

The use of 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner was shown to be troublesome. This

is mainly due to an excessive decrease in eddy viscosity in the near-wall region. Using an alternative

shielding function that ensures appropriate near-wall treatment could produce better results. The

functions 𝑓𝐵 and 𝑓𝑒 that are used in the IDDES formulation are good candidates for such applications.

This is because these functions ensure sufficient eddy velocity near the RANS-LES interface in the

boundary layer by increasing the length scale in that region. This may prevent such excessive decrease

in eddy viscosity in the near-wall RANS region.
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A
Additional Results

Figure A.1 shows the results of the VSTG source term with different forcing region sizes for the flat

plate case at 𝑥 = 1𝛿0. The forcing region sizes are 1𝛿0 and 2𝛿0.
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.

(a) 𝑢+

(b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure A.1: Results of the VSTG forcing with different forcing region sizes for the flat plate case at 𝑥 = 1𝛿0. The forcing region

sizes are 1𝛿0 and 2𝛿0.

Figure A.2 shows the results of using 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner for the flat

plate case at the interface (𝑥 = 0).
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(a) 𝑢+ (b) Resolved <𝑢′𝑢′> (c) Resolved <𝑢′𝑣′>

(d) Modeled <𝑢′𝑣′> (e) Total <𝑢′𝑣′> (f) Resolved <𝑣′𝑣′>

(g) Resolved <𝑤′𝑤′
> (h) 𝜈𝑡 (i) 𝑙ℎ𝑦𝑏/𝑙𝑅𝐴𝑁𝑆

Figure A.2: Results of using 𝜎-DDES with Δ̃𝜔 in an embedded WMLES manner for the flat plate case at the interface (𝑥 = 0)
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