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a b s t r a c t 

Accurate methods to solve the Reynolds-Averaged Navier-Stokes (RANS) equations coupled to turbulence 

models are still of great interest, as this is often the only computationally feasible approach to simulate 

complex turbulent flows in large engineering applications. In this work, we present a novel discontinuous 

Galerkin (DG) solver for the RANS equations coupled to the k − ε model (in logarithmic form, to ensure 

positivity of the turbulence quantities). We investigate the possibility of modeling walls with a wall func- 

tion approach in combination with DG. The solver features an algebraic pressure correction scheme to 

solve the coupled RANS system, implicit backward differentiation formulae for time discretization, and 

adopts the Symmetric Interior Penalty method and the Lax-Friedrichs flux to discretize diffusive and con- 

vective terms respectively. We pay special attention to the choice of polynomial order for any transported 

scalar quantity and show it has to be the same as the pressure order to avoid numerical instability. A 

manufactured solution is used to verify that the solution converges with the expected order of accuracy 

in space and time. We then simulate a stationary flow over a backward-facing step and a Von Kármán 

vortex street in the wake of a square cylinder to validate our approach. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Engineering applications often require the simulation of com-

lex turbulent flows via accurate Computational Fluid Dynamics

CFD) methods. Direct Numerical Simulation (DNS) and Large Eddy

imulation (LES) constitute superior approaches in this regard, as

hey are able to resolve the stochastic fluctuations (though only

he large-scale ones in case of LES) of any turbulent flow quan-

ity [1] . However, nowadays they are still very computationally ex-

ensive and often unaffordable f or large engineering applications.

or this reason, the Reynolds-Averaged Navier-Stokes (RANS) equa-

ions coupled to turbulence closure models often remain the pre-

erred approach, even if it only allows for the modeling of the

ime-averaged flow quantities [2] . Accurate and efficient numerical

ethods to solve the RANS equations are therefore still of great

elevance. 

In this perspective, discontinuous Galerkin Finite Element

ethods (DG-FEM) are particularly attractive, due to their flexibil-

ty, high accuracy, and robustness. The characteristic feature of DG

s that unknown quantities are approximated with polynomial ba-
∗ Corresponding author. 
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is functions discontinuous across the mesh elements. This requires

he use of numerical fluxes to deal with the discretization of face

ntegrals, as in Finite Volume methods. However, thanks to the lack

f continuity constraints, conservation laws are satisfied locally on

ach element, and the resulting algorithm stencil is compact, mak-

ng the method suitable for efficient parallelization. As in contin-

ous Galerkin FEM, the accuracy of the solution can be improved

y increasing the order of the polynomial discretization. Moreover,

G methods can easily handle complex geometries, structured or

nstructured meshes, and non-conformal local mesh and/or order

efinement. 

This class of Finite Element methods was originally developed

n the early ‘70s to solve radiation transport problems [3] . How-

ver, it has become increasingly popular for CFD applications only

n the past three decades, after the development of effective DG

chemes for hyperbolic and elliptic problems. We refer to the re-

iews by Cockburn and Shu [4] and Arnold et al. [5] for a complete

verview of these methods. 

Nowadays, substantial experience has been gained in the DG-

EM discretization of the incompressible Navier-Stokes equations,

nd a variety of approaches can be found in literature. An early re-

earch effort in the field is the work of Cockburn et al. [6] , who

roposed a locally conservative Local DG (LDG) method for the

ncompressible Oseen equations. The authors later extended the
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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approach to the full Navier-Stokes system [7] , employing a post-

processing operator to obtain an exactly divergence-free convec-

tive velocity field. Van der Vegt and Sudirham [8] presented an

original DG scheme for the solution of the Oseen equations, where

discontinuous basis functions are also used to discretize the time

domain. The method, called space-time DG, is particularly suit-

able for simulations involving deforming or moving meshes. More

recently, Rhebergen et al. [9] extended the approach to the full

Navier-Stokes system. In [10] , the incompressibility constraint is re-

laxed by introducing an artificial compressibility term in the con-

tinuity equation. Thus, the numerical flux for the inviscid part of

the Navier-Stokes equations can be computed by solving a Rie-

mann problem just like for compressible flows. The coupled sys-

tem of equations is solved by means of a Newton method with

an implicit Euler time scheme. Higher-order Runge-Kutta schemes

were instead employed by Bassi et al. [11] . Splitting methods

based on pressure or velocity correction approaches have also been

proposed in the context of DG solvers (e.g., [12–15] ). In partic-

ular, the solver presented in this paper is based on the work

of Shahbazi et al. [16] , where a second-order accurate pressure-

correction scheme is applied at algebraic level. The Symmetric In-

terior Penalty (SIP) method is used to discretize the diffusive oper-

ator, and the Lax-Friedrichs flux is chosen for the hyperbolic term.

Similar solvers, but based on a SIMPLE algorithm, were proposed

by Klein et al. [17] and [18] . 

Regarding turbulent flow simulations, DG solvers have been de-

veloped mostly for the compressible RANS equations coupled to ei-

ther the Spalart-Allmaras (e.g., [19–21] ) or the k − ω models (e.g.,

[22–25] ). For the latter model, it is customary to solve for the log-

arithm of ω and to impose a realizability condition on it, to ensure

the positivity of the solution and enhance the robustness of the

solver. The shear-stress transport model was instead considered in

[26] , where particular attention was given to the development of

a stabilized continuous FE discretization of the eikonal equation

for the computation of the distance to the nearest wall. Far fewer

applications of DG schemes to incompressible turbulent flows can

be found in literature. The work of Crivellini et al. [27] was the

first. They extended the artificial compressibility flux method of

[10] to deal with the set of incompressible RANS equations cou-

pled to the SA model. Particular attention was paid to the treat-

ment of negative values of the turbulent viscosity, thus increasing

the robustness of the method. The approach was later tested on

complex three-dimensional flows [28] and extended to the k − ω
model [29] and to high-order Runge-Kutta time schemes [30,31] .

More recently, Krank et al. [32] presented a DG solver for the in-

compressible RANS equations coupled to the SA model based on a

semi-explicit velocity-correction splitting scheme augmented with

an explicit step for the turbulence equation. 

In this work, we extend a solver for laminar flows presented

in [33] to handle turbulence through the set of incompressible

RANS equations coupled to the k − ε model. We employ a pres-

sure correction scheme to solve the RANS equations. Thus, contrary

to most of previous literature, we do not rely on a free artificial

compressibility parameter whose optimal value is problem-based.

Moreover, our time scheme is fully implicit (as it relies on back-

ward differentiation formulae) also for the turbulence equations.

It constitutes the first step towards the development of a cou-

pled CFD-neutronics solver for large multi-physics problems, such

as transient scenarios in molten salt nuclear reactors. In these sys-

tems, the flow Reynolds number is of the order of 10 5 or higher,

and resolving the steep gradients that characterize the velocity

profile close to wall boundaries requires massive computational re-

sources. 

To the best of our knowledge, all previous literature on RANS

DG solvers deals with wall-resolved turbulent flow simulations. An

approach for efficient wall modeling in the DG context was pro-
osed by Krank et al. [32] , who solved the RANS equations on

oarse grids by enriching the polynomial function space for the

elocity in the first layer of boundary elements. In this way, they

ould impose no-slip conditions at the walls and resolve the sharp

olution gradients. However, the k − ε model is well-known to per-

orm poorly in the vicinity of a wall. For this reason, in this work

e investigate the possibility of using a more standard wall func-

ion approach [34] to bridge the gap between the viscous layer and

he log layer. 

The remainder of the paper is organized as follows. In Section 2 ,

e present the governing equations and the boundary conditions

hat close them. We then describe our spatial and temporal dis-

retization scheme in Sections 3 and 4 , and we provide details on

he solver in Section 5 . In Section 6 , we focus on the choice of

olynomial order for scalar quantities, which differs slightly from

hat previously proposed in literature for similar DG solvers. In

ection 7 , we verify our numerical scheme with a manufactured

olution and we assess the soundness of our approach simulating

he steady turbulent flow over a backward-facing step and a Von

ármán vortex street in the wake of a square cylinder, finally draw-

ng some conclusions in Section 8 . 

. Governing equations 

The RANS model equations for incompressible flows read (we

mit dependencies for clarity) [2] 

∂ u 

∂t 
+ ∇ · (u � u ) + ∇p − ∇ · τ = f , (1a)

 · u = 0 . (1b)

Here, u is the velocity and f represents a known momentum

ource. The total stress tensor is 

= ( ν + νt ) 
[∇u + (∇u ) T 

]
, (2)

here ν and νt are the molecular and the turbulent (or eddy)

inematic viscosities respectively. Finally, p = 

˜ p 
ρ + 

2 
3 k is a pseudo

inematic pressure, where ˜ p is the fluid pressure, ρ the density,

nd k the turbulent kinetic energy. 

The system is closed by adopting the k − ε turbulence model

34] , where ε indicates the dissipation rate of k . To ensure positiv-

ty of the turbulence quantities (which might not be preserved by

he numerical scheme), the model equations are cast into a loga-

ithmic form [35] , which is completely equivalent to the original

odel. Therefore, we solve for 

 = ln (k ) , E = ln (ε) , (3)

nd the model equations read (omitting dependencies) 

∂K 

∂t 
+ ∇ · ( u K ) − ∇ ·

[ (
ν + 

νt 

σk 

)
∇K 

] 
= 

(
ν + 

νt 

σk 

)
∇ K · ∇ K + νt e 

−K P k (u ) − C μ
e K 

νt 
+ q K , (4a)

∂E 
∂t 

+ ∇ · ( u E ) − ∇ ·
[ (

ν + 

νt 

σε

)
∇E 

] 
= 

(
ν + 

νt 

σε

)
∇ E · ∇ E + C 1 ενt e 

−K P k (u ) − C 2 εe E−K + q E , 

(4b)

here P k (u ) = ∇u : 
[∇u + (∇u ) T 

]
models the shear production

f turbulent kinetic energy. We used the standard values of the

odel constants proposed by Launder and Spalding [34] and re-

orted in Table 1 . The eddy viscosity can be then computed as 

t = C μ
k 2 = C μe 2 K−E . (5)

ε



M. Tiberga, A. Hennink and J.L. Kloosterman et al. / Computers and Fluids 212 (2020) 104710 3 

Table 1 

Values of the closure parameters of the k − ε turbu- 

lence model. 

Parameter C μ σ k σ ε C 1 ε C 2 ε

Value 0.09 1.0 1.3 1.44 1.92 
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learly, the latter expression ensures νt is always positive. More-

ver, potentially troublesome divisions by small values of ε (or by

 in some terms of the turbulence equations) are avoided. 

Finally, q K and q E are extra source terms that, together with f ,

re used in the framework of the method of manufactured solu-

ions to verify the numerical scheme (see Section 7.1 ). Normally,

hey are set to zero. 

.1. Boundary and initial conditions 

The coupled system of the RANS (1a-1b ) and turbulence (4a-

b) equations can be solved only after imposition of proper

oundary and initial conditions. The latter consist in imposing

uitable values for the initial velocity, pressure, and turbulence

elds, which we describe in detail for each test case reported in

ection 7 . For the former, four types of boundary are considered in

his work, and we describe them in the following. 

.1.1. Inflow boundary 

On inflow boundaries, Dirichlet conditions are prescribed for

he fluid velocity and the turbulence quantities: 

 = u 

D , K = K 

D = ln (k D ) , E = E D = ln (εD ) . (6)

.1.2. Outflow boundary 

On outflow boundaries we prescribe a zero-traction condition

or the momentum equation and homogeneous Neumann condi-

ions for the turbulence equations: 

 

−pI + τ ] · n = 0 , n · ∇K = 0 , n · ∇E = 0 . (7)

ere, n is the outward unit normal vector at the boundary, and I

epresents the identity tensor. 

.1.3. Wall boundary 

The standard k − ε model cannot be used to resolve turbulent

ows up to wall boundaries, in the vicinity of which viscous ef-

ects are dominant and turbulence is damped. For this reason, we

se the well-established wall function approach to describe the so-

ution in these areas [34,36] . 

The computational boundary is shifted by a distance δw 

from

he actual physical wall, so that the first degrees of freedom of

he solution are placed in the region of fully turbulent flow [37] .

he gap is bridged by analytical functions that are supposed to be

niversal for all wall-bounded flows. This leads to a great gain in

omputational efficiency, in particular for high-Reynolds flows, be-

ause mesh elements are not accumulated in the viscous layer to

esolve the steep gradients of the solution. 

In this work, we adopt the two-velocity scale wall function de-

cribed by Ignat et al. [38] . Let u t be the velocity component tan-

ential to the boundary and y the normal distance to the wall.

hey are made non-dimensional as follows: 

 

+ = 

u t 

u τ
, y + = 

δw 

u k 

ν
, (8)

here u τ = 

√ 

τw 

/ρ is the friction velocity ( τw 

is the shear stress

t the wall), whereas u k is a second velocity scale computed from

 : 

 k = C 0 . 25 
μ

√ 

k w 

= C 0 . 25 
μ e K w / 2 , (9)
here k w 

is the value of the turbulent kinetic energy at the bound-

ry. The wall function is an analytical relation between u + and y + :

 

+ = 

1 

κ
ln 

(
Ey + 

)
for y + > 11 . 06 , (10)

here κ = 0 . 41 is the Von Kármán constant. Only smooth walls are

onsidered in this work, so the roughness parameter is E = 9 . 0 . 

Eqs. (9) and (10) are used to prescribe a homogeneous Robin-

ike boundary condition for the momentum equation in the tan-

ential direction. In fact, a linear relation exists between the shear

tress and the tangential velocity component: 

· n − n (n · τ · n ) = −u k u τ t = − u k 

u 

+ [ u − (u · n ) n ] , (11)

here t is a unit vector that is tangential to the boundary and

 − (u · n ) n = u t t . The boundary condition (11) is supplemented by

 no-penetration condition in the normal direction: 

 · u = 0 . (12)

egarding the turbulent quantities, homogeneous Neumann and

irichlet boundary conditions are prescribed for k and ε respec-

ively: 

 · ∇K = 0 ; E = ln 

(
u 

3 
k 

κδw 

)
. (13)

he value of δw 

must be sufficiently large for the wall function

10) to be valid, that is, the first degrees of freedom of the FEM

olution must be in the logarithmic layer. This parameter can be

ither estimated as the distance from the wall of the centroid of

he first boundary element or fixed to a predetermined value [39] .

his work features standard and predictable flow configurations, so

e adopted the second approach. 

.1.4. Symmetry boundary 

On symmetry boundaries, we prescribe a homogeneous Neu-

ann condition for both turbulence quantities: 

 · ∇K = 0 ; n · ∇E = 0 . (14)

or the momentum equation, we prescribe vanishing normal ve-

ocity and tangential stress: 

 · u = 0 , τ · n − n (n · τ · n ) = 0 . (15)

. Spatial discretization 

In this section, we describe in detail the spatial discretization of

he governing equations with the discontinuous Galerkin Finite El-

ment method. Some notation and definitions must be introduced

rst. 

Let � be the computational domain and � its boundary.

e indicate with �D , �N , �W , and �S the non-overlapping por-

ions of boundary where Dirichlet (i.e., inflow), Neumann (i.e.,

utflow), wall, and symmetry conditions are imposed, such that

= �D ∪ �N ∪ �W ∪ �S . 

The domain is meshed into a set of non-overlapping elements

 h . The set of their interior faces is indicated with F 

i , whereas F 

D ,

 

N , F 

W , and F 

S indicate the sets of Dirichlet, Neumann, wall, and

ymmetry boundary faces, which discretize the respective portions

f boundary. Given an element T ∈ T h , the set of its faces is de-

oted with F 

T . The neighbors of face F are grouped into T F 
h 

. Any

nterior face F ∈ F 

i is equipped with a unit normal vector n 

F with

n arbitrary but fixed direction, while for boundary faces n 

F coin-

ides with n , which is the unit normal vector outward to �. 

Any scalar unknown is approximated on T h with a set of basis

unctions that are continuous within each element, but discontinu-

us at the element interfaces. We use a hierarchical set of orthog-

nal modal basis functions: the solution space within an element
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is the span of all polynomials up to an order P, with P ≥ 1 . For a

generic unknown φ, we denote its FEM approximation by φh and

its polynomial order by P φ, so that the solution space can be writ-

ten as 

V h,φ := 

{
v ∈ L 2 (�) | v | T ∈ P P φ , ∀ T ∈ T h 

}
, (16)

where P P φ is the set of polynomials up to order P φ . The veloc-

ity FEM approximation lies in the corresponding vector space V d 
h,u 

,

where d is the problem dimensionality. Despite not being a re-

quirement of the numerical method, P φ is the same on each el-

ement and the meshes are conforming for all the test cases ana-

lyzed in this work. 

The trace of φh on a face F ∈ F 

i is not unique. For this reason, it

is necessary to introduce the average { φh } := 

1 
2 

(
φ+ 

h 
+ φ−

h 

)
and the

jump � φh � := φ+ 
h 

− φ−
h 

operators. Here, φ+ 
h 

and φ−
h 

are the function

traces defined as 

φ±
h 
(r ∈ F ) = lim 

ς↓ 0 φh (r ∓ ς n 

F ) , (17)

for a point r on an interior face F ∈ F 

i . At the boundary, the jump

and average operators coincide with the unique trace of φh . 

3.1. RANS Discretization 

The semi-discrete weak formulation of System (1a-1b) sub-

jected to the boundary conditions described in Section 2.1 is ob-

tained by substituting ( u , p ) with their DG-FEM approximations

( u h , p h ), by multiplying Eq. (1a) with the test function v h ∈ V d 
h,u 

,

by multiplying Eq. (1b) with q h ∈ V h,p , and by subsequently inte-

grating over the entire domain: 

Find u h ∈ V d 
h,u 

and p h ∈ V h,p such that 

a time (u h , v h ) + a conv (u h , u h , v h ) + a diff (u h , v h ) + a div (v h , p h ) 

= l(u h , v h ) ∀ v h ∈ V d h,u , (18a)

a div (u h , q h ) = l div (q h ) ∀ q h ∈ V h,p , (18b)

where 

a time (u h , v h ) = 

∑ 

T ∈T h 

∫ 
T 

v h ·
∂u h 

∂t 
, (19)

and, letting f h be the Galerkin projection of f onto V d 
h,u 

, 

l(u h , v h ) = l conv (u h , v h ) + l diff (v h ) + 

∑ 

T ∈T h 

∫ 
T 

v h · f h . (20)

All other terms are described more in detail in the following. 

3.1.1. Convective term 

The convective term of the momentum equation is discretized

as 

a conv ( β, w , v ) = −
∑ 

T ∈T h 

∫ 
T 

w · ( β · ∇) v + 

∑ 

F ∈F i 

∫ 
F 

� v � H 

F 
(
β, w 

)
+ 

∑ 

F ∈F N 

∫ 
F 

(
n 

F · β
)
w · v 

+ 

∑ 

F ∈F D 

∫ 
F 

max 

(
0 , n 

F · βD 
)

w · v , (21)

l conv ( β, v ) = −
∑ 

F ∈F D 

∫ 
F 

min 

(
0 , n 

F · βD 
)

u 

D · v , (22)

where β is the convective field (i.e., the velocity), and H 

F is a nu-

merical flux function defined on the internal face F . In this work,

the Lax-Friedrichs flux is used [40] : 

H 

F ( β, w ) = 

αF ( β) 
� w � + n 

F ·
{
β � w 

}
, (23)
2 
here αF is evaluated point-wise along face F according to 

F ( β) = � max 
(∣∣n 

F · β+ ∣∣, ∣∣n 

F · β−∣∣), (24)

ith � = 2 for the momentum equation. 

Note that usually ( n 

F ·βD ) < 0 on any F ∈ F 

D , and therefore the

orresponding term in Eq. (21) drops out. However, we included

his term because it is relevant for the Taylor-vortex-like manufac-

ured solution in Section 7.1 , where we impose Dirichlet conditions

n the entire boundary, as it is usually done for this class of prob-

ems (e.g., [ 16,41 ]). 

.1.2. Diffusive term discretization 

To discretize the diffusive term, we use a generalization of the

ymmetric Interior Penalty (SIP) method [ 42 , p. 122]. Among the

everal methods available for elliptic problems [5] , we opted for

he SIP because it is consistent and adjoint consistent, which guar-

ntees optimal convergence rates for any order of the polynomial

iscretization. Moreover, it is characterized by compact stencil size,

s the degrees of freedom on each element are coupled only with

hose on the first neighbors, with positive impact on memory re-

uirements, computational cost, and parallelization efficiency. 

The following bilinear operator and right-hand side term can be

efined: 

 

diff (w , v ) = 

∑ 

T ∈T h 

∫ 
T 

L 

diff(w ) : ∇v + 

∑ 

F ∈F i ∪F D 

∫ 
F 

ηF � w � · � v � 

−
∑ 

F ∈F i ∪F D 

∫ 
F 

n 

F ·
(
� v � ·

{
L 

diff(w ) 
}

+ 

{
L 

diff(v ) 
}

· � w � 
)

+ a diff 
F W ∪F S (w , v ) (25)

nd 

 

diff (v ) = 

∑ 

F ∈F D 

∫ 
F 

(
ηF u 

D · v − u 

D · L 

diff(v ) · n 

F 
)
, (26)

here L 

diff(w ) is a linear operator that coincides with the stress

ensor τ ( Eq. (2) ) for the momentum equation, that is, L 

diff(u ) = τ .

ote that the effective viscosity (i.e., ν + νt ) is variable in space

nd so ∇ · τ � = (ν + νt ) ∇ 

2 u , which is why the regular SIP cannot

e used here. 

The penalty parameter, ηF , must be sufficiently large to en-

ure stability without impacting too negatively the condition num-

er of the system. We follow the optimal value prescriptions pro-

ided by Hillewaert [43] and Drosson and Hillewaert [44] in case

f anisotropic meshes and highly variable viscosity (as when tur-

ulent flows are resolved): 

F = D max 
T ∈T F 

h 

(
card (F 

T ) 
C P,T 

L T 

)
, (27)

here card (F 

T ) indicates the number of faces of element T ; C P,T 

s a factor depending on the polynomial order of the solution and

he mesh element type, 

 P,T = 

{
( P + 1 ) 2 , for quadrilaterals and hexahedra 
( P+1 ) ( P+ d ) 

d 
, for simplices . 

(28)

 T is a length scale defined as 

 T = f 
‖ T ‖ leb 

‖ F ‖ leb 

, (29)

here ‖ · ‖ leb represents the Lebesgue measure of a geometrical

ntity (i.e., length, area, or volume depending on the dimensional-

ty), and f = 2 for F ∈ F 

i and f = 1 for boundary faces; finally, D is

 scale depending on the diffusion parameter D (i.e., the effective

iscosity for the momentum equation), which we evaluate point-

ise along the face as 

 = max 
(
D 

+ , D 

−)
. (30)
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Table 2 

Coefficients of the implemented BDF schemes. 

Order, M γ 0 γ 1 γ 2 

1 1 −1 

2 3/2 −2 1/2 

Table 3 

Coefficients of the implemented extrapolation 

schemes. 

Order, M ζ 0 ζ 1 

1 1 

2 2 −1 
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l  

1 Necessary to compute the u wall function velocity scale. 
he contribution of wall and symmetry faces must still be speci-

ed to complete the definition of the SIP bilinear form (25) . We

xtend what was proposed by Cliffe et al. [40] to arbitrarily ori-

nted symmetry boundaries and to walls, where a non-zero shear

tress is specified in the tangential direction, leading to a Robin-

ike boundary condition term (see, for example, [ 42 , p. 127]): 

 

diff 
F W ∪F S (w , v ) = 

∑ 

F ∈F W 

∫ 
F 

u k 

u 

+ 
(
w − (w · n 

F ) n 

F 
)

·
(
v − (v · n 

F ) n 

F 
)

+ 

∑ 

F ∈F W ∪F S 

∫ 
F 

ηF � w · n 

F �� v · n 

F � 

−
∑ 

F ∈F W ∪F S 

∫ 
F 

n 

F · (� v · n 

F � 
{
L 

diff(w ) · n 

F 
}

+ 

{
L 

diff(v ) · n 

F 
}
� w · n 

F � ) , (31) 

here u k /u + is the proportionality constant between tangential

tress and velocity component ( Eq. (11) ). 

.1.3. Continuity terms 

The discretized continuity equation is constituted by the follow-

ng discrete divergence operator and right-hand side term [7,16] : 

 

div (v , q ) = −
∑ 

T ∈T h 

∫ 
T 

q ∇ · v + 

∑ 

F ∈F i ∪F D ∪F W ∪F S 

∫ 
F 
{ q } � v � · n 

F , (32)

 

div (q ) = 

∑ 

F ∈F D 

∫ 
F 

q 
(
u 

D · n 

F 
)
. (33)

.2. Discretization of turbulence equations 

The spatial discretization of the turbulence Eq. (4a-4b) , sub-

ected to the boundary conditions described in Section 2.1 , pro-

eeds along the same line of what was described for the momen-

um equation. The semi-discrete weak formulations are 

ind K h ∈ V h, K and E h ∈ V h, E such that 

 

time (K h , v h ) + a conv (u h , K h , v h ) + a diff (K h , v h ) 
= l(K h , v h ) ∀ v h ∈ V h, K , (34a) 

 

time (E h , v h ) + a conv (u h , E h , v h ) + a diff (E h , v h ) 
= l(E h , v h ) ∀ v h ∈ V h, E . (34b) 

The temporal and right-hand side terms are straightforward ex-

ension to the case of scalar unknowns of those described for the

omentum equation ( Eqs. (19) and (20) ). All terms on the right-

and side of Eqs. (4a) and (4b) are treated explicitly in time and

herefore added to the source integrals in l(K h , v h ) and l(E h , v h ) . 
The convective terms are discretized as for the momentum

quation, though the αF parameter in the Lax-Friedrichs flux

 Eq. (24) ) is evaluated with � = 1 . Diffusive terms are treated with

he SIP method as in Eqs. (25) and (26) , where the linear operator

 

diff(v ) reduces to L 

diff(v ) = D ∇v , with 

 = 

{ (
ν + 

νt 

σk 

)
, for the K equation (

ν + 

νt 

σε

)
, for the E equation . 

(35) 

hese are also the diffusion coefficients used to evaluate the

enalty parameter according to Eq. (27) . Finally, wall faces con-

ribute to the SIP bilinear form of the E equation as other Dirichlet

oundaries, whereas for the K equation their contribution is null,

ecause homogeneous Neumann conditions are imposed on these

oundaries. Likewise, for both equations symmetry faces have a

ull contribution to the SIP bilinear form. 
. Temporal discretization 

Time derivatives in weak forms ( 18a-18b ) and ( 34a-34b ) are

iscretized implicitly using backward differentiation formulae 

BDF) of order M [14,16,18] . For the generic unknown quantity φ
nd for a constant time step size �t , it is 

∂φ

∂t 
≈ γ0 

�t 
φn +1 + 

M ∑ 

j=1 

γ j 

�t 
φn +1 − j , (36) 

here n + 1 indicates the new time step and the BDF coefficients

are reported in Table 2 . We use up to second-order schemes. 

The discretized equations are solved in a segregated way,

o that the discrete solution vectors at the new time step,

u , p , K , E 
)

n +1 , are found with the following algorithm: 

1. Obtain predictors for all unknowns at the new time step with

an M 

th -order extrapolation from the previous time steps: 

φn +1 ≈ φ∗ = 

M−1 ∑ 

j=0 

ζ j φ
n − j 

, (37) 

where the weights ( ζ j ) are reported in Table 3 . A predictor for

the eddy viscosity, ν∗
t , can be calculated from K 

∗ and E ∗ ac-

cording to Eq. (5) ; 

2. Solve the RANS system (1) in a segregated way with a second-

order accurate algebraic splitting scheme described in detail in

Section 4.1 . Use the predictors for the velocity, the turbulent

kinetic energy 1 , and the eddy viscosity to linearize all terms; 

3. Solve the K Eq. (4a) , using u 

n +1 
h 

as convective field and ν∗
t ; 

4. Solve the E Eq. (4b) , using u 

n +1 
h 

as convective field and ν∗
t ; 

5. If necessary, update all predictors with the new solutions and

iterate steps 2 to 4. 

When the BDF2 scheme is used, the time extrapolation of all

uantities performed at the beginning of the time step guaran-

ees second-order time convergence even when non-linearities are

nresolved (as proven in Section 7.1.1 ). During particularly vio-

ent portions of transient (as it might happen at the start-up of

 pseudo-transient towards steady-state conditions), iterations be-

ween RANS and turbulence equations (typically 2 or 3) are usu-

lly performed to better resolve non-linearities, thus avoiding too

evere restrictions on the time step size. 

.1. Algebraic splitting scheme 

The coupled momentum and continuity equations are solved in

 segregated way with a second-order accurate pressure correction

ethod [45] . Following [16] , we perform the splitting at algebraic

evel, which does not require the imposition of artificial pressure
k 
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boundary conditions [46] . The fully discretized weak form of the

RANS system (18) can be cast into the following linear form: [ γ0 

�t 
M + N D 

T 

D 0 

][
u 

p 

]n +1 

= 

[
b u 

b p 

]n +1 

, (38)

where M is the mass matrix, N contains the implicit parts de-

riving from the discretization of the convective (21) and diffusive

(25) terms, and D is the discrete divergence operator (32) . The

right-hand side vector b u collects all the known terms in the mo-

mentum equation (i.e., boundary conditions, external forces, ex-

plicit terms from the discretization of the time derivative), while

b p represents the fully-discrete right-hand side of the continuity

Eq. (33) . As explained previously, predictors for the velocity field

and the eddy viscosity at the new time step are used to linearize

the convective and diffusive terms in N . 

The coupled System (38) is solved in a segregated way by re-

placing (and approximating) the left-hand-side matrix with its in-

complete block LU factorization [46] , [ γ0 

�t 
M + N D 

T 

D 0 

]
≈

[ 

γ0 

�t 
M + N 0 

D − �t 
γ0 

DM 

−1 
D 

T 

] [
I − �t 

γ0 
M 

−1 
D 

T 

0 I 

]
, 

(39)

where I is the identity matrix, and by introducing δp 
n +1 = p n +1 −

p n , such that [ 

γ0 

�t 
M + N 0 

D −�t 
γ0 

DM 

−1 
D 

T 

] [
I −�t 

γ0 
M 

−1 
D 

T 

0 I 

][
u 

δp 

]n +1 

= 

[
b u 

b p 

]n +1 

+ 

[−D 

T p 

0 

]n 

. (40)

The discrete velocity and pressure fields at the new time step can

therefore be calculated with the following predictor-corrector algo-

rithm: 

1. Find an approximate velocity field 

˜ u 

n +1 by solving (
γ0 

�t 
M + N 

)
˜ u 

n +1 = b 

n +1 
u − D 

T p n ; (41)

2. Solve a Poisson equation to get the pressure at the new time

step: (
�t 

γ0 

DM 

−1 
D 

T 

)
δp 

n +1 = D ̃

 u 

n +1 − b p , (42)

p n +1 = δp 
n +1 + p n ; (43)

3. Correct the velocity field, so that it satisfies the discrete conti-

nuity equation 

u 

n +1 = 

˜ u 

n +1 − �t 

γ0 

M 

−1 
D 

T δp 
n +1 

. (44)

5. Solution of linear systems 

The numerical scheme described in Sections 3 and 4 has been

implemented in the in-house parallel solver DGFlows . 
We employ METIS to partition the mesh [47] and the MPI-

based software library PETSc [48] to assemble and solve all lin-

ear systems with iterative Krylov methods. The implicit convection

treatment leads to non-symmetric matrices for the momentum

and turbulence equations. For this reason, those linear systems are

solved with the GMRES method combined with a block Jacobi pre-

conditioner, with one block per process and an incomplete LU fac-

torization on each block. On the other hand, the pressure-Poisson

system is symmetric and positive definite. Hence, we solve it with
he conjugate gradient method and an additive Schwarz precon-

itioner, with one block per process and an incomplete Cholesky

ecomposition on each block. 

Solving the pressure Poisson equation is the most computation-

lly expensive step of our algorithm. This is partially due to the

act that the pressure matrix in Eq. (42) corresponds to a Laplacian

perator discretized with the local DG method, as explained by

hahbazi et al. [16] , and so it is characterized by larger stencil size

han the SIP diffusive operator. However, note that the matrix is

he same at each time step. Therefore, it is possible to assemble it

nd compute its preconditioner only once, thus partially alleviating

he computational burden. On top of this, we initialize all Krylov

olvers with the solution predictors described in Section 4 to speed

onvergence up. 

. Choice of the solution polynomial order 

In this work, we used a mixed-order discretization for velocity

nd pressure (i.e., P p = P u − 1 ), which satisfies the inf-sup condi-

ion and guarantees optimal error convergence rates and stability

n the low- �t limit [33,49] . 

The polynomial order of the turbulence quantities equals that

f the pressure, which we believe is essential for a pressure-based

G solver. More precisely, the solution space of an arbitrary trans-

orted scalar quantity should be a subset of the solution space of

he pressure. We have already mentioned this in [33] , but here we

orroborate it with more rigorous theoretical and numerical argu-

ents. This choice of polynomial order is in contrast with previous

iterature on mixed-order DG schemes. For example, Klein et al.

50] chose the same solution space for the temperature as for the

omponents of the velocity field. We suspect that they found good

esults because their tests were done at a low Prandtl number of

.7, whereas the problem with the solution spaces manifests itself

hen the convective term dominates, as shown in the following. 

Our choice of polynomial order for any scalar solution stems

rom the fact that the continuity equation is weighed by the pres-

ure basis functions, so that the numerical velocity satisfies the in-

ompressibility constraint only in a weak sense up to order P p (i.e.,

 u h = 0 ). This means that the convective discretization can only be

onsistent up to an order P p . 

To show this, consider the convection of a generic passive scalar

uantity φ with the numerical velocity u h . For simplicity, assume

hat the domain is closed (i.e., n · u = 0 on �), so that substitut-

ng β ← u h and the continuous solution (i.e., w ← φ) into Eqs. (21) ,

22) , and (23) gives the convective discretization 

 

conv (u h , φ, v ) = −
∑ 

T ∈T h 

∫ 
T 

φ u h · ∇v + 

∑ 

F ∈F i 

∫ 
F 

φ� v � { u h } · n 

F , 

(45a)

 

conv (v ) = 0 , (45b)

or a test function v ∈ V h,φ . Here, we have used the fact

hat φ is continuous, so that � φ� = 0 and { φ} = φ, and so

 

F ( u h , φ) = φ{ u h } · n 

F . 

Compare this to the discrete continuity equation ( Eqs. (32) and

33) ), which, upon substituting v ← u h , integrating by parts, and

sing the fact that � q u h � = � q � { u h } + { q } � u h � on an interior face,

an be rewritten as 

 

div ( u h , q ) = 

∑ 

T ∈T h 

∫ 
T 

u h · ∇q −
∑ 

F ∈F i 

∫ 
F 

� q � { u h } · n 

F = 0 , (46)

or a test function q that lies in the pressure solution space V h,p

51] . It is clear that Eq. (45a) can be consistent only for a test func-

ion v that is part of the test space of the continuity equation. In

act, consider the special case of a constant solution φ. The convec-

ive term should vanish for all v , but a conv (u , φ, v ) = φ a div (u , v ) ,
h h 
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Fig. 1. Domain of the lid-driven cavity test case. 
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hich only vanishes if V h,φ is a subset of V h,p , that is, if the poly-

omial order of the pressure is at least as high as that of the scalar.

f P φ > P p , the constant solution cannot be preserved in general

ue to numerical error introduced by the discontinuity across the

lements of the velocity field. 

We corroborate this with a simple numerical example based on

 standard lid-driven cavity problem. The domain is depicted in

ig. 1 . The Reynolds number is 40, based on the lid-velocity U and

he characteristic length L , so the flow is laminar. We first found

he steady-state velocity ( u h ) and pressure fields by solving the

aminar Navier-Stokes equations. Then, we solved a transport equa-

ion for a passive scalar φ with the numerical velocity u h and a

iffusion coefficient D : 

∂φ

∂t 
+ ∇ · ( u h φ) = ∇ · ( D ∇φ) , (47)

ith homogeneous Neumann boundary conditions for φ. We set a

onstant initial condition φ0 = φ(t = 0) = 1 , and took a single time

tep with the BDF1 scheme and U�t/L = 1 , choosing a relative tol-

rance of 10 −12 for the GMRES and CG Krylov solvers, to minimize

ny numerical error in the solution of the linear systems. Clearly,

he discrete solution φh should remain unchanged after the time

tep. We therefore calculated the L 2 -norm error of φh with respect

o the expected exact solution φ0 . To highlight the impact of the

elocity divergence and continuity errors, we repeated the test for

arious spatial refinements. Following [52] , we used 

 D = L 

∑ 

T ∈T 
∫ 

T | ∇ · u | ∑ 

T ∈T 
∫ 

T || u || and E C = 

∑ 

F ∈F i 
∫ 

F 

∣∣� u � · n 

F 
∣∣∑ 

F ∈F i 
∫ 

F | { u } · n 

F | (48)

o estimate the mass conservation error in a strong sense. 

Table 4 collects the results for two structured meshes made of

uadrilateral elements: (i) 50 by 50 uniform (indicated with M1 );

nd (ii) 90 by 90 progressively finer towards the boundaries ( M2 ).

n M2 , we studied the effect of varying the velocity polynomial

rder. 
Table 4 

Lid-driven cavity test: L 2 -norm error in the scalar quantity φ with respect to the 

various meshes and polynomial orders, which affect the divergence ( E D ) and con

solution space. The scalar quantity is only conserved when P φ = P p . 

M1 ( P u = 2 , P p = 1 ) M2 ( P u
E D = 5.1e-2, E C = 1.2e-3 E D = 1

P φ = P p P φ = P u P φ = P

D = 1.0e-07 1.55E-14 2.53E-01 6.94E-

D = 1.0e-04 1.04E-14 1.98E-01 1.39E-

D = 1.0e-01 2.11E-13 8.36E-05 2.79E-

D = 1.0e+01 2.03E-11 8.37E-07 1.00E-

D = 1.0e+03 2.26E-13 8.37E-09 8.76E-
Results support our theoretical argument. When P φ > P p , the

onstant solution is not preserved, due to the numerical error in-

roduced by discontinuity of the velocity field across the elements.

n fact, as expected, the error decreases with spatial refinement,

hat is, with lower divergence and continuity errors. The problem

s more pronounced in convection-dominated problems, as in case

f turbulent flows. In fact, the biggest errors correspond to low val-

es of the diffusion coefficient. Increasing D , as expected the error

ecreases, because the residual becomes progressively more dom-

nated by the elliptic term. Asymptotically, the error is inversely

roportional to D . On the other hand, the constant solution is al-

ays preserved (up to numerical precision) when P φ = P p . 

. Test cases 

In this section, we verify and benchmark our numerical scheme

ith three test cases. First, we employ a manufactured solution for

he RANS and K − E equations to verify the spatial and temporal

onvergence rates of the solver. Then, we simulate the stationary

urbulent flow over a backward-facing step and finally a Von Kár-

án vortex street in the wake of a square cylinder. In both cases,

e compare our results with those obtained from experiments and

ther numerical simulations reported in literature. 

The meshes were generated with the open-source tool Gmsh
53] , which is also used to post-process the solution fields. 

.1. Manufactured solution 

As first test-case, we employ the method of manufactured solu-

ions to verify the correctness of the implementation of our space-

ime numerical scheme. Starting from the well-know Taylor-Green

ortex solution of the laminar Navier-Stokes equations (see, for ex-

mple, [ 16 ]), we generalized it to the RANS equations and included

n expression for the turbulence quantities. The analytical solution

s 

u 

ex = exp 

(
−2 ̃

 t 
)[− cos ( ̃  x ) sin ( ̃  y ) 

+ sin ( ̃  x ) cos ( ̃  y ) 

]
, 

p ex = −1 

4 

exp 

(
−4 ̃

 t 
)
( cos ( 2 ̃

 x ) + cos ( 2 ̃

 y ) ) , 

 

ex = exp 

(
−2 ̃

 t 
)

cos ( ̃  x ) cos ( ̃  y ) − 4 . 5 , 

E ex = log (C μ) + K 

ex , 

νex 
t = exp (K 

ex ) , (49) 

here 

˜ 
 := 

50 νt 

( L/π ) 
2 

, ˜ x := 

x 

L/π
, ˜ y := 

y 

L/π
. (50) 

his solution is defined on the domain (x, y ) ∈ [ −L, L ] 2 and t ≥ 0.

t does not satisfy the coupled RANS and K − E equations exactly,

o the extra source terms f , q K and q E are non-zero. We computed
exact solution φ0 = 1 , as a function of the diffusion coefficient ( D ) and for 

tinuity ( E C ) errors of the velocity field. Note that φ0 = 1 always lies in the 

 

= 2 , P p = 1 ) M2 ( P u = 3 , P p = 2 ) 

.1e-2, E C = 1.9e-4 E D = 9.0e-3, E C = 7.5e-5 

 p P φ = P u P φ = P p P φ = P u 

14 8.74E-02 1.61E-13 2.74E-02 

14 3.01E-03 2.32E-14 1.07E-03 

13 2.86E-06 1.69E-13 1.06E-06 

12 2.86E-08 4.63E-12 1.06E-08 

13 2.86E-10 2.37E-12 1.07E-10 
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Fig. 2. L 2 -norm errors of the velocity, pressure, and turbulence quantities with respect to the exact solution (49) as a function of the time step size and for both first and 

second order BDF schemes. The correct convergence order are reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. L 2 -norm error of the eddy viscosity with respect to the exact solution 

(49) as a function of the time step size and for both first and second order BDF 

schemes. The error exhibits the expected convergence rate. 
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t

them by substituting (49) into Eqs. (1a-1b) and (4a-4b) symbol-

ically with a Python script. We imposed Dirichlet conditions at

all boundaries of the domain. Together with the initial conditions,

they were evaluated from the analytical solution. 

All relative errors reported in the following were evaluated for

L = 1 , ν = 2 . 5 × 10 −4 , and at t = 4 , which corresponds to almost

a threefold decay of the initial condition. We set a relative toler-

ance of 10 −12 for the GMRES and CG Krylov solvers. Moreover, all

integrals were evaluated with a polynomial accuracy of 20, con-

siderably higher than the usual 3 P u − 1 . We did this to minimize

the quadrature error in the integration of the extra source terms,

which are complicated non-polynomial functions. 

7.1.1. Temporal convergence 

To verify the temporal convergence of our numerical scheme,

we solved Eqs. (1a-1b) and (4a-4b) on a structured mesh consisting

of 100 by 100 quadrilateral elements adopting a polynomial order

P u = 5 , in order to ensure that the time error was dominant. We

carried out the study for both the first-order and second-order BDF

schemes, progressively halving the time step size from 2 −6 to 2 −11 .

Fig. 2 shows the relative errors in the L 2 -norm of the velocity,

pressure, and turbulence quantities with respect to the analytical

solution (49) as a function of the time step size. The dashed lines

help verifying that the error convergence rate is the expected one

for both BDF orders. A slight deviation from the second-order con-

vergence trend can be noticed in the pressure and velocity plots at

small �t , due to the onset of the space-error saturation. 

Given the availability of an exact expression for the turbulent

viscosity, we could compute an L 2 error also for this quantity. As
hown in Fig. 3 , this error also exhibits the correct convergence

ates. 

.1.2. Spatial convergence 

The spatial convergence was verified by solving Eqs. (1a-

b) and (4a-4b) on increasingly refined structured quadrilat-

ral meshes, progressively halving the element size from 2 −1 

o 2 −5 . The study was repeated for various polynomial orders

 P u ∈ { 2 , 3 , 4 } ). To ensure the spatial error was dominant, we chose

he BDF2 scheme and a time step size �t = 2 . 5 × 10 −5 . 
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Fig. 4. L 2 -norm errors of the velocity, pressure, and turbulence quantities with respect to the exact solution (49) as a function of the element size and for several orders of 

the polynomial discretization. Scalar quantities exhibit the theoretical convergence rate, whereas that of the velocity is sub-optimal. 

Fig. 5. L 2 -norm error of the eddy viscosity with respect to the exact solution 

(49) as a function of the element size and for several orders of the polynomial 

discretization of K. The error exhibits the expected convergence order. 
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2 Experimental measurements by Kim et al. [54] have been retrieved from the 

turbulent flow database described in [55] and available at https://turbmodels.larc. 

nasa.gov/bradshaw.html . 
Fig. 4 shows the L 2 -norm errors of the unknown quantities with

espect to the analytical solution (49) as a function of the element

ize and the polynomial order. The errors of the pressure and the

wo turbulence quantities converge with the expected theoretical

rder (highlighted by the dashed lines). On the other hand, the ve-

ocity error exhibits a sub-optimal convergence rate, in particular

or the second-order and third-order discretizations. This is due to

he fact that the residual of the momentum equation is dominated

y the error in the turbulent viscosity, which converges at the the-

retical rate for the scalar quantities, as shown in Fig. 5 . 
To corroborate this conclusion, we repeated the test, this time

mposing the exact expression of the eddy viscosity (from Eq. (49) )

n the momentum equation, thus decoupling the RANS set from

he turbulence equations. Results reported in Fig. 6 demonstrate

hat the theoretical convergence rate of the velocity error can be

ecovered in this case. 

.2. Flow over a backward-facing step 

As second test case, we study the turbulent flow over a

ackward-facing step. The problem is a well-known benchmark

or turbulence solvers and many variants have been investigated.

ere, we consider the same configuration as in the experimental

tudy by [54] 2 , depicted in Fig. 7 . The ratio of the inlet channel

eight ( H i ) to step height ( H ) is 2 and Re = 44737 , based on

he reference free-stream velocity U 0 , the step height and the

inematic viscosity ν . 

We imposed Dirichlet boundary conditions at the inlet, placed

t a distance L i = 4 H upstream of the step. We used an analytical

rofile for the stream-wise velocity ( u x ) that matches the experi-

ental data provided by Kim et al. [54] (reasonably) well, 

 

D 
x = U 0 f (y ) , with f (y ) = 

{
1 − e −18(y +0 . 0495) , 0 ≤ y ≤ 1 

1 − e −18(2+0 . 0495 −y ) , 1 < y ≤ 2 

, 

(51) 

https://turbmodels.larc.nasa.gov/bradshaw.html
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Fig. 6. L 2 -norm errors of the velocity and pressure when Eq. (1) is solved imposing the analytical expression for the eddy viscosity from Eq. (49) . The optimal convergence 

rate of the velocity is recovered in this case. 

Fig. 7. Backward-facing step domain (not in scale). 

Fig. 8. M3 structured mesh used for the turbulent backward-facing step test case. 

It consists of 55,500 elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Comparison of the dimensionless recirculation length ( L R ) obtained in the present 

work (for different meshes and polynomial orders) with experimental and numeri- 

cal results (obtained with the k − ε model) reported in literature. The relative error 

is computed with respect to the experimental measurements by Kim et al. [54] . 

Reference L R / H Relative error 

Kim et al. [54] , experiment 7.0 ± 0.5 

Zijlema [56] 5.90 −15.7% 

Thangam & Speziale [57] 6.25 −10.7% 

Muller et al. [58] 6.33 −9.6% 

Kuzmin et al. [37] 5.40 −22.9% 

Shih et al. [59] 6.35 −9.3% 

Ilinca et al. [35] 6.20 −11.4% 

Present, P u = 3 , M1 6.42 −8.3% 

M2 6.54 −6.6% 

M3 6.56 −6.4% 

P u = 4 , M1 6.47 −7.6% 

M2 6.56 −6.2% 

M3 6.60 −5.7% 

o  

p  

t  

u

m  

a  

l  

t

 

v  

o  

M  

w  

x  

k  

e

7

 

s  

m  

t  

s  

p  

T  

c

and we set a turbulence intensity of 7.5% and a ratio νt /ν = 35 ,

with which we computed uniform profiles for K 

D and E D . Outflow

boundary conditions were imposed at a distance L o = 30 H down-

stream of the step. Finally, we imposed wall functions on the top

and bottom walls, with a distance from the physical wall of the

computational boundary set to δw 

= 0 . 04 for �W 3 and to δw 

= 0 . 02

for the others. 

We computed the steady-state solution on three structured

meshes, finer towards the wall boundaries, consisting of 12,420

(mesh indicated with M1 in the following), 29,700 ( M2 ), and

55,500 ( M3 ) quadrilaterals. A portion of the latter mesh is shown

in Fig. 8 . To study the influence of the polynomial order, we per-

formed calculations with both P u = 3 and P u = 4 . 

Fig. 9 shows the steady-state velocity, turbulent kinetic energy,

and eddy viscosity fields obtained on the finest mesh for P u = 4 .

They are in good qualitative agreement with those, for example,

reported by Kuzmin et al. [37] . For a more quantitative assessment

of our results, Table 5 compares the dimensionless recirculation

length ( L R ) we obtained with the experimental measurement by

Kim et al. [54] and other numerical predictions. Our results differ
nly a few percent at most from the most accurate predictions re-

orted in literature, and always towards a better agreement with

he experimental results. In all cases, the recirculation length is

nderestimated by around 6%, which is expected with the k − ε
odel. Differences in L R on M2 and M3 are limited to 0.5% at most,

nd the impact of a richer polynomial representation is limited to

ess than 1%, thus showing the mesh convergence of our calcula-

ions. 

Finally, Fig. 10 shows the vertical profiles of the stream-wise

elocity component at different locations downstream of the step,

btained with P u = 4 and for different meshes. Profiles on M2 and

3 are barely distinguishable. Results compare reasonably well

ith the experimental measurements of Kim et al. [54] up to

/H = 8 . 0 , then the discrepancies due to the limitations of the

 − ε model become apparent, as already documented in [35] , for

xample. 

.3. Vortex-shedding in the wake of a square cylinder 

The last simulation is of turbulent flow past a cylinder with

quare cross section, characterized by the appearance of a Von Kár-

án vortex street in the wake of the obstacle. Even if the flow fea-

ures stochastic three-dimensional fluctuations, which can be re-

olved only with LES or DNS approaches (see, e.g., [ 60,61 ]), the

roblem is used as a two-dimensional test case for RANS solvers.

he flow is in fact characterized by a mean periodicity that can be

aptured with unsteady RANS equations. 
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Fig. 9. Turbulent flow over a backward-facing step: steady state (a) velocity and streamlines, (b) turbulent kinetic energy, and (c) eddy viscosity fields obtained on the M3 

mesh for P u = 4 . 

Fig. 10. Turbulent flow over a backward-facing step: Comparison with the experimental measurements of Kim et al. [54] of the stream-wise velocity profiles obtained at 

different locations for P u = 4 and the three meshes employed. Results on the two most refined meshes are barely distinguishable. 
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Fig. 11. Geometry of the flow past a square cylinder test case (not in scale). 
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Fig. 11 shows the problem domain. The Reynolds number is

Re = 220 0 0 , based on the square cylinder side ( D ), the far-field ve-

locity ( U ∞ 

), and the kinematic viscosity ν . Experimental measure-

ments on this problem were carried out by Lyn et al. [62] . 
Fig. 12. M3 unstructured mesh used for the turbulent flow past a square cylinder test c

64,963 triangles, most of which are concentrated in the proximity and the wake of the cy
Symmetry conditions were imposed on the top and bottom

oundaries (distant H = 30 D ), whereas an outlet was placed at

 o = 40 D downstream of the obstacle to avoid any influence on the

ow in the cylinder region. For the same reason, the inlet bound-

ry was placed at L i = 20 D upstream of the cylinder. The following

niform Dirichlet condition for the velocity was imposed: 

 

D (t) = (U ∞ 

f (t) , 0) T , with f (t) = 

{
t 2 

4 
(3 − t) , 0 ≤ t ≤ 2 

1 , t > 2 

. 

(52)

oreover, following [63] , we calculated the inlet values of K and

to match a turbulence intensity level of 2% and a viscosity ratio

t /ν = 10 , which correspond to the experiments of Lyn et al. [62] .

inally, wall functions were imposed on the edges of the cylinder,

etting the distance of the computational domain from the physical

all to δw 

= 0 . 015 . 

We sampled the time variations in the drag and lift coefficients,

efined as 

 d = 

2 F x 

DU 

2 ∞ 

and C l = 

2 F y 

DU 

2 ∞ 

, (53)

here F x and F y indicate the stream-wise and vertical compo-

ents of the force acting on the cylinder. The mean periodicity
ase: complete overview (left) and detail around the obstacle (right). It consists of 

linder. 
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Fig. 13. Flow past a square cylinder: Instantaneous velocity (top) and eddy viscosity (bottom) fields obtained on M3 for P u = 3 . 

Table 6 

Comparison of the force coefficients (in terms of average value, root mean square of the fluctuations, and frequency) obtained in the present work for three meshes and 

time step sizes with experimental and numerical results reported in literature. 

Reference C̄ d C d,rms C l,rms St 

Lyn et al. [62] , experiment 2.100 − − 0.132 

Trias et al. [61] , DNS 2.180 0.205 1.710 0.132 

Bosch and Rodi [63] , k − ε 1.637 0.002 0.305 0.134 

Rodi et al.; Voke [64,65] , RANS models 1.64–2.43 ≈ 0–0.27 0.31–1.49 0.134–0.159 

Present, M1 �t = 1 . 25 × 10 −3 1.687 0.008 0.460 0.129 

M2 �t = 1 . 25 × 10 −3 1.775 0.014 0.632 0.131 

M3 �t = 1 . 25 × 10 −3 1.788 0.015 0.657 0.132 

M3 �t = 2 . 5 × 10 −3 1.788 0.015 0.657 0.132 

M3 �t = 5 . 0 × 10 −3 1.788 0.015 0.657 0.132 
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t  
f the flow can be quantified in terms of the Strouhal number

t = f D/U ∞ 

, where f is the oscillation frequency, which we deter-

ined from the time trend of C l . 

We performed our calculations with the BDF2 time scheme and

t = 1 . 25 × 10 −3 . To study the influence of space errors on the re-

ults, we used three unstructured meshes consisting of 40,281 (in-

icated with M1 ), 51,913 ( M2 ), and 64,963 ( M3 , shown in Fig. 12 )

riangles, progressively more refined towards the obstacle. On the

nest mesh then, we varied the time step size to �t = 2 . 5 × 10 −3 

nd �t = 5 . 0 × 10 −3 . 

Fig. 13 shows an example of the instantaneous velocity magni-

ude and eddy viscosity fields obtained for �t = 1 . 25 × 10 −3 and

 u = 3 on M3 . The vortex shedding is clearly visible. Table 6 re-

orts the results we obtained in terms of Strouhal number, average
 d , and root mean square values of the fluctuations of C d and C l ,

omparing them with experimental measurements, DNS and other

ANS results. We ended our simulations at t end = 152 , correspond-

ng to almost 2.5 flow-through periods which is sufficient to reach

ow periodicity, and evaluated the quantities of interest over the

nal 8 oscillation periods. 

Results on M3 and for �t = 1 . 25 × 10 −3 are fully converged in

ime (they do not change even quadrupling the �t ) and nearly

esh independent. The Strouhal number agrees with the experi-

ental measurements and the DNS predictions, and it differs only

.5% from the value reported by Bosch and Rodi [63] for a standard

 − ε model. The discrepancy is much more relevant when com-

aring the other quantities of interest though. This might be due

o the great sensitivity of the force fluctuations to the numerical
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details of the problem (e.g., position of inlet boundary, Dirichlet

conditions imposed, blockage ratio) as documented, for example,

by Bosch and Rodi [63] and Han et al. [66] . In any case, our val-

ues are inside the range of RANS results reported by Rodi et al.

[64] and Voke [65] . The discrepancy with experimental and DNS

results in terms of force coefficients is expected, due to the limita-

tions of the k − ε model in predicting the strength of the shedding

motion. 

8. Conclusions 

In this work, we have presented a novel high-order discontinu-

ous Galerkin Finite Element (DG-FEM) solver for the incompress-

ible Reynolds-Averaged Navier-Stokes (RANS) equations coupled

with the k − ε closure model. Positivity of the turbulence quan-

tities is ensured by solving for their logarithm. To avoid expensive

integration of the equations up to the wall boundary, which also

leads to poor results in case of the standard k − ε model, we have

investigated the possibility of employing a two-velocity scale wall

function approach in combination with DG, thus bridging the gap

between the viscous and the logarithmic layers. 

Contrary to most of previous literature, our solver features

a second-order accurate algebraic pressure correction scheme to

solve the coupled RANS system. The approach does not rely then

on an artificial compressibility parameter whose value must be

tuned for each problem. Implicit backward differentiation formu-

lae are adopted for time discretization of all the equations. Proper

time extrapolation of the solution ensures global second-order ac-

curacy even if no iterations are performed between the highly cou-

pled RANS and k − ε equations. For space discretization, we have

chosen the Symmetric Interior Penalty method to deal with elliptic

terms and the Lax-Friedrichs flux for convection. 

We have paid particular attention to the choice of polynomial

order for the turbulence quantities. We have theoretically and nu-

merically demonstrated that, to avoid any numerical instability, the

polynomial order for the pressure and any transported scalar quan-

tity must be the same when the velocity field is not point-wise

divergence free. This contrasts with the choices made in previous

literature. 

We have verified the correct implementation of our space-time

numerical scheme with a manufactured solution. However, it has

shown that the convergence rate of the velocity error could be

degraded by the slower convergence of the eddy-viscosity error

(due to the lower polynomial order discretization of the turbulence

quantities), in case the residual is dominated by the diffusive term.

To prevent this, one could move to an equal-order discretization

or, to avoid any instability problem, try to reduce the divergence

and continuity errors of the velocity field with extra element-wise

penalty terms in the momentum equation as proposed by Krank

et al. [14] . Another possibility would be to apply a post-projection

operator on the convective field to ensure that the incompressibil-

ity constraint is satisfied exactly [9,51] . 

Simulations of turbulent flows over a backward-facing step and

past a square cylinder, inducing vortex shedding, have shown the

soundness of our approach. Though we are bound by the well-

known limitations of the k − ε model, our results are in gen-

eral good agreement with those reported in literature. Compared

to previous works that used the k − ε model, our discrepancies

are always towards a better agreement with the experimental or

DNS/LES results. 
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