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ABSTRACT

In the hospital environment, the variations in respiratory information (RI) are typically used for indicating the
health condition of the patients. With RI known, corresponding parameters in both time domain (respiratory
rate) and frequency domain (respiratory power) can be extracted to indicate the health condition. However,
the monitoring technologies available in the clinical environment commonly work obtrusively, which can
result in discomfort for patients during a long-term monitoring. Meanwhile, these technologies also possess
high false alarm rates, especially during movement of the subjects. Thus, designing an unobtrusive equip-
ment suitable for moving patients that could collect as well as the algorithm to analyze such signals to provide
an accurate and robust estimate of respiratory information obviously becomes very interesting.

The base signals of interest for estimating respiratory information are two commonly used bio-medical sig-
nals, Impedance pneumography (IP) and electrocardiography (ECG). Impedance pneumography is a com-
monly used method for respiratory rate monitoring. Electrocardiography is a measurement of the electrical
activity of heart and respiration modulates the ECG in both time domain and frequency domain so that it is
feasible to estimate the RI also from ECG. These two signals can be utilized with the same measurement elec-
trodes attached to the surface of the body from the same device which provides a potential wearable method
for real-time RI monitoring.

This thesis investigates the feasibility of using these two unobtrusive bio-medical signals, IP and ECG, to
monitor respiratory rate (RR) in home environments especially during various movements. Algorithm de-
velopment focused on creating accurate and robust respiratory rate estimates both from impedance pneu-
mography and ECG-derived methods based on the modulation of respiration. Furthermore, the RI estimate
from individual signals will be further fused by the way of information fusion and investigate the feasibility
of giving more accurate respiratory information than that obtained using one signal alone. Finally, we also
investigate the feasibility of using acceleration recordings (Acc) to attenuate the motion artefact distorting
the underlying signals.

Signal quality indicators (SQI) and respiration quality indicators (RQI) together play a key role in providing
a more accurate RR estimate. Performance of all methods is evaluated against spirometer recordings, as a
golden reference, based on a set of typical statistical metrics.

The main results are that IP signal can provide a more accurate RR estimate compared with the ECG sig-
nal. Furthermore, the derived signal quality indicators, SQI and RQI, could distinguish data of good quality
from bad quality and the RR smoothing process could improve the result both of IP and ECG-derived meth-
ods with the help of signal quality indicator. Another main finding is that the correlation between the motion
artefacts and Acc recordings is not high enough, resulting in that Acc is not a proper reference signal for mo-
tion artefacts attenuation. Finally, it’s also found that information fusion methods could improve the overall
estimate from multiple signal sources.

For the future work, a better reference signal for motion artefacts attenuation should be explored. Further-
more, since only the respiratory rate estimation is investigated in this thesis, more respiratory information,
like tidal volume, should also be explored.

Feng Ma
Eindhoven, August 2018
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NOMENCLATURE

AN S Autonomic nervous system

AR Auto-regressive

Bi oz bioimpedance, same as impedance pneumography

B pm Beat per minute

cIC A Constrained independent component analysis

DW T Discrete wavelet transform

ECG Electrocardiography

EDR ECG-derived respiration

F F T Fast Fourier transform

G ALL Gradient adaptive Laguerre Lattice

HRV Heart rate variability

I P impedance pneumography

LD A Linear discriminant analysis

M A Motion artifact

MPA Maximum peak area

OSQI Overall signal quality

PPG Photoplethysmogram

QD A Quadratic discriminant analysis

RQI Respiration quality indicator

RR Respiration rate

RS A Respiratory Sinus Arrhythmia

SN R Signal to noise ratio

SQI Signal quality indicator

T I Transthoracic inductance

T R A Total respiratory area
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1
INTRODUCTION

In hospital environments, the patients are under careful monitoring and a set of vital signs are monitored
to indicate the health condition [12]. One essential vital sign is the respiratory rate (RR) and it’s also found
to be an importantly informative indicator for conditions of the patients in physiology, especially for clinical
deterioration[13]. Early recognition of the changes in the vital signs, like RR, can be of great help to prevent
severe and even life-threatening situations [14]. Thus continuous monitoring of RR can provide valuable in-
formation indicating patient health status in the hospital as well as in home environments.
The RR estimation can be achieved by a great number of methods from different physiological signals and
can be mainly divided into direct and indirect methods [12]. Normally in practice, only those direct methods
that measure the amount of air which can be inhaled and exhaled in breath cycles can provide a robust and
satisfactory recording of respiratory information for every breath cycle, thus we can derive an accurate esti-
mate of the RR. However, such methods often work in an obtrusive way and somehow result in discomfort if
the patients wear it for a long time.
For the indirect methods, due to the modulations of respiration on certain bio-medical signals, a small num-
ber of sensors could be attached on the human body and able to record the respiratory rate in real-time and
they don’t work really well especially when there are too many artefacts resulted from the movement [15].
Two commonly used sensors are impedance plethysmography and inductance plethysmography sensors and
more details of these two will be introduced in Chapter 2. However, whether the direct or indirect methods
we have introduced so far are not suitable for long-term RR monitoring. As a consequence, there is a constant
demand for a non-invasive and unobtrusive wearable method for RR estimation of which the performance
can reach certain clinical standards accuracy.
In this thesis, two physiological signals of interest are utilized for estimating RR and these are Impedance
pneumography (IP) and electrocardiography(ECG). Physiological mechanisms can result in modulations
by respiration on both signals.
Impedance pneumography, also known as bio-impedance (Bioz), is a commonly-used technique to monitor
the respiration information of the patients by measuring the variations of the electrical impedance of the tho-
rax during the breath cycle in an unobtrusive way [16]. For the ECG signals, various types of modulation can
be observed thus the respiratory signals could be derived from ECG [3]. As a consequence, these two signals
can be used to estimate the respiratory rate without extra sensors.
This thesis concentrates on investigating the feasibility of using IP and ECG to achieve robust and accurate RR
estimation. In particular, the target is to improve accuracy especially during movement in the typical home
environment, where few studies have been found. A set of methods of complete signal processing pipelines
are introduced. Further, to judge the reliability of RR estimate from the individual signals, we have two indi-
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2 1. INTRODUCTION

cators, signal quality indicator (SQI) and respiratory quality indicator (RQI) to indicate the signal quality from
the aspect of morphology for ECG and also the presence of respiratory component respectively and both of
them are evaluated based on an available dataset from imec. In order to make full use of these two signals,
a set of fusion methods are also introduced and they fuse respiratory rate estimates from these two base sig-
nals. The main target is to clarify if it’s possible to provide more accurate and robust RR estimates in the way
of information fusion than only from a single signal. Finally, spirometer recording, a technology to measure
the breathing volume directly, is used to provide a golden standard of the RR for the algorithm development.

1.1. PROJECT TARGET

The overall target of this thesis is to investigate the feasibility of performing reliable respiratory monitoring
from a set of unobtrusive sensors under different motions. The signals of interest utilized in this thesis are:

• Impedance plethysmography signal (IP)

• Electrocardiography (ECG)

• Accelerometer recordings (Acc)

These three signals are chosen for investigation because they can all be obtained in a non-invasive way from
a wearable imec data collection device and the first two signals are known to be influenced by respiration
and both are currently measured in clinical environments. The Acc recordings could be a potential refer-
ence signal to improve the signal quality of the first two, especially when the signals are distorted by motion
artefacts. Hence a successful solution based on these signals would not require additional hardware or mon-
itoring devices. In addition, spirometer recording is also obtained as a reference signal which measures the
breath volume directly.

1.2. OBJECTIVES

The objective of this thesis is to develop methods to provide an accurate and robust RR estimate from IP and
ECG these two physiological signals base on certain signal processing methods. The main objectives of the
work are now summarized.
The first objective of this thesis is to:

• Develop a complete framework for respiration estimation based on IP and ECG signals.

Methods developed in this work for obtaining respiration are tested and compared with methods from imec.
Since both the base signals, IP and ECG, are sensitive to motion and normally they have an overlapping fre-
quency band with the artefact [17]. Therefore, a logical question to ask is whether certain reference signals
can be utilized to attenuate the motion artefact. Therefore, the second objective is to:

• Investigate if the acceleration recordings (Acc) are a valid reference signal for motion artefact reduction
by evaluating the correlation between the Acc and the motion artefact.

The performance of the developed framework is also needed to be evaluated, tuhs the third objective is to:

• Evaluate the proposed framework for RR estimation and search for reproducible evaluation procedure
based on possible statistical metrics in a quantified way.
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1.3. OVERVIEW OF THE THESIS

This thesis consists of the following parts.
Chapter 2 gives a more detailed introduction to the two utilized bio-medical signals namely ECG and IP. Fur-
thermore, the modulation of respiration on the on these signals is also described. Finally, the databases used
in this thesis are also introduced.
Chapter 3 gives an overview of the typical signal processing techniques used in this thesis. Techniques both
in the time domain and frequency domain are introduced. An overview of data fusion is also given, which is
an essential part of this thesis.
Chapter 4 introduces the development framework used in this thesis. The selected signal processing tech-
niques are described in more details together with the implementation. An overview of the evaluation meth-
ods is also given.
In Chapter 5, evaluation results and further discussions are given. Various statistical metrics introduced in
Chapter 4 are applied to the results of RR estimate obtained from different methods and a comparison on the
performance of different methods is given. We also gain an understanding of what intensity of movement can
this framework handle by applying this framework to the data collected from different intensity of movement.
Chapter 6 summarizes the thesis and concludes the thesis. Possible further work are also discussed.
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2
THE PRIMARY SIGNALS FOR RR ESTIMATION

2.1. INTRODUCTION

The target of this thesis is to develop a framework which is suitable for long-term RR monitoring. The primary
signals of interest utilized in this thesis are the electrocardiography (ECG) and impedance pneumography (IP)
signal, also called Bioz signal. The reason for the selection of these two signals is explained in more details in
section 2.2.
The thesis work is carried out on three databases, both of the first two are from imec, which have ECG, IP,
Acc recording and spirometer recordings. The last database is an online public database, namely PhysioNet
[18], which has clean long enough ECG recording from subjects in the hospital as well as the realistic noise
recordings.
This chapter gives an overview of the physiological origin of the signals, how they are collected and how they
affect the respiration. Finally, an introduction is given to the databases on which the work is carried on.

2.2. MONITORING METHODS AND SIGNAL SELECTION

In this section, the typical methods used for respiration monitoring, the direct way and indirect way, are in-
troduced in more details. Furthermore, we make a comparison of these two methods and explain why we
choose the indirect method and the certain signals: IP and ECG.
As for the direct methods, they record the respiration information directly from the movement of the flowing
air, for example, spirometer can measure the amount of air breathed in and breathed out of the lung during
the breath cycles [19].
As for indirect methods, respiration information can also be recorded indirectly from certain physiological
signals which reflect the volume change of human chest and examples of such techniques are transthoracic
inductance (TI) and impedance pneumography [13]. For the former one, a band containing sinusoidal wire
coils along will placed around the chest or belly of the patients. The area of the coils will change due to the
change of the volume of the chest and belly, resulting in the variation of the inductance, which can be used
to generate the respiratory signal [20]. As for the latter one, impedance pneumography is a measurement of
the variations in electrical impedance across the chest and abdomen during the breath-breath cycle to reflect
the respiration information.
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6 2. THE PRIMARY SIGNALS FOR RR ESTIMATION

Figure 2.1: A schematic view of one normal ECG including the complete QRS complex waveform and P, T wave. The individual time

intervals are also present. Image adapted from [1]

One more method can also be categorized into the in-direct methods: ECG. ECG is the measurement reflect-
ing the electric activity of the heart and visible respiratory information is buried into the ECG in multiple ways
due to the modulations of respiration on ECG [12]. Consequently, we can extract the ECG-derived respiratory
(EDR) signals from the ECG, from which we can estimate the respiratory rate based on certain methods.
Each method has advantages and disadvantages. Direct measurements are more accurate, however, they can
interfere with normal respiration since they normally work in an obtrusive way. Meanwhile, it’s normally not
possible to be embedded into a wearable device. Thus, the direct methods are not suitable for unobtrusive
and long-term respiration monitoring. Thus, the indirect methods are selected since both IP and ECG can
be measured with the same electrodes attached on the human body in an unobtrusive and non-invasive way
from the wearable data collection device and can achieve long-term monitoring without resulting any dis-
comfort to the subjects. However, these two signals also have shortcomings. The IP can be highly accurate
and does not interfere with respiration but it requires data acquisition from still patient without any move-
ments, otherwise the signal can be distorted by motion artefact and result in a poor RR estimate due to the
poor signal quality. As for the ECG signal, the overall modulations of the respiratory ECG are relatively small
compared with IP signal meaning that typical algorithms designed to extract the respiratory signals from ECG
cannot tell whether these modulations are actually present in the signal or not [12].

2.3. THE ELECTROCARDIOGRAPHY(ECG)

The ECG is a measurement of the electrical activities of the heartbeat. During one heartbeat, the related
heart muscles will pump the blood from the atria to the ventricles and finally to the body’s blood circulatory
system [21]. Typically, a number of electrodes are attached on certain positions of the body and during the
heartbeats, the ionic current generated by the repetitive muscle activity will be converted into electric current
which results in a small but still measurable voltage drop throughout the whole human body [22].
A typical ECG waveform which could be found in any healthy people is present in Figure 2.1 adapted from [1]
and it contains a P wave, a QRS complex and a T wave. This cycle is repeated in every heartbeat.

The morphology of the ECG waveform depend on the position of the electrodes attached on the body. A
typical ECG configuration normally has four electrodes and can give three independent measurements re-
flecting the heart’s electrical activity denoted as lead [23]. There are also many signal leads which have two
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electrodes. One electrode is normally used as a body bias to attenuate the interference. A lead provides a
vector of the heart’s electrical activity within a certain direction related to the position of the electrodes. Most
ECG configurations include the three limb leads: lead I, lead II and lead III. The electrodes forming these
leads are located on the limb. One on each arm and one on the left leg. These leads form the basics of what is
known as Einthoven’s lead system [24].

• Lead I is the voltage difference between the left arm and right arm.

• Lead II is the voltage difference between the left leg and right arm.

• Lead III is the voltage difference between the left leg and left arm.

A 12-lead ECG is usually used in clinical environments and can provide the information of the heart’s func-
tionality in various angles [2]. Figure 2.2 shows a 12-lead ECG system and all the angles it can cover. In this
work, information from a single lead ECG is used, Lead II.

Figure 2.2: An representation of 12-lead ECG . Each lead can provide information of the electrical activity of the heart from a particular

angle indicated in the figure. These contain limb leads (I, II and III) and augmented leads (aVR, aVF, aVL) and precordial leads (V1, V2,

V3, V4, V5, V6) at the transverse plane. Image from [2]

2.3.1. THE ECG AND RESPIRATION

In this section, modulations of the respiration on the ECG signals are introduced and this is the base how we
extract the respiration information from the ECG signal.
Breath-related modulations have been found and analyzed already in 1913 by Einthoven et al[24]. Nowadays
they are commonly called ECG-derived respiration (EDR) signals. The commonly visible EDR signals are
demonstrated in Figure 2.3. This figure shows the illustration of respiratory signals extraction based on three
types of the modulation respiration has on ECG: baseline wander (BW), amplitude modulation (AM), and
frequency modulation (FM) [3]. The dominant effects in more details of respiration on the ECG are listed
below:

1. Cardiac movement within the thoracic cavity On the one hand, it has been shown experimentally, the
change of the thoracic impedance distribution results from the volume change of the lung during the
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Figure 2.3: modulations of respiration on ECG signal. On the left section, the ECG with no modulation, baseline wander (BW),

amplitude modulation (AM), and frequency modulation (FM) are shown from the top. In the right section, the QRS detection are shown

in black dots and also the resulting EDR signals are present in red. Adapted from [3]

breath cycles. When the lung is full of air, it becomes a poor conductor and results in the increase in
the electrical impedance during inspiration, thus the ECG amplitude will decrease [25]. Similarly, ex-
piration would increase ECG amplitude. On the other hand, the heart will move during the respiration
in the chest, furthermore, the relative positions of the electrodes to the heart will also change, which
could result in a change on the morphology of ECG.
Two typical measures of the amplitude modulation are the voltage difference between the R peak and S
peak and the amplitude of R peak against the baseline of ECG, respectively. In literature, these two are
typically referred to as "amplitude modulation" methods [10].

2. Respiratory Sinus Arrhythmia(RSA) RSA refers to change of cardiac rhythm associated to respiration
and it is the record of the variations between the consecutive heartbeat intervals. The heart rate in-
creases during the inhalation and decreases during the exhalation, which makes it possible to derive
the respiratory signal from the variation [12]. However, RSA really has its shortcomings as follows.

• RSA effect could be weakened for elder people and it is found that smoking and certain diseases
could also weaken the RSA variation [26].

• The variation of RSA is depending on respiratory rate and according to one study in [12], from
the experiment, the RSA is shown to decrease for lower respiratory rate, which means it requires a
higher breathing rate to extract the EDR signal of good quality based on RSA from ECG.

3. ECG baseline wandering Low frequency wander of the ECG signal can be caused by respiration [3]. The
baseline wander in the ECG is mainly caused by the change of the position of electrodes relative to the
heart during the respiration, usually only seen in deep breathing [12]. Normally, in the preprocessing of
ECG, this baseline wandering is often is removed by a high-pass filtering method for further processing.
Thus the baseline wandering could only be visible from the raw ECG data.

2.4. IMPEDANCE PNEUMOGRAPHY(IP)

The IP signal is a commonly used bio-medical measurement to reflect respiratory information the clinical
environment. It has already been a cost-effective method suitable for long-term respiration monitoring and
even can be embedded into wearable devices, which makes it possible for monitoring during movement [27].
However, due to the fact that IP is really sensitive to movement, the most robust solutions are still under in-
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Figure 2.4: A Four-Terminal Measurement with two current injecting and two receiver electrodes.Adapted from [4]

vestigation and it’s still troublesome to get the IP signal of good quality from people during speech or physical
activity [28].
As shown in Figure 2.4, the configuration of IP typically has four electrodes and the principle of IP is that
two electrodes of these four are injecting current with high enough frequency and a relatively low amplitude.
Then the voltage difference is measured along the current path between another two electrodes, called re-
ceive electrodes [28]. The amplitude of the injecting current is commonly less than 100 µA and normally the
corresponding frequency for respiration monitoring is between 20–100 kH z and this range can also be a bit
larger [29].
The way IP measures the respiratory information is kind of straightforward and the respiratory information

is reflected by the change of the impedance during the breath cycles. During the breath cycle, when peo-
ple are breathing in and breathing out, the volume of the lung will change and this can result in a change of
the path between the two receive electrodes and furthermore the variation of the electrical impedance [12].
Meanwhile, during the heartbeat, the change of the volume of blood could also result in the variation of the
impedance which has a similar frequency as the heartbeat [30]. As a consequence, the two main components
of the impedance change are caused by the respiratory activity and also cardiac activity. Usually, the ampli-
tude of the change caused by cardiac activity in impedance is weaker than that resulted from the respiration
which makes it possible to split these two components for most cases. However, as for the really fast and
shallow respiration, the amplitudes of these two components from respiration and cardiac activity are of the
same order and they may also have an overlapping frequency band so that the commonly used monitor may
take the cardiac component as the respiratory information, resulting in a wrong RR estimate [5].
As for the placement of the electrodes for IP signal, it’s concluded from on study that the most suitable con-
figuration for long-term monitoring which could provide a signal of good quality is that the four electrodes
are placed on intersections of right and left auxiliary mid-line at the fifth and seventh ribs, respectively [31].
It is also of great interest to measure more respiratory information like tidal volume from the IP signal. In
some studies, it is found that the relationship between the IP and tidal volume is approximately linear [32],
however, most of the studies are carried out when there are no motions of the subject, which means further
validation is needed under more movements [33].
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Figure 2.5: Simulated impedance waveform which is composed of two frequency component: the cardiac component with higher

frequency and the respiratory component with lower frequency. The dotted line is the calculated mean impedance. Adapted from [5]

Figure 2.5 adapted from [5] shows the two main components of a different frequency band in the IP signal,
where the cardiac component with a higher frequency is visible on the top of the respiratory component with
lower frequency. Furthermore, from the frequency domain, the cardiac component normally has a frequency
band of 0.8-3.0 H z while for the respiratory component is 0.1-0.7H z [34]. This frequency difference is the
base for the extraction of each signal by filtering techniques. From this figure, we can also see the starts of the
expiration and inspiration, which are the corresponding valley and peak points, respectively.

2.5. MATERIALS

In this section, we give a brief introduction to the databases on which this work is carried. The first two are
the existing database from online public resource and imec. The last one is newly designed and the basic
information of the protocol design is given. Finally, the information of all the volunteers are summarized.

2.5.1. DATABASES

The following databases are used for this thesis project:

• Database 1: This is an existing database from imec and this is used for evaluating the performance of
the proposed respiratory signal quality (RQI) in section 4.2.2. The following signals are recorded: refer-
ence signal as a gold standard signal collected by the spirometer, ECG, IP and three-axis accelerometer
recordings. In this database, the volunteers are required to lie on the bed to breathe following certain
respiration patterns, e.g. breathing at different rates and also holding the breath for some time to sim-
ulate a period of apnoea.

• Database 2: This is an existing database from an online public resource, namely Physionet [18]. The
clean ECG as well as three realistic noises, including muscle noise, motion noise and baseline wander-
ing, are recording from 20 subjects in a clinical environment. This database is used for evaluating the
performance of the proposed signal quality indicator for ECG signal in section 4.2.2.

• Database 3: This is a newly designed database for this thesis project and it is used to evaluate the perfor-
mance of the proposed framework on respiratory rate monitoring. The following signals are recorded:
one reference signal as a gold standard signal collected by the spirometer, three more desired signals,

CONFIDENTIAL



2.5. MATERIALS 11

(a) Robin platform

(b) sprirometer from Biopac company

Figure 2.6: The data collection devices

the first two, ECG and IP for respiration monitoring and the last one as a reference signal, three-axis
accelerometer recordings, for the investigation of motion artefacts attenuation.

2.5.2. MEASUREMENT EQUIPMENT AND SIGNALS OF DATABASE 3

in this database, four different signals were acquired in measurements: ECG, IP, acceleration recordings (ACC)
and breath volume recording from the spirometer. The first three are measured using a wearable platform
from imec named Robin device, which has a connector measuring the ECG and IP simultaneously as well as
ACC recording in three axis collected by the accelerometer embedded inside the device. The breath volume
is measured by the spirometer from Biopac, which is composed of a data acquisition model together with a
transducer. The corresponding devices are shown in Figure 2.6.
In more detail, the collected signals and sampling frequencies used during data acquisition were:

• ECG: This is sampled at 512 Hz, which utilizes three electrodes in single lead placed on the upper left,
lower right of the body and right above the belly button. The position of the electrodes is slightly differ-
ent among the volunteers due to many electrodes attached to the body.

• IP: This is collected by the Robin device using the same electrodes as ECG with a sampling rate of 1024
Hz.

• acceleration(Acc) recordings: This is collected by the accelerometer embedded in the Robin device in
three axes at a sampling rate of 32 Hz.

• spirometer recordings: This is the measurement of the volume of the breath cycle, which can be taken
as a reference signals for extracting the true RR from comparison purpose. It is sampled at 100 Hz.

As for the lead of the ECG used in this database, it is selected as lead II since from the literature this could
provide the most visible QRS complex. For the IP signal, one lead is also learned from literature introduced
above which gives the most waveform of good quality, where the electrodes are placed on the high midaxillary
line and close to the nipples. The data acquisition device is also attached in the middle of the chest to record
the accelerations in three axes with a rate of 32H z. The electrodes positions are shown in Figure 2.7.
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12 2. THE PRIMARY SIGNALS FOR RR ESTIMATION

Figure 2.7: The positions of the electrodes of the corresponding signals are presented: IP(red), ECG(blue) and the Robin device.

2.5.3. PROTOCOL DESIGN

This measurement protocol is created to present the typical daily activities in the general home environment.
The protocol includes five sections, lying on the bed, sitting on the chair, standing, running and free breath.
For each section, there are varying amounts of stages of the periodical or random movement. The combined
length of all the section is approximately 45 minutes. Between each section and the stage, there will be a
period long enough (e.g. 1 min) for leading the volunteer to the next one. In the beginning of each section
of this protocol, a deep breathing in followed by a breath hold for 7 seconds is set to synchronize different
recorded signals.
Full protocol details for the measurements can be found in Appendix A.1. Each section in the protocol was
categorized into one of the five activity categories. For the running section, this is carried out on the treadmill
at different speed. In each section, these categories and their total target duration in the protocol are:

• Lying (5 min) lying on the with both periodical and random movement.

• Sitting (4 min) sitting on the chair with typical daily movement.

• Standing (4 min) standing with random movement.

• Running (10 min) On the treadmill, subjects are required to start walking jogging to running at different
speed.

• Free breath (5 min) On the chair the subjects are required to breathe freely and this data is used as a
learning period for optimizing the parameters for algorithms.

2.5.4. VOLUNTEER DEMOGRAPHICS

Totally 12 volunteers are involved in the data acquisition. We give a brief introduction to all the volunteers in
the following table.
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value

items
Age(year) Weight(Kg) Height(cm)

Range 24 - 28 55 - 87 172 - 188

Average 25.4 69 177.8

Table 2.1: The information of the volunteers involved in data collection for database 3

CONFIDENTIAL





3
LITERATURE OVERVIEW OF SIGNAL

PROCESSING METHODS FOR RESPIRATORY

SIGNALS

This section gives an overall introduction to signal processing techniques used in various studies as a litera-
ture overview. The base signals of interest are mainly ECG and IP since these two signals are the ones used in
the framework chapter 4 of this thesis.
In most cases, the respiratory components are visible from the ECG and IP signals, however, the raw signals of
both two are not of good enough signal quality to achieve an automatic estimation for respiratory rate due to
noise components like motion artefact and system noise [23]. Before estimating the respiratory information,
preprocessing for both IP and ECG signals are needed and the raw signals must be filtered or processed by
certain techniques to make sure that the signal is good enough to extract accurate respiratory rate. Briefly,
signal processing framework for estimating the respiratory rate is composed of four stages [12]:

• Respiratory signal extraction Extract the respiratory signals from the base signals based on the modu-
lations of respiration on the underlying signals.

• Noise reduction on the signals Attenuate the noises buried in the signals based on basic filtering or
more advanced methods, for example, adaptive filtering with the help of the reference signal correlated
to the true signal or the noise.

• RR estimation Estimate the RR from the processed signals either based on time-domain techniques,
normally detecting the peaks and valleys or frequency-domain techniques.

• Information fusion Fuse the RR estimate from different signals based on certain methods.

In this thesis, the respiratory signals are extracted from the IP and ECG signals. The noise reduction part is
optional and an overview of all these four stages in the framework is given in the following sections.
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3.1. RESPIRATORY SIGNAL EXTRACTION

3.1.1. ECG-DERIVED RESPIRATORY SIGNAL

As is described in chapter 2, it is known that the modulations of respiration on ECG can be divided into three
categories: Amplitude modulation (AM), Frequency modulation (FM) and Baseline wandering (BM) and cor-
responding techniques for extracting each modulation may also be different.
Generally, the techniques for extracting the EDR signals can be divided into two categories: feature-based
and filter-based based techniques [10]. Working in a more direct way, filter-based techniques are imple-
mented to eliminate the frequency content outside of the range of normal respiratory frequencies by band-
pass filtering. In most studies, simple band-pass filtering is utilized to get the EDR signals[35]. However, the
filter-based techniques have more limitations due to the sensitivity to noise compared with feature-based
technique [35]. In this thesis, more efforts are put into the feature-based techniques.

FEATURE-BASED TECHNIQUES

Feature-based techniques work in a way of extracting the features of beat-by-beat related to respiratory ac-
tivity and typically work in the time domain [10]. A set of filtering methods are used to eliminate both low
and high-frequency noise and also the main interference frequency component from the device at 50 H z.
Furthermore, QRS detector methods are used to detect the QRS waveform of the ECG. More details of QRS
detection methods can be found in [36]. Normally, R peaks in the QRS waveform are detected by the detectors
and the corresponding Q and S valleys detected as the minimas with a certain window of length 0.2s centred
at the R peaks[37]. Furthermore, after detecting all the QRS complex waveform, the EDR signals can be ex-
tracted with the help of all the QRS points and the discrete series of the EDR signals are further resampled
at a constant frequency based on linear cubic interpolation since subsequent processing required to obtain
an evenly sampled EDR. Finally, the resampled EDR signals will also be passing through a band-pass filter to
remove the frequency components outside of the range of normal respiratory frequencies.
For FM-based techniques, EDR signal based on RS A is the most commonly used method since many studies
about HRV have been published and documented [12]. As a consequence, the way to extract the EDRRS A is
based on QRS detection and after we get the R-R intervals, a cubic spline interpolation at a constant sampling
frequency is further used to generate a continuous respiratory signal. In a relevant study, the EDRRS A signal
is filtered with fourth-order Butterworth band-pass filter with a passband of 0.1–0.6 Hz (6–36 bpm) frequency
band. This frequency band is only related to normal respiratory rates and ensured that cardiac frequency
components are removed from the respiratory signals [38].
As for AM-based techniques, this is based on the amplitude modulation on the QRS complex of respiration
on the ECG. The first study about this is described in[13]. In this study, two calculated QRS area changes from
two orthogonal leads are used to follow the change of the heart electrical axis angle. This angle is calculated
at every QRS complex and all the discrete values of this angle are further interpolated by cubic splines and
an evenly sampled respiratory signal is generated, denoted as EDRar ea . In some studies, the QRS area calcu-
lated from single-lead ECG is utilized to obtain the respiratory signal for simplicity and the area is taken from
some part of the ECG signal within a fixed window with a length of 100 ms, of which the center is at R peak
of the QRS complex [9]. A high correlation between the estimate from the EDRar ea and from the reference
signal is also found in this study.
A simpler way to derive the respiratory signal compared with the area-based method can be based on the
amplitude of the QRS complex[39], denoted as EDRamp . After detecting all the R peaks in the ECG signal, the
EDRamp respiratory series is taken as the amplitude of successive R peaks with respect to the baseline level
of ECG. Two median filters, 200ms and 600ms, are used to remove QRS complexes, P waves and T wave from
the ECG signal, respectively. The output of these tow median filters is the baseline. Meanwhile, the EDRamp

can be extracted by taking the amplitude difference between R peak and S trough in the ECG and the S trough
is the minima found within 0.1 seconds after R peak, for each QRS complex[39].
There are also some other novel ways to derive the EDR signals from literature. One study a new method is
presented and it is measuring the changes of QRS slopes and R-wave angle during the breath cycles [6] to
generate the EDR series. An example of QRS angle is shown in Figure 3.1. There are two steps to derive the
QRS angle. Firstly, for each QRS complex, line fitting methods are used to measure both upward and down-
ward slope of the R wave. After that, the smallest angle generated by these two lines are obtained, which is
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Figure 3.1: An example of The QRS slope and R-wave angle. The two thick magenta lines are the best fitting curve of the the QRS slopes

in a sense of least square and the QRS angle can be derived from them. Adapted from [6]

taken as the R wave slope respiratory signal.
All the mentioned methods to extract the EDR signals are summarized in the following table 3.1 adapted and
then modified from [3] and the general block diagram is also shown in Figure 3.2.

Methods Technique

Featured-based

EDRRS A FM: R-R peak intervals from the ECG QRS complex waveform [40]

EDRRamp ,EDRRsamp AM: Amplitude of the R peaks respect to the baseline; Amplitude dif-

ference between the R peak ans S valley [39]

EDRbw mean signal values between consecutive troughs.[3]

ESRar ea The area of the QRS complex after removing the baseline wandering

by the subtraction of interpolation between Q and S valleys. [9]

Novel methods

EDRPC A Pricinple component analysis on QRS complex and the eigenvecotr

corresponding to the first PC is taken as EDR signal.[41]

EDRsl ope The variation of the R angle in the ECG QRS complex waveform [6]

Table 3.1: Techniques for extracting EDR signals. Adapted and modified from [9]

3.1.2. IMPEDANCE PNEUMOGRAPHY

As for the IP signals, the processing methods are more straightforward as the IP signal itself already represents
the pattern of respiration. In some studies, It has been shown that the main component of the impedance
signal is highly correlated to respiration [42].
Normally, the steps for reprocessing the IP signal include a high-pass and low-pass filtering to remove the
frequency band which is not representing the respiratory activities [12]. The low-pass filtering is used to
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ECG filtering 
QRS

detection 
ectopic beats

removal 
EDR

extraction

Figure 3.2: The general block diagram for EDR extraction in literature

Figure 3.3: Example of all different filtering methods on the IP signal to remove the cardiac artefact. VP N T is the lung volume signal as a

golden reference. The raw IP signal has cardiac component right following all the R peaks of the corresponding ECG. S −G and mSB M

are the output from the Savitzky– Golay smoothing method and modified Schuessler–Bates methods, respectively. Adapted from [7]

remove the cardiac oscillations as well as with the instrumentation noise (like quantization noise) higher
than true respiratory rate, e.g., with a 1.5 Hz (90 bpm) cut-off frequency. As there is also commonly baseline
wandering in the IP signal, the high-pass filtering is used to eliminate this kind of low-frequency noise to
make IP signal of good enough quality for further processing.
Some studies investigate the methods for suppressing cardiogenic oscillations in impedance pneumography
and as shown in Figure 3.3, the cardiac oscillations can also be present in the IP signal if we look at the raw IP
signal together with the ECG signal.
Normally, the cardiac oscillation can be filtered out using a low-pass filtering set at a proper cut-off frequency.
More advanced technologies are investigated in some studies. One technique described in [7] is using the R
peaks in ECG to obtain the cardiac oscillations from the IP signal. More details can be found in [7]. The
methods show great attenuation on the cardiac artefact in the IP signal with little distortion to it. However,
from their study, the low-pass filtering method has almost the same performance in removing the cardiac
artefact as the more advanced one since they also preserve the peaks of the respiratory signals at almost the
same timing. A set of example signals flitted by various the techniques in this study is shown in Figure 3.3. As
a consequence, simple low-pass filtering is enough to get the respiratory signal from IP of good quality.

3.2. MOTION ARTEFACT, NOISE REDUCTION AND SIGNAL QUALITY

In this section, we describe the nature of the motion artefact and introduce typical techniques for attenuating
the noise.
Motion artefacts are considered as the most troublesome limitation to respiration monitoring methods [15].
A data example is shown in Figure 3.4, from stage d in section one from the database 3 in Chapter 2, where
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the volunteers are required to move randomly on the bed. Within the red square, the signal is distorted by the
artefacts which make it difficult to derive correct respiratory information from it. The Acc recordings on the
right side show that the subject was moving randomly.
From many studies, motion artefact reduction is related to the design of the electrodes and it has been proven
that the motion artefact could be attenuated in a certain extent by increasing the contact area between the
electrodes and human skin[43]. Furthermore, signal processing methods could also be used to eliminate the
artefact present in the signal during the post-processing[44]. However, due to the fact that the MA and true
bio-medical signals could have an overlapping frequency band, which makes it impossible to split them by
simple filterings, like band-pass filtering [15]. Thus, many studies investigate the feasibility of removing MA
from the underlying signals to provide a more robust and accurate respiration monitoring.
One typical technique suitable for noise reduction is adaptive filtering [45]. The principle of this technique

Figure 3.4: Example of IP signal distorted by motion artifacts and the corresponding spirometer recordings and Acc recordings

is shown in 3.5. The observation signal X (n) is consisted of both the true signal S(n) and the noise N0(n).
under the condition that the reference signal N1(n) correlates well with the noise or the true signal in the
observation signal X (n), the adaptive filters is capable to tracking the change of the noise or true signal and
finally generate an optimal estimate of the noise N0(n) as N̂0(n), in statistical sense. As a consequence, the
true signal can be further obtained and of good enough quality for further processing [46].

One performance study of various adaptive filter algorithm for noise reduction in respiratory signals was

Figure 3.5: Adaptive filtering

carried out in [47]. In this study, the true respiratory signal has been corrupted by synthetic noises and six
different adaptive filtering methods are used to remove the noises. It is concluded with the help of a proper
reference signal, all the adaptive filtering have good performance on attenuating the noise in the signals and
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there will be always a trade-off between step sizes and the convergence rate.
In practice, one typical problem for adaptive filtering techniques is how to find a proper reference signal. It
has been found in a lot of studies, the triaxial accelerometer recordings are commonly used as a reference
signal indicating the motion artefact and it is fed into the adaptive filter to generate an estimate of the motion
artefact. In [48], three axial outputs of the Acc are used as the input reference signal to estimate the motion
artefact in the ECG and IP signals with the help of gradient adaptive Laguerre lattice (GALL) filter, then all
the three outputs are further fused by a Kalman filter to generate the final motion estimate. It has been con-
cluded that the MA in the ECG signal could not be attenuated greatly by this proposed method while for the
respiratory signals, it has a good performance on attenuating the noise. One possible reason stated in [48] for
this from this study is that MA on ECG waveform is that the artefacts in the ECG signal are mostly the varia-
tions of potential between the electrodes by the relative sliding between the electrodes and the skin, while the
measured Acc signals are actually capturing the absolute physical movement. Thus, Acc signal and motion
artefact is actually two different signals generated from two different mechanisms. For the transthoracic in-
ductance (TI) signal, it is found that Acc signals are correlated well with the motion artefact in TI signal since
MA in the TI signal is generated by the mechanical movement which can be captured by Acc signal. From this
studies, it can be concluded for adaptive filtering technique, a proper reference signal correlated well to the
noise is essential for the noise attenuation.
Since noise attenuation is difficult and still underway, some studies recommended that signal quality indi-
cator should be assigned to the underlying signals to indicate the reliability of the respiratory information
estimated from them. A few relevant papers have described their own signal quality indices. For example in
[49], a signal quality indicator(SQI) is created which measures the regularity of the peaks, which is believed to
be capable to indicate the true respiratory activities. This SQI value is then scaled to be between 0–1 in a non-
linearly way. It is concluded that this SQI value could help to fuse RR from two EDR signals to achieve a lower
error compared with the RR from only one EDR. compared with the SQI proposed for ECG mentioned above,
which is relatively straight-forward, one study proposes respiratory quality indices (RQIs) that indicates the
quality of the respiratory signals extracted from ECG and PPG signals in [50]. Specifically, RQI is used to detect
the presence of the respiratory modulations on the underlying bio-medical signals. Four different RQIs mea-
suring different features of the respiratory signals are derived. It is concluded that the proposed RQI-based
method in this study could provide a more robust and accurate RR estimate.

3.3. RESPIRATORY RATE ESTIMATE

Although the IP and EDR signals seem to be sinusoidal waveforms in some cases, it is still difficult to estimate
the RR automatically from the raw signals [23].
In some early studies[3], the researchers try to get the RR from the respiratory signals through visual inspec-
tion by identifying the peaks and troughs which truly reflect the respiratory activities. However, the results
of this human annotation are not reproducible. Furthermore, some studies investigate the feasibility of esti-
mating the respiratory activities automatically based on some algorithms, which can be mainly divided into
frequency-based methods and time-domain methods [10] .
Generally, the time-domain methods could provide more robust and accurate RR estimate compared with
frequency-domain methods because time-domain techniques are based on the peak detection which does
not require that the underlying respiratory signal needs to be quasi-stationary, which is required for frequency-
domain techniques[10]. Therefore, more focus remains on time-domain methods. Results from different
methods are also briefly presented. However, due to the reason that the various data acquisition and eval-
uation metrics from different studies, for example, some studies have the protocols which collect data from
less intensive movement if compared with other studies, it’s extremely difficult to compare the results from
different studies.

CONFIDENTIAL



3.3. RESPIRATORY RATE ESTIMATE 21

3.3.1. TIME DOMAIN TECHNIQUE

Typically, for a respiratory signal of ideal quality, it will be very similar to a pure sine wave such that the
simplest way for breath detection in time-domain is to detect the peaks and valleys and take them as the
beginning and end of the breath cycle. However, the signals are often distorted by motion artefact and noise
which makes the simple detection method not work well [12]. Normally, motion artefact and noise could re-
sult in random fluctuations on the top of the clean signal, which make it possible to remove those ripples by
setting a proper threshold to the detected peaks and valleys [8]. However, it is hard to determine a constant
distinct value as the threshold for all the situations. Many studies are trying to determine the threshold in an
adaptive way.
An adaptive threshold algorithm is investigated in [8] and a threshold is determined as 0.2 times the 75− th
percentile of all the detected peaks and any peaks of which the corresponding amplitude is below this thresh-
old will be not taken as real respiratory activities and then removed. One additional criterion is also given:
for every breath, there must be exactly one minimum below zero. After removing the wrongly detected peaks
and valleys, the RR estimate can be calculated by the following equation:

RRi nst = 60

∆t
(3.1)

Where ∆t is the time interval (in seconds) between consecutive peaks that satisfy the requirements. The
resulting RR is in a unit of breath per minute (bpm). This method was first described in [51], denoted as
"Count − or i g " ((refer to "Count − or i g " method in Figure 3.6). In this study, it had provided better re-
sults than spectral calculation based methods since either the RR estimated from the Fast Fourier Transform
(FFT)-based method or autoregressive modelling-based method provides a low correlation below 0.2 with
the reference RR and the new algorithm has a much higher correlation value as 0.87.
A modified version of the "Count −or i g " is raised in [8], denoted as "Count −ad v" ((refer to ”Count-adv”
method in Figure 3.6). The threshold is determined with the help of a third quartile of the amplitude differ-
ences between consecutive extrema pairs (peaks and valleys) instead of maxima. If the amplitude difference
of the corresponding pair of extrema is below this threshold, they are considered as the random fluctuations
due to the artefact which is not representing the true respiratory activities. After removing the random fluc-
tuations, the RR is calculated by equation 3.1.

Figure 3.6: Illustration of the two time-domain RR estimation methods, c) and d). Steps a) and b) are preprocessing steps. Adapted from

[8].
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3.3.2. FREQUENCY DOMAIN TECHNIQUE

Frequency analysis of the respiratory signal is much simpler compared with time-domain methods. The
normal way to estimate the RR is to transform the respiratory signal into the frequency domain and then look
for the dominant component representing the respiratory activities [10]. In many studies, two commonly
used spectrum estimation methods are Fast Fourier Transform (FFT) and Auto-regressive (AR) modelling.
In [52], the FFT is applied to three EDR signals from the ECG signal using a 30-second sliding window with
an overlapping of 6 seconds. It is found that correlation coefficients are approximately 0.90 between the
developed methods and reference respiratory signals. The data are collected from 24 subjects who were under
a full standard sleep test.
Auto-regressive (AR) modelling is a linear predictive modelling technique which is capable to predict the
output variable (RR) with the help of a certain amount of the past signal and this method could improve
the frequency resolution compared with the FFT method [12]. A key factor for the AR model is the selection
of the order and it determines how many previous samples we use to predict the current value. For EDR
methods, model orders between 5 and 7 were found to be best in [12]. In some other studies, in order to
solve the problem of finding the optimal order for the AR model, the median spectrum for model orders
2–20 is calculated and the pole in the respiratory range with the highest magnitude pole is selected and the
corresponding frequency is taken as the respiratory rate [53]. It is reported that the median spectrum method
can provide a more accurate RR estimate compared with the method based only on one spectrum with a
certain order.
All the methods in time-domain and frequency-domain are summarized in table 3.2 which are adapted and
then modified from [10].

3.4. INFORMATION FUSION FOR RESPIRATORY SIGNALS

Information fusion is a more advanced way to fuse the information from a set of signals and provide a more
correct output of the real-world phenomena. It has been reported from many studies that certain fusion
methods could gain great improvement on some applications which could be found in [36].
Data fusion is the term used to describe the integration and combination of information. In RR sense, data
fusion can be used to fusion RR estimate from a set of biomedical signals (e.g. ECG and IP), or from the same
source signal but based on different methods (e.g. various EDRs from the same ECG ). The stages where data
fusion is taking place in the signal processing path can be categorized into three processing levels [12]:

• Data level: The lowest level of data fusion. Raw signals from different sources are fused to obtain a
better signal.

• Feature level In this level, features extracted from different sensor data are combined to make a fused
feature. In this thesis, RR is considered as a feature of the respiratory signals.

• Decision level The highest level of data fusion. It can mainly be divided into two categories: the hard
decision or soft decisions.

For the respiratory application, data level fusion is a troublesome task. It’s not possible to fuse the data from
different bio-medical signals. The reason for this is that the respiratory signals from different source signals
may have different latency due the different response time of the underlying signal to represent the respi-
ratory signals, which makes it difficult to fusion the data in the lowest level. Thus, this thesis will focus on
feature level fusion. The following subsections will give an overview of different fusion methods used in vari-
ous respiratory rate estimation studies. As a summary, most studies conclude that the fusion methods could
provide a better result but often the improvements are kind of minor for certain situations.

SMART FUSION

In [36], a smart fusion is for RR estimation proposed. The idea is that RR estimates from BW, AM and FM-
based EDR respiratory signals will be further corrected by the quality assessment. If the standard deviation
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Methods Description

Time-domain methods

T1 detect the breath cycle with the help of the detected peaks and valleys

[54]

T2 Detect the breath cycle by combining peak and trough detection with

thresholds both in time and amplitude [55]: remove all the peaks less

than the mean as well as the valleys greater than the mean; remove all

the peaks or valleys within a window of 0.5s centred at the previous

peaks or valleys

T3 Detect the breath cycles using ‘Count-orig’ method. [8].

T4 Detect the breath cycles using Count −ad v [8].

Frequency-domian methods

F1 Spectral analysis of the respiratory signal by Fast Fourier transform

[36].

F2 Spectral analysis of the respiratory signal by Welch periodogram [36]

F3 Spectral analysis of the respiratory signal by the Auto-regressive

method with a model order of 8 [53].

F4 The Auto-regressive all-pole modelling method is used for the spec-

tral analysis of the respiratory signal with the model order of 8 and the

pole with the highest amplitude is selected which indicates the true

respiratory activity [56].

Table 3.2: Methods for respiratory rate estimation. Adapted and then modified from [10]

CONFIDENTIAL



24 3. LITERATURE OVERVIEW OF SIGNAL PROCESSING METHODS FOR RESPIRATORY SIGNALS

of the RR estimates from all the EDR signal is less than 4 bpm and the mean of the individual RR estimates is
calculated and further taken as the final RR estimate, otherwise, the RRs from all EDR signals are not reliable
and no RR is output. It is concluded the Smart Fusion can remove the wrongly detected RR estimate and thus
produce a better result.

FREQUENCY DOMAIN FUSION

In [57], the data fusion is based on the RR estimated by frequency-domain methods. The frequency spec-
trum of BW, AM and FM respiratory signals are calculated based on the Welch periodogram and then a mean
spectrum is obtained. One additional criterion for the spectrum is that the underlying signal must have a
certain power of the frequency component in the predefined respiratory range, otherwise, it’s removed from
the fusion step to get the mean spectrum. Finally, the RR estimate for the corresponding signal frame is taken
as the frequency component which has the maximum power in the estimated mean spectrum. under the
best combination of the underlying signals for data fusion, this method was reported to obtain an error of
−2.16±12.69 mHz, equivalent to −0.13±0.77 bpm, on respiratory rate.

KALMAN FILTER

After obtaining the noisy RR estimates by the breath detection methods from the underlying respiratory sig-
nals, more advanced techniques can be used to estimate the true state of this dynamic system. A typical
technique for solving this problem is Kalman filter (KF) [58].
The Kalman filter is the optimal estimator in the statistical sense since it can minimize the mean square error
of a state when there is uncertainty present in the state in the form of Gaussian noise [12].
The state and the observation at a discrete time can be formed in the following equations:

xk+1 = Ak xk +wk (3.2)

zk = Hk xk + vk (3.3)

where x is the state and y is the observation. wk and vk are state and measurement noises respectively
and these two noises are assumed to be independent and obey normally probability wk ∼ N (0,Qk ) and vk ∼
N (0,Rk ), where Qk is noise covariance of the state while Rk is the covariance of the measurement. Ak is
physical model matrix for the state and Hk is the measurement matrix for the observation.
The pricinple of Kalman filter is that it gives an optimal estimate of the current state based on the help of
prior knowledge of physical model as well as the information of the current observation. Normally, KF has
two distinct steps: "Predict" and "Update" [12].

• Predict In this step, the KF provide a state estimate for the current time index based on the estimate
from previous time frame.(for a more detailed derivation of these equations, refer to [12]).

x̂K |k−1 = Ak−1xk−1 (3.4)

P̂k|k−1 = Ak−1Pk−1|k−1 AT
k−1 +Qk−1 (3.5)

where the x̂K |k−1 is the state estimate for current time k based on the state from time k−1 as well as the
prior physical model. Pk is the error covariance matrix at time k.

• Update In this step, with the obtained new observation for the current time index, a posteriori estimate
is derived based on the following equations:

rk = yk −Hk x̂k|k−1 (3.6)

Sk = Hk P̂k|k−1H T
k +Rk (3.7)

Kk = P̂k|k−1H T
k S−1

k (3.8)

x̂k|k = x̂k|k−1 +Kk rk (3.9)

Pk|k = P̂k|k−1 −Kk Sk K T
k (3.10)
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where the rk is the residual innovation, the difference between the state prediction and the observation. The
innovation is often the only measure available in the Kalman filter to indicate the performance of the estima-
tor [12]. Sk is the innovation covariance and Kk is the kalman gain. The recursions of the Kalman fitler need
to be initialized with a predefined estimates of x̂(0|0) and P0|0.
for the application of respiratory rate estimation, the KF was first taken in [12]. The Kalman filter is used to
track the true RR estimated from a set of respiratory signals. Based on the assumption that the respiratory
rate is approximately constant only with minor changes between two measurements and the predicted state
is set as the same value previous one ( Ak is set to 1), thus the corresponding equations are simplified and the
state transition equation in 3.4 is switched into scalar. The researchers used KF to smooth the RR estimates
from I P , EDRRS A and EDRRRamp . The process noise w is set based on the variation on the true RR. As a
consequence, the dynamic model is set as follows:

xk+1 = xk +wk (3.11)

Meanwhile, Hk is set to one since the measurement is directly set from the state. The measurement model is
then formed as follows togehter with the observation noise vk :

yk = xk + vk (3.12)

Normally, the covariances Qk and Rk for the noise term wk and vk are rather difficult to estimate. In this study
[12], the Qk is set to 2 as a reasonable value for a good track of the RR variability for the consecutive breath
cycles. As a consequence, the measurement noise Rk is even more difficult to estimate since it the measure-
ment noise varies from the configurations of the different source signals from which the respiratory signals
are derived. To simplify this, scalar values Rk are set differently for each individual measurement method (
ECG and IP), ranging between 18–38 (standard deviation 4-6 bpm). Process covariance Pk was set ten times
Qk and the state x0|0 is initialized by taking the average RR from all the underlying respiratory signals. The
KF works as a smoothing filter to smooth the RR estimate from the individual signal and it’s reported that the
Kalman filter could give more correct RR estimates which has a higher correlation value with the reference
signal compared with the instinct RR estimate without filtering.
In the same study [12], an alternative method for fusing the RR estimate is also proposed. the KF innovation
residual rk from Equation 3.6 works as an indicator for the reliability of the RR estimate. In KF filtering the
difference between the value of the true state and the value of the prediction should be zero-mean and white,
thus the variance of the state can be taken as the square of the residual.

σ2
k = r 2

k (3.13)

The fusion idea is that if based on the varianceσ2
k,s for each respiratory signal s at time k, working as the con-

fidence of the RR estimate RRi nst , a fusion method can be combining RR estimates from each signal using the
inverse proportion of each signal’s variance since this linear combination minimizes the mean square error
[12]. The fusion formula is as following:

ẑ0 =
n∑

n=1
αp ẑp (3.14)

where a weighting parameter αp is defined as:

αp = 1

σ2
p

∑n
i=1

1
σ2

i

(3.15)

For simplicity, the way to fuse RR from two measurements is as follows:

RRk =
σ2

k,2

σ2
k,2 +σ2

k,1

RR i nst
k,1 +

σ2
k,1

σ2
k,2 +σ2

k,1

RR i nst
k,2 (3.16)

The ideas behind this equation is that: if one measurement is under artefact, resulting in a larger error on the
corresponding RR estimate, then the residual will be lager than the others, a smaller weight will be assigned
to the corresponding RR estimate compared with others, which means the output from the fusion step will
focus more on the RR estimate from signal of good quality. It is reported that that this innovation fusion
methods could provide a more accurate RR estimate and a higher correlation value with the reference RR as
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0.74. However, there are also some limitations of this method and this method does not give accurate results
when all source measurements are noisy. The setting of this KF methods is summarized in the table 1.

Algorithm 2 Summary of the KF algorithm in [12]

1: procedure KF FUSION The procedure of KF in [12]

2: Initialization b Initialize the parameters

Qk = 2 Rk = [4,6]

Pk = 20 x0|0 =
N∑

i=1
RREDRi /N

3: while i < N do stop the loop when reach the last segment

4: Apply KF to N respiratory signals and get RREDRi i = 1,2...N

5: Get the corresponding residual σ2
i of each EDRi

6: Do information fusion based on equation 3.15 and get RR f usi oni .

7: end while

8: return series RR f usi oni The final series of RR estimates

9: end procedure
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4
DEVELOPMENT FRAMEWORK FOR

RESPIRATORY RATE ESTIMATE

This chapter describes the framework that is developed in RR algorithm development. The final target is to
create a respiratory rate estimate as accurate as possible in a way of information fusion based on IP and ECG
signals. Respiratory rates estimated from spirometer are considered as the gold reference for the comparison
against RR estimates from this framework. Furthermore, a set of evaluation coefficients from the related
literature are also introduced to create reproducible procedures evaluating the performance of the proposed
methods in a quantified way.

4.1. INTRODUCTION

The respiratory rate estimation framework in this thesis is much the same as what is introduced in chapter 3.
Figure 4.1 gives flowchart of the framework.
In this thesis, the developed framework consists mainly of four parts as follows and each stage has already
been labelled below the framework in Figure 4.1.

Step 1: RR estimates from each individual signal, IP and ECG, are optimized to be as accurate as possible based
on the idea that the more accurate the individual method is, the better the fusion methods could work.

Step 2: Signal quality indicators(SQI) for each data segments are estimated to tell the data of good quality from
the bad ones and also help to smooth the RR estimates since SQI could indicate the reliability of the RR
estimates from underlying signals.

Step 3: Investigate the feasibility of attenuating the motion artefact with the available reference signal ac-
celerometer (Acc) recordings.

Step 4: the methods based on information fusion to fuse RR estimates from all the underlying signal are also
investigated and they are rather related to the signal quality indicator.
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Figure 4.1: The flowchart of the RR estimation development framework.
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Figure 4.2: flow chart of base signals proprecessing

A development environment is built in Matlab and this environment uses a parametric approach where the
processing methods for RR estimation can be created. Meanwhile, it was also capable to give visualizations
of the developed framework, calculate performance evaluation metrics against the reference RR from a gold-
standard signal, spirometer recordings.

4.2. ALGORITHM DEVELOPMENT

The following subsections give the principles used in the algorithm development under each method. First,
we evaluate the RR detection performance of each individual EDR signals from the literature and then only
the best performing individual methods were used in the fusion phase. We also introduce the innovations of
the developed framework.

4.2.1. PRIMARY SIGNALS PREPROCESSING AND RESPIRATORY SIGNAL EXTRACTION

In this section, we introduce the selected methods for extracting the respiratory signals from the ECG and IP
signals.
Figure 4.2a shows the flowchart of ECG processing. First, the ECG signals are filtered based on the continu-

ous wavelet filter (CWT) method from imec [59], which helps to filter out the frequency band of no interest
and also maximize the R peak in the ECG for a better peak detection. Then a peak detection algorithm is
applied to the filtered ECG to detect all the R peaks.
In order to make the ECG processing framework more complete, modifications for detecting the Q,S point
and also the onset and end of the waveform, according to the study in [60], are done in this thesis due to the
request from some techniques for extracting the EDRs, e.g. calculating the amplitude difference between R
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Figure 4.3: The block diagram of SQI evaluation for ECG

and Q peak. Furthermore, after detecting all the QRS waveform, the ectopic beats also needed to be removed
as these ectopic beats could have abnormal morphology and R peak interval. Thus, the ectopic beats are
removed based on the heartbeat timing signal in [61]. Finally, a set of EDR signals are extracted based on the
detected QRS complex waveform.
All the EDR methods used in this thesis are listed in table 3.1 except for the PCA-based method. All the EDR
signals of discrete values from the ECG signal were transformed into evenly sampled waveform at a constant
frequency of 8 Hz using interpolation based on the cubic spline.
As is shown in the Figure 4.2b, the IP signal is filtered using a 4th order Butterworth band-pass filter with
a frequency band of [0.1−0.8]H z (6 and 48 bpm), which is helpful to remove the baseline wandering, low-
frequency noise, and also the cardiogenic oscillations, high-frequency noise.

4.2.2. SIGNAL QUALITY AND RESPIRATION QUALITY ESTIMATE

In this section, we introduce the methods for evaluating the signal quality (SQI) for ECG signals from the as-
pect of mythologies and the respiratory signal quality (RQI) for IP and EDR signals for the aspect of how much
respiratory information is present in the signals. Both these two quality indicator will be used for smooth-
ing the RR estimate from underlying signals, as well as for data fusion. For the EDR signal, the overall signal
quality (OSQI) is the product of the SQI and RQI. The idea is that EDR signal is derived from the ECG and nor-
mally it requires an accurate QRS detection and if the raw ECG signal is of low quality (troublesome for QRS
waveform detection), the EDR signal should be less reliable even if the RQI is low, thus the corresponding RR
estimate is of low trust. On the other hand, if the raw signal is of good quality but the corresponding RQI of
EDR is low (the modulation of respiration on the ECG is not distinguishable enough), the RR estimated from
the EDR should also be less reliable.

SQI FOR ECG SIGNAL

in this section, we introduce the way how we estimate the SQI for ECG signal for the aspect of morphology
based on machine learning.
Many studies investigated the way to evaluate the signal quality of ECG signals and in [11], machine-learning
based methods are applied in this thesis to classify the ECG of different quality into two categories: "Good"
and "Poor" in terms of the reliability for diagnosis purpose. A set of features quantifying energy distribution
in the spectrum, higher order moments in the statistical sense and inter-algorithm agreement are calculated
and certain classifiers are used to give the final classification based on these features.
With the help of the study [11], a completely automated algorithm to derive the SQI is proposed. The algo-
rithm is based on signal quality metrics which are published previously and some new ones are proposed to
estimate the signal quality of ECG for the purpose of providing a better EDR signal. The block diagram for the
methods is shown in Figure 4.3.

The database 3 introduced in Chapter 2 is used for the investigation of SQI for ECG. Totally 10 recordings
of clean ECG from 10 subjects together with realistic noise from the same people are utilized to generate the
dataset. The realistic noise includes motion artifact (em) and muscle noise (ma). It is well-known that in
the machine-learning area, the imbalanced classes, which means one class outnumbers all the other classes
much, is not good for establishing good classifiers as it causes bias during the design and results in a poor
performance with a bad generalization ability [11]. Therefore, to generate a balanced dataset, for the ECG
recording of each subject, we add the noise on the top of the clean ECG in an alternating way: for the first
2-min clean ECG segment, a randomly chosen segment with a length of 2 minutes from either em or ma real-
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istic noise record was firstly calibrated based on a certain value of signal to noise ratio (SNR) and then added
on the top of clean ECG signal with the same length of 2 minutes and then for the next 2min segment in the
ECG recording, it keeps clean and no noise is added. The noise was added so that the SNR was equal to a
certain value and the data is generated under a range of SNR [0,6,12,−6]dB , which results in ECG signals
distorted by noise of descending intensity.
As for calibrating the noise and ECG signal power based on the SNR, as is suggested in [18], the ability of
typical QRS peak detectors to localize the QRS is related to the size of QRS complex. As a consequence, the
calculation of the ECG power will be mainly based on the power of QRS complex and the methods for calcu-
lating the power of the clean ECG and noises are summarized in Figure 4.3. In order to calculate the power of
the QRS complex, firstly all the R peaks are detected and peak-to-peak amplitudes of all the points within the
window with a length of 100ms centred at R peak are recorded. Then a trimmed mean of all the amplitudes,
after removing a certain amount of the data with relatively low and high values. This mean value is the ECG
signal power. As for the calculation of the power of noise Pv , it’s similar to the calculating of the power of the
ECG signal but the root mean squared difference is calculated instead of the peak-to-peak amplitude.
A data example under SNR equal to -6dB is shown in Figure4.5. The SN R, S, was controlled and the value is

Figure 4.4: The block diagram of calculating the ECG power (upper section) and the noise power (lower section).

calculated as follows:

y = xcleanECG +a ·noi se

SN R = 10log (Px /(Pv ·a2))

a =
√

10( SN R
10 ) Px

Pv

where y is the is the noisy signal which is generated from the mixtures of realistic noises and the clean ECG
data, x is the clean ECG signal, noi se is the 2-min segment from the realistic noise recordings. Px is the power
of the clean ECG recordings and Pv is the power of realistic noise recordings.
As for annotation, based on the extended classification scheme described in [11] , it is noted that each class

of acceptability was has a certain value between -1 to +1, where -1 means the worst quality while +1 means
the best quality, considering the QRS waveform detection accuracy and also the morphology of the signal,
we take the class above C+ is categorized into "Good", otherwise categorized "Poor". Then together with the
EDR signals derived from the ECG, visual inspection is applied to see if the EDR signal is representing a regu-
lar respiratory activity. In order to annotate the quality of the ECG signals, a Matlab GUI is developed and the
labels can be automatically generated after the annotator select certain buttons. The GUI is shown in Figure
4.6.
As for the Signal quality indices, totally ten features are extracted mainly based on [11] [62] and all the SQI
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Figure 4.5: An example of the generated balanced dataset

Figure 4.6: The designed Matlab GUI for ECG data annotation
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Quality Class Description given to annotators

1.00 A An outstanding recording with no visible noise or arte-

fact; such an ECG may be difficult to interpret for in-

trinsic reasons, but not technical ones

0.75 B+ A good recording with transient artefact or low-level

noise that does not interfere with interpretation

0.5 B- A good recording with more transient artefact or low-

level noise that does not interfere with interpretation or

the QRS detection

0.25 C+ An adequate recording that can be interpreted with

confidence despite visible and obvious flaws, but no

missing signals

-0.25 C- An adequate recording that can be interpreted with

confidence despite visible and obvious flaws with miss-

ing data.

-0.5 D+ a poor recording that may be interpretable with diffi-

culty, or an otherwise good recording with one or more

missing signals.

-0.75 D+ A poor recording that may be interpretable with diffi-

culty.

-0.1 F an unacceptably poor recording that cannot be inter-

preted with confidence because of significant technical

flaw

Table 4.1: The criterion for ECG data classification adapted from [11].

CONFIDENTIAL



4.2. ALGORITHM DEVELOPMENT 33

-2000
20

-1000

18
16

0

60014

A
m

p
lit

u
d
e

1000

50012

Y

10 400

2000

X

8 300

3000

6 2004
1002

0 0

Figure 4.7: Data example of a number of QRS complex in an ECG segment. Along the Y-axis, the time is increasing, corresponding to the

occurrence time of each QRS complex. The X-axis indicates the samples of each QRS complex

are summarized in table 4.2 .

Waveform template matching
This is a measure of the similarities among all the detected QRS complex of an ECG segment. The principle of
the template matching approach, used in [63], is that first all the QRS complex are detected based on certain
detection methods and then a template is created by calculating the mean of all the RQS complex. then the
Pearson’s correlation coefficient is calculated between this template and all the QRS complex and finally, the
mean of all the correlation coefficients is calculated taken as the final feature. Pearson’s correlation coeffi-
cient is a measurement typically used for testing the similarity between two time-series and more details can
be found in [64].

RR energy
From the observation of the noisy ECG signal, the energy between the R-R intervals can be taken as a feature
indicating the signal quality since it is noted that more energy occurred between R peaks during the move-
ment [65]. First, the data is normalized by the maximum. Meanwhile, the RR energy needs to be normalized
by the number of points during the RR interval in order to remove the effect of HR variation. Normally, From
the data, the normalized RR energy will be larger when the motion artefacts are present, resulting in a large
variation of the ECG baseline.

Relative power in the PCA
This feature proposed based on the principal component analysis (PCA) which is a typical method for di-
mension reduction. Based on the idea in [41], the QRS complex, T wave, or P wave in the ECG signals could
be characterized by PCA from all the beats within an ECG segment. Thus, the power difference of clean and
noisy ECG signals should able to detect by eigenvalues of the covariance matrix of the data matrix of which
each column is one aligned QRS complex with the same length. This feature is further taken as the ratio of
the sum of all the relatively larger eigenvalues of the first n principal components with over the sum of all
eigenvalues extracted based on the principal component analysis (PCA) [66]. In [66], the n is taken as 5 while
in this thesis, n is optimized from a range of [1,6]. A data example is shown in Figure 4.7 and this is a 3-D plot
of a number of QRS complex in an ECG segment. Along the Y-axis, the time is increasing, corresponding to
the occurrence time of each QRS complex. The X-axis indicates the samples of each QRS complex.
All the SQI for the ECG signal are summarized in table 4.2.

In order to find the optimal SQI for indicating the signal quality of ECG, two classifiers are tested to derive the
best SQI: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA). The SQI that is able
to distinguish data of good quality from bad ones consistently with the highest accuracy based on these two
classifiers will be taken as the best SQI.
Due to the limited amount of data in database 3, leave-one-subject-out cross-validation method is used to
test the performance of each SQI, which means that each time the data from one subject is randomly selected
out of all data and the classifiers are trained on the remaining data and the corresponding performance on
the selected subject is obtained. Two typical statistical measures for evaluating the performance of these two
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classifiers used in [67] are sensitivity (SE) and positive predictivity (PP ). The former is calculated using the
formula T P/(T P+F N ) while the latter is calculated as follows T P/(T P+F P ), where T P is the number of true
positives while F P is the number of false negatives and F N is the number of false positives. Furthermore, the
F1 score recommended in [67] is also applied to each SQI and it’s calculated as follows: 2·(SE ·PP )/(SE +PP ).

Features Description

morphology

waveform template matching Measure of the regularity of ECG QRS waveform: similarities in the

morphology of the QRS complexes within a segment [62]

Energy distribution

average RR energy A indicator of motion artifact: extra energy occurred between tow

consecutive R peaks [65].

relative power of QRS waveform Spectral distribution ratio between two frequency bands: 5-14Hz

band and 5-50Hz band, where the spectrum is calculated by FFT [11].

relative power in the PCA PCA is applied on the QRS waveform matrix and relative power ration

is calculated based on eigenvalues [41].

Wavelet and Shannon entropy Measure of the distortion of energy distribution of HRV signal:

Wavelet transform is used to calculated the power in different fre-

quency bands [62]

Statistical metrics

Skewness and kurtosis Two typical metric used to indicate the presence of outlier in the ECG

signal [11].

Matching of two QRS detector Matching of two existing QRS detection algorithm for the ECG seg-

ment [11].

R-R interval variability Measure of regularity in the R-R time intervals based on the detected

R peaks of ECG [62].

Table 4.2: SQI candidates for clarifying the signal quality of ECG

RQI MODEL DEVELOPMENT FOR RESPIRATORY SIGNALS

The respiratory quality indicator is used to indicate whether the respiratory modulation is present in the un-
derlying signal or not and further test how much of respiratory information is actually present. Based on the
study[68], several RQIs candidates are introduced in this section and more details are described in appendix
A.2. The RQIs proposed in [68] are mainly tested on the respiratory signal derived from ECG and PPG in this
thesis all of these RQI together with two novel RQI are tested on the IP signal from the d at abase1 introduced
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Figure 4.8: An example of the FFT RQI

in Chapter 2. Three key RQIs are introduced as follows.
Fast-Fourier Transform RQI The first RQI method is based on the Fast Fourier transform in [68]. The FFT
method is applied to estimate the spectrum of the underlying signals and then a value is derived from zero to
a unit to presents how much respiratory information is present in the corresponding respiratory waveform.
Specifically, The FFT is applied to the data x(n), a data segment of the 20s with a Hamming window to prevent
the leakage of the spectrum. The output is the derived spectrum X (m). All the peaks in the X (m) within the
predefined respiratory frequency range from 0.1 Hz to 0.8 Hz (6 bpm to 48 bpm) are detected and maximum
peak area (MPA) is calculated as the sum of the three largest peaks centralized on the largest value of X (m)
while the respiratory area (TRA) is taken as the sum of all the detected peaks. RQI f f t is calculated as follows.

RQI f f t =
∑3

i=1 X (mi )∑1
m=0.1 X (m)

(4.1)

where sum3
i=1X (mi ) is the MPA and

∑1
m=0.1 X (m) is corresponding to T R A. The RQI f f t is a value in the

range from zero to unit and higher values represent a more dominant frequency component in the respira-
tory range, thus a stronger respiratory modulation for this segment, which means the RR estimate from this
segment is more reliable. An example is shown in Figure 4.8.
An relevant RQI can also derived from the frequency sepctrum, denoted as RQIpower r ati on . To get a more

smoothed spectrum, Welch’s power spectral density estimate method is utilized and the ratio between the
power of the respiratory frequency range 0.1-0.5 Hz band and the band of 0-1 Hz is calculated as RQIpower r ati on .

Autocorrelation RQI The autocorrelation is a typical statistical method to find periodical patterns in the sig-
nal and normally, the respiratory signals are pseudo-periodic in a short time frame so that an RQI based on
autocorrelation is derived and also tested, denoted as RQIauto , in [68].
Autocorrelation is a measurement of the correlation of a signal with a delayed copy of itself and the value of
correlation is related to the latency. It’s also a way to measure the similarity between various data series as a
function of the time latency between them. the autocorrelation for lag k is defined as follows [68] :

rk = 1∑N
i=1(yi − ŷ)2

)
N−k∑
t=1

(yt − ŷ)(yt+k − ŷ) (4.2)

The autocorrelation value is in the range of 0-1, where one indicates a perfect alignment while zero means
there is no repeating patterns in the underlying signal. The RQIauto is derived based on the autocorrelation
of a data segment. Under the assumption that the ideal respiratory signal is expected to be sinusoidal and the
better the signal is, the more visible the repeating pattern is shown in the signal, the RQIauto is taken as the
maximum autocorrelation within the lag range of k = 102 seconds to k = 819, corresponding to from 6 bpm to
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60 bpm. The RQIauto is then assigned to be the maximum correlation value at the specified time lag k within
the corresponding respiratory frequency range of and k indicate the time lag where the signal matches to
itself most. As a consequence, the larger the correlation value is at a time lag k, the more sinusoidal the signal
is and the better quality of the underlying respiratory signal.

Kurtosis and Skewness These two statistical metrics have been introduced before in subsection of the SQI for
ECG signal. Again making the assumption that the ideal respiratory waveform would be a perfect sinusoidal,
the corresponding Kurtosis and Skewness for the ideal sinusoidal waveform are 1.5 and 0. Thus a reasonable
RQI from the data can be derived based on the deviation from these two standard values:

RQIkur,k =
{

1− |K urk−1.5|
1.5 |K urk −1.5| < 1.5

0 otherwise
(4.3)

RQIske,k =
{

skek 0 < skek < 1
1

|K urk−0| otherwise
(4.4)

Peak-interval variability This RQI is based on standard deviation (std) of the time interval between suc-
cessive peaks in the respiratory signal. For an ideal respiratory signal, this measure will be zero. Thus it is
calculated based on the deviation of this std from zero as follows:

RQIkur,k =
{

1− Peakpar i 2
std

42 Peakparistd < 4

0 otherwise
(4.5)

where the Peakpar istd is the standard deviation of the time-interval between successive peaks.
The proposed RQIs is summarized in table 4.3.

RQIs validation
Each RQI is scaled in certain methods such that the RQI values are expected to be capable to indicator the
actual respiratory information in the underlying signal and the higher the RQI is the better the signal is while
lower RQI indicator signal of poor quality.
For comparison, an ideal SQI i SQI is a generated by the product of the error E and the minus one, where E is
the error between the RR from the underlying signals and the RR estimate from the gold standard spirometer
recordings.
The ability of all the RQI to discriminate data of good quality from the ones with poor quality was assessed
using two methods proposed in [68]:

• Error curve plot

• Metric-based methods: by observing the performance difference between each RQI and the idea RQI
in terms of error E and the Pearson correlation coefficient.

For the former method, error curve plot, the mean absolute error(MAE) is taken as the mean absolute differ-
ence of the estimate (from the existing "Count −ad v" breath detection in Chapter 3) and reference estimate
(from spirometer). Firstly, MAE is calculated for the whole dataset and then the segments with the lowest
RQIs are removed and then MAE is recalculated for the remaining segments. This process is repeated by
removing increments of 1% of the data, from segments with lower RQI to segments with higher RQI. This
process is evaluated independently for each RQI and in principle, the more capable the RQI is to distinguish
the segment of good quality from the ones of poor quality, the more likely it is to remove the segments of poor
quality and keep the segment of good quality on every increment, thus the MAE will decrease. The MAE is
defined:

M AE = 1

N

∑
i=1

|(x̂i −xi )| (4.6)

where N is the amount of samples, and xi is RR estimate from the underlying signals and x̂i is the RR estimate
from the reference spirometer signal.
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RQI denotation Description

morphology

Autocorrelation RQIauto Measure of repeating patterns of the respiratory signals distorted by

noise [68].

Skewness and kurtosis RQIske ,RQIkur measures of symmetry of distribution and the sharpness of the distri-

bution for the morphology of the signal, respectively.

Energy distribution

FFT RQI RQI f f t Energy distribution in the respiratory frequency band based on FFT

[68].

Welch RQI RQIpower ar ti on Energy distribution in the respiratory frequency band based on welch

method.

Autoregression RQI RQIar Measure of the power of the dominant frequency component in the

pre-defined respiratory frequency range as the amplitude of the pole

[68].

Frequency variation

Hjorth parameter RQI RQIH j or th compares the signal’s similarity to a pure sine wave based on the cal-

culation of Hjorth parameter which indicating the frequency varia-

tion [68].

peak-interval variability RQIst ad par i g ap measure of the variability of the peak-interval in the respiratory sig-

nal.

Table 4.3: summary of the proposed RQIs
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For the latter evaluation method, we have two metrics:

E50 =
∑

N E

N
−

∑
m E

m
(4.7)

ERC M = M AERQI50% −M AEi dea50% (4.8)

where N is the number of all the data segment and thus E50 is presenting the difference between the average
error of the whole dataset and the error of segments whose RQI are larger than the RQI median. Thus, this
metric E50 will take larger values when the RQI is capable to distinguish segments of good quality with a lower
error in RR estimate from the segments of poor quality from which an RR estimate with a larger error may be
derived. As for the metric ERC M , where M AERQI50% is taken as the mean absolute error of the remaining seg-
ments after 50% of the segments has been removed based on the RQI and M AE I deal50% is the same mean
absolute error after 50% data removed from the same dataset based on i SQI . The RCM represents how much
better the i SQI performs compared to the RQI after 50% segments are removed and the smaller the ERC M is,
the better the RQI is.

4.2.3. MOTION ARTIFACT REDUCTION

As is described in Chapter 3, some studies investigated the methods to remove the noise buried in the sig-
nal, most of them used the adaptive filtering and the most commonly used reference signal for this filter is
accelerometer recording, e.g. in [48], The ACC outputs from three orthogonal directions are used as the in-
put of a bank of gradient adaptive laguerre lattice (GALL) filter to estimate the motion artefact in the ECG.
Since reference signal is essential to the performance of adaptive filtering to attenuate the noise and the only
possible reference from the d at abase3 is the accelerometer recordings, in this subsection, with the help of
the method proposed in [69], we use the method of combining constrained independent component (cICA)
algorithm in [70] and adaptive filters to first extract the motion artefacts in the noise-contaminated IP signal
and then evaluate the correlation between the motion artefact and the accelerometer recordings. By using
cICA, the respiratory component of interest could be automatically estimated from the IP and spirometer by
the use of cICA. Taking the output from cICA as the input to the adaptive filtering, the true respiratory signals
in the IP signal could be extracted with the correct amplitude. Besides, some simpler methods to extract the
motion artefact are also used. All the methods are applied to the real data from d at abase3.

METHODS

ICA is a typical method to extract several independent components (IC) from the observed signals which are
mixtures of the ICs [71]. The relationship between the independent components S and the observed mixture
signals X is expressed as the equation as follows:

X = AS (4.9)

where A is the mixing matrix to mix the source signal S. If the A is known, a weight matrix W , W = A−1, can
be used to recover the source S from the observation X as follows:

S =W X (4.10)

However, in practice, the prior knowledge of the sources S and the matrix A are not always available, the de-
sired signal can not be automatically selected from the output of ICA due to the permutation ambiguity. One
algorithm proposed in [72] named constrained ICA (cICA) could effectively extract the desired signal from
the mixed observation signal with the help of a reference signal. One study introducing the formulation of
the cICA is in [70] and it can be modeled as follows.

Max
y

J (w) ≈ ρ[EG(wT z)−E(G(v))]2

subject to g (w) = ε(y,r )−ξ≤ 0, h(w) = E {y2}−1 = 0
(4.11)
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where the object function J (y) is formulated as the negentropy with a positive constant ρ . G(·) is defined as

G(y) = e−a2 y2/2/a2 as suggested in [70]. Both the object function J (y) and the desired vector w for recovering
the true signal from the mixture signal are bounded by the the equality constraint h(w) . ε(y,r ) measures the
closeness between the extracted signal y from the observation signal and the reference signal r . Note that the
desired output signal is the independent component in the mixture signal which is closest to the reference
signal r.
A solution to solving the cICA problem is proposed in [72] and now summarized in table 3:
After we get the optimal estimate of the true respiratory signals with the help of the cICA method, we still

Algorithm 3 cICA

1: procedure CICA The procedure of cICA

2: Initialization b Initialize the parameters

µ= 1 λ= 1

γ= 1 η= 1

thr eshol d = 0.00001

3: while nor m(wk −wk−1) > thr eshol d do stop the loop when the changed value of weighted vector is

less than threshold

4: µt = max{0,µt−1 +γg (wt−1)}

5: λt =λt−1 +γh(wt−1)

6: Γ1 = ρE {zG ′
y (y)}− 1

2µE {zg ′
y (y)}−λE {z y}

7: Γ2 = ρE {G"y2 (y)}− 1
2µE {g "y2 (y)}−λ

8: end while

9: return w The optimal weight vector w

10: end procedure

need to recover the amplitude information based on adaptive filtering. As is described in section 3.2, the
principle of Least Mean Square (LMS) adaptive filtering method is as follows:

y(n) = wT (n)u(n)

e(n) = d(n)− y(n)

w(n +1) = w(n)+µe(n)u(n)

where u(n) is the reference signal as the input to the adaptive filter, which could be either related to the MA or
the true respiratory signal in the IP signal. d(n) is the desired signal of the adaptive filter and it is the mixture
of the true respiratory signal in IP and the motion artefact. w(n) is the weight needed to be applied on the
desired signal d(n) for recovering the true respiratory component, e(n) is the corresponding error between
the desired signal and the observation y(n) and µ is the step size.
Similar to the idea in [69], in this application, the noisy IP and spirometer signal(X) are mixed in a linear way
of MA and respiratory signal sources(S). Unlike the typical ICA algorithm, the cICA algorithm doesn’t need
any prior knowledge about the number of independent sources could be extracted from the underlying sig-
nals. The respiratory signal in the noisy IP signal could be recovered based on the cICA algorithm when the
reference signal from the smoothed spirometer signal is used. Furthermore, the output from the cICA method
is taken as the input of the adaptive filter to recover the amplitude information of the amplitude information.
The data used for evaluating this method are from the protocol we designed and mainly from stage d in sec-
tion 1, where volunteers are required to move randomly on the bed and the MA are most visible because the
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Figure 4.9: The flowchart of the correlation evaluation between motion artefact and Acc recordings

motion artefacts are most visible in this stage. Totally we have 40 segments with a length of 20 s for evaluating
this method.

PREPARATION FOR THE PROPOSED METHOD

Following the preprocessing in [69], figure 4.9 shows a similar primary flowchart includes: preprocessing,
cICA implementation and adaptive filtering.
Band-pass filtering The signals from spirometer may have non-respiratory component, like high-frequency
noises which are the mixture of air leakage and movement. Meanwhile, the IP signal has a cardiac component
and is also distorted by quantization noise. A band-pass filtering is enough to remove both high-frequency
noises as well as the baseline wandering with low frequency. Due to the fact that the frequency of respiratory
component normally lies in the range of 0.1-0.8 Hz, we use a fourth order Butterworth filtering with a band-
pass of [0,0.8] Hz to remove the unwanted noise and the baseline wandering.

The reference signal generation for cICA The generation of the reference signal can be based on the prior
information about the desired signal. Spirometer recordings show a robust pattern of the respiration though
sometimes slightly distorted by noise. thus, the reference signal can be generated with the help of the pe-
riodic patterns present in the spirometer signal. Firstly the spirometer is pass through a band-pass filtering
and then both autocorrelation and peak detection are used obtain the estimate the periodic patterns in the
spirometer signal together with the help of manual modification. After we have the respiratory rate from the
last step, we use a notch filter to extract a relative clear respiratory signal from the spirometer recordings.
After this, we use crosscorrelation to align this respiratory signal with the noisy IP signal since it’s required in
cICA that the occurrence time of each impulse of the reference signal is needed to be consistent with that of
the desired signal [70].

cICA implementation After getting the preprocessed spirometer recording, IP signal and the reference signal
generated in step ’preprocessing’, all of these are then taken as the input of the cICA algorithm. Then the true
respiratory-component in IP signal is extracted.

Adaptive filtering In this step, we utilize the LMS adaptive filtering to extract the true respiratory signal from
the IP signal with the artefact-free respiratory-component in IP signal from step’cICA implementation’ as a
reference signal. the step size µ is taken as 0.001 to have a good trade-off between convergence rate and ac-
curacy.

Other methods for MA estimation
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In order to evaluate the performance of potential ways to extract the motion artefact, three simpler meth-
ods are also used as comparisons. They are summarized in the following table 4.4 and the FFT-LMS method
is adapted from [69].

Correlation Evaluation After we get the MA estimate from the noisy IP signal, we need to evaluate the corre-
lation between the MA and ACC recordings, which is indicating to what extent the ACC can help to remove
the noise. The ACC recordings have acceleration data from three orthogonal directions: x,y and z and the
correlations between each of them and the MA are evaluated.
We have two metrics for this: linear correlation (Pearson correlation)[64] and coherence[73].

• Linear correlation Pearson correlation coefficient is used to indicate the correlation between tow data
series X and Y. It has a value in the range of [+1, 1] and the value of 1 represents a total positive linear
correlation while -1 means a total negative linear correlation. It’s defined as following [64]:

r =
∑N

n=1(xi − x̂)(yi − ŷ)√∑N
i=1(xi − x̂)2

√∑N
i=1(yi − ŷ)2

(4.12)

Because pearson correlation coefficient is affected by phase difference, we need to align the MA esti-
mate with the ACC recordings by crosscorrelation and then calculate the pearson correlation between
the aligned signals then.

• Coherence The linear correlation between two signals x and y in frequency domain is measured as a
function of frequency by the magnitude squared coherence function defined as [74]:

|γx y ( f )|2 = |Px y ( f )|2
Pxx ( f )Py y ( f )

(4.13)

In 4.13, P x y( f ) is the complex cross-power spectral density and of x and y signals while Pxx ( f )and
Py y ( f ) are the corresponding power spectral densities of the individual x and y signals respectively.
The value of coherence is in the range of [0,1] and a value of zero means no correlation is found be-
tween these two signals while a value of one indicate the best linear correlation at the corresponding
frequency.
The maximum possible attenuation of the noise which can achieved by the adaptive filtering is a func-
tion of frequency given in [74]:

at tenuati on( f ) =−10log10(1−|γx y ( f )|2)[dB ] (4.14)

based on this equation, the attenuation of the noise at certain frequency is determined by the value
of the coherence. Since the length of the data segment used in this method is 20s with data points of
20480 at sampling rate of 1024Hz, the spectra were calculated using Welch’s method based on the Fast
Fourier transform (FFT) with 215 point together with the hamming window. We evaluate the coherence
in two ways: i) maximum coherence that occurred at the respiratory frequency ii) the mean coherence
of the peaks in respiration range. An example is shown in Figure 4.10.

4.2.4. BREATH DETECTION

The algorithm used for the breath detection is the modification of ”Count −adc” method introduced in [8]
and the details has already been described in chapter 2. The threshold of this detection method is taken
related to the value of third quartile Q̂3 and the factor k multiplied to Q3 is optimized in a part of the data
resulting in thr eshol d = k ∗Q3. Breath-detection threshold multipliers k for the respiratory signals of IP
EDRRS A is set to 0.3 while for the EDRQRSsl ope , EDRRSamp , EDRQRSar ea and EDRRamp is set to 0.6.
This method returns instantaneous RR estimates for the segment based on the peaks detection and the algo-
rithm is summarized in the table:
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Algorithm name core method

FFT-LMS [69] a) Estimate the respiration rate from the spirometer recording with

manual correction and the spectrum of the MA contaminated IP sig-

nal.

(b) The spectrum of MA is generated by setting the coefficients of the

frequency corresponding to the true respiratory component in FFT to

zero.

(c) The MA estimate in the time domain is generated by the inverse

FFT transform on the MAE spectrum from step b).

(d) The MA estimate is then taken as the input of the LMS adaptive fil-

ter while the corresponding desired signal is the noisy IP signal. The

output will be the estimate of the respiratory signal and then sub-

tracted from the noisy IP to generate the final estimate of MA.

Notch filter-LMS a) Estimate the respiration rate(RR) from the spirometer recording

with manual correction.

(b) Use a notch filter with the stop band centred at the frequency of

RR with a bandwidth of 0.2Hz. The output is a synthetic MA reference

signal in time-domain.

ICA-LMS a) apply typical ICA to the MA contaminated IP signal and extract the

first three independent component.

(b) align the three independent components with the preprocessed

spirometer by cross-correlation. Then take the one which has the

highest correlation with the preprocessed spirometer as the estimate

of the clean IP signal. The MA estimate is obtained by subtracting the

clean IP from the noisy IP signal.

(c) The MA estimate is then taken as the input of the LMS adaptive fil-

ter while the corresponding desired signal is the noisy IP signal. The

output will be the estimate of the respiratory signal and then sub-

tracted from the noisy IP to generate the final estimate of MA.

cICA-LMS already described above.

Table 4.4: Summary of the methods utilized for estimating the true respiratory signals from the MA contaminated IP signal
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Figure 4.10: All the peaks of coherence that occurred at the respiratory frequency band. The red dot indicates the largest peak and the

black solid squares denote the other peaks in this band

Algorithm 4 Advanced Counting Method (Count-adv)

Initialization All the local pairs of extrema are found in the band-pass filtered curve. The absolute values

of the amplitude difference of the subsequent pairs of extrema are calculated for further determining the

threshold. The threshold is taken as the third quartile Q̂3 multiplied by a factor of k. Set f l ag to 1.

while do f l ag = 1

The pair of subsequent extreme separated by the minimum difference Amp is selected.

if Amp < thr eshol d then

the pair is considered to be a random fluctuation which is not representing the respiratory activity

and hence further removed and set f l ag to 1.

else

Set f l ag to 0.

end if

end while

The remaining detected pairs of extremes are considered to be representing the true respiratory activity.
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X(s) + 
G(s)

Z(s) Y(s) 

A(s) 
- 

Figure 4.11: Block diagram of the IIR filter

4.2.5. RR SMOOTHING

Based on the help of the SQI derived before and the ideas in [23], a filtering method for correcting the RR
estimate is introduced.
The infinite impulse filter (IIR) is firstly modified with the help of SQI and RQI introduced in the previous
chapters and then the RR estimate series from the underlying respiratory signal are further smoothed with
this modified IIR filter. The block diagram is shown in Figure4.11. The related functions of the IIR filter can
be derived as follows:

{
Y (s) = Z (s)G(s)

Z (s) = X (s)−Z (s)G(s)A(s)
(4.15)

Furthermore, the transfer function is as follows:

H(s) = Y (s)

X (s)
= G(s)

1+G(s)A(s)
(4.16)

In this application, the gain G(s) is equal to one. converting these function into time domain, the output of
the filter is:

RRk = RRk−1 +α(RR i nst
k −RRk−1) (4.17)

This equation means that the current RR estimate should be a weighted sum of the current instantaneous RR
estimate as well as the RR estimate in previous one.
Furthermore, the derived SQI between 0-1 are used to scale the forget factor to limit RR variation as follows:

αk =α ·SQIk (4.18)

The final RR estimate from the current data segment will be determined by the SQI estimate and this filter
can handle the situations when the SQI is low thus resulting in a poor RRi nst by relying more on the previous
estimate instead of the current one to generate the final estimate.

4.2.6. INFORMATION FUSION FOR RESPIRATORY RATE ESTIMATE

We have introduced a set of fusion methods to fusion the RR estimate from the IP and EDR signals.
The first two methods are the mean and median of all the RR estimate from all the underlying respiratory
signals. Mean is the simplest way for information fusion. The median method could work well when part of
the RR estimates are overestimated against the true RR while the others are underestimates of the true RR.
More complicated methods are introduced as follows.

Weighted RR with SQI and RQI
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Since we have derived the SQI and RQI for both respiratory signals derived from IP and ECG signals previ-
ously in section 4.2.2, another reasonable way is to calculate the weighted mean of the RR estimate from all
the methods, which is following a similar idea in [69]. The equation for weighted RR is as follows:

RR =
∑N

i=1 RRi ·SQIi∑N
i=1 SQIi

(4.19)

Kalman filter
We summarize the Kalman dynamical system model again in following equations:

xK = Ak xk−1 +Bk uk +wk

zk = Hk xk + vk

In this study, there is no control vectoruk so that the control-input model Bk is set to zero. In order to deter-
mine the remaining parameters, we did some statistical analysis on the dataset 3 and more details of this can
be found in Appendix A.3.
Ak In [12], the RR of a healthy people cannot have great changes during a relatively long time frame [12]. In
order to determine the dynamic model parameter Ak , The difference in RR between two adjacent segments
of 20 s is analyzed including over 1021 segments. The histogram and bivariate Gaussian distribution fitting
are analyzed for specific motion type and overall dataset. More details can be found in Appendix A.3. Since
from the results most of the pairs of two consecutive segments have almost same RR value (This can be seen
in the middle heat map in FigureA.1a, most of the points are on the diagonal) ThisAk is set to one and the
Kalman dynamic model is simplified to a scalar equation.
wk and vk are process noise and observation noise under the assumption that they are zero-mean Gaussian
white noise with covariance Q0: wk ∼ N (0,Q0)and variance R0: vk ∼ N (0,Rk ). To estimate this two covari-
ance, since we can get the true continuous RR series from the spirometer recordings, the Q0 can be directly
estimated by calculating the variance of the RR series. Furthermore, the errors of the RR estimate from the
measured IP and ECG signal can be calculated with the help of true RR from spirometer, then the observation
noise covariance can also be simply estimated by taking the variance of the errors. As a consequence, evalu-
ated from the overall dataset, the Q0 is set to 4 for EDR while for IP is 2.
As for the initialization, the initial values x0 and P0 were set to the SQI-weighted sum of the RR from respira-
tory signals of which the SQI is above 0.5, which could make sure that the initial value x0 is very close to the
true state.
In one study [75], the measurement noise covariance RK is modified to be various based on the signal quality
and the relationship was modified from:

Rk = R0 ∗eSQI−2−1

The idea of the modification is that when the signal is of low quality, a low value of SQI, the measurement
noise should be forced to be large since the corresponding RR estimate is less reliable. This will force the
Kalman filter to focus more on the prior state transition model instead of the measurement. On the other
hand, for the signal of good quality, a high value of SQI will force the measurement noise to be small, result-
ing in the KF trust more on the trust more the current RR estimate. In this way, the measurement noise of the
KF could be determined in an adaptive way by the corresponding SQI and then track the true state better.
After the KF smoothing applied to the RR estimates from each individual respiratory signal, they are still
needed to be fused in order to give the final RR estimate based on the corresponding confidence indicated
by the SQI and RQI. Based on the study [12], all the independent Kalman filtered estimates from individual
signals could be combined based on equation 4.20 in and for simplicity, two RR from two respiratory signals
are fused in the way by equation 4.21:

Xk =
S∑

s=1
(

∏S
i=1,i 6=k σ

2
k,i∑S

s=1(
∏S

j=1, j 6=i σ
2
k, j

· xk,s ) (4.20)

RRk =
σ2

k,2

σ2
k,2 +σ2

k,1

xk,1 +
σ2

k,1

σ2
k,2 +σ2

k,1

xk,2 (4.21)
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where xk and σk,s are the RR estimate from individual respiratory signals and the confidence of this estimate
for the s − th respiratory signal at the k − th time-step, respectively. Based on one study [75], the confidence
σk,s is determined with the help of Kalman residual values as well as SQIs in the following equation 4.22.

σ2
k,s =

r 2
k,s

SQI 2
k,sλ

2
s

(4.22)

Where the λ2
s is the corresponding factor of trustfulness between different signals since different respiratory

signals have different ability to provide a correct RR estimate and in this thesis for the EDR signals, λ2
s is in

the range of [0,0.4] while for the IP signal, λ2
s is one. The fusion methods in equation 4.21 can handle the sit-

uations when motion artefacts are presents in certain respiratory signals. For example, if the motion artefact
is present in one respiratory signal s, while all the others signals are of good quality. This will result in a larger
residual and low value of SQI in signal s, thus a low weight will be assigned to the RR estimate from this signal
and the final RR estimate will be more determined by the RR estimates from the other respiratory signals.
The processing block diagram is shown in the following Figure 4.12.

Viterbi algorithm

Respiratory
signals 

Kalman
filter

initialization 

Individual
KF filtering 

Information
fusion 

Final RR
estimate 

Figure 4.12: Block diagram of the KF fusion method

Viterbi algorithm is a commonly used method for tracking the change of the true states by searching for the
most possible sequence of the observations which are closest to the true state. More details of the Viterbi
algorithm can be found in[76]. In this RR monitoring application, after the RR estimates from all underlying
respiratory signals are obtained, the Viterbi algorithm can be applied on them to search for the most possible
RR estimate per time frame closest to the true RRs.
In this application, the state space is composed of the true RR, denoted as RRtr ue , from each segment and the
observation space are the estimated RR, denoted as RRi nst , from individual respiratory signals. The joint dis-
tribution of RRtr ue of two successive segments for different motion types are introduced in Appendix A.1.1
and the transition probability from one to other states is actually the conditional probability of this joint
distribution. The emission probability, the probability of an observation from the state, is taken as the RQI
introduced above. The Viterbi algorithm then can be used to decide the final transmit probability of RRi nst

between every two frames and eventually, the most likely sequence of state can be generated. The following
table summarized the setting of the Viterbi algorithm.
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Vertibi parameters denotation descripition
Time frame S Time frames (20s) of the respira-

tory signals
RR estimate RRi nst RR estimate from individual

respirotary signal
true RR RRtr ue True RR for each time frame

State space s = {RRtr ue,1,RRtr ue,2...RRtr ue,N } The true RR
Observation space o = {RRi nst ,1,RRi nst ,2...RRi nst ,N } RRi nst , instantaneous RR estimate

from all channels
Transition probability Tsi ,s j transition probability from si to

state j and this is calculated as the
conditional probability of the joint
distribution : s j |si = si ∼ N (µ1 +
σ12
σ22

(s j − µ2),σ11 − σ2
12

σ22
), where N

means a normal distribution and
the σ and µ are the parameters of
the joint distribution.

Emission probability Eo j ,si the probability of observing o j

from state si and it is taken as the
RQI of each data frame.

4.3. FRAMEWORK EVALUATION

All the different algorithms were evaluated against the reference respiratory rate derived from the spirometer
recordings. In this section, we have introduced a set of statistical metrics in [23] for evaluating the framework
for RR monitoring and compared them with each other. The details of the metrics are introduced in the
following subsections.

4.3.1. EVALUATION COEFFICIENT

In this section, we give an introduction to the statistical metrics used for evaluating the performance of the
raised framework suggested in [23].

MEAN ABSOLUTE ERROR

For all N measurements, the mean absolute error can be derived as follows

M APE = 1

N

N∑
n=1

∣∣RRn −RRr e f ,n
∣∣ (4.23)

where the RRn and RRr e f are the RR estimate from framework and the true RR estimate from spirometer
reference signal.

MEAN ABSOLUTE PERCENTAGE ERROR

As is suggested in [23], in RR monitoring, the error of the RR estimate against the reference in terms of per-
centage is commonly since a small error in RR estimate may also result in clinical consequences if the true
RR is already small. For example, an error of 3bpm against the true RR of 4 bpm is considered to be severe in
a clinical sense. The absolute value percentage error and the mean absolute percentage error are give as:

M AE = 1

N

N∑
n=1

∣∣∣∣RRn −RRr e f ,k

RRr e f ,k

∣∣∣∣100% (4.24)
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RELIABILITY ON PERCENTAGE ERROR

In this thesis, absolute percentage error is used to derive a metric namely reliability. If the RR estimate is
within ±20% of the true RR, this estimate can be taken as reliable one. This metric is given as:

r el i abi l i t yn =
{

1
∣∣∣ RRk−RRr e f ,n

RRr e f ,n

∣∣∣< 0.2

0 otherwise
(4.25)

calculating the total proportion, we get:

r el i abi l i t y = sumN
n=1r el i abi l i t yn

K
(4.26)

LINEAR CORRELATION BETWEEN REFERENCE AND ESTIMATE

As is introduced in previous chapter 3, the Pearson correlation is a measurement indicating the linear corre-
lation between the RR estimate and true RR.

BLAND–ALTMAN PLOT

The Bland–Altman is a graphical visualization method to compare two measurements in terms of agreement
[77]. The agreement is typically visualized by 95% limits of agreement which is calculated by the mean dif-
ference plus and minus 1.96 standard deviations of the difference and a smaller range of this limits indicates
a better agreement between the two tested measurements. In a word, Bland–Altman is a good way to test of
if the proposed framework can work interchangeably with reference spirometer to derive correct and robust
RR estimates.
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5
EVALUATION AND RESULT

This chapter presents the evaluation results of the developed framework and can be divided mainly into two
sections. In the first sections, following the block diagram of the complete framework introduced in Chapter,
the performance of every sub-block is shown and discussed in more details. As for the second section, the
evaluation result of the whole complete framework presented at a higher level.

5.1. PERFORMANCE EVALUATION OF THE KEY SUB-BLOCK IN THE FRAMEWORK

In this section, following the block diagram of the complete framework introduced in Chapter 4 shown in
Figure 4.1, the performance of the key sub-block is shown and discussed in more details.

5.1.1. SIGNAL QUALITY INDICATOR AND RESPIRATION QUALITY INDICATOR

This sub-section presents the result of SQI and RQI investigation on ECG and both IP and EDR respiratory
signals, respectively.

SQI FOR ECG SIGNAL

Totally 9 SQI candidates for ECG signal are tested by two classifiers, LDA and QDA, the optimal SQI will be
taken as the one which is capable to distinguish the data of good quality from those ones of bad quality with
the best performance. Due to the limited number of samples used in this application, leave-one-out cross-
validation is used. Three statistical metrics which have already been introduced in section 4.2.2 are used to
evaluate the performance of the classifiers based on each SQI: sensitivity, predictivity (PP) and F1 score.
For a clear visualization of the performance of each SQI, the statistical metrics of each SQI are shown in Figure
5.1 and the values of the measures are shown in Table 5.1. In Figure 5.1, the SQIs are listed on the histogram
with their predictivity, sensitivity and overall F1 score. The left part is the output from the LDA classifier and
the right part is from the QDA classifier. In Table 5.1, all the SQIs are ranked based on the average of F1 from
two classifiers in an ascending order. Clearly, from both the figure and table, for both classifiers, it can be seen
that the template matching SQI is the optimal one since it has the best performance in distinguishing data of
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Figure 5.1: Performance evaluation of the SQIs

LDA QDA Overall

Indicator sensitivity predictivity F1 sensitivity predictivity F1 Average of F1

power r ati o qr s 0.78 0.70 0.74 0.74 0.69 0.71 0.72

w avel etentr opy 0.99 0.56 0.72 0.98 0.64 0.77 0.74

kur tosi s 0.64 0.95 0.76 0.72 0.93 0.81 0.79

hr var i a 0.85 0.82 0.84 0.85 0.82 0.83 0.83

pca r ati on 0.99 0.71 0.83 0.95 0.79 0.86 0.84

RR enner g y 1.00 0.71 0.83 0.96 0.83 0.89 0.86

skewness 0.81 0.93 0.87 0.82 0.92 0.87 0.87

r ati o basel i ne 0.97 0.79 0.87 0.94 0.84 0.89 0.88

r ati o match 0.92 0.87 0.90 0.92 0.89 0.90 0.90

F1 matchi ng 0.97 0.82 0.89 0.96 0.87 0.917 0.90

qr s cor r aver 0.97 0.89 0.93 0.93 0.94 0.94 0.93

Table 5.1: Classification rate of the SQIs which are ranked by the average of F1 score from two classifiers in ascending order.

CONFIDENTIAL
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good quality from the bad ones among all SQIs for the whole dataset, with the highest F1 score, thus we take
the template matching-based SQI as the optimal SQI for ECG quality.

INDIVIDUAL RQI FOR RESPIRATORY SIGNALS

The evaluation methods of the RQIs are already introduced in section 4.2.2, including the error curve plot and
three more statistical measures.
For a clear understanding, RQI comparison metrics introduced in section 4.2.2, E50, ERC M and cor r el ati on
are shown in the Figure 5.2 and this bar plot summarizes the performance of all the derived RQIs. The largest
E50 is seen when using RQIF F T (5.51 bpm) and the smallest ERC M is seen when using RQIpower r ati on . The
values of all the RQIs are summarized in Table 5.2 and ranked in an ascending order based on the value of
E50 −ERC M and the larger this value is, the better the corresponding RQI will be.
The error curve is shown in Figure 5.3. As for the idea RQI, the lowest one in this figure, it is capable to
distinguish the data of good quality from the bad ones since because of the decrease on MAE when more data
with the lowest idea RQI removed from the whole dataset. It’s clear that the three closest curves to the idea
RQI one are: RQI f f t , RQIpower r ati o and RQIauto .
Interestingly, the average performance across all of the data analyses for the RQIF F T , RQIpower r ati on , and
RQIauto was almost the same. Finally, we can draw a conclusion that RQI f f t , RQIpower r ati o and RQIauto

can tell signals of good quality from the bad ones.

Figure 5.2: The summary of the performence of all the derived RQI

5.1.2. MOTION ARTIFACT REDUCTION

In this subsection, the results of the methods proposed in section 4.2.3 are presented and can be mainly di-
vided into two parts. Four methods for extracting the true respiratory signals from the artefact-distorted IP
signals are summarized in Table 4.4 and in the first part, the results of these methods are presented. As in-
troduced in 4.4, after extracting the MA using the best method, constrained ICA, the coherence and Pearson
correlation are used to evaluate the correlation between the Acc recordings and the MA. and the results are
present in the second part.
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Figure 5.3: The error curve of all the derived RQI

RQI indicator E50 ERC M p value E50 - ERC M

Ske -16.47 11.95 -0.20 -28.41

Std pairgap -9.07 11.43 0.08 -20.50

Kur 3.91 8.83 -0.30 -4.92

Hjorth 5.47 10.00 0.21 -4.53

AR model 5.44 9.77 -0.26 -4.34

FFT 5.51 2.13 -0.30 3.38

Auto 5.04 0.56 -0.467 4.48

Power ratio 5.08 0.37 -0.46 4.71

Ideal 6.16 0.00 -1.00 6.16

Table 5.2: The summary of the performence of all the derived RQIs
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Figure 5.4: Correlation between the estimated respiratory signal in IP signal with the smoothed spirometer recordings.

INDIVIDUAL METHODS EVALUATION

In this section, the performance of the four methods is shown, which are used to estimate the true respiratory
signal from the noisy IP signal. The data used for this evaluation are from stage d section 1 of the database 3
introduced in section 2.5, totally 10 volunteers involved. In stage d section 1, the volunteers are required to
move randomly while lying on the bed, where the motion artefacts are most visible in the IP signal, making it
the most representative one of the artefacts-distorted data sample.
The data of stage 4 are chopped into 4 segments with a length of the 20s with a overlapping of 5s.
As is shown in Figure 5.4, the estimate of the true respiratory signal based on the cIC A −LMS methods has
the highest correlation, 0.90, with the smoothed spirometer recordings, followed by the estimate from the
method of typical IC A −LMS with an average correlation of 0.74. It is clear that the rest two methods based
on FFT, notch filter don’t work well and can’t provide a promising estimate of the true respiratory signal from
the noisy IP signal since the estimate from these two methods only have a correlation of 0.46 and 0.47, re-
spectively. Thus, in the further investigations, only these two ICA-based on methods are utilized to evaluate
the correlation between Acc and motion artefacts.

CORRELATION BETWEEN ACC AND MOTION ARTIFACTS

In this section, the results of correlation between Acc recordings and motion artefacts are presented. This
correlation is evaluated based on two metrics Pear son cor r el ati on and spectr um coher ence and the re-
sults are shown in the following Figure 5.5. In Figure 5.5a, we can see that the mean correlation in the time
domain of Pearson correlation between the estimated motion artefact and the ACC recording, all channels of
3 axis, is really low and the maximum is 0.31, not high enough to attenuate the motion artefacts effectively.
As for the spectrum coherence, we use the best tow methods cIC A −LMS and IC A −LMS to estimate the
true respiratory IP signal from the noisy ones and then subtract this from the noisy IP signal to get the esti-
mate of the motion artefacts. Finally, the coherence between Acc and motion artefacts is calculated and the
results are shown in Figure 5.5b and 5.5c. In the former sub-figure, the coherence values of the largest peak
in the respiratory frequency range based on two methods motioned above, shown in two columns for each
Acc channel, are really low and the maximum one is only 0.37, which can only achieve an attenuation of only
0.57dB on the corresponding frequency component.
In the latter sub-figure, the average coherence values of all the peaks in the respiratory ranges are not large ei-
ther and the maximum is 0.5, which can only achieve an attenuation of 1.24dB in an average meaning. From
the analysis above, we can conclude that the ACC recordings are not correlated with the motion artefacts well
tush it’s not a good reference signal for noise removal of IP signals for this particular movement where most
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representative motion artefacts are present.
It is noted that during the data collection in database 3, the accelerometer is attached on the same position
of human body shown in Figure 2.7, in the middle chest due to the limitation of the wire length. Strictly
speaking, the effect of the different positions should also be explored in the future work.

RR SMOOTHING FILTER WITH SQI AND RQI ASSISTED

In section 4.2.5, the SQI-assisted RR smoothing methods are introduced. An example of IP signal in the fol-
lowing Figure 5.6 shows how this RR smoothing filtering helps follow true RR when the signal quality is not
good for a certain part of the data. The IP data example is part of section f r eebr eath of the protocol intro-
duced in the section 2.5, where the volunteers are required to sit still for a while and then move randomly to
generate motion artefacts, which could result in some overestimated RR due to the bad signal quality.
In Figure 5.6a, for the first part of the data, the volunteers are asked to breathe freely without any movement
and the data is of great quality. In the middle part, the volunteer is required to move randomly to generate
motion artefacts on the top of the clean IP data, which results in a data of very poor quality. The following
part is that the volunteer is asked to breathe freely again though there is a baseline drift in the data.
In Figure 5.6b, the RR smoothing filter with varying α, from 0 to 1 with a step size of 0.1, is applied to the data
in 5.6a and the corresponding Mean absolute errors(MSE) between the RR estimate from this filter and RR
from the reference data are shown in the lower section. For a clear comparison, the unfiltered RR from IP,
the RR filtered by moving average and the RR filtered by this smoothing filter are also present in the upper
sub-figure, which are the green solid square, black solid square and the dark red curve. From the lower part,
it’s obvious that smoothing filter when α = 0.2 has the best performance with an MSE of 0.64, which means
the weighed assigned to the current estimate RR is only 0.2. Thus, when giving an estimate of the current RRk

in equation 4.17, the A-IIR with fixed α work best in a way that weights much more on the previous RRk−1

instead of the current instantaneous estimate, denoted as RR i nst
k . The MSE of moving average filter is ap-

proximately 2 bpm, which is equal to A-IIR filter with α= 0.7.
In order to have a clear understanding of the RR smoothing method, α modified by SQI in equation 4.18, de-
noted as A − I I Rα−SQI , In Figure 5.6c, we make a comparison between the RR smoothing filter with the best
α = 0.2 , denoted as A − I I Rα=0.2 and A − I I Rα−SQI . In the upper sub-figure, The blue band gives the ±20%
range of the spirometer RR values. The reference value of the dark blue curve is in the middle of this band.
Meanwhile, the RR values of A − I I Rα=0.2, A − I I Rα−SQI and moving average are in purple, red and yellow
curves, respectively.
From the lower sub-figure, the RQI is high for segments from 1 to 7 and suddenly drop to very close to 0 for
segment 8,9, while both RR curve of A − I I Rα=0.2 and A − I I Rα−SQI lie in the blue band all the time in the
upper sub-figure, as it resists any changes in RR as long as the signal quality is estimated to be poor. However,
RR curve of moving average is outside where the RQI is poor, which means it cannot handle segment of poor
quality.
It is noted that the MSE of A − I I Rα=0.2 and A − I I Rα−SQI are very close, 0.64 and 0.65, which means they
have almost the same performance for this data example. However, in practice, the best α is hard to obtain
since it requires the knowledge of the true RR while the SQI of data can be estimated based on the methods
proposed in section 4.2.2 and the method of A − I I Rα−SQI can still work to track the true RR estimate from
the underlying signals especially when data segment of low quality are present.

5.1.3. INFORMATION FUSION FOR RESPIRATORY RATE ESTIMATE

In section 4.2.6, five fusion methods are introduced and in this subsection, two examples of the most novel
methods, Kalman filtering and Viterbi algorithm, present in the following figures shows how these two meth-
ods work for a more detailed interpretation.

KALMAN FILTERING FUSION

An example of the Kalman filter fusion is shown in Figure 5.7. In this example, RR estimates from four respi-
ratory signals are utilized to create a fusion estimate of RR. This data example is also part of the database 3
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(a) Pearson correlation between the ACC and the motion

artefact

(b) The coherence of the largest peak in the respiratory

frequency range. The two columns are corresponding to

ICA-LMS and cICA-LMS methods

(c) The coherence of the average of all the peak in the respiratory frequency range

Figure 5.5: Correlation evaluation of the ACC recordings with the motion artefact
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Figure 5.6: A segment of data where quality-assisted IIR filter is performed
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introduced in section 2.5.1. In the upper left subfigure, the blue shade is the area of ±20% , similar to the met-
ric ’reliability’ introduced in chapter 4, against the reference RR. The dotted lines are the raw RR estimated
from the four source signals and the solid lines with the same colours are the corresponding RR after Kalman
filtering. The initialization of the state RR is set as the quality-weighted RR estimate from the subset of four
signals, of which the SQI is above 0.5. It’s clear that after KF filtering all individual RRs are staying with the
±20% area against the reference RR. In the upper right figure, the solid black squares are the fused RR esti-
mate and all of them stay within the ±20% area against the reference RR. Thus, the Kalman filtering fusion
method works well on tracking the true RR for this data example.
The lower two subfigures present the corresponding weight and RQIs for each individual RR. Not surpris-
ingly, in most cases the source signals which have the best signal quality, the corresponding weight is also the
largest one. Thus, the Kalman filter fusion method works in a way of giving a proper weight to each source
signal with the help of the corresponding RQI to provide a good track of the true RR.

Figure 5.7: a) the raw RR estimates and the RR estimates after Kalman filtering of four individual methods; b) The RR estimates after

Kalman fusion against the individual RR after Kalman filtering; c) The corresponding signal quality of the individual methods; d) The

weight assigned to each individual method in Kalman fusion.

VITERBI ALGORITHM

As is introduced in section 4.2.6, the Virerbi algorithm is used to track the changes of the true RR from all the
RR estimates from all the respiratory signals.
A data example of explaining how Viterbi works is shown in the following Figure 5.8. Figure 5.8a shows the
RRi snt in 5 time segments from four individual respiratory signals. Each blue arrow means the calculated
transmit probability between two corresponding states. The back-forward track of red arrows means that
once reaching the last segment, a back-forward search will start from the state with the largest probability
at the last segment and the Viterbi path can be retrieved by saving back state in last segment which has the
largest transmit probability with the current one. For example, the transmit probability ,from state 1 in time
segment 1 to state 1 in time segment 2, is calculated by the equation below, where the P (R2,1|R1,1) is the tran-
sition probability, VRR1,1 is the initialized probability of state 1 in time segment 1 by the corresponding RQI
and SQI. Finally, P (R2,1,obser vati on |R2,1,tr ue ) is the emission probability.
Figure 5.8b shows the tracking performance of Viterbi algorithm. The blue shade indicators the area of er-
rors of ±20%ag ai nst ther e f er enceRRand theRRi nst curve from four individual respirotary signals are also
present. Clearly, the Viterbi path has found the certain individual RRi nst closest to the true RR for each seg-
ment, resulting in a minimum error among the errors between the true RR and each RRi nst .
It is noted that, in this data example, there is always one certain RR estimate close to the true RR and the
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Viterbi algorithm can pick it as the final RR estimate for the corresponding time segment.

(a) Schematic diagram of Viterbi algorithm

(b) The tracking performence of Viterbi algorithm

Figure 5.8: An example of Viterbi algorithm

5.2. PERFORMANCE EVALUATION OF THE COMPLETE FRAMEWORK

This section gives the evaluation result of the complete framework shown in Figure 4.1 and can be mainly di-
vided into two sub-sections. The first sub-section presents the results from the whole d at aset3 introduced
in section 2.5.1. This means that the evaluation carried out on all the recordings without considering the
activity difference of the five sections in database 3. The latter subsection analyses the results from different
activity classes.

5.2.1. OVERALL MEASUREMENT EVALUATION

This section presents the overall results of the dataset we have.

INDIVIDUAL ALGORITHM

In Table 5.3, we summarize all the individual methods which are combinations of the base signal, breath de-
tection method and filtering method, evaluated against the reference spirometer recordings. Different eval-
uation metrics, reliability, MAE and MAPE, are further divided into subsections as follows.
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Algorithm name base signals Breath detection filtering

1 adc QRSslope QRSslope Count-adv No

2 adc RSamp QRS-RSamp – –

3 adc QRSarea QRS-area – –

4 adc RRinterval RRinterval – –

5 adc Ramp Ramp – –

6 adc bioz bioz – –

7 adc IIR QRSslope QRS-slope Count-adv SQI-IIR

8 adc IIR RSamp QRS-RSamp – –

9 adc IIR QRSarea QRS-area – –

10 adc IIR RRinterval RRinterval – –

11 adc IIR Ramp Ramp – –

12 adc IIR bioz bioz – –

13 adc mov RSslope QRS-slope Count-adv Kalman filter

14 adc mov RSamp QRS-RSamp – –

15 adc mov QRSarea QRS-area – –

16 adc mov RRinterval RRinterval – –

17 adc mov Ramp Ramp – –

18 adc mov bioz bioz – –

19 bioz comp bioz original No

Table 5.3: Respiratory rate estimation algorithms from individual respiratory signal

Reliability
In this evaluation, the reliability defined in the previous chapter is used as one essential indicator of the
performance of different methods throughout the evaluation section. It indicates the percentage of time
the measured RR has a maximum of 20% error of the true RR value obtained from the reference spirometer
recordings. In the following figure 5.9, the overall results are shown as a bar chart in a descending order by
the reliability.
The first impression from Figure5.9 is that the IP-based methods could provide a more accurate RR estimate
compared with the EDR-based methods in a general sense. The reliability of the IP-based methods is in the
range of 73%~82%, while the range of EDR-based methods is 38%~67%, where large variations are present
among the EDR methods. One possible reason is that the respiration modulation on the ECG signals are not
visible for most times even on the clean-ECG data segment and both from the literature [12] and the data, the
respiratory modulations can be invisible if the breathing rate is too low or too high.
It is also noted that in this Figure 5.9, the SQI-based IIR filtering, denoted as SQI − I I R, can improve the gen-
eral reliability. This means that the SQI-based IIR filtering method could help to correct the poor RR estimate
due to random fluctuations in the corresponding signals which are resulted from motion artefacts. Figure
5.9 also shows what value every step of the framework in Figure 4.1 adds. The reliability of the method from
imec, bi oz comp has a general reliability of 73.8%, while for the modified method adc i i r bi oz, where the RR
estimates of adc bi oz going through the SQI-assisted filtering, it can achieve a higher reliability of 82.27%,
which means that the proposed individual method adc i i r bi oz could provide a more reliable RR estimate.
However, adc bi oz has almost the same general reliability as adc i i r bi oz but a larger MAP and MAPE (shown
in the next subsection). This means the SQI-assisted filtering gain little on the general reliability for IP sig-
nals. But for the EDR signals, the SQI-assisted filtering could help gain more in terms of the reliability, e.g.
adc i i r QRSslope can achieve 56% while adc QRSsl ope can only provide 50% reliability, which means the
SQI-assisted filtering could gain an improvement of 6% on EDRQRSsl ope respiratory signal. The gain from the
information fusion will be discussed later.
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The methods that were filtered using Moving average filter are denoted with mov in their names. From Figure
5.9, the mov filter have a lower general reliability compared with SQI I I R for both IP and EDR signals. Due to
the principle of moving average filter, equal weights are assigned the current RR estimate and the previous
one and then the average of these two is taken as the final RR estimate, which isn’t taking the signal quality
into consideration. Hence, it can not reduce the estimation errors when both of the current and previous RR
estimates deviate from the true RR too much.

Figure 5.9: Reliability of the individual methods in table 5.3

Mean absolute error and Mean absolute percentage error
In the following Figure 5.10, the Mean absolute error(MAE) and mean absolute percentage error(MAPE) are
shown to indicate the performance of all the individual methods. In this figure, we rank all the individual
methods by MAE in a descending order. As expected, both MAE and MAPE metrics give the same rank order.
The most impressive finding is that IP methods could give a more accurate RR estimate compared with ECG
signals, which have a much lower MAE and MAEP. It can be also seen that the SQI I I R smoothing method
could help to obtain more accurate RR estimate especially for EDR signals since almost all the EDRs could
provide less MAE and MAPE after SQI I I R filtering, e.g. adc i i r QRSslope outperforms adc QRSsl ope. How-
ever, there is no big difference in the MAE and MAPE between adc i i r bi oz and adc bi oz, since these values
are already low enough with MAE:1.63bpm and 1.73bpm and MAPE 11.11% and 11.64%, respectively.

Bland-Altman plot
In this subsection, the Bland-Altman plot in percentage error and correlation plot of adc i i r bi oz are shown

in Figure 5.11. From the left sub-figure, the RR estimate and RR reference show a good correlation of 0.87
and most of the pairs are lying on the line of y = x, although there is a slight bias of 0.28. For a more intu-
itive understanding how the derived RQI works, we divided the points into three subgroups: good quality of
RQI > 0.6, red solid square, moderate quality of > 0.6RQI > 0.3 and low quality of RQI < 0.3. An intuitive
impression from this figure is that almost all the points of good quality with RQI > 0.6 are lying on the line
of y = x, which means they are very close to the true RR. As for the points of moderate and low quality, they
are more spread on both sides of y = x, which means not all of them are modified to get closer to the true RR
after the filtering methods.
The Bland-Altman plot based on the percentage error for RR measurement is shown in the right sub-figure.
The mean difference is 1% and the limit of agreement is between -16% and 14%. Similar to the correlation
plot, almost all the points of good quality with RQI > 0.6 are within the limit of agreement although there are
few outliers outside this range, which means that the RQI could tell the data of good quality from others in a
general sense. As for the points of moderate and low quality, they are more spread and it’s noted that for the
data of bad quality with RQI < 0.3, more points (51%) are within the limit of agreement while fewer outliers
are outside(40%), which means that the adci i r methods could provide promising help to modify the RR from
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Figure 5.10: MAE and MAEP for the individual methods in table 5.3
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Figure 5.11: Bland-Altman plot and the correlation between RR estimate from reference and from adc i i r bi oz

CONFIDENTIAL



62 5. EVALUATION AND RESULT

Algorithm name base methods Breath detection filtering

1 RR Kalman 7,8,12 adc SQI-IIR kalman filtering

2 Weighted RR – – SQI-IIR

3 RR average – – –

4 RR median – – –

KF smoothing in a fusion way

5 adc iir KF QRSslope QRSslope Count-adv SQI-IIR & Kalman filter

6 adc iir KF RSamp QRS-RSamp – –

7 adc iir KF QRSarea QRS-area – –

8 adc iir KF RRinterval RRinterval – –

9 adc iir KF Ramp Ramp – –

10 adc iir KF bioz bioz – –

Table 5.4: Summary of fusion algorithms for respiratory rate estimation. The column ”Base methods” refer to the individual methods in

Table 5.3 which are fused together in each fusion method.

data of bad quality to be closer to the true RR.

INFORMATION FUSION ALGORITHM

This section presents the result of Information fusion algorithm. The following table 5.4 summarize all the
fusion methods which are a combination of the individual methods in 5.3. Mainly the filtered RR methods
by SQI-assisted filtering, which are methods 7,8,12 in Table 5.3. The main target is to see if the fusion meth-
ods could provide better performance on RR monitoring in terms of evaluation metrics. It is noted that the
adc i i r K F fusion methods in table 5.4 work in way of "information fusion" for initialization, which means
the initialization of x0 is taken as the weighted average of the RR from respiratory signals of which the SQI is
larger than 0.5. There is no further fusion step for the RR after Kalman filtering.

Figure 5.12: Reliability of the first four fusion methods in table 5.4
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Figure 5.13: Reliability of the last five fusion methods in table 5.4

Reliability
The reliability of the fusion methods from 1 - 4 are shown in Figure5.12. It can already be stated that neither
RRaver ag e, RRmedi an nor wei g htedRR methods could not provide a high reliability on RR monitoring
thus more attention will be given the other two fusion method, RRkalman and RRvi ter bi in the following.
The two best fusion methods are RRkalman and RRvi ter bi , with the reliability of 84.01% and 83.43%, re-
spectively.
As for the methods from 5-10, we only initialize the Kalman filter setting for each individual base signal in a
fusion way, e.g the initial state values x0 is set to the SQI-weighted sum of the RR from all respiratory signals
of which the SQI is above 0.5. There is no further fusion step for the RR after Kalman filtering. The reliability
of these five methods is shown in the following Figure 5.13. Surprisingly, the best method in these five is the
adc i i r K F bi oz with a reliability of 85.5%, a slightly larger than that of the best fusion method RRkalman
by 1.5%, which means the fusion doesn’t gain improvement on reliability compared with only KF filtering the
RR. One possible reason for this could be that the RR estimate from the EDRs signals is too noisy compared
with that from the IP signal, with the reliability of 82% and less than 50% respectively. Thus the fusion method
could not gain improvement if the quality of the individual RR estimate is too spread.

Mean absolute error and Mean absolute percentage error

Figure 5.14: MAE and MAEP for the first four fusion methods in table 5.4
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Figure 5.14 shows the MAE and MAPE of the fusion methods. Majority of the values of MAE are in 1.5-3.5 bpm
while for MAPE are in 10% - 20%. adc i i r K F bi oz method has the minimum MAE of 1.50 bpm followde by
RR K al man, which has a slightly larger value 1.56 bpm. As for the MAPE, the values of adc i i r K F bi oz and
RR K al man are 9.78% and 10.05%, respectively.

Bland-Altman plot
Figure 5.15 shows the Bland-Altman plot and correlation plot of the RR kal man method. Compared with
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Figure 5.15: Bland-Altman plot and correlation between RR estimate from reference and from RR K al man

Figure5.11 of adci i r method , the correlation value is decreased from 0.87 to 0.85 by 0.02 and the limit of
agreement stays the same at 30%. It is noted that 60% of the data of bad quality, solid square, stay in the
limit agreement compared with that of the method adc i i r bi oz which is 50%. This means the RR kal man
method works better than adc i i r bi oz on correcting the RR estimate from data of bad quality.

OVERALL ALGORITHMS EVALUATION

In this section, we evaluated all the proposed methods of both individual methods and fusion methods by
ranking them with multiple factors. Table 5.16 gives clinical reliability(%), mean absolute error(bpm), mean
absolute percentage error (%) and Pearson correlation value (unitless). Base on the idea from [23], the sum
of the rank values for each method is presented. Sum of the ranks could make more senses to make a more
generalized evaluation if a method performs really well on some metrics but poor on the others.
Overall, adci r r K F bi oz has the minimum rank sums of 4 which is much less than that of the other methods.
When comparing the individual methods with the fusion ones, only two fusion methods, RRK al man and
RRV i ter bi perform similarly to the best individual method. Looking at the individual ranks, adci i cbi oz
has the most uniform performance.

5.2.2. ACTIVITY TYPE EVALUATION

In this section, we evaluate the performance of the developed framework of five different activities in total
introduced in the appendix A.1( including lying, sitting, standing, walking and running and free breathing
with random motion). This section can be divided into three parts. In the first part, the overall evaluation
results on all the motions of the five categories are given. In the last two parts, more details of the evaluation
results of the motions are present, including data collected when volunteers are lying still against data from
activities as well data from periodic activities and non-periodic activities.
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Figure 5.16: Ranks of all the individuals methods and fusion methods
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OVERALL RESULTS

Figure 5.17 shows how well individual a set of individual methods together with fusion methods perform in
terms of reliability for tasks classified into lying (number of measurement points for each method is 81), sit-
ting (75), standing (38), walking and running (110) and free breathing with noise (215) activity stages and the
results are in each sub figure. Reliability is selected as it probably conveys most information from short data
segments. In each subfigure, Each bar represents the reliability of one selected method for one activity class.
As to be guessed, the errors of RR estimate should have a trend of increasing when the activity is becoming
more intensive, making the RR estimate worst in the walking section. However, surprisingly, walking stages
are best caught with individual IP methods and even better with the fusion method, adci i r K F bi oz. But the
ECG doesn’t perform well. For the latter one, this could be explainable: more active classes could result in a
motion-distorted ECG from which less reliable EDR could be derived. For the former one, a deeper investi-
gation would be needed, as it is an intuitive taught the proposed methods should provide more accurate RR
estimates for the activity of less intensity than that with higher intensity.
For the first three activity classes, lying, sitting and standing, the best results are from the methods RR V i ter bi
and RR K alman, with the highest reliability of 93%, 89% and 89%, respectively, which means this fusion
method did help to provide a better RR estimate. It’s also noted that the reliability of the lying section is the
largest, indicating that RR K al man would be optimal choices over fusion methods, considering all the un-
certainties fusing multiple signals has-if the data is measured mainly from the patients in bed or on the chair.
For the last two activity classes, walking and running and free breathing with random movement, the best
results are from the fusion method of adci i r K F bi oz, which means for these two activities, the RR estimate
from method adc i i r bi oz further filtered by Kalman filter could provide a good performance. Meanwhile,
the fusion method, RR K al man could also provide comparative results since the differences between it and
adc i i r K F bi oz are small, 1.5% and 1.8%.
The Figure 5.18 shows the MAE and MAPE for each activity class and the best method is also labelled on the
top of each bar. The MAE range for all the activity classes is [1,1.8] bpm and the MAPE is [7,12]% and this indi-
cates that the proposed methods have a generally good performance in different activity classes. it is obvious
that the worst result is from the free-breathing section. This could be explainable: breathing section has the
longest data length and almost half of the data are generated under random movement ( the volunteers are
asked to move randomly in the second 4 min in free-breathing section, which has a total length of 8min.),
which could make it more difficult to obtain an accurate RR estimate from the underlying signals.

RESULTS OF STILL AGAINST ACTIVITY

In this section, the evaluation results of data collected when volunteers are lying still, stage b in section 1,
against data from activities from other sections in database 3.
Figure 5.17 shows how well a set of individual methods together with selected fusion methods perform in
terms of reliability, MAE and MAPE for RR estimate from still data and activity data the results are in each
sub figure. In the upper two subfigure, each bar represents the reliability of one selected method and in the
lower two subfigures, the MAE and MAPE of each selected method are present. All the selected methods are
methods 7, 10, 12, 19 in table 5.3 and methods 1, 4, 5, 810 in table 5.4 since they are the most representative
individual methods and fusion methods in term of reliability.
In Figure 5.19a and Figure 5.19c, the reliability, MAE and MAPE of each method of the still data are present.
The first impression from Figure 5.19a is that the best results for still data are from five methods with reliabil-
ity of 100%, which means the RR estimates are all reliably based on these methods, adc i i r bi oz,
adc i i r K F Rr i nter val , adc i i r K F bi oz and two fusion methods RR K al man and RR V i ter bi . This in-
dicates that the proposed framework can achieve 100% reliably for RR estimate from still data. The corre-
sponding MAE and MAPE of these five methods are present in Figure 5.19c. The MAE and MAPE of these five
methods are in the range of [0.5,0.7]bpm, [5,10]%, which means and this indicates that the proposed methods
have a Good performance on still data.
In Figure 5.19b and Figure 5.19d, the reliability, MAE and MAPE of each method of the still data are present.
The first impression from Figure 5.19a is that the best result for activity data is from method adc i i r K F bi oz
with reliability of 84%. The corresponding MAE and MAPE of the best method are present in Figure 5.19c. The
MAE and MAPE of adc i i r K F bi o are 1.54 bpm and 10%, which means and this indicates that the proposed
methods have a Good performance on still data.
In a conclusion, the best methods for both still data and activity data can achieve a good performance of RR
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(a) Reliability for lying section (b) Reliability for sitting section

(c) Reliability for standing section (d) Reliability for walking and running section

(e) Reliability for free breathing section

Figure 5.17: Reliability evaluation for all the motion types
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Figure 5.18: MAE and MAPE of all the motion types with the corresponding best method

estimate in terms of reliability, MAE and MAPE. However, it’s also found that the amplitude-based EDR meth-
ods, EDRQRSsl ope have a moderate performance for both datasets while the frequency-based EDR method
EDRRr i nter val have much better performance. One possible reason is that EDRQRSsl ope required a more
clean ECG signal with a good shape while the EDRRr i nter val only required accurate detections of QRS wave-
form, which is relatively easier.

(a) Reliability of still section (b) Reliability of activity section

(c) MAE and MAPE of still section (d) MAE and MAPE of activity section

Figure 5.19: Evaluation for still and activity
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RESULTS OF PERIODIC ACTIVITY AGAINST NON-PERIODIC ACTIVITY

In this section, the evaluation results of data collected during periodic movement, including stage b in section
1, against data collected from non-periodic movement of database 3 introduced in section 2.5.1. The data is
summarized in the following table 5.5
Figure 5.20 shows how well a set of individual methods together with selected fusion methods perform in

Data categories source

periodic movement s1c, s1e, s2f, s4a, s4b, s4c, s4d, s4e

non-periodic movement s1d, s2d, s2e, s3a,s3b

Description All the data are from d at aset3 introduced in 2.5.1. The source indi-

cates which stage and section the data is from, e.g. s1c means stage c

in section 1, lying section.

Table 5.5: Data of periodic and non-periodic activity

terms of reliability, MAE and MAPE for RR estimate of periodic activity and non-periodic activity the results
are in each sub figure. In upper two subfigure, each bar represents the reliability of one selected method and
in the lower two subfigures, the MAE and MAPE of each selected method is present. All the selected methods
are methods 7, 10, 12, 19 in table 5.3 and methods 1, 4, 5, 810 in table 5.4 since they are the most representa-
tive individual methods and fusion methods in term of reliability.
In Figure 5.20a and Figure 5.20c, the reliability, MAE and MAPE of each method of the periodic are present.
The first impression from Figure 5.20a is that the best result for still data is from method,adc i i r K F bi oz
with reliability of 89% and the corresponding MAE and MAPE are present in Figure 5.20c, 1.1bpm and 7%,
respectively, which means and this indicates that best method,adc i i r K F bi oz, have a Good performance
on periodic activity. It is also noted all the selected methods achieve reliability above 50%, however, the EDR-
based methods don’t have comparative relusts with IP-based methods.
In Figure 5.20b and Figure 5.19d, the reliability, MAE and MAPE of each method of the non-periodic data are
present. The first impression from Figure 5.19b is that the best result for non-periodic activity is from method
adc i i r K F bi oz with reliability of 86%. The corresponding MAE and MAPE of the best method are present
in Figure 5.19d. The MAE and MAPE of adc i i r K F bi oz are 1.4 bpm and 8%, which means and this indicates
that the proposed methods have a Good performance on still data.
In a conclusion, the best methods for both periodic activity and non-periodic activity can achieve a good per-
formance of RR estimate in terms of reliability, MAE and MAPE. However, it’s also found that the EDR-based
methods, either EDRRr i nter val or EDRQRSsl ope don’t have comparative results with IP-based methods during
movement.

5.3. DISCUSSION

5.3.1. INDIVIDUAL RR ESTIMATE METHODS

As for the individual methods, in this thesis, the basic RR estimation method is the "count − adc" method
and then a number of filtering methods are proposed to smooth the RR estimate from the individual respira-
tory signal. From the result shown in section 5.2, for both IP and EDR respiratory signals, the simple moving
average filtering doesn’t really help gain a lot on tracking the true RR while the SQI-assisted filtering method
could make the RR estimate more robust against the motion artefacts.
When comparing the IP and EDR signals, IP signal could provide a more robust and accurate RR estimate
with the help of the proposed filtering methods, achieving the highest of the reliability of 83% while the EDR
signals are less reliable, with the highest reliability of 67% for EDRRr i nter val from the overall performance.
This is as expected since, from the literature, many studies have already introduced the limitations of RR es-
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(a) Reliability of periodic activity (b) Reliability of non-periodic activity

(c) MAE and MAPE of periodic activity (d) MAE and MAPE of non-periodic activity

Figure 5.20: Evaluation for periodic activity and non-periodic activity

timate from EDR signals, e.g the limitations of RSA introduced in section 2.3.1. As for the amplitude-based
EDR signals, it requires an accurate shape of the ECG signal to extract a good EDR signal, however, the mor-
phology of the ECG signal can deteriorate much easier when there are motion artefacts, resulting in a poor
EDR signal with no respiration information.
The basic breath detection was mainly done using a slightly modified algorithm in [8]. To optimize the pa-
rameters of this methods, the factor multiplied to the third quartile, the data from the section free breath
of the database 3 introduced in Chapter 2 are used, where volunteers are asked to breathe freely with ran-
dom movement. Since the threshold parameter is optimized at certain activities, where people are moving
randomly, it may really have problems handling other situations where people are breathing during other
activities which make the current threshold work poorly on RR estimation. Thus, a better way to determine
the threshold should be further investigated.
Study in [52] used Fast Fourier Transform to estimate the RR from EDRR Amp and EDRRS A and it’s reported
that these two respiratory signals could provide similar performance. The study collected data from 24 sub-
jects and all of them were under the full standard sleep test. The Correlation coefficients between these two
methods and the true RR from the reference signal are approximately 0.70. The best individual methods pro-
posed in this thesis of EDRR Amp , and EDRRS A have lower value correlation coefficients, 0.67,0.42, compared
with that in [52]. The reason for this is that, in this thesis, the ECG signal is much more easily distorted by mo-
tion artefacts since there is a lot of movement during the data collection compared with that in [52], resulting
in a poor EDR signal especially for the amplitude-based method, EDRR Amp . Thus the RR estimate will be less
accurate.
Compared with ECG, there are much fewer studies on RR estimation based on the IP signal. In one study in
[27], the respiratory rate is extracted using the Short-Time Fourier Transform (STFT) from both IP and refer-
ence respiratory signal. A sliding window of size 15 seconds which moves 5 seconds each time is used for this
purpose. The dominant frequency in each window is chosen to be the respiratory rate in that window. It’s
found that an accuracy of 65.66% can be achieved by this method, where the accuracy means the percentage
of the times when the respiratory rate extracted from the impedance signal and the reference signal are equal.
In this thesis, the best individual method for IP signal can achieve a reliability of 82.28%. It’s noted that no
comparison can be made between the performance between these methods since the reliability and accuracy
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for evaluating these two methods have different statistical meaning.

5.3.2. SIGNAL QUALITY: SQI AND RQI

In Chapter 4, we introduced a set of SQI and RQI together to tell the data of good quality from the bad ones.
These two quality indicators are further used in the RR smoothing filter and also the two fusion methods,
Kalman filter and the Viterbi algorithm. Thus, an accurate SQI and RQI are very essential to each block of the
signal processing chain in this thesis. Take the SQI-assisted RR smoothing method, for example, if the data of
good quality is estimated to be of low quality, the RR estimate will be closer to the previous one RR, resulting
in giving incorrect data in the further fusion phase. From the result in Chapter 5, all the proposed SQI and
RQI are not perfect and probably cannot always distinguish the data of good quality from the bad ones. More
investigation should also put on the RQI and SQI and A human-annotated signal quality indicators could
make an interesting study and comparison between this and the RQI and SQI proposed in this thesis should
also be interesting.

5.3.3. INFORMATION FUSION METHODS

The results show that certain signal fusion can provide more accurate and robust RR estimate for different
types of data in terms of activities, however, the differences between the fusion methods and the best indi-
vidual methods are small.
Five fusion methods, RR K al man, W ei g hted RR, RR aver ag e RR medi an and RR V i ter bi , are proposed
and the best two are RR K al man and RR V i ter bi . The first one is a modification to a published algorithm in
[75] and the latter one is a novel application of the Viterbi Algorithm on the bio-medical study. Both of them
use the proposed SQI and RQI.
Median and weighted average don’t perform well on the RR estimate due to their simple principle. Since SQI
and RQI are the most sensitive part of the signal processing chain and the accuracy of these two can deter-
mine the performance of all the methods with signal quality indicator assisted. The weighted mean approach
most probably suffers from the signal quality indices not being directly comparable with each other during
different activities. Investigation on which respiratory signals could provide underestimated RR and which
can provide overestimated RR could be an interesting study and better signal quality indicator should also be
explored.
The two best fusion method, RR V i ter bi and RR K al man, behaved almost similarly and both of them per-
formed well in the aspect of reliability with values above 80%. Overall performance for RR K al man was
found to be a zero-sum approach to the best IP methods, while the RR V i ter bi decreases the reliability by
2% compared with the best IP method. As for the RR K al man with no improvement to the best individual
method, one possible reason is that it only to filter individual RR estimates and the KF residuals are later used
to weight final RR value. The shortcomings for this the residual could also be small for even if when the RR
estimate has a large error against the true RR. This can happen when there is a big variation between the two
true RR from the two successive data segments while some RR estimates didn’t react to this change and are
still close to the RR estimate from the first segment, from the Kalman model in this thesis, the residual will
be small and during the fusion step, these RR estimates would also be assigned a larger weight, resulting in
a poor RR estimate. This is proved by the comparing between the RR estimate filtered by Kalman filtering
before and after the fusion step. The former one achieved a 2% improvement in reliability compared with
the best IP method while the latter one achieved no improvement. On possible study could also be on the
Kalman filter and a proper setting should be explored.
As for the RR V i ter bi algorithm, it’s used to track the true RR by picking on RR estimate per segment from
the RR estimate series after Kalman filtering of all the respiratory signals. It achieves a good performance re-
liability of 80% but a decreased reliability compared with the best IP signal. This show, even after the Kalman
filter, the picked RR, most possible state, could not always be close to the true RR. Thus, better fusion meth-
ods should also be explored in future studies.
In order to reduce the RR estimate errors as much as possible, some suggestions could also be taken into con-
sideration. The first one it that some data of bad quality could be excluded simply based on the corresponding
signal quality. The benefit of this is that the effect of the RR estimate from data of bad quality could be totally
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ignored and this could help a lot when a set of consecutive poor RR estimate from a long-term data of bad
quality. The second suggestion is that more motion artefacts attenuation methods should also be explored.
It’s really hard to derive an accurate RR estimate from a heavily artefact-distorted respiratory signal since the
respiratory information could be totally buried under the noise. If the signal quality could be improved much
with the help of certain motion attenuation methods, the RR estimate will be more accurate.
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CONCLUSIONS AND FUTURE WORK

This chapter makes conclusions of the results shown in the previous Chapter 5 in section 6.1 and since there
are still space of improvement for the current framework, some suggestions regarding how the algorithms
could be improved in the future are also present in section6.2

6.1. CONCLUSIONS

The main result of this thesis was the proposed framework could generally provide a reliable and robust RR
monitoring under different motions. For more details, two signal quality metrics are proposed and it was
found that was that RR estimates from both single IP and ECG signals improved with RQI and SQI assisted
based on some smoothing and tracking techniques. These signal quality indicators work well on distinguish-
ing data of good quality from the bad ones, however, it can not always achieve this in any situation. Thus,
some further studies could be carried on SQIs and try to make both of them more accurate and individual-
ized for different people.
IP methods could provide a more robust RR estimate than EDR methods, which is not a surprise. The best
individual EDR signal is EDRRr i nter val with the highest reliability of 67% while the worst one is EDRQRSar ea .
The reason for the poor performance of the EDR signals is that compared with the IP signal, the EDRs re-
quires a more accurate peak detection and also a more correct shape of the ECG signal. However, motion
artefacts could distort the shape of the ECG and make the EDR signal less reliable even with no respiratory
information. Meanwhile, normally the modulations on the ECG signal are much weaker compared with IP
which means it may not always present in the ECG, e.g. EDRRS A may not present under many situations
introduced in section 2.3.1. Thus, further investigation could be on better methods to extract the EDRs. Re-
garding EDRRS A , certain classification methods could be explored to distinguish data where RSA is present
from that where RSA is not present. This would make the fusion step easier.
A set of fusion methods are also applied on the RR estimates from each individual methods and it is found
that none of these fusion methods can achieve improvements on all the evaluation metrics and normally if
one is improved, some other one could be worse, e.g. when RR K al man is used, the Mean absolute errors
decreases but the general reliability increases compared with the best IP methods. However, the best two
fusion methods, RR K al man and RR V i ter bi can still achieve a high performance on RR monitoring for
a certain type of activity, e.g. RR V i ter bi has the best performance for data from the lying section while
RR K al man works best in sitting section and standing section in d at abse3. The other fusion methods,
RR aver ag e,RR medi an, due to its simplicity and more strict requirements for a good performance, they
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don’t work well on RR monitoring. Further investigation could also be on exploring better fusion methods.
Activity class evaluation showed that free breath with random movement is difficult for all methods. Random
movement, as well as non-periodic movement, are found to be troublesome. IP was found to be particularly
sensitive to movements while it is also superior to the EDR methods. In general, each activity classes can be
effectively handled using certain individual methods or fusion methods.

6.2. FUTURE WORK

In this section, we summarize the potential future work which could add improvement to the current frame-
work in this thesis.
Since the threshold parameter in the basic breath detection method, "adc count", are ultimately pre-define
and the generalized parameter could not work well on certain situations even it has been optimized by using
a learning period from the signal itself. For example, the IP data from different activities have different am-
plitudes and even variant among the volunteers. More investigations could be put on how to determine the
parameter in an adaptive way and individualized. It may also gain an improvement on the performance of
peak detection if the time information is taken into consideration.
Some possible future work could also be improving the signal quality indices performance on distinguishing
the data of good quality from the bad ones. From the result we have so far, the proposed SQI and RQI could
not work perfectly and if better signal quality indices could be explored, all the current methods with the SQI
and RQI assisted would benefit a lot and the RR estimate of the current framework could also be more robust
and accurate.
More investigation could also be put on exploring more respiratory information from the underlying bio-
medical signals. In this thesis, only the respiratory rate is of interest and the current framework only output
the RR estimate with no respiratory information. There are more respiratory information like tidal volume,
flow rate and possible future work could be an assessment of the suitability of IP signal for measuring the
volume of the airs inhaled and exhaled during the breath cycles.
In this thesis, we tested the feasibility of accelerometer(Acc) recordings as a reference signal for motion arte-
facts attenuation and from the result, the correlation between the motion artefacts and Acc recordings is not
high enough for the adaptive filtering methods to attenuate the motion artefacts. Thus Acc is a proper signal
and better reference signal should be explored. Based on the fact that the motion artefacts are mainly from
relative sliding between the electrodes and the skin during movement, a better reference signal could mea-
sure this relative movement. One possible way is to embed the relevant sensors to measure the stretching
strength at the joint point of the electrodes and the wires.
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APPENDIX

A.1. MEASUREMENT PROTOCOL

This section gives the details of the protocol that was used for respiration information estimate study con-
ducted at holst center imec, the Netherlands. The five sections have the associative movement categories
and enough time length for each stage.
Note: Since wearing the nose clip for a long time may cause discomfort to the volunteers, during each section
of the protocol, a flexible break period for the subject to relax can be set during two activities if needed (e.g.
set a break between stage b and c in section A). The breath-hold part at the beginning of each section is used
for synchronization.

A.1.1. MOTION ACTIVITIES

The details of the activities in five sections are introduced in this subsection.

LYING ON THE BED

a) Breathe in deeply and then hold the breath of 7s

b) Sit on the chair with a normal breathing [2 min]

c) Raise the arm and then drop it every 4 seconds [40 s]

d) Move lightly in the bed (imagine that you cannot get sleep or have pain) [40 s]

e) Lie in the bed on the back, bend and straighten legs repetitively [30 s]

SITTING AT THE CHAIR

a) Sit down and breathe without spirometer [30 s]

b) Sit down and hold the spirometer but breathe not through the spirometer [30 s]
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c) Sit down and hold the spirometer and breathe through the spirometer [30 s]

d) Surf the Internet on smartphone [30 s]

e) Clean the designated area of a table [30 s]

f) Stand up and sit down continuously every 4 seconds [6cycles]

STANDING

a) Move body randomly and lightly without hand waving [30 s]

b) Move body and wave hands randomly and lightly [30 s]

WALKING AND RUNNING

a) Walk on the treadmill at a speed of 3.0 km/h [40 s]

b) Walk on the treadmill at a speed of 4.0 km/h [40 s]

c) Walk on the treadmill at a speed of 5.0 km/h [30 s]

d) Jog on the treadmill at a speed of 6.0 km/h [30 s]

e) Running on the treadmill at a speed of 7.0 km/h [30 s]

FREE BREATH AND MOVEMENT

a) Free breathing with 2min no-movement period alternating with 2 min of motion [4 min]

b) Free breathing with 2min no-movement period alternating with 2 min of motion [4 min]

SYNCHRONIZATION

The following mechanisms will provide easy synchronization between Robin and Biopac spirometer record-
ings:
To distinguish the five sections of motion:

1. Making time markers on the spirometer data

2. Deep breathing as a mark of starting time for each phase.

3. Writing down the time (laptop clock) for each phase.

4. Tapping Robin at the right beginning and end of each phase.

To distinguish each stage (e.g a,b) in a section:

1. Making time markers on the spirometer data.

2. Writing down the time (laptop clock) for each step.

3. Tapping Robin at the right beginning and end of each stage.

A.2. SQI AND RQI

In this section, the details of the proposed SQI and RQI candidates are introduced.
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A.2.1. SQI FOR ECG SIGNAL

The proposed SQIs are as follows.

Wavelet and Shannon entropy One SQI for ECG signal is from [62] and the idea is that the ECG data of
good quality can be distinguished from those of bad quality based on the features in the frequency domain.
The heart rate variability(HRV) is used to derive the frequency features as the ECG data of bad quality has
the potential problems of resulting in a distorted HRV signal which may not have normal distribution of the
power in the different frequency band. Thus, the wavelet entropy is used to measure the distortion in the fre-
quency domain which can be calculated based on discrete wavelet transform (DWT) and more details can be
found in [78]. By using DWT, the signals can be decomposed into different frequency band and two output,
approximation wavelet coefficients and detail wavelet coefficients are representing the temporal features in
the corresponding frequency. Finally, we can derive the features based on approximation wavelet coefficients
and detail wavelet coefficients in the corresponding frequency band.
For the HRV signal, the distorted signal can have rather high-frequency noises in the frequency band of 1-2
Hz which is not present in the clean signal and based on this, the Shannon entropy [79] of this frequency
band is then calculated to indicate the level of disorder to indicate the signal quality.

Skewness and kurtosis Skewness and Kurtosis are two typical statistical metrics to characterize the distri-
butions of the signal and skewness measures the symmetry of the distribution while Kurtosis is measuring
the sharpness of the distribution and more details can be found in [80]. For ECG signals, if the quality is low
which means there are noises present, the Skewness will be of a larger value while the Kurtosis will become
smaller since the noise can result in the asymmetry in the distribution of ECG and a much flatter distribution
in terms of sharpness. As a consequence, these two statistical metrics, Skewness and Kurtosis can be used to
indicate the quality of the ECG signal.

Matching of two QRS detector One SQI for ECG based on the matching of peak detectors of QRS complex is
proposed in [66] and the idea is different types of noise could have a different impact on the accuracy of QRS
detection [81], the noise level of the ECG data can be indicated by the performance of different QRS detectors.
In this study, two peak detectors are used. One is based on digital filtering (DF) and integration [82] and one
is a detection algorithm from imec. The SQI is defined to be the ratio of beats detected by both algorithms to
all the detected beats (by either algorithm).

R-R interval variability The R-R interval is the time interval between two subsequent R peaks in the ECG
signal. The variations of the R-R intervals is thus can be a signal quality indicator for ECG signal proposed in
[62]. This regularity is affected by the performance of QRS detectors under the noise as the QRS could miss
some peaks or wrongly detect the noise as true peaks. Thus, the standard deviation of R-R intervals could be
large when the ECG is of distorted by noise. Thus, the SQI can be taken as variability in the R-R intervals and
this can be calculated as follows:

Cv = σ̂RR̂̂µRR

(A.1)

where ˆσRR and ˆµRR are the standard deviation and mean of the data series of the R-R intervals.

A.2.2. RQI FOR THE RESPIRATORY SIGNALS

Autoregression RQI
Another RQI based on Autoregression model (AR) is proposed in [68]. AR model is used to estimate the spec-
trum of the signal since it can achieve a high resolution for the spectrum. The selection of the best order
for the AR model is based on the Akaike’s Information Criterion (AIC) and about the AIC more details can be
found in [83]. The AR model is trained on the order from 1 to 30 and the best order is taken as the one which
can produce the minimum AIC.
After calculating the AR model on the data. the RQI AR is further taken as the pole of the model which has
the largest amplitude among all the poles within the predefined respiratory range. If all the poles are out of
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the respiratory range, the RQI AR is set to zero. Actually, the RQI AR is indicating the power of the domain
frequency in the predefined respiratory frequency range the signal from which the most possible RR can be
derived.

Hjorth Parameter RQI Three Hjorth parameters have been defined: activity, mobility, and complexity [84].
Activity is a measure of the squared standard deviation of a signal’s amplitude which indicates the mean
power of the signal. The standard deviation of the slope against the activity is taken as the mobility. Finally,
complexity is a measure of the frequency uniqueness of a data series and when the signal has only one fre-
quency component, which is actually a sinusoid wave, the corresponding complexity will be one. The calcu-
lations of these three Hjorth parameters can be found in [84]. Based on the idea in [68], one assumption can
be made that the respiratory waveform of best quality would be a perfect sinusoid wave, thus the Hjorth pa-
rameter of interest for the RQIH j or th is complexity as it represents the most sinusoidal signal when its value
is equal to one. Thus the calculated Hjorth complexity can indicate the quality of the underlying respiratory
signal by measuring how close it is to a sinusoidal signal thus indicate the reliability of the RR estimate from
this underlying signal.

A.3. STATISTICAL ANALYSIS ON THE RR OF CONSECUTIVE TWO SEGMENTS

This statistical analysis is based on spirometer recordings of 10 subjects from the protocol introduced in
Chapter ?? and the joint distribution of the RR of two successive segments (20 s) are investigated on four cat-
egories of motion, including lying, sitting, standing and walking and running. Totally a number of more than
800 segments from the protocol are utilized.
The following Figure A.1 shown the histogram together with the bivariate distribution fitting plot. The pur-
pose of this analysis is to help decide the dynamic model of the Kalman filter and also the relevant bivariate
distribution parameters for the Vertibi algorithm introduced in introduced in section 4.2.6.
The corresponding bivariate distribution parameters are summarized in the following table A.1.
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Figure A.1: Statistical analysis on the RR of consecutive two segments for overall dataset and specific motion dataset

Motion categories Mean:µ convariance matrix:
∑

Lying

 12.68

12.79

  15.63 13.26

13.26 15.73



Sitting

 12.57

12.98

  19.79 7.97

7.97 22.04



Standing

 16.35

16.41

  23.73 20.80

20.80 25.51



Walking & running

 18.25

18.37

  33.4 30.89

30.89 34.39



free breath

 14.47

14.48

  26.91 24.43

24.43 27.08



Table A.1: Bivariate distribution parameters for five types of motion
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