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2 1. INTRODUCTION

It has been reported that the per-annum number of cybersecurity attacks has grown
four-fold since 2019 [1, 2]. High as it is, this number is an underestimate because it con-
siders only "interactive" attacks: hands-on-keyboard attacks carried out by people. The
number does not account for attacks carried out through software tools. Many factors
have contributed to the consolidation of this trend:

• The COVID-19 pandemic caused an increase in the attack surface. Many com-
panies had to adopt remote working solutions quickly and often without due at-
tention to security. The exposure of vulnerable teleworking infrastructures to cy-
berattacks [3, 4] has increased, as has the use of personal devices not controlled
or managed by companies. According to some observers, these changes are ir-
reversible and will continue to affect cybersecurity even after the pandemic ends
[5, 6].

• Cyberspace has become an increasingly important dimension of political con-
flict. With the growing dependence of critical infrastructure and economic sys-
tems on digital technologies, cyberspace has provided a global-scale battlefield.
The geopolitical impact of cyberattacks—especially those used for intelligence,
sabotage, and propaganda—has been growing. One example of this was seen dur-
ing the early months of the military escalation in the Russo-Ukrainian conflict,
where cyberspace was used by both parties to spread propaganda and fake news
[7]. Another example is highlighted by the cryptocurrency revenues generated by
North Korea through cyber operations aimed at attacking investment firms and
centralised exchanges [8].

• Ransomware attacks, in which cybercriminals encrypt a victim’s data and demand
ransom to restore access, have become increasingly common and sophisticated
[9]. Many of these attacks now use double-extortion tactics, where the attackers
not only encrypt the data but also steal and threaten to publicly release sensitive
information if a ransom is not paid [10].

• Supply-chain attacks, in which cybercriminals compromise a third-party vendor
or supplier to gain access to a target organisation, have become more frequent
[11]. These attacks are particularly effective because the vendor or supplier often
has less robust security than the target organisation.

• Cybercriminals use AI- and ML-based techniques to create convincing fake videos
and images that can be used to spread misinformation or impersonate individuals
[12].

• As more organisations adopt cloud-based solutions, more cybercriminals focus on
attacks targeting these services [13]. These attacks often involve compromising a
user’s credentials or using malware to access data stored in the cloud.

The security controls implemented by many organisations have yet to keep up with the
ever-increasing number and sophistication [13] of cyberattacks. As reported by a global
cybersecurity services provider [14], only 26% of the cyberattacks that occurred in 2020
were promptly detected by the security controls in place; only 33% of those attacks were
automatically blocked as soon as they were detected. Only 9% of cyberattacks triggered
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security alerts, and as many as 53% passed unnoticed. In 2021, the median dwell time,
which is the time between the start of a cyber-intrusion and its detection, was 21 days:
a period considered long enough to gather relevant intelligence and perpetrate a nefari-
ous activity [15].

It is difficult to quantify the damages caused by those security incidents. Reports pub-
lished in 2021 [16, 17] estimate threat actors’ profits to range from 123 million to 350
million U.S. dollars in 2020. However, those estimates are limited to ransomware and
represent a lower bound to the actual, unknown quantification since they exclude pos-
sible impacts of reputational damages, various forms of collateral loss, and untracked
ransom payments.

The lack of intelligence is one of the leading causes of a failed reconnaissance of a mali-
cious approach [14]. Adopting Network Intrusion-detection systems (NIDSs) is one pos-
sible mitigation to this problem [18]. NIDSs are software systems that monitor networks
for malicious activity. NIDS can be classified according to the detection methodology:
knowledge-based (K-NIDSs) or behavior-based (B-NIDSs).

K-NIDSs1 [19–21] rely on known patterns of malicious activity and determine whether
these patterns match the captured network traffic. The knowledge base used for K-
NIDS is typically composed of detection rules [22–26] or string patterns [27]. K-NIDSs
are usually accurate in detecting known behaviours. Also, they tend to produce inter-
pretable results because the detection engine is generally transparent to the client. As
discussed later, interpretability is a desirable property enabling actionable intelligence.
Furthermore, interpretability makes any system more trustable. However, K-NIDSs are
less effective in detecting unknown attacks: the attacks where intrusion attempts are not
matched by any pattern in the knowledge base. Another challenge with K-NIDS is up-
dating the knowledge base with the ever-changing threat landscape. On the one hand,
the knowledge base may become obsolete quickly because new attacks are discovered
often. On the other hand, obtaining new patterns can be costly because they require
technical know-how. Whether the knowledge base is created "in-house" by an internal
team or acquired from trusted external sources, making and maintaining a knowledge
base can incur substantial costs for an organisation.

B-NIDSs build a model that describes the normal behaviours in the network; later, they
use this model to detect unusual behaviours. B-NIDSs differ from each other by the
model they adopt. Some B-NIDS adopt statistical models [23, 26–29] and others rely
on machine learning [30–39] or deep learning [31, 33–36, 40–54]. B-NIDSs can detect
unknown threats if those threats cause the occurrence of anomalous behaviors. Fur-
thermore, B-NIDSs do not require any knowledge base of malicious patterns. However,
B-NIDSs tend to suffer from false alarms, i.e., harmless behaviours erroneously consid-
ered malicious only because they are uncommon. Furthermore, B-NIDS based on deep
learning produces uninterpretable results. Deep-learning models are deemed opaque:

1K-NIDSs are also known as signature-based NIDSs or misuse-detection NIDS. B-NIDSs are often called
anomaly detection NIDS.
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an unsavvy user might need help understanding the remote causes of behaviour that
these models believe is anomalous. Recently developed B-NIDSs adopt a structured de-
tection methodology composed of a combination of various algorithms [30–32, 34, 36–
39, 45, 46, 48]; there also exist B-NIDSs adopting deep-learning models, such as autoen-
coders [31, 33, 35, 44, 46, 50, 52, 54]. In both combined and deep-learning based NIDSs,
it might be difficult to determine why a pattern observed in a network capture has led to
a detection, and this has a detrimental effect on the interpretability of the outcomes.

In summary, we need a better means of detecting cyberattacks against our systems in
terms of quality and interpretability. Only by stopping attacks at the earliest stages will
we be able to reduce the dwell time of the intrusions in our networks.

This introductory chapter is structured in three sections. Section 1.1 states the goal for
the research discussed in this thesis. Section 1.2 provides a high-level overview of the
principal contributions. Finally, Section 1.3 outlines the structure for the remainder of
the dissertation.

1.1. RESEARCH GOAL
This thesis aims to investigate whether it is possible to create intrusion-detection sys-
tems that do not rely on rules created by domain experts, are not affected by the prob-
lem of ruleset obsolescence, are capable of detecting unknown threats, and are capable
of producing interpretable results. The main result of our research is a methodology that
allows the use of NIDSs based on libraries composed of computational models called au-
tomata. In the proposed methodology, each automaton can express multiple behaviours
observed in a network capture.

There are a few reasons automata might be considered a good fit as models for intrusion-
detection systems:

• Automata are particularly suitable for describing software behaviour during its ex-
ecution. They have a decades-long history of being used to describe software dy-
namics [55, 56] in software design. We define the behaviour of software as the
changes in internal states of the software and the expected outputs caused by se-
quences of input stimuli.

This motivates our interest in automata. If automata have been used for years
to describe the behaviour of software during design, why not keep using them to
describe the behaviour at later stages of the software lifecycle?

• Automata are interpretable. Because automata are mathematical models, each
component of an automaton structure, regardless of what that automaton repre-
sents, has a formally defined semantic. Furthermore, automata enable a human to
track how an input to an automaton leads to the output. That is manually accom-
plishable if the automata are simple or with tool support in case of more complex
instances.
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This allows us to interpret the outcomes of an intrusion-detection system. In many
use cases, the raw outcome of a system is not enough; an explanation of the rea-
sons or causes for that outcome is requested to let human consumers trust the
system and account for possible errors. The more critical the use case, the more it
requires an explanation.

• Automata are models that can be learned from network captures automatically.
This is possible thanks to many years of research in the grammar inference field,
which produced several automata-learning algorithms. Section 1.2.4 introduces
the topic of automata learning, and Chapter 2 discusses it in detail and provides
instances of automata-learning algorithms.

This alleviates the problems related to maintaining knowledge bases. Automata
are automatically created from network captures, with little human effort and,
more importantly, with little domain-specific expertise.

• Automata are models that describe not only the patterns observed in network traf-
fic but also the potentially malicious patterns that have not yet been observed.
Automata-learning algorithms make this possible because they can abstract the
data provided to them and infer generic models. Chapter 7 discusses this capabil-
ity in detail and illustrates it with a dedicated experiment.

This makes the proposed methodology less prone to false-negatives issues that
often characterise the K-NIDSs. An intrusion-detection system that implements
the proposed methodology can detect attacks not present in any capture used for
learning the automata in a library.

1.2. USING AUTOMATA TO DETECT NETWORK INTRUSIONS
The use of automata to describe attacks or intrusions is not a novelty. For example, Ku-
mar and Spafford [57] describe a knowledge-based and host-based intrusion-detection
system that relies on a library of known attack patterns modelled as coloured Petri au-
tomata [58]. However, those automata were designed by domain experts, which posed
the challenge of maintaining the library. Furthermore, learning Petri nets automatically
is a difficult problem [59]. In [60], the authors describe a knowledge-based and host-
based intrusion-detection system for UNIX systems called USTAT. USTAT rely on a li-
brary of attack patterns expressed by finite-state machines [61]. However, as for Kumar’s
and Spafford’s systems, those state machines were designed by domain experts to depict
possible compromises of the system.
The rest of the chapter expands on the concepts introduced so far and is organised as
follows: Section 1.2.1 describes the motivation for the interest in network data. Sec-
tion 1.2.2 discusses the benefits of behaviour-based detection. Section 1.2.3 presents the
automata and explains why they represent a reasonable choice for describing behaviour
patterns. Section 1.2.4 introduces some concepts about automata learning. Finally, Sec-
tion 1.2.5 provides an overview of the proposed methodology.
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1.2.1. FOCUS ON NETWORK DATA
Cyberattacks are commonly modeled by using the Cyber Kill Chain®: a sequence of
phases each representing a typical phase of a cyberattack. According to the Lockheed
Martin Corporation [62], which imported the concept from the military and adapted it
for the cyber world, the phases of the Cyber Kill Chain® are Reconnaissance, Weaponiza-
tion, Delivery, Exploitation, Installation, Command and Control, and Action on Objec-
tives. During Reconnaissance, the threat actor selects targets by researching and col-
lecting data that can be used in later phases. After collecting enough information, the
threat actor obtains tools for accessing and controlling the targets during Weaponiza-
tion. We refer to those tools as "payload": a piece of software purchased or developed
by the threat actor and, once installed, gives the threat actor control of the target sys-
tem. Having obtained the payload, the threat actor attempts to deliver it to the target;
for example, a phishing email campaign was one of the most common means of deliv-
ery in 2021 [1, 16]. After shipping the payload to the target, the actor attempts to install
the malicious code. This phase is referred to as Exploitation and is commonly accom-
plished by using psychological or social manipulation to trick a victim into opening a
file attachment. During the Installation phase, the threat actor attempts to install a pay-
load to establish the persistence of the malicious code on the infected system. Once
installed, the payload may set up a communication channel from the infected system
to the threat actor’s infrastructure; this phase is known as Command and Control (C2).
Finally, the Action on Objectives phase is a generic container for all actions an intruder
might perform to achieve its end goal. Some examples of actions are data exfiltration,
file encryption, lateral movement to other infected systems within the same network,
and erasing evidence of the intrusion.

Reconnaissance

Weaponisation

Delivery

Exploitation

Installation

Command and Control

Action on Objectives

Figure 1.1: The cyber killchain is an established model for a cyber attack process [62].

Figure 1.1 summarises the Cyber Kill Chain®. Usually, the last two states might be re-
peated for several cycles. The return connection from Action on Objectives to Command
and Control highlights the fact that in practice, the Cyber Kill Chain® does not always
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proceed according to its definition [62]. A cyberattack might not traverse all the states of
the chain. As an example, an insider attack2 does not require a proper Reconnaissance
phase if the threat actor already has knowledge of the target network and the authorisa-
tion to access the systems of interest. As another example, in some ransomware attacks,
the actor does not need to establish a Command and Control connection with the op-
posing infrastructure.

In the Cyber Kill Chain®, at least four out of seven states require some form of interac-
tion on a network. One of the most common reconnaissance actions is the port scans to
gain insight into the network services active on the targeted system. Port scans are per-
petrated by means of software tools3 and remotely launched by the threat actors. The
payload is usually delivered through a network interaction, either by email or by remote
exploitation of some network-exposed service. Command and Control is yet another
example of a phase where a network interaction is necessary because the threat actor
is remote. This phase is particularly important with botnets, where a network of com-
promised systems is remotely controlled by an actor. Many of an actor’s actions might
suggest some sort of network interaction, such as lateral movement, where the intruders
move from one infected host to another within the same network. In addition, recognis-
ing those malicious interactions by analysing network data is crucial for detection and
post-hoc analyses, such as forensic investigations. NIDSs might trigger a detection in a
very early phase of a cyberattack: in the reconnaissance phase, when the intrusion has
not happened yet.

Network data might take many forms and granularities. The methodology described
in this dissertation is based on Netflows. If a packet represents the atomic unit of in-
formation carried by a network, a Netflow [63–65] (or network flow, or just flow) is an
aggregation of packets that share the same key. A Netflow key is usually composed of
a 5-tuple that comprises the source address, source port, destination address, destina-
tion port, and protocol. All packets that share the same key in a specific timeframe are
considered part of the same Netflow. A Netflow is the summary of specific features of
the packets, and it comprises the duration, the size in bytes, and the number of pack-
ets. Netflows come with interesting properties, making them the data type of choice for
several analytical tasks [66]. Even a single system can produce large amounts of packets
in one day. The escalation of those amounts on small-to-medium networks makes it al-
most impossible for a software tool or a human to scan every packet — the packets are
simply too numerous. However, because each flow is an aggregation of multiple packets
and because processing a flow means processing all the packets it aggregates, Netflows
scale better than packets on significant amounts of data. Nowadays, about 85% of the
network interactions are encrypted [67]: that is, the content of packets is transformed to
protect confidentiality. Most of the time, neither humans nor software tools can look into
an encrypted packet’s content. Even when a decryption key is provided, privacy, legal,
ethical, and social considerations often thwart attempts to analyse the packet’s contents.
Because Netflows consider packets’ metadata rather than content, flows are unaware of

2An insider attack is perpetrated in collaboration with at least one member of the targeted organisation.
3nmap (https://nmap.org) is one of the most popular port scanners.

https://nmap.org
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encryption. Naturally, if compared to the content of an unencrypted packet, the infor-
mation content of a Netflow is far more limited.
An interesting aspect of network data is that once cyberattacks occur, their tracks can-
not be tampered with or erased, as happens for interactions with the operating system
on the compromised endpoint. Indeed, once threat actors gain control of the targeted
system, they might wipe off access logs and install rootkits to hide files or processes of
interest to the operating system itself and to any possible endpoint security software.
These and other actions hamper both detection and post-hoc analyses. On the contrary,
once a network transmission is sent out on the wire, the data is hardly under the threat
actor’s control. This is even more evident in recently deployed and appropriately de-
signed networks, where network data is gathered by sensors placed in strategic points
and log aggregators installed on dedicated hardware located in controlled segments. In
Messier’s words, "the network cannot lie" [68].

1.2.2. BEHAVIOR AS A FEATURE
Indicators of Compromise (IoCs) are technical characteristics found in system or net-
work artefacts that represent evidence of malicious activity. IoCs are used for detecting
a possible cyberattack and confirming one that has already happened. As an example
of IoC-based detection, antivirus software detects malware by matching file signatures
found on the attacked system with known malware signatures included in the antivirus’s
dataset. Those malware signatures are often composed of IoCs that security researchers
extract after analysing malware. Similarly, NIDS detect malicious activities by applying
filtering rules to the network traffic. By matching a packet’s content against known IoCs,
the rules dictate when a packet must be considered malicious. As an example of IoC-
based post-hoc analysis, IoCs are used to address the attribution problem: that is, the
process of tracking and identifying the threat actor behind a cyberattack [69]. Attribu-
tion of cyberattacks is based on the idea that nothing a human makes can avoid personal
expression, including the choice of Tactics, Techniques, and Procedures in cyberattacks
(TTPs). That type of personal expression might be unique enough to support an attribu-
tion hypothesis. In attribution, threat actors are represented by intrusion sets: groups of
IoCs consistently observed in different cyberattacks. Threat actors are mapped to possi-
bly several intrusion sets.

The most common IoCs are hash values, IP addresses, domain names, network artefacts,
host artefacts, tools, and TTPs.

• Hash values, or just hashes, are the output of the application of specific one-way
functions (i.e., the hash functions) to the malware samples. Since just a single bit
flip into the malware sample leads to a different hash, hash values are commonly
used to univocally identify malware samples.

• IP addresses are numerical values uniquely identifying devices connected to a net-
work via an IP internet protocol.

• Domain names are strings that uniquely identify web servers and other network-
exposed resources. Domain names serve as human-friendly labels for IP addresses.
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• Network artefacts (for example, URI4 patterns) are observable features left by the
threat actor on the target network.

• Host artefacts, as the name suggests, are the host-based counterparts of network
artefacts. Therefore, host artefacts are observable features left by the threat actors
interacting with the operating system. Host artefacts include special registry keys
or folder names touched by threat actors.

• Tools are the software utilities threat actors use to achieve their goals. They can be
malware of various forms, such as a backdoor or ransomware, or legitimate pro-
grams used with malicious intents, such as port scanners and penetration-testing
frameworks.

• Finally, TTPs are definitions of the methods used by the threat actors. The defini-
tions must be sufficiently generic to be abstracted from the actual tools but suffi-
ciently specific to profile the threat actors.

Figure 1.2: The Pyramid of Pain [70] shows the stability of each type of Indicator of Compromise (IoC).

Stability is a desirable property of IoCs and is defined here as the capability of IoCs to
persist across multiple cyberattacks. The concept of IoC stability has been addressed in
[70] with the so-called Pyramid of Pain (PoP), shown in Figure 1.2. In the PoP, stability
is expressed in pain for the threat actor in changing a given type of IoC. The bottom lay-
ers of the pyramid refer to the most unstable IoCs because the threat actor can change
them with little to no pain. On the contrary, the top layers of the PoP refer to the most
stable IoCs because changing them would require much more effort from the threat ac-
tor. For example, though unique for each artefact, hash values are considered unstable
because even a single-bit mutation in the input artefact leads to a completely different
hash value. On the contrary, TTPs are the most stable type of IoCs because adopting

4Uniform Resource Identifier.
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a different technique or procedure implies a fundamental drift in the threat actor’s be-
haviour. Thus, changes in TTPs are supposed to be costly because they require the actor
to learn new skills or hire professionals who possess them.

Although TTPs and tools indicators are the most stable, they cannot be automated. An
IoC is considered automated when software tools can extract and process it. TTPs and
tools are indicators related to decisions and choices made by human beings, and that
is why they are so stable. They are out of the scope of discussions about software tools
used to enhance detection. Unfortunately, the only IoC types available for software tools
are also less stable. That is why keeping the K-NIDS knowledge base up to date is essen-
tial to effectively protecting systems and networks. Automated indicators are unstable
because they are usually controlled by the threat actor. For example, in most cases, there
is no need to recompile the source code to change the hash value of malware; the threat
actor might only need to flip a bit in the binary. Similarly, even if the C2 IP address is
hardcoded in the binary, the threat actor might only need to rebuild the binary to com-
mit the update. If the malware adopts a C2 domain, then no update to the binaries will
be required to change the IP address and keep the C2 channel alive.

The PoP, in its original formulation, does not mention an additional form of an indi-
cator: the behaviour. Behaviour is a running software system feature consisting of any
observable process interaction with the execution environment. We define behaviour as
the expected outputs or as the observable changes of internal states of a system caused
by a sequence of stimuli coming from the execution environment or from other soft-
ware systems. Behaviour is a more stable indicator than hash values or IP addresses
because it is a feature that the threat actor usually cannot control. Indeed, changing the
behaviour of malware usually requires changing the source code so much that the mal-
ware appears to be completely different after the commit. For example, changing the
way ransomware encrypts files on an infected system, in most cases, requires editing the
codebase. A relatively recent trend in detection software development shows an increas-
ing interest in software behaviour. The underlying idea is to detect malicious activities
not by looking for matches with unstable IoCs but by looking at how malicious software
interacts with the environment once it is executed. Indeed, increasingly, antivirus ven-
dors integrate capabilities for detecting malicious software behaviour into their products
[71–74]. Describing malicious software’s behaviour is debatable because there are differ-
ent ways to do it. The following section introduces the technique we consider the most
reliable.

1.2.3. AUTOMATA AS MODELS OF SOFTWARE BEHAVIOR
There is no consensus on how to define the behaviour of malicious software. Vendors of
security products tend to conceal both the source of behaviour-related information and,
more importantly, the model of the behaviour their product relies on. In some cases,
the behaviour of malware is thought of as a summary of IoCs collected after an intru-
sion into sandboxed environments is simulated5. VirusTotal, a well-known aggregator

5In the context of malware analysis, a sandbox is a controlled and isolated environment used to run malware
for the sake of collecting IoCs and recording all its interactions with the operating system.
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Figure 1.3: The behaviour tab on VirusTotal gives a flat description of malware behaviour. This is a partial view
of the tab content.
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of antiviruses, offers an example. It allows a client to submit a file for parallel scans op-
erated by an array of different antiviruses6. The BEHAVIOR tab in VirusTotal, shown in
Figure 1.3, consists of an enumeration of the IoCs gathered after a sample is run in one
of several available sandboxes7. This behaviour concept cannot represent interaction
dynamics because it shows the IP addresses contacted, the folders created in the file sys-
tem, and other information. It does not provide information about, for example, creat-
ing a folder due to a successful first contact with the threat actor’s remote infrastructure.
In other words, this model’s behaviour fails to represent relationships between the ob-
served indicators. Furthermore, this way of expressing behaviour is still based heavily on
IoCs, which, as discussed in the previous section, might be a somewhat unstable feature.

In this dissertation, the proposed methodology uses automata to describe the behaviour
of malicious software. Automata are abstract machines composed of states and capable
of processing input messages. At any moment, an automaton is in a state that reflects its
reaction to some input message. In other words, during a computation, the automaton
transitions from the current state to the next state, and the next state depends exclusively
on the current state and the received input message. Figure 1.2 shows an example of an
automaton and provides a high-level description of the possible behaviour of malware
that allows to determine whether the threat actor is to be contacted via the C2 channel.
The states of the automaton are represented with circles, and the transitions between the
states are represented as arrows. Each transition links a source state to a destination state
and is decorated with a symbol representing the input message triggering the transition
at its occurrence. The source-less transition in the top-left state indicates the starting
state: the state of the malware when installed. In this high-level behaviour model, the
malware contacts the threat actor only if it has been launched and only during nighttime.
Indeed, the C2 state is reached if and only if the automaton receives a "run" message,
which triggers the transition from the starting state to the Running Silent state, and this
message is followed by a "night" message, which triggers the transition from the Run-
ning Silent state to the C2 state. When a new day comes, the malware becomes silent: it
is running but not communicating with the threat actor. Indeed, being in state C2, and
after receiving the message "day", it transitions to Running Silent again.

There are several reasons for choosing automata to model the behaviour of software. As a
first reason, automata have been used for decades to design legitimate software. For ex-
ample, Unified Modeling Language (UML) [55] is probably the most common language
for system design. To this end, UML comprises different types of standardised graphs,
called diagrams, each providing a uniquely informative point of view of the software un-
der specification. One of those diagrams is called statechart8 and is included in the UML
suite of diagrams to express the intended behaviour of the system at design time. UML
state charts describe state machines, which are the most common types of automata9.
Another example of automata’s broad applicability in describing the behaviour of legiti-

6For more information, see https://www.virustotal.com/gui/home/search, section "How it Works".
7In this case, as shown at the top of the picture, it is the Yomi sandbox [75].
8Actually, UML statecharts were first defined by David Harel in [56], and that is why they are also called Harel

statecharts
9The automaton in Figure 1.4 is an instance of a state machine

https://www.virustotal.com/gui/home/search
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Figure 1.4: An automaton representing an over-simplified malware behaviour. It connects to the Command &
Control server (C2) if and only if it gets executed and it’s nighttime

mate software comes from specifications of communication protocols. Communication
protocols (henceforth referred to as "protocols") are systems of rules that enable com-
munication between two or more entities. TCP-IP is a suite of communication protocols
that allow two or more computers to communicate on the internet10. A protocol’s defi-
nition is usually composed of two parts:

• A static part defines the structure of each type of an allowed message. This is where
message format is specified, such as the number of fields a message can have, the
admissible values for each field, and what those values represent.

• A dynamic part defines how to build a conversation compliant with the protocol.
This is where the communication rules get established, such as how to start a con-
versation, what to expect after a certain type of message is sent, and how to reply
after a certain message is received. The dynamic part is represented by a form
of automaton: a state machine. For example, Figure 1.5 shows the state machine
defining the TCP protocol dynamics as they appear in the protocol specifications
[76].

A second reason for choosing automata for modelling software behaviour is interpretabil-
ity. Interpretability is a desired quality for a model because it enhances trust, i.e., the
degree of comfort for a human to make decisions based on the model outputs. Trusta-
bility is achieved when it is possible to understand whether a model performs well and
the inputs with which it performs well. Automata are interpretable according to all the
meanings discussed in [77]. For example, automata are interpretable because they can
be simulated, especially if the number of states is reasonably small. A model is simula-
ble when a human can take the inputs with the model parameters and step through the
calculations. As a further example, automata are interpretable because they are decom-
posable. A model is decomposable if each of its components is inherently explainable.

10TCP-IP is also known as the Internet protocol suite
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Figure 1.5: State machine of the TCP protocol. Credits: Ivan Griffin.
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Indeed, as discussed in the case of the state machine shown in Figure 1.4, each automa-
ton state and transition has its own meaning.

The last reason for choosing automata as models of software behaviour is that they can
be learned from data. This is an essential property of a model suitable for the method-
ology proposed in this dissertation. Without this property, it would be challenging to
devise a single automaton that describes network interactions starting from a Netflow
capture. Inferring an automaton from data of any form can be a time-consuming, diffi-
cult task for a human being.

1.2.4. LEARNING AUTOMATA FROM DATA
Inferring automata directly from data — having some algorithm infer automaton with
little to no human intervention — is a crucial part of this research. For this reason, the
goal of this section is limited to introducing some concepts about training automata.
Chapter 2 offers a much more comprehensive discussion by providing formal founda-
tions and details of some state-of-the-art automata learning algorithms.

One way of introducing automata learning is by connecting this topic to a different, but
probably less abstract, one. In ethology, scientists study animal behaviour: that is, they
apply the scientific method to determine the causes of some interesting behaviour and,
eventually, expand knowledge about a specific species. One of the early stages of etho-
logical research consists of defining the behaviours of interest and, ultimately, observing
the animal in the wild. While observing the targeted animal, the ethologist records all ob-
served behaviours over time. One of the most common tools for this is the ethogram11 a
research artefact made of two essential parts:

• First, there is a catalogue enumerating an animal’s behaviours or actions. This
enumeration must be as complete as possible to provide meaningful answers to
the ethologist’s questions. For example, if the ethologist wants to study the hunt-
ing behaviour of wolves, the expected ethogram catalogue could be similar to that
shown in Table 1.1, which focuses on the hunting-related aspects and neglects the
rest.

• Second, there is a so-called data-collection part of the ethogram. This part records
the occurrence of behaviours observed in the animal over time. These are se-
quences of behaviours mentioned in the catalogue in the first part of the ethogram.
They provide the basis for any later hypothesis on the animals’ behaviour.

Usually, an ethologist approaching the study of a species starts with an initial hypoth-
esis that answers a specific research question. Observing that species in the wild may
confirm or deny this initial hypothesis. Indeed, if a contradiction is found during the
data-collection process, then the ethologist might decide to formulate a new hypothe-
sis that reflects the observations. This process repeats until the ethologist considers the
current hypothesis as answering the research question. What we have just described can
be considered as an instantiation of the empirical cycle [80].

11For more information, see an introduction to the behaviour-measurement subject [78].
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Table 1.1: example of an ethogram for the behaviour of large carnivores (e.g. wolves) hunting ungulate prey,
taken from [79].

Foraging state Definition
Search Traveling without fixating on and moving toward prey
Approach Fixating on and travelling toward prey

Watch
Fixating on prey while not traveling
(e.g., standing, sitting, or crouching)

Attack-group
Running after a fleeing group or lunging

at a standing group while glancing about at different group

Attack-individual
Running after or lunging at a solitary individual

or a single member of a group
while ignoring all other group members

Capture Biting and restraining prey

The process of gaining an understanding of animal behaviour from direct observation
is similar to the process of learning automata from data. I f the research into behaviour
starts with a researcher defining the ethogram catalogue by filling it with interesting and
repeatable behaviours, then part of an automaton’s definition comprises a set of input
messages the automaton should process. Because the input messages are called sym-
bols, that set of input messages is called the alphabet. For example, the alphabet for the
automaton in Figure 1.4 is composed of the symbols day, night, run, and quit. Notice
that it is possible to give a definition for each of those symbols because they were items
in an ethogram catalogue, shown in Table 1.2.

By continuing with the similarities, if the behavioural research relies on sequences of
observed behaviours exhibited by the animal over time, the automata learning process
depends on words produced by the targeted unknown automaton. The observed be-
haviours of the animal are those inserted into the ethogram catalogue, and the symbols
that make up the words are those enumerated in the automaton alphabet.

Table 1.2: Alphabet for the automaton in Figure 1.4 with a possible explanation for each symbol.

Symbol Definition

Night
It is night-time in the timezone of the victim
(e.g. by checking the operative system clock)

Day
It is day-time in the timezone of the victim

(e.g. by checking the operative system clock)
Run Starting the execution
Quit Terminating the execution

The last similarity lies in the learning process itself. If the ethologist reformulates and
adapts the hypothesis according to the collected observations, the same happens for
many learning algorithms. Indeed, when learning automata, the hypothesised model
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is constantly updated to keep consistency with the observed words. Those updates are
called mind changes. A learning algorithm is said to converge in the limit when, after
observing many words, it will reach a point where there will be no mind changes. The
convergence to the limit is a crucial property of learning algorithms; without it, there
would be no certainty that an algorithm would learn the correct automaton. This is sim-
ilar to studying animal behaviour because the ethologist will stop the process when the
hypothesis answers the research question.

The final consideration of automata learning concerns the importance of the automaton
structure, which consists of the states and transitions between them. The structure is es-
sential because it makes automata interpretable by lending transparency, trust, ability
to simulate, and informativeness (see Section 1.2.3). In machine learning, the learning
of some models is reduced to a problem of estimating the parameters because domain
experts define the structure. A typical example is the case of neural networks, where
the network architecture is fixed, and the learning algorithm is limited to estimating the
model weights. All states of algorithms used in automata learning, especially those dis-
cussed in the following chapter, aim to learn the possible model parameters and, more
importantly, the structure of the target automaton. Naturally, that aspect complicates
the learning problem.

1.2.5. THE PROPOSED METHODOLOGY
The main contribution of this research consists of a methodology for learning automata
from Netflow captures and, through them, determining the suspiciousness of host be-
haviours. Section 1.2.2 expressed the reasons for a growing interest in behavioural fea-
tures for both detection and post-hoc analysis tasks. Furthermore, Section 1.2.1 high-
lighted the benefits of working with network data in general and with Netflows in partic-
ular. A host behaviour might be considered the aggregation of all its interactions during
a specific period. Those interactions happen according to the communication protocols
implemented in some layer of the suite of TCP-IP protocols. To this extent, the behaviour
of a host network might be considered as determined by those software implementa-
tions. As such, the behaviour of a host network can be described with automata.

The proposed methodology adopts a host-level granularity: it aims to inspect behaviours
per host, even if not limited to that. In principle, either a finer per-connection granu-
larity or a coarser per-network granularity might be adopted. However, the decision to
centre the methodology on hosts has been made after considering that host-based judg-
ments are more suitable for most detection cases. Knowing which hosts are suspicious
within a possibly vast Network Under Observation (NUO) is more valuable than classi-
fying each Netflow passing through the observation points. The possible remediations
are also host-based because a host might get isolated from the NUO during the inves-
tigations and eventually reverted into a safe, pristine state in the case of a confirmed
infection.

The proposed methodology consists of two distinct phases: training and testing.

The training phase, shown in Figure 1.6, assumes the availability of one or more Netflow



1

18 1. INTRODUCTION

Figure 1.6: Training phase of the proposed methodology.

captures called training captures. Each training capture contains Netflows produced by
a host that belongs to the NUO. Training captures have the characteristic of being la-
belled: that is, it is known whether they were collected from an infected host or from a
presumably safe host. That scenario is considered reasonable because captures of mali-
cious activity might get collected from hosts involved in security incidents, and captures
containing legit traffic might get collected from just reset hosts.

As discussed in Section 1.2.4, learning an automaton requires both an alphabet of sym-
bols and a training set of strings: words composed of symbols taken from the alphabet.
Therefore, one of the first steps of the training phase is to generate an alphabet and a
training set out of each training capture. It is called the data abstraction step and is im-
plemented via two separate components: the Labeler and Sequencer.

The Labeler maps each Netflow to a symbolic counterpart. There are at least two strate-
gies for achieving this goal, and both are discussed in Chapter 3. As an example, it is
possible to label Netflows according to the duration and the amount of bytes transmit-
ted. This criterion could lead to the following symbols: "Slow and Light" flows (SL), "Slow
and Heavy" flows (SH), "Fast and Light" flows (FL), and "Fast and Heavy" flows (FH). De-
pending on the training capture, the Labeler could map a Netflow as fast if its duration is
less than 1.2 milliseconds and as slow otherwise. Similarly, the Labeler could map a Net-
flow as light if the number of bytes transmitted is less than 124 and as heavy otherwise.
Consequently, a Netflow lasting 7 milliseconds and carrying 30 bytes would be labelled
with the symbol SL. The Labeler maps a stream of Netflows, contained in a capture, to a
stream of symbols.
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The Sequencer transforms the output of the Labeler into a training set of words. As for
the Labeler, different strategies (see Chapter 4) are used to obtain words out of a stream.
Once the data abstraction step is over, each training capture is translated into a training
set ready to feed an automata-learning algorithm.

The learning component, the Learner, strongly depends on the type of automaton adopted
as the target model. In Chapter 7, the model of choice consists of Probabilistic Deter-
ministic Automata (PDA), which are learned with the ALERGIA algorithm; both PDA
and ALERGIA are discussed in Chapter 2. In Chapter 6, the model of choice is Proba-
bilistic Deterministic Real-Time Automata (PDRTAs), which are learned with the RTI+
algorithm. PDRTAs are discussed in Chapter 2, and RTI+ is discussed in Chapter 6 as it
represents an enhanced version of the RTI algorithm introduced in Chapter 2.

Each automaton learned from a training capture is stored in a so-called Automata Li-
brary, which might contain the automata learned in the NUO and the automata learned
in other networks and eventually imported. That is made possible by the data-abstraction
procedure, which makes the learned models sufficiently generic to be applied in net-
works other than the one where they were identified.

0
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3 4
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Figure 1.7: Example of automaton learned from a Netflows capture.

Automata are used to generate network-specific behavioural features called symptoms.
A symptom is a couple (q,α) where q is the automaton state reached after processing
symbol α. Given an automaton and a word, symptoms can be generated by letting the
automaton process the word. As an example, consider the automaton in Figure 1.7 as
having the alphabet {SL,FL,SH,FH}. By processing the word SL,SL,F H , the automaton
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produces the following symptoms:

(1,SL), (1,SL), (4,F H).

Initially, the automaton is in state 0: the initial state (pointed to by a source-less tran-
sition). The first symbol of the word, SL, activates the transition from state 0 to state 1;
therefore, symptom (1,SL) is generated. The second symbol of the word, SL, activates
the transition from state 1 to state 1 itself and, therefore, symptom (1,SL) is generated
again. The process is reiterated for each symbol in a word and for each word in the train-
ing set. All symptoms generated from the same capture form a multiset called a profile.
For example, after obtaining the set of words {[SL,SL,FH], [SL,SL]}, automaton generates
the profile shown in Figure 1.7:

{(1,SL)×4,(4,F H)×1}.

All profiles generated for each training capture are stored in a Profiles Dataset collection
during the training phase. If the training capture was collected from an infected host,
the corresponding profile is called an infection profile.

The testing phase, shown in Figure 1.8, assumes the availability of one or more Net-
flow captures obtained from some host under observation and called testing captures.
In contrast to the captures produced in the training phase, the captures are not labelled
because the testing phase aims to assess whether a candidate host exposes suspicious
behaviour. The first steps of the testing phase are functionally identical to those of the
training phase. For each model in the Automata Library, a testing capture is abstracted
to a dataset of words for that model. The components involved, namely the Labeler and
the Sequencer, are the same as those of the training phase. The words are provided to
each automaton to generate a profile by following the procedure described earlier. If any
of those profiles matches a known infection profile, an alert is generated for the host that
has produced the testing capture. At least two strategies are used to assess the similar-
ity of the profiles, and both are discussed in Chapter 7 and implemented in the Profile
Matcher component.

1.3. OUTLINE OF THE THESIS
This section summarises the content of the remainder of this thesis. The dissertation is
divided into three parts.

The first part includes this introductory chapter and Chapter 2, which provides all the
automata-related concepts and learning required to understand the other parts.

The second part addresses some of the issues relevant to learning automata from teleme-
try data, and it includes Chapter 3, Chapter 4, and Chapter 5. More precisely, Chapter 3
focuses on the problem of how to translate raw data into symbols. It introduces an in-
novative algorithm that integrates the Labeller and Learner components when the input
data is sortable. Chapter 4 describes how to obtain words from a stream of symbols. This
task is carried out by the Sequencer component within the proposed methodology dia-
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Figure 1.8: Blueprint of the testing phase of the proposed methodology.

gram. The chapter shows different alternatives and offers an innovative solution. Chap-
ter 5 is focused on the problem of how to gather a limited yet relevant amount of data to
learn automata from streams. It introduces a method for estimating the completeness
of the collected data.

The third part presents two different applications of the methodology described in Sec-
tion 1.2.5 and includes Chapter 7 and Chapter 6. In Chapter 6, we propose Probabilistic
Deterministic Real-Time Automaton (PDRTA) as the automaton type of choice. Different
to other automata, PDRTAs embed the notion of time. Due to the adoption of PDRTAs,
the Learner component implements the RTI+ algorithm. In Chapter 7, the automaton
type of choice is the Probabilistic Deterministic Automaton (PDA), and the Learner im-
plements the ALERGIA algorithm.

The dissertation ends with Chapter 8, which outlines the main findings and proposes
some ideas for future work.
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This chapter1 introduces all the concepts which are required to understand the rest of
the dissertation. Furthermore, it presents some of the most common models and the
state of the art learning algorithms. Although this dissertation focuses on particular
models and one learning framework, the chapter presents several alternatives deemed
helpful for the reader to appreciate differences, pros and cons.
The chapter is divided into three main loosely coupled sections, which may be read inde-
pendently. Section 2.1 introduces some key concepts from the theory of learning. Sec-
tion 2.2 describes some of the most common types of automata, mainly focusing on
deterministic automata. Finally, Section 2.3 presents some state-of-the-art algorithms
capable of learning automata from data.

2.1. THE PROBLEM OF LEARNING
The theory of learning, also known as learning theory or inductive inference, studies the
problem of learning a concept from examples. This theory has two main actors: the stu-
dent and the teacher. The student needs to learn and try to identify the concept from
the examples. The teacher knows sufficient information about the concept allowing it
to provide examples to the student by drawing them from the instance space (the input
space). Based on the examples it has access to, the student formulates a hypothesis for
the concept. The concept and the hypothesis are considered subsets of instances from
the input space. The student is said to learn the concept when the teacher confirms that
the hypothesis and the concept are the same subsets of the instance space.
In learning theory, it is expected to require the student to infer a hypothesis of minimal
size. A smaller hypothesis is a simpler hypothesis, and among the possible concurrent
hypotheses for the same concept, the simplest one is usually preferable because it is
more interpretable. The minimal size requirement is just another application of Occam’s
razor principle, which is well-known in science. In learning theory, Occam’s razor prin-
ciple is adopted as a heuristic guiding the concept identification.
After describing the learning problem in general terms, it is worth defining those no-
tions since the rest of the section builds up from them. The concept and hypothesis can
be defined as follows:

Definition 1. A concept C over an instance space X is a subset of X . An example x is
a positive example of C if x ∈ C . Otherwise, an example x is a negative example of C if
x ̸∈C .

Definition 2. A hypothesis H for a target concept C over an instance space X is a subset
of X . An example x evaluates true in H if x ∈ H ; otherwise, it evaluates false. A hypothesis
H for a target concept C is correct if and only if H =C .

Teacher and student are defined as follows:

Definition 3. A teacher t of a target concept C is an oracle that returns a labelled exam-

1Most of this chapter is based on the books by Verwer [81] and de la Higuera [61].
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ple (x,b) where x ∈ X is an example and b is a boolean value evaluated true if x ∈C and
false otherwise.

Definition 4. A student s is a learning algorithm which learns a hypothesis H and has
access to a teacher t of a target concept C . A student’s goal is to find a correct hypothesis,
i.e., a hypothesis H such that x ∈ H if and only if x ∈C .

The student has access to examples of the target concept without knowing it. However,
it is commonly assumed that the student knows the class of the concept. In other words,
the student knows the target concept has been chosen from a known concept class. A
concept class is formally defined as follows:

Definition 5. A concept class C over an instance space X is a recursively enumerable set
of concepts over X .

This section ends by introducing the notion of representation, defined as follows:

Definition 6. A representation for a concept class C is a function R :N→ C . Any i ∈N
such that R(i ) =C is called a representation of C under R.

Representations heavily affect the complexity of a learning problem. Indeed, it is known
that a learning problem which is computationally intractable using a specific representa-
tion may become treatable by choosing a different representation. This aspect is further
discussed in Section 2.1.2.

2.1.1. LEARNING FRAMEWORKS
In learning theory, any learning process may adhere to three main learning frameworks.
Each framework guarantees specific properties and requires the fulfilment of certain re-
quirements.
In the identification in the limit framework, [82], a student learns a correct hypothesis
from a teacher, eventually providing every sample. In the query learning framework [83],
a student learns a correct hypothesis from a teacher by asking specific questions and re-
acting to the corresponding answers. In PAC identification framework [84], a student
learns a probably approximately correct (PAC) hypothesis from a teacher who provides
samples from an unknown probability distribution.
The choice of which learning framework to adopt depends on the application and the
type of information at one’s disposal. For example, finding a teacher capable of an-
swering the questions required by the query learning framework can be challenging.
A possible application is when a domain expert is available, and he/she is unable to
codify his/her knowledge. PAC identification framework does not require such a type
of teacher, but it imposes some substantial requirements on the student. Those require-
ments may make developing a PAC-compliant student very difficult in some cases. How-
ever, PAC identification guarantees that the student identifies a correct hypothesis with
high probability. In most cases, accessing some samples of the target concept is relatively
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easy. The identification in the limit can be applied without the substantial requirements
imposed by the PAC identification framework. That is why most of the algorithms dis-
cussed later in this chapter work in the identification in the limit framework.
The following sections cover the three prominent learning frameworks in more detail.

IDENTIFICATION IN THE LIMIT

The identification in the limit [82] is very close to how humans learn since a human
learner usually starts from a part of a concept. Eventually, the human learner extends
his understanding by getting more information and learning more details. Identification
in the limit models the concept of learning as a continuously ongoing process in which
the student receives samples from the teacher, and it may change its mind. Intuitively, a
mind change in the student happens when an instance represents a counterexample for
the currently formulated hypothesis.
In finite identification, students can change their minds a limited number of times. The
identification in the limit relaxes this requirement by allowing the students to change
their minds infinitely often. However, when the student is allowed to learn with an infi-
nite number of mind changes, it must converge to a hypothesis for the target concept.
Convergence is a crucial property of any student in the identification in the limit frame-
work because it guarantees that it is possible to understand whether the student has
learned the target concept.f

Definition 7. A student identifies a concept C in the limit from a teacher t when it out-
puts a sequence of hypotheses H1, H2, . . . and there exists a number n ∈N such that from
that point onwards the output hypothesis remains the same, i.e. Hn = Hn+1 = Hn+2 . . .
and Hn is a correct hypothesis.

A typical complexity measure for students who learn in the limit is the number of mind
changes required to learn the target concept. In addition, the run-time of the student
is also a common complexity measure. When a student s is guaranteed to identify any
correct hypothesis H from a concept class C using polynomial run-time and amount of
mind changes in the size of H , it is said that s efficiently identifies C in the limit.

QUERY LEARNING

Query learning framework [83] is characterized by a student asking questions to a teacher.
Therefore, the first important aspect worthy of consideration is that query learning re-
quires a teacher capable of answering those questions. Query learning is considered a
type of active learning as opposed to all the frameworks which do not require queries.
The latter are examples of passive learning.
A teacher in the query learning framework may answer four types of queries: member-
ship queries, equivalence queries, subset queries, and superset queries. Membership
queries take an element x ∈ X as input, where X is the instance space, and return true if
x ∈C where C is the target concept. Otherwise, if x ̸∈C , the teacher returns false. Equiv-
alence queries take a hypothesis H ⊂ X as input, and the output is yes if H is correct.
Otherwise, if H is incorrect, the output is a pair (x,b) where x ∈ (H \ C )∪ (C \ H) and b
is a boolean value indicating if x ∈ C . The pair (x,b) is a counterexample certifying the
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incorrectness of H . Subset queries take a hypothesis H ⊂ X as input, and the output is
yes if H ⊂C . Otherwise, the output is a sample x where x ∈ H \C . As before, x represents
a counterexample certifying the incorrectness of H . Superset queries take a hypothesis
H ⊂ X as input, and the output is yes if C ⊂ H . Otherwise, the output is a sample x where
x ∈ C \ H . Again, x represents a counterexample certifying the incorrectness of H . A
teacher capable of answering membership and equivalence queries is called minimally
adequate teacher.
The complexity of a query-learning student is commonly measured by the number of
queries required to identify a concept. Of course, the run-time complexity of the stu-
dent is also important when determining the complexity of a learning problem. When
a student correctly identifies a hypothesis H from a concept class C with a polynomial
number of queries in the size of H and with polynomial run-time in the size of H , it is
said to identify C efficiently from queries.

PAC LEARNING

The main characteristic of the Probably Approximately Correct (PAC) learning frame-
work [84] is the definition of a probabilistic teacher, which chooses samples from the
input space according to an arbitrary distribution. The student needs to learn the sam-
pling distribution. Another peculiarity of PAC learners is in the goal of the learning itself.
While in the other frameworks, the goal is to identify the target concept exactly, PAC
learning suffices to classify any new example with high accuracy.
As already mentioned in the introduction of the current Section, the PAC learning frame-
work poses more requirements for the student than the other settings. A PAC-compliant
student is a probabilistic student accepting three parameters as input: a probabilistic
teacher drawing samples with an unknown probability distribution, a value ϵ denoting
the maximum allowed probability error in classifying new samples, and a value δ denot-
ing the minimum allowed probability of failure in identifying a hypothesis. Indeed, a
PAC-compliant student must identify with probability at least 1−δ a hypothesis H hav-
ing probability at most ϵ of failing in classifying new samples.
The complexity of a PAC student is determined according to two parameters: a value k
denoting an upper bound on the size of the hypothesis minimal representation and a
value n denoting the size of the instance space. A student efficiently identifies a concept
in the PAC learning framework if it runs in time polynomial w.r.t. k, n, 1

ϵ , and 1
δ .

2.1.2. TIME COMPLEXITY
An essential question in learning theory is how complex learning problems are, regard-
less of the learning framework used to learn them. Although the actual complexity of a
learning problem highly depends on the specificity of the problem itself, the process of
attributing it to a specific complexity class is the same as for any other computational
problem. In other words, the complexity of a learning problem is demonstrated by con-
necting it to another problem for which the complexity class is known. This process is
called reduction.
In a reduction, any instance of problem A is transformed into an instance of a different
problem B. If this transformation is efficient, i.e. polynomial in the size of any instance
of A, and if the complexity class of B is known, then A has the same complexity class of B.
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More intuitively, if A can be reduced to problem B, and if B can be solved efficiently, so
is A because the algorithm for solving B could be used to solve A with the same efficiency.
What makes a learning problem reducible to, in principle, any other computational prob-
lem is the notion of consistency formally defined as follows:

Definition 8. A concept C ∈C is consistent with a finite set of labeled samples

S = {(x1,b1), (x2,b2) . . . (xn ,bn)}

when for all 1 ≤ i ≤ n, bi = true if xi ∈C and bi = false otherwise.

With consistency, any instance of problem A can be mapped to a set of labelled samples
S, which is then used to learn a class C ∈ C . A condition for the reduction to properly
work is that the size of S must be bounded by a polynomial of the size of the instance
of A. In this way, any problem of learning a specific hypothesis can be interpreted as a
search problem where the search space is composed of all possible hypotheses, and the
goal is to find a hypothesis for which the error is zero.
As an example, it has been proved in [85] that the problem of learning three terms Dis-
junctive Normal Form (3DNF) formulas is NP-hard by reducing it to the problem of
colouring graph nodes with three colours (also known as graph three colouring) which
is also NP-hard. Therefore, finding an efficient algorithm for solving 3DNF formulas is
only possible if P = N P .
Even when the target concept class for a learning problem is given, the choice of the
hypothesis representation significantly impacts the efficiency of the learning algorithm.
In other words, how a hypothesis is represented heavily affects the complexity of the
learning problem. For example, the problem of learning three terms Conjunctive Nor-
mal Form (3CNF) formulas is tractable in the PAC learning framework. Therefore, by rep-
resenting 3DNF formulas in conjunctive normal form, namely by using basic boolean al-
gebra distribution rules, the problem of learning 3DNF formulas can be efficiently solved
using a 3CNF hypothesis representation.

2.1.3. DATA COMPLEXITY
Like the time complexity, another essential question in learning theory is how much data
is required to learn something meaningful. This question is also known as the data com-
plexity of learning problems. The data complexity measures how many samples a stu-
dent requires to learn a sensible hypothesis. A hypothesis is sensible if it is correct for
at least some samples in addition to those provided by the teacher. In other words, a
sensible hypothesis should prove that the student learned at least something.
Given a set of samples S, also called a training set, a labelling Sl of S is a set of all ele-
ments from S together with a boolean value. In other words, Sl is a labeling of S if and
only if S = {x | ∃b ∈ {true, false} s.t. (x,b) ∈ Sl }.

A concept class C achieves a labelling Sl if there exists a concept C ∈ C such that x ∈ C
if and only if (x, true) ∈ Sl . When a concept class C achieves all possible labellings of a
training set S, S is shattered by C . In other words, if a concept class C is shattered by a
training set containing n samples, a student requires at least n samples to learn a sen-
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sible hypothesis. When a hypothesis H is learned from a training set S′ with cardinality
n −1, for every other sample x ̸∈ S′ there exists a hypothesis H ′ consistent with S′∪ {x}
and a hypothesis H ′ not consistent with S′∪ {x}.
The Vapnik-Chernovenkis dimension (VCD) of a concept class C is the cardinality of the
largest training set shattered by C [86]. The VCD is interesting because it is used to derive
a bound on the number of samples required to learn a certain concept in the PAC learn-
ing framework. Indeed, any hypothesis h ∈H consistent with a sample of size

max
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ϵ
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δ

)
,

8

ϵ
V C D(H ) log
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13

ϵ

))
has error at most ϵ with probability at least 1−δ. However, that bound overestimates
the actual bound for most learning problems. Commonly, a much smaller training set
suffices to converge to a sensible hypothesis for a concept class.

2.2. AUTOMATA MODELS
This section focuses on automata models, and there are at least two good reasons of in-
terest in them2. The first reason is that many real-world systems, both hardware [87, 88]
and software [56, 76], can be considered Discrete Event Systems (DESs), and automata
are the tool of choice when modelling DESs. A DES is a system of states associated with
a finite set of events. A DES has three fundamental properties: it is in a single state at any
time during its life cycle; an event may occur instantly, and it always causes a transition
from one state to another (possibly the same).
The second reason is about the learnability, i.e. the capability of learning those models
from data. Several models are more expressive than automata, e.g. Turing Machines,
but they are challenging to learn. Although the automata’s expressive power is limited
to the class of regular languages, they belong to the set of models that are provably and
efficiently learnable from data.
This section defines and describes three different classes of automata, depending on the
type of queries they aim to answer. Finite State Automata (FAs), treated in Section 2.2.1,
are designed to answer the question, "Is a string belonging to a given regular language?".
Instead, Probabilistic Automata (PAs) are designed to answer the question, "What is the
probability of a string belonging to a given regular language?". Section 2.2.2 introduces
the PAs. Finally, Timed Automata (TAs), addressed in Section 2.2.3, answer the same
question of the FAs but for timed regular languages.

2.2.1. FINITE STATE AUTOMATA
Finite State Automata (FAs) are computational models requiring a finite amount of mem-
ory. A FA is composed of states and transitions. FAs can be graphically described as di-
rected graphs with states represented by circles and transitions represented by arrows
linking source states to destination states. Figure 1.4 shows an example of FA. FAs oper-
ate on sequences of symbols drawn from a set called alphabet. Each transition is labelled
with a symbol. A computation is the process of changing the current state of an FA by ex-
ecuting its transitions. Therefore, an FA computation can be represented as a sequence

2In addition to the obvious consideration that automata are one of the core topics of this thesis.
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of states and transitions activated during its life cycle.

Initially, the current state of an FA is the so-called initial or start state (graphically repre-
sented by a state pointed by a sourceless transition). Unless a state is not reachable from
the initial state, each transition in the computation is activated, and that causes a change
in the current state to the destination state pointed by that transition. The destination
state is also called the next state because it follows the source state in the computation.
A computation on an FA is said to be valid if and only if it ends in a final state. The final
states are a subset of an FA’s states and are graphically highlighted with double circles.
All the labels of the transitions, activated in a computation, form a sequence of symbols
called string.

There are three different types of FAs depending on the computation semantics. In an
Acceptor, any computation accepts or rejects a string, which is achieved by defining two
additional sets of states: accepting and rejecting. If a computation ends in an accepting
state, the string, composed of the labels of the transitions activated by the computation,
is accepted. Otherwise, the string is rejected if the computation ends in a rejecting state.
Generators can be considered a type of Acceptor where the alphabet is composed of just
one symbol. Generators can only emit a single string since, at most, one transition is
leaving each state. In a Transducer, any computation generates an output string starting
from an input string. Transducers do not define accepting or rejecting states. Instead,
they define two distinct alphabets (i.e., the input and output alphabet), and the tran-
sitions are decorated with an additional symbol taken from the output alphabet. Any
activated transition maps an input symbol to the corresponding output symbol during a
computation. In this way, computations map input strings to output strings.

Off
Running

Silent

Off
Night C2

run

night

quit

nightday

run

day

quit

Figure 1.4: An automaton representing an over-simplified malware behaviour. It connects to the Command &
Control server (C2) if and only if it gets executed and it’s nighttime (originally from page 13).

The set of strings a FA A accepts3 is called the language of the FA, and it is denoted

3Any consideration expressed in this section holds for either Acceptors, Generators or Transducers. Therefore,
any reference to string acceptance or language accepted is replaceable with, respectively, string generation
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by L(A ). A FA accepts a string if it is formed by the labels of the transitions activated
on a valid computation. In this case, the string is said to be valid as well. Therefore,
the language accepted by an FA is the set of valid strings according to the FA itself. It
is important to distinguish between deterministic finite state automata (DFAs) and non-
deterministic finite state automata (NFAs). In DFAs, each state has at most one transition
activable with the same label. Therefore, there are no ambiguities in a DFA on which
transition to activate in a computation. In NFAs, this constraint is relaxed, and multi-
ple transitions leaving a state can be labelled with the same symbol. Therefore, there
can be multiple options in an NFA at any point in a computation. It is worth consid-
ering that this difference does not affect which languages may or may not be accepted
by FAs. Instead, (non-)determinism influences language representation. It is also impor-
tant to distinguish between FAs accepting finite-length strings and FAs accepting infinite
strings. The most common type of automaton accepting infinite strings is the Büchi au-
tomaton.

DETERMINISTIC AUTOMATA

DFAs are the most common type of automata. DFAs can be considered a building block
for other models, such as Probabilistic Automata or Timed Automata, which share a sim-
ilar same structure. A DFA is formally defined as follows:

Definition 9. A DFA is a 5-tuple
(
Q,Σ, q0,δ,F

)
, where

• Q is a finite set of states.

• Σ is a finite set of symbols, aka the alphabet.

• q0 ∈Q is the start state.

• δ :Σ×Q →Q is the transition function.

• F ⊆Q is a set of final states.

The transition function δ defines the transitions in a DFA. A DFA uses transitions to gen-
erate or accept strings depending on the type of the automaton. Strings are accepted
or generated by computations. The notion of computation of DFAs is defined as fol-
lows:

Definition 10. A computation of a DFA A = (
Q,Σ, q0,δ,F

)
over a string a1, a2, . . . an is a

sequence

q0
a1−→ q1

a2−→ q2 . . .
an−−→ qn

of states and transitions such that δ(ai , qi−1) = qi for all i = 1. . .n, qi ∈ Q and ai ∈ Σ. A
DFA computation is valid if qn ∈ F .

The transition function is partial since not all the symbols may activate a transition in
a given state. Considering the DFA in Figure 1.4, the symbol d ay does not activate any

and language generation.
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transition in state Off. Those types of symbols are infeasible instead of those that activate
a transition (such as, for example, r un in state Off of the automaton in Figure 1.4), which
are feasible. A DFA generates a language if it comprises all the strings for which a feasible
computation exists. A DFA recognizes a language if it is composed of all the strings for
which there is a valid computation. The recognized language of a DFA is a subset of the
generated language for the same DFA. Figure 1.4 shows an instance of DFA.

NON-DETERMINISTIC AUTOMATA

In an NFA, determining the current state may not be possible. That is the difference
between a NFA and a DFA. Indeed, in an NFA, it is correct to talk about the set of next
states instead of the next state as for DFAs. The first cause of non-determinism occurs
when the current state may change to two or more possible next states given a symbol.
A second cause of non-determinism occurs when the current state may change without
any observed symbol occurrence. The latter case is graphically modelled with transitions
labelled with the empty string symbol ϵ and because of that said ϵ-transitions. In more
formal terms, a NFA is defined as follows:

Definition 11. A NFA is a 5-tuple (Q,Σ,Q0,δ,F ), where

• Q is a finite set of states.

• Σ is a finite set of symbols, aka the alphabet, united with the ϵ symbol to denote
unobserved symbols.

• Q0 ⊆Q is a set of possible start states.

• δ : Q × (Σ∪ {ϵ}) → 2Q is the transition function.

• F ⊆Q is a set of final states.

As it is possible to notice from the definition above, the initial state of the DFA definition
has been replaced by a set of possible initial states in the NFA definition. In addition,
the transition function in NFAs maps to sets of states instead of states as for DFAs. Both
modifications result from the non-determinism of the state of the automaton. In an
NFA, there can be multiple computations given the same string. That is why the formal
definition of computation of NFAs changes as follows:

Definition 12. A computation of an NFA A = (Q,Σ,Q0,δ,F ) over a string a1, a2, . . . an is
a sequence

q0
a1−→ q1

a2−→ q2 . . .
an−−→ qn

of states and transitions such that q0 ∈Q0, qi ∈ δ∗(ϵ∗ai , qi−1), qi ∈Q and ai ∈Σ∪ {ϵ}, for
all i = 1. . .n. An NFA computation is valid if qn ∈ F .

δ∗ is defined as the extension of δ to string inputs. As such, δ∗ is defined as the partial
mapping of Σ∗×Q into 2Q . Figure 2.1 shows an instance of NFA.
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Figure 2.1: A non-deterministic finite state automaton representing a possible malware behaviour. After being
installed, it connects to the Command & Control server (C2) if only if it gets executed and it is night time.
Whenever in a running state, the malware may raise an exception, which causes the software to crash.

2.2.2. PROBABILISTIC AUTOMATA
In many real-world applications, knowing the probability of a string belonging to a lan-
guage is more important than if it belongs to the language. Probabilistic Automata re-
sponds to this type of use case. To this extent, PAs are considered generative devices
rather than parsing or recognizing devices as FAs. In this section, we define Probabilistic
Non-deterministic Automata (PNAs). We introduce their deterministic counterpart, the
Probabilistic Deterministic Automata (PDAs), in Chapter 7.

Definition 13. A PNA is a 5-tuple (Q,Σ, IP ,FP ,δP ), where

• Q is a finite set of states.

• Σ is a finite set of symbols, aka the alphabet.

• IP : Q → [0,1] is the initial state probability distribution.

• FP : Q → [0,1] is the final state probability distribution.

• δP : Q×Q×(Σ∪{ϵ}) → [0,1] is the transition function. This function is complete, i.e.,
δ(q, q ′, a) = 0 with q, q ′ ∈ Q and a ∈ Σ can be interpreted as no transition existing
from q to q ′ with symbol a.

The three probability distributions IP , FP , and δP , are functions such that∑
q∈Q

IP (q) = 1

and ∀q ∈Q,
FP (q)+ ∑

q ′∈Q, a∈Σ∪{ϵ}

δP (q, q ′, a) = 1.
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IP , FP , and δP play a key role in defining the notion of computation in PNAs, which
generate strings together with a probability of that string being generated. The formal
definition of the PA-computation of PNA follows:

Definition 14. A computation of a PNA A = (Q,Σ, IP ,FP ,δP ) over a string a0, a2, . . . an is
a pair (r, p) consisting of:

• A finite sequence of states and transitions r = q0
a0−→ q1

a1−→ q2 . . . qn−1
an−1−−−→ qn .

• A probability value p = IP (q0)×∏
0≤i≤n−1δP (qi , qi+1, ai )×FP (qn) where qi ∈Q for

all 0 ≤ i ≤ n and ai ∈Σ∪ {ϵ} for all 0 ≤ i ≤ n −1.

By comparing the definition of PNAs with NFAs of the previous section, it is possible to
notice that there are no accepting or rejecting states in NFAs. That holds for any PAs
since they are generative in nature.

The following section discusses some widely used models that can be represented as
PAs.

MARKOV CHAIN, NGRAM MODEL AND HIDDEN MARKOV MODELS

A few widely used models can be expressed as PAs. A Markov Chain [89] is a stochas-
tic process {Xn |n = 0,1,2, . . . } admitting a finite or countable number of positive values.
When Xn = i , the process is said to be in state i at time n. When a Markov Chain is in
state i at time n there is a probability Pi , j that it will transition into state j at time n +1.
That is a fundamental characteristic known as Markov property: given the current state,
the future state is independent of the past. That is why it is said that Markov Chains are
memoryless processes.
Markov Chains may be represented as Probabilistic Automata when the number of states
is finite. However, since Markov Chains only models the probability of being in a state
after some time, only the states are labelled. Differently from what was shown in the pre-
vious section, PAs representing Markov Chains have un-labelled transitions.
The Ngrams model, or simply Ngrams, is a common type of Markov Chain used in lan-
guage learning applications. An Ngrams model comprises states, each denoting a finite
sequence of past symbols of length N . In Trigrams, an instance of Ngrams with N = 3, a
state exists for each sequence of three alphabet symbols. Furthermore, Ngrams are com-
posed of transition probabilities between states to express the probability of the next
symbol. For example, in Trigrams from state abc to state bcd , there can be a non-zero
probability P (d |abc) of d being the next symbol given the current state abc.
Hidden Markov Model (HMM) [90] is essentially a Markov Chain where the states are
unobservable. From this aspect comes the name of this type of model. Each state of
an HMM has a probability of emitting a given observation. Each state has its emission
probability distribution, independent of the transition probability. In HMMs, only the
observations are visible from outside the model. HMMs may be described with PAs even
if their transitions are unlabeled. Indeed, the probability distributions created by HMMs
are identical to the ones created by PAs [91].
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2.2.3. TIMED AUTOMATA
All the automata described in the previous sections neglect the temporal dimension,
namely any temporal relationship among the alphabet symbols. However, time informa-
tion is often a crucial aspect of real-world systems. Time relationships among symbols
are modelled by adding a timestamp to each symbol occurrence. Sequences of these
timestamped symbols are called timed strings, formally defined as follows:

Definition 15. A timed string τ over an alphabet Σ is a sequence of pairs

(a1, t1), (a2, t2) . . . (an , tn)

where ai ∈ Σ and ti ∈ R+, i = 1. . .n, are the symbols and the time values, respectively.
The untimed string corresponding to a timed string (a1, t1), (a2, t2) . . . (an , tn) is the string
a1, a2 . . . an obtained by removing the time values.

The time values t1, t2, . . . , tn are obtained by evaluating one or more clocks. A clock is an
object with the following properties:

• It increases over time, synchronously with other clocks.

• It is resetable to 0. After being reset, a clock will immediately start increasing. We
denote the operation of clock resetting as reset.

• It can be evaluated. That means there is a function that maps the clock to its cur-
rent value.

The clock evaluation function is commonly denoted as v with v(x) ∈R+ being the evalu-
ation for clock x. A clock guard, defined as follows, can express time constraints.

Definition 16. A clock guard is an arithmetic constraint on clocks inductively defined as

g := x ≤ n
| n ≤ x
| x ≤ y
| g1 ∨ g2

| g1 ∧ g2

Where x and y are clocks, n ∈Q, and g1 and g2 are clock guards. A clock guard is satisfied
by a clock valutation when the guard evaluates to true given the clock values.

For example, the clock guard x ≥ 30 for the clock x represents the time constraint be-
ing satisfied if the value of the clock x is greater than 30 seconds. Therefore, the clock
evaluation x = 3 does not satisfy the time guard, and the evaluation x = 45 does.

A Timed Automaton (TA), in its original definition introduced in [92], is a class of au-
tomata with no constraint on the number of clocks. Furthermore, each transition of a TA
is capable of resetting any number of clocks. A TA is defined as follows:

Definition 17. A TA is a 6-tuple
(
Q, X ,Σ,∆, q0,F

)
, where
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• Q is a finite set of states.

• X is a finite set of clocks.

• Σ is a finite set of symbols, aka the alphabet.

• ∆ is a finite set of transitions.

• q0 is the start state.

• F ⊆Q is a set of final states.

A transition δ ∈∆ is a 5-tuple
(
q, q ′, a, g ,R

)
, where

• q ∈Q is the source state.

• q ′ ∈Q is the destination state.

• a ∈Σ is a transition label symbol.

• g is a clock guard.

• R ⊆ X is the set of clock resets.

As it is possible to notice from the definition above, each transition δ in a TA includes a
set of clocks R. When a timed symbol activates δ, the values for all the clocks in R are
set to 0, therefore ∀x ∈ R, v(x) := 0), while the other clocks’ values are unaltered. This
dynamic allows for recording how much time elapsed since the occurrence of a specific
symbol. The behaviour of a TA is conditioned by the clock values as formalized in the
following definition of TA-computation:

Definition 18. A computation of a TA A = (
Q, X ,Σ,∆, q0,F

)
over a timed string

τ= (a1, t1), (a2, t2) . . . (an , tn)

is a finite sequence of states and transitions

q0
(a1,t1)−−−−→ q1

(a2,t2)−−−−→ q2 . . . qn−1
(an ,tn )−−−−→ qn

such that there exists a transition
(
qi−1, qi , ai , g ,Ri

) ∈∆with g satisfied by the evaluation
vi for all i = 0,1. . .n, qi ∈Q, and ai ∈Σ. The evaluation vi is defined as vi (x) := 0 if x ∈ Ri

else vi (x) := vi−1(x)+ ti and v0(x) := 0 for all x ∈ X . A finite computation of a TA is valid
when qn ∈ F .

Real-Timed Automata (RTAs) [93] are a particular type of timed automata that recur to
just one clock because they model the time delay between two consecutive symbols.
Clock guards in RTAs represent time delays in terms of intervals and are also called delay
guards. A formal definition of RTA follows:

Definition 19. An RTA is a 5-tuple (Q,Σ,∆, q0,F ) where
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• Q is a finite set of states.

• Σ is a finite set of symbols, aka the alphabet.

• ∆ is a finite set of transitions.

• q0 is the start state.

• F ⊆Q is a set of final states.

A transition δ ∈∆ is a 4-tuple (q, q ′, a, [n,n′]) where

• q ∈Q is the source state.

• q ′ ∈Q is the destination state.

• a ∈Σ is a transition label symbol.

• [n,n′] is a delay guard with n,n′ ∈N.

There is no need to explicate the single clock in the RTA definition since it is unnecessary
to reset and evaluate it. A transition (q, q ′, a, [n,n′]) in an RTA is interpreted as follows:
whenever the automaton’s current state is q , after reading a timed symbol (a, t ) such that
a ∈Σ and t ∈ [n,n′], the automaton state changes to q ′. An RTA is said to be deterministic
if it does not contain two transitions with the same label, the same source state, and
overlapping delay guards. The behaviour of an RTA is influenced by the delay guards, as
shown in the following definition of RTA-computation.

Definition 20. A computation of an RTA A = (
Q,Σ,∆, q0,F

)
over a timed string

τ= (a1, t1), (a2, t2) . . . (an , tn)

is a finite sequence of states and transitions

q0
(a1,t1)−−−−→ q1

(a2,t2)−−−−→ q2 . . . qn−1
(an ,tn )−−−−→ qn

such that (qi−1, qi , ai , [ni ,n′
i ]) ∈∆, where ti ∈ [ni ,n′

i ], for all i = 1,2. . .n. An RTA compu-
tation is valid when qn ∈ F .

An RTA A accepts a timed string τ if the computation of A over τ ends in an accepting
state qn , i.e. qn ∈ F . The language of an RTA A , denoted as L(A ), is the set of timed
strings for which there exists an accepting computation. Figure 2.2 shows an instance of
an RTA.
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Figure 2.2: A Real-Time Automaton representing a possible malware behaviour. After being launched, the
malware tries to connect to the Command & Control server (C2) once every at least 15 minutes. When omitted,
the transition guards are intended as unbounded, i.e., ranging from the minimal to the maximal delay possible.

2.3. LEARNING AUTOMATA FROM DATA
This Section proposes several widely known algorithms for learning automata from data.
The problem of learning a model from data is known as system identification. Here, the
target model is an automaton. Therefore, the problem is also called automata identifi-
cation. Furthermore, the problem of automata learning is also known as grammatical
inference. That is why the words inference and identification throughout the disserta-
tion are used as synonyms for learning unless differently and explicitly stated.
The first essential premise worth discussing is that the entire Section is devoted to algo-
rithms assuming the target model is unavailable. Target model unavailability is a typical
setting known as passive learning, as opposed to the active learning setting, which is
about learning from querying a running system. Learning automata from network data,
one of this work’s critical contributions, is a passive learning setting, which is why this
Section focuses on these algorithms.
A second but not less critical premise is about the interest in learning the structure of
the model, i.e. how many states the model has and how they are transition-linked. In
Machine Learning and Artificial Intelligence, people often learn the parameters of their
models and assume the structure. For example, in Neural Networks, the structure of
the model is pre-defined by the domain experts and the learning algorithm is limited to
the network parameters inference - e.g. weights estimation. In those cases, the learning
problem is relatively simple. However, besides the problem’s complexity, learning the
structure is deemed necessary whenever the system is unknown, and there is a need to
gain insight into it.
All the algorithms discussed in the following sections are for learning deterministic mod-
els. In the implementations of the proposed methodology explored in the following
chapters, we decided to focus on deterministic models because of the availability of well-
performing algorithms for learning them. The motivation for such a choice is all about
the complexity of the learning problem. Indeed, even if automata are learnable from
data, the problem of learning them is still challenging. If learning DFAs can be an NP-
Hard problem, then learning NFA is even more complex.
Section 2.3.1 discusses the most common algorithm for learning DFAs. This algorithm
is important because it has been specialized to learn other types of automata, such
as Probabilistic Automata and Timed Automata. Section 2.3.2 discusses a common al-
gorithm to learn Probabilistic Deterministic automata. Finally, Section 2.3.3 discusses
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the state-of-the-art algorithm for learning Probabilistic Deterministic Real-Timed Au-
tomata.

2.3.1. STATE MERGING
An automaton learning algorithm aims to find an automaton A , also called the hypoth-
esis, such that its language L(A ) is equal to the language of the automaton target of the
learning process. This latter automaton is simply referred to as the target, and its lan-
guage is denoted as Lt . Therefore, the goal of an automaton learning algorithm is to find
A such that L(A ) = Lt . A common assumption is that a set of both positive and negative
samples is given. A positive sample is a string s such that s ∈ Lt , and a negative sample is
a string s such that s ̸∈ Lt . The positive sample is denoted as S+, and the negative sample
is denoted as S−. The set S = {S+,S−} is called the training set.
This section discusses the State Merging algorithm, which aims to find the smallest DFA
possible consistent with the training set, i.e. accepting all the positive samples in S+ and
rejecting all the negative samples in S−. It seeks the smallest DFA because of Occam’s
razor principle. A more straightforward explanation is preferable because it makes the
least number of assumptions. In the world of automata, simplicity maps to the number
of states, i.e. the most straightforward hypothesis for a target is also the smallest. The
search for the smallest DFA consistent with the training set produces models which are
easier to understand.

Algorithm 1 Construct the APTA: apta

Require: A training set S = {S+,S−}
Ensure: An APTA A for S

Initialize A with the only start state q0

A :=; ▷ A is the set of accepting states in A

R :=; ▷ R is the set of rejecting states in A

for each sample s = a1, a2 . . . an from S do
q ′ := q0, i := 0
while i ≤ n do

if ̸ ∃q ∈Q s.t. δ(q ′, ai ) → q then
Q :=Q ∪ {q ′′} ▷ Create a new state q ′′
δ(q ′, ai ) := q ′′

q ′ := δ(q ′, ai ), i := i +1

if s ∈ S+ then A := A∪ {q ′} else R := R ∪ {q ′}
F := A∪R
return A

The idea of the State Merging algorithm is to start by constructing a first hypothesis for
the target. This DFA is called Augmented Prefix Tree Acceptor (APTA), and the Listing 1
shows the construction procedure. An APTA is a prefix tree because it contains one path
from the start state to any other state and because the computation of two strings s and
s′ reach the same state if and only if they share the same prefix. Furthermore, an APTA is
a DFA consistent with the training set S, called augmented, because it usually contains
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states that are neither accepting nor rejecting. It is impossible by construction that an
execution of any sample from S ends in such undecided states, and the algorithm tries
to resolve those undecisions by merging states.
The merging operation combines two states q and q ′ into one by creating a new state q ′′
that has the incoming and outgoing transitions of both q and q ′. By merging states, the
size of the DFA decreases, allowing the algorithm to approach the smallest DFA given the
training set. The merging operation is performed if and only if q and q ′ are considered
consistent. Two states are consistent if it is not the case that one is an accepting state
and the other is a rejecting state. Merging in case of inconsistency would violate what
was observed in the training data. This violation could lead to accepting a string known
as not belonging to Lt or vice-versa to reject a string known as belonging to Lt . In other
words, merging inconsistent states leads to the formation of a wrong hypothesis.
The merging operation may introduce a non-determinism. That happens when a merge
is accomplished between two states, both having an outgoing transition labelled with
the same symbol and reaching different destination states. In such cases, a so-called de-
terminization operation must be taken to satisfy the deterministic property. A typical de-
terminization operation consists of merging the destination states in a chain of merges
that only ends when there are no non-deterministic choices left. The merging proce-
dure is shown in Listing 2, with the final while loop implementing the determinization
procedure.

Algorithm 2 Merging two states: merge

Require: An augmented DFA A and two states q, q ′ ∈Q
Ensure: If q and q ′ are consistent then q and q ′ are merged, A is updated, and true is

returned. False is returned otherwise.
if q ∈ A and q ′ ∈ R or vice-versa then return false
Q :=Q ∪ {q ′′} ▷ Create a new state q ′′
if q ∈ A or q ′ ∈ A then A = A∪ {q ′′} ▷ A is the set of accepting states in A

if q ∈ R or q ′ ∈ R then R = R ∪ {q ′′} ▷ R is the set of rejecting states in A

for each δ(qs , a) = qd s.t. qs ∈ {q, q ′} or qd ∈ {q, q ′} do
if qs = q or qs = q ′ then qs := q ′′
if qd = q or qd = q ′ then qd := q ′′

while ∃δ(qs , a) = qn ,δ(qs , a) = q ′
n do ▷ While exists a non-deterministic choice

e := merge(A , qn , q ′
n)

if e is false then
Undo the merge between q and q ′
return false

return true

A State Merging algorithm continually applies the merging operator until no more con-
sistent merges are possible. The red-blue framework for state merging follows the just-
described principles. On top of what is already discussed, the red-blue framework is
based on an abstraction of the hypothesis. This abstraction consists of a set of red states,
also called the red core, surrounded by a fringe of blue states. The red core is the part
of the hypothesis that has already been identified and is, therefore, finalized. The blue
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fringe represents the part of the hypothesis composed of states discovered but not final-
ized yet. Only merges between red and blue states are allowed in the red-blue frame-
work. Listing 3 shows how a State Merging algorithm in the red-blue framework works.

Algorithm 3 State Merging in the red-blue framework

Require: A training set S = {S+,S−}
Ensure: A is a small DFA consistent with S

A := apta(S)
Red := Red ∪ {q0} ▷ Red is the red core of A

for each q ∈Q s.t. ∃δ(q0, a) = q do
Bl ue := Bl ue ∪ {q} ▷ Bl ue is the blue fringe of A

while Bl ue ̸= ; do
Choose a blue state qb

if ∃qr ∈ Red s.t. merge(A , qr , qb) = true then
Commit the merge between qr and qb

else
Bl ue := Bl ue \ {qb}, Red := Red ∪ {qb}

return A

The state-of-the-art State Merging algorithm is the Evidence Driven State Merging (EDSM)
algorithm [94]. EDSM adopts the red-blue framework, and its principal characteristic
is that an evidence value guides the decision on which red-blue states to prioritize for
merging. The evidence value quantifies the support for a candidate merge coming from
the training set. The principle is to prioritize the merges which have passed the most
tests with the hope that they are more likely to be correct. Indeed, the EDSM score for
a candidate merge equals the number of merges it causes between accepting states and
accepting states and the number of merges it causes between rejecting states and re-
jecting states. EDSM algorithm tries to avoid bad merges, i.e. merges with a weaker
support.

2.3.2. ALERGIA
Learning Probabilistic Deterministic automata (PDAs) is a different problem from learn-
ing DFAs. In DFA learning, it is required to have positive and negative samples, i.e.
S = {S+,S−}, to infer the target model. Having just positive samples makes it impossi-
ble to exclude that the target language does not consist of all the strings. Indeed, it has
been proved by Gold [82] that identifying a DFA in the limit from positive samples (i.e.
S = {S+}) is impossible.
However, since in PDA learning, the ultimate goal consists of inferring a probability dis-
tribution over strings, there is no real need for negative samples, and the target model
can be identified just from positive samples. Indeed, algorithms can learn PDAs in the
limit with probability one. One of those algorithms is ALERGIA [95], which is the topic of
this section.
Assume a training set S composed of positive samples only and assume the size of S be-
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ing n, i.e. |S| = n. Furthermore, suppose to have observed a particular string s occurring
t times into S. The goal of any PDA learning algorithm, including ALERGIA, is to build a
model in such a way that it will assign a probability t

n to the string s. That should hold for
each string in S. In other words, the problem of identifying a PDA consists of finding the
PDA that could have generated the distribution found in the training set. Furthermore,
as for DFAs, it is required that the identified model should be the smallest possible.
The latter constraint is required for several reasons. For example, larger PDAs can pro-
duce more possible distributions, which may affect their compliance with the observa-
tions. Another reason is that smaller PDAs represent more straightforward explanations
for the same phenomenon and, therefore, are preferable per Occam’s razor principle. In
practical terms, requiring the PDA to be the smallest possible improves model under-
standing.

ALERGIA is based on the State Merging algorithm for DFAs described in Section 2.3.1 as
most of the algorithms for learning PDAs. Similarly to what happens in State Merging,
ALERGIA starts with constructing a so-called Probabilistic Prefix Tree Acceptor (PPTA).
A PPTA is a prefix tree representing the distribution of the training set S. Indeed, the
PPTA construction procedure is almost identical to the APTA construction procedure
shown in Listing 1. The only difference is the frequency counts collected by the PPTA
procedure, which are required to estimate the probabilities. The estimator implemented
in ALERGIA is a maximum likelihood estimator because it sets the probability of string
s = a1, a1 . . . an as follows:

P (s) = ∏
1≤i≤n

count(q, ai )

count(q)

Where count(q, a), for a symbol a and a state q , represents the number of samples acti-
vating the transition δ(q, a) and count(q) represents the number of samples leaving the
state q . The PPTA construction procedure keeps those counts up to date while process-
ing all the samples in S.
Also, the merging procedure is the same as in State Merging, with the only addition of the
frequencies updating after a merge between two states. ALERGIA’s principal difference
lies in the compatibility check. Since there are no negative samples in S, the consistency
check implemented in State Merging is no longer applicable because there is no notion
of rejecting state. Therefore, in ALERGIA, two states are deemed compatible for merging
if they satisfy the Hoeffding bound statistical test.
Two states q and q ′ are compatible in ALERGIA, with confidence α > 0, if the following
condition holds for all a ∈Σ, for both states and for any of their children:

∣∣∣∣count(q, a)

count(q)
− count(q ′, a)

count(q ′)

∣∣∣∣<
√

1

2
ln

(
2

α

)(
1√

count(q)
+ 1√

count(q ′)

)

Another difference between ALERGIA and State Merging is the stopping criterion, i.e.
when the algorithm stops and returns its hypothesis of the target PDA. The latter stops
whenever all possible merges are inconsistent. The former stops whenever all possible
merges are un-compatible as for the above-reported test.
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2.3.3. RTI
As discussed in Section 2.2.3, Deterministic Real-Time automata (DRTAs) can model
time delays between consecutive symbols. They achieve this goal by imposing a tem-
poral constraint on each transition. Those constraints assume the form of delay guards
controlling whether a transition is active, given a source state and a symbol. The prob-
lem of learning DRTAs poses a new challenge in comparison to the problem of learning
Deterministic Finite states automata (DFAs). Indeed, when learning DRTAs, in addition
to the problem of identifying the correct automata structure, there is a further problem
of inferring the correct delay guards.
There could be the growing temptation to separate those two problems, solve them
independently and eventually combine the corresponding solutions to solve the more
general problem of identifying the DRTA. Although this divide-et-impera approach may
seem promising, it is unfeasible. Indeed, it has been proved [81] that given a DRTA A

and a training set S, the problem of inferring the correct delay guards such that A is
consistent with S is NP-complete.
A more effective approach is to solve both problems by identifying the delay guards in a
way similar to how an automaton’s structure is determined. That is the strategy imple-
mented by RTI [81], the state-of-the-art algorithm for identifying DRTAs from training
sets composed of both accepted and rejected timed strings. This Section presents RTI
and discusses how it achieves its goal.
RTI is based on the State Merging algorithm for identifying DFAs presented in Section 2.2.1.
As such, it implements the red-blue framework by following an evidence-driven ap-
proach as EDSM does for FSAs. The general idea behind RTI is that it learns the automa-
ton structure using the same State Merging tools, namely the merging operator between
states. However, it also learns the delay guards by splitting the transitions thanks to an
additional splitting operator.

Similarly to the State Merging algorithm, RTI starts by building a Timed Augmented Pre-
fix Tree Acceptor (TAPTA). A TAPTA is called augmented because it contains additional
information about the rejecting states. It is a Timed-APTA because its transitions are
controlled by delay guards expressing temporal constraints. An important problem with
the TAPTA construction is setting the delay guards. Essentially, there are two approaches:
bottom-up and top-down.
In a bottom-up approach, the delay guards are set to the smallest interval possible, i.e.
just the single value observed in some timed string within the training set. The goal
of the subsequent steps of the algorithm would be to enlarge those intervals by merg-
ing transitions according to the evidence values. This approach poses a few challenges.
Setting the delay guards to cover just one value means that most of the time, there is a
branch in the TAPTA for each timed string in the training set. That happens because it
is very likely that two timed strings have different time parts, even when the symbolic
part is the same. In this situation, the merging operator would rarely merge two states
since that case would only happen when the same timed string reaches them, i.e. all the
merges would fail at the determinization step. Consequently, the evidence value in an
EDSM-based algorithm is either 0 or 1, conveying little to no information.
In a top-down approach, the delay guards are initially set to the most general interval
possible. Eventually, in subsequent algorithm steps, they may get specialized by split-
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Algorithm 4 Construct the timed APTA: tapta

Require: A training set S = {S+,S−} with alphabet Σ and having minimum delay value
tmi n and maximum delay value tmax

Ensure: A is a timed APTA for S
Initialize A with the only start state q0

A :=; ▷ A is the set of accepting states in A

R :=; ▷ R is the set of rejecting states in A

for each timed sample τ= (a1, t1), (a2, t2) . . . (an , tn) from S do
q := q0, i := 0
while i ≤ n do

if ̸ ∃(q, q ′, ai , [n,n′]) ∈∆ for any q ′ and any [n,n′] then
Q :=Q ∪ {q ′} ▷ Create a new state q ′
δ := (q, q ′, ai , [tmi n , tmax ]) ▷ Create a new transition δ

∆ :=∆∪ {δ}
q := q ′, i := i +1

if τ ∈ S+ then A := A∪ {q}
if τ ∈ S− then R := R ∪ {q}

F := A∪R
return A

ting transitions according to an evidence value. The only drawback in this scenario is the
possibility that a TAPTA may contain inconsistent states, i.e., states which are accepting
and rejecting simultaneously. That happens because in a top-down approach the time
information is not considered at construction time since all the delay guard span from
the smallest delay (denoted as tmi n) to the biggest delay (denoted as tmax ) observed into
the training set. Therefore, two strings with the same symbolic part but different timed
parts, one accepting and the other rejecting, end in the same state.
RTI follows the top-down approach when building the TAPTA. At this stage, it allows for
inconsistencies: later, all of them will get fixed by splitting the transitions. Listing 4 shows
the TAPTA construction algorithm.

Algorithm 5 Splitting a transition: split

Require: A DRTA A , a transition δ= (q, q ′, a, [n,n′]), a time value t ∈ [n,n′], and a train-
ing set S

Ensure: δ is split at time t and A is updated
∆ :=∆\ {δ} ▷ Remove δ from A

Remove the tree rooted in q ′ from A

Q :=Q ∪ {q1}∪ {q2} ▷ Add states q1 and q2 to A

δ1 := (q, q1, a, [n, t ])
δ2 := (q, q2, a, [t +1,n′])
∆ :=∆∪ {δ1}∪ {δ2} ▷ Add transition δ1 and δ2 to A

Set q1 as the root of A1 := tapta(Sδ1 )
Set q2 as the root of A2 := tapta(Sδ2 )



2.3. LEARNING AUTOMATA FROM DATA

2

45

The splitting operator is one of the characterizing traits of RTI. A split operation of a
transition δ at time t divides the region of the DRTA into two parts. The first part is
reached by the timed strings that activate δ with a delay value lesser than t or at most
equal to t . The second part is reached by the timed strings that activate δ with a delay
value greater than t .
In order to understand the exact result of a split, it is required to define the concept of
suffix. Given a transition δ= (q, q ′, a, [n,n′]), any timed string can be written as τ(a, t ′)τ′
where:

• τ is the prefix before activating δ.

• (a, t ) is a pair composed of a symbol a, i.e. the label of δ, and a time value t satis-
fying the delay guard of δ, i.e. n ≤ t < n′.

• τ′ is the suffix after activating δ.

A suffix of τ(a, t ′)τ′ for δ is the timed stirng τδ = (a, t ′)τ′. A suffix is said to be positive
if ττδ is positive, and it is said negative when ττδ is negative. The set Sδ denotes the
subset of the training set S containing all the suffixes from S for δ, i.e. Sδ = (Sδ+ = {τδ|τ ∈
S+},Sδ− = {τδ|τ ∈ S−}). It is also called suffix-set. As shown in Listing 5, the two parts of
the DRTA divided by a split are reconstructed using these suffix-sets. That is made pos-
sible because the only splittable transitions in RTI are those pointing to blue destination
states, which are roots of TAPTA subtrees by construction.
A final remark on the splitting operator regards its capability of removing inconsisten-
cies. Suppose Sδ contains two suffixes τδ1 and τδ2 having the same symbolic but different
timed parts. In the TAPTA, those two suffixes end at the same state because of how the
TAPTA is constructed. After splitting the transition δ, it is possible that τδ1 and τδ2 no
longer end in the same state. If τδ1 and τδ2 introduce an inconsistency, the split operator
could fix it.

As shown in Listing 6, the merging operator in RTI is similar to its corresponding in
State Merging. The only difference is where the delay guards are handled to avoid non-
determinisms. RTI only merges red states with blue states and only merges when those
states are compatible, i.e., accepting states and rejecting states cannot be merged. How-
ever, even when two states selected for for merging are compatible, their respective tran-
sitions may introduce a non-determinism due to some overlapping delay guard. In those
cases, the standard determinization routine would solve the non-determinism by merg-
ing all the involved states. That behaviour would hinder the learning process even be-
cause the uncoloured states of the automaton have a high chance of introducing non-
determinism since their guards span from tmi n to tmax , i.e. they cover the largest inter-
val possible. To avoid this problem, RTI splits the transitions in the blue state to fit the
guards of the red state and does that before moving those transitions to the newly created
merged state. Doing so allows the actual merging and the subsequent determinization
procedure to continue with the same logic as in State Merging.

Now that all the principal ingredients have been discussed, it is possible to explain the
RTI algorithm. Once the TAPTA has been constructed and the tree’s root has been coloured
red, RTI tries all possible merges, splits, and state colouring at every iteration. RTI col-
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Algorithm 6 Merging two states: merge

Require: A DRTA A , two states q , q ′ with q ′ not red, a training set S
Ensure: q , q ′ are merged, A is updated, and true is returned. Otherwise, false is re-

turned
Q :=Q ∪ {q ′′} ▷ Add a new state q ′′ to A

if q ∈ A or q ′ ∈ A then A := A∪ {q ′′} ▷ A is the set of accepting states in A

if q ∈ R or q ′ ∈ R then R := R ∪ {q ′′} ▷ R is the set of rejecting states in A

for each δ= (q ′, q∗, a, [n,n′]) ∈∆ do
if n′ ̸= tmax then split(A ,δ,n′,S)

for each δ= (q1, q2, a, [n,n′]) ∈∆ do
if q1 ∈ {q, q ′} then q1 := q ′′
if q2 ∈ {q, q ′} then q2 := q ′′

while ∃δ(q ′′, q1, a, [n,n′]),δ(q ′′, q2, a, [n,n′]) s.t. q2 ̸∈ Red do
e := merge(A , q1, q2,S)
if e is false then

Undo the merge between q and q ′
return false

return true

Algorithm 7 Checking permantent inconsistency: inconsistent

Require: A DRTA A , and a training set S
Ensure: Returns true if A can still be made consistent with S. Otherwise returns false

for each q ∈ Red do
if q ∈ A and q ∈ R then return false
for each (q, q ′, a, [n,n′]) ∈∆ s.t. q ′ ̸∈ Red do

if Sδ+∩Sδ− ̸= ; then ▷ (Sδ+,Sδ−) is the set of suffixes of S for δ
return false

return true

lects an evidence value for each of those operations and chooses to operate, achieving
the highest value4 if and only if that operation does not introduce a permanent incon-
sistency.
A DRTA is permanently inconsistent if any of the following conditions hold:

• An inconsistency occurs in the red states.

• There exists an identical pair of positive and negative suffixes in the transitions to
blue nodes.

The first condition cannot be fixed because red states are finalized and never updated
by definition. The second condition cannot be fixed because there is no way a split can
pull those suffixes apart. The permanent inconsistency check described in Listing 7 is
invoked by RTI to avoid those pitfalls.

4In case of multiple operations having the same evidence value, merges are prioritized over splits, and splits
are prioritized over colourings.
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Algorithm 8 Identifying DRTAs: RTI

Require: A training set S = {S+,S−} with alphabet Σ and having minimum delay value
tmi n and maximum delay value tmax

Ensure: A , a DRTA consistent with S
A := t apt a(S)
Red := Red ∪ {q0} ▷ Red is the red core of A

while Q \ Red ̸= ; do
for each (q, q ′, a, [n,n′]) ∈∆ s.t. q ∈ Red and q ′ ̸∈ Red do

Bl ue := Bl ue ∪ {q ′} ▷ Bl ue is the blue fringe of A

for δ= (q, qb , a, [n,n′]) ∈∆ s.t. qb ∈ Bl ue do
for each qr ∈ Red do

merge(A , qr , qb ,S)
if inconsistent(S,A ) = false then

Calculate the merge evidence value vm

Undo the merge between qr and qb

for each suffix τ= (a, t )τ′ ∈ Sδ do ▷ Sδ is the set of suffixes for δ
split(A ,δ, t ,S)
Calculate the split evidence value vs

Undo the split of δ

Bl ue := Bl ue \ {qb}, Red := Red ∪ {qb}
if inconsistent(S,A ) = false then

Calculate the coloring evidence value vc

Bl ue := Bl ue ∪ {qb}

if a merge has the highest evidence value vm then
Redo the merge

else if a split has the highest evidence value vs then
Redo the split

else
Redo the colouring with the highest evidence value vc

return A

A final remark on RTI is about the evidence values. As mentioned, RTI is based on the
EDSM algorithm and computes evidence values to guide the decision on which oper-
ation to perform on the current hypothesized automaton. Indeed, RTI may be consid-
ered a greedy heuristic algorithm. RTI can use the standard EDSM evidence measure,
which is based on the consideration that good merges are those causing, during the de-
terminization procedure, the highest number of merges between accepting states and
the highest number of merges between rejecting states. A merge achieving the highest
EDSM value has been tested the most; therefore, there is the strongest support for be-
ing a good merge. However, besides the standard EDSM evidence measure, the authors
designed and evaluated three additional measures, including or excluding the temporal
information [81].
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This chapter starts the first part of the thesis and focuses on the data abstraction prob-
lem. When learning Automata from data, we must address the problem of translating
them into symbols. This transformation aims to provide a higher-level data view ac-
cording to preponderant features. The data abstraction is usually accomplished as a
pre-learning step: before the automata inference algorithm starts, the data are translated
into symbols. However, during the data abstraction, we might lose local dependencies
among the data - i.e. a variation in a feature caused by a previous occurrence of some
other feature. That may happen because a pre-processed data abstraction aims to assign
the symbols according to a global overview of the data.

This chapter is based on a published paper [96] where the author’s principal contribu-
tion was to introduce, for the first time to our knowledge, an automata learning algo-
rithm that doesn’t require an abstraction of the data into a symbolic domain.
Indeed, in this chapter, we consider the implications of postponing the data abstraction
at learning time by proposing an algorithm that integrates automata inference and data
abstraction.

The chapter is structured in four sections. Section 3.1 provides the reader with the con-
text of the data abstraction problem. Section 3.2 introduces Regression Automata to
model continuous signals. Section 3.3 presents RAI, Regression Automata Identifier, a
novel algorithm that postpones data abstraction at learning time. Section 3.4 proves by
experiment that the models inferred with RAI are competitive with those inferred with
the standard methods, which requires human intervention to guide the data abstraction
process.

3.1. INTRODUCTION
In this chapter, we investigate the problem of learning a structured model from a se-
quence of real-valued numbers or time-series. Such a model provides an interpretable
visualization of the process underlying the sequence, see, e.g., [97, 98]. Furthermore, it
can be used to make predictions about possible the value of future numbers. Our work is
inspired by recent approaches for learning automata from sensor data [99, 100], multi-
variate sequences [101], event logs [102, 103], network traffic [104, 105], program specifi-
cations [106], and infinite alphabets [96]. The typical approach used when learning from
such data is to first discretize any continuous values into discrete events. Sequences of
such events are then provided as input to a learning algorithm for finding an automa-
ton that could have generated this transformed data. This approach has two important
drawbacks. Firstly, by separating the discretization from the learning process, it is hard to
evaluate the quality of the discretization. Although the discretization clearly influences
the learned model, we know of no measure that captures this influence. Secondly, this
separation loses any influence the learned model has on the discretization. Structural
models such as automata model a system using states, which determine the possible fu-
ture sequences in the system. Frequently, different values are possible in different states.
It is difficult to discover this dependence when performing a global discretization for the
entire system beforehand.
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In this chapter, the focus is on learning an automaton model from a univariate contin-
uous signal while avoiding the aforementioned drawbacks. In particular, we develop a
new test for state similarity, based on nearest neighbors [107]. We learn the automaton
structure by computing the nearest neighbors of future sequences. Intuitively, when two
states are similar, every future in one state is equally likely (depending on occurrence
numbers) to find its nearest neighbor in the futures of its own and the other state. In this
case, the states will be merged (combined) by the automaton learning algorithm. Sim-
ilarly, a transition will be divided into two parts when the resulting two sets of futures
share few nearest neighbors. In this way, our new learning algorithm called RAI (Regres-
sion Automaton Identification) learns transition guards. These guards are the discretiza-
tion of the continuous valued signal into the discrete symbols. Instead of learning these
beforehand, RAI learns them on-the-fly while learning the structure. The learning pro-
cess thus directly depends on the discretization and vice-versa.

The result of RAI is a new kind of automaton, called regression automaton. A regres-
sion automaton is a deterministic model, i.e., the current state of the model is uniquely
determined for any possible past sequence of real-values numbers. This makes these
models easy to interpret. In addition, every state in a regression automaton contains a
prediction value, e.g., the mean values of the first future number. These values can be
used for time-series prediction: simply follow the path form the start state to the cur-
rent state using the past symbols, and return the prediction value. We evaluate our novel
model and algorithm on a synthetic data-set of a noisy sinus wave signal and on network
flow records from the Zeus botnet. Both these signals are cyclic and deterministic, mak-
ing them ideal use-case for testing whether the learned models are able to capture this
behavior. To highlight also some limitations of RAI, we also test on very noisy time-series
data coming from sensors measuring wind-speed.

We compare RAI with frequently used time-series models: ARMA, ARIMA, and continuous-
valued HMMs. In addition, we compare the performance with the RTI+ algorithm for
learning probabilistic real-time automata [108], which can also discretize the data on-
the-fly. Our results show that RAI is able to capture the behavior in the deterministic
signals into succinct interpretable models and achieve very competitive predictive per-
formance. RAI outperforms all the common time-series models on the deterministic
signals, and is outperformed on the noisy time-series data. Compared to RTI+, RAI is
competitive in the sense that it frequently provides the better performing model. Over-
all, RTI+ is able to learn models with smallest prediction error. Showing that, although
we developed several methods to adapt it, the nearest neighbor statistical test employed
by RAI sometimes still makes wrong inferences. We believe the new test is very interest-
ing because, in contrast to RTI+, it can easily be extended to multivariate sequences. All
that is needed is the ability to compute distances between futures.

3.2. REGRESSION AUTOMATA
We introduce Regression Automata (RAs) as state representations of real-valued sequences.
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0
7.5

start
1

12.5

]−∞,7.5]

]7.5,∞[

]12.5,∞[

]−∞,12.5]

Figure 3.1: An example of a RA. The leftmost state is the start state. Each transition has a guard expressed as an
interval. Each state contains an identification number on the top, and the predicted value in that state - P (q) -
on the bottom.

Definition 1. A Regression Automaton is a quadruple 〈Q, q0,∆,P〉 where Q is a finite
set of states, q0 ∈ Q is the start state, ∆ is a finite set of transitions, and P : Q → R is a
prediction function assigning a prediction value to each state in Q. A transition δ ∈∆ is a
triple 〈q, q ′, ]l ,r ]〉 where q, q ′ ∈Q are respectively the source and destination states, ]l ,r ]
l ,r ∈R is a guard.

A first property of RAs highlights one of the peculiarities of this type of automata: they
deal with an infinite domain, namely R. In contrast, most of the existing automaton
models as Deterministic Finite State Machines or Mealy Machines work on a discrete set
of symbols.

Property 1. Given a RA 〈Q, q0,∆,P〉, all the transitions leaving a state q ∈Q entirely cover
Rwith their guards: ∀q ∈Q,

⋃
〈q,q ′,]l ,r ]〉∈∆ ]l ,r ] =R.

A second important property of RAs is that they are deterministic. An automaton model
is deterministic when there is a unique state execution for a given sequence. RAs are de-
teministic because it is not allowed to contain transitions with the same source state and
overlapping guards. Determinism in automata is a desirable property since the problem
of learning non-deterministic automata is more complex than the problem of learning
their deterministic counterparts - which is already NP-hard by its own [109]. Moreover,
deterministic models are significantly easier to interpret because they can only be in one
state at a given point in time. We refer to [61] for a detailed study on the complexity of
learning automaton models.

Property 2. Given a RA 〈Q, q0,∆,P〉, all the transitions leaving a state q ∈ Q have non-
overlapping guards. Formally: ∀q ∈ Q,Øδ1 = 〈q, q ′

1, ]l1,r1]〉,δ2 = 〈q, q ′
2, ]l2,r2]〉,δ1,δ2 ∈

∆,δ1 ̸= δ2 s.t. ]l1,r1]∩ ]l2,r2] ̸= ;.

Suppose we provide the sequence s′ = [3,12] to the RA in Figure 3.1. From the ini-
tial state 0, and observing 3, transition 〈0,0, ]−∞,7.5]〉 is fired and we land in state 0
again. After observing 12, and still being in state 0, transition 〈0,1, ]7.5,∞]〉 is fired and
the we reach state 1. Similarly, when sequence s′′ = [20,8] is provided as input, tran-
sition 〈0,1, ]7.5,∞]〉 is fired at first, and then from state 1 and observation 8 transition
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〈1,1, ]−∞,12.5]〉 is fired.

Definition 2. A computation of the RA 〈Q, q0, ∆,P〉 over a finite sequence of observa-

tions s = [o1,o2, . . . ,on] ∈ Rn is a finite sequence q0
o1→ q1

o2→ q2, . . . , qn−1
on→ qn such that

for all 1 ≤ i ≤ n 〈qi−1, qi , ]li ,ri ]〉 ∈∆, where oi ∈ ]li ,ri ].

Currently, RAs can be used as acceptors and predictors. They are not generative. Similar
to Hidden Markov models (HMMs), they can be extended to include distributions such
as Gaussians in every state. We leave such extensions for future work. For now, RAs
simply predict the mean values of such distributions for any real-valued input sequence.
For instance, sequence s′ of the previous example predicts the value in state 1: 12.5.
Formally, we define the prediction of RAs as follows.

Definition 3. The prediction for a given computation q0
o1→ q1

o2→ q2, . . . , qn−1
on→ qn of the

RA 〈Q, q0, ∆,P〉 is the P (qn).

Consider state 0 in the RA of figure 3.1 and suppose to have a sample

S = {[6,12,11,9], [4,4,6], [5,8,15]}.

The observed future behavior of state 0 given S consists in all the (sub)sequences of S
whose computation starts in 0. Since 0 is the start state, its observed future behavior
given S is S itself. However, if we consider state 1, the observed future behavior is S1 =
{[12,11,9], [8,15]}. We define the observed future behavior for a state q ∈Q as the tail-set
for q given S, and all the (sub)sequences forming a tail-set as the tails of q given S.

Definition 4. The tail-set of state q from RA A = 〈Q, q0, ∆,P〉 given a sample S, is the set

Sq = {oi . . .on s.t. o0, . . . ,on ∈ S and q0
o1→ q1

o2→ q2, . . . , qi−2
oi−1→ q is a computation of A}.

The tail-set of a transition δ= 〈q, q ′, ]l ,r ]〉 is the tail set of state q ′.

3.3. REGRESSION AUTOMATA IDENTIFICATION
Regression Automata Identifier (RAI) is inspired by the RTI+ algorithm for Real-Time Au-
tomata, discussed in [108]. It requires an input sample S composed of sequences of
values in R, a significance threshold α ∈ R, and a prefix length p ∈N. The input sample
S is constructed from a long sequence of observations s = [o1, . . . ,oN ] using sliding win-
dows, S = [o′

i , . . . ,o′
i+n] where n is the window length 2. The goal of RAI is to discover the

regression automaton underlying S. RAI is a state merging algorithm using the red-blue
framework [94]. As such, during its execution, RAI keeps two sets of states: a core of red
states and a fringe of blue states. The red core represents that part of the automaton
which has been defined and finalized, while the blue fringe represents that part of the

2There are several ways of estimating the window length. Usually, this parameter is set by the domain expert
given her/his knowledge of the problem. In Chapter 7 we show how to compute the window length by means
of autocorrelation plots.
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automaton which has already been discovered but has yet to be finalized.

Listing 9 summarizes the algorithm. RAI builds a prefix tree that describes the sam-
ple S. RAI then starts merging pairs of states iteratively. By merging states, the model
gains generality, i.e., it will express more behaviour than what is explicitly observed in
S. Like RTI+ and early state merging methods such as Alergia [95], only merges between
compatible red and blue states are allowed. Two states are considered compatible if the
observed behaviour after reaching those states is similar. Essentially, this means that a
Markov property holds after merging, i.e., the future is independent of the past given the
current state. In RAI, the test for this property is performed using a nearest-neighbor-
based statistical test. Like RTI+, the p-value of this statistical test is used as evidence to
guide the selection of which states to candidates for merging. Section 3.3.3 discusses this
consistency test.

If there are no compatible merges for a blue state, it is promoted to red. Blue states are
created as children of the new red state. The transitions to these blue states are learned
at this time by clustering observed futures together into guards. This clustering uses
the same statistical test used for merging. RAI uses a bottom-up clustering strategy in-
stead of the top-down strategy used by RTI+ to identify temporal guards. That means
the guards are initialized to the smallest interval possible and eventually expanded by
the clustering algorithm instead of starting as wide as possible and eventually being seg-
mented into smaller parts.

Algorithm 9 RAI algorithm

Require: a sample of real valued sequences S, a significance threshold α, the prefix
length p

Ensure: The result is a RA A

Construct the first p levels of prefix tree A from S, and color the start state q0 of A red
while A contains blue states do

Select the red/blue couple (qr , qb) with the highest evidence score
if qr and qb are consistent with confidence α then

Merge qr and qb

else if There are no compatible merges with qb then
Color qb red and identify the guards for qb outgoing transitions

3.3.1. PREFIX TREE CONSTRUCTION
A prefix tree is a direct translation of the input sample S into an automaton. In tradi-
tional state merging, every unique prefix sequence in S leads to a unique state in the
prefix tree. For real-valued sequences, the only overlapping prefix sequences are those
with identical values. A prefix tree in RAI is, therefore, a list of state lists connected by
transitions with singleton guards. This is different from RTI+, where a prefix tree is built
using guards that span the entire input range.

In addition to this difference, RAI only generates the first p levels of the prefix tree. The
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reason is that in order to compute the nearest neighbour statistical test, we need to com-
pute distances between futures. These futures are represented using tails. By generating
only the first p levels of the tree and by setting the p parameter as discussed in Sec-
tion 3.4, every state is guaranteed to contain tails whose length is at least n −p, where n
is the sliding-window length. To avoid different distance computations due to different
tail lengths, RAI compute distances only between tails of size n −p.

Figure 3.2 shows an instance of prefix tree generated by RAI with p = 2. As it is possi-
ble to see, it only contains prefixes of length two of the strings in the input sample. The
rest of those words are stored as tails for each state (not shown in the Figure).

0

1 2

3 4

6 7

]5,5]

]15,15]

]6,6]

]6,6]

]12,12]

]15,15]

Figure 3.2: Prefix tree for sample S = {[5.5,6,15,12], [6,15,12, 5.3], [15,12,5.3,6.1]} and prefix size p = 2.

3.3.2. MERGE OPERATOR
In RAI, we use a standard merge operator, see, e.g., [61]. Although merging may seem
complicated due to the transition guards, it is not because of the red-blue framework.
Suppose a red state q and a blue state q ′ are selected for being merged. Due to prop-
erty 1, the guards of all outgoing transitions from q span the entire value range R. In
addition, all outgoing transitions of q ′ are controlled by singleton guards since q ′ is blue.
Therefore, we can safely remove q ′ from the automaton, point its single incoming tran-
sition to q , and move all tails from q ′ to q . Then, we recursively merge every state q ′′
reached after q ′ with the state reached by the transition from q containing the singleton
value of the guard on the transition to q ′′.

1 4

2 3

]−∞,5]

]3,3]
]−∞,∞[

(a) Before the merge.

1-2 4-3
]−∞,5]

]−∞,∞[

(b) After the merge.

Figure 3.3: Example of merging operation between state 1, red, and state 2, blue.

As an example, consider the situation depicted in Figure 3.3. State 1, red, has been se-
lected to be merged with state 2, blue. All the incoming transitions for state 2 are directed
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to state 1. All the tails of state 2, not shown in the figure, are added to the tail-set of state
1. State 2 has a single outgoing transition with guard ]3,3] to state 3, by definition. Since
state 1 is red, there exists a unique outgoing transition from state 1 such that it includes
the singleton value 3: the transition from state 1 to state 4 with guard ]−∞,5]. Therefore,
the operator merges state 4 with state 3 .

3.3.3. NEIGHBORHOOD-BASED STATISTICAL TEST
RAI uses a statistical test as evidence value to determine which pair of states to merge.
Intuitively, for every pair of states, the futures can be seen as draws from two distribu-
tions. When we cannot reject the hypothesis that these two distributions are different,
a merge of the two states is considered consistent. Amongst all consistent state pairs,
like RTI+, we merge the pair with the largest p-value. This is the pair displaying the most
similar futures, and hence we believe them to represent a single state in the system be-
havior. An input parameter is used to set the significance threshold.

Unlike RTI+, we use a test based on distances and nearest neighbors. Recall that Sq

denotes the tail-set for state q , i.e., the set of all tails from the sample S leaving state
q . We denote the kth nearest neighbor of a tail t in a tail-set Γ with N NΓ

k (t ), computed
using a metric d : Γ×Γ→R. We define the following indicator:

I q,q ′
k (t ) =

{
1, if N N

Sq

k = N N
Sq∪Sq′
k

0, otherwise.

Therefore, the evidence value RAI uses is the following:

Tk (q, q ′) = 1

nk

∑
τ∈Sq∪Sq′

k∑
r=1

I q,q ′
r (τ),

where n = |Sq |+|Sq ′ |. In other words Tk (q, q ′) is the proportion of all k nearest neighbor
comparisons, after merging Sq and Sq ′ , in which a tail and its neighbor are members of
the same tail-set Sq or Sq ′ . We expect a larger proportion when the two states represent
two distinct states in the system bahvior. In that case, their futures will be different and
hence their tail-sets dissimilar. We perform the following statistical test on this statis-
tic.

Theorem. Let nq = |Sq | and, n′
q = |Sq ′ | with q, q ′ ∈ Q. If nq ,nq ′ → ∞ with nq /n tend-

ing to λq and nq ′/n tending to λq ′ , then
p

nk(Tk (q,q ′)−µk )
σk

has a limiting standard normal

distribution under the hypothesis that Sq and Sq ′ are similar, where µk = λ2
q +λ2

q ′ and

σ2
k =λqλq ′ +4λ2

qλ
2
q ′ . [107]

The metric used by RAI to compute the nearest neighborhood is the Euclidean distance.
However, as already discussed in section 3.3.1, the Euclidean distance is affected by the
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size of the tails. In other words, when having two tails of different size, any decision on
how to cope with missing values introduces a bias, e.g., by privileging shorter tails over
the longer tails or vice-versa. To avoid this problem, RAI ensure to always compute the
metric on equally sized tails. That is main reason why RAI limits the construction of
the prefix tree to a certain number of levels. Since all tails have at least n − p values as
prefixes, we use these to compute the metric

dp (tq , t ′q ) =
√√√√n−p∑

i=0
(t i

q , t i
q ′ )2

with q, q ′ ∈Q, tq ∈ Sq , t ′q ∈ Sq ′ , and t i denoting the i-th value of tail t .

This distance computation should work fine in many settings, but can lead to unex-
pected results when learning RAs from sliding window samples. For instance, assume
we have the sample S = {[5.5,6,15,12], [6,15,12,5.3], [15,12,5.3,6.1]} which has been gen-
erated by sliding a window of size four. Furthermore, assume we have p = 2. Consider
states 0 and 1, whose tail-sets are S0 = S and S1 = {[6,15,12]}. Notice that

dp ([6,15,12,5.3], [6,15,12]) = 0,

therefore all the tails of state 1 have their nearest neighbor in S0. Furthermore, the same
happens with almost all the other states of the prefix tree since the root state contains
all the tail prefixes of all the tails in its tail-set. This sliding window effect, causes RAI to
assign higher scores to merges with the initial state.

To mitigate this problem, we proposes to use a slightly modified statistical test in the
case of sliding windows. Assume to have states q and q ′, we partition Sq and Sq ′ in two
subsets Sq = {A,Bq } and Sq ′ = {Bq ′ ,C }. A contains the tails that occur in Sq and not in
Sq ′ . Bq contains the tails of Sq that also appear in Sq ′ due to the sliding window effect.
Similarly, Bq ′ contains the tails of Sq ′ that also occur in Sq , and C contains the tails of
Sq ′ that only occur in Sq ′ . When considering states q and q ′ for merging, RAI applies
Schilling’s statistical test on A and Sq ′ rather than Sq and Sq ′ . If A is empty, meaning
all tails in Sq have the closest neighbor in Sq ′ , the statistical test is applied between Sq ′
and C . Essentially, RAI neglects all the tails that are present due to the sliding window
effect.

3.3.4. GUARDS INFERENCE
Like RTI+, RAI is able to learn transition guards on-the-fly, directly after promoting a
blue state to red. RTI+ identifies the temporal guards of a DRTA (Deterministic Real Time
Automaton) using a top-down approach, comparable to the divisive strategy in hierar-
chical clustering (see, e.g., [110]). This approach has the advantage of making clustering
decision globally, using all the available data. This advantage usually comes with high
computational effort. RAI adopts a bottom-up approach, which corresponds to an ag-
glomerative strategy for hierarchical clustering. Essentially, any clustering method could
be used once implemented. It may even be possible to link the learning of transition
guards to a machine learning platform, as is done in [103] for global clustering of data
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into symbols.

RAI initially sets the guards to cover just one value. These are extended by joining pairs
of similar transitions. The advantage of this approach is that it is fast because it only
considers pairs of candidates in each decision. The disadvantage is that it does not con-
sider the global structure of the data, possibly leading to suboptimal decisions. Since RAI
aims to learn transition guards, it sorts the outgoing transitions from the new red state
by their singleton guard value. It then only considers joins (merges) between pairs of
consecutive transitions. By doing so it cuts the space of all possible joins for a transition
to only two: the predecessor and the successor in this order. The decision about which
transitions to join first is made by looking at the evidence score computed on the can-
didate transitions tail-sets. The idea here is the same as for the merging criterion: RAI
joins them if and only if there is sufficient evidence that the future behavior is similar
regardless of which transition is fired.

3.4. EXPERIMENTS
We evaluate RAI on four different time-series forecasting tasks named Sinus, Distorted-
Sinus, Stratosphere, and wind. Each task is composed of ten different test cases, and each
test case consists of two time-series: a training set of 1000 data points and a testing set of
250 data points. Prediction provided by any model are evaluated by means of the Mean
Absolute Error (MAE). Both the code used in our experiments, and the data, are available
and free to share [111].

RTI+ symbols RTI+ time ARIMA ARMA HMM RAI Persistence
Sinus 0.276, 0.278 0.284, 0.281 0.535, 0.623 0.54, 0.668 0.305, 0.302 0.28 0.81

Distorted-Sinus 0.365, 0.356 0.317, 0.459 0.578, 0.581 0.761, 0.732 0.327, 0.312 0.31 0.69
Stratosphere 6.088, 6.056 5.311, 9.699 191.2, 184.7 94.5, 94.6 73.953, 73.958 11.39 94.29

Wind 0.595, 0.787 0.537, 0.649 0.44, 0.425 0.679, 0.658 0.515, 0.533 0.83 0.34

Table 3.1: Average MAE for each technique (columns) and for each experiment (rows). When two valued are
provided, they refer to different configurations of the sliding window length. In Stratosphere experiment, win-
dow sizes are 20 and 40, window sizes are 8 and 16 in others.

RTI+ symbols RTI+ time ARIMA ARMA HMM RAI Persistence
Sinus 6 3 0 0 0 1 0

Distorted-Sinus 1 2 0 0 0 7 0
Stratosphere 1 4 0 0 0 5 0

Wind 0 0 0 0 0 0 10

Table 3.2: The number of times the technique (columns) is the best perfoming one for an experiment (rows).

3.4.1. SETUP
Time-series in Sinus experiment represent a sinus wave where each value is sampled in
a different quadrant with uniform probability - i.e. in the first quadrant sin(x) is com-
puted with x ∈ [0,90o], in the second quadrant sin(x) is computed with x ∈ [90o ,180o],
and similarly for the other quadrants. The result of this sampling is a suite of 20 series
having a period of four, and a randomly picked initial quadrant.
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Figure 3.4: RA inferred by RAI (top), HMM inferred with Viterbi (bottom), on one of the Sinus experiments. In
the RA, the sinus wave can clearly be observed in states 1098, 402, 3098, and 642. In the HMM, the wave is
much harder to see. A high probability loop can be found over states 0, 1, 6, and 5, but none of these show the
actual predictions made using the entire model as these are averaged over many states.

Distorted-Sinus experiment is the same as Sinus but before the sampling starts, a ran-
domly value t within the second quadrant is selected as a threshold; every time there is
a need for sampling in the second quadrant of the sinus, if the sampled value is bigger
than t then the period is reset to the first quadrant. This experiment tests a test a situa-
tion where the best discretization depends on the system state.

In stratoshpere experiment there are time-series of delays in the time of arrival of consec-
utive netflows. A netflow [65] is an aggregation of network packets that share a common
key. The key is a 5-tuple comprised of the source IP address, source port, destination IP
address, destination port, and protocol. The netflows we considered in our experiment
come from a network capture from Zbot, also known as Zeus botnet, a known distributed
malware [112]. As discussed in [113], those data show a clear periodicity.

Wind experiment is about wind speed prediction, similar to [100]. The data come from
sensors located in Rotterdam, the Netherlands, and consist of five minute spaced av-
erage wind speed observations [114] To generate the series we preprocess the data by
aggregating them on a hourly base, and we select ten random and non-overlapping in-
tervals of 1250 data points. The first 1000 data points are used for training, the remaining
250 for testing.

Since RAI uses only half of a sliding window (using the p paramter) for learning the RA
structure, and half only for estimating futures, we provide two different window sizes for
the other methods. Important is to set a window size that is longer than the period of
a cycle, otherwise an automaton learning technique will generate a tree-shaped model.
On Sinus, Distorted-Sinus, and Wind experiments we used sizes 8 and 16 (and only 16
for RAI, with p values 8). On Stratosphere, we use windows of size 20 and 40.
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3.4.2. ALTERNATIVE TECHNIQUES
We compare RAI with other six alternative techniques: RTI+symbols, RTI+time, ARMA,
ARIMA, HMM, and Persistence. RTI+symbols is an instance of the standard methodology
for learning automata from continuous signals we discussed in section 3.3. It consists of
translating the training series into symbolic sliding window samples. On the Sinus and
Distorted-Sinus dataset the signal is modeled by using an alphabet of two symbols, one
representing positive values and the other representing negative values. On Stratosphere
we designed an alphabet of three symbols: the first one ranging from 0 to 23 milliseconds
of delay, the second ranging from 24 to 349 milliseconds of delay, and the third one rang-
ing from 350 milliseconds of delay and above. On the Wind experiment we have used
the same setting of [100], resulting in an alphabet of eight symbols. We refer to that work
for the interval boundaries.

It is important to notice that after having learned an automaton with RTI+symbols, it
is necessary to estimate per-state predictors since RTI+ target models does not have the
capability of emitting predictions. The estimation procedure consists in executing all
the windows within the sample with the learned automaton, and for each state collect
all the values reached that state along the execution. The predictor in each state will be
the mean of those values.

RTI+time is an alternative technique that, as RAI, does not need the discretization step.
RTI+ learns real time automata, which capture temporal properties in the form of delay
guards. RTI+ also requires symbolic information representing events in the system. We
remove this need by providing RTI+ with a 0 symbol for all events, and representing the
continuous signal using the time values. This technique uses the same prediction func-
tion estimation as RTI+symbol.

ARIMA and ARMA [115, 116] are two widely used techniques for time-series forecast-
ing. In each experiment we train ARIMA and ARMA models by setting the autoregressive
order parameter to the window size, and the moving average order to 1 (since the cyclic
behavior is important, not the trend).

Hidden Markov Models (HMM) [117] are one of the most widely used statistical models.
In our experiments we used HMMs with Gaussian emissions, since they are appropriate
for modeling continuous-valued signals, ad10 components. HMM learning is achieved
by applying Viterbi algorithm on the sliding window samples with at most 1000 itera-
tions.

Persistence is a widely used technique in time-series prediction. Persistence always pre-
dicts the previous value, and despite of its simplicity it is considered as a strong base-
line.

3.4.3. RESULTS
Table 3.1 shows the average MAE along the ten test cases in each experiment. Further-
more, Table 3.2 presents the best performing technique in all the test cases of each ex-
periment and all window sizes. RTI+symbols performs the best when given the perfect
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discretization in the Sinus signal. This is to be expected, as the learning problem is then
only to discover the 6 state model shown in Figure 3.4. The guards in Figure 3.4 are
not perfect however, since these are identified by RAI based on noisy data. This slight
imperfections in guard values exlains the slightly worse predictive performance of RAI
and RTI+time compared to RTI+symbols. All other time-series models perform worse,
although the difference with HMMs is small. As can be seen in Figure 3.4, the learned
HMM model is much harder to interpret due to its non-deterministic nature.

On the Distorted-Sinus and Stratosphere experiments, RAI achieves the best performance
overall. The RTI+ result in terms of MAE are better then RAI. This is because the new RAI
statistic still draws some wrong conclusions, leading to large models with large MAE.
RAI does find the best performing model 5 out of 10 times. This experiment also shows
the benefit of learning guards on-the-fly, as RTI+time and RAI both perform very good.
Furthermore, none of the time-series methods is able to accurately capture the cyclic
behavior in the Stratosphere data. Lastly, as the Wind experiment shows, RAI is not very
good at modeling non-cyclic noisy signals. As is shown in [100], using automata on such
data requires additional preprocessing.

On the Sinus experiment with window size 16, the learning times on a 64 bit laptop with
intel Core i7 processor and 8GiB RAM, are: 0.159 for RTI+symbols, 0.198s for RTI+time,
4.429s for ARIMA, 12.402s for ARMA, 153.919s for HMM, and 12.402s for RAI. RTI+ and
RAI not only perform well, they are also very efficient in terms of run-time.
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This chapter continues the journey through the several critical problems that arise when
learning Automata from streams: the data segmentation. Applying the techniques dis-
cussed in the previous chapter makes it possible to obtain an abstraction of the data in
the form of a stream of symbols. However, all the automata inference algorithms can
only learn meaningful models by starting from a sample of sequences of symbols called
strings. This requirement introduces the necessity of producing strings from a stream of
symbols. The most used method to address this problem is sliding a fixed-size window
over the stream and returning one string for each window. However, the sliding window
method may cause the introduction of unwanted and unseen behaviour in the target
automaton.

Section 4.1 of this chapter discusses the sliding window method in detail. The sliding
window approach comes with the drawback of introducing some noise within the infer-
ence process - namely strings that should not be characteristic of an automaton. Later in
the chapter, we propose a novel approach which aims to find particular locations along
the stream where to segment it. As discussed in Section 4.2, indication of where to seg-
ment the stream is obtained by automatically expanding prior knowledge in the form of
few cut-locations provided by a supervisor. A big space is reserved for the experiments,
which are the principal topic of Section 4.3.

4.1. SLIDING A WINDOW
The research on Grammatical Inference has produced several algorithms to learn prob-
abilistic automata. Those tools rely on a provided sample of strings called sample. How-
ever, there are cases where such a sample is not directly available, and only a stream
of symbols is available. We know those symbols form strings produced by some hid-
den model, but we do not know where are the boundaries between consecutive strings.
Once the words have been detected, any state of the art learning algorithm may be used
to learn a probabilistic stateful model. An often used approach is about segmenting the
stream according to a given criterium, usually based on heuristics belonging to specific
application contexts. In network data processing, for example, streams are cut using
thresholds on the interpacket time distances.

When a domain knowledge is absent, the most used approach is to set a sliding win-
dow on the whole stream to identify sequences of the same fixed size. Such a technique
comes with different advantages like the simplicity of implementation, but it turns out
to have no theoretic foundations and sometimes its usage is only motivated by the lack
of alternatives. Given a stream of symbols S and a size k, the sliding window (SW) ap-
proach will produce exactly |S| − k + 1 words moving a fixed size window along S. If
S = baaabbbba, and k = 3, the following words: baa, aaa, aab, abb,bbb,bbb,bba will
be generated. The listing 10 shows how to make a stream of words from a stream of sym-
bols using a sliding window approach.

In this work we focus on learning a particular type of probabilistic automaton called
Probabilistic Deterministic Automaton (PDA), defined in the next section.
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Algorithm 10 Sliding window string generator

Require: stream S of unsegmented words, and window size k
W ← ϵ, w ← ϵ

for each symbol s ∈ S do
if |w | < k then

append s to w
else

add w to W
remove the first symbol from w
append s to w

end if
end for
add last string w to W
return W

4.2. SEMI-SUPERVISED SEGMENTER
Assume to have a stream S composed of a concatenation of strings produced by a Proba-
bilistic Deterministic Automaton (PDA). The PDA, also referred as the target automaton,
is unknown and the location of the boundaries between the strings is unknown as well.
However, let assume to know a small set of strings produced by the target also called
knowledge base. The proposed method, the Semi-Supervised Segmenter (SSS), lever-
ages the knowledge base to segment the stream with the goal of learning a PDA which
is as close as possible to the actual target. It is worthwile to highlight that SSS does not
concern the learning of the PDAs, since this task is achieved by state of the art algorithms
developed of this purpose [95, 108, 118]. The goal of SSS is to generate a training sample
from the stream by making those algorithms able to learn PDAs which are closer to the
target than the ones learned by using other methodologies like the sliding window.

SSS relies on a language model to make a decision about placing a boundary along the
stream. A language model is a probability distribution on all the words belonging to a
language. Language models are a widely used tool to solve speech recognition, word seg-
mentation for asiatic texts, part-of-speech tagging, and other natural lnguage processing
tasks. Ngram models are one possible mean to implement language models. Ngrams
are contiguous sequences of n items, in this case strings taken from S. The length of the
ngram is called order, and if the order is one the model is called unigrams, if the order is
two then the model is called bigrams, just to cite few common instances. One of the most
common techniques to estimate the probabilities of ngrams is by maximum likelihood
estimation. A maximum likelihood estimator (MLE) assigns probabilities by maximizing
the likelihood given the stream S. With s, s′ ∈ S, we have:

P (s′) = #(s′)
#S

, P (s) = #(s)

#S

P (s′|s) = #(s ⊕ s′)
#(s)
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Where #(·) is an operator denoting the amount of times its argument has been observed
in S, #S denotes the amount of strings in S, and the ⊕ operator denotes the concatena-
tion of its arguments.

However, as mentioned at the beginning of this section, we do not know where the
boudaries between consecutive strings are on S. Therefore, SSS extracts the strings from
S by sliding two consecutive windows; those windows generate couples of ngrams hav-
ing a pre-defined maximal order k and represeinting contiguous strings. As an exam-
ple, with S = baaabbbba and k = 3 SSS extracts (ϵ,baa), (b, aaa), (ba, aab), (baa, abb),
(aaa,bbb), (aab,bbb), (abb,bba) with ϵ denoting the empty string. SSS counts how
many times each ngram has been observed after the previous ngram within the knowl-
edge base and it leverages those counts to estimate probabilities by maximum likeli-
hood. SSS estimates probabilities for ngram models of order 1, 2, and 3.

After the estimation, SSS scans the stream looking for new boundary locations. By using
the double sliding window as at counting time, now it is able to compute the probability
of observing two contiguous strings. Given two consecutive strings s, s′ ∈ S, SSS explores
all the possible suffixes Ss of s and all the possible prefixes P s′ of s′ to find the couple
which minimizes the sum between the probability of placing a boundary after a suffix
and the probability of placing a boundary before a prefix:

min
(ρ,σ)∈P s′×Ss

{P (ϵ|σ)+P (ρ|ϵ)}

SSS uses this quantity as an evidence for placing a boundary between s and s′, i.e. the
bigger it is, the higher is the confidence.

The reason for exploring all possible suffixes of the former string and all the possible
suffixes of the latter string is because it needs to consider eventual strings whose size is
shorter than 3, and that is also the reason why it leverages multiple length ngrams.

Listing 11 summarizes the SSS algorithm, with MLE(B ,3) denoting the maximum like-
lihood estimation procedure for the ngram models of orders 1 to 3 given the knowledge
base B , with DSW (S,3) denoting the sequence of consecutive trigrams along S, and with
PNG (ρ|σ) denoting the ngram probability of observing ρ after σ.

4.3. EXPERIMENTS
Evaluating how good an automaton is may be a hard task for several real-life cases such
as the one mentioned in the introduction. In botnet Command and Control (C2) chan-
nel analysis, for instance, a big problem is often the lack of an actual C2 state machine
specification. Infected hosts belonging to the same botnet adopt the same communi-
cation protocol implemented by the botnet designer, which in most cases is the only
person who knows it. The lack of a C2 protocol state machine hampers the evaluation
since there is no ground truth to compare with.

That is the main reason why we decided to plan experiments on a set of generated mod-
els. The PAutomaC [109] suite is composed of 48 probabilistic models of different dimen-
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Algorithm 11 Semi-Supervised Segmenter

Require: a stream S of unsegmented words
Require: a set of strings B as a knowledge base
Require: the number of boundaries to place t

initialize T as an empty list
NG ← MLE(B ,3)
for each s, s′ ∈ DSW (S,3) do

dmi n ←∞
for each ρ ∈P s′ do

for each σ ∈Ss do
d ← PNG (ϵ|σ)+PNG (ρ|ϵ)
if d < dmi n then

dmi n ← d
end if

end for
end for
store (s, s′,dmi n) in T

end for
place a boundary between s and s′ having the top t scores in T

sions and features already used in the past for a learning competition. Table 2 in the ap-
pendix reports many of those characteristics such as the number of states, the alphabet
size, or the model type. Each PAutomaC problem comes with an exhaustive description
of the model: a training set composed of a list of strings emitted by the model and used
for learning purposes, a test set consisting still of strings meant for evaluating purposes,
and a solution file containing the probabilities assigned to each word in the test set.

The primary goal of the evaluation consists in assessing the quality of several techniques
for generating a training sample from a stream of concatenated strings. The quality is a
property of the model we learn from that training sample, and it is an indication of how
close is the inferred model to the actual target model. Since the target models in our
experiments describe probability distributions over strings, by using them, it is possible
to assign a probability to each string within the test set. After having normalized those
probabilities, we use the perplexity given the solution to assess the quality of a candidate
model:

Per plexi t y(T S) = 2−
∑

x∈T S PG (x)×log(PC (x))

Where T S is the test set, PG (x) represents the probability assigned to the word x by the
correct model, and PC (x) represents the probability assigned by the candidate model to
the word x. Perplexity has been chosen because of its capability of assessing prediction
quality regardless of the model type and because it is the same evaluation measure used
in the PAutomaC competition.
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4.3.1. SETUP
For each problem in the PAutomaC suite, we use the original evaluation set containing
1000 strings and the corresponding solution to keep the possibility of comparing with
the PAutomaC competitors. Furthermore, for each problem, we use the original model
to generate a sample of 4000 strings. We decided to generate a new training set instead
of using the original in the suite to exclude the empty strings and still have the same
amount of data to learn from in all the problems. By concatenating the strings of a train-
ing set, we obtain the stream of concatenated strings, which will be the input of all the
alternative techniques evaluated in this work.

The first technique considered in the experiments is the sliding window with windows
of five symbols. A second technique is the random, which consists of segmenting the
stream on 3999 randomly chosen locations called boundaries. We repeat the selection
ten times, collecting ten random segmentations for each problem. Furthermore, we
have partially-random segmentations with a percentage β of the 3999 correct bound-
aries and (1−β)×3999 randomly picked boundaries. We boostβ incrementally by adding
5% and starting from a minimum of 5% up to 100%. Thus, we create 19 partially-random
configurations with increasing share of the correct bounds. Also, as for the random tech-
nique, we repeat ten times the selection of the boundaries for each configuration, gen-
erating a total of 190 semi-supervised segmentations for each problem. Finally, we in-
clude the semi-supervised segmentations obtained by adopting the algorithm described
in section 4.2. The knowledge base is created by randomly selecting a percentage of the
exact boundaries for the correct part of the partially random segmentations, with the
difference that, in this case, the algorithm will place the rest of the boundaries instead
of choosing them by random. As for the partially random segmentations, we have an
increasing knowledge base by incrementally adding 5% of the right boundaries, and we
repeat their selection ten times, generating 190 semi-supervised segmentations.

Each segmentation is a training sample since each segment is a string. We use those
training samples to learn PDAs with the ALERGIA algorithm discussed in Chapter 2.1 In
the next section, we discuss the quality of the learned models.

4.3.2. DISCUSSION
Table 5.4 gives an overview of the quality of the models learned by ALERGIA on several
training sets. As already mentioned, we measure the quality of a candidate model using
perplexity. Since we know the correct target model, we gather the probabilities assigned
to each string in the evaluation set by both the candidate and the target. We compute the
perplexity of the candidate probabilities given the target probabilities, after a mandatory
normalisation step.

Table 4.2 shows all the different techniques, discussed in section 4.3.1, to obtain a train-
ing set starting from a stream of concatenated strings. For two of them, namely the
partially-random (PRN) and the semi-supervised (SSS), it shows different parametrisa-
tions. SSS technique is instantiated with a knowledge base composed of the same per-

1We used the ALERGIA implementation included in the Treba learning tool [119].
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centages of correct boundaries of the former technique. It is important to mention that
given the same β, the correct boundaries used in both PRN and SSS are precisely the
same. Furthermore, the perplexity of all the techniques reported in the table, with the
only exception of the sliding window (SW) which is deterministic, is averaged on ten
runs having each one a different random seed.

It is interesting to observe that the sliding window represent a viable option since it is
better than the random baseline on 33 over 48 PAutomaC problems. Also, it achieves the
best perplexity score on 7 out of 48 problems among all the considered alternatives.

With only 200 correct bounds, corresponding to β = 5%, SSS is already better than SW
on 33 problems, and better than random on 35 problems. With 600 correct bounds,
corresponding to β = 15%, SSS shows a lesser perplexity than SW on 36 problems: an
amount that we consider as significant. Also, SSS outperforms the random alternative
on 38 problems. We believe that, in case of network data, it is possible to isolate 600 ses-
sions by hand and use that knowledge base to learn less perplex models.

It is interesting to consider the comparison between SSS and PRN. By fixing β, SSSβ
outperforms PRNβ 32 over 48 times with β= 5%, 33 over 48 times with β= 15%, and 36
over 48 times with β = 25%. Figure 4.1a shows the perplexity scores of the considered
techniques for a specific problem (20) by incrementing β. As it is possible to observe,
400 exact boundaries (β= 10%) are enough for SSS to outperform the other alternatives.
However, on some problems, the number of correct bounds required by SSS may be un-
feasibly high. When considering the minimal percentage of correct bounds, also referred
as βmi n , we list 11 problems where βmi n > 50% to have SSS models achieving the lowest
perplexity. Table 4.1 shows them and provides for the corresponding βmi n . Figure 4.1b
shows the perplexity plot with increasing β for one of those instances (39).

By considering the meta-informations about the PAutomaC problems reported in Ap-
pendix B (table 2), we have evidence about SSS struggle with some instances charac-
terised by a non-deterministic nature and low transition sparsity.

Table 4.1: Semi-supervised segmenting (SSS), the proposed technique, needs βmi n percent of the correct
bounds to enable the inference of the less perplex model. On a total of 48 problems of the PAutomaC suite, in
11 cases βmi n is significantly high - i.e. βmi n > 50%.

ID 3 6 15 30 31 32 38 39 41 42 43

βmin 100% 100% 90% 100% 100% 100% 100% 70% 100% 100% 100%



4

70 4. FROM STREAMS TO STRINGS

Table 4.2: Overwiew of the quality of the models learned by ALERGIA on several training sets. Those sets
are generated by using the following techniques: sliding window, random, partially-random (PRN), and semi-
supervised (SSS). Each perplexity value is averaged on ten runs with different random selection of the bound-
ary locations (with the exception of the sliding window technique which is deterministic). For PRN and SSS
there are thee instantiations having β = 5%,15%,25%. The lowest perplexity values for each problem are in
evidence.

ID Sliding Window Random PRN5% PRN15% PRN25% SSS5% SSS15% SSS25%

1 581.289 985.559 939.566 897.197 811.674 428.510 329.354 374.668
2 680.049 1295.562 1294.280 1270.563 961.421 1271.512 686.473 861.090
3 260452.615 1271.570 1248.737 1198.033 1173.126 4495.283 3570.932 2775.250
4 >600000.0 15819.115 10110.851 7918.812 6263.169 67185.747 13944.509 2564.822
5 >600000.0 890.599 912.830 908.540 809.091 304.451 276.364 213.270
6 558699.988 34485.959 23366.728 15937.556 13524.776 205270.824 181215.184 30801.969
7 460917.042 1744.499 1862.626 1549.534 1585.937 43984.432 805.142 637.015
8 72553.689 136432.228 115044.406 115141.441 69354.809 11269.890 10353.172 11475.293
9 >600000.0 18373.695 10818.599 16808.595 5679.396 1194.627 1062.913 715.887

10 2274.343 5368.656 5138.007 4596.014 4441.754 2011.304 1647.213 1563.046
11 53546.777 81076.713 79826.128 73368.257 72873.098 20838.543 18209.727 20477.023
12 2559.463 4077.790 2855.919 1959.365 1273.696 1553.705 1106.227 1273.041
13 >600000.0 20429.808 18212.446 16075.721 12370.256 19325.681 13310.475 10520.326
14 370.914 437.869 370.730 327.333 323.072 367.448 376.973 424.743
15 811.020 2015.400 1737.012 1454.424 1249.453 3072.511 2512.938 1891.455
16 1399.228 1860.830 2023.016 2023.503 1975.102 804.016 996.372 993.539
17 4694.467 4937.499 4686.294 3317.353 2395.770 4752.315 2241.294 1545.891
18 3145.812 12384.465 12634.710 5169.935 4235.565 3993.860 2851.223 1937.452
19 176.705 397.463 349.591 258.248 175.719 104.324 90.522 96.380
20 782.492 1012.620 992.070 801.544 593.609 838.817 438.747 312.999
21 9240.274 20153.174 20685.811 13011.105 12274.275 9507.766 4934.344 5982.294
22 2210.926 6355.885 3660.252 2317.583 1899.118 488.253 493.496 624.674
23 118.989 225.713 216.117 220.166 199.838 200.237 148.125 120.034
24 73078.781 5858.792 4465.322 3892.953 3731.848 6121.332 1739.571 597.956
25 2347.801 2907.830 3018.525 2768.083 2411.972 1495.089 1620.670 1876.009
26 292656.726 295529.213 219066.633 142365.751 112897.943 134238.107 105863.802 104876.725
27 11529.481 19411.150 18446.562 19020.908 15190.707 3438.447 5828.930 5873.876
28 1859.168 1425.095 1361.719 1112.942 1143.819 1362.171 984.243 708.859
29 5698.217 2217.498 2032.550 1709.192 1520.088 3521.239 1427.658 1303.701
30 408.681 594.794 557.978 466.271 362.496 2441.556 547.635 519.213
31 681.597 643.509 622.119 562.073 494.779 1786.108 867.800 683.644
32 5197.070 821.159 811.798 682.560 640.752 1057.716 722.197 682.950
33 127.170 215.808 214.729 147.162 76.720 118.620 105.346 99.630
34 5452.433 5905.622 5934.085 5934.597 5929.767 3705.255 3608.233 3309.362
35 7529.175 17081.711 11984.568 8652.235 6628.976 1443.567 2114.052 1826.611
36 415.187 584.544 569.420 564.882 552.034 415.828 350.558 372.178
37 66.445 424.118 379.644 375.558 329.559 60.440 60.228 58.206
38 138.918 59.609 65.701 57.378 53.182 108.356 81.170 82.114
39 27.407 84.370 73.982 53.906 44.635 4221.407 215.326 89.215
40 59.691 75.725 75.808 71.372 67.854 46.322 50.275 51.086
41 28.344 425.117 416.851 311.374 260.699 32.231 30.211 33.888
42 35.667 98.648 85.550 71.247 65.153 159.484 96.110 95.376
43 95.661 494.671 535.318 529.654 520.731 122.046 124.744 127.937
44 69.271 68.324 68.384 67.196 66.196 48.887 45.874 51.668
45 120.479 234.346 206.550 199.243 171.279 129.344 100.089 106.524
46 54.556 60.533 58.191 56.277 48.197 42.490 65.030 49.727
47 94.147 58.666 44.623 31.664 25.577 17.906 17.433 17.281
48 146.740 162.760 164.314 155.431 148.095 112.707 115.970 149.035
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Figure 4.1: Perplexity plot with increasing β for PAutomaC ptoblem 20. On that instance, β= 10% of the total
correct boundaries in the training stream of concatenated strings, corresponding to 400 strings, are sufficient
for the semi-supervised technique to outperform the other alternative techniques (a).
Perplexity plot with increasing β for PAutomaC ptoblem 39. In that case the semi-supervised segmenter (SSS)
requires 70% of the total correct boundaries in the training stream of concatenated strings, corresponding to
2800 strings (b).
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This chapter completes the first part of the thesis by addressing the problem of deciding
the minimal amount of data to collect to learn a meaningful automaton. As far as we
know, this topic still needs to be addressed in the automata inference research commu-
nity. The main contribution of the chapter consists of introducing a signal that may help
the human estimate when the collection of further data isn’t contributing to adding new
behaviour modelled in the target automaton.

This chapter is based on a published paper [120] where the author’s principal contribu-
tion was defining the data abstraction technique, consisting of the labeler and sequencer
components described in the introduction chapter. The data abstraction technique is a
prerequisite for learning the communication profiles, namely the automata employed
for determining if sufficient data has been gathered.

The content is organized as follows: Section 5.1 provides the reader with the context
of the data collection problem. Section 5.2 introduces our solution for building commu-
nications profiles using finite state machines. Section 5.3 and 5.4 present experiments
and their evaluation. Finally, we discuss the evaluation results in Section 5.5.

5.1. INTRODUCTION
Network traffic monitoring is of paramount importance for efficient network manage-
ment. It allows for timely intervention in case of any observed failures, intrusions or
changes in network communication patterns [121]. Initially, network traffic analysis re-
lied primarily on inspecting network packet contents. Due to the high volume of data
exchanged in modern networks, this in-depth analysis of the whole traffic is no longer
realistic. A more common approach is to analyze aggregated communication informa-
tion of which IP flow records is an example. The main challenge in using this data lies
in the extraction of relevant information from this meta data. In this paper, we focus on
the problem of creating a model to classify hosts based on their traffic summary statis-
tics. We refer to this task as behavioral communication profiling. The problem of cur-
rent methods addressing this task is the use of batch processing techniques over large
amount of data inducing delay in model learning due to long period of data collection.
Processing large amount of data limits the complexity of the analysis methods due to
space and computation limitation. Consequently, these simple methods are not able to
model accurately communication profiles.

To address these limitations we propose to use complex models for modeling fine grained
communication profile with finite state machines. We use stream learning methods al-
lowing us to build a communication profile in real-time as network traffic is observed.
We show that the minimum amount of training data needed to learn an accurate com-
munication profile can be determined on the fly. We assess that profiles learned from
limited IP flow data are as efficient as ones using more training data for botnet detection.

Such fast communication profiling method has several applications such as real-time
learning of malicious behaviors observed on honeypots or known infected hosts. It en-
sures that malicious profiles can be learned fast and applied as early as possible for de-
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tection. Another application is the profiling of normal behavior for anomaly detection.
Our method ensures to learn a normal profile as fast as possible while avoiding under-
trained models that can raise false alarms.

5.2. BUILDING COMMUNICATION PROFILES
This section is structured in three parts. In Subsection 5.2.1, we introduce the concept of
communication profile. Subection 5.2.2 discusses the data abstraction procedure that is
required to learn communication profiles from data. Finally, Subsection 5.2.3 addresses
the problem of collecting the miminum amount of data to learn meaningful automatons
representing communication profiles.

5.2.1. COMMUNICATION PROFILES
A communication profile provides a concise description of a participant or a group of
participants in a network. We build profiles only using connection-level communica-
tion information provided by IP flow records. The main task is to extract the key behavior
from the records, and reduce the data into a compact description. Given IP flow records
from an unknown source, we can classify; given a known source, we can predict future
behavior. Mathematically, a communication profile is a PDFA which we learn from IP
flow records as described in Chapter 2. To infer information about a single host from
its IP flow records, we aggregate consecutive flows within a short time period into a sin-
gle word and use a sliding window technique to obtain sequences of words describing
consecutive flows. These words are descriptions of short-term behavior.

5.2.2. ENCODING IP RECORDS FOR PDFAS
IP flow records are tuples of features stated in Table 5.2. Because PDFAs take strings
as input, we need to convert IP flow records from their representation to sequences
of symbols. The product of all possible combinations of values for each feature, i.e.
|r ang e(pr otocol )| · . . . · |r ang e(d at ar ec |), using a common discretization of time in ms
and traffic in bytes, yields too many combinations to be practical. That would cause
the learning algorithm to produce large models, and the behaviour described by those
models would be too specific to be useful for classification or prediction. Common ap-
proaches to this issue are clustering and discretization. We follow the latter approach
and map each feature value to a symbol describing its percentile.

Indeed, for each numerical feature fi (1 ≤ i ≤ d), we choose a finite number of bins
b fi . For each of the Πd

i=1b fi combinations, we add a symbol to the alphabet Σ. Each
value of the categorical feature is a signed number. This encoding has advantages over a
standard clustering approach because symbols created via encoding tend to be easier to
interpret for humans. Moreover, encoding avoids defining a metric to measure the dis-
tance between two IP flow records. To use, e.g. kNN clustering [122], a more appropriate
metric than Euclidean distance needs to be used to derive good PDFAs based on words
obtained from the clusters.

For example, assume to have flows with only two features
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Protocol: Represents the transport protocol for all the packets summarized by a given
flow. It is a categorical feature with two possible values: TCP and UDP. TCP is
mapped to the value 0 and UDP to 1.

Duration: Represents the total duration of a given flow. It is a numerical feature with
two percentile-intervals [0,49] and [50,∞[ mapped to 0 and 1, respectively.

Since each feature is mappable in two different symbols, there are four possible combi-
nations of feature values. If we capture the sequence of flows

f = 〈T C P,5〉,〈TC P,57〉,〈U DP,2〉

then flow 〈TC P,5〉 is mapped to symbol 0× 4
2 +0× 2

2 = 0. Flow 〈TC P,57〉 is mapped to
symbol 0× 4

2 +1× 2
2 = 1. Flow 〈U DP,2〉 is mapped to symbol 1× 4

2 +0× 2
2 = 2. Therefore

f is mapped to the sequence of symbols (also said string) s = 0,1,2.

After encoding the flow records, we aggregate all flows starting within a fixed time by
sliding a window over the stream and incrementing the start of the window one flow at a
time. Therefore a word consists of a sequence of symbols within a window, where each
symbol represents a flow.

5.2.3. DATA ESTIMATION CRITERIA
The prefix tree automaton (APTA) is the starting point for all state merging learning al-
gorithms. Because the tree is a compact way to represent all the training data, it offers
ideal access to analyze the impact of varying training set sizes on the learning process.
The key in minimizing the data needed to learn a model is understanding the error intro-
duced by using a partial sample of the data: It enables us to analyse the quality provided
by a partial view of the data with respect to the complete data. We apply two criteria to
judge the completeness of the partial sample: For a formal approach, we check the Ho-
effding bound, a type of concentration inequality [123]. It bounds, with high probability,
the error made when estimating a function value calculated on a random source. For
an informal, application-driven approach we observe growth in states and transitions
when adding more data to the prefix tree. Equation 5.1 states the Hoeffding inequality. It
bounds the difference between the true mean r of a random variable with range R with
its estimation r̄ calculated on a finite sample with low error δ: With probability 1−δ,
the error in the estimation r̄ only deviates by an ϵ from r . The true mean r is the mean
calculated on all, possibility infinite samples.

r ≤ r̄ −ϵ with prob 1−δ where ϵ=
√

R2l n(1/δ)

2n
(5.1)

The estimation is sub-linear in terms of the confidence δ and quadratic in sample num-
ber for precision ϵ. We apply this technique to the APTA by estimating the relative fre-
quency ci

ns
of transition i in each state s where ns =∑

ci∈s ci . This allows us to bound the
error in the empirical probability distribution defined by occurrence counts. We stop
collecting more data once the error is below a given threshold δ.
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Table 5.1: Summary of the malware IP flow record dataset published in [124]. Records are labeled as malicious,
normal, or background traffic.

ID #Flows / Duration / Size
Malware
(#bots)

Class Distribution
back / bnet / norm

10 5,180,852 / 4.75 hrs / 73GB Rbot (10) 29.33 / 67.97/2.69
11 40,836 / 0.26 hrs / 5.2GB Rbot (3) 29.33 / 67.97 / 2.69
12 1,262,790 / 1.21 hrs / 8.3GB NSIS.ay (3) 96.98 / 2.34 / 0.68

5.3. EXPERIMENTS
We conduct two rounds of experiments: First, we measure the amount of data needed
to reach various confidence thresholds in a prefix tree using the Hoeffding bound as well
as the growth in number of states to judge prefix tree completeness. Second, we learn
communication profiles from the training sets determined empirically in previous ex-
periments. Considering IP flow records, it is not clear how to realize a 80:20 training to
testing data split, which is commonplace in machine learning [122]. Is it correct to split
after 80% of the observed packets, flows, bytes, or maybe after 80% of the time? Often,
these features are not correlated and will yield wildly different training and testing sets
depending on which feature is chosen as a measure.

The first experiment is designed to determine if, and how quickly, a full data representa-
tion can be obtained from a partial view of the data, as well as how large the generated
training sets are. In a second experiment, we empirically validate reduced datasets ob-
tained from the first experiment by learning communication profiles from the sets. We
compare their performance in host classification with profiles trained on the full train-
ing set. Together, the experiments help to answer the question if, and how, we can deter-
mine the right amount of data to learn a finite state machine as a communication profile
to classify hosts.

5.3.1. DATASET
We use a publicly available dataset of manually labeled IP flow traces [124]. The flows
contain communication from hosts running botnet malware as well background and
legitimate traffic. The dataset is organized in several scenarios (ID2), each running one or
more infected hosts connected to the internet. Table 5.1 summarizes the dataset.

5.3.2. DATA PREPARATION
We encode the IP flow records using the features stated in Table 5.2. Numeric attributes
are discretized by assigning a number according to the percentile its value is in. The per-
centiles themselves are obtained by selecting a random subset of IP addresses from the
normal traffic to calculate the statistics. Any knowledge transfer is prevented by exclud-
ing these flows addresses from any further experiments. All flows irrespective of their
duration, starting within t = τ ms are collected in a window to obtain short term inter-
action patterns of each IP address. We advance the window on a per-flow level. The

2The names are kept from [124]
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Table 5.2: Features extracted from each IP flow per monitored host. Hosts of interest are filtered by IP address.
The remaining fields are input for the learning algorithm. T i me is derived from the flow’s starting time.

Features Description Values

pr otocol transport protocol of the flow categorical: tcp, udp, etc.
t i me time since previous flow started timestamp
dur ati on duration of the flow time in ms
paket s Count of packets exchanged numerical
d at aexc Amount of data exchanged numerical, in KB
d at ar ec Amount of data received numerical, in KB

(a) (b) (c)

Figure 5.1: Identification of bad data preprocessing using training set from Scenario 10, obtained with 4 bins
on 250ms windows (Figure (a) and (b)). The blue line shows the overall freshness of the training data inserted
to the APTA. The green line indicates the freshness within the last update containing 1% of the training data.
Due to the long windows, a difference in a prefix of the window will lead to many new states. Despite the slight
drop in freshness depicted on the left towards the end of the graph, fewer states fulfill the Hoeffding bound
shown on the right. Likewise, depicted in (c), the same scenario with a shorter window of 50ms, but 10 bins
per feature. In both cases, the training set is not big enough to learn meaningful communication profiles.

duration τ is chosen using the streaming data analysis.

5.3.3. STREAMING DATA COLLECTION
In our experiments, we observe two different criteria for stopping data collection: In an
application-driven approach, we observe the "freshness" ∆ of samples ws with respect
to an APTA A. We define it as the ratio �w�

|A| of number �w� of states newly created in APTA
A when adding sample w versus the total number of states |A| in APTA A. Here, �·� de-
notes the length of the word w minus the length of its longest prefix in A. When w is a
set, we define �w� =∑

wi∈s�wi � as the sum of states created from the samples in the set.
Adding samples that are already contained or have large prefixes in the tree only adds lit-
tle extra information. The freshness ranges between 0 and 1, and low values indicate that
the sample already has many duplicates, or at least long prefixes in the APTA. It serves
as an indicator: if it falls below a threshold, the prefix tree already contains most of the
data. This measure does not guarantee good estimates of the transition probability in
each state since it does not account for the occurrence counts of states. To account for
that, we compare to an statistics-driven approach, commonly used in stream learning:
empirical distributions in the states of the APTA have to be bounded by the Hoeffding
bound with varying thresholds. The more states have distributions bounded, the bet-
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ter the APTA summarizes the true source. The Overlap merge heuristic does not use
the distributions defined in each state to make decisions. In contrast, Alergia uses the
empirical distributions defined in states to be merged to calculate their similarity. The
application-driven approach, only estimating the size of the prefix tree is enough to es-
timate the data for heuristics like Overlap, but not for Alergia. If duplicates or samples
which already have long prefixes are added, the number of new states created while in-
serting into the prefix tree will go down. By putting a threshold on the growth rate of
the prefix tree, we can find the point when adding more data will not contribute to the
learning process. Other heuristics use local distributions, and data for these are better
bounded by the Hoeffding inequality.

Table 5.3: Overview of the merge heuristics adopted when learning automata from data: for each pair of states,
called merge candidates, a score is determined using a heuristic. The pair with the highest score gets merged,
and the process is iterated on the resulting automaton. The stopping point is also determined by the heuristic.

Heuristic Core Idea
Alergia [125] The heuristic calculates empirical transition probabilities in each

state. Candidates are scored highly if distributions of outgoing tran-
sition labels match.

Overlap [126] Identifies similar if-then-else flows: the more matching outgoing
transition labels candidate states have, the higher the score. The
heuristic ignores occurrence counts.

5.3.4. PROFILING BEHAVIOR

We use the dfasat software package [126]3 to learn communication profiles. The goal is
to obtain a small automaton that can reliably distinguish legitimate from botnet sources.
The classification task focuses on hosts, not individual traffic flows. We use the full train-
ing sets, as well as smaller training sets obtained from an analysis of freshness and Ho-
effding bounds on local distributions to learn communication profiles. We use different
heuristics, as outlined in Table 5.3. Because we assume a temporal connection between
different IP flow records when building profiles over short windows of time, we only use
a simple split into training and testing data instead of cross-validation or a shuffle-split
approach.

To judge whether a host is malicious or not, we evaluate its associated communication
profile, an APTA A, by calculating its acceptance rate of encoded IP flow records from an
evaluation set. We discretize the flows in the evaluation set using the same method as
for the preprocessing, and collect flows in windows of the same length. Since we want
to reason about hosts based on their associated flows, we calculate the ratio of accepted
versus rejected windows. A preliminary analysis infered that an acceptance ratio ex-
ceeding 75% any time after the first 25 windows is a good threshold to classify hosts as
malicious.

3To reproduce our results, set threshold flags y and t to 1; to only use the heuristic set b to 1 and d to 2000. Run
one iteration by setting n to 1. Turn sinks off by setting i to 0.
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(a) (b) (c)

Figure 5.2: Overall freshness in Scenario 10 (a) and Scenario 12 (b). The blue line shows the development of
the overall freshness, the green line depicts the freshness of the last update adding 1% of the training data to
the prefix tree. The dashed vertical line indicates a point of change: local updates suddenly contain a lot of
new samples without prefixes, or much longer samples. The last graph shows the number of states inserted vs
the number of states created in the APTA in Scenario 10 (c). It shows that a lot of windows share prefixes.

5.4. RESULTS
In the experiments we first analyzed the training sets using various estimation crite-
ria. Based on the analysis, training sets were in turn used to learn communication pro-
files.

5.4.1. STREAMING DATA COLLECTION
Figure 5.1 summarizes the behavior of our method for wrong choices during prepro-
cessing. Long windows of 250ms or large alphabets with 10 bins per feature result in no
convergence, neither in freshness nor in the percentage of transitions fulfilling the Ho-
effding bound.

For the remaining experiments, we chose a small alphabet size obtained through few
bins (4 per feature) and short windows (τ = 20 ms). An interesting observation across
the different scenarios is the non-monotonicity of freshness. It clearly illustrates that the
global behavior of a host is composed of several small, different behaviors. This property
is captured by PDFAs, which can have multiple loops with transitions of high probabil-
ity, connected by transitions of lower probability. This is particularly easy to see in Figure
5.2(a), indicated by a vertical dashed line: after adding increasingly less new information
to the prefix tree, the updates at the 32% mark of the training set add a new behavior. The
increase in freshness shows that words inserted encode behavior without prefixes in the
APTA, i.e. previously unseen behavior. This is also visible in a plot of the states inserted
into the prefix tree, i.e. the length of the samples, and indicates that windows start to
contain more words. The dataset description of Scenario 10 lists a sequence of band-
width increases and a switch from a UDP-based flood attack to an ICMP-based attack.
The former did not use up the full bandwidth, the latter did. This makes extreme values
and monotonicity of freshness an interesting candidate for clustering behavior.

Figure 5.3 shows the fraction of transitions fulfilling the Hoeffding bounds for a weak
choice of parameters, δ = 15% and ϵ = 0.15. It shows that in neither scenario the ra-
tio of transition bounded correctly exceeded 30%. Often, after initial going up, the ratio
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Table 5.4: A summary of the baseline results, calculated on the whole training set for one infected IP address
per scenario. There are 9 malicious hosts in Scenario 9 and 10, and 2 hosts in Scenario 11 and 12 each. The
environment contains 48 benign hosts.

Experimemt
Alergia

TP / FP / Pr
Overlap

TP / FP / Pr
Baseline in Scenario 10 6 / 0 / 1 7 / 0 / 1
Baseline in Scenario 11 2 / 0 / 1 2 / 0 / 1
Baseline in Scenario 12 1 / 0 / 1 1 / 0 / 0.9

Experimemt
Alergia

TP / FP / Pr
Overlap

TP / FP / Pr
48% in Scenario 10 6 / 0 / 1 7 / 0 / 1
12% in Scenario 11 0 / 0 / 0 0 / 0 / 0
50% in Scenario 11 2 / 0 / 1 2 / 0 / 1
52% in Scenario 12 1 / 0 / 1 1 / 0 / 0.9

declines as more data gets added. Overall, this behavior is not surprising: States closer
to the root are part of many prefixes, and therefore occur very often. As the prefix tree
branches out, and adds more states per level, occurrence counts go down. The major-
ity of states are close to the leaves of the tree, not to the root. This shows that decisions
made by Alergia might not be reliable. Moreover, while the resulting state machine might
accept and reject samples correctly, the associated probabilities might be off.

5.4.2. PROFILING BEHAVIOR
We use the training datasets determined in the previous step to learn PDFAs as commu-
nication profiles. The baseline is calculated on a communication profile trained on all
IP flow records of one malicious IP address in each scenario. By inspecting the fresh-
ness, we chose 48% of Scenario 10, and 52% of Scenario 12 training data. For both cases,
Figure 5.2(a) and 5.2(b) shows a plateau in global freshness, and the freshness of local
updates is also low. In Scenario 11, freshness keeps increasing until the end, but is very
low (∆ < 0.13). We chose two splitting points: the low point of freshness at 12% of the
training data (∆ = 0.03), and for the lack of another extreme point, we also split at 50%.
Table 5.4 summarizes the results for the most important metrics: true and false positives
(TP/FP) and precision (Pr), a ratio of T P

T P+F P describing how many of the identified hosts
were relevant. For all but the 12% split, results for the communication profile learned
from the reduced set are the same as from the baseline. It is very likely that the learn-
ing algorithm can infer the core structure from the reduced set and generalize enough.
The inability to detect the malicious hosts in Scenario 11 with only 12% of the training
data is not surprising. Just observing the freshness can be deceptive: a highly redundant
representation of additional data can add valuable data to discriminate hosts. Without
it, the communication profile rejects all data. Overall, the results are promising: We did
not need to select features or tune parameters for different scenarios. Moreover, we only
used word acceptance for evaluation, but the communication profiles also provide prob-
abilities. We expect identification of malicious hosts as well as rejection of benign hosts
to be better if we account for this information.
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(a) (b) (c)

Figure 5.3: The Hoeffding inequality applied on transitions in the APTA, using δ= 15% and ϵ= 0.15 (on range
[0,1]), depicted for Scenarios 10 (a), 11 (b), and 12 (c). Despite the rather weak parameters, there is not enough
samples to fulfill it in a majority of states. As the freshness in Scenario 10 goes up (c.f. Figure 5.2 (a)), the
fraction of transitions with Hoeffding bound starts going down around the 32% mark.

5.5. DISCUSSION
Our development and empirical study serves multiple purposes: Practically, it shows
how to use a class of learning algorithms that has a high run time complexity with big
data. Using a smart analysis of the dataset with the need of the algorithm in mind,
it is easier to estimate how much data is really needed. Moreover, it helps to identify
bad choices in preprocessing. This step is extremely important, as the effectiveness of
the learning algorithm will depend on the choices like discretization and window length
taken during preprocessing. The empirical study experiments does not change the es-
tablished theoretical bounds in terms of complexity and data requirements, but we get
a better understanding of the algorithm in our use case. In theoretical analysis, an as-
sumed data generating finite state machine is to be recovered by identifying an automa-
ton isomorphic to the generator. Complexity bounds typically are stated in terms of un-
known quantities of the target, e.g. the number of states of the target automaton and
the size of the alphabet. In our application, we don’t know the former, and for the lat-
ter, the product of the number of bins chosen gives an upper bound for the alphabet
size. Theoretical bounds derived from that are very conservative, and often prove to be
impractical. The communication profiles we learn can be used in various ways, e.g. by
setting up honeypots to learn malicious behavior directly from attackers. Profiles from
these hosts can later be used to detect anomalies in network traffic.
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The third part of the thesis concerns how it is possible to leverage Automata and Au-
tomata inference for botnet detection. It includes this chapter and chapter 7. To our
knowledge, we are the first to propose behavioural detection methods that rely on auto-
matically inferred state machines to detect infections. Common network intrusion de-
tection techniques usually rely on hand-coded rules, which may trigger an alarm when
some network data meet them (i.e. lists of known IP addresses of malicious machines).
Keeping those rules updated, adding new rules, and removing the rules which are not
helpful anymore is a non-automated task performed by experts. With automata and au-
tomata inference techniques, it is possible to automatically generate rules matching a
host’s observed behaviour. In this chapter, we propose a technique which uses Timed
Automata to describe a device’s behaviour when communicating with other devices in a
network. Furthermore, it allows the generation of behavioural features that can be used
for detection. The use of time when describing network behaviours is debatable. On the
one hand, timing is an essential part of the network data type, and some attacks, such as
the Denial of Service Attacks, can be described with time categories. On the other hand,
detection systems that rely on timed features may be circumvented by new-generation
malware, which uses random delays in their communication protocols.

This chapter is based on a published paper [105] where the author’s principal contribu-
tion was the first definition of a methodology for using automata automatically learned
from data to detect compromised hosts in a network under observation. This method-
ology was later improved and refined, as discussed in the following chapter.

This chapter explores the possibility of including time information within the behavioural
descriptions of the hosts.
Section 6.2 introduces the Probabilistic Deterministic Real-Time Automata (PDRTAs).
Section 6.3 discusses the problem of how to automatically infer PDRTAs from network
data and how to use them for detection purposes. Section 6.4 evaluates our PDRTAs-
based detection system in different scenarios.

6.1. INTRODUCTION
Botnets pose a significant threat to cyber-security. Bots are zombie computers, remotely
controlled by a malicious entity, and are used for attacks, spam, phishing and infor-
mation exfiltration [127, 128]. Despite recent research, detecting and countering bot-
nets is still considered an unsolved problem [121]. In Feily’s survey [129], three cate-
gories of botnet detection methods are distinguished: signature-based [130], anomaly-
based [131] and DNS-based [132, 133]. In signature-based detection, some character-
istic like hashes are calculated, either on the malware binary, or from resource usage
or from packet content capture. These characteristics serve as signatures used to iden-
tify the same malware or packets in the wild. Botnet developers counter this detection
using techniques such as code obfuscation, encryption, and polymorphic code [134],
makings signature-based detection increasingly ineffective. DNS-based detection tech-
niques rely on anomalies in the DNS traffic, caused by the infected hosts’ need to locate
and communicate with a command and control server, which is usually hosted by a Dy-
namic DNS provider. This type of detection often wrongly considers hosts as malicious,
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e.g., due to fake-domains and reconnaissance poisoning [129]. These false positives
make DNS-based techniques fairly unreliable. The last category, anomaly-based detec-
tion methods are often behavior-based and monitor the run-time execution behavior of
malware, which is much more difficult to conceal [135]. Consequently, there has been a
large amount of research devoted to the development of effective behavior-based mal-
ware detection and analysis tools, see, e.g. [136, 137]. Behavior-based malware detection
or analysis applies machine learning techniques in order to automatically learn models
from data such as network traffic. In state machine learning, an instance of generative
learning, is of particular interest: it can detect a botnet in new data, but its generative
property also allows to infer and analyze the logical structure underlying the observed
traffic. Depending on the data, in some cases it is even possible to infer a state machine
diagram communication protocol used by the botnet, see [138].

In this chapter, we introduce BASTA (Behavioral Analytics System using Timed Automata),
which uses probabilistic deterministic real-time automata (PDRTAs) to obtain identity
fingerprints of hosts from timed network traffic streams. It is a behavior-based system,
and learns models from Netflow traces instead of full packet contents. Packet content
is typically used as information source to identify the basic event types/messages used
in communication protocols. Netflows only contain information on the sources and tar-
gets of flows, the amount of data transmitted, the network protocol used, and the timing
of the flows. This makes it much harder to infer a botnet’s communication protocol. If
successful, however, this approach opens up the road to many new applications of this
technology because Netflow traces are widely available, while access to the content of
messages is typically restricted due to proprietary or privacy related issues.

BASTA models specify behavior over timed events. We are especially interested in this
timing information because it can be very important for determining network traffic be-
havior [139, 140]. In addition, PDRTAs can be learned efficiently from unlabeled data [108],
making them an ideal candidate for modeling network traffic behavior. The develop-
ment of BASTA is driven by the practical need of network administrators that run a wide
network composed of many hosts that require monitoring. A common action taken af-
ter identifying an infection is a hard reset of the given machines in order to restore it to
a trusted state. This operation is often an expensive one. In contrast to most Intrusion
Detection Systems (IDS) that label individual packets/flows as suspicious, BASTA is fo-
cused on ranking hosts using an indicator of suspiciousness based on all of the outgoing
and incoming flows. This indicator models the overlap in communication behavior be-
tween a given candidate host and a known infected machine. A low indicator means that
frequencies of behavioral patterns observed in the entire set of flow records match the
expected frequencies obtained from a known infected machine. A high indicator means
that these frequencies do not match, and thus that the traffic shows no sign of this infec-
tion. Although we initially developed BASTA in order to detect such known infections,
we demonstrate in this work that many of the patterns that it learns from Netflow records
are generic: initial results demonstrate that BASTA is capable of detecting new infections
from unknown malware.
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In our empirical study on publicly available Netflow data, we obtain a high detecting
rate, catching 100% of infected hosts in some scenarios, while maintaining a low false
positive rate. These results are surprising, considering the low detection rates that have
been reported using existing techniques on the same data [124]. Although the obtained
results are not directly comparable due to the fact that these existing methods try to
label every individual flow, our results do indicate that assigning labels to hosts rather
than flows is a very promising direction for botnet detection. In addition, they show that
timed automata are very effective tools for capturing the behavioral patterns in all of this
data. In noised settings, the default settings used by BASTA can produce too many false
positives to be used by network administrators directly. Since BASTA is a ranker of hosts,
however, an admin can opt to only inspect the most suspicious ones, i.e., the hosts that
are most likely malicious. Furthermore, since BASTA is a machine learning tool geared
toward learning useful models from network traffic, it can be used as a replacement of
standard machine learning methods used by malware detection frameworks such as for
instance DISCLOSURE [141]. When using BASTA as a base detection system, such frame-
works will continue to make use of many other tricks such as filters on IP range and port
usage in order to further reduce the number of false alarms.

6.2. PROBABILISTIC DETERMINISTIC REAL-TIME AUTOMATA
PDRTAs are a probabilistic version of Real Time Automata [93], and they are probabilistic
automata that include guards on the transition timings (inter-event) times. Formally,
the events are modeled by timed strings (a1, t1)(a2, t2) · · · (an , tn), where ti denotes the
time delay between the occurrences of the i th and i − 1th events. The PDRTA model
defines a probability distribution over such timed strings, having a Markov property in
the distribution over events, and a semi-Markov property in the time guard.

Definition 21. A PDRTA is a 4-tuple 〈A ,E ,T ,H 〉, where

• A = 〈Q,Σ,∆, q0〉 is a 4-tuple defining the machine structure: Q is a finite set of
states, Σ is a finite set of event types (symbols), ∆ is a finite set of transitions, and
q0 ∈Q is the start state;

• E and T are the event and time probability distributions, respectively. E : (Q,Σ) →
[0,1] returns the probability of generating/observing a given event in a given state.
T : (Q, H) → [0,1] returns the same but for a given time range [v, v ′] ∈ H , where
H is a finite set of non-overlapping intervals in R+.

A transition δ ∈ ∆ in a PDRTA is a tuple 〈q, q ′, a, [m,m′]〉, where q, q ′ ∈ Q are the source
and target states, a ∈Σ is a symbol and [m,m′] is a temporal guard.

Figure 6.1 illustrates a PDRTA inferred from Netflow data. On the timed string 〈Q −
T C P,500〉〈TC P,50〉〈TC P,200〉, it goes from state 1, via state 4 and 7, to state 2, its proba-
bility is computed as: 0.28 ·0.21 ·0.59 ·1.0 ·0.86 ·1.0 = 0.03. It can also represent a distri-
bution over (Σ,H )∗ by adding final probabilities.

Note that in a PDRTA the states are defined by their event-time value distributions and
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root

state 1
[0.40 0.28 0.06 0.25]
[0.63 0.21 0.11 0.05]
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[0.09 0.22 0.01 0.67]
[1.00 0.00 0.00 0.00]

Q-TCP [171,195]
TCP

state 3
[0.93 0.02 0.02 0.04]
[1.00 0.00 0.00 0.00]

Q-UDP [204,2759]

state 4
[0.04 0.37 0.01 0.59]
[1.00 0.00 0.00 0.00]

Q-TCP [31,153]
Q-TCP [196,max]

state 5
[0.85 0.05 0.02 0.08]
[1.00 0.00 0.00 0.00]

Q-UDP [0,203]

state 6
[0.51 0.17 0.01 0.31]
[1.00 0.00 0.00 0.00]

Q-UDP [2760,max]
UDP

state 8
[0.05 0.55 0.01 0.39]
[1.00 0.00 0.00 0.00]

Q-TCP [0,30]
Q-TCP [154,160]

state 9
[0.06 0.03 0.01 0.90]
[1.00 0.00 0.00 0.00]

Q-TCP [161,170]

Q-TCP
TCP [0,1]
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Figure 6.1: A PDRTA inferred from a sample of malicious Netflow traces in Scenario 9 of our dataset. States
2, 3, and 9 are spamming states. The botnet initiates many Quick (short duration) UDP/TCP flows. Edges are
labeled with events and temporal guards. The latter are omitted if they are empty. The states contain two
distributions: one for events, one for time intervals. The 4 event types in order: Quick UDP, Quick TCP, Other
UDP, Other TCP. Breaks-points of the time intervals are: 485, 981, and 1660 ms.

their transitions to future states. These cannot be directly observed in data but have to
be estimated using a learning method. PDRTAs are therefore similar to a timed variant
of the HMM [81].

We learn PDRTAs instead of regular automata or Markov models because time informa-
tion is important for characterizing network traffic. In PDRTAs, the influence of time val-
ues on the string probabilities is equal to that of all the other data contained in abstract
events. Other types of stateful models such as Hidden Markov Models or Mealy Ma-
chines have been used for detection purposes [124, 142], but cannot be used to infer time
constraints. We focus on deterministic automata because identifying non-deterministic
automata is harder [61].

6.3. PDRTAS INFERENCE
We use a recent state machine learning algorithm, RTI+ [108] to learn malicious behav-
iors from Netflow data, and then use these as fingerprints for detection.
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Here we briefly review this algorithm. RTI+ is based on the state-merging approach [94].
An untimed probabilistic state-merging algorithm starts by building a large tree-shaped
automaton called prefix tree from a sample of input strings. Every state of this tree can be
reached by exactly one untimed string and therefore encodes exactly the input sample.
The algorithm then greedily merges pairs of states (q, q ′) in this tree, forming a smaller
and smaller machine. When the target machine is deterministic, for every event e ∈ Σ
the states reached from q and q ′ have to be merged as well (the determinization pro-
cess). By iteratively applying these merges, the algorithm generalizes over the sample
and learns the structure of the target machine used to generate the sample. The algo-
rithm uses a heuristic to decide merges and avoids overfitting. In an unsupervised set-
ting, the merge heuristic is determined using statistics. A merge between q and q ′ is
considered good if the future behavior after reaching q is similar to that after reaching
q ′, which can be tested using, e.g., a likelihood-ratio test [108]. This essentially tests the
Markov property, i.e., whether future behavior is independent of being in state q or q ′.
When these futures are significantly different, the merge is considered inconsistent and
will not be performed. In addition to state merges, RTI+ is capable of performing transi-
tion splits [108]. In the prefix tree, the temporal guards include all possible time values.
A split of a transition δ = 〈q, q ′, a, [m,m′]〉 at time point t creates two new transitions
〈q, q1, a, [m, t ]〉 and 〈q, q2, a, [t +1,m′]〉. The target states q1 and q2 are the roots of two
new prefix trees that are reconstructed based on the input sample. In this way, RTI+ can
learn temporal constraints in addition to the machine structure. For more details such
as pseudo code and complexity analysis, the reader is referred to [81].

6.3.1. NETWORK FLOWS
Netflows are sequences of packets passing on a given network link, from a source host to
a destination host. As such, they are univocally defined by the couple (source-address,
destination-address) and characterized by several properties derived from the aggrega-
tion of packet-based features. The Netflow features we use in our system are listed in
Table 6.1.

Table 6.1: Netflow features, with type and examples.

FEATURE TYPE VALUES
source-ip string 147.32.84.193
start-time timestamp 2011-08-17 15:51:08.499
protocol string TCP, UDP
duration float 0.103, 2.696
direction string →, ←, ↔

total-packets integer 9, 1
total-bytes integer 1030, 66, 43

We use Netflow records instead of packet captures because these are frequently logged
by network operators and much easier to obtain. Furthermore, they preserve privacy of
the communication: in contrast to network packets, Netflows do not contain the content
or format of messages. The downside of learning from Netflows is that the learned ma-
chines define behaviors on a high abstraction level. In the following sections, we show
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that these high level machines are very powerful behavioral models, capable of detecting
other infected hosts with very few false positives.

6.3.2. OBTAINING TIMED MESSAGES
Clustering of Netflows basically consists of assigning a numerical code to each flow based
on the features in Table 6.1 such that similar Netflows receive the same code. We obtain
these using a simple attribute mapping for each feature. Protocol type and direction are
assigned a progressive non-negative number for every possible value v , for example, for
protocol type, we assign 0 if v = TCP, 1 if v = UDP, 2 if v = ICMP, etc. The source-ip feature
is only used to distinguish flows from each other, and the timestamp is used to compute
time values. We use percentiles for clustering other numerical features, i.e. duration,
total-packets and total-bytes. The ELBOW methods are applied to select the “optimal"
number of bins [143]. The experiments show that within-cluster sum of squares (WCSS)
has a “break point" at number of cluster-5, i.e. 20th, 40th, 60th, and 80th percentiles. We
assign values accordingly: 0 if v is before the 20th percentile, 1 if v is after the 20th and
before the 40th, etc. We then compute the event types from Netflows using Algorithm 12,
where Mi : v →N denotes the attribute mapping for feature i .

Algorithm 12 Netflow encoding using attribute mappings.

Require: a Netflow n = 〈a0, a1, · · · , ak〉 with k features, and an attribute mapping Mi ,
i = 0,1, · · · ,k code ← 0 spaceSi ze ←∏k

i=0 |Mi |
for i ← 0 to k do code ← code +Mi (ai )× spaceSi ze

|Mi | spaceSi ze ← spaceSi ze
|Mi |

end forreturn code

Algorithm 12 uses attribute mappings to encode a Netflow Note that |Mi | denotes the
number of values for feature ai . For example, a simplified scenario where every Net-
flow has only two features: protocol and total-packets. For the protocol we observe only
two possible values, namely TCP and UDP, and the attribute mapping will assign 0 to
the former and 1 to the latter. For the total-packet feature let assume we have gathered
values: {1,1,1,5,12,14,14,18,23,31} and assume we are interested in the 20th and 80th
percentiles. We first need to find out the ordinal ranks of such values in the above collec-

tion, using the formula: r (p) =
⌈

p
100 ×N

⌉
, where p is the required percentile, and N is the

collection size. Therefore r (20) =
⌈

20
100 ×10

⌉
= 2 and r (80) =

⌈
80

100 ×10
⌉
= 8. Percentiles

are the collection values corresponding to the ordinal ranks, thus the 20th percentile is
1 and the 80th percentile is 18, they induce an attribute mapping to Mtot al−packet s (v) =
{0 if v ≤ 1, 1 if 1 < v ≤ 18, 2 else}. where v is the total-packets attribute value for any given
Netflow . Hence the code associated to the instance 〈TCP, 14〉 is: 0× 6

2 +1× 3
3 = 1. And the

code assigned to the instance 〈TCP, 33〉 is 2. Time values are obtained from Netflow data
by calculating the delays between two consecutive events. For each host of interest, we
compute the time differences of its consecutive flows in milliseconds. Table 6.2 shows
the results of this process applied to five example Netflow records.
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Table 6.2: Netflow events from Scenario 9.

prot dir time duration packet byte event
udp → 0 0.000304 1 68 (1,0)
udp ↔ 5 0.000442 5 590 (52,5)
tcp ↔ 17 0.000527 3 479 (150,12)
tcp ↔ 24 0.120181 6 212 (150,2)
udp → 22 0.17121 10 7701 (44,5)

... ... ... ... ... ... ...

6.3.3. SLIDING A TIMED WINDOW
As mentioned in Section 6.3, RTI+ learns PDRTAs from sets of timed strings. In this sec-
tion we address the task of obtaining timed strings from Netflows, achieved in two stages:
At first stage we group Netflows by source address (source-ip feature in Table 6.1) be-
cause we are interested in modeling per-host behavior. By doing so, we collect a plain
sequence of Netflows for each monitored host, which is translated in timed events as
showed in the previous section. At second stage we slide a time window of fixed dura-
tion over the sequence obtained at stage one. For every window w , we create a timed
string by concatenating all events that occur within the duration of w . The window du-
ration used in the experiments is 20 milliseconds, which creates two flows from the data
in Table 6.2: (1,0)(52,5)(150,12) and (52,5)(150,12)(150,2)(44,5). Each flow represents a
snapshot of 20 milliseconds of timed events produced by a given host, which we call a
“Sliding Timed Frame".

6.3.4. RECOGNIZING A HOST AS INFECTED
After obtaining a PDRTA A from a malicious host M , we use it to evaluate other hosts C .
Intuitively, we compare the expected behavior of a malicious host M , given by the model
A with the observed behavior in C . A symptom of C describes how the behavior of C fits
the behavior of M . Formally, a symptom is an internal state of A together with the input
needed to reach it:

Definition 22. An infection symptom is a couple 〈q, t〉, where

• q ∈QM is a state of AM , PDRTA learned from a given blacklisted entry M ; q is the
state reached in AM after receiving t;

• t = 〈s,δ〉, is a timed event with s ∈ ΣM , the set of event types for AM , and δ ∈ N,
produced by a given monitored host C ;

Every infection symptom is a behavioral fingerprint for a monitored host, given the in-
fection represented by a blacklisted entry. Such fingerprints have a cross-network com-
ponent (q) obtained from M , and a network-specific component (t ), generated from
Netflows captured within the NUO. Indeed one might imagine two or more networks to
share the same behavioral model M for a specific infection, and still to be able to gen-
erate infection symptoms which are specific for each of them. That is why we refer to
PDRTA models as fingerprint generators.
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It is important to underline once more that infection symptoms are generated partially
by using a PDRTA learned on Netflows coming from a malicious source (training Net-
flows data) and partially from data gathered on the monitored network (evaluation Net-
flows data). To give an example, consider the PDRTA shown in Figure 6.1 and assume to
have collected the following frame from the NUO:

{(Q-UDP,171)(Q-TCP,8)(Q-TCP,0)(Q-TCP,0)(Q-TCP,0)(Q-TCP,0)}

The infection symptoms generated are 〈STATE-5,(Q-UDP,171)〉 and 〈STATE-2,(Q-TCP,
8)〉, and four instances of 〈STATE-2,(Q-TCP,0)〉.

Once we have learned a PDRTA as a fingerprint for a given malicious host M , we use
two different strategies for finding the same infection in a new host C in newly observed
data. Both strategies rely on infection symptoms.

Our first strategy, called error based, compares the infection symptoms with occurrence
counts of the same fingerprints in new data. We thus compare whether a new candi-
date host C shows the same symptoms as a known malicious host M . Let Count sM

i and

Count sC
i be counts of symptom i in M and C , respectively. Host C is classified as in-

fected if the absolute error S =∑
i |Count sM

i −Count sC
i | < τ, i.e., if absolute differences

between the expected and observed symptom counts fall below a pre-computed thresh-
old. This threshold is obtained using a configuration dataset of known benign hosts; see
Section 6.4. The absolute error S can be used as a score function. Using it, we can rank i
different hosts Ci according to suspiciousness S. The second strategy called fingerprint
based, uses this configuration dataset to find distinguishing symptoms that occur when
a host is malicious, but never when it is benign. Count sF

i denotes the sums of all symp-
tom counts in the configuration set.

Host C is then classified as malicious if a symptom i exists, such as Count sF
i = 0, Count sM

i >
0, and Count sC

i > 0.

6.3.5. CIRCUMVENTING PDRTAS DETECTION
At present, BASTA should not be considered as a complete system for the detection of
botnets. It has rather been designed as a machine learning engine of a more complex
detection device (e.g., random forest module in [141]). Having said that, it is good to
clarify that BASTA is a botnet fingerprinting system. This means you need traffic from an
infected host known as such, to get a PDRTA representing its behavior and the fingerprint
generator. It is also important to point out that thanks to these generators, fingerprints
have the desired property of being specific for the network. In particular, to circumvent
the detection of BASTA, a bot master should have access to the traffic of the network he
intends to attack in order to craft elusive flows and bypass its fingerprints.

6.4. EXPERIMENTS
BASTA is evaluated on a dataset released by Garcia et al [124]. The dataset is organized
in 13 different scenarios, each of them containing Netflows from a network infected by
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a different type of malware. The scenarios are numbered from 1 to 13, and referred to
by their number. The goal of BASTA is identification of other infected hosts knowing at
least one, e.g. from a blacklist. Our experiments focus on the four scenarios contain-
ing multiple bots running the same malware. Using the same scenario numeration as in
[124], Scenario 9 contains a network infected by Neris, a spamming botnet that operates
though IRC (Internet Relay Chat) and is capable of performing port scanning and click
frauds. Scenario 10 and 11 contain a network infected by Rbot, a botnet capable of lead-
ing distributed denial of service attacks (DDoS). The UDP and ICMP protocol are used
respectively. Scenario 12 is a network infected by NSIS.ay, a trojan capable of coordinat-
ing DDoS attacks.

In [124] several existing botnet detection methods are compared on this dataset. The
different methods are trained on samples from Scenarios 3, 4, 5, 7, 10, 11, 12, and 13,
and evaluated on Scenarios 1, 2, 6, 8, and 9. The purpose of this setup is to test whether
the methods are able to generalize from one botnet to another. In addition, the methods
are evaluated on how quickly they can detect new threats. Understandably, the methods
perform poorly on this task, sometimes even worse than a baseline that labels all flows
as malicious.

For a network administrator it is much more useful to have labels assigned to hosts
instead of individual Netflow records because hosts can be investigated and reset to a
trusted state. We therefore focus on labeling and ranking hosts.

Our initial goal is to detect new infections of known threats. A network administrator can
learn models for such threats using Netflows that connect to known blacklisted hosts. Af-
terwards, we consider the setting used in [124] of trying to detect infections by unknown
threats.

We preprocessed the data, removing null values if present, and accounted for discrep-
ancies in date formats across multiple scenarios. We also removed all Netflows labeled
as background as our use-case is a binary problem: discovering whether a given host has
or not has been infected by a malware. For each scenario we constructed three disjoint
datasets. Table 6.3 summarizes the sets.

• The configuration dataset, containing 30% of the sequences, randomly selected. It
used for calculating percentiles in features with numeric domain. It is also used for
estimating the selectivity threshold for the error based strategy and for identifying
the distinguishing symptoms used in the fingerprint based strategy. It does not
contain Netflow sequences from botnet hosts.

• The training dataset, containing all Netflows coming from one of the infected hosts.

• The evaluation dataset, containing the remaining sequences from the scenario:
both infected and benign Netflows from all other hosts. The evaluation dataset
sometimes is much bigger than the training set. The reason for this is in how we
learn: model is learned from just one host while the objective is to detect other
infected machines in a big network.
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Table 6.3: The number of flows (hosts) of each of the three set per scenario.

Scenario Configuration Set Training Set Evaluation Set Infected Hosts
9 91386 (185) 29712 (1) 648627 (1077) 10

10 159995 (141) 19889 (1) 465462 (380) 10
11 1004 (32) 138077 (1) 149821 (87) 3
12 6506 (4) 807 (1) 2483 (18) 3

In all the experiments, the attribute mapper has been initialized using the configuration
dataset with 20%, 40%, 60%, 80% as percentiles for all scenarios except for Scenario 11,
where only the 50% percentile was used in order to avoid overfitting on a small training
dataset. Regarding the selectivity threshold used in the error based strategy, it has been
estimated by collecting the sum of errors for each host in the configuration set and com-
puting the average error µ along with the standard deviation σ. The threshold has then
been set to τ=µ−2σ.

The following subsections discuss two different types of experiments. Section 6.4.1 shows
performances by taking each scenario individually. These experiments illustrate the ca-
pabilities of the system in the task of detecting a host infected by a known threat. Sec-
tion 6.4.2 shows an experiment involving all scenarios together. This experiment aims to
assess BASTA performance with threats it does not know anything about, i.e. it cannot
rely on a model learned on purpose for such a menace.

6.4.1. PER-SCENARIO EVALUATION
All experiments in this section share the aim of evaluating the system in detecting an al-
ready known infection. A known infection is a host known to be infected by prior knowl-
edge, e.g. through a blacklist. In each experiment we compare results with a BIGRAMS
baseline.

BIGRAMS are essentially sequences of two consecutive events. For instance, if we con-
sider the stream in Table 6.2, we can get the following: (1,52) , (52,150) , (150,150) , (150,44).
This baseline does not use any serialization, i.e. no sliding frames, no time informa-
tion, just the labels. With BIGRAMS it is possible to estimate the conditional probability
of the events. If we have the bigram (E1,E2) where E1 and E2 are consecutive events,
the conditional probability P (E2|E1) can be estimated by computing the join probabil-
ity of (E1,E2) and the marginal probability of E1. Performance is presented in terms
of true/false positives/-negatives, where a true positive (TP in the tables) means a host
correctly classified as malicious.

NOISELESS SOURCES, NOISELESS TARGETS

Table 6.4 refers to a first setting where both source and targets are noiseless. In this con-
text the word “noiseless” is used to express that every Netflow coming from any evalua-
tion machine is legitimate if and only if such a machine is legitimate, and every Netflow
coming from any evaluation and infected machine is actually malicious as well. The re-
sults on three out of four scenarios are impressive: 100% accuracy for the error based
strategy and few false positives for the fingerprint based strategy. Scenarios 11 and 12
show somewhat worse results. One host in Scenario 11 is falsely identified as benign
(one false negative) out of the two malicious hosts in the testing data. There is also an
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147.32.86.165    True Negative (S1)
                           False Positive (S2)
147.32.84.193    True Positive (S1, S2)
147.32.84.204    True Positive (S1, S2)
204.12.234.66    True Negative (S1, S2)
205.188.17.129  True Negative (S1, S2)

Figure 6.2: Expected and observed frequencies of infection symptoms in Scenario 9. Each x − y pair indicates
the expected frequency count versus the observed frequency count of a specific infection fingerprint for one of
five given hosts. Regression lines are also drawn for each host. For true negatives, we observe low counts while
a fingerprint of an infection expects high counts. The regression line is along the x axis. For true positives, the
observed and expected counts match, and the regression line is y = x.

improvement in comparison with BIGRAMS on Scenarios 11 and 12, where the baseline
is not able to detect any infected host. BIGRAMS seem to work better with the fingerprint
based strategy, introducing less false positives and hitting all the malicious machines.
Figure 6.2 illustrates the expected and observed frequency distribution in each testing
hosts. S1 and S2 are the error based and fingerprint based strategies, respectively. Two
hosts are detected correctly as infected (TP) by S1 as their regression plot is very close to
y = x. The other three hosts are correctly detected as safe (TN). Interestingly, one host
is incorrectly detected as infected by S2. Although this host is behaviorally very different
from what the PDRTA model expect, it shows malicious behavior that never occurred
in the configuration dataset, in this case the symptom 〈s = 1, t = 〈3,4〉〉 (see Figure 6.1).

Results in Table 6.5 are about a different setting where the sources for each scenario are
still noiseless, but the infected evaluation targets are not. This is a more realistic situation
where a fingerprint generator, namely the PDRTA, of an infection has been provided by
some partners (e.g. security companies) able to run the infection in a safe environment.
However, the target infected machines present mixed traffic made of both Netflows la-
beled as malicious and legitimate. We have devised this setting coupling each malicious
host with the most verbose (in terms of number of NetFlows), legitimate, and available
one. Then we have merged Netflows of the coupled host so creating new targets with
mixed behavior. Even in this case we observe no false positive with the error based strat-
egy, and an improvement in Scenario 9 on the baseline. BIGRAMS with fingerprint based
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Table 6.4: Top: Error based strategy performances on noiseless data. Bottom: Fingerprint based strategy per-
formances. The table reports hosts correctly and incorrectly identified in absolute numbers.

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 1068 0 0 9 1068 0 0
10 9 371 0 0 9 371 0 0
11 1 85 0 1 0 85 0 2
12 2 16 0 0 0 16 0 2

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 1038 30 0 9 1066 2 0
10 9 370 1 0 9 369 2 0
11 1 80 5 1 1 83 0 2
12 2 4 12 0 2 15 1 0

Table 6.5: Top: Error based strategy performances with noiseless sources and noised targets. Bottom: Fin-
gerprint based strategy performances. The table reports hosts correctly and incorrectly identified in absolute
numbers.

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 4 1244 0 5 1 1244 0 8
10 0 503 0 9 0 503 0 9
11 1 115 0 1 1 115 0 1
12 0 18 0 2 0 18 0 2

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 1219 25 0 9 1244 0 0
10 9 503 0 0 9 503 0 0
11 1 111 4 1 1 114 1 1
12 2 6 12 0 2 17 1 0

strategy show better performance than the alternative system, confirming the trend of
the previous setting.

NOISED SOURCES, NOISED TARGETS

The last experiment, whose results are reported in Table 6.6, combines noised sources
(obtained with the same previously described coupling procedure) and noised targets.
Even with a comprehensible drop in performance compared with already described ex-
periments, the error based strategy still shows better performance on all scenarios but
12. In this case both systems are unable to detect any infected machine, but only the al-
ternative system returning a false positive. Hence, even with the fingerprint based strat-
egy,the trend of the previous setting is unconfirmed and BASTA achieves better results
on Scenario 9 and 11 making the comparison with the baseline more uncertain.

INCLUDING BACKGROUND TRAFFIC

In Section 6.4 we explained why, as a pre-processing stage, we decided to filter out the
background traffic from the dataset at our disposal. On one hand we don’t know the ac-
tual label of every background flow, i.e. whether it is malicious or not, posing more than



6

96 6. BOTNET BEHAVIOUR FINGERPRINTING WITH TIMED AUTOMATA

Table 6.6: Top: Error based strategy performances with noised sources and noised targets. Bottom: Fingerprint
based strategy performances. The table reports hosts correctly and incorrectly identified in absolute numbers.

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 2 1244 0 7 1 1244 0 8
10 2 503 0 7 2 503 0 7
11 2 101 14 0 1 98 17 1
12 0 17 1 2 0 18 0 2

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 1228 16 0 1 1244 0 8
10 9 503 0 0 9 503 0 0
11 1 98 17 1 1 89 26 1
12 2 5 13 0 2 17 1 0

Table 6.7: Top: Error based strategy performances on noiseless data including background flows. Bottom: Fin-
gerprint based strategy performances. The table reports hosts correctly and incorrectly identified in absolute
numbers.

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 237381 0 0 9 237381 0 0
10 9 129596 0 0 4 129596 0 5
11 1 20609 0 1 0 20609 0 2
12 0 41687 0 2 0 41687 0 2

BASTA BIGRAMS
TP TN FP FN TP TN FP FN

9 9 237340 41 0 9 237320 61 0
10 9 129594 2 0 9 129592 4 0
11 1 20607 2 1 0 20607 2 2
12 2 41667 20 0 2 41668 19 0

few questions (e.g. how to evaluate a legitimate host which includes some background
flows). On the other hand, by including background traffic, we reproduce a more real-
istic setting in which we are interested to test BASTA performance. Finally we decided
to plan additional experiments on single scenarios, with noiseless data, including back-
ground traffic. We treated background flows in a neutral way: if a legitimate host con-
tains background flows it remains legitimate, and hosts containing background flows
only are considered not malicious. Results of our experiments are showed in Table 6.7,
where the trends of the same experiment without background traffic (Table 6.4) have
been confirmed.

6.4.2. MULTI-SCENARIO EVALUATION
We also test our system on the setup described in the paper [124] published with the
Netflow dataset. The training set consists of samples from scenarios 3, 4, 5, 7, 10, 11,
12, 13, and the evaluation sets contains hosts from scenarios 1, 2, 6, 8, 9. It is important
to mention that we selected training and evaluation scenarios as in the corresponding
experiment in [124]. The scenarios in the training set contain different botnet families
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Table 6.8: Performance on the setup in [124] with error based strategy (top) and fingerprint based strategy
(bottom). Scenarios 1,2,6, and 8 only contain a single malicious host, Scenario 9 contains 10 malicious hosts.
Overall, the evaluation set contains 3087 hosts.

Scenario 1 2 6 8 9
TP 1 1 1 1 10
FP 3 73 55 84 109
TP 1 1 1 1 10
FP 4 26 12 52 72

than the evaluation set and can therefore exhibit very different behavior. We learned
PDRTAs for all malicious hosts in the training samples, and tested whether any of them
mark any of the hosts in the testing scenarios as malicious. In spite of our method focus-
ing on behavioral detection, the fingerprint based method produces encouraging initial
results, see bottom half of Table 6.8. Overall our system detects all the infected hosts and
produces 166 false positives out of 3072 benign hosts. The error based strategy is able to
detect all 14 infected hosts, but the performance are deteriorated by an almost doubled
amount of false positives (i.e. 324, see Table 6.8, top half).





7
DETECTING INTRUSIONS WITH

PROBABILISTIC DETERMINISTIC

AUTOMATA

99



7

100 7. DETECTING INTRUSIONS WITH PROBABILISTIC DETERMINISTIC AUTOMATA

In this chapter we propose a detection technique which leverages un-timed automata
called Probabilistic Deterministic Automata. The chapter concludes the third part of the
thesis, and its main aim is to provide a full description of a behavioural detection system,
representing the “summa”1 of what has been discussed along this thesis.
The chapter starts with the data abstraction process, addressed by Section 7.2, and con-
tinues introducing the Probabilistic Deterministic Automata (PDAs) in Section 7.3. Even-
tually, it discusses the problem of automatically infer PDAs from network data - Sec-
tion 7.4. Section 7.5 is where the problem of how to efficiently use PDAs for detection
is addressed. Section 7.6 describes the type of data has been used in the experiments
of Section 7.7, which also compares the proposed system with a widely used alterna-
tive. Section 7.8 highlights one benefit of using Automata for detection: interpretability.
By interpreting PDAs, we show it is possible to obtain actionable insights to enforce the
cyber-security of a network. Section 7.9 address the limitations of the proposed detec-
tion method.

7.1. INTRODUCTION
More than 250 Distributed Denial of Service (DDoS) attacks have been recorded per day
in the third quarter of 2017 [144]. DDoS attacks are a mean to pursue political aims,
and blackmail organisations [145]. Botnets are the primary weapon for executing DDoS
campaigns, consisting of a network of compromised hosts remotely controlled by a hu-
man botmaster. Detection forms the first line of defence against botnets. Network anal-
ysers are detection tools that base their detection on a fundamental property of any host
included in a botnet: the need of communicating with the botmaster or with other in-
fected hosts [146]. A network analyser’s primary goal consists of monitoring the com-
munications and raising alarms in case of suspicious activity [127, 147]. Due to their
robustness, behaviour-based intrusion detection systems are among the most popular
network analysers [135–137]. Indeed, a botnet may change its binary code at run-time
using polymorphic capabilities [134], or automatically select which exploit to leverage
[148]. But it is unlikely to modify its means of communication as a change of this magni-
tude would require coordination between all hosts it communicates with and essentially
produce a new botnet.

In this work, we present a new behaviour-based intrusion detection method. Our method
describes a host’s observed behaviours using a particular type of state machines called
Probabilistic Deterministic Automata (PDAs). State machines are a standard tool for de-
scribing software specifications [56], and botnets infections are a form of software run-
ning on every compromised host. This aspect makes state machines an ideal tool for
their analysis, see [138] for an excellent example. In this work, we automatically learn
state machines from network flow data. For privacy reasons, we do not inspect the
packet content. Since the behaviour of hosts and botnets is known to change over time,
we learn these models from small chunks of flow data consisting of 1000 flow sequences.
Those are sufficient data for a state-of-the-art PDA learning algorithm to return insight-
ful models. We use a library of such models to detect infected hosts displaying behaviour
similar to that of a known infection. These PDAs have been learned from both benign

1Medieval Latin word meaning summary, recap.
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and malicious network flow data. The benign data comes from hosts in the network un-
der observation. The malicious data comes from hosts with known infections and the
PDAs describing these can be learned remotely. With those abstract descriptions of both
malicious and normal behaviours, we show how to generate profiles that are specific to
the network under observation. All network-specific profiles are compared to a profile
constructed from network flow data from an unknown host using our distance measure.
Our method searches for the closest known profile: if the nearest profile is an infection
profile, the host is classified as infected.

Behavior-based intrusion detection systems have also been used as anomaly detection
systems [149–152]. Anomaly detection is the process of modelling a host’s normal be-
haviour to find anomalies and misuses, for instance by raising an alarm when a new data
profile shows large distances to all known profiles. Since this does not require known ma-
licious data as input, it could be used to find new unknown threats. Anomaly detection,
however, is much harder than intrusion detection where examples of malicious activities
are known, and they consequently suffer from high false alarm rates. In this chapter, we
assume the availability of malicious examples. This is not unrealistic: malware research
centres have quick access to botnet data. Our method allows them to automatically learn
models from this data to detect these threats in different computer networks. Since the
models capture a botnet’s behaviour over time, their detection is much harder to evade
than the current rule-based approach used in industry. Also, since we also make use of
the local hosts’ network flow data during detection, this evasion becomes even harder.
The botnet essentially has to behave similarly to a host in the local network to evade de-
tection. Since it is also known that different malware show similar behaviours [153], our
method can be used to find and detect such similarities.

7.2. DATA ABSTRACTION
Our method aims to model host behaviours with Probabilistic Deterministic Automata,
a particular type of state machine. Almost all the state-of-the-art automata learning al-
gorithms require a symbolic abstraction of the original data. Our proposed method is
based on learning PDAs and works in the same way, by converting network flows into a
collection of strings made of discrete symbols.

The input data for our algorithm are network flows. A network flow, also commonly re-
ferred as NetFlow [63–65] is an aggregation of packets that share a common key. The
key is usually the 5-tuple comprised of the source IP address, source port, destination IP
address, destination port, and protocol. All the packets that share this key in a specific
time frame, are considered part of the same flow. A flow summarises specific attributes
of the packets as the duration, the size in bytes, and the number of packets. Network
flows do not consider the content of the packets. Hence they are encryption unaware,
more privacy-preserving, and easier to obtain and share than packet captures. From
these flows attributes, our algorithm only uses the following four: protocol, duration,
amount of packets, bytes. This selection of attributes is based on two desired properties
of our algorithm. First, the resulting symbols should be as easy to interpret for a human
as possible. Easiness of interpretation, in this case, means that each symbol should rep-
resent a combination of few attributes and, more important, the relation among them
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should be easy to spot. We will provide real examples of those concepts in the next sub-
section. Second, the model should capture the behaviour of the host independently of
the ports, IP addresses, and services used. Although these attributes maybe useful for
rule-based intrusion detection systems, we believe their values to be too fine-grained to
show interesting sequential behavior.

In the following, we describe the design of the alphabet from the flows and the creation of
the strings of symbols to be used for learning our behavioural models. Since our method
is host centric, there will be a different alphabet, a different sample of strings, and con-
sequently a different model for each considered host.

7.2.1. ASSESSING THE MESSAGE TYPES
An alphabet is a finite set of symbols. In our work, each symbol represents an event in
the network that may cause a change in a host’s behaviour. To create a symbol, we start
analyzing each flow in the network. For each flow, four attributes are extracted: protocol,
duration, amount of packets and amount of bytes. The values of these four attributes
are discretized for each attribute type. Once the individual attributes are discretized,
each combination of discrete values is assigned a different symbol. Each flow is thus
represented using a single symbol.

The protocol attribute is categorical since it has a predefined and limited set of values,
such as TCP, UDP or ARP. Hence it is already a feature with discrete values. The dis-
cretization process simply assigns a different code to each observed category. Since the
abstraction is used to learn state machines, all categories should occur sufficiently fre-
quent. An additional category is therefore added to cover all infrequent values. This
category is also assigned to protocol values that did not occur when learning the model,
but do occur when detecting intrusions.

Total Packets, Total Bytes, and Duration are numerical attributes. Their discretization
process consists in splitting the feature interval in two by using the median (50th per-
centile). As an example of discretization of the Total Packets feature, let’s assume that
the Total Packets values for the network flows and for a given host are the following: 4×5
times, 16×9 times, and 43×14 times. The median of those values is 29.5, which allows
the identification of two partitions: Ilow = [0,29.5] and Ihi g h =]29.5,∞[. If the number
of flows on either interval is deemed insufficient for learning a state machine, the two
intervals are combined into one. In such cases, there will be a single interval spanning
trough the whole data domain. This case corresponds to an attribute with always the
same symbolic abstraction regardless of its actual values.

When all attributes have been discretized, we obtain an alphabet by assigning a unique
symbol to each possible combination of discrete attribute values. For the Protocol and
Total Packets attributes in the above examples, this results in 6 symbols since there are 3
possible Protocol values and 2 possible Total Packet values. Given this discretization, let
us consider a flow with Protocol=U DP and amount of Total Packets=66. This flow will
be assigned the symbol corresponding to a U DP flow, with Total Packets in the range
]29.5,∞[. This performed discretization is model dependent, meaning that for differ-
ent models (hosts), different symbols will be used depending on their occurrence fre-
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quencies and value distributions. It is fully automated and requires no human interven-
tion.

7.2.2. CRAFTING SUBSEQUENCES
Once the alphabet is created, we transform the flows produced by a host into a sequence
of symbols. This sequence is further decomposed into smaller groups of consecutive
symbols, i.e., strings. The algorithm that generates these strings is a fixed-size sliding
window that creates a new string every time it moves. For example, using a sliding win-
dow of size 3, the symbolic series S = [1,1,2,1,5,2] is decomposed into the following 4
strings: s0 = [1,1,2], s1 = [1,2,1], s2 = [2,1,5], and s3 = [1,5,2].

The size of the time window was chosen recurring to the autocorrelation plots [154]. Au-
tocorrelation plots are used for checking the randomness of a time series by correlating
it with itself with varying time lags. If a sequence of symbols is random, then the auto-
correlation plot will be close to zero at each time lag. However, if the sequence presents
some regularities such as cyclic behavior or recurring patterns, then we may expect at
least a time lag in the plot whose autocorrelation score will be significantly non-zero.
We set the window size to the smallest time lag with no significant autocorrelation. The
rationale in using this technique relies in the goal of using our models for describing
recurrent patterns (symptoms) in a host’s observed behavior. If we would include sub-
sequences with zero autocorrelation, the state machine learning algorithm will try to
integrate these with the model. This could still be used to find new patterns, but there
is a high risk of introducing noise to the patterns it already discovered. We therefore set
the sliding window to be the largest length without this property. Figure 7.1 shows the
autocorrelation plot for the symbols generated from 1,000 flows coming from a virtual
host infected with Neris malware. There is no significant autocorrelation at lag 19 (the
solid gray line represents the significance threshold). There is also no significant auto-
correlation at lags 24 and 28, but lag 19 is the smallest. This gives 19−1 = 18 as sliding
window size. Over all hosts in the dataset, the sliding window sizes range from X to Y,
with Z being the most frequent size. Note that every host gets assigned its own window
size. Like the alphabet creation, this process is fully automated.

7.3. PROBABILISTIC DETERMINISTIC AUTOMATA
The models we use for describing host behaviours are called Probabilistic Deterministic
Automata (PDAs). PDAs are the probabilistic counterpart of Deterministic Finite State
Automata. As state machines, PDAs can change from one state to another in response
to some external input represented by a symbol. PDAs also describe distributions over
strings, having a Markov property over the symbol distribution.

Definition 23. A PDA is a 5-tuple 〈Q,Σ, q0,∆,E 〉, where

• Q is a finite set of states.

• Σ is a finite set of symbols.

• q0 ∈Q is the start state.
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Figure 7.1: Autocorrelation plot for the symbols obtained from 1,000 flows from a host infected with Neris
malware.

• ∆ is a finite set of transitions.

• E is a symbol probability distribution such that E = (Q,Σ) → [0,1], returning the
probability of generating a symbol in a given state.

A transition δ ∈ ∆ in a PDA is represented by the triple 〈q, q ′, a〉, where q, q ′ ∈ Q are the
source and target states, and a ∈ Σ is a symbol. The 4-tuple 〈Q,Σ, q0,∆〉 is called struc-
ture of the PDA. PDAs are deterministic, meaning that there are no ambiguities on which
transition to follow. On every state exists only one transition for each symbol in the al-
phabet.

Definition 24. A run on a PDA A = 〈Q,Σ, q0,∆,E 〉 of the string s = s1, s2, . . . , sM is a finite
sequence

q0
s1→ q1

s2→ q2, . . . , qM−1
sM→ qM

such that
〈

qi−1, q ′
i , si

〉 ∈∆ for for i = 1,2, . . . , M .

Figure 7.2 and shows a PDA A inferred from a host infected by Rbot malware. In this
machine, string s = [FL,FL,FL,SL], traverses the run ρ = [0,2,3,3,1] over the state of A .
It is also possible to compute the likelihood of s being generated by A by applying a
chain-like rule: L(s|A ) = E (0,FL)×E (2,FL)×E (3,FL)×E (3,SL) = 0.48×0.59×0.72×0.27 =
0.055.
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Figure 7.2: Probabilistic Deterministic Automaton (PDA) identified from network flows produced by a host
infected by Rbot. State 0 is the start state. Along with each transition is the symbol probability. The transitions
with a low probability have been omitted to improve readability. The symbols stands for a Slow and Light (SL)
flow, a Fast and Heavy (FH) flow, and a Fast and Light (FL). A Short duration means less than 1.201 milliseconds.
A light flow means less than 2 packets and fewer than 124 bytes. There are two most likely paths within the
automaton: a sequence of SL (state 0, then state 1 ad libitum), and a sequence of FL (state 0, then state 2, then
state 3 ad libitum).

7.4. PDAS INFERENCE
The structure of a PDA, together with the distributions, can be constructed fully auto-
matically from observed sequence data. For this, we use an untimed version of the RTI+
algorithm proposed in [108] for learning probabilistic deterministic real-time automata,
which we call the Probabilistic Deterministic Automaton Identifier (PI). Given a sample
of strings S, the goal of PI is to find that PDA which better describes the process that
generated S. PI is an evidence-driven state merging algorithm (EDSM) that implements
the so-called red-blue framework. At any time during its execution, PI keeps a set of
red states representing the already discovered parts of the automaton. Red states are
finalized, meaning once a state is coloured red it will never get updated anymore. Fur-
thermore, PI keeps a set of blue states representing the part of the automaton has already
been discovered, but not finalized. A blue state may evolve, by promotion, into a new red
state, or get merged with an existing red state. The remaining uncoloured states stand
for the part of the automaton which has not yet been discovered.

The initial step in every EDSM algorithm is the creation of a prefix tree. A prefix tree is
a first guess of the automaton and contains a branch for each different sequence within
S. Note that S can be seen as a multiset - i.e. it may contain multiple occurrences of
a given string - and PI keeps track of how many times a given transition is traversed by
the strings in S. Figure 7.3 shows an instance of a prefix tree created from the provided
sample.

As a second step, PI starts to merge the states in a red-blue framework, see [61] for a more
detailed discussion of this framework and state merging algorithms. Figure 7.4 shows the
consequences of merging two states in a prefix tree. By merging states, the model gains
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in abstraction power, i.e., it will possibly express more behaviour than what explicitly
observed in the sample. As an example, The automaton in Figure 7.4 can generate the
sequence aaa which was not possible to produce in the prefix tree. After merging states
q and q ′, the counts are updated, transitions landing in q ′ are redirected to q , transi-
tions leaving q ′ are attached to q , q ′ is removed from the automaton, and the transition
counts are updated. Since PDAs are deterministic by definition, if q now contains two
transitions with the same transition symbol, the states reached by these transitions have
to be merged as well. This deterministic property is important because identifying a
non-deterministic automata is considered harder than identifying a deterministic one,
see [109] for more information.

Merging states results in a smaller and simpler model, as well as a smaller likelihood.
The PI algorithm makes a trade-off between this decrease in likelihood and the increase
in model simplicity. Essentially, a merge between q and q ′ is regarded as consistent if the
future behavior after reaching q is similar to the behavior after reaching q ′. As is done by
RTI+ [108], this similarity is tested with a likelihood-ratio test which essentially checks
the Markov property. It verifies whether the future behaviour is independent of being in
state q or q ′. When these two futures are significantly different, the merge is considered
inconsistent and it is not performed.

Algorithm 13 Learning PDAs from samples of strings: PI algorithm

Require: A multi-set of strings S
Ensure: The result is a PDA A

Construct a prefix tree A from S, color the start state q0 of A red
while A contains non-red states do

Color blue all non-red target states of transitions with red source states
Let δ= 〈qr , qb , s〉 be the most visited transition from a red to a blue state
Evaluate all possible merges of qb with red states
if the highest merge p-value is greater than 0.05 then perform this merge else color

qb red

The main loop of the PI algorithm is shown in Listing 13. At each iteration, the algorithm
selects the most visited transition which connects a red state to a blue state and consid-
ers all possible merges between the blue state and any known red state. If there exists a
merge resulting in a p-value over 0.05, the algorithm performs the merge with the high-
est p-value otherwise it promotes the blue state to red, and all its children to blue. The
rationale for choosing the most visited transition is that any decision taken in the two
states at both sides are based on the most significant amount of data. Hence the confi-
dence in the conclusion is maximised. The PI algorithm runs in polynomial time in the
size of the sample since it is upper bounded by RTI+, which runs in polynomial time in
S [108].

7.5. PDAS FOR DETECTION
Once we have learned PDAs from network flow traces, we use them for detecting symp-
toms of infections. Given a PDA A = 〈Q,Σ, q0,∆,E 〉, a symptom is the couple (q,α) com-
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Figure 7.3: Prefix tree created from the sample S = {a×5, ac×3,b×15,cc×5,ccc×7}. The first number represents
the symbol triggering a transition. The second number represents its occurence frequency in S.
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Figure 7.4: A PDA after merging the states 0 and 1 in the prefix tree of Figure 7.3. The size of the automaton is
decreased by two states to ensure a deterministic model, and counts (from state 0 to 4) are updated.

posed by a state q ∈ Q, and a symbol α ∈ Σ. In a symptom, q is the state of A reached
after producing α. It is possible to generate symptoms for A given a sample of strings
S. For each string s = s1, s2, . . . , sM ∈ S, and for each symbol si in s, with i = 1,2, . . . , M ,
collect the state qi ∈ Q such that (qi−1, qi , si ) ∈ ∆. This means that the state has been
reached in A after producing the symbol si . That state paired with the symbol form the
symptom (qi , si ). Given a string in the alphabet of A , it is possible to generate as many
symptoms as the length of s by pairing its symbols with the states composing a run of
s on A . The first column of Table 7.1 shows some symptoms generated by the PDA in
Figure 7.2.

Given a PDA A , the set of symptoms it may produce is fixed, and is called the symptom
space of A . This is defined as DA = {(q,α) | q ∈ Q and α ∈ Σ}. A profile, then, can be
defined as PA ,S : DA → [0,1], given a sample of strings S. The profile is a probability
distribution on the symptom space estimated by maximum likelihood:

PA ,S : (q,α) → cS (q,α)∑
(q ′,α′)∈DA

cS (q ′,α′)

With cS (q,α) denoting the number of times symptom (q,α) has been generated by A on
sample S. Table 7.1 shows the profiles for a host infected by Rbot malware. It only reports
symptoms with a not null estimated probability. From the table, it is possible to under-
stand what are the most frequent paths in the PDA. The most likely symptom within
the profile is (1, SL) which involves the transition from state 0 to 1 and the self-loop in
this state. Symptoms (2, FL) and (3, FL) follow, which corresponds to the path from 0
to 3 passing through 2 and include the self-loop in state 3. It thus becomes possible to
understand what are the most frequent recurring patterns in a host’s observed data. In
this case, we have two dominant patterns: a first one consisting of sequences of slow
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and lightweight flows, and a second one composed of sequences of fast and lightweight
flows.

Table 7.1: Profile for the PDA in Figure 7.2 given the sample used to learn it. State −1 refers to a sink state, a
state reached by all rarely occurring transitions.

Symptom PA ,S (Symptom)
(-1, SL) 0.013
(-1, FL) 0.007
(1, SL) 0.341

(-1, FH) 0.011
(2, FL) 0.205
(4, SL) 0.133
(3, FL) 0.225
(2, FH) 0.005
(4, FL) 0.045
(4, FH) 0.006

To detect similar behaiour, we use a profile distance measure. Let us assume to have
learned a PDA A , learned from a sample S, and let us assume to have collected a sample
S′ not necessarily produced by the same host. Running A over these samples create two
profiles PA ,S and PA ,S′ . The profile distance measure d(PA ,S ,PA ,S′ ) is defined as the
chi-square distance between the two profiles:

d(PA ,S ,PA ,S′ ) = 1

2

∑
x∈DA

(PA ,S (x)−PA ,S′ (x))2

PA ,S (x)+PA ,S′ (x)

Profiles and the profile distance are the main building block of our detection algorithm,
which is divided in two parts: the training part, and the testing part.

The training part of our framework is described in Algorithm 14. It requires labeled net-
work flows from N hosts, i.e., we know which hosts are infected and which are not. We
abstract the symbols from the flows, learn a state machine for each training host, and
generate a profile for each training host. After the training profiles are created, we test
our detection method. Algorithm 15 describes the testing part, where each host in the
testing dataset is predicted to be infected or normal. The testing part also includes ab-
stracting the data from the test flows and creating a profile for each of them. Note that
profiles are generated very fast because the state machines are deterministic. Then, for
each PDA, the method computes the distance between the testing profile and its training
profile. The label of the best match is assigned to the test flows.

7.6. DATASET
CTU-13 is a large dataset created at the Czech Technical University in Prague that is com-
posed of 13 different captures [124]. Each scenario has malicious traffic, normal traffic,
and background traffic. The malicious traffic was infected by hand-picked malware exe-
cutables, the normal traffic came from known verified users, and the background traffic
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Algorithm 14 Detecting infected hosts with PDAs: training

Require: A collection of network flow samples S0,S1, . . . ,SN produced by hosts
1,2, . . . N
for each host h = 1,2, . . . , N do

Abstract Sh in a sample of strings Sh

Learn a PDA Ah from Sh and store it
Generate profile PAh ,Sh and store it

end for

Algorithm 15 Detecting infected hosts with PDAs: testing

Require: PDAs and profiles for each host in the training sample, a sample S of flows
produced by a candidate host

Ensure: a verdict in terms of infected (M) or normal (N)
Set the closest candidate c to the first training host
for each host h = 2,3, . . . , N in the training sample do

Abstract S in a sample S of strings in the alphabet of Ah

Generate profiles P Ah ,S and P Ac ,S

if d(P Ah ,S ,P Ah ,Sh ) < d(P Ac ,S ,P Ac ,Sc ) then
Set the clostest host c to h

end if
end for
if c is infected then return M else return N

is everything that is unknown. On each scenario, there are one or more computers in-
fected by the same botnet and at least three normal computers. Table 1 in appendix 1
shows the number flows per type of label and IP address on each of the scenarios. On the
datasets, there are several more hosts that are marked as normal because they are servers
in the network. However the number of flows they produce per dataset can be as low as 6,
they are therefore not included as part of the dataset. Their IP addresses are 147.32.87.36
(CVUT-WebServer), 147.32.80.9 (CVUT-DNS-Server), 147.32.87.11 (MatLab-Server).

CTU-206-1 is a 28 days-long execution of a Dridex family malware 2. The dataset is avail-
able in [155]. This version of the Dridex malware uses HTTPs connections in exotic ports
such as 4413, 44343 and 8443 to connect to its Command and Control (C&C) servers. The
total list of C&C servers is:

• 195.88.209.221:4413

• 178.32.255.130:44343

• 91.219.28.55:443

• 217.197.39.1:8443

2MD5 0243c9bb903d6f89d7eeadae882cf591.
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Dridex is a banking trojan designed to steal bank credentials and personal information of
the user to access bank accounts. Dridex steals personal information from HTML injec-
tions, mainly from Europe users. All the malware behaviours in the CTU-260-1 capture
are the connections to the C&C servers. There are no DNS connections nor any other
type of attack, probably because there was no user accessing bank accounts.

CTU-261-1 is a 63 days-long execution of novel banking trojan called TrickBot3. The
complete dataset is available in [156]. The behavior of this malware is quite complex and
it is an excellent challenge for this research. In summary, the malware did the following
actions:

• Finds public IP of the infected host.

• Connects to several C&C servers on port 443/tcp.

• Connects to two C&C servers on port 447/tcp.

• Checks if the infected host is listed as a SPAM sender.

• Connects to a C&C server on pot 2048/tcp.

• Attempts to send SPAM to port 465.

• Attempts to send SPAM to port 587.

• Attempts to send SPAM to port 25.

• Continues the C&C connections on port 443/tcp and 447/tcp. Including connec-
tions to new C&C IP addresses.

The TrickBot malware had several different behaviors, including downloading binary
files, trying to send SPAM and a very active HTTPS-based Command and Control chan-
nel.

7.7. EXPERIMENTS
The process to evaluate an algorithm is one of the most important parts of research in
botnet detection. It is during this part that decisions are taken regarding the size of the
datasets, the specific ways to split flows and the way to measure the performance of
the algorithm. This section describes how our dataset is processed, how the training is
performed, how the cross-validation is done and the results obtained from the testing
dataset. Finally, we present a comparison of our method with another widely used mal-
ware detection method on the same dataset.

7.7.1. VIRTUAL HOSTS
We use the CTU-13 dataset, complemented with new malware capture experiments. The
complete dataset description is addressed in Section 7.6. Each host in our dataset is ei-
ther infected with malware or normal. Although we use flows for creating the PDAs, the

3MD5 bb9e0b23fc6cba27ba670547b7890273.
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focus of our work is to detect infected hosts instead of suspicious flows. That is an im-
portant point because there are far fewer hosts in a dataset than flows or packets. In our
data, the number of known hosts is less than 100 hosts. When we evaluated our system
on such a small number of candidates, we got 100% accuracy. To solve this situation,
and given that each host in the dataset generated a lot of flows, we decided to separate
the flows of each host in chunks of flows, that we call virtual hosts. Each virtual host is
a consecutive group of flows generated by the same host. Since the behaviour of a host
changes over time, our technique can be used to detect the different network behaviours
of the hosts. Using this technique, we (1) obtain enough virtual hosts to train and test the
method with reliability, and (2) we can apply our method to fewer flows, making it more
suitable to be implemented in a real network. The size of the virtual hosts was set to
be 1000 flows following advice from experts in grammatical inference. Learning PDAs
from less than 1000 sequences is considered unreliable. We choose the smallest number
of flows that gives reliable results. In our dataset, this gave us chunks ranging from 25
milliseconds to 1 day and 23 hours, with an average of 21 minutes.

7.7.2. WHOLE DATASET EVALUATION
In a first experiment, we separate the complete dataset in training and cross-validation/testing
sets with the aim of finding out the general performance of the proposed method. We al-
low any malware model to detect any other malware virtual host, and any normal model
to discover any normal virtual host. We first separate all the dataset in hosts, each host
is divided into virtual hosts, and then all the virtual hosts are randomly partitioned into
five folds. When creating the partitions, we imposed to have an even proportion of both
infected and normal virtual hosts in each of them. That choice led to five folds each
one including approximatively 85% normal hosts and 15% infected hosts. Table 7.2
shows the distribution of the virtual hosts in each fold. It is important to remark that
all the virtual hosts with less than 1000 flows were discarded since they were not pro-
viding enough information to create meaningful PDAs. Table 7.3 summarizes the results
of the detection after averaging the 5-folds. TP stands for true positives, TN stands for
true negatives, FP stands for false positives, FN stands for false positives, Acc stands for
accuracy, FPR stands for false positive rate. Using a 64-bits computer with 8GB of RAM
memory and without any optimization, the training part took in average 49 minutes per
fold. Classifying a virtual host (comparing it to he entire library of PDAs), took on average
17 seconds.

Table 7.2: Partitioning of 8,363 virtual hosts in five randomly generated folds (F). Each of them preserves the
proportion of infected and normal virtual hosts.

TOTAL Infected Normal
F1 1,674 227 1,447
F2 1,674 227 1,447
F3 1,674 227 1,447
F4 1,674 227 1,447
F5 1,667 222 1,445

TOTAL 8,363 1,130 7,233
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Table 7.3: 5-fold cross validation results. Discrete quantities (TP, TN, FP, FN) outcomes, and measurements
(Acc, FPR, F1-score) outcomes of each validation round are per-fold averaged.

TP TN FP FN Acc FPR F1-score
223 1,441 5 2 0.995 0.004 0.983

7.7.3. DETECTING A KNOWN THREAT
The goal of this experiment is to assess the algorithm for detecting hosts infected by
a known malware. That is a malware that was previously detected and whose data is
included in the training dataset. Since we must guarantee that the virtual hosts of some
malware are used for both training and testing, we redo the separation of the dataset
differently than the previous experiment. The first step is to separate all hosts in the
dataset into virtual hosts, but remembering to which real host they belong. Then, we
take all the virtual hosts on each host, and we randomly separate 80% of them for the
training dataset and 20% of them for the testing dataset. This process is repeated for
each host, and therefore we guarantee that 80% of each host (both normal and malware)
is in the training set and 20% is in the testing set. Table 7.4 provides a summary of how
many virtual hosts were on each partition of the dataset.

After learning the models by using the training dataset and testing in the testing datasets,
the results are shown in Table 7.5. In addition to the same evaluation measures used for
the other experiments, we also show two specific indicators to highlight known malware
detection capability. They are reported in table 7.5. As Kn1 indicator shows, a significant
proportion of infections were detected thanks to the prior information about them. Kn0

is non zero, suggesting the presence of virtual hosts correctly detected as infected thanks
to the contribution of some information coming from other hosts infected by a different
malware.

Table 7.4: Partitioning of 8,363 virtual hosts to detect known malware. Virtual hosts crafted from the same
actual host are randomly divided 80%−20% to form train and test datasets.

TOTAL Infected Normal
Train 6,694 916 5,778
Test 1,669 214 1,455

TOTAL 8,363 1,130 7,233

7.7.4. DETECTING AN UNKNOWN THREAT
One interesting feature to evaluate in any malware detection algorithm is its capability
to detect unknown malware. This means that the malware in the testing dataset must

Table 7.5: Known malware detection results. Kn1 is the proportion of true positives due to the same malware.
Kn0 is the proportion of true positives due to different malware.

Kn1 Kn0 Acc FPR F1-score
0.962 0.038 0.997 0.002 0.988
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not appear, in any way, in the training dataset. To check that property we create the
train and test datasets differently. Since it is difficult to guarantee that the same mal-
ware does not appear in the testing set, we separate the complete dataset by malware
family. This is possible because the CTU-13 dataset is split in scenarios. We selected the
CTU-13 dataset scenarios 1, 2, 3, 4, 5, 9, 10, 11, 13 for training, and the CTU-13 dataset
scenarios 6, 7, 8, 12, and datasets CTU 260-1, 261-1 for testing. By dividing the data in
this way, we avoid using the same malware in the training and the testing datasets. Ta-
ble 7.7 shows the virtual hosts partitioning in train and test dataset regarding their status
of infected or normal, and table 7.8 summarises detection performance achieved by our
algorithm.

Table 7.6 shows, for each malware in the test set, how much each malware in the training
set contributed to its detection. That is, how a virtual host infected by malware in the
testing set appeared as the closest neighbour of a malware virtual host in the training
set. As already mentioned, train dataset contains information about nine malware - i.e.
Neris in three configurations, Rbot in four configurations, Virut in two configurations
- and test dataset contains five unknown malware - i.e. Menti, Sugou, Murlo, NSIS.ay,
and probably Dridex and TrickBot. It is interesting to notice that only one malware is
responsible for 100% of all correct decisions: Rbot in scenario 3 (see section 7.6). Its
contribution consists in only two virtual hosts which appear in all the 214 virtual hosts
correctly detected as infected. All those hosts are characterised by a peculiar behaviour:
they are performing a scan on port 22 (SSH standard port). That makes sense since a
port scanning is a usual preliminary malware activity.

Table 7.6: When correctly detecting malware in test dataset (first column), the decision has been made thanks
to Rbot malware in train dataset. Parentheses include the scenario or dataset each malware is included, see
Section 7.6 for further information.

probably Dridex (260-1) Rbot (3)
probably TrickBot (261-1) Rbot (3)

Menti (6) Rbot (3)
Sogou (7) Rbot (3)
Murlo (8) Rbot (3)

NSIS.ay (12) Rbot (3)

Table 7.7: Partitioning of 8363 virtual hosts for unknown malware detection. Virtual hosts from CTU-13 sce-
narios 6, 7, 8, 12, and CTU datasets 260-1, 261-1, form the test dataset. The remaining virtual hosts form the
train dataset.

TOTAL Infected Normal
Train 6,266 916 5,350
Test 2,097 214 1,883

TOTAL 8,363 1,130 7,233
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Table 7.8: Unknown malware detection results.

TP TN FP FN Acc FPR F1-score
161 1,869 14 53 0.968 0.007 0.828

7.7.5. COMPARISON WITH BLACKLIST DETECTION
In this section, we compare our algorithm with a non-behavioural reputation system
which employs a blacklist to build up its detection rules. Blacklists are a widely used
tool for detection which consists of a list of entries known to be malicious. Those entries
can be IP address in case of host detection, email address in case of spam detection,
etc.. Network security operators keep blacklists updated by including knowledge com-
ing from the observations of their network and integrating information coming from
other networks sometimes offered by companies who provide blacklisting services. In
this work, we focus on host detection. Therefore a candidate host is classified as infected
when it attempts to communicate with any blacklisted entry.

This non-behavioural alternative leverages the same information of our proposed sys-
tem, namely a dataset made of both normal and infected hosts. We filled the blacklist
with all the destination ip addresses of network flows sent by an infected host in the
dataset. Furthermore, we removed all the destination ip addresses of network flows sent
by any trusted host from the blacklist. By doing so, the blacklist is only filled with the ad-
dress of hosts which are communicating with known infected machines and with none
of the known benign machines. Once the blacklist is filled, this system classifies a can-
didate host as infected if it tries to connect to any blacklisted entry. Note that blacklists
are based on an attribute that our framework does not leverage at all: the destination ip
address of the network flows.

As a first experiment, we used the cross-validation dataset described in section 7.7.2.
We took each fold as the training dataset to fill the blacklist, and we used it to evaluate
virtual hosts in the remaining folds. Table 7.9 the results for each round. Table 7.10 shows
the result of our detection algorithm in the same experimental setup. It is important to
highlight that here we used each fold as training dataset and the remaining as evaluation
dataset at each round, which is a complementary setting to the experiment discussed in
section 7.7.2 where one fold is used as evaluation dataset and the remaining as training.
Results show a significant difference in performance both regarding false positives and,
even more clearly, regarding false negatives.

Table 7.11 highlights a direct comparison among several alternative techniques includ-
ing three baselines: always infected, always normal, and coin toss. Always Infected clas-
sifies each host as infected. Similarly, Always Normal classifies each host as normal. Coin
toss classifies a host by tossing a fair coin and deciding for normal if heads and infected
if tails. Results for every alternative are per-fold-averaged. We used the same settings
summarised in table 7.7 to fill the blacklist and evaluate performance on unknown mal-
ware. Results are shown in table 7.12 with the already mentioned three baselines. Our
behavioural based alternative outperforms the blacklist-based alternative in both exper-
iments.
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Table 7.9: Blacklist 5-fold cross validated detection performance.

TP TN FP FN Acc FPR F1-score
F1 559 5,738 48 344 0.941 0.008 0.740
F2 558 5,731 55 345 0.940 0.010 0.736
F3 560 5,732 54 343 0.941 0.009 0.738
F4 562 5,734 52 341 0.941 0.009 0.741
F5 556 5,753 35 352 0.942 0.006 0.742

AVG 559 5,737 48 345 0.941 0.008 0.740

Table 7.10: 5-fold cross validation results in the blacklist setting. Discrete quantities (TP, TN, FP, FN) and mea-
surements (Acc, FPR, F1-score) are averaged per-fold.

TP TN FP FN Acc FPR F1-score
892 5,750 36 11 0.993 0.006 0.974

Table 7.11: Cross validated detection performance comparison. PDA represents the proposed detection algo-
rithm. Blacklist is the main alternative algorithm. Always Infected, Always Normal, and Coin Toss represent
three different baselines.

Acc FPR F1-score
PDA 0.993 0.006 0.974

BLACKLIST 0.941 0.008 0.740
ALWAYS INFECTED 0.179 1.000 0.238
ALWAYS NORMAL 0.865 0.000 0.000

COIN TOSS 0.508 0.492 0.218

Table 7.12: Detection performance comparison on detecting unknown malware. See Table 7.11 for further
informations.

Acc FPR F1-score
PDA 0.968 0.007 0.828

BLACKLIST 0.897 0.010 0.122
ALWAYS INFECTED 0.102 1.000 0.185
ALWAYS NORMAL 0.898 0.000 0.000

COIN TOSS 0.509 0.484 0.157
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7.8. OBTAINING ACTIONABLE INSIGHTS
In scenario eight we have host 147.32.84.165 infected by a malware called Murlo (see Sec-
tion 7.6). Such a host comprises a set of virtual hosts, each one explaining part of its be-
haviour (section 7.2 explains how it is possible to extract virtual hosts from actual hosts).
We focus on one virtual host extracted from the mentioned host infected by Murlo, and
we will denote the virtual hosts using the IP address of the actual host followed by a fifth
decimal number. The fifth decimal number serves as the unique identifier for one of the
extracted virtual hosts.

In our experiment virtual host 147.32.84.165.3 in scenario eight is classified as malicious
because its closest virtual host is 147.32.84.165.1 in scenario 3, coming from the actual
host 147.32.84.165 known as infected by RBot. Figure 7.7 shows the PDA for 147.32.84.165.1,
with label LBTCP standing for Long and Big TCP flow, label SSTCP standing for Short and
Small TCP flow, LSTCP standing for Long and Small TCP flow, and SBTCP standing for
Short and Big TCP flow. A short flow means that its duration is less than 0.276 millisec-
onds otherwise it is intended as long. A small flow means that its size is less than 101.5
bytes.

The most occurring symptom in the profile for the PDA given a sample of flows coming
from 147.32.84.165.3 is (1, SSTCP), occurring 64% of the times. This means that most of
the times, 147.32.84.165.3 seems to fire the loop transition in state 1 or, in other words,
it seems to spend most of the time in sending short and small TCP packets. Further-
more, when looking at the variation over time in profile distance between virtual hosts
147.32.84.165.3 and 147.32.84.165.1 using PDA of Figure 7.7, it seems that after 650 flows
the profile distance stabilises below the 0.2 level. By limiting our study to the initial 650
flows sent by 147.32.84.165, it is possible to recognise the ones are characterising the
mentioned symptom immediately:

0,TCP,147.32.84.165,1142,124.146.223.205,22,1,62
0,TCP,147.32.84.165,1143,124.146.223.206,22,1,62
0,TCP,147.32.84.165,1144,124.146.223.207,22,1,62
0,TCP,147.32.84.165,1145,124.146.223.208,22,1,62

0,TCP,147.32.84.165,2042,147.32.80.226,135,1,62
0,TCP,147.32.84.165,2043,192.168.1.226,135,1,62
0,TCP,147.32.84.165,2049,147.32.80.228,135,1,62
0,TCP,147.32.84.165,2048,192.168.1.228,135,1,62

Here we see an excerpt made of four short, and small TCP flows sent from the same host
to different hosts at the same port 135. That is a particular port dedicated to RPC calls
in client/server applications, also known as involved in several security threats [157]. We
know host 147.32.84.165 in scenario eight as infected by Murlo malware, and tour frame-
work was able to recognise its port scanning after having learned that type of behaviour
from the Rbot malware.

In scenario eight we have a trusted virtual host, called 147.32.84.164.15, which has been
classified as infected because of its closest neighbour is 147.32.84.206.12 in scenario
nine, infected by the Neris malware. Apparently, the detection algorithm thinks that
147.32.84.164.15 is behaving as a host infected by Neris. Figure 7.8 shows the PDA of
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Figure 7.5: Profile distance over time between virtual hosts 147.32.84.165.3 in scenario 8 and 147.32.84.165.1
in scenario 3 using PDA in Figure 7.7. After 650 flows profile distance never hit the 0.2 threshold anymore.
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Figure 7.6: Profile distance over time between virtual hosts 147.32.84.164.15 in scenario 8 and 147.32.84.206.12
in scenario 9 using PDA in Figure 7.8. After 300 flows profile distance never hit the 0.2 threshold anymore.

the closest neighbor, where label SSUDP stands for short and Single datagram UDP flow,
label BSUDP stands for Big and Single datagram UDP flow, BMUDP stands for Bing
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Figure 7.7: PDA representing virtual host 147.32.84.165.1 in scenario 3. Label LBTCP stands for Long and Big
TCP flow, label SSTCP stands for short and small TCP flow, LSTCP stands for long and small TCP flow, and
SBTCP stands for Short and Big TCP flow. Short flow means that its duration is less than 0.276 milliseconds
otherwise it is meant as long. A small flow means that its size is greater than 101.5 bytes. Transitions to the
sinking state have been omitted to improve readability.
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Figure 7.8: PDA representing virtual host 147.32.84.206.12 in scenario 9. Label SSUDP stands for short and
Single datagram UDP flow, label BSUDP stands for Big and Single datagram UDP flow, BMUDP stands for Bing
and Multi datagram UDP flow, SSTCP stands for Short and Single packet TCP flow, and BMTCP stands for Big
and Multi packet TCP flow. Small flow means that its size is less than 75 bytes otherwise it is meant as big.
Transitions to the sinking state have been omitted to improve readability.
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and Multi datagram UDP flow, SSTCP stands for Short and Single packet TCP flow, and
BMTCP stands for Big and Multi packet TCP flow. A small flow means that its size is
less than 75 bytes otherwise it is labeled as big. When looking at the profile for that PDA
given a sample of flows coming from 147.32.84.164.15, we realise that the most occurring
symptoms are (1, SSUDP) and (2, BMTCP), which occur 59% of the times. It means that
quite often, 147.32.84.164.15 sends short UDP flows or opens multi-packet TCP connec-
tions.

We can reduce the number of flows to investigate by looking at the variation of profiles
distance over time and look up to that moment after which it stably lies below a reason-
able threshold value. Figure 7.6 shows that it is enough to explore the first 300 flows of
both virtual hosts. By looking at the data, we observe similar instances of those char-
acteristic behaviours in both virtual hosts. Here are few instances of flows coming from
host 147.32.84.164.15 that correspond to the symptom (1, SSUDP):

0.000,UDP,147.32.84.164,42395,147.32.80.9,53,1,74
0.000,UDP,147.32.84.164,53140,147.32.80.9,53,1,74
0.000,UDP,147.32.84.164,50171,147.32.80.9,53,1,74

And here we have few instances of flows coming from the same host, that correspond to
the symptom (2, BMTCP):

3,TCP,147.32.84.164,60124,146.102.14.10,443,9,1665
0,TCP,147.32.84.164,60125,46.102.14.10,443,5,612
3,TCP,147.32.84.164,60124,146.102.14.10,443,10,6501

By moving from flow level down to the underlying packets capture, we see that those sin-
gle UDP flows correspond to normal datagrams involved in some steps of a DNS resolu-
tion query as port 53 may suggest - in this case, it is a query for www.ceknito.cz, a Czech
video sharing website. The TCP flows characterizing symptom (2, BMTCP) seems due to
normal and legitimate web surfing activity - in this case, a request for www.insis.vse.
cz, the official website of the Integrated Study Information System of the University of
Economics in Prague. What seems to emerge from this analysis is that the proposed de-
tection algorithm matched a trusted host’s legitimate behaviour with an infected host’s
legitimate behaviour.

7.9. LIMITATIONS
The above false positive example gives us the opportunity to discuss the limitations of
the proposed method. A first limitation comes from the decision of working with net-
work flows since the payload is not inspected and therefore it is harder to distinguish
between legitimate and malicious requests. As such, a framework such as the one we
propose should be used in conjunction with existing rule-based intrusion detection sys-
tems that do inspect such data. As we show in this work, behavioral malware detection
is a valuable addition to such systems.

Besides the data type, the above example highlights a potential weak point in the data
abstraction part of the proposed method (see Section 7.2). The framework discussed

www.ceknito.cz
www.insis.vse.cz
www.insis.vse.cz


7

120 7. DETECTING INTRUSIONS WITH PROBABILISTIC DETERMINISTIC AUTOMATA

Table 7.13: Detection performance when posponing the dara abstraction of the malicious virtual hosts at test
time. The experiment setting is the same of Section 7.7.2, see Table 7.3.

TP TN FP FN Acc FPR F1-score
217 1372 73 8 0.951 0.051 0.841

in this chapter, composed of PDAs, PDA learning algorithm, symptoms, and profiles, is
based on the symbolic representation obtained from the abstraction process. A botnet
developer could, in principle, design a C&C communication protocol such that it is ca-
pable of circumventing the data abstractor by, for instance, letting an infected host pro-
duce mainly the same type of network flows and, therefore, the same symbols. Although
we are no botnet authors, we are confident that making such a change is far from easy,
as we have yet to encounter such a bot. Moreover, a connection with identical flows is
suspicious, and numerous existing methods can detect such behaviour, e.g., using en-
tropy.

Since our abstraction is fixed, however, if a botnet developer somehow gains knowledge
of the bounds we use, (s)he could in theory modify the flows slightly to change the gen-
erated symbols and avoid detection. A promising direction for future work is therefore
to increase the flexibility of this symbolic abstration. We have performed a preliminary
analysis of such an approach by abstracting the data at test time when creating a pro-
file for a malicious PDA. In this way, deviations in the flow data values do not influence
the detection capabilities. There is however a cost in terms of increased false positives.
Table 7.13 shows the results of this approach when repeating the experiment from Ta-
ble 7.3. There is a significant increase in the number of false positives, i.e., hosts that are
now matched with malicious PDAs due to the flexible flow abstraction. But the number
of true positives remains nearly the same. In future work, we aim to discover ways to
decrease the number of false positives, for instance using additional filters, combining it
with a fixed abstraction, or creating a different way to introduce flexibility.

Notice that this type of flow modification only fools the malicious PDA profiles from the
same bot. It does not influence the distance to the profiles of local PDAs, or any of the
other botnet PDAs. Thus, in order to evade detection, a bot should modify its behavior to
match one of the local hosts, and to be different from existing bots. Since hosts behave
differently in different networks, and there are many botnet profiles, this will be very
hard if not impossible to achieve.
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This thesis describes years of research into the automatic profiling of a host’s behaviour
observed in network captures for detecting malicious activity. The thesis details a method-
ology that starts from Netflow captures and ends with automata: the model of choice
for describing software dynamics. This methodology makes classifying network partic-
ipants in terms of malicious behaviour and legitimate behaviour classes possible. Au-
tomata are automatically inferred from Netflow captures and used as network agnostic
generators for network-specific behavioral profiles of the hosts. This final chapter of the
thesis consists of two main sections: Section 8.1 addresses the main contributions of this
research, and Section 8.2 discusses future improvements.

8.1. CONTRIBUTIONS
The principal contribution of this thesis is an automata-based methodology for detect-
ing network intrusions. The proposed methodology is host-centric and divided into two
distinct phases: training and testing.

One main goal of the training phase is to build and maintain a library of automata. Au-
tomata are either automatically inferred from the network traffic captured in the Net-
work Under Observation (NUO) or imported from other networks. Cross-network ab-
straction is possible because streams of Netflows are translated into generic sequences
of symbols. By preserving the same components as those responsible for such a symbolic
translation, automata are freely sharable across networks, as is the case with the signa-
tures for Intrusion Detection/Prevention Systems or YARA rules1 in malware research.

The other main goal of the training phase is to build and maintain a library of behaviour
profiles. Automata collected in the library consume sequences of symbols as inputs and,
as outputs, produce what we call symptoms. A symptom is a couple composed of an
input symbol and an inner state of an automaton. Symptoms collected from a host are
grouped in a multiset called the behaviour profile of a host. Behaviour profiles are spe-
cific to the NUO: they are not meant to be shared across networks because they express
the behaviour of the hosts in the NUO. Behaviour profiles might represent either mali-
cious or legitimate activities, according to the security state of the host that produced
the Netflows. The training phase relies on labelled data: it is necessary to know whether
network captures were taken from a compromised or legitimate host.

The testing phase aims to spot malicious activities in Netflow captures when the security
status of the hosts producing the captures is unknown. During testing, Netflow streams
are translated into multiple sequences of symbols by applying the same procedure and
components as those used for the training phase. Later, those sequences are consumed
by the automata in the library, and new behavior profiles are produced for the hosts. A
new alarm is raised whenever any of those profiles matches a malicious behaviour pro-
file included in the profiles library.

1YARA is both a tool for classifying software artefacts and a language for expressing rules for matching patterns.
For details, see [158].
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Because the proposed methodology addresses encryption unawareness, scalability, ease
of maintenance of the knowledge base, and detection of the unknown, it enables the de-
velopment of advanced NIDSs.

Adopting Netflows as the network data’s source of choice comes with two interesting
properties: encryption unawareness and scalability. Because Netflows group network
packets by various fields unrelated to packet contents, such as the number of packets
within a flow, payload encryption does not affect the performance of an NIDS imple-
menting the proposed methodology. Scalability is improved because Netflows are an
aggregated type of network data (each Netflow can summarise many packets); there-
fore, scanning each packet in a network capture is unnecessary. Scalability is further im-
proved by adopting a host-centric perspective. That is, the focus is on expressing overall
judgements about the security state of a host, not on generating a verdict on each packet,
as happens with most NIDS.

Introducing automata as network-agnostic generators of network-specific behaviour pro-
files for hosts comes with a few advantages. First, compared to common rule-based
or signature-based NIDSs, each single automaton can express possibly many detection
rules. Second, in contrast to what happens with rules and signatures designed by do-
main experts, automata are automatically learnable from Netflow captures. In this the-
sis, we show how this is done by leveraging different learning algorithms for different
types of target automata. Third, learning automata with no human intervention allevi-
ates another common weakness of NIDS: the management of knowledge bases. Because
the knowledge base in the proposed methodology is based on a library of automata, its
maintenance and update do not require expert knowledge or significant effort. Finally,
automata-learning algorithms advocated for the proposed methodology exhibit a suffi-
cient level of abstraction power to enable the learned automata to catch the behaviour
not directly expressed in the training data. This property is attractive because it makes
the proposed methodology capable of spotting threats not mapped in the knowledge
base. That overcomes a known limit of the knowledge-based NIDSs, which are prone to
false negatives.

Further contributions can be divided into two different classes: automata-learning-related
and automata-based-NIDSs.

A first class addresses several relevant problems attributed to learning automata from
network data. In Chapter 3, we explore the possibility of postponing the symbolic ab-
straction of the Netflows during learning for exploiting local dependencies in the data.
Such symbolic abstraction, also called labelling, is one of the stages of the proposed
methodology implemented in the Labeler component. Labelling involves translating
raw data into abstract symbols, a mandatory step in learning automata. Usually, the
labelling process is designed as a pre-learning step, where the training data is mapped
into symbols according to some global criterion. However, proceeding in this manner
carries the risk of missing short-term dependencies. To model these data relationships,
a new type of automaton, called Regression Automaton (RA), is introduced in Chapter 3.
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In RAs, the transitions from one state to another are controlled by guards based on non-
overlapping intervals. Furthermore, an algorithm for learning RAs from data, Regression
Automata Identifier (RAI), is presented and discussed. RAI is innovative because, to the
author’s knowledge, it is the first algorithm capable of learning transition guards by fol-
lowing a bottom-up approach. We tested RAI against six alternative techniques in four
different prediction scenarios. When there are local dependencies, such as predicting a
distorted sinus wave, RAI models proved to have the best performance. In scenarios that
expose a periodic signal with fewer local dependencies, such as predicting an unusual
sinus wave, RAI models proved that performance aligns with the alternative techniques.

In Chapter 4, we address the problem of obtaining sequences of consecutive symbols
from a potentially infinite stream. This step is implemented in the Sequencer compo-
nent of the proposed methodology. Stream sequencing is required to learn automata
from network data because automata are computational models capable of processing
words, and network data comes as streams of packets or flows. One of the most com-
mon techniques for solving this problem is sliding a fixed size window along the stream.
When it is impossible to devise a criterion from the application domain, the sliding win-
dow technique is the only choice. However, as the experiments show, the sliding window
leads to more complex automata in most cases. We propose a new technique aimed at
obtaining words by segmenting a stream. Our technique leverages a knowledge base of
known words belonging to the target automaton’s language to build a language model
able to find other segmentation points. The assumption of having a few known words is
considered acceptable in network data. Tests on 48 synthetic target models of different
sizes and typologies showed that the proposed technique outperforms sliding windows
in 33 cases by leveraging a base of only 200 words, corresponding to 5% of correct words
in the training data. With a base of 600 words, corresponding to 15% of the correct words
from the training data, the proposed technique outperforms the sliding window on 36
problems out of 48. Experiments also show that the proposed technique tends to be
most performant when the target model is deterministic or has high transition sparsity.
As shown in Chapter 7 and Chapter 6, suitable models for profiling of hosts’ behaviours
are deterministic and transition-sparse.

In Chapter 5, we discuss the problem of collecting the right amount of data needed to
learn a probabilistic automaton. Ideally, the goal is to collect the most minor data re-
quired to identify all states in the target model. The main contribution of this chapter
is to introduce a method for recognising, in real time, the so-called points of change. A
point of change happens when including a word in the training set introduces an un-
foreseen behaviour. An automaton learned before a point of change tends to expose
structural differences compared to the one learned after the point of change. The pro-
posed method relies on a newly introduced freshness measure to catch those structural
differences within an augmented prefix tree: a canonical automaton usually learned in
the first steps of most automata-learning algorithms. The analyst can identify the points
of change after analysing a freshness plot. In the same chapter, we introduce Hoeffding-
bound signals to indicate whether the collected data is sufficient to estimating the tran-
sition probabilities of a probabilistic automaton. Experimental results on real Netflow
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captures in different network scenarios show that the combination of freshness and Ho-
effding signals allows the analyst to collect, in most cases, significantly smaller training
samples without affecting the quality of the learned models. Automating the points of
change detection in freshness and Hoeffding plots allows the analyst to automatically
detect the time at which the Netflows collected from a host constitute enough data for
creating a meaningful behaviour model.

The second class of contributions provides details of different methods of using au-
tomata to detect network intrusions and to analyse network data. We discuss the first
implementation of the proposed methodology in Chapter 7. Chapter 7 introduces a new
implementation of the proposed methodology, which uses Probabilistic Deterministic
Automata (PDA). One of the main contributions presented in the chapter consists of
defining a host behaviour profile as a probability distribution over the so-called symp-
toms: the network-specific behavioural features generated by a PDA. The chapter in-
troduces a new Profiles Matcher. This component is based on the definition of a chi-
square distance between hosts’ profiles and a nearest-neighbour approach for classify-
ing a host’s behaviour. The proposed implementation has been extensively tested on
different publicly available datasets of Netflow captures. It showed an F1-score greater
than 95%, with a shallow rate of false positives (0.004) in a cross-validated setting. The
proposed implementation can also deal with unknown threats—that is, infections it has
no prior knowledge about—because it performed adequately in an experiment designed
to measure detection; that is, it produced an F1 score of 0.828 with the false-positives
rate of 0.007. Finally, the proposed implementation has been compared with a blacklist-
based detector. Our system outperformed the blacklist detector in accuracy, false pos-
itives rate, and F1 score. The chapter also describes how to simplify the analysis of a
Netflow capture by leveraging the proposed implementation. Indeed, thanks to the in-
terpretation of the behaviour profiles, an analyst can reduce the number of Netflows to
be analysed by quickly converging the instances responsible for a detection.

Chapter 6 introduces a second implementation of the proposed methodology: BASTA,
which uses an RTI+ Learner component to identify Probabilistic Deterministic Real-
Time Automata (PDRTAs). PDRTAs are the models chosen to describe hosts’ behaviours.
Furthermore, we introduce a simple but effective Labeler component to obtain timed
strings from Netflows using attribute mappings and the sliding-window Sequencer. An-
other contribution discussed in the chapter is the presentation of two alternative im-
plementations for the Profile Matcher component: the error-based matcher and the
fingerprint-based matcher. The error-based matcher provides better results on noise-
less data, and simple fingerprints work better in noisy settings. This is likely due to
incorrectly estimated expected counts, and it suggests that an error-based matcher is
better in noise-free settings, where the network manager can isolate the traffic by using,
for instance, IP destinations. When this results in too little data, using the fingerprint-
ing matcher on the noisy intertwined traffic is better. Both matchers can effectively de-
tect known infections, as shown in our experiments on single scenarios from a public
dataset of real Netflow captures. In fact, experiments aimed at detecting known infec-
tions showed that BASTA detected nearly all infected hosts and produced very few false
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positives. By mixing the traffic from and to different hosts, BASTA retained its good per-
formance in detecting a known threat. Finally, in experiments to understand the capa-
bilities of detecting unknown threats, BASTA proved effective even with a raised number
of false positives. The author argues that those results demonstrate the effectiveness of
the proposed methodology. BASTA, or other potential implementations of the proposed
methodology, can be integrated into a state-of-the-art network analyser to complement
different types of IoC-based detection engines.

8.2. FUTURE WORK
There are many directions for future work, and this section aims to highlight some of
them. The discussion is organised into two parts, the first focusing on viable future re-
search activities that attempt to solve relevant problems arising from learning automata
from network data.

RAI, the Learner for Regression Automata discussed in Chapter 3, relies on a neighbourhood-
based statistical test to decide whether to merge two states. Although the statistical test
proved successful overall, it is not perfect: that is, it might cause wrong decisions, af-
fecting the final quality of the learned model. Investigating the root causes of those mis-
takes might foster the design or adoption of more performant statistical tests. A further
line of research into RAI and RAs consists of extending both the model and the learn-
ing algorithms to operate on multivariate data, such as discrete and continuous fields.
By removing the Labeler, such an extension could lead to a change in the methodol-
ogy because Netflows are composed of, essentially, discrete and continuous fields. The
labelling would get integrated into the Learner, and the added benefit would be the ad-
dition of a capability for modelling local relationships within the data.

The semi-supervised Segmenter, discussed in Chapter 4, has yet to be evaluated on Net-
flow captures due to the lack of a known target model for evaluating the results. The
author considers it crucial to integrate the Segmenter into an implementation of the
proposed methodology, such as the BASTA system. In addition, it would be interesting
to compare the models learned fromNetflowdata against a time-threshold–based alter-
native because a common strategy for segmenting a stream of network data is to use time
thresholds. A possible evaluation would be found on the learned model’s contributions
to the detection performances.

As discussed in Chapter 5, assessing whether enough data has been collected to learn
automaton is mainly done by an analyst. The analyst looks at the freshness and Hoeffd-
ing plots and recognises when a point of change corresponds to a remarkable transfor-
mation of the hypothesis. A possible line of research on this topic would be to auto-
mate such a process by developing an algorithmic solution capable of detecting points
of change and, therefore, understanding when to stop data collection. A viable option
would be to use a Kullback-Leibler divergence to measure a broader range of change
points, even the slow drifts in the occurrence of existing behaviours that are harder to
identify for a human.
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The second direction for future work is about viable options for implementing tools for
detecting network intrusions and analysing network data using automata. For the sys-
tem described in Chapter 7, implementing our methodology, future research activities
could be aimed at evaluating the possibilities the system offers and the limitations it
might be subject to. Testing the use case when PDAs learned in other networks are im-
ported into the Automata Library would be interesting. The author considers that use
case crucial to accepting PDAs as a behavioural indicator for network threats. Another
exciting line of research is to study how difficult it is to evade detection when the threat
actors know the model used for generating the behavioral profiles. That line of research
could improve the methodology resilience by making the Data Abstraction phase more
robust to opportunistic changes in attribute values.

The author envisions at least two possible options as a future work on the BASTA sys-
tem discussed in Chapter 6. First, it would be interesting to evaluate the performance of
BASTA on a vast real network, such as the TU Delft campus network. Second, BASTA did
not show the same level of performance on noisy input data: that is, mixed malicious
and legitimate flow sequences coming from the same host. A possible solution, and a
subject of future work, would be to design a new Profiles Generator component to deal
specifically with noisy data. That Profiles Generator could apply dynamic programming
techniques to filter out noise.
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APPENDIX A

Table 1: Distribution of labels on the CTU-13 dataset. Each scenario is composed of one or more infected
computers and at least three normal computers.

Scenario Type IP Label #flows Scenario Type IP Label #flows
1 Malware 147.32.84.165 Botnet 40,961 9 Malware 147.32.84.206 Botnet 18,553
1 Normal 147.32.84.170 Normal-V42-Stribrek 18,438 9 Malware 147.32.84.207 Botnet 15,999
1 Normal 147.32.84.164 Normal-V42-Grill 7,654 9 Malware 147.32.84.208 Botnet 17,909
1 Normal 147.32.84.134 Normal-V42-Jist 3,808 9 Malware 147.32.84.209 Botnet 16,376
2 Malware 147.32.84.165 Botnet 20,941 9 Normal 147.32.84.170 Normal-V42-Stribrek 15,806
2 Normal 147.32.84.170 Normal-V42-Stribrek 8,960 9 Normal 147.32.84.134 Normal-V42-Jist 9,419
2 Normal 147.32.84.164 Normal-V42-Grill 25 9 Normal 147.32.84.164 Normal-V42-Grill 4,432
3 Malware 147.32.84.165 Botnet 53,518 10 Malware 147.32.84.165 Botnet 9,579
3 Normal 147.32.84.170 Normal-V42-Stribrek 217,614 10 Malware 147.32.84.191 Botnet 10,454
3 Normal 147.32.84.134 Normal-V42-Jist 1,934 10 Malware 147.32.84.192 Botnet 10,397
3 Normal 147.32.84.164 Normal-V42-Grill 9,160 10 Malware 147.32.84.193 Botnet 10,009
4 Malware 147.32.84.165 Botnet 2, 580 10 Malware 147.32.84.204 Botnet 11,159
4 Normal 147.32.84.170 Normal-V42-Stribrek 12,133 10 Malware 147.32.84.205 Botnet 11,874
4 Normal 147.32.84.134 Normal-V42-Jist 10,382 10 Malware 147.32.84.206 Botnet 11,287
4 Normal 147.32.84.164 Normal-V42-Grill 2,474 10 Malware 147.32.84.207 Botnet 10,581
5 Malware 147.32.84.165 Botnet 1,802 10 Malware 147.32.84.208 Botnet 11,118
5 Normal 147.32.84.170 Normal-V42-Stribrek 3,620 10 Malware 147.32.84.209 Botnet 9,894
5 Normal 147.32.84.134 Normal-V42-Jist 2,214 10 Normal 147.32.84.170 Normal-V42-Stribrek 10,216
5 Normal 147.32.84.164 Normal-V42-Grill 3,444 10 Normal 147.32.84.134 Normal-V42-Jist 1,091
6 Malware 147.32.84.165 Botnet 9,260 10 Normal 147.32.84.164 Normal-V42-Grill 3,728
6 Normal 147.32.84.170 Normal-V42-Stribrek 10,976 11 Malware 147.32.84.165 Botnet 4,151
6 Normal 147.32.84.134 Normal-V42-Jist 1,364 11 Malware 147.32.84.191 Botnet 4,006
6 Normal 147.32.84.164 Normal-V42-Grill 2,490 11 Malware 147.32.84.192 Botnet 7
7 Malware 147.32.84.165 Botnet 126 11 Normal 147.32.84.170 Normal-V42-Stribrek 581
7 Normal 147.32.84.170 Normal-V42-Stribrek 1,614 11 Normal 147.32.84.134 Normal-V42-Jist 11
7 Normal 147.32.84.134 Normal-V42-Jist 584 11 Normal 147.32.84.164 Normal-V42-Grill 2,113
7 Normal 147.32.84.164 Normal-V42-Grill 1,040 12 Malware 147.32.84.165 Botnet 807
8 Malware 147.32.84.165 Botnet 12,254 12 Malware 147.32.84.191 Botnet 766
8 Normal 147.32.84.170 Normal-V42-Stribrek 97,176 12 Malware 147.32.84.192 Botnet 570
8 Normal 147.32.84.134 Normal-V42-Jist 10,926 12 Normal 147.32.84.170 Normal-V42-Stribrek 4,359
8 Normal 147.32.84.164 Normal-V42-Grill 36,328 12 Normal 147.32.84.134 Normal-V42-Jist 2,145
9 Malware 147.32.84.165 Botnet 22,792 12 Normal 147.32.84.164 Normal-V42-Grill 1,075
9 Malware 147.32.84.191 Botnet 18,774 13 Malware 147.32.84.165 Botnet 40,003
9 Malware 147.32.84.192 Botnet 20,305 13 Normal 147.32.84.170 Normal-V42-Stribrek 26,846
9 Malware 147.32.84.193 Botnet 17,961 13 Normal 147.32.84.134 Normal-V42-Jist 948
9 Malware 147.32.84.204 Botnet 18,783 13 Normal 147.32.84.164 Normal-V42-Grill 3,539
9 Malware 147.32.84.205 Botnet 17,535
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APPENDIX B

Table 2: PAutomaC competition problems meta-informations. Each problem, identified by the corresponding
id, is a probabilistic stateful model.

ID START STATES END STATES STATES DETERMINISTIC? SYMBOL SPARSITY TRANSITION SPARSITY ALPHABET SIZE TYPE
1 5 20 63 NO 0.3274 0.0872 8 hmm
2 1 20 63 NO 0.3280 0.0166 18 hmm
3 1 19 25 NO 0.7900 0.0790 4 pfa
4 1 5 12 NO 0.4375 0.1508 4 pfa
5 1 16 56 NO 0.2946 0.0217 6 hmm
6 1 9 19 YES 0.4825 0.0526 6 dpfa
7 1 2 12 YES 0.2372 0.0833 13 dpfa
8 3 17 49 NO 0.3622 0.0645 8 pfa
9 1 27 71 YES 0.3873 0.0141 4 dpfa

10 1 30 49 NO 0.6327 0.0221 11 pfa
11 1 23 47 YES 0.4947 0.0213 20 dpfa
12 1 4 12 NO 0.3526 0.1116 13 pfa
13 1 43 63 YES 0.6905 0.0159 4 dpfa
14 1 7 15 NO 0.4944 0.0800 12 hmm
15 1 10 26 NO 0.4121 0.0672 14 pfa
16 1 30 49 YES 0.6184 0.0204 10 dpfa
17 3 4 22 NO 0.2168 0.1738 13 pfa
18 1 5 25 YES 0.2260 0.0400 20 dpfa
19 2 22 68 NO 0.3256 0.0350 7 hmm
20 1 4 11 NO 0.3939 0.1570 18 hmm
21 2 14 56 NO 0.2531 0.0497 23 hmm
22 3 13 55 NO 0.0575 0.2411 21 pfa
23 3 12 33 NO 0.3810 0.1148 7 hmm
24 1 2 6 YES 0.5000 0.1666 5 dpfa
25 1 23 40 NO 0.5775 0.0456 10 hmm
26 1 42 73 YES 0.5868 0.0137 6 dpfa
27 1 12 19 YES 0.6378 0.0526 17 dpfa
28 2 17 23 NO 0.7464 0.1134 6 hmm
29 1 13 36 NO 0.3750 0.0384 6 pfa
30 1 5 9 NO 0.6555 0.1751 10 pfa
31 2 4 12 NO 0.3833 0.1992 5 pfa
32 1 33 43 YES 0.7733 0.0233 4 dpfa
33 1 7 13 NO 0.5949 0.1183 15 hmm
34 1 23 64 NO 0.3705 0.0281 21 pfa
35 1 16 47 YES 0.3553 0.0213 20 dpfa
36 4 34 54 NO 0.6317 0.0748 9 hmm
37 12 35 69 NO 0.5217 0.1825 8 pfa
38 2 11 14 NO 0.7857 0.1939 10 hmm
39 1 2 6 NO 0.4167 0.1810 14 pfa
40 1 42 65 YES 0.6473 0.0154 14 dpfa
41 7 37 54 NO 0.6931 0.1430 7 hmm
42 1 3 6 YES 0.5185 0.1667 9 dpfa
43 10 39 67 NO 0.5970 0.1641 5 pfa
44 4 46 73 NO 0.6333 0.0561 13 hmm
45 1 11 14 NO 0.8008 0.0867 19 hmm
46 1 9 19 NO 0.4851 0.0973 23 pfa
47 1 18 61 YES 0.3027 0.0164 15 dpfa
48 1 11 16 YES 0.6957 0.0625 23 dpfa
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