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Abstract

Time series analysis is used to predict future behaviour of processes and is widely used in the finance
sector. In this paper we will analyse the modelling of multivariate time series of financial data using
vector autoregressive processes. The goal is that the reader will understand the presented models and
could theoretically perform time series analysis by himself.

Two specific models will be explained: the Vector Autoregressive model (VAR model) and the Vec-
tor Error Correction Model (VECM). We will describe various methods to analyse multivariate time
series using these models, such as forecasting the process, variance decomposition of the forecast error,
causality analysis and impulse response analysis. Examples of these models and analysis methods will be
presented and investigated. Finally, we will perform a time series analysis with these models on Dutch
indices and stock data. We conclude that real-world data often does not fit the VAR model and VECM
requirements and that further improved models should be considered as well.
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1 Introduction

Nowadays stock data, government indices, interest rates and other financial historical data of the past
decades are easily obtainable for everyone. These historical data are widely used by companies and in-
vestors in order to obtain certain information of the data or to predict its future behaviour. Obtaining
such information might be very useful to improve investing strategies, therefore one should definitely
analyse historical data when striving for optimal returns. There are already many different existing mod-
els which am to gather as much information as possible of historical data. However, we will be looking
at a specific group of models of so-called vector autoregressive processes. Most of the information about
these models in this paper is based on Liitkepohl (2005). For simplicity we mostly applied the same
notation as in this book.

In our models, we will be using multivariate time series. A univariate time series is a series of data
points in some time order. However, a multivariate time series is a vector of combined univariate time
series, in which each element of a multivariate time series vector represents a univariate time series. For
multivariate time series we will mostly use the following notation throughout this paper:

y¢ : Multivariate time series vector at time ¢.

uy @ Vector of errors made by a certain model at time .

In the multivariate time series vector y; we will be combining multiple univariate time series we want
to investigate, which we will call the variables of interest. So if, y1,ys2,...,yx would be K different
univariate time series, then we would create the K-dimensional multivariate time series vector

Y1t
Yot

=" | (1.1)
YKt

The models we will be looking at for analysing multivariate time series will be based on vector autore-
gressive processes. If we assume y; to be a vector autoregressive process, then the value of each variable
of interest at time t linearly depends on both the

1. previous values of the variable of interest,
2. previous values of the other variables of interest.

This means that if y; has K variables of interest as in (1.1), then for the k-th variable of interest we could
find constants v, aq,as, ... such that

T T
a1 AGK+1
a2 QK +2
Yt = vk + | . Yt—1 + : Ye—2 + ... (1.2)
aK AK+K
Note that vk, a1, as,... could be different for each variable of interest k. When we use models based

on autoregressive processes, we will not only gather information of the individual variables of interest,
but we could also gather information of the relationship with the other variables of interest. In this
paper we will investigate two of these types of models, which are the Vector Autoregressive Model (VAR
model) and the Vector Error Correction Model (VECM). In section 2 we will investigate the VAR model
thoroughly. We will present everything that we need to apply the VAR model on multivariate time series.
In addition, we will look at various methods to analyse a time series using the VAR model. In section 3
we will be presenting the VECM in a similar way. In section 4 we will perform a multivariate time series
analysis with the presented models and methods on actual data of the Dutch stock market. Finally, we
draw a conclusion of the strengths and the limitations of these time series models.



2 Vector Autoregressive Model

The VAR (Vector Autoregressive) model of a multivariate time series is based on the assumption that
the time series is approximately a vector autoregressive process. If we assume g; to be a VAR process of
order p, then we assume ¥; to approximately be a vector autoregressive process, where each variable of
interest linearly depends on the previous p values of all variables of interest. Instead of the representation
yge as in (1.2), the k-th variable of interest of a VAR process y; of order p looks like

T T T
ai AK+1 A(p—1)K+1
a2 AK+2 A(p—1)K+2
Yt = Vi + | . Yt—1 + . Yi—o + -+ . Yt—p + Ukt,
aK agK apK

where ug; is the error made by the assumption that y; is a vector autoregressive process. Now y; is the
vector that combines all variables of interest as in (1.1), hence we can write the VAR process y; of order
p, or the K-dimensional VAR(p) process as follows.

Yt =V + Alyt,1 + Agytfg + -+ Apyt,p + Ut , te Z, (21)

with y: = (Y1, Y26, ..., yKt)T as the (K x 1) random vector with values of K variables of interest.
Furthermore, the intercept v is a fixed (K x 1) vector which can be used to express a non-zero mean
of the process y; and the matrices A1, Ag, ..., A, are fixed (K x K) coefficient matrices. We also have
the error terms, u; = (u1s, uat, - . . 7UKt)T7 as a K-dimensional white noise process, which is defined as
follows.

Definition 2.1. The K-dimensional process u; is called a white noise process if the following holds.

2. Elugul] =: %, for all t,
3. Elugul] =0 for all s # t.

We call X, the covariance matrix of the process u; and we assume throughout this paper X, to be a
nonsingular, i.e. X1 exists. We also assume that all diagonal elements of 3, are non-zero. Mostly u; is
referred to as the residuals of the process in the literature.

2.1 Properties of the VAR model

In the following sections we will discuss important properties of the VAR model, which will give us a
better understanding of the model. Later in this paper we will often refer back to these properties.

2.1.1 Stability

As stated in the VAR(p) model in (2.1), we have that t € Z for a VAR(p) process y;. At first it might
look a little strange to let ¢ also be able to have negative values, but this is simply because sometimes it
is assumed that the starting point of the process happened in the infinite past. It will then obviously not
be possible to start the time series at a certain finite time step. The question now is: what will happen
with the stability of the VAR model when the starting point happened in the infinite past? Let us first
consider the following lemma.

Lemma 2.1. Let y; be a K-dimensional VAR(1) process as in (2.1), where the process starts at ys—j_1,
then y: can be generated as

yr =g+ A+ + A+ ATy s+ S Ay,

with Ik as the (K x K) identity matriz.



Proof. Let us first assume that y; starts at yo. From (2.1) we have that

y1 = v+ Aiyo + ug,
Y2 = v+ A1y + ug,

Yy =v+ Aryi—1 + .
If we now substitute the generated y; in the equation of yo, y2 in the equation of y3 and so on, we find

y1 =v+ Aiyo + uy
yo = (Ix + A1)v + A%yo + (Ajug + ug)

t—1
ye=Ix + A1+ + A7+ Alyo + Z Ajug;.
=0

We see here that the equation of y; can actually be rearranged into an equation with the variables
Yo, U1, Uz, - . ., Ug. If we assume that our process did not specifically start at time 0, but at time ¢t — j + 1,
it is easy to see that we find

v =g +A+-+ A+ Ay o+ ZLO Ay,
O

Now we can look what happens with y; when we have the assumption that our information set contains
an infinite amount of values of y, which is equivalent with having j — c0. We then find that y; is stable
when the following stability condition holds.

Theorem 2.1. The VAR(1) process y; is stable if the stability condition
det(Ig — A12) #0  for|z] <1
holds.

Proof. In y;, as in Lemma 2.1, we have three different terms that we sum up, which all contain j. It turns
out that if all eigenvalues of A; have a modulus smaller than 1, then the sequence (A7);en, is absolutely
summable and the sum of the sequence converges to (I — A7)~ (Liitkepohl, 2005, p. 657). Using that
all eigenvalues of A; have a modulus smaller than 1, it can be found that the term Z?io Abuy_; exists
in mean square (Liitkepohl, 2005, p. 688) and obviously that A{Hyt_j_l goes to zero. Now we find for
j — oo that

0
Yo = p+ Z Alug—;, (2.2)
i=0

where = (Ix — A1) ~'v. Hence, we find that y; is stable when all eigenvalues of A; have a modulus
smaller than 1. This condition is equivalent with

det(I — A1z) #0 for |z| <1,

which can simply be seen by using the fact that

I
det(Ix — A12) = 2K det(g —Ay)  for z#0,

which is equal to 0 if 27! is an eigenvalue of A;. All eigenvalues of A; are smaller than 1, hence % > 1

results 2% det(Z — A;) to be 0. For the case z = 0 we have det(Ix — A;z) = 1. O



We can also find the stability condition of a VAR(p) model. Let us first define the companion form of a
VAR(p) process.

Definition 2.2. The companion form of a VAR(p) process is

}/;5 =V+AYthl+Ut7

Yt U
Yt—1 . 01
, where Y; = . is a (Kpx1) vector and Uy = | . | is a (Kp x 1) vector. We define the (Kpx 1)
Yt—p+1 0

vector v and the (Kp x Kp) matriz A as

14 A1 AQ e Ap,1 Ap
0 Ir 0 ... 0 0
v=10]l 4=1]0 Ik 0 0
0 0 0 Ik 0
We have defined Yy such that
Yt = JY})

with J := (Ik,0,...,0) as (K x Kp) matriz.

Now using the companion form a VAR(p) process, we can simply obtain the stability condition of y; in
a similar way we obtained Theorem 2.1.

Theorem 2.2. The VAR(p) process y; is stable if the stability condition
det(Ig, — Az) = det(Igp, — Arz — Ag2® — - — Ap2P) £ 0 for|z| <1
holds.

We call the stability condition in Theorem 2.2 the reverse characteristic polynomial and therefore we
can say that the VAR(p) process is stable if the reverse characteristic polynomial has no roots in and on
the complex unit circle. Again equivalent to the stability condition is only having eigenvalues of A with
modulus smaller than 1.

Example 2.1. We can look at an example of a bivariate VAR(2) process and check if it suffices the
stability condition of a VAR(2) process. Suppose we have

_ . [05 01 o o .
Y=V 104 05|Y%17 025 ofY2T4

The reverse characteristic polynomial of y; is

L ol (05 01f_ [0 O]\ _, - ,
det([O 1] [0.4 0.5]Z [0.25 0]z>_1 z+0.212% — 0.025z°.

The roots of the reverse characteristic polynomial are

zZ1 = 13,
22,3 ~ 3.55 £ 4.261,

where |z1] = 1.3 and |z2| = |z3| = 5.545. All roots of the reverse characteristic polynomial have modulus
greater than 1, hence y; is a stable process.



2.1.2 Moving Average representation

The MA (moving average) representation of a VAR process is a very useful representation, which allows
to rewrite the process into an infinte sum of some elements. The process Y; as in Definition 2.2 is defined
in such a way that it can be possible to rewrite Y; into the MA representation as follows.

0]
Yi=p+ > AU, (2.3)
i=0

which we can obtain by a similar method we used to get (2.2). Here w represents the mean of Y;. We
assume here that the stability condition from Theorem 2.2 holds. Using (2.3), we can find the moving
average representation of y; as follows:

ye = JY;

0
T+ Y JAJTIU,
i=0

o8]
= W + Z @iut,“ (24)
=0

where we use ®; = JA'JT, the fact that JZJ = I and u; = JU,. Since again (Ai)ieNO is absolutely
summable by the stability condition, we have that (®;);en, is absolutely summable as well. Now (2.4) is
the moving average representation of y;, which we will be frequently using later on.

It turns out a more direct way to determine the values of ®; as in (2.4) can be found by rewriting
the VAR(p) model using the so-called lag operator, which is defined as follows.

Definition 2.3. The lag operator L transforms an element of a time series to its previous time step, so
Lyt = Yt—1- (25)

This operator is also sometimes referred to as the backshift operator. Using the lag operator, it will be
possible to find the following values of ®;.

Theorem 2.3. The values of ®; of a moving average representation can be represented as

q)() = IK)

D, Z (I)Z',jAj, iEN,
j=1

where A; =0 for j > p.

Proof. With the lag operator we can rewrite the VAR(p) model (2.1) as

Y = v+ (AL + AgL? + - + A LP)y; + uy. (2.6)
If we now define A(L) as
A(L):= (I — A\L — AoL? — - - — A,LP),
we can rewrite (2.6) to
A(L)ys = v + wy. (2.7)

If we now define the infinite sum ®(L) as

[e¢]
O(L) = Y ®; L
1=0



In the result above we again find a moving average representation of y; as in (2.4) if we simply take
p= (3", ®i)v, which is still a fixed term since v is fixed. Now we can use the relationship (2.8) between
®(L) and A(L) to find the values of ®,. Writing out the relationship in terms of L results in

Ig = (9o + &1L+ DL +...)(Ixg — AjL — AgL* — -+ — A LP)
= Oolg + (‘I>1 — (I)()Al)L + ((]:)2 — P14 — (I)()AQ)LQ + -+
; (2.10)
((I)z — Z q)i_jAj)Li + ...,
j=1
which gives us now the following equality’s
I, = 9
= ‘I)l — (I)()Al
= @2 — cI)lAl — q)oAQ
0 = &) 0 A
j=1
with A; = 0 if j > p. Now it is easy to see that the values for ®; can be written as
oy = Ik
i
(I)i = Z (I)i—jAj7 i€ N.
j=1
O

2.1.3 Stationarity

The stationarity (or non-stationarity) of a process is an important property that we will be using later
on. Let us first look at the definition of stationarity of a process.

Definition 2.4. We call a certain process stationary if the first and second moments are time invariant,
which means that a process y; is stationary when the following holds.

1 E(ye) =p ¥,
2. EBl(ye — 1) (ys—n — )" =Ty(h)  ¥t,Yh.

In the first condition of Definition 2.4 we have that the mean of y; is the same vector p for all possible
time steps t. The second condition tells us that E[(y; — p)(y—n — p)7] is a certain function I'y, that
only depends on h and not on t. We call this function the autocovariance of y;. In other words, the
autocovariance of y; does not depend on ¢, but only on the amount of time steps h between the two
vectors y; and y;—p. Let us look at some examples of stationary and non-stationary univariate processes.



Non-stationary process y; Non-stationary process y;
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(a) Non-stationary process y;. (b) Non-stationary process y:.

Stationary process y;

T T T T T
0 50 100 150 200 250 300

t

(c) Stationary process y:.

Figure 2.1: Various stationary and non-stationary univariate processes.

In figure 2.1a we see a non-stationary process, since the first condition of Definition 2.4 does not hold.
The mean of the process is obviously lower for time steps between 400 and 500 than for other time steps.
In figure 2.1b we also see a non-stationary process, since the second condition of Definition 2.4 does not
hold. The autocovariance of the process definitely seems to increase when ¢ increases, which contradicts
the condition. In figure 2.1c we clearly see a stationary process, since both conditions hold.

We would like to know when a VAR(p) proces y; is actually stationary. If we look at a stable VAR(p)
process y;, we find that
Ely] = E[JYi]
— JE[Y]
= Ju
= (I-A —Ay—---—A) 'y, (2.11)

where g = (Ix, — A)~'v, which can be found by using the same methodology we used to obtain x in
(2.2). It can also be found that

r,(h) E[(JY; — u)(JYin — )" ]

0
T APy (AN, (2.12)

1=0

where Yy = E[U,U!] (Liitkepohl, 2005, pp. 688-689). We can see that the mean of a stable VAR(p)



process does not depend on t and that the autocovariance only depends on h, which means that a stable
VAR(p) process is always stationary. This is why the stability condition of a VAR(p) process can also be
referred to as the stationarity condition.

An important result of the stationarity of a process is Wold’s theorem (Wold, 1938), which is as fol-
lows.

Theorem 2.4. Every stationary process xy can be written in the form:
Ty = Zt + Yt

where z; is a deterministic process and y; is a process uncorrelated with z; that can be written in a moving
average representation

[oe]
Yi = Z Dy
i=0

With this theorem it is possible to show that we can rewrite y; of the stationary process x; as an infinite
sum of coefficient matrices A;, As, ... as

[ee]
Yt = Z Aiye—i + ug,
i=1

where we assumed ®; to be absolutely summable (Liitkepohl, 2005, p. 25). This means that every
stationary process z; has an infinite order VAR representation. Since the matrices ®; are absolutely
summable, which means the matrices A; are absolutely summable and will converge to 0, we can also see
that a stationary process x; can be approximated with a VAR representation of finite order. Hence, the
stationarity of a process is a very strong property, since it implies that a finite order VAR process can be
found.

2.1.4 Autocovariance

The autocovariance function is a function of a process that gives the covariance of the process between
two different points in time, for example between y; and y;_p. We also refer to this as the covariance of
the process at lag h. This function will depend on the value of the time ¢ and the lag h. However, for
stable VAR processes we found in (2.12) that the autocovariance only depends on h and not on ¢. In this
section we will be looking at some properties of the autocovariance of a stable VAR process. We will use
the notation I'y(h) as the autocovariance function of a VAR process y;, which is defined as follows.

Definition 2.5. The autocovariance of a stationary process y; at lag h is
Ly(h) = E[(y — 1) (Y- — )" ],
with g = Ely;]. We can T'y(h) the autocovariance function.

First, let us look at the autocovariance of a VAR(1) process y;. We can obtain the following autocovariance
function.

Lemma 2.2. The autocovariance function of a VAR(1) process y; is

I () = ATy (h—1) h>0
Sl AT+, h=0

Proof. If we look at the process y; — u, which is still a VAR(1) process, but with v = 0, we find
Yo — = A1(ye—1 — p) + uy. (2.13)
We can multiply both sides of (2.13) with (y;—, — )T and take the expectation, to obtain

El(y: — ) (Win — )7 = AB[(ye—1 — 1) (We—n — )] + Elug (yen — )],



or equivalently
T, (h) = ATy (h — 1) + Efus(yr—n — )" ]-
When we take h = 0, we find that

Elue(ye—n — 1)"] = Elug(Ar (ye—1 — p1) + w) "]

= Efusuy ]
=,
and for h > 0
Elus(ye—n — )] = Blug(Ar(ye—1 — p) + wr) "]
= ()7
since u; is a white noise sequence and hence uncorrelated with y;_1,9:_o,... and u;_1,u;_2,... We now

have the autocovariance function of y; for different values of h as

AT, (h—1 h >0
Fy(h) = ! y( T ) ~
AT,()T+%, h=0
We used the fact that T'y(—1) = I';(1)7, which follows straightforward from Definition (2.5). O

These equations are referred to as the Yule-Walker equations (Yule, 1927; Walker, 1931). If we assume
that the matrices A; and X, are known beforehand, then all we need to do to find the autocovariance of
y; for all values of h is to determine I',(0), because then we can use the Yule-Walker equations recursively
to determine the autocovariances for all values of h.

We can determine I'y(0) by combining the Yule-Walker equations of I',(0) and T',(1) as
r,0 = ATr,07+x%,
= AT, (0)AT +%,. (2.14)

To obtain I'y(0) from (2.14), we will first need to look at the definitions of the wvec operator and the
Kronecker product.

Definition 2.6. If A := (a1,as,...,a,) is a (mxn) matriz with ay, as, ..., a, as (mx 1) column vectors,
then the vec operator returns the (mn x 1) vector

a
as
vec(A) =

an

Definition 2.7. Suppose A is a (m x n) matriz, where a;; is the i-th row j-th column element of A. If
B is a (p x q) matriz, then the Kronecker product between these two matrices is defined as

anB algB cen alnB

ang a22B e (lgnB
A®B = . . . .

am1B  am2B ... apmnDB

These two operators combined can give us the following useful lemma (Liitkepohl, 2005, pp. 661-662).
Lemma 2.3. Let A, B and C be three matrices, where the product ABC' is defined. Then

vec(ABC) = (CT ® A) vec(B).



We can now apply this lemma to find the following value for I'y(0).
Corollary 2.1. As a result of Lemma 2.2 we find that
vec(T'y(0)) = (Ig2 — A1 ® A1)~ ' vec(S,),
where T'y(0) can be found by reverting the vec operator back to a matriz.
Proof. When we apply Lemma 2.3 on (2.14), we find that
vec(T',(0)) = vec(AiT,(0)AT + %)

= vec(A;T,(0)AT) + vec(Z,)
= (A1 ® A1) vec(Ty(0)) + vec(Xy),

where we used the fact that vec(A + B) = vec(A) + vec(B). Solving the equation above allows us to find
vec(I',(0)) as

vec(I'y(0)) = (Ix2 — Ay ® A1) vec(Sy),

where we now can find the original matrix I', (0) by simply reverting the vec operator back to the matrix
itself. O

We can now look at the autocovariance of a VAR(p) process y;. Using the same reasoning we used to
obtain the Yule-Walker equations of a VAR(1) process in Lemma 2.2, we find that the VAR(p) process
y¢ has the following autocovariance function.

Theorem 2.5. The autocovariance function of a VAR(p) process y; is

AlI‘y(h -1+ Agl—‘y(h —2) 4+ Apr(h —p) h>0
Fy(h) =

AT, ()T + +A4,T,(2)7 + - + AT, (p) T8, h=0

Again, we use the fact that I'y(—h) = T'y(h)” for all h, which follows straight from Definition (2.5). If
we again assume that matrices Ay, As, ..., A,, X, are known beforehand, we can see that I'y(h) can be
determined for h > p if we know the values of T'y(1),I'y(2),...,I'y(p — 1). We find that these matrices
can be found using the following corollary.

Corollary 2.2. As a result of Theorem 2.5 we find, using the companion form of a VAR(p) process, that
vee(Ty (0)) = (I(Kp)2 —A® A)il’l}ec(EU),

where Xy = E(UUL) and

I, (0) Iy(1) Ly(p—1)
b | PO o -2
Ly(—p+1) Ty(=p+2) ... Ty0)
The matrices T'y(1),Ty(2),...,Ty(p — 1) can be obtained by reverting the vec operator back to a matriz.

Proof. The VAR(p) process y; — p can be written in companion form as in Definition 2.2, which results
in

Yi—p=AY;—1 —p) + U,

10



where p = E[Y;]. Using Definition 2.5 we find that the autocovariance of Y; for h = 0 is

Ty (0) := E[(Y; — p)(Y; — p)"]

Yt —
Yt—1 — W T
=E . [yt—,u Ye—1 — K ... yt_p+1—,u]
Yt—p+1 — 1
Fy(o) Fy(l) Fu(p —1)
R V(0 ry(p—2)
Ly(=p+1) Ty(-p+2) ... 'y (0)

For similar reasons we used to obtain Corollary 2.1, we find that I'y (0) can be obtained by using
vec(Ly (0)) = (L(xp)2 — A®A) 'vec(Sp),

where Xy = E(U;U}'). Hence, we can find the values for I';(0),T'(1),...,Ty(p — 1) by reverting the vec
operator back to the matrix. O

Example 2.2. Now we can try to find the autocovariances of the bivariate VAR(2) process y; as in
Ezample 2.1. We again have

_, . [os 01 fo o .
Y=V 104 05|Y%17 025 ofYi—2T W

and we suppose the covariance matriz of us to be

0.09 0
P = [ 0 0.04]'

Then we have for the matrices A and Xy in the companion form of y; as in Definition 2.2 that

05 01 0 O
04 05 025 0
4= 1 0 0 0
0 1 0 0

and

o
o
o
=
o O OO
o O OO

Using Corollary 2.2, we find that

[0.131 0.066 0.072 0.051
0.066 0.181 0.104 0.143
0.072 0.104 0.131 0.066
0.051 0.143 0.066 0.181
_ | Tw(0) Fy(l)}

Ty(DT Ty(0)]

Iy (0) =

11



0.131  0.066 0.072  0.051
hence Ty (0) = [0.066 0.181] and Ty (1) = [0.104 0.143

h = 2 using the Yule-Walker equations of Theorem 2.5 as follows.

]. We now find the autocovariances for all

Iy(2) = AT, (1) + Ao, (0)

_ [0.046 0.040
~ 0113 0.108]

['y(3) = A1l'y(2) + 42Ty (1)
= (AT + A2)T, (1) + A AT, (0)

_10.035 0.031
~10.093 0.083]"

and so on.

2.1.5 Autocorrelation

Most of the time the autocorrelation function is being used instead of the autocovariance function, when
analysing the linear correlation of the lags. The autocorrelation function of a process y; at lag h returns
the correlation between y; and y;—_p. This function will again only depend on A and not on ¢ when we
work with stationary processes. For stationary processes, the autocorrelation is defined as follows:

Definition 2.8. The autocorrelation of a stationary process y; is
R,(h) = D™'T,(h)D*, (2.15)

where Ty (h) is the autocorrelation for lag h and D™ is defined as

1
) 0 0
0 L 5 0
D™ = Ve , (2.16)
| 1
0 0 vk K (0)

where v;;(h) is the i-th row and j-th column element of the autocovariance at lag h.

With this definition, the i-th row and j-th column element of R, (h) is simply the correlation between
Y+ and y;¢—p. We can expand Example (2.2) to find the autocorrelation of y;.

Example 2.3. Continuing from Ezample (2.2), we can find the autocorrelation of y: as follows. We
have

1 0
D! = lv00131 | (2.17)
1/0.181

hence

Ry(o) = D_lry(O)D_l

1 043
043 1|

Ry(1) = D7'Ty(1)D™* (2.18)
055 0.33
~lo6s 0.79|

12



and so on. We then can find the following autocorrelations between the variables.

Autocorrelations between y; and y4 Autocorrelations between y; and y;
a ] a ]
o | o |
(=} (=}
= =
2 @ 2 w
B o B o
= z
5 5
s = | 8 = |
5 o 5 o
X X
o o
N ‘ ‘ N ‘ ‘
o | ‘ ‘ ‘ | | I o | ‘ | | \ | I
(=] (=]
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Lag Lag
Autocorrelations between y, and y, Autocorrelations between y, and y,
(= (=
o o
S 7 S 7
= =
2 e 2 e
& S =N
= =
5 s
s = g =
5 o 5 o
< Ey
o o ‘
(=} (=}
- | ‘ |1 - | ‘ o
(=] o
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Lag Lag

Figure 2.2: Autocorrelations between the variables for various lags.

2.2 Forecasting

When analysing financial time series, forecasting the process will be of great importance. It is a great
way to predict the future behaviour of a process. When forecasting we can use all of the information that
the time series has to predict future values of the process. Suppose we have a time series y; with values
up to time ¢, then we could try to forecast ¢t + 1, 4+ 2,... up to maybe h steps ahead. We call period ¢
the forecast origin and h the forecast horizon. If we have a function that gives us a forecast of a process
h steps ahead of our forecast origin, then we call this function the h-step predictor. Our goal is to find
a predictor of a stable VAR(p) process that provides us the best possible forecast. For VAR models it
turns out that predictors that minimize the mean squared error are the most effective (Granger, 1969,
pp- 199-207). The mean squared error of a predictor is defined as follows.

Definition 2.9. If y; is a stable VAR(p) process, with h-step predictor gi(h), then the mean squared
error (MSE) of this predictor is

MSE[g:(h)] := E[(yern — G6(h) (Wern — 5:(h)"]- (2.19)

The value of y;p, — §¢(h) is the error that is made by forecasting the process, hence it is referred to as
the forecast error.

13



2.2.1 Zero mean VAR(1) models

To find the minimum MSE predictor for a VAR(p) process we will first analyse when we have a zero
mean VAR(1) model y;, which means

Yt = Alyt—l + Ug.

As in Lemma 2.1 we can rewrite ¢, Y¢+1,---,Yrrn in terms of Aj,y; and the white noise term u;. We
find that
h=1
Yern = AYe + Z Al p—i.
i=0

If we define a predictor of y; with forecast origin ¢ and forecast horizon h as y;(h), then this predictor
should depend on y;,y¢—1,. .. and so on. We can write y;(h) as

y¢(h) == Boys + Biye—1 + ...,

where By, By, ... are (K x K) matrices. Our goal is to find these matrices so that mean squared error of
this predictor is minimized. Let us first look at the forecast error of this predictor, which is

h—1

Yeen —ye(h) = Alye + ) Alugins Z Biyi—i
=0 1=0

= ZAlut-‘rh i A *BO yt ZBzyt i
i=1

Using the fact that wsy1,uss1,... is uncorrelated with y;, yi—1,..., we find the mean squared error as
follows.

MSE[y:(h)] = E[(_yt+h =yt (M) (Yesn — yt(h))T]

h=1 h=1 T
- E (Z Agut+hi> (2 A’luHhi) (2.20)
=0 =0

+ E (( — Bo)y: — ZBzyt z) <A — Bo)y: — ZBzyt 1) . (2.21)

From (2.20)-(2.21) we can see that the mean squared error of y,(h) is minimal when the second term is
0, which means when By = A} and B; = 0 for i € N. Now the minimum MSE predictor of a VAR(1)

process with zero mean is

yt(h) = A?yt
= Alyt(hil)a

with a forecast error of
Z At ypi- (2.22)

2.2.2 Zero mean VAR(p) models

Now for a VAR(p) process y; with zero mean we can write this process in the companion form as in
Definition 2.2 to obtain

Y, = AY;_1 + U,. (2.23)

14



Using the same methodology to obtain the minimum MSE predictor as in (2.22), we find

Yi(h) = A"Y,
= A}/t(h - 1)a

where Y;(h) is the minimum MSE predictor of Y;;,,. Using the definition of the vector Y;, we can rewrite
this predictor into the form

Z/}tb(h)
J(h—1
v =| M

yi(h—p+1)

where y;(h) is the h-step predictor of the VAR(p) process y;. We use here that y.(j) := y¢+,, where j < 0.
In other words, the predictions of values of the time series at time steps before the forecast origin are
simply the same values we already know. We can now find the minimum MSE predictor y;(h) as follows.

yt(h) = JYt(h)
— JAY:(h-1)
= Ayi(h—1) + Agyr(h —2) + -+ - + Apye(h — p). (2.24)

The forecast error of this predictor can also be determined. Using the companion form as in Definition
2.2, we find for a VAR(p) process with zero mean that

Yien = AYiin1 +Ugn
= A%iip o+ AUiin1 + Uiis

h—1
A", 4+ ) AU,
i=0

which means our forecast error will look like
Yern —yi(h) = JYipn — JYi(h)

h—1
= J (AhY; + ) A"UHhi) — JA"Y,
=0

= Diusyn—i, (2‘25)

where ®; = JA'JT as in the moving average representation (2.4).

2.2.3 Non-zero mean VAR(p) models

Using the minimum MSE predictor of a VAR(p) process with zero mean (2.24) we can find the minimum
MSE predictor of a VAR(p) process with a non-zero mean. If we have VAR(p) process with a non-zero
mean ¥y, then we define x; to be

Ty =Yt — W, (226)
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which is a VAR(p) process with zero mean if we take p := E[y;]. Remember from (2.11) that we have
Ely: ] = (I —A; — Ay —---— A) v (2.27)
We found that the minimum MSE predictor of z; is equal to
xi(h) = Arxy(h — 1) + Asxy(h — 2) + - - - + Apx (b — p), (2.28)

hence p to both sides of the equation above and using (2.27) results in the minimum MSE predictor of
the non-zero mean VAR(p) process

z(h)+p = p+Aizg(h—1)+ -+ Ay (h —p)
= p+Ai(y(h—1)—p)+ -+ Ap(ye(h —p) — p)
= pl—Ar— = A) + Ay (h— 1)+ + Apye(h — p)
v+ Ary(h—1) + - + Apye(h — p) (2.29)
= yt(h‘)'

The forecast error of the minimum MSE predictor of a non-zero mean VAR(p) process is obviously the
same as the forecast error of the non-zero mean process, since

Yoo —Ye(h) = xppn —p—x(h) + p
= Tt+h — $t(h)

h—1
= Z Diugrp—i-
i=0

2.2.4 Forecast intervals

The forecast error we found for the minimum MSE predictor of a VAR(p) model shows us that this
predictor does not perfectly predict future values. An assumption which is often made is that the white
noise terms u; are considered i.i.d. multivariate normally distributed (u; ~ N (0,3,,)). If we now look at
the forecast error we found in (2.25), then we find, under the assumption of multivariate normal white
noise terms, that the forecast error is a linear combination of the error terms. Hence, the forecast error
is multivariate normally distributed as well, so

Yt+h — yt<h) ~ N(()? Ey<h))ﬂ (2'30)

where 3, (h) is the covariance matrix of the forecast error for h steps ahead. This covariance matrix can
be written as follows using Definition 2.9 of the mean squared error and the fact that the error terms are
uncorrelated.

3y (h) := MSE[y;(h)]

h—1 h—1 T
E (Z (I’iut+h—i> (Z (I)iut+h—i> (2.31)
i=0 i=0

h—1
T T
= E Diupyp—iUyyp—; P;

h—1

= D 8,®)
=0

= Ny(h—1)+ &4 15,97 ;. (2.32)

Since y4(j) := y¢+; where j < 0, we see that the mean squared error of the predictor is 0 for A < 0, hence
Yy(h) = 0 for h < 0. Now (2.30) tells us that the forecast errors of the variables of interest of y are
normally distributed. We find for the k-th variable of interest that

Yk,t+h — ym(h) -
T(h) N(0,1), (2.33)
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where yy (h) is the k-th component of y,(h) and o (h) is the square root of the k-th row k-th column
element of 3, (h). This means we can now set up confidence intervals of our prediction for each variable
of interest. If we define z, to be the value such that

P(Z <zq) =1—q, (2.34)
where Z ~ N(0,1), then

Yk, t+h — Yr,t(h) < Za/g)
o (h) (2.35)
= P(yrt(h) — ok(h)2as2 < Ykt+n < Yre(h) + ok (h)zas2),
which means our (1 — a)100% forecast interval of the k-th variable of interest for h steps ahead will be

[yk,t(h) — 0k (h)2za/2, Ykt (h) + Uk(h)za/2] . (2.36)

I—a=P(—242 <

2.2.5 Forecasting example

Let us look again at the bivariate VAR(2) process

0.5 0.1 0 O
Yyt =v + |:O4 05:| Yt—1 + |:025 0:| Yt—2 + Ut, (237)

with the covariance matrix of u;

0.09 0
P = [ 0 0.04]’

but now we choose the process to have a non-zero mean by assuming

LN _[38] ud o [30
T2 YT g Y85

We assume that our process y; starts at y_;. Using the values above we can now generate the bivariate
VAR(p) process (2.37) from y; to yn for a certain integer N, by taking random samples of the A/(0,%,,)
distribution for uy, us, ..., uyN. For this example we take N = 100, which results in the following generated
process.

Generated bivariate VAR(2) process y;;

w
2
(e}
=
un —
)
o —
)
0 20 40 60 80 100
t
Generated bivariate VAR(2) process y»;
L —
(o2}
P
;‘:' (o2}
[
[sa]
o —
[1a]

0 20 40 60 80 100

Figure 2.3: Generated process of (2.37) for N = 100.
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3.589

3.556
We find that yg9 &~ [9.347] and Y100 ~ [9.218

. In this example we would like to forecast this process up

to 3 steps ahead of N. By using the minimum MSE predictor we found in (2.29), we find the following

predictions.

yn (1) v+ A1yn(0) + Azyn(—1)

Q

1%

3.716
8934

v+ AlyN(l) + AQyN(O)

1%

[3.752
8.851 "

v+ Aryn(2) + Aoyn (1)

1%

3.761
8.855|"

[1 n 0.5 0.1][3.589 i
|2 0.4 0.5][9.218

< (1] [os o1][376]
T 2] T o4 05][8.934

L+ [od 03] [+ |

0 0]]3.556
0.25 0] [9.347

0 0]]3.589
0.25 0]1]9.218

0 0]]3.716
0.25 0]]8.934

We can now look for a 95% forecast interval of these predictions for both variables of interest. First we
will need to find the covariance matrices of the forecast errors for h = 1,2,3. From (2.32) we found that

Yy (h) =2y (h—1) + &1 5,0 _,.

(2.38)

We now need to find the coefficient matrices ®¢, ®; and @5 of the moving average representation. Using

Theorem 2.3, we find

1 0
by = 0 1];
¢ = PoAy
_Jos 0.1]
04 05]

~[0.29 0.10
~ 065 0.29]°

18
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We now find

$,(1) = &%,

[0.09 0
0 0.04f°

$,(2) = I,(1) + 8,0

~[0.09 0 n 0.5 0.1](0.09 0 0.5 0.4
B 0 0.04 0.4 0.5 0 0.04[]0.1 0.5

[0.113  0.020]
0.020 0.064 |

y(3) = Ey(2) + 28, P)

[0.113 0.0207+ 0.29 0.10(]0.09 O 0.29 0.65
10.020  0.064 | 0.65 0.29 0 0.04(]0.10 0.29

[0.121  0.038]
0.038 0.106]

1%

&

1%

Now using (2.36), we find for the first variable of interest

steps ahead | forecast | lower bound | upper bound | interval length

1 3.716 3.128 4.304 1.176
2 3.752 3.093 4.410 1.317
3 3.761 3.079 4.442 1.363

Table 1: The minimum MSE predictions for 1,2 and 3 steps of the first variable of interest and their 95%
forecast intervals.

And for the second variable of interest we find

steps ahead | forecast | lower bound | upper bound | interval length

1 8.934 8.542 9.326 0.784
2 8.851 8.353 9.348 0.995
3 8.855 8.218 9.493 1.275

Table 2: The minimum MSE predictions for 1,2 and 3 steps of the second variable of interest and their
95% forecast intervals.

This whole process of forecasting 1,2 and 3 steps ahead can of course be expanded to forecast 4 or more
steps ahead. This way we can find the following 10 step prediction.
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Generated bivariate VAR(2) process y4,

o --- 05% interval
w3 | ~~ - forecastedvalues i
continued generation L, S
= 9
= <
<
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T T T T T T
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t
Generated bivariate VAR(2) process y;
wn | - 95%interval
o —{ --- forecastedvalues -
Al continued generation . \\ £
o | )
07
0
o
oo
- | | | | | |

Figure 2.4: Prediction of the process 10 steps ahead for both variables of interest.

In the figure above we also see forecasted values and intervals for ¢ < 100, even though those values of
y; are already known. What happens here is that for ¢ < 100 we predict 1 step ahead, which creates a
forecasted value with confidence intervals. Since the process is known for ¢ < 100, we can check how well
our predictor is performing. Looking at ¢ < 100, we see that our process follows the forecasted values
very well and it is nicely between the 95% interval most of the time.

Another way to check how well the predictor is performing is by simply continuing the generation and
see whether our prediction for 10 steps ahead is accurate. We see that the continued generation pretty
much follows the forecasted values and lies between the 95% interval, except for y2 103. Since it is just a
single value that lies outside the interval and since the process instantly corrects itself, we can conclude
that this is not a big deal and that our predictor is still pretty accurate.
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2.3 Analysis methods

In this section we will discuss various methods we can use to analyse VAR processes. These analysis
methods all have their own strengths when it comes to time series analysis. The idea is that one should
apply all these methods when performing time series analysis in order to gain as much information as
possible.

2.3.1 Forecast error variance decomposition

The forecast error variance decomposition allows us to give a better interpretation of our forecast results.
This method shows us how big the influence is of a certain variable of interest k on the error made by
forecasting variable of interest j.

Let us first look at the definition of a positive definite matrix.

Definition 2.10. Let A be a symmetric (K x K) matriz. Then A is positive definite when for all non-zero
real (K x 1) vectors x the following holds:

rT Az > 0. (2.42)
If we now look at the covariance matrix u; of a VAR(p) process y;, we find the following theorem.

Theorem 2.6. The covariance matriz of uy of a VAR (p) process y; with K variables of interest is positive
definite.

Proof. Let x be a non-zero real (K x 1) vector, then

'S = ElzTuul ]
= E[(= Ut)(xTut)T]
= E[(@"u)(z"u)"]
> 0,
since zTu; is a constant and u; # 0, since ¥, is assumed not to be 0 in the VAR model. O

Now let us state the Cholesky decomposition (Brezinski, 1924) of the positive definite matrix.

Theorem 2.7. Let A be a positive definite (K x K) matriz, then there exist a lower triangular matrix
P with real and positive values on the diagonal such that

A= PPT, (2.43)

Together with Theorem 2.6 we see that a matrix such as P also exists for the covariance matrix 3,. We
can now rewrite the moving average representation of a VAR(p) process y: as in (2.4) as the so-called
orthogonal representation as follows.

0]
Y = p+ Z Dy
i=0

[es}
= p+ ) PPl
1=0

o8]
= pt ) O, (2.44)
i=0
where ©; = ®; P and w; = P~ 'u;. Now using Theorem 2.7 we find that the covariance matrix of w; is
Yo = E[wtth]
= P_lE[utu?](P_l)T
P_IZU(P_l)T
ptppT(P~H"
= Ig. (2.45)
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The w; in the representation of (2.44) is often referred to as the orthogonal residuals, since (2.45) shows us
that the residuals are uncorrelated between each variable of interest. We will be using this representation,
since now we can determine how much one variable is influencing the covariance matrix of the forecast
error. Previously this was not possible, since the variables of interest were correlated with each other.
We now want to use the representation in (2.44) to rewrite the forecast error made by our minimum MSE
predictor as in (2.25). We find the forecast error of

T
L

Diugni

Yt+h — yt(h)

> .
[
- o

= OiWith—i- (2.46)
0

-
Il

We can now look at the forecast error made by the predictor of just a single variable of interest. For
notation we introduce 6, ; as m-th row and n-th column element of the matrix ©; in (2.46). To find
the forecast error of the j-th variable of interest, we only use the j-th row of ©; in (2.46), which results
in

051,iW1 e h—i + -+ 0K WK 4 h—i

h—1
(Z ojk‘ iWkt+h— z) . (247)

Yit+h — Yje(h) = Z_:
e
2\ 2

We see that the forecast error of the j-th variable of interest is formed with the orthogonal residuals of all
K variables of interest. We now would like to look at the variance of the forecast error of the prediction h
steps ahead for just a certain variable of interest j. This is the same as the j-th row j-th column element
of the covariance matrix of the forecast error 3, (h), which we can use to obtain the following theorem.
Theorem 2.8. The variance of the forecast error of the j-th variable of interest equals

K h—-1

N (2.48)

k=1 1=0

Proof. The variance of the forecast error of the j-th variable of interest is the same as the j-th row j-th
column element of 3, (h), which is MSE[y, +(h)]. We now find

MSE[y; ()] = El(Wse0n = y50(h))’]

K /h-1 2
= ]E (Z <Z ij Zwk t+h— Z)) (249)
| k=1 \i=0
K h—1
= E 2 G?k,iwz,t+hi1 + (2.50)
Lk=1 i=0
[ K K h—1
E|Y Y ejk,iejl,iwk,t+hiwl,t+hi1{k¢l}1 : (2.51)
| k=11=1i=0

In the last step we split the square of (2.49) into 2 parts. In (2.50) we have the part where the orthogonal
residuals w; are multiplied with the same variable of interest and in (2.51) the orthogonal residuals are
multiplied with a different variable of interest. We follow these steps because the equation in (2.51)
equals 0. This is simply because the orthogonal residuals are uncorrelated between the variables of
interest, which we found in (2.45). We now have

K h—
MSE[y;.(h)] — lz N H]
k=1 1=0
K h—1
- Z 07 B [wi pn—i] (2.52)
k=1 i=0



In (2.45) we also found that E[w} ,] = 1 for all k, hence

K h—1
MSE[y;: ()] = Y. > 6% (2.53)
k=1 1i=0

O

We now have found the variance of the forecast error of the j-th variable of interest. Theorem 2.8 shows
that the variance is formed with values of 0 using all variables of interest. All we need to do to now is
calculate how big the proportion of the forecast error variance is of a certain variable of interest k of the
total forecast error variance or a variable of interest j. We call this proportion wj ,, which is defined in
the following definition.

Definition 2.11. The proportion of the forecast error variance of the k-th variable of interest by fore-
casting the j-th variable of interest h steps ahead is

h—1 52
2o ejk,i

MSE[y, ()] (2:54)

Wik,h =
Example 2.4. Continuing from the forecasting example in section 2.2.5 we can apply the forecast error
variance decomposition for a better interpretation of the forecast results. In this ezample we will calculate
the proportions of the forecast error variance of both variables of interest, based on the forecasts for 1, 2
and 3 steps ahead for both variables of interest. From Definition 2.11 we see that we need to determine
matrices Oy, 01 and O. Since ©; = ©; P, we will first need to determine the lower triangular matrixz P
from Theorem 2.7. In general we can apply the following method to find the matriz P.

Zu_[o.og 0] _ ppT

0 0.04
_ P10 | |pi1 p2a
p2,1 P22 | 0 p22|’

where p11 and pa 2 have to be positive and real valued. We now find

p%,l = 0.09 = p11 =003
p1,ip21 = 0 = p21 =0
Pii+pi, = 0.04 = poo =002

hence

0.03 0
P _[ 0 0.02]'

Obviously the matriz P is straightforward when X, is a diagonal matriz, but this does not always have to
be the case. Now using matrices o, ®1 and ®o we found earlier in (2.89 - 2.41), we find that

Oy = PP
[1 0][0.03 ©
~ o 1” 0 0.02]
_[0.03 0]
| 0 0.02)°
0, = &P
|05 0.1] [0.03 0]
(04 05| 0 0.02
_Jo.15 0.02]
1012 0.10]°
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0, = &P
~ 029 0.10][0.03 0
=~ loe6s 029 0 0.02
~ [0.087 0.020
~ 10195 0.058]"

Now wusing Definition 2.11 and the covariance matrices of the forecast errors for 1,2 and 3 steps ahead
(2.42 - 2.42), the proportions of the forecast error variance for the first variable of interest on itself will
be

IR T
’ MSE[y1,+(1)]
0.32
0.09
= 1
R 23:09%1,1‘
’ MSE[y1.:(2)]
0.3% + 0.15

0.1129
~ 0.996

s~ imofh
’ MSE[y1,+(3)]
0.32 + 0.15% + 0.087
0.121

~ 0.993

and the proportions of the forecast error variance for the first variable of interest on the second variable
of interest will be

0
Wty = Zi=09§1,z‘
' MSE[?Jz,t(l)]
02
0.04
=0
oy = im0
1o = =0 A
MSE[y2,t(2)]
02 +0.122

0.0644
~ 0.224

2
Wors = Zi:o 931,1
’ MSE[yz,t(3)]
0% +0.122 + 0.1952

0.106
~ 0.496.

%

Now for the proportions of the forecast error variance of the second variable of interest we can calculate
them the same way as above, or simply take

wjos =1 —wjis Vj,1, (2.55)

since we are working with just 2 variables of interest. Of course using the same methodology, we can find
the proportions of the forecast error variance for forecast horizons higher than 3. This will result into the
following table.

24



Forecasted | Forecast horizon | Proportions of | Proportions of
variable of variable 1 on the | variable 2 on the
interest forecast error | forecast error
variance variance

1 1 1 0

2 0.996 0.004

3 0.993 0.007

4 0.992 0.008

5 0.991 0.009

10 0.989 0.011
2 1 0 1

2 0.224 0.776

3 0.496 0.504

4 0.596 0.404

5 0.637 0.363

10 0.679 0.321

Table 3: Proportions of the forecast error variance of both variables of interest for forecasting both
variables of interest with various forecast horizons.

We see that the proportions of a wvariable of interest for a forecast horizon of 1 both have a value of
1 on its own prediction. This is simply because in this case O = PP = %, and is a diagonal matriz,
hence the forecast error variance of predicting one step ahead fully depends on its own variable of interest.
Furthermore we see that forecast error variance of forecasting the first variable mostly depends on the first
variable of interest. This means that the second variable of interest almost contributes no information to
the first variable of interest. However, while forecasting the second variable of interest, its forecast error
variance will in the long term depends more on the first variable of interest. We can conclude from this
that in the long term the first variable of interest contributes more information to the second variable of
interest than the second variable itself. These results do not come as a suprise, since the top right values
of the coefficients matrices Ay and As have values close to 0, while the bottom left values have larger
values.

2.3.2 Granger-causality

Granger-causality is a method to find out whether certain variables of interest are influencing each other.
It is based on the idea that the prediction of certain variables of interest should be improved when other
influencing variables of interests are added to the process. For example, if we know that variable x is
affecting variable z, then the prediction of variable z would be better if we take variable = into account
as well. This form of causality we call Granger-causality, which is defined as follows.

Definition 2.12. Suppose x; and z; are multidimensional variables of interest. Let ¥.(h|€;) be the
forecast mean squared error of the h-step minimum MSE predictor of z; as in (2.25) based on the infor-
mation set ;, which contains all available information of all variables up until time t. Then we say that
¢ Granger-causes z; when

for at least one h =1,2,....

Let us now take a stable VAR(p) process y; with K variables of interest. We define

Tt

. [Zt] 7 (2.57)

where z; and z; are (M x 1) and ((K — M) x 1) vectors respectively. If we now rewrite y; into a moving
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average representation as in (2.4), we get

_ 2t
Yy = [xt]

[00)
= pu+ Z Piug—;
i=0
1 P10 Pi2o]| |ULye D11 Pro| [Ur—1
- T R ; I et : Ll 2.58
[NQ] [@21,0 ‘1322,0] |:U2,t:| [‘Dzl,l Qoo 1| | u2,t-1 (2.58)
with appropriate dimensions such that
o] o0
Zp = M+ Z Dyyuy s + Z Do Uz s, (2.59)
i=0 i=0
o0 o0
Ty = po+ Z Doy jur - + 2 Dog ju 1. (2.60)
i=0 i=0

We can now obtain the following useful lemma.
Lemma 2.4. Let y; be as in (2.58), then x; does not Granger-cause z; if and only if
@12)1' =0 fOT’Z' = 1,2,.... (261)

Proof. First we will show that the minimum MSE predictor of y; can be rewritten into a moving average
representation as in (2.4). We use that the forecast error of the minimum MSE predictor can be rewritten
into the moving average representation, which has been shown in (2.25). Since we of course can rewrite
Yi+n into a moving average representation as well, we find that y;(h) can also be rewritten into a moving
average representation as follows. We use

h—1
Yt+h — yt(h) = 2 DUy n—;
i=0

<>

such that

h—1

ve(h) = yeen— Y Pittypn
i=0

0 h—1
= p+ Z Qiuttn—i — Z Dty n—i
i=0 i=0

o0
= u+ Z Dy s
i=h

0
= pt Z D pus—i- (2.62)
i=0
Now let us first look at the case where h = 1. Using (2.62) we will try to find the 1 step prediction
of z; in a moving average representation based on the information set Q; = {ys|s < t}. We use the
(M x K) matrix Z = (Ip,0,...,0) such that z; = Zy;. For notation we use that the minimum MSE h
step prediction of z; with forecast origin ¢ based on the information set Q; equals z;(h|€;), so the 1 step
prediction of z; is

2(1Q) = Zy(1)
0
= Z (,u + 2 (I)iJrluti)
i=0
[e¢] (e ¢]
= 1+ Z DUt e—i + Z D12itiU2t—i- (2.63)
i=0 i=0
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Since

Zi41 = ZYiv1
o0 [oe]
= m+ Z Doy Uy pp1— + Z Do Uz t41—45 (2.64)
i=0 i=0

we have a forecast error of z;(h|€;) of

Zivn — 2e(B|Q) = Priourssr + PiooUzit1
= U17t+1, (265)

because we found in Theorem 2.3 that &g = I.

Secondly we will try to find the 1 step prediction of z; based on Q;\{zs|s < ¢}, which is equivalent
to {zs]s < t}. To find this prediction we will need an implication from Wold’s theorem. This implication
states that every subprocess of a stationary process also has a moving average representation, hence z;
has a moving average representation. This simply follows from the fact that

Elz:] = E[Zy]
= Zu
and
T.(h) = E[zz]

= E[Zy(Zy)"]
= ZT,(h)Z7,

hence z; is stationary and has a moving average representation, which follows again from Wold’s theorem.

Now we can rewrite z; as
o8]
o= i+ Y Fo, (2.66)
i=0

where F; are some moving average coefficient matrices and v; are the white noise terms. We can again
use (2.62) to find a moving average representation of the minimum MSE 1 step predictor z;(1), which is

©
Zt(].|Qt\{(ES|S < t}) = 1 + Z F7;+1’Ut,7;. (267)
=0

Now using (2.66) for ¢ + 1 and the 1 step predictor (2.67), we find the following forecast error.

0 0
zei1 — 2(UQ\adls <)) = pr+ Y Fioppi —m— ), Fiave
i=0 i=0
Fovig
= v, (2.68)

since again from Theorem 2.3 we have that Fy = I.
Finally now all we need to do in order to show when z; does not Granger-cause z; is we have to see
when the predictors in (2.63) and (2.67) are the same. This is equivalent to checking when the forecast

errors in (2.65) and (2.68) are the same, therefore assume that

UL,t+1 = Vt41- (269)
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Substituting (2.69) into (2.66) results into

o0
Zy = u1 + Z Fiul,t,i. (2.70)
i=0
Since from (2.59) we also have that
[oe] o]
zt = 1 + Z D1 Ut p—i + Z Do U2 ¢4, (2.71)
i=0 1=0

we see that (2.70) and (2.71) are the same if and only if ®17; = F; for i > 0 and ®12, = 0 for ¢ > 1.
Definition 2.12 now tells us that x; does not Granger-cause z; if and only if ®15; =0fori=1,2,... O

In the proof above we showed that the 1 step predictors in (2.63) and (2.67) are the same if and only
if ®15; =0 for ¢ = 1,2,.... Using the same methodology used in this proof, it is possible to show that
these predictors for h steps ahead are the same if and only if ®15; = 0 for i = 1,2, ... as well. Note that
only one h has to be found where those predictors are different in order to have Granger-causality.

We can transform the condition that ®i5; = 0 for ¢ = 1,2,... in Lemma 2.4 to a condition based
on the coefficient matrices A, A, ..., A, of the stable VAR(p) process y; as follows. Again we take y;
as in (2.57). We then let A;i; be as follows.

_ 2t
Yyt = [ﬁt]

v+ A +A+--+ A4,

v Aiiq A2 Ay A2 p:|
+ ) ’ —+ -0 4 . ’ s 272
[Vz] [Azm Azm] [Asz A2z p (2.72)

with suitable dimensions for A;j ;. We now get the following theorem.

Theorem 2.9. Let y; be a stable VAR(p) process as in (2.72) and Aj,; be the j-th row k-th column
element of the coefficient matriz A;, then x; does not Granger-cause z; if and only if

A127i =0 fOT 1= 1, 2, ...y P (273)

Alternatively z; does not Granger-cause xy if and only if

AQLZ‘ =0 fOT’i = 1,2,...,]). (274)
Proof. Using Lemma 2.4 we have that z; does not Granger-cause z; if and only if ®15, = 0 for i =
1,2,.... Using this condition together with the ® matrices we found in Theorem 2.3, we see that A;a;
for i = 1,2,...,p is an equivalent condition, hence x; does not Granger-cause z; if and only if

A12,i =0 for i = 1, 2, c..y D (275)
The proof to show that z; does not Granger-cause z; can be done in a similar way. O

Example 2.5. Let us again look at the bivariate VAR(2) process

[% 0.1
Yyt = v

0 0
a4u4%*+h% J%*+W

)

where z¢ = y1; and x, = y2r. We see that A1a1 = 0.1 and A122 = 0 and we see that Az 1 = 0.4 and
Aoy 2 = 0.25, hence using Theorem 2.9 we have that x; does Granger-cause z; and z; also Granger-causes
x¢. This means that a prediction of the process y1; would be improved if the predictor takes the values of
the process yor into account and a prediction of the process yor would be improved if the predictor takes
the values of the process y1+ into account.

28



Example 2.6. Let us now look at the following 3-dimensional stable VAR(1) process

05 0 0
vy = v+ |01 01 03| wyi—1+us
0 02 03

=[]

where z; = Y14 and x; = BZt]. We see that A12;1 = [O 0] and Ag11 = [0(')1], hence x; does mot
3t

Granger-cause z¢, but z; does Granger-cause xy. We can calculate the forecast mean squared errors of the
minimum MSE predictors of xy and z; with and without taking each other into account. In this example
we will only be looking at the predictors that forecast 3 steps ahead. Using (2.32) we find

2.953 0.146 0.011
5,(3) ~ | 0.146 1.161 0.663 |,
0.011 0.663 0.943

which means

Y.31Q) = X.(BHysls <t})
~ 2.953 (2.76)
and
Yo (31%) = X.(3[{ysls <t})
1.161 0.663
= [0.663 0.943]' (2.77)

Now if the calculate the forecast mean squared error of x; and z; without taking the other variable into
account, we find

L0\ zsls < t}) = T:(B{zsls < t})
~ 2.953 (2.78)

and

Y (3|90 \{zs]s < 1})

Y. (3|{xs|s < t})
[1.131 0.661] '

1%

0.661 0.942 (2.79)

We see that ¥,(3|%) = E,(3|Q:\{zs|s < t}), which is what we expected since z; did not Granger-cause

x¢. If we would check for values of h other than 3, we would find the same result. We also see that
Y. (3]2%) # 2. (3] \{zs]s < t}), hence x; does indeed not Granger-cause zy.

2.3.3 Instantaneous causality

Instantaneous causality is a method to find out whether certain variables of interest will have a better
1-step prediction if the values of some other variables of interest of 1 step ahead are already known.
Thus whenever adding x;y1 to the information set €); is improving the prediction of z; and conversely,
then we speak of instantaneous causality between those variables. We get the following definition for
instantaneous causality.

Definition 2.13. Suppose z; and z; are multidimensional variables of interest. Let ¥, (h|Q:) be the fore-
cast mean squared error of the h-step minimum MSE predictor of z; as in (2.25) based on the information
set y, which contains all available information of all variables up until time t. Then we say that there
1s instantaneous causality between x; and z; when

Do (1)) # Du (1% U {2041 )). (2.80)
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Note that we do not say that there is instantaneous causality from x; to z; or from z; to x;. We will
show that both statements are equivalent, hence we call it instantaneous causality between z; and z;. To
show whether there is no instantaneous causality between 2 variables, we can simply use the following
theorem.

Theorem 2.10. Let y; a stable VAR(p) process as in (2.58), then there is instantaneous no causality
between x; and z; if and only if

Eluy,u3,] = 0. (2.81)

Proof. We will use the representation of y; as in (2.44) to obtain

N

6]
o+ Z O;w;_;
i=0

H1 O110 Or20| |w1 ©111 O12 1] [w1.t1]
_. + [ 2m ’ 4 4| P, ’ e N 2.82
[Mz] [921,0 @2270] [wz,t] [921,1 O22.1 ] |w2,t-1 (2:82)

with appropriate dimensions such that

Yt

o0 o0

zg = p1+ Z O11,w1,4—; + Z O12,,W2 ¢—4, (2.83)
i=0 i=0
o0 o0

Ty = po+ Z O21 ;W1 t—; + Z O jWa ;. (2.84)
i—0 i=0

Using this notation we can look at the minimum MSE predictor 1 step ahead for x; based on the
information set {ys|s <t} U {z111}. From the representation in (2.82) we see that this information set is
equivalent with {ws|s <t} Uw 41. Since the w441 is uncorrelated with {ws|s < t}, we find from (2.84)
that

r(I{wsls <t} Vwigs1) = x(I{ws|s < t}) + O21 owi e41,

hence there is instantaneous causality between z; and z; if and only if ©31 9 = 0. We know from (2.44)
that ©; = ®, P, where PPT = ¥,,. Since from Theorem 2.3 we found that ®, = I, we see that Oy = P.
We know that P is a lower triangular matrix, hence

[@11,0 912,0] - p

©210 ©Oi1p0
_ P11 0
Py Pa|’

where Pj, and ©j ¢ have the same dimensions. When ©3; 9 = 0, then obviously P»; = 0. Since
Y. = PPT| we can see that Cov(ums, tunt) = 0 form = 1,2,..., M and n = M +1,M +2,..., K.
Therefore there is instantaneous causality between x; and z; if and only if E[ul,tugt]. O

Example 2.7. Let us take a look again at the 3-dimensional VAR(1) process of Example 2.6, where we

still have that xy = y1+ and 2z = [z%]. We define the covariance matriz of the white noise terms to be
3t

225 0 0
S.=| 0 1 o05]. (2.85)
0 05 074

We see that E[ul,tugt] = 0, hence there is no instantaneous causality between x; and z;, which means
that the prediction of variable xi11 will not improve if we take zi11 into account.
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2.3.4 Impulse Response analysis

With impulse response analysis we can investigate situations where suddenly one variable of interest
increases in value. We call the sudden increase of a variable of interest an impulse, which is defined as
follows.

Definition 2.14. Suppose we have a stable VAR (p) process y:, where we assume that y; is equal to the
mean i fort < 0. Then we define the error terms for an impulse in the k-th variable of interest fort =0
to be

ugo =1 and ujo=0 forj+#k (2.86)
and fort >0 to be
U1:0, ’U,QIO,....

For example, the impulse in the first variable of interest of a certain VAR(p) process will be

1 0 0
0 0 0
Ug = , Ul = L, U2 = N P
0 0 0
If we now create an impulse in a certain variable, we are able to see what happens with y;,¥2,... and

look at the effect that the impulse has on all of the variables of interest. We call this effect the response
of the impulse.

Whenever the variables have different scales it can be useful to create a different impulse than in (2.86),
since an impulse with ugy = 1 might be a really small or a really big change in comparison with the k-th
variable of interest. If that is the case then we can assume the value of urg to simply be the standard
deviation of the k-th variable of interest. If we look for example at the impulse of the first variable of the
bivariate VAR(2) process in Example 2.2, we could take ujg to be 4/0.09 instead of 1.

Since we are not really interested in the mean of the process, but only in the response on the im-
pulses, we can take for simplicity 4 = 0 and v = 0. It turns out that now the responses caused by certain
impulses are as follows.

Theorem 2.11. Let y; be a stable VAR(p) process, where y; = 0 fort <0 and v = 0. Then the response
of an impulse in the k-th variable of interest for t = i are the first K values of the k-th column of A*,
where A is as in Definition 2.2.

Proof. We can rewrite y; in companion form as in Definition 2.2, hence
Y, =AY, + U,.

An impulse in the k-th variable of y; would result in Uy = 1 and Ujp = 0 for j # k and furthermore
U; =0 for t > 1. Hence

Yo AY |+ U

= U
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We now have that

i = AYy+ Uy
= AUy,

Y, = AY,+Us
= A%U,,

Y, = AY, 1 +U;
= A'U,.

Since Uy is a vector of zeros, except for the k-th element, which is 1, we find that Y; is the k-th column
of A, hence y; are the first K values of the k-th column of A. O

It is interesting to know when there is no response of a certain variable after an impulse. When this
occurs we call this response a zero impulse response. Zero impulse responses occur when the variable
of the impulse does not Granger-cause the other variables, because then the prediction of the response
variables are not influenced by the impulse variable. From Lemma 2.4 it is now obvious that variable
J has a zero impulse response from an impulse in variable k # j when ¢;;; = 0 for ¢ = 1,2,..., where
@jk,i = 0 is the j-th row k-th column element of ®;. In order to check if all ¢;; ; are 0, we do not have
to find ®; for all values of 4, since we have the following proposition (Liitkepohl, 2005, pp. 54-55).

Proposition 2.1. Let y; be a stable K-dimensional VAR(p) process, then for j # k we have that
Gjki =0 fori=1,2,... (2.87)
s equivalent with
Gjki =0 fori=1,2,... p(K—1). (2.88)

This means that we simply have to look at the first p(K — 1) matrices of ®; to see whether a response of
an impulse of a variable of interest is a zero impulse response.

Example 2.8. Let us take a look at the 3-dimensional VAR(1) process as in Example 2.6, but for
simplicity we take =0 and v =0, hence y; = 0 fort < 0. We get the following process.

05 0 0
=101 0.1 0.3|y_1+u.
0 02 03

If we create an impulse in the first variable of interest, we have that

1 0 0
Uug = O,U1— O,Uz— 0, ,
0 0 0
hence
[05 0 0]
Yo = 0.1 0.1 03|y—1+uo
| 0 02 0.3]
[05 0 o]0 1
= |01 01 03]]0]+]0
| 0 02 03]]0 0
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Now the responses of this impulse are

(05 0 0
yio= |01 01 03]|yo+uw
0 02 03]
05 0 071 0
= |01 o1 03||0]|+]0
0 02 03]]0 0
0.5
= o1,
0
(05 0 0]
vy = |01 01 03|y +us
0 02 03]
05 0 07][05 0
= o1 o1 03]]01]|+]0
[0 02 03]]0 0
[0.25
= |0.06
| 0.02

and so on. Note that we can also use Theorem 2.11 to find that y; is the first column of

05 0 071"
01 0.1 03 (2.89)

0 02 03

and the responses at t =i of the impulse in the second and third variable of interest are the second and
third column of (2.89) respectively. We now obtain the following responses.
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Figure 2.5: Impulse responses of our process.

Since from Example 2.6 we found that the second and third variable of interest do not Granger-cause the
first variable of interest, it is obvious that the responses of the impulse in the first variable are 0, as we
can see in the figure above. We could also calculate the moving average coefficients as in Theorem 2.8 to
obtain

(05 0 0

$, = |01 01 03 (2.90)
0 02 03
025 0 0

d, = |006 0.07 0.12]. (2.91)
0.02 0.08 0.15

We see that ¢12; = ¢13,; = 0 for i = 1,2, hence using Proposition 2.1 and the fact that p(K — 1) = 2,
we know that the responses of the second and third variable caused by the impulses of the first variable
should indeed be 0.

2.3.5 Orthogonal Impulse Response analysis

The problem with impulse response analysis in the last section is that the impulse only happens in one
variable at a time. Whenever the variables of interest are all uncorrelated, then this does not cause any
problems, but when some variables are dependent then the responses may not be correct. When we
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create an impulse in a variable of interest, we only assume that one error term changes in value at ¢t = 0,
but when that error term is dependent with an error term of another variable of interest, then in reality
both error terms should change in value. Hence the impulse of correlated variables will result in responses
that will likely not happen in reality. That is why we will be looking at the representation of a stable
VAR(p) process y; with uncorrelated error terms of the variables of interest as in (2.44). We will create
an impulse in the k-th variable of interest that does not necessarily only have one non-zero error term,
but which can have multiple non-zero values which depends on the correlation of the error terms. This
special impulse will be called an orthogonal impulse. We can obtain the following useful theorem.

Theorem 2.12. Let y; be a stable VAR (p) process, where y, = 0 fort <0 and v = 0. Then the response
of an orthogonalised impulse in the k-th variable of interest is for t =i the k-th column of ©;, where ©;

is as in (2.44).

Proof. First, using the representation of y; as in (2.44), we know that ¥, = PPT for a lower triangular
matrix P. We can rewrite this as

ppT

PD'DDT(PDH)T

wewT,

2y

where we define D to be the diagonal matrix with the same diagonal as P. Furthermore W := PD~!
and ¥, := DDT.

Remember from (2.1) that our VAR(p) process y;

yt = Alyt—l +

Since of course WW ™1 = I, we can rewrite (2.92)

Ary—1 + Asyr—o

Yt

Since

E[W (W )T

with v = 0 looks like
+ Apyr—p + us. (2.92)
as

+o+ Apyrp + WW ™ tu,.

W E[ugu) J(WHT

W*lzu(wfl)T
= wlp(wlp)7T
= 267

we can define €, := W~ lu,, hence
ye = A1 + Aoypo + - + Apyr—p + Wey.

Since ¥, = DDT and hence diagonal, it means that the ¢; are independent. Now with an impulse of
the k-th variable of interest, we have eyq as the value of its standard deviation or equivalently ¢q is the
k-th column of D, since ¥. = DDT and D is a diagonal matrix. This means we get as response for the
impulse in the k-th variable of interest at ¢ = 0 that

WEO
PD ¢
Pek,

Yo

where e;, = (0,...,0,1,0,...,0)7 is the unit vector with 1 at the k-th row. This means that g is the
k-th column of Oy, since from (2.44) we know that Oy = P.

Now for the response on the impulse in the k-th variable we have that

A1yo
<I>1Pek

@leka

1
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hence the response at time ¢ = 1 of the impulse in the k-th variable of interest is the k-th column of
©;. Using the same methodology we can find that the response at time ¢ = ¢ of the impulse in the k-th

variable of interest is the k-th column of ©;

O

Again it is interesting to know when there is no response at all of a certain variable after a certain
orthogonal impulse. When this occurs, we call this response a zero orthogonal impulse response. A zero
orthoganal impulse response of the j-th variable caused by an orthogonal impulse in the k-th variable

only happens when of course ©,;; = 0 fori =1,2,..

., where Oy, ; is the j-th row k-th column element of

0;. Again we do not need to find ©; for all values of 7, since it is possible to find the following proposition

(Liitkepohl, 2005, p. 61).

Proposition 2.2. Let y; be a stable K-dimensional VAR(p) process, then for j # k we have that

Ojk,i =

18 equivalent with

Ok =0 fori=1,2,...

0 fori=1,2,...

This means we only have to look at the first p(K — 1) matrices of ©; to see whether a certain response
of a variable is a zero orthogonal impulse response.

Example 2.9. If we continue with the same process as in Example 2.8, we can find ©g, 01 and Oy from

2.44 as follows. Since for

we have that ¥, = PPT, we find that

Oy =

0, =

CH

1.5 0 0

0 1 0

0 05 0.7
P

(15 0 0

o 1 0], (2.93)
0 05 0.7

o, P

[0.75 0 0

0.15 0.25 0.21], (2.94)
| 0 035 021

o, P

[0.375 0 0

0.090 0.130 0.084 |, (2.95)
0.030 0.155 0.105

where ®g = Ix which we found in Theorem 2.8 and ®1 and Py are as in (2.90) - (2.91). The O,
matrices for i > 2 can be found using the same methodology. Now using Theorem 2.12 we find the

following responses.
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Figure 2.6: Orthogonal impulse responses of our process.

We see that there is no response for the second and third variable of interest on the orthogonal impulse
in the first variable fort = 0,1,...,8. Using Proposition 2.2, the fact that p(K —1) = 2 and the matrices
(2.93 - 2.95) we can confirm that the response for the second and third variable on the orthogonal impulse
in the first variable are indeed zero orthogonal impulse responses.

2.4 Estimators

In the previous sections we always assumed that we knew the intercept v and the coefficient matrices
Ay, As, ..., A, of a VAR(p) process. However in reality these matrices are not known beforehand and
they have to be estimated. In this section we will discuss two different methods we can use to estimate
these parameters

We will assume that we have a time series y1,¥ys,...,yn with K variables of interest, hwere IV is the
sample size. We assume that for t = 1,2,..., N the process can be fully generated by a VAR(p) process
as in (2.1), so we assume that y_p41,...,y_1, Yo is available as well. We call these values the presample
values.
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2.4.1 Ordinary Least Squares estimator

The first estimator we will investigate is the Ordinary Least Squares (OLS) estimator. For notation it
will be useful to rewrite our time series using the following parameters.

Definition 2.15. We define

Y = (y1,92,---,UN) (K x N),
B:=(v,A1,A49,...,4p) (K x (1+ Kp)),
1
Yt
Zy = | Y1 (1 + Kp) x 1),
Yt—p+1 (2.96)
Z (Zo, Z1, ..., ZN—-1) ((1+ Kp) x N),
U:= (u,ug,...,un) (K x N),
y = vec(Y) (KN x 1),
B := vec(B) (K(1+ Kp)) x 1),
b := vec(BT) (K(1+ Kp)) x 1),
u = vec(U) (KN x 1),

where our time series can now be rewritten compactly in the form

Y =BZ +U. (2.97)
Since from (2.97) we have that
vec(Y) = vec(BZ) + vec(U), (2.98)
we also find using Lemma 2.3
y=(Z"®Ik)B +u, (2.99)

where ® is the Kronecker product as in Definition 2.7. The OLS estimator is the vector B in (2.99) that
minimizes the sum of squared residuals, or equivalently the sum of squared error terms. In other words,
the ordinary least squares estimator 3 minimizes the function S (B) = uTu. This common problem has
already been solved many times for vectors (Rice, 2007, p. 573) and the least squares estimator of (2.99)
turns out to be

B=12"R1Ix)" (2" R Ix)] (2" @ Ix)"y (2.100)

We will simplify ﬁ to find a least squares estimator for B in terms of Y and Z as in (2.98). To do so
we will use Lemma (2.3) and the following lemmas (Liitkepohl, 2005, pp. 661-662) with the vec operator
and the Kronecker product.

Lemma 2.5. Let A and B be matrices, then
(A B)T = AT @ BT,
where ® is the Kronecker product as in Definition 2.7.
Lemma 2.6. Let A, B,C and D be matrices, then
(AR B)(C® D)= AC® BD,

where ® is the Kronecker product as in Definition 2.7. We assume matrices A, B,C and D to have
suitable dimensions for all matriz products used.
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Now we can find the OLS estimator for B in the following theorem.
Theorem 2.13. The least squares estimator for B in terms of Y and Z is
B=vZ¥(zz")™! (2.101)

Proof. From (2.100) we have that

vec(B) = B
[(ZT @ 1) (Z" ® Ix)] ' (Z" ® Ix)y.
Using Lemma 2.5 we find that
vee(B) = [(Z®1x)(Z" @ 1)) (Z © Ix)y.
Now using Lemma 2.6 we find that
vee(B) = (Z2ZT @ Ix) " (Z ® Ik)y
Now finally using Lemma 2.3 twice, we find

vec(B) = (ZZT @ Ix) tvec(Y ZT)
vec(YZT(Z2Z")™h).

Since both sides of the equation are matrices with the vec operator, it is obvious that

B=vz"(zz").

2.4.2 Asymptotic properties of the Ordinary Least Squares estimator

The OLS estimator has some useful asymptotic properties including consistency and asymptotic normal-
ity. Before we look at these properties, let us first introduce definition of standard white noise.

Definition 2.16. A standard white noise process is a white noise process u; where all fourth moments
exist and are bounded, hence for some constant ¢ we have for all t that

Eluisujiupiume] < c fori,j,k,m=1,2,... K.

The definition of the standard white noise allows us to create some restrictions on the residuals. Note
that the assumption that u; is i.i.d. normally distributed with a covariance matrix X, is still a valid
assumption, since it still suffices the condition of a standard white noise process. Now assuming we have
a standard white noise process, it can be found that the OLS estimator has the following asymptotic
properties (Liitkepohl, 2005, pp. 73-74).

Proposition 2.3. Suppose y; is a stable K-dimensionl VA]?(p) process with standard white notse resid-
uals, where y; can be rewritten as in Definition 2.15. Let B be the least squares estimator of the VAR
coefficients B, then the following asymptotic properties hold.

1. The least squares estimator B is consistent, i.e.
plimB = B.
2. We have asymptotic normality of
VN vec(B — B) LNO,T ' ® S,

where ® is the Kronecker product as in Definition 2.7 and I' = plim Z—J%[T
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Note that plim in the first asymptotic property is equivalent with convergence in probability. In order to
apply the second property in Proposition 2.3, we need to know the matrix I' ® ¥,. Since not all values
of this matrix are known beforehand, we will have to estimate these matrices. The matrix I' however is
known beforehand, since Z and N are values that we can simply extract from our time series. Hence an
estimator for I will be

zz"

N

I = (2.102)

Since we know that %, = E[usul], we know that a good estimator of 3, would simply be the the sample
mean as

. 1 X
Su o=t
=1
1 ~~
= —UU”
N )
where 4 are the residuals of the VAR model with the estimated coefficients. Using (2.97) we find
. 1 . .
Y, = N(Y ~BZ)(Y - B2)T.

However Liitkepohl (2005, p. 75) suggested that the degrees of freedom should be taken into account,
since this estimator might lead to a biased estimator of the covariance matrix. We then obtain the
estimator

A 1 N A

since for each variable of interest (Kp + 1) parameters have to be estimated.

Example 2.10. In this ezample we want to take a look at the consistency of the OLS estimator. We will
look at the error that this estimator is making while estimating the VAR coefficient Ay of the following
3-dimensional VAR(1) process

05 0 0
yw=v+ |01 0.1 0.3]y_1+u, (2.104)
0 02 03

with multivariate normally distributed u;, which has a covariance matrix

225 0 0
S.=|0 1 05]. (2.105)
0 05 0.74

We choose
1 1
v=|2 and yo= |11,
3 1

such that we can now generate our process from yy till yn for an integer N by taking N samples of u;.
Using Theorem 2.13 we can find the least squares estimator B of our generated process.

The consistency of the least squares estimator tells us that

plim B = B, (2.106)
where
1 225 0 0
B=1|2 0 1 05
3 0 05 074



Let us now generate y1 tillyn an amount of 1000 times for some value of N and define the OLS estimation
of the coefficient matriz Ay of the i-th generation to be A;y. We now also define A to be

1000

~ 1 o
A=—— Ay — A

where

1Ay — Allp = \/tr [(A(i) —A)(Ag) — A)T]

is the Frobenius norm (Golub and van Loan, 1996). Then using the law of large numbers it is obvious
that (2.106) implies that

A—0,

for N — 0. We find the following values of A for various values of N.

Average norm value for various values of N

Average norm value
03 04 05
Il 1

02

0.1

T
50 100 200 500 1000 2000 5000 10000

N
Values of A for various N.

As expected, we see A moving towards 0 for N — 0. Also we see for N = 1000 that approximately A<
0.1, hence we could conclude that for N = 1000 the OLS estimator of a VAR(1) process is approzimately
B.

2.4.3 t-Ratios

With t-ratios we can determine which values of the OLS estimator B are actually significant, i.e. not
equal to 0. Let us define §; and f3; to be the i-th element of vec(B) and vec(B) respectively. Also let 3
be the square root of the i-th row i-th column element of (ZZ7)™1 ® $,. From the second asymptotic
property in Proposition 2.3 we can now see that

Bi — Bi

Si

~ N(0,1) Vi, (2.107)

This means that we can simply take 8; = 0 and thus divide the least squares estimator B by all corre-
sponding values of §; to obtain the t¢-ratios. Then we can look at the t-distribution with our degrees of
freedom in order to look if our estimated coefficients are significant. Usually the sample size minus the
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amount of parameters is taken as degrees of freedom, which is KN — K(Kp + 1), however Liitkepohl
(2005, p. 77) argued that N — (Kp + 1) suffices as well. The t-distribution will be close to the standard
normal distribution for large degrees of freedom, hence these differences between degrees of freedom will
not differ so much anyways when we have a large data set.

Example 2.11. Continuing with the same stable 3-dimensional VAR(1) process y; as in Example 2.10,
we can generate this process for N = 1000. We take N = 1000 since we showed in Example 2.10 that for
this value the OLS estimator is a good approximation of the coefficients. We obtain the OLS estimator

B = [pv A]
1.049  0.451  0.007 0.007
~ |1.766 0.127 0.067 0.357 |. (2.108)

3.013 —0.003 0.198 0.304

When we calculate all values of §;, we can find the t-ratios corresponding to the coefficients ofB as

3.739 15.846 0.131 0.107
9.454 6.703 1.810 8.518|. (2.109)
19.097 —-0.160 6.301 8.591

When looking at the t-distribution with N — (Kp 4+ 1) = 996 degrees of freedom, we find that coefficients
with t-ratios between approximately -1.962 and 1.962 will not be significant with a significance level of 5%.
In (2.109) we see that only 4 coefficients have t-ratios between -1.962 and 1.962, but all other coefficients
are significant. The t-ratios of the coefficients with estimations close to 0 will of course have low t-ratios.
The second row second column element of Ay is 0.1, hence it is not surprising that the t-ratio of this
coefficient shows that it is not significant for N = 1000. However if we would take larger values for N,
then we would see that only three t-ratios would not be significant, which are the coefficients of Ay that are
0. This does not mean that we have chosen N wrong. We only need 1 significant value in the intercept
and 1 in each of the coefficient matrices to show that the whole vector or matriz is not 0.

2.4.4 Maximum Likelihood estimator

The second method to estimate the intercept and the coefficient matrices of a VAR(p) model is the
maximum likelihood estimator. To derive this estimator, we will be using the following notations.

Definition 2.17. Define

p= Efy,] (K1),
YOi=(y1 — Y2 — foe o YN — ) (K > N),
A;: (Al,AQ,...,Ap) (KXKp)’
Yt — K
Yt—1 — K
voo=| (Kp x 1),
Yt—p+1 — K
X o= (YO Y0, Y0 (Kp x N),
U:= (u1,ug,...,un) (K x N),
o = vec(A) (K?px 1),
y = vec(Y) (KN x 1),
o
w
w | (KN x 1),
o

such that we can write the mean-adjusted form of the VAR (p) process

(e —p) = Ar(ye—1 — p) + Ao(ye—2 —p) + -+ Ap(Ye—p — 1) + uy
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compactly as
YY = AX +U. (2.110)

The mean-adjusted form of the VAR(p) process is used so that the asymptotic normality we will find of
the maximum likelihood estimators will be independent. The idea of the maximum likelihood estimator
is to find the values of the parameters such that the log-likelihood function of the parameters p, o, 3, is
optimized, where we assume the residuals to be multivariate normally distributed. The methodology of
the calculations we will use to find the log-likelihood function and the maximum likelihood parameters
can be found in (Liitkepohl, 2005, pp. 87-90). We will simply present the results and analyse them.

We can find the log-likelihood function of
Proposition 2.4. The log-likelihood function | of the parameters p, o, ¥, is

Wy, o, %,) = ,g In(27) — gln(det(Zu)) - %tr [(YO—AX)TS, N(Y° — AX)].

If we now would want to find the parameters fi, @ and 3, which maximize the log-likelihood function
I, o, 3,), we have to those values such that

7&(“;,2“) - 0, (2.111)
1

W - 0, (2.112)
l(p, 0, ) _

TS =0 (2.113)

respectively holds. We then call ji, & and ¥, the mazimum likelihood estimators. It turns out that these
estimators can be found in the following proposition.

Theorem 2.14. The mazimum likelihood estimators & and %, which solves (2.111)-(2.118) can be found
by solving the set of equations

1 p - -1 N p N
poo= N <IK - Z Aqi) Z (yt - Z Ai?!t—i) ;
i=1 i=1

a = (XXT)'X@Ix)(y— i),
. = (PP AR - AX)T,

where Y° and X are obtained from Definition 2.17 by using fi instead of u. The matrices A; come from
& = vec(A), where A := (A1,...,Ap).

It turns out that the maximum likelihood estimators fi and & are actually the same as the least squares
estimator B as in Theorem 2.13. One might wonder why we would also analyse the maximum likelihood
estimator, since the result is the same. This is because our maximum likelihood estimator has some
interesting asymptotic properties, which we obtain in the following section.

2.4.5 Asymptotic properties of the Maximum Likelihood estimator

The maximum likelihood estimators also have their own asymptotic properties, just as the OLS estimator.
Before we take a look at the asymptotic properties, let us first look at the following definitions.

The so-called vech operator is almost the same as the vec operator from Definition 2.6. This opera-
tor is mostly used for symmetric matrices, since the vech operator does not collect the duplicates of the
elements which are above the diagonal. It is defined as follows.
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Definition 2.18. If A is a (m x m) matriz, then the vech operator returns the (w x 1) vector

L T
VeCh(A) = <a117 ce e Qm1, 022, - -0, QM2 - - - a(m—l)(m—l)a am(m—1)7 amm) 5

which are the stacked columns of A, but only with the elements that are on or below the diagonal.

Example 2.12. For a (3 x 3) matriz we have

aii
a
air a2 as a?l
vech a21 Q22 a23 = adl
az az  ag 2
a3z
as3
Secondly, let us look at the duplication matriz.
Definition 2.19. The duplication matriz Dy is a (K? x W) matriz such that for any (K x K)

matriz A we have that

vec(A) = Dk vech(A).
Furthermore using these definitions we define D}, and o as follows.
Definition 2.20. We define

Dy := (DyDg) 'Df,

o := vech(X,)

where Dy is a duplication matriz.
Note that & can be found the same way in the definition above, but with using 3.
Using these definitions, we can find the asymptotic properties of the maximum likelihood estimators.

Again, the methodology of the calculations of these properties and can be found in Liitkepohl, 2005,
pp- 90-93. The following properties can be found.

Proposition 2.5. Suppose y; is a stable K — dimensional VAR(p) process with normally distributed
error terms, then the following asymptotic properties hold.

1. The maximum likelihood estimators [i, & and Y, are consistent estimators, i.e. they converge in
probability to u, a and %, respectively.

2. We have asymptotic normality of

L= Y 0 0
VN|la—-a|~N{0]0 Ts 0 )
oc—o 0 0 25-
where
» -1 » -1
Sio= | Ik—= D A Su(Ix— > AT|
i=1 i=1
Zd = 1_‘Y (0)71 ® Zuv
Ye = QD}-((Eu@Eu)(D}—{)Ta
where I'y (0) := plim XTXT

The matrices ¥j;,%4 and Y5 could be estimated with consistent estimators such that the asymptotic
normality still holds. We therefore could use the consistent estimators &,  and fy(O) =X ])v( " in Y Xa
and X5 and obtain the same asymptotic normality.
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2.4.6 Forecasting With Estimated Coefficients

Forecasting with estimated coefficients by an OLS or maximum likelihood estimation will be different
than forecasting a known VAR process. Since we will be forecasting with estimated coefficients, it means
that our h-step predictor will have to be estimated as well. This results into a different forecast error
variance.

To show this occurrence, let us assume we estimated a VAR(p) process y;. We then find using (2.29)
that the estimated minimum MSE predictor is

Gi(h) = 0+ Ayge(h — 1) + -+ + Ay (h — p), (2.114)
where §;(j) := Y4+, for j < 0. Using the result we found in (2.25) we find a forecast error of §,(h) as

Yern —Ue(h) = (Yeen —ye(h)) + (y:(h) — 3e(h))

h—1
= (Z q’iut+h—i> + (ye(h) = Ge(h)). (2.115)
i=0
All we now need to find to start forecasting with forecast error intervals is the covariance matrix of the

forecast error. Let us first look at the multivariate delta method in the following lemma (Doob, 1935).

Lemma 2.7. Let g(8) = (¢1(8), ..., 9x (8)T be a continuous differentiable function and 3 be an estimator
of the (K x 1) wvector B with /N (B — B) ~ N(0,%). If g—g # 0, then

3 T
VN(9(8) = g(8)) ~ N(0, %ﬁ) Eag(g}?

Using this lemma, we can obtain the following theorem.

).

Theorem 2.15. The covariance matrixz of the forecast error of g:(h) is

() = B, () + o,
with
_ (B 1 ay(B)"
Q(h) := P T ®%) B

where B := vec(B) is defined as in Definition 2.15.

Proof. Using ¥, (h) from earlier in (2.32), we can find using the forecast error in (2.115) the following
covariance matrix of the forecast error of g, (h).

$5(h) = MSE[§(h)]
= %,(h) + MSE[y(h) — g:(h)].

To obtain the MSE of y;(h) — §:(h) we will be using Lemma 2.7. Since y; is obviously a continuous
differentiable function with parameter 3, using this lemma we obtain

; 0 _ P T
VN (i¢(h) = ye(h)) ~ N(0, ayﬁ(g) T, yég) )
(k) — () ~ N (0, 22, (2.116)

N

Now (2.116) suggests that the covariance matrix of y;(h) — g;(h) is %, hence we can now fill in (2.116),

which results in
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Now we just need to find the function Q(h), since the expression of Q in Theorem 2.15 is definitely not
trivial. It turns out that we can find following proposition (Liitkepohl, 2005, pp. 96-98).

Proposition 2.6. The function Q(h) in Theorem 2.15 can be expressed as

h—1h—1
am =3 Y u [(BT)h—l—ir—lBh—l—jF] ;5,07
i=0 j=0

with
1 0 0 0 0
14 A1 A2 Ap—l Ap
B._|0 Ix 0 0 0
o o0 0 ... Ik 0

When we are estimating 3, we can not exactly determine Q(h), but we will again have estimate it. We
will have to find an estimate 2(h), which is defined the same way as in Proposition 2.6, but we use the

estimated coefficients 7, 1211, ..., A, and the estimators I and iu, which are all consistent estimators.

Now we are able to determine the covariance matrix of the forecast error of §;(h). For similar rea-
sons we earlier found the forecast intervals (2.36), we have a (1 — «)100% forecast interval of the k-th
variable of interest of predicting h steps ahead of

[, (h) = 61(h) 202, Gt (R) + G (R)zas2] | (2.117)
where

yrt(h) + k-th element of g,(h),
6r(h) :  square root of the k-th row k-th column element of f]g(h),
Zot value such that P(Z < z,) = 1 — «, where Z ~ N(0,1).

Example 2.13. Let us continue from Example 2.11 where we generated a 3-dimensional VAR(1) process
for N =1000. In this ezample we will forecast this generated process up to 2 steps ahead using (2.114),
where we will need ﬁ,/ll and §1000(0). We can find ¥ and /11 using the least square estimation we
performed in (2.108). The value of §1000(0) in our generation turns out to be

91000(0) = Y1000
4.325
~ 1.327
3.786

Using (2.114) allows us to find the forecasts

Y1000(1) = ¥+ A191000(0)

[1.049'] 0.451 0.007 0.007 4.325
~ 1.766 | + | 0.127 0.067 0.357 1.327
_3.013_ —0.003 0.198 0.304 3.786

[3.035
3.755
| 4.414

1%
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and

Y1000(2) = U+ A1g1000(1)

[1.049 | 0.451 0.007 0.007 3.035
1.766 | + | 0.127 0.067 0.357 3.755
3.013| | —0.003 0198 0.304] | 4.414

[2.475 ]
3.978 | .
[ 5.088 |

1%

1%

Now from Theorem 2.15 we see that we can estimate the covariance matriz of the forecast error of §100(h)
with

35(h) = 2, (h) + % (2.118)

First, we see that we need to obtain 3,(1) and $,(2). From (2.32) we see that we therefore will need to
find S, D and &;.

Using (2.103) we can find that
1

Y = —— (Y -B2)(Y -B2)T
u N _Kp 1( ) )
2422  —0.012 0.003
~ |—-0012 1.073 0.511]. (2.119)

0.003  0.511 0.765

Also using Theorem 2.3, we find

A

=)

Il
o O =
o = O
_ o O

and

q)l = (i)oAl
0.451 0.007 0.007
~ 0.127  0.067 0.357
—0.003 0.198 0.304

Now filling in (2.32) results into

S,(1) = $%, P
2.422 —-0.012 0.003
~ —-0.012 1.07v3 0.511
0.003 0.511  0.765
and
2,02 = 3,0)+ &3,

2.914 0.131 0.005
x 0.131 1.239 0.654
0.005 0.654 0.939

Secondly, to find the covariance matriz as in (2.118), we will need to obtain Q(1) and Q(2). To get these
matrices, we see from Proposition 2.6 that we will need to find B and I' first.
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Using the least squares estimator B from (2.108), we find

A 1
B = R

14

0

1
1.049
1.766
| 3.013

%

Now using (2.102), we find
. zz"
F .
N
1.000
2.030

4.285
5.532

A,

0
0.007
0.357
0.304

0
0.451  0.007
0.127  0.067

—0.003 0.198

0

5.532
11.269
24.419
31.612

4.285
7.147  8.889
8.889 19.654
11.269 24.419

2.030

Now using the matrices B and T' we found together with iu, do and 431, we find

Q1) = H[QBT)PJf*¥B**f]éoiuég
= tr(Lze141) 0
= 43,
9.686 —0.047 0.013
~ |-0047 4202 2044
0.013 2044 3.061
and
) 1 1 . . A
0@) = 3 Yt |B)TTTBT| 5,67
i=04j=0

9.550 1.125 0.016
1.125 3.180 2.560
0.016 2.560 3.048

Now finally filling in (2.118) with %,(0), 3,(1), Q(1) and (2) results in

> 5y(1)
[ 2.422
—0.012
| 0.003

[ 2.431
~0.012
| 0.003

%

%

and

55(2) Sy (2)
[2.914
0.131
| 0.005

[2.924
0.132
| 0.005

!
N

Q(1)
—0.012 0.003]

1.073  0.511
0.511  0.765 |

—0.012 0.003]
1.077  0.513
0.513  0.768 |

—0.047
4.292
2.044

9.686
—0.047
0.013

L
1000

+ lfz(z)

N
0.131
1.239
0.654

0.132
1.242
0.656

9.550 1.125 0.016
1.125 3.180 2.560
0.016 2.560 3.048

0.005 |
0.654
0.939 |

0.005
0.656 | .
0.942 |

* 1000
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Now applying (2.117) gives us the following 95% forecast intervals. For the first variable of interest we
find the following.

steps ahead ‘ forecast ‘ lower bound ‘ upper bound ‘ interval length
1 3.035 -0.021 6.091 6.112
2 2.475 -0.876 5.826 6.703

Table 4: The minimum MSE predictions for 1 and 2 steps of the first variable of interest and their 95%
forecast intervals.

For the second variable of interest we find the following.

steps ahead ‘ forecast ‘ lower bound ‘ upper bound ‘ interval length
1 3.755 1.720 5.789 4.069
2 3.978 1.794 6.162 4.369

Table 5: The minimum MSE predictions for 1 and 2 steps of the second variable of interest and their
95% forecast intervals.

For the third variable of interest we find the following

steps ahead ‘ forecast ‘ lower bound ‘ upper bound ‘ interval length
1 4.414 2.380 6.132 3.752
2 5.088 2.903 6.990 4.087

Table 6: The minimum MSE predictions for 1 and 2 steps of the second variable of interest and their
95% forecast intervals.

Of course we can use the same methodology to find forecasts and their intervals for h > 2. If we would
predict up to 10 steps ahead, we get the following figure.
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Figure 2.7: Estimated prediction of the estimated process 10 steps ahead for all 3 variables of interest.

We see that the generated process is following the forecasted values pretty well and it is lying between the
95% interval most of the times. The continued generation also looks to get nicely predicted.

2.5 Model tests

In this section we will describe the tests we can perform on a VAR process. First we will look at ways
to test for existence of Granger-causality and Instantaneous causality between certain variables of inter-
est. We previously found that causality occurs when certain values of the coefficient matrices or of the
covariance matrix are non-zero. However when we estimate the coefficient matrices and the covariance
matrix, we will not be able to find the original values of the matrices. Some values in those matrices
might originally be 0, but the estimated values might not be 0, hence one can not determine causality
between variables of interest when the process is estimated. Therefore tests should be used to test if some
values of a matrix are significantly 0.

Secondly we will look at tests for autocorrelation and non-normality of the residuals. Performing these
residual tests is also called diagnostic checking. Diagnostic checking is important when performing time
series analysis, since we often assumed that the residuals are a white noise process, hence uncorrelated
with each other. We also sometimes made the assumption that the residuals are normally distributed.
Therefore it is important that these assumption are checked before performing any sort of analysis method.

2.5.1 Test for Granger-causality

From Theorem 2.9 we see that if we would want to know whether Granger-causality occurs or when it
does not occur, we will have to test whether certain elements of the coefficient matrices are 0 or not. In
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general we will be using the Wald test (Wald, 1939), which tests the null hypothesis

Hy:CB=c (2.120)
against the alternative hypothesis

H,:CpB #c, (2.121)

where C'is a (M x (K(Kp+ 1)) matrix of rank M and cis a (M x 1) vector. We choose matrix C' such
that we can test whether the elements in the coefficient matrices we want to look at are equal to ¢. Thus
taking the right matrix C and taking ¢ = 0 allows us to test no existence of Granger-causality against
existence Granger-causality between certain variables.

In order to figure out what test statistic we will use to test Hy against H;, let us first look at the
following lemma (Liitkepohl, 2005, pp. 692-693).

Lemma 2.8. Let 3 be an estimator of the (K x 1) vector B with VN(3 — B) ~ N(0,%). If C is a
(M x K(Kp+ 1)) matriz with C 0, then the following holds.

1. VN(CB - CB) ~ N(0,CxCT).
2. N(B =B = 8) ~ X*(K).
Now using this lemma, we can find the following test statistic, which is called the Wald statistic.

Theorem 2.16. Let the null hypothesis in (2.120) be true and let ,@ be the OLS estimator of 3, then
N(CB= T [CTT' @B,)CT] ™ (CB =) ~ x*(M).
Proof. Using the asymptotic normality of the OLS estimator as in Proposition 2.3, we have that
VNB—-B) ~ N(O,T' @)
Using the first statement from Lemma 2.8 we see that
VN(CB - CB) ~N(0,c(It@x,)0T).
Now since CB and CB are (M x 1) vectors, we have using the second statement from Lemma 2.8 that
N(CB - CB) [ @R.)CT] ™ (OB~ o) ~ x*(M).
O

In general I" and ¥,, are not known in advance, hence we will need to use the estimators I' and f]u from
(2.102) and (2.103) respectively. Since these parameters will be estimated, Liitkepohl (2005, pp. 103)
suggested it might be better to test with an adjusted distribution, which is derived from the following
lemma.

Lemma 2.9. Let di and dy be certain degrees of freedom, then
diF(dy,ds) ~ x2(dy), when dy — o0,
where F(dy,ds) is an F random variable with di and ds degrees of freedom.
We will be using the F-distribution in our test statistic, since this distribution has fatter tails, hence

more room for errors in the estimation of I and X,. Let us now define
-1

A = (CB—¢)T [C((ZZT)—l ® iu)cT] (CB — o), (2.122)

which is the Wald statistic, but with the estimated parameters I' and ¥,. We know from Theorem
2.16 that also Ay ~ x%(M), hence using Lemma 2.9 we also know that A\ ~ MF(M,ds,), for do
degrees of freedom. Most of the times do will be taken to be the sample size minus the amount of
unknown parameters. Liitkepohl (2005, p. 104) argued that dy = N — (Kp + 1) suffices as well, since
each individual restriction of the Wald test is applied on only one variable of interest. We can now come
up with the following adjusted test statistic.
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Proposition 2.7. Let the null hypothesis in (2.120) be true and let 3 be the least squares estimator of
3, then

A
Ap = ﬁw ~ F(M,N — (Kp+1)).

Example 2.14. Let us continue with the generated 3-dimensional VAR(1) process we used in Example
2.11. We found the least squares estimator Bin (2.108). In Example 2.6 we have seen that in the original
process the second and third variable of interest did not Granger-cause the first variable of interest. In
this example we will be testing whether our generated process also shows no significant existence Granger-
causality between these variables.

We want to test the null hypothesis

Hy:CB=0
against the alternative hypothesis
Hy:CB#0,
where
C_[o...0100000]
0 ... 000 01O0O0

is the (2 x 12) matriz. The rank of this matriz is obviously 2, hence M = 2. With this specific matriz
we have that the hypotheses Hy and Hy are equivalent with testing whether the second and third element
in the first row of the coefficient matriz are 0 or are not 0 respectively. Thus indeed Granger-causality is
tested here. Together with 3, in (2.119) we find using (2.122) that

o= (B [c(zzn es)cT] (o)
~ 0.076,

hence

A

~ 0.038.

Now using Proposition 2.7, we see that Ap is distributed as F'(2,996). Now we find a p-value of approz-
imately 0.963, hence we do mot reject the null hypothesis if we take a significance level of 0.05 and we
conclude that the second and third variable of interest do not Granger-cause the first variable of interest.

2.5.2 Test for instantaneous causality

To test for no instantaneous causality between certain variables, we will be testing when certain values
of 3, are 0 or not. In general we will again be using the Wald test to test the null hypothesis

Hy:Co=0 (2.123)
against the alternative hypothesis
H,:Co #0, (2.124)

where C is the (M x W) matrix of rank M, o is again defined as vech(X,) and cis a (M x 1) vector.
We again choose matrix C such that we can test whether certain elements on and below the diagonal of
3, are equal to c. When we take the right matrix C and we take ¢ = 0, then we are testing no exis-
tence of instantaneous causality against the existence of instantaneous causality between certain variables.

Since we have from Proposition 2.5 the asymptotic property
VNG —0o) ~N(0,%5),

we can now obtain the following Wald statistic the same way we obtained Theorem 2.16.
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Theorem 2.17. Let the null hypothesis in (2.125) be true, then

- - 1
A = N(C&)T [201)}(& ® Eu)(CD}Q)T] C& ~ *(M).

Example 2.15. Let us continue with the generated 3-dimensional VAR(1) process as in Example 2.11.
In Exzample 2.7 we have seen that there is no instantaneous causality between the first variable of interest
and the second variable combined with the third variable of interest. In this example we will be testing
whether our generated process shows the same result.

We want to test the null hypothesis

H() :Co=0 (2125)
against the alternative hypothesis
H,:Co #0, (2.126)
where
01 0000
¢= [0 0100 o] '

The rank of this matriz is 2, hence M = 2. We choose this specific matriz C such that the hypotheses
Hy and Hy are equivalent with testing whether the second and third element of the first row and first
column of ¥, are 0 or not respectively. From Theorem 2.10 we have seen that this is equivalent with test-
ing whether there is no instantaneous causality against testing whether there is instantaneous causality
between the first variable and the second and third variable combined.

From Definition 2.19 we can find the following duplication matriz Ds.

10 0 0 00
01 0 00O
001 000
01 0 0 00
D;:=[0 0 0 1 0 Of,
000 010
001 00O
000 010
|0 0 0 0 0 1]
hence
D := (DxDxk) 'Dg
10 o0 0 0 0o O 0 O
0O 05 0 05 0 0O 0 0 O
_ 0 0 05 0 0 O 05 0 O
B o o 0 0 1 0 0 0 O
o 0 0 0 0 05 0 05 0
0o o 0 0 0o O 0 0 1
We also have from Theorem 2.14 that
. 1 - . -
Y, = N(YOfAX)(YOfAX)T.

Now since we know that [i and A is the same as [ and A from the least squares estimation respectively, we
can find these values from the least squares estimator we found in (2.108). This way ¥, can be calculated
and we find

~ 2412 —0.012 0.003
Yo~ | —0.012 1.069 0.509
0.003 0.509  0.762
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Now using Theorem 2.17, we find

~ _ —1
Aw = N(C&)T [20D§(2u®2u)(CD§)T] Co
~ 0.114.

Since A\w ~ x(2), we find a p-value of approzimately 0.944, which means we definitely do not reject Hy if
we take a significance level of 0.05, hence we have instantaneous causality between the first variable and
the second combined with the third variable.

2.5.3 Test for residual autocorrelations

Testing for autocorrelations in the residuals is important when performing time series analysis with the
VAR model. We assumed that a VAR model has white noise residuals, hence we should check for au-
tocorrelation between the residuals before we perform analysis methods. If there exists autocorrelation
between the residuals, then one might consider using another model.

Let us use the following notations.
Definition 2.21. Let us define the estimator C; of the autocovariance of the residuals at lag i to be
- Z utut i
t i+1

and define the estimator R; of the autocorrelation of the residuals at lag i to be
R;:==D7'C;D™",

where D is a diagonal (K x K) matriz with the same diagonal elements as Cy. Then we define Cj, and
Ry, to be the following (K x Kh) matrices.

Ch = (Cl,CQ,...,Ch>7
Rh = (Rl,RQ,...,Rh).

In order to test for no autocorrelation of the residuals up to lag h we can use the so-called portmanteau
test Castle and Hendry, 2010, which states to test the null hypothesis

HO : Rh =0 (2127)
against the alternative hypothesis
Hy: Ry #0. (2.128)

The test statistic can again be found with the use of an asymptotic property, this time of Vec(Ch) Note
that C), can similarly be found by using . It turns out that /N vec(Ch) is asymptotically normally
distributed with mean 0 (Liitkepohl, 2005, pp. 165-166). The following test statistic can then be found
(Liitkepohl, 2005, p. 169).

Theorem 2.18. Let the null hypothesis in (2.127) be true, then

h
Q= N Y (CF G 05 ~ X2 (K2 (h )

t=1

Example 2.16. Let us again continue with the 3-dimensional VAR(1) process from Ezample 2.11. We
now do mot assume the residuals us to be i.i.d. normally distributed, but we will modify us such that
autocorrelation can occur. We will define uy to be

up = pug_1 +¢  for pe[-1,1],
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where € s i...d. with N(0,%,) and ug = 0. The idea is that autocorrelation between the residuals
clearly occur when p is close to 1 or -1, but when p is close to 0 it might be harder for the portmanteau
test to observe autocorrelation. If we generate our process 100 times with p € [—1,1], calculate the
corresponding p-value 100 times using Theorem 2.18 and calculate the percentage of the amount of rejected
null hypotheses, we find the following figure.

Power of the portmanteau test for h = 2 and significance level 0.05

10

04 08 08
1 1

Percentage of rejected null hypotheses

02
|

0.00.05

Figure 2.8: Percentage of the amount of rejected null hypotheses of the portmanteau test for h = 2, a
significance level of 0.05 and for p € [—1,1].

As expected, we see that the portmanteau test rejects the null hypothesis more often for rho closer to 0.
The blue line in Figure 2.8 represents a 5% rejection rate of the null hypothesis. We see however that the
rejection rate is always above 5%, even for p = 0, where we would actually expect a 0% rejection rate. A
reason for this is that N = 1000 is probably not large enough for this test.

2.5.4 Test for non-normality of the error terms

Testing for non-normality of the residuals is an important test as well, since for some methods we made
the assumption that the residuals are normally distributed, e.g. forecast intervals and the maximum
likelihood estimation.

Let us assume we have a stable K-dimensional VAR(p) process with normally distributed white noise
error terms, hence u; ~ N (0,3,) for some (K x K) matrix 3,,. We can rewrite the multivariate normal
distribution using the following lemma (Liitkepohl, 2005, pp. 174-175).

Lemma 2.10. Let X be a K-dimensional multivariate normally distributed random variable with X ~
N (1, X), then we have that

Pil(X_:u) NN(OaIK)a
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where P is the Cholesky decomposition of ¥ from Theorem 2.7.
Now using Lemma 2.10 we find that

w1t
Wat

we=| . |:= P~ ruy ~ N(0,Ik),

WKt

however when estimating results, our error terms are estimated, hence then we use

(T
A~ th i 1A
wy=| . | =Pl ~N(0,Ig), (2.129)
Wit
where P is the Cholesky decomposition of the consistent estimator S, = UTUT and hence P is consistent,

0 (2.129) holds. Now using this result we want to find a test statistic for the normality of the residuals.
The idea is to use the fact that skewness (third moment) and the kurthosis (fourth moment) of an
univariate normal distribution are 0 and 3 respectively. Based on this idea we will test the following null
hypothesis

wi& wAIIt 3
w%t w%t 3

Hy:E . =0 and E . =|.| =:3g (2.130)
w%(t w}l(t 3

against the alternative hypothesis

wzl)’t wilt 3
w%t w%t 3

H{:E . #0 and E . #| .| =:3g. (2.131)
w%(t w}l(t 3

to test normality against non-normality respectively. The well-known univariate case of this test called
the Jarque-Bera test (Jarque and Bera, 1987). To determine the test statistic, we will be using the
following lemma (Liitkepohl, 2005, pp. 175-177).

Lemma 2.11. Define by and by to be

b1
ba1 1 X
by = - Mthbﬂi:TEw?t, fori=1,... K,
: t=1
br1
bia
b2z 1 X
ba=1 . |, withbiQ::Twa“ fori=1,...,K,
=1
br2

then

*/N[bQ 313K] ~ N, [6{)1{ 24()IK])'

Note that the same results with w; can be formed, but then b; and by will be called 1;1 and 132 respectively.

Now using this lemma we can easily find the test statistic as in the following theorem.
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Theorem 2.19. Let by and by be defined as in Lemma 2.11. If Hy as in (2.130) is true, then

bTh blby

sk =N
Ask o 2%

) ~ x(2K).

Proof. From Lemma 2.11 we see that the following holds.

\/N% ~ N(O,IK),

x/N(bQ\/gK) ~ N(0,Ig).

Hence we can find the test statistics

)

Ag = NlTl ~ x(K),
bLl'h

)\k N22742 ~ X(K)7

which we will need to combine in order to test Hy against H;. Hence adding these test statistics results
in the test statistic

Ak 1= As + A ~ X(2K).

Note that again this theorem holds for 131 and i)g.

Example 2.17. Let us continue with the generated 3-dimensional VAR(1) process as in Example 2.11.
But now we will modify u; again in such a way that normally distributed residuals will occur. We will
take 100 samples where we assume u; to be i.i.d. t-distributed for some degrees of freedom 1 till 50
and perform a non-normality test on each sample. Since the t-distribution will converge to the standard
normal distribution when the degrees of freedom go to infinity, we will expect more rejections of the null
hypothesis for t-distributed residuals with low degrees of freedom and less rejections of the null hypothesis
for t-distributed residuals with high degrees of freedom. Now using Theorem 2.19 we can calculate the
p-values of all 100 samples for all degrees of freedom and find the percentage of the amount of rejected
null hypotheses. The following figure can then be found.
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Power of the non-normality test with significance level 0.05
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Figure 2.9: Rejection rate of the null hypothesis with a significance level of 0.05 for various degrees of
freedom.

In Figure 2.9 we indeed find lower rejection rates for t-distributed residuals with higher degrees of freedom,
which is what we expected. The blue line again represents a 5% rejection rate of the mull hypothesis.
Whenever we take infinite degrees of freedom, or normally distributed residuals, the rejection rate turns
out to be 4.6% for 1000 normally distributed residuals. However, we would expect the rejection rate to
go to 0% for normally distributed residuals. This results probably happens since N = 1000 is not large
enough to show a 0% rejection rate. However, it is large enough if we agree that the rejection rate of
normally distributed residuals should be below 5%.

2.6 Order selection

In all of the previous sections we have assumed that the VAR order p is known, however in reality we
do not know p beforehand, thus also the VAR order will have to be estimated. In this section we will be
investigating four different criteria that we can use on a process to estimate its VAR order p.

2.6.1 FPE criterion

The Final Prediction Error (FPE) criterion is based on choosing an order m, such that the precision of
the forecast is optimal. It is suggested in (Akaike, 1969, 1971) to base this criterion on the covariance
matrix of the 1-step forecast error of §,(1), which is ¥;(1) as in Theorem 2.15. It is also easy to see that

_N+Km+1

Ey(1) ~

DI

To turn the covariance matrix into an order selection criterion, we simply look at 3, (m), which is the
covariance matrix of the error terms when we estimate a VAR(m) model. Again, since we are estimating
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the process, we will be using the estimator

~ N ~
Bulm) = )

where ¥, is the maximum likelihood estimator as in Theorem 2.14. In order to find the order such that
the 1-step forecast is optimal, we look at the determinant of ¥;(1) and find the order that minimizes this
value. This way the FPE criterion is formed in the following proposition.

Proposition 2.8. Define FPE(m) to be

N+ Km+1 N ~
FPE = b
(m) det(N—Km—lN—Km—l “(m)>
N+Em+1\"
- (N—Km—1> det(Zu(m)).

then we call the estimate of the VAR order based on the FPE criterion p(FPE) if

FPE(H(FPE)) = min{FPE(m)|m =0,1,..., M}.

2.6.2 AIC, HQ criterion and SC

The Akaike’s Information Criterion (AIC) (Akaike, 1973, 1974), the Hannan-Quinn (HQ) criterion (Han-
nan and Quinn, 1979; Quinn, 1980) and the Schwarz Criterion (SC) (Schwarz, 1978) are all based on
optimising the precision of the forecast, but at the same time a penalty for the amount of unknown
parameters will be taken into account. The following criterion will be used for these criteria.

Cn

Cr(m) := In(det(X,(m))) + m—r (2.132)

where Cly is different for the AIC, HQ criterion and SC. We see that In(det(2,(m))) corresponds to the
precision of the forecast and mCTN corresponds to the penalty for the amount of unknown parameters.

In the following proposition we find the different criteria.

Proposition 2.9. The estimate of the VAR order based on the AIC, HQ criterion and SC are p(AIC),
p(HQ) and p(SC'), where

Cr(p(AIC)) = min{AIC(m)lm =0,1,...,M}
= min{Cr(m)|Cy =2K* Am =0,1,..., M},
Cr(p(HQ)) = min{HQ(m)m =0,1,..., M}
= min{Cr(m)|Cy = 2K*In(In(N)) Am =0,1,..., M},
Cr(p(SC)) = min{SC(m)lm=0,1,..., M}

= min{Cr(m)|Cy = 2K*In(N) Am =0,1,...,M}.

2.6.3 Consistency of the criteria

Now in total we have found 4 different criteria to estimate the VAR order. However it turns out that not
all of these criteria are consistent, i.e. plimp # p for N — oo, where p is the VAR order. It also turns
out that some estimators are strongly consistent, which is defined as follows.

Definition 2.22. The estimator p is called strongly consistent when

P( lim p=p)=1.

N—w0

Using the following lemma (Hannan and Quinn, 1979; Quinn, 1980; Paulsen, 1984), we find that (strong)
consistency of p is based on the convergence of functions with C, where N — oo.
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Lemma 2.12. The estimator p is consistent if and only if
Cn
Cn — o and ~ 0 when N — © (2.133)

and the estimator p is strongly consistent if and only if (2.133) holds and

Cn

—_——>1 N — oo. 2.134
S (In(N)) > 1 when o0 (2.134)

Now using this lemma we can determine the consistency of all our criteria. We find the following theorems.
Theorem 2.20. The following statements hold.

1. The estimators p(FPE) and p(AIC) are not consistent.

2. The estimator p(HQ) is consistent for K =1 and strongly consistent for K > 1.

3. The estimator p(SC) is strongly consistent.

Proof. (Statement 1) It can be shown that p(F'PE) = p(AIC) when N — o0, hence we only have to check
P(AIC) with Lemma 2.12. Tt is obvious that Cy does not converge to o0 with N — o since Cy = 2K?,
hence (2.133) does not hold, which means p(FPE) and p(AIC) are not consistent.

(Statement 2) For Cy = 2K?2In(In(NN)) it is easy to see that (2.133) holds. We also see that % =

K? when N — oo, which is bigger than 1 for K > 1. Using Lemma 2.12 shows us now that p(HQ) is
consistent for K = 1 and strongly consistent for K > 1.

(Statement 3) For Cy = 2K?In(N) is it easy to see that both (2.133) and (2.134) hold, hence using
Lemma 2.12 we see that p(SC) is strongly consistent. O

This theorem shows that the FPE criterion and the AIC will perform better when we have a small sample
size and that the HQ criterion and the SC perform better when we have a big sample size. Sometimes
it is hard to consider a certain sample size small or a big when performing analysis on a time series. In
such situations we can apply all four criteria and simply take the highest resulting VAR order just to be
sure.

Example 2.18. If we again look at the generated 3-dimensional VAR(1) process of Example 2.11, we
can apply all four criteria on the generated process and determine its VAR order, which we of course
expect to be 1. We find the following values.

VAR order | FPE AIC HQ SC

1.381 | 0.323 | 0.345 | 0.382
1.391 | 0.330 | 0.370 | 0.434
1.400 | 0.337 | 0.393 | 0.485
1.414 | 0.347 | 0.420 | 0.540
1.428 | 0.357 | 0.447 | 0.594

T W N =

Table 7: Various criteria values for VAR order 1 to 5.

Here the values of the criteria will keep increasing when we test for VAR orders higher than 5. Thus the
bold values in Table 7 represent the minimum values of the criteria. All criteria suggest a VAR order of
1, as expected.
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3 Vector Error Correction Model

In the previous sections we have always assumed that the time series we are analysing is stationary,
however this does not always have to be the case. Many financial time series, e.g. stock prices, are
non-stationary, hence the VAR model will fail on these financial time series. That is why the Vector
Error Correction Model (VECM) is introduced. This model allows us to analyse some special cases of
non-stationary time series, which are cointegrated processes. These type of time series are said to have
variables of interest which are moving together or are driven by a common stochastic trend (Liitkepohl,
2005, p. 245). An example of a cointegrated bivariate time series can be seen in the figure below.

Cointegrated bivariate time series

0 20 40 60 80 100

Figure 3.1: A cointegrated bivariate process.

We see that both variables of interest are indeed moving in a similar way. Let us first look at cointegrated
processes in general.

3.1 Cointegrated processes
Let us first look at the definition of differencing a process.

Definition 3.1. If we have a process y:, which we want to difference d times, we obtain

Ay, = Adil(yt — Y1)
= Ad_l(l = L)y
= (1 - L)dyt7

where L is the lag operator operator from Definition 2.3.

The idea of the VECM is that we can somehow first make the time series stationary by differencing the
process. Once it is stationary, we can apply the VAR model on the stationary process.

We now can define an integrated process as follows.

Definition 3.2. A process y; is called integrated of order d, or y; ~ I(d), when A%y, is stable, but A1y,
is not stable.

Since an integrated process of order d will be stable if we difference it d times, we will work with the
stable process A%y, in order to form a VECM. But first we will need to introduce equilibrium relationships
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between the variables of interest.

In financial data there are many relationships between different variables, for example between different
stocks from the similar market sector. If such a relationship exists between different variables of interest
of a process, then one could find a K dimensional vector 3 such that

By = By + - + Bryxe = 0, with 8 #0,
which we call a long-term equilibrium relationship. Obviously 8 will not have to be a unique vector,

however up to K — 1 independent linear combinations can be found in total, which we will discuss later.

In reality ,[)'Tyt will not always be equal to 0 for all ¢, but it will be equal to a stochastic variable
2, which represents the deviations of ,BTyt. If the equilibrium relationship ,BTyt exists, then we may
assume all variables of interests to move together, hence z; is stable. With this knowledge we can now
look at the definition of a cointegrated process.

Definition 3.3. A K-dimensional process y; is cointegrated of order (d,b), or y. ~ CI(d,b), if the
following holds.

1. All variables of interest are integrated of order d.
By

2
2. There ezist a linear combination BTy, = 2, where B = | . and z; is integrated of order d —b.
Br
3.1.1 The model

With the help of cointegrated processes we can derive the VECM. In this model we make an important
assumption that all variables of interest of y; are integrated of order 1. We will then be able to find a
model for the first difference of y;, or Ay;.

Suppose we have a zero-mean K-dimensional, possible non-stationary, process y;, with a single equi-
librium relationship of 37 y;. In the VECM we will assume that Ay, depends on 2 factors:

1. The linear combination ,BTyt_l.

2. The previous p — 1 differences Ayy—1, Ays—o, ..., Ayi—pt1.
This means that for the k-th variable of interest we will have

Ayee = B Y1 + Vi1 A1+ VE 1 AYtpi1 + Ukt (3.1)

where 7{71, - ,’y{’pfl are (K x 1) vectors, ay, is a constant and wuy, is a white noise process.
We assumed that there only existed 1 (independent) equilibrium relationship between the variables of
interest, however up to K — 1 equilibrium relationships might exist. Note that if K equilibrium relation-
ships exist, then the equilibrium relation is 0 for all ¢ instead of a stochastic variable z;. This is quite
unlikely when working with financial time series. Whenever r equilibrium relationships exist, we say that

y¢ is cointegrated of rank r. The variable ay, will then turn into the (1 x r) vector and 8 will turn into
the (K x r) matrix with columns as the equilibrium relationships.

We will now be able to write the VECM for Ay, using (3.1) as

Ayy =My 1 +T1AYy; 1 + -+ Tp 1 Ayppi1 + g, (3.2)
aq okt

where II = a8’ = : BT and I; = o | fori=1,2,...,p—1are (K x K) matrices and u, is
T
(6724 Tk

considered to be a K-dimensional white noise process.
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Note that y; being cointegrated of rank r will be equivalent with IT having rank r. Hence matrix II, or
the cointegration matriz, will be 0 when y; is cointegrated of rank 0, however when y; is cointegrated of
rank r > 1, then II # 0.

Also note that for a cointegration rank r > 1 we can represent 3 into a normalised form as

* I,
o= [ﬁmr)] ’ (3:3)

where Bk _,) is a (K —r) x r) matrix. This representation can simply be found by rearranging the
variables.

2 0
Example 3.1. Suppose 3= |2 1|, then the normalised form in (3.3) is
0 2
1 0
Bf=10 1
-2 2

A nice result of the VECM is that we can rewrite the VECM representation (3.2) of Ay, into a VAR(p)
representation as

Yo = A1 + Aoye—o + - + ApYi—p, (3.4)
where

Ay = I +I1+Ty, (35)

Ai = I‘i—l—‘i,1 fori:2,37...,p—1, (36)

A, = T, (3.7)

This VAR representation will be useful later on, e.g. forecasting the VECM.

Example 3.2. Suppose we have the bivariate process y; with an equilibrium relationship y1¢ = yor, or

equivalently BTy, = 0, where 8 = [_11] Suppose we take the VECM representation of Ay, to be

Ay = afTy1 +T1AY +uy
—1 0 0
= [ 0 ] [1 *1] Yt—1 + [0 1] Ayr—1 +ut
-1 1 0 0
= [ 0 0] Y1 + [0 1] Ayy_1 + uy, (3.8)

where ug 1s i.1.d. bivariate normally distributed with covariance matriz

1 0
u = [o 0.5]'

Now using (3.4)-(3.7) we can rewrite our VECM in (3.8) as VAR(2) representation

{01 n 0 0 n
Ye=1p 9| Y1 0 —1|Y¥%-—27 U

If we assume y_1 and yy to be 0, then we can again generate the VAR process. Taking N = 100 results
in the following generated process.
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Generated bivariate VECM y,

40
|

30

20
|

10

40 60

80

100
Figure 3.2: Generated VECM y;.
result to be stable, hence stationary.

We definitely see a non-stationary cointegrated process in Figure 3.2, hence the process is unstable. How-

ever, since the process is cointegrated, we can look at the equilibrium relationship y1: — yo2r and expect the

Equilibrium relation BTyt

Yie - Yat

20 40

60

80

100
Figure 3.3: The equilibrium relationship of the generated VECM 1y,
We indeed find a stable process y1: — yar if we look at the Figure 3.5.
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3.1.2 Non-zero mean VECM

So far we have assumed that we have VECM of a zero mean process y;, however in reality we will
mostly encounter processes that have a non-zero mean. The VECM in (3.2) will then have a different
representation. We might actually consider a VECM with having a mean including linear trend. Then
the VECM in (3.2) can be rewritten into the form

Ayr=vo+vit + My, 1 + T1Aye 1+ -+ Tp 1Ay pi1 + g,

where vy and vy are some (K x 1) vectors. For simplicity of the calculations in this section we will assume
that we have a zero mean, but one should be aware of the fact that a non-zero mean VECM could be
considered as well.

3.1.3 Analysis methods

Just like we could forecast the VAR model and different analysis methods, we can also do the same for
the VECM. Since we found in (3.4) - (3.7) that we can rewrite a VECM into a VAR model, most methods
will remain the same when applied on the VAR representation. However a few differences might occur
when the VAR process is unstable.

When forecasting an unstable VAR process, we will not necessarily have finite forecast intervals. We
previously found that the (estimated) forecast error covariance matrix X, (h) contains (estimated) mov-
ing average coefficients ®;, where ®; — 0 when i goes to infinity. However when the process is unstable,
then ®; does not necessarily converge to 0, hence some of the coefficients of the (estimated) forecast error
covariance matrices will go to infinity when h — oo.

The forecast error variance decomposition and the conditions for instantaneous causality will of course
have no reasons to change. Not even the test statistic for instantaneous causality will change, since we
will later show in section 3.2.2 that the asymptotic normality of the maximum likelihood estimator for
3, in the VECM is the same as for the maximum likelihood estimator in the VAR model, which implies
that the Wald statistic is the same.

The conditions for not having Granger-causality between variables also does not change. Remember
from Theorem 2.9 that having A;5; = 0 for ¢ = 1,2,...,p implied not having Granger-causality between
certain variables and conversely. If we now simply use the VAR representation of a VECM, then it is
easy to see that having Il;» = 0 and I'1p; = 0 for i = 1,2,...,p— 1 implies not having Granger-causality
between certain variables and conversely, where we partition IT and I' the same way we partitioned
Aq,As, ..., A, as in (2.72). However the Wald statistic we found earlier in section 2.5.1 will not always
work correctly for the VECM, for reasons that the estimated Wald statistic on the coefficient matrices
will not converge to the same 2 distribution. A more detailed description for this specific problem with
testing Granger-causality can be found in (Toda and Phillips, 1993). A solution to this problem was
proposed by (Dolado and Liitkepohl, 1996; Toda and Yamamoto, 1995). They suggested that the Wald
statistic for the coefficient matrices did work if it was applied on a VAR model of order p + 1, called the
lag augmented VAR model.

Finally the (orthogonal) impulse responses can be considered as well in the VECM. Remember from
section 2.3.4 and 2.3.5 that the responses to a corresponding (orthogonal) impulse were represented by
(A%);>1 (or (©;);>1 for orthogonal impulses). The responses always converged to 0 when we had a stable
VAR process, however when the process is not stable, these impulses do not necessarily converge to 0,
hence a single impulse might result into a permanent effect in a certain variable.

3.2 Estimators

Just like in the VAR model we can find the ordinary least squares estimator and the maximum likelihood
estimator of the VECM coeflicient matrices. We will assume that we have a time series y1,¥%2,..., YN
with all necessary presample values and that w; is i.i.d. multivariate normally distributed with covariance
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matrix ¥,. All of the theorems and propositions we will represent in this section can be found in
(Liitkepohl, 2005, pp. 269-297).
3.2.1 Ordinary Least Squares estimator

We will use the following notations for the OLS estimator.

Definition 3.4. We define

AY = (AylaAyQa"'7AyN) ([(XZV)7
Yfl = (y()?yla"wnyl) (K X N)7
r:= (F17F2,"';I‘p—l) (KXKN),
Ay,
Ayt
AXy = . (K(p—1) x 1),
AYs—(p-2)
AX = (AXo,AXl,...,AXN_l) (K(p— ]_) X N),
U= (u1,ug,...,un) (K x N),

such that we can rewrite the VECM into
AY =11Y_; + TAX + U.

Using this notation it is possible to find the OLS estimator by applying the same methods we used in
section 2.4.1 to obtain the OLS estimator for the VAR model. We then obtain the following estimator.

Theorem 3.1. The ordinary least squares estimator for the VECM coefficient matrices I and T is

Y.YL v, AxT]!

A ] T T
[IL T] = [AYYE AYAXT] oy7 Axax?

Again, asymptotic properties of the OLS estimator can be found. They are specified as follows.

Proposition 3.1. Let [ﬂ f‘] be the OLS estimator of a VECM of a process. Then the following
asymptotic properties hold.

1. The least squares estimator [fI f‘] s consistent, i.e.
plim [f[ f‘] = [H I‘].
2. We have asymptotic normality of

\/NVGC([ﬂ f‘] - [H F]) ~ N(O7 Zco)a

AN il AN )
Ecoz Q Eua
([0 Tk (p—1) 0 Ixp-1) ®

where

with

1 [gTvL v BTy AXT
Q_pth[ AXYT B  AXAXT

The problem again with the asymptotic normality of the OLS estimator is that the matrix ., is not
known beforehand when estimating a process with unknown VECM coefficient matrices. That is why
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we again have to find a consistent estimator of this matrix. It turns out that ., can consistently be

estimated by
. [yLyh vyoAxT T .
Zeo =NIAxyT Axax7| ©Fw

where
& 1
“ N—-Kp
for similar reasons as we found the estimator of the covariance matrix in (2.103) for the VAR model in
section 2.4.2.

vut (3.9)

We can again also find the t-ratios of the estimator the same way we did for the OLS estimator of
the VAR model in section 2.4.3. Now for similar reasons we can find using the asymptotic normality of
[IT T that

vec([IT  T]); — vec([II T]);

5
where vec([IT T]); and vec([II T']); are the i-th element of vec(|

II
and §; is the square root of the i-th row i-th column element of %XAJCO.

~N(0,1) Vi,

f‘]) and vec([IL T']) respectively

3.2.2 Maximum Likelihood estimator

For the maximum likelihood estimator we will use the following notations.

Definition 3.5. Using the same notations as in Definition 3.4, we define

M= Iy - AXT(AXAXT)"'AX (N x N),
Ry :=AYM (K x N),
R1 = Y_lM (K X N),
Sij = %, fOTiZO,l (KXK),
Y—p = (y—p+1ay—p+27"'7yN—p) (K X N)a
v:i= (v, v2,..., k) (K x K),
where we define vy, Vo, . . ., Vi to be the orthonormal eigenvectors corresponding to the eigenvalues A1, Aa, . . .
of the (K x K) matriz
_1 _1
5117510850 501512 -

With these notations it is possible to find the following log-likelihood function of the VECM.
Proposition 3.2. The log-likelihood function of the VECM is
KN N
(e, 3, 1,%,) = ——5 In(27) — ) In(det(X,))

1
—tr [(AY —af'Y_, ~TAX)T(AY —aBTY., — I‘AX)] :
It can also be found that this log-likelihood function is maximized with the following maximum likelihood
estimators.

Theorem 3.2. The mazimum likelihood estimators that maximize the log-likelihood function in Propo-
sition 3.2 are

B o= VS

a = 501B(BT511[3)_1,

I = (AY — a8 Y_)AXT(AXAXT) !,
S = %(AY —&B Y., —~TAX)(AY —aB Y., - TAX)T.
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These maximum likelihood estimators again have asymptotic properties, which give some interesting
results.

Proposition 3.3. For the mazimum likelihood estimators &, 3,T and ., as in Theorem 3.2 the following
holds.

1. The estimators d,,@, T and iu are consistent estimators.

2. The matrix [&BT f‘] has the same asymptotic normality as the OLS estimator [fI f‘], i.€.

\ﬁvec([aﬂ f‘] — [aﬁT T']) ~ N(0,%,),

where Y., is defined as in Proposition 3.1.

3. The estimator & := vech(X,) has the same asymptotic normality as the mazimum likelihood esti-
mator of the VAR model for o := vech(%,), i.e.

VN(6 —a) ~ N(0,55),
where
S = 2D%(S, ©,)(Df),
with Dk defined as in Definition 2.20.

3.2.3 Obtaining the estimated equilibrium relations

With the maximum likelihood estimator in Theorem 3.2 we found a consistent estimator for 3, however

with the OLS estimator we only found estimates for II, T'y, ..., T'x,. When we use the OLS estimator, we
. N ~T

know nothing about the estimated equilibrium relations 3, other than IT = &3 . We do however know

a straightforward estimator for v if 3 is normalised as in (3.3). Since the first  columns of BT will then

be I,, we find that a consistent estimator of a will be the first r» columns of II.

All that is left to find is the bottom ((K — 7) x r) matrix Bk_,). It turns out that the following
consistent estimator can be found.

1
B r = ('S @) a"S]! (Z Ay, — ay V) () )(Zyt L (W7-1) ) :

1)
where we divide y; into lyt@)], with yt(l) the first r variables of y; and yt@) the last K — r variables of
Yt

y¢. Furthermore we have & as the first r columns of the OLS estimator IT and we have ¥, as in (3.9).
Finally with this estimator, we find the normalised estimator for 3 as

N I,
/6 - [B(Kr)] .

3.3 Cointegration rank selection

We now know how to estimate the coefficients of the VECM, however the lag order p — 1 of the VECM
and the cointegration rank r := rk(II) are still unknown. Since we have shown in (3.4)-(3.7) that the
VECM is basically another representation of the VAR model, we can simply apply the order selection
criteria from section 2.6 on the differenced time series to find the lag order p — 1. The final prediction
error (FPE) criterion however will not work when working with unstable processes (Liitkepohl, 2005,
p. 325), for reasons that involve the fact that some elements of the forecast error covariance matrix will
approach infinity for the VECM.
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In order to find the cointegration rank r we will test the following null hypothesis
Hy : tk(II)=r (3.10)
against the alternative hypothesis
H, : r<rk(Il)<K. (3.11)

Thus we will be testing whether the cointegration rank is r or if it is bigger than r. The idea of this test
is to start test for r = 0, then keep testing for » = 1,2,... until the null hypothesis is not rejected. The
corresponding test statistic can be found to be the LR statistic, which we find in the following proposition
(Liitkepohl, 2005, pp. 328-329).

Proposition 3.4. The test statistic to test Hy in (3.10) against Hy in (3.11) is called the LR statistic
and is defined as

Arr(r K) = 2[In(K) —1In(r)]

K
= =N ) In(1-X),

i=r+1

where A\; for i = 1,2,..., K are defined as in Definition 3.5 and [(K) and l(r) are the mazimum log-
likelihood functions of Proposition 3.2 where the mazximum likelihood estimators are estimated with coin-
tegration rank K and r respectively.

It has been found that the LR statistic is actually distributed as
)\LR(T‘, K) ~ tI‘(D),

where D is a specific function of (K — r)-dimensional Brownian motions (Johansen, 1988, 1995). This
test statistic is also referred to as the trace statistic.
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4 Application: Tech companies in the AEX

In this section we will perform a time series analysis, where we will apply all methods and techniques
we have found in all of the sections before. The time series we will be looking at will be containing 4
variables of interest, which are the AEX-index, the Adyen stock closing prices, the ASML stock closing
prices and the Philips stock closing prices from the 13th of June 2018 until the 13th of June 2019. The
reason that we are not using more data before the 13th of June 2018 is since this was the IPO date of
Adyen, which means that Adyen only started trading its stocks since that day. The AEX-index is a Dutch
index that represents Dutch companies who trade on the Amsterdam Stock Exchange. The companies
Adyen, ASML and Philips represent 3 tech companies that are part of the AEX-index. Our time series
looks as follows.

AEX-index closing prices
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Figure 4.1: The time series of our variables of interest.

In Figure 4.1 we have ¢t = 1 represents the data of 13th of June 2018 and so on. The time series will
be represented as y; through this whole section. We will be performing time series analysis on these
variables and present our conclusions.
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4.1 The model

First we will have to determine what model we will use for our time series. From Figure 4.1 it is obvious
that our data is non-stationary and thus we should use a VECM. In order to use the VECM, we need to

check if all variables of interest are integrated of order 1.
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In Figure 4.2 the data seems to be stationary for all of the variables of interest.
data is non-stationary, we can conclude that the variables of interest are integrated of order 1, hence we
can apply the VECM. Before we start estimating our VECM coefficients, we first should determine the
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Figure 4.2: The differenced time series of our variables of interest

cointegration rank of our model. Let us observe the following trace statistics.

Table 8: Trace statistics for various cointegration ranks and VECM orders. The last 3 columns show the

critical values of the trace statistic.

71

VECM order 1 | VECM order 2 | VECM order 3
r )\LR(’I“, 4) )\LR(’I“, 4) )\LR(’I“, 4) 90% 95% 99%
3] 2.92 3.45 2.87 10.49 | 12.25 | 16.26
2 | 14.93 17.31 14.73 22.76 | 25.32 | 30.45
1| 33.76 33.85 32.38 39.06 | 42.44 | 48.45
0 | 70.99 64.11 61.42 59.14 | 62.99 | 70.05
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Remember that the lowest cointegration rank that does not reject the null hypothesis is the cointegration
rank we should choose. The bold test statistics in Table 8 have this property when we have a significance
level of 0.05. The bold critical values on the right represent the critical values with a significance level of
0.05, which we will compare with the test statistics. We see that for a VECM of order 1 and 2 we have a
cointegration rank of 1, however for a VECM of order 3 we have a cointegration rank of 0. One can argue
based on these results that in general the cointegration rank should be 1, because the trace statistic of
the VECM of order 3 lies between the 90% and 95% critical values and hence the trace statistic is almost
significant.

If we want to make sure we choose the right cointegration rank, we should perform the order selec-
tion criteria on the differenced time series. We then find the following values of the criteria.

VECM order | AIC HQ SC

1 9.599 | 9.719 9.896
2 9.538 | 9.755 | 10.0727
3 9.560 | 9.872 | 10.333
4 9.619 10.026 | 10.629
) 9.709 10.213 | 10.957
6 9.805 10.404 | 11.29

Table 9: Values of various order selection criteria and VAR orders.

Note that we do not use the FPE criterion for reasons we discussed in section 3.3. In Table 9 we have
the bold values representing the minimum values of the criteria. We will take the highest VECM order
suggested by all of the criteria just to be safe, which is a VECM order of 2. Table 8 now suggests that
we have a cointegration rank of 1.

We now have decided to use a VECM of order 2 and cointegration rank 1, but the mean of the pro-
cess is still unspecified. Just to be safe, let us first assume that we have a VECM with a linear trend,
which means we will use the model

Ay, = vo + it + Iy + T1Ay1 + T Ay o,

where the rank of IT is 1. Now we can start estimating the coefficients of the model. We find

—0.063  0.010 0.076 —0.335
oo | —0073 —0.072%*  0.216 0.768

0.150% 0.002  —0.207**  —0.305 |’

0.025%*  0.0003  —0.019° —0.131%**

—0.188°  0.001  0.281%* —0.754 0.069 —0.021 0.010  1.493%
ro_ | 0166 0109 0335 1714 r._ |0:894% 0102 0.034  0.061
! 0.143*  —0.007 —0.147 —0.573 |’ 2 0.142° —0.016 —0.161° 1.362* |’

—0.008 0.001  0.013 —0.021 0.004 0.001  0.002 0.113*

26.937 —0.007
Lo | 9154 L _ | 0.056°
0 —32.468° ! —0.004
—5.178% —0.001°

We use here superscripts on the values of the matrices to show certain significance. The p-values of
the t-ratios with superscript *** are lower than 0.001, with superscript ** between 0.001 and 0.01, with
superscript * between 0.01 and 0.05 and with superscript ® between 0.05 and 0.10. We use this notation
to see which values are definitely significant and which values are close to being significant. We see that
each coefficient matrix has at least one significance value, except for the trend vector v;. However, we
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could argue that the trend vector still might be significant, since we only have a small data set of 243
data points and 2 values have a p-value below 0.10.

Using this model we can find the following values our vector with cointegration relations 3.

1
0.028

B=1_1.030

—3.813

This means we have an equilibrium relation of
y1¢ + 0.028y2; — 1.030y3; — 3.813y4: = 0,

where Y1, Y2r, Y3¢ and y4; represent the closing prices of the AEX-index, the Adyen stock, the ASML
stock and the Philips stock respectively. The closing prices of the Adyen stock seems not to cointegrate
well with the other variables. This probably happens since Adyen only started trading its stocks on the
market at the start of our time series. Stock prices in general will have a different behaviour during the
first few months after the IPO.

4.2 Diagnostic checking

Now that we have decided what model we will use, we can perform diagnostic checking, which is per-
forming tests for the residuals of the VAR representation of the model. Let us look at the first test we
presented for the residuals, which is the non-normality test.

Test ‘ Test statistic ‘ 95% quantile ‘ P-value
Non-normality test | 569.01 | 15.51 [ 0

Table 10: Non-normality test of the residuals.

The non-normality test shows us an incredibly high test statistic, hence our residuals are definitely not
normally distributed. A reason why we have this high test statistic could be found using the ARCH-LM
test (Engle, 1982).

Test ‘ Test statistic ‘ 95% quantile ‘ P-value
ARCH-LM test | 650.12 | 553.13 | 6.45%107F

Table 11: ARCH-LM test of the residuals.

This test shows that an ARCH effect occurs in the residuals, which means that the squared residuals are
correlated with each other. ARCH effects occur often in financial data. When one finds an ARCH effect
in the residuals, then normally other models should be used. However, we will continue our analysis with
the VECM and keep this result in mind.

Since our residuals or not normally distributed, there are some consequences. Our forecast intervals
are based on the assumption that the residuals are normally distributed, but since the residuals are not
normally distributed, we can not trust our forecast intervals.

The second test we presented for the residuals is the portmanteau test, where we test autocorrelation
between the residuals. If we test for autocorrelation up to lag 10, we find the following.

Test ‘ Test statistic ‘ 95% quantile ‘ P-value
Portmanteau | 121.56 | 142.14 | 0.34

Table 12: Portmanteau test of the residuals for h = 10.
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The test shows that there seems to be no autocorrelation between the residuals up to lag 10. We now can
still not conclude that the residuals are white noise, since we do not know if the residuals have a mean 0
and have equal variances for all t.
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Figure 4.3: The residuals of the VAR representation for all variables of interest.

If we look at the residuals in Figure 4.3, then the assumption that the residuals have a mean 0 and that
they have equal variances for all ¢t seems to be a valid assumption we can make, hence we assume the
residuals to be white noise. The estimated covariance matrix of the white noise residuals turns out to be

17.991  5.462 9.688 0.183
5.462 307.554 —1.289 2.191
9.688 —1.289 13.695 0.122
0.183 2.191 0.122 0.214

S, =

4.3 Causality tests

Now that we have performed diagnostic checking, we can apply causality tests on our model. Let us first
look at the Granger-causality between our variables. Note that for Granger-causality, we will apply the
Wald test on the lag augmented var representation, hence on the VAR(4) representation. The reason for
this has been motivated in section 3.1.3. We will be testing if no Granger-causality exists between the
variables against the existence of Granger-causality between the variables. We find the following p-values
of our test statistics.
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Ty 2t Ty does not | z does not
Granger-cause z; | Granger-cause x;

AEX-index Adyen, ASML, Philips | 3.313 % 104 0.020

AEX-index, Adyen ASML, Philips 0.0044 0.027

AEX-index, ASML Adyen, Philips 1.208 = 10~ 0.066

AEX-index, Philips Adyen, ASML 0.0045 0.116

AEX-index, Adyen, ASML | Philips 2.55 % 1074 0.326

AEX-index, Adyen, Philips | ASML 0.0033 0.036

AEX-index, ASML, Philips | Adyen 0.019 0.817

Table 13: P-values of the Granger-causality tests.

The bold values in Table 13 represent the tests with p-values greater than 0.05, hence for these variables
we have that z; does not Granger-cause x;. Whenever z; does not Granger-cause x;, it implies that the
forecast of x; will not be improved when z; is added to the information set.

We see in Table 13 that all of the possible combinations of variables containing the AEX-index, Granger-
causes the other variables of interest. Adding the AEX-index closing prices to the information set seems
to improve the forecasts of the other variables in general. However, a few combinations of variables of
interest with the Adyen stock closing prices seems to not Granger-cause the other variables. The p-value
of testing if the Adyen stock closing prices do not Granger-causes the other variables has a really high
value of 0.817. It looks like the Adyen stock closing prices is not really helping with forecasting the time
series. Some combinations of variables containing the Philips stock closing prices do not Granger-cause
the other variables as well. However, these test statistics have lower p-values than the combinations
involving the Adyen stock closing prices.

The second type of causality we can investigate is instantaneous causality. The following p-values of
the test statistics can be found.

Ty 2t No instantaneous causality
between z; and z;

AEX-index Adyen, ASML, Philips | 6.661 * 10~

AEX-index, Adyen ASML, Philips 0

AEX-index, ASML Adyen, Philips 0.206

AEX-index, Philips Adyen, ASML 0

AEX-index, Adyen, ASML | Philips 0.0018

AEX-index, Adyen, Philips | ASML 7.327 % 10715

AEX-index, ASML, Philips | Adyen 0.0016

Table 14: P-values of the instantaneous causality tests.

Again, the bold value in Table 14 represents the p-value that is greater than 0.05. Remember that in-
stantaneous causality between x; and z; implies that adding the values of the next time step of one of
the variables improves the 1-step prediction of the other variable.

In Table 14 we find that only the AEX-index and the ASML stock closing prices have no instanta-
neous causality with the Adyen and the Philips stock closing prices. If we know the values of the next
time step of one of the combinations, then we will find the same 1-step prediction we would have found
without these values. We also see that the instantaneous causality between a combination of variables
containing the AEX-index closing prices always has instantaneous causality with a combination of vari-
ables containing the ASML stock closing prices. These specific combinations show incredibly low p-values
of the test statistics. Probably knowing the next value of the AEX-index closing prices helps improving
the 1-step prediction of the ASML stock closing prices and vice versa.
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4.4 Orthogonal impulse response functions

Let us now look at the orthogonal impulse response functions. Note that we use orthogonal impulses for
reasons we discussed in section 2.3.5.
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Figure 4.4: Orthogonal impulse response functions of our time series.
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In Figure 4.4b we see that the responses of the AEX-index closing prices and the ASML stock closing
prices are really small compared to their responses on orthogonal impulses of other variables. It looks
like these responses are zero orthogonal impulse responses, hence an orthogonal impulse of the Adyen
stock closing prices results in almost no response in the AEX-index closing prices and the ASML stock
closing prices. In Figure 4.4d we see that the same occurrence happens with an orthogonal impulse in
the Philips stock closing prices. However, these responses of the AEX-index closing prices and the ASML
stock closing prices seems to be higher than in Figure 4.4b.

We can find another interesting result in Figure 4.4a and Figure 4.4c. The orthogonal impulse of the
AEX-index closing prices results into a high response of the ASML stock closing prices. The ASML stock
closing prices seems to respond heavily when the AEX-index suddenly changes. However, the orthogonal
impulse of the ASML stock closing prices results into a low response of the AEX-index stock closing
prices. We find these results, since we are working with an index, where ASML is part of. A sudden
change in the ASML stock closing prices will not effect the AEX-index closing prices that much, since
the AEX-index is based on many other companies as well. A sudden change in the AEX-index closing
prices suggest that the stock closing prices of all companies within the AEX-index will change on average
as well, including ASML.

4.5 Forecast error variance decomposition

The forecast error variance decomposition can also be considered. We find the following proportions of
the forecast error variance.

Forecasted | Forecast Proportions | Proportions| Proportions| Proportions
variable of | horizon of AEX- | of Adyen of ASML of Philips
interest index
AEX-index 1 1 0 0 0

2 0.970 2.143 % 107* | 0.024 0.006

3 0.975 0.001 0.020 0.004

4 0.978 0.002 0.017 0.003

5 0.980 0.002 0.016 0.002

10 0.986 0.002 0.008 0.003
Adyen 1 0.005 0.995 0 0

2 0.014 0.982 0.004 6.821 % 107°

3 0.051 0.942 0.007 5.751 % 107°

4 0.067 0.920 0.013 1.546 % 10~

5 0.078 0.904 0.017 0.001

10 0.093 0.874 0.028 0.005
ASML 1 0.381 0.004 0.615 0

2 0.496 0.009 0.487 0.008

3 0.571 0.012 0.411 0.006

4 0.608 0.013 0.373 0.006

5 0.642 0.014 0.338 0.006

10 0.739 0.013 0.227 0.020
Philips 1 0.009 0.070 0.002 0.920

2 0.028 0.086 0.001 0.884

3 0.065 0.107 0.004 0.824

4 0.102 0.120 0.009 0.768

5 0.142 0.130 0.017 0.711

10 0.297 0.148 0.065 0.490

Table 15: Proportions of the forecast error variance of our variables of interest for forecasting each of the
variables of interest.

The proportions of the forecast error variance of forecasting the AEX-index closing prices and the Adyen
stock closing prices seems to have a large proportion of the forecast error variance by its own variable.
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This is not a surprise for the AEX-index closing prices, since it is an index of many more companies,
hence individual companies have small influence.

The proportions of the forecast error variance of forecasting the ASML stock closing prices seems to
be more spread out. The AEX-index closing prices proportions seems to increase in the long run and
will eventually have a higher proportion than the ASML stock closing prices itself. The proportions of
the Adyen and the Philips stock closing prices seems to be nearly 0 for all forecast horizons.

For the Philips stock closing prices it seems that for small forecast horizons, we have a large propor-
tion of its own variable, however in the long run the proportions will be more spread out.

4.6 Forecasting

Finally, let us take a look at the forecasts of all variables of interest.
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Figure 4.5: Predictions of the AEX-index closing prices.
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Figure 4.6: Predictions of the Adyen stock closing prices.

Prediction of ASML stock closing prices

250

—-- 95%interval
--- forecasted values
continued closing price:

Y

¢ Lol
g ey
¥ H

Wi
L
ey
IR

100 200

Figure 4.7: Predictions of the ASML stock closing prices
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Prediction of Philips stock closing prices
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Figure 4.8: Predictions of the Philips stock closing prices.

Note that the continued closing prices represent the data past 13th of June 2019. In all figures we see that
the 95% intervals seems to be too large for the variables of interest. These results are not unexpected,
since we showed before that our residuals are not normally distributed. Our 95% intervals are based
on the assumption that the residuals are normally distributed, hence we should indeed not trust these

intervals. The 1-step forecasted values seems to perform well for ¢ < 243, however, the h-step forecasted
values for ¢ > 243 do not seem to match the continued closing prices.
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5 Conclusion

We have seen that we can use the VAR model and the VECM to model multivariate time series. Only
when our time series is stationary, we found that we can use the VAR model, however, when the time
series is non-stationary and is integrated of order 1, then we found that VECM can be used. For both
models we have found estimators and order selection criteria, which we can apply to find the parameters
of the models.

In addition, various analysis methods has been presented to perform time series analysis with these
models, including

e forecasting,

e forecast error variance decomposition,
e causality analysis,

e (orthogonal) impulse response analysis.

The differences of these analysis methods between the VAR model and the VECM model has been dis-
cussed as well and they turn out to be really small. A reason for this was that the VECM has a VAR
representation, hence the analysis methods can be applied on that representation.

Finally, we applied all of our presented methods on real-world financial data. We showed how one
could perform time series analysis using only the VAR model and the VECM. Most of the analysis meth-
ods gave us a nice interpretation of our time series. However, only the forecast of the variables of interest
seemed not to provide trustworthy results, since the residuals turned out not to be normally distributed.

In general it turns out that not all financial time series can be properly analysed with the VAR model or
the VECM. These models contain a lot of assumptions and restrictions for the time series, hence many
time series can not be properly analysed with these models. When the time series does not have these
assumptions or restrictions, some of the analysis methods would give results we can not trust. Further
improved models should then be applied on the time series.
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6 Discussion

The model we found in our application did not have a lot of significant values. The reason for this to
happen, was that our data set was too small. We previously showed that data sets with a sample size
of approximately larger than 1000 samples would have nicely estimated coefficients. However, our time
series only had 243 data points. The reason that we did not have a larger sample size, was because Adyen
only started trading its stocks at ¢ = 1, hence we simply did not have any more data available. In reality,
most of the time our data is not perfect to work with, which our time series is a perfect example of.
Whenever the data is not perfect, it does not imply that we can not perform time series analysis on that
data at all. One should just perform time series analysis and argue which of the results can be trusted
and which can not.

In addition, we assumed for the residuals of both models that the covariance matrix is constant for
all . However, often this assumption is wrong. For example, in the application we have seen that an
ARCH effect occurred in the residuals, which implied that the squared residuals correlated with each
other, hence the covariance matrix is not constant. We should then consider using further improved
models, such as the multivariate ARCH model or the multivariate GARCH model. For further research,
one could find more information of these models in (Liitkepohl, 2005, pp. 557-584).
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