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Cell type deconvolution of methylated cell-free DNA
at the resolution of individual reads
Pia Keukeleire, Stavros Makrodimitris, and Marcel Reinders

Delft University of Technology

ABSTRACT

Cell-free DNA (cfDNA) are DNA fragments originating from dying cells that enter the plasma. Uncontrolled cell death, for
example caused by cancer, induces an elevated concentration of cfDNA. As a result, determining the cell type origins of
cfDNA can provide information about an individual’s health. This research looks into how to increase the sensitivity of a
methylation-based cell type deconvolution method. We do this by adapting an existing method, CelFiE, which uses the
methylation values of individual CpG sites to estimate cell type proportions. Our new method, named CelFEER, instead
differentiates cell types by the average methylation values of individual reads. We additionally improved the originally reported
performance of CelFiE by using a new approach for finding marker regions in the genome that are differentially methylated
between cell types. This approach compares the methylation values over 500 bp regions instead of at single CpG sites and
solely takes hypomethylated regions into account. We show that CelFEER estimates cell type proportions with a higher
correlation (r2 = 0.94±0.04) than CelFiE (r2 = 0.86±0.09) on simulated mixtures of cfDNA. Moreover, we found that it can find
a significant difference between skeletal muscle cfDNA in ALS patients (n = 4) and a control group (n = 4); t(6) = 3.54, p = 0.01.

1 INTRODUCTION

As cells die, small fragments of their DNA can enter the
bloodstream. Consequently, our blood contains traces of mul-
tiple different cell types. These fragments of DNA are called
cell-free DNA (cfDNA). The cfDNA in our plasma is mostly
composed of DNA originating from blood cells [20]. Some
diseases, however, cause cells to die in an uncontrolled man-
ner, leaving the DNA incompletely degraded and more prone
to enter the bloodstream. The discovery of such disease-
derived cell types in cfDNA provides a minimally invasive
alternative for tissue biopsies, and is thus frequently referred
to as a liquid biopsy [15]. Commonly researched applications
of liquid biopsies are prenatal testing, organ transplant mon-
itoring and tumor discovery and monitoring [21]. In all of
these applications, however, we know the cell type of inter-
est in advance. Cell type deconvolution, on the other hand,
aims to give the full composition of the cell types of circulat-
ing cfDNA. An example of a use case in which this type of
analysis is especially desirable is finding tumor locations in
patients with a cancer of unknown primary [1]. Additionally,
characterizing changes in cell type proportions is helpful in
understanding disease development and progression [12].

One method for characterizing the cell type origins of
cfDNA is the analysis of methylation signatures. Methylation
occurs when a methyl-group is added to the fifth carbon of
cytosines (5mC), often with the purpose of silencing gene
transcription [7]. This process happens mostly in the context
of CpG sites, and usually over regions spanning multiple CpG
sites [15]. Adjacent CpG sites have been found to correlate
highly in methylation status [19]. Because the silencing of
gene transcription often happens in a cell type specific manner,
these methylation signatures have been found to reveal the
cell type origins of cfDNA [21].

Traditionally, cell type deconvolution methods calculate

the average methylation of all sequencing reads per CpG
site, and use these averages as model input [4, 9, 18]. These
averages are often referred to as β values. Although these
methods usually do take the correlation between CpG sites
into account by averaging over the β values in a region, the
value at each individual CpG site is assumed to be indepen-
dent. In a similar problem setting, namely tumor fraction
estimation, Li et al. devised an approach to better incorporate
the correlation between sites [14]. Their method, named Can-
cerDetector, calculates the average methylation per individual
sequencing read instead of the average methylation per CpG
site. They showed how this method outperforms a similar
previous method that uses β values [9]. Figure 1b illustrates
how rare cell types can be more sensitively detected using
read averages than using β values [14]. In this figure, the
tumor-derived read makes up 25% of the cfDNA, whereas
such rare cell types are far less prevalent in biological data.
Since it is essential that our method can deconvolute lowly
abundant cell types, β values might not be appropriate.

A read-based approach has been adopted in multiple other
tumor fraction estimation methods, such as DISMIR [13] and
EpiClass [17]. Even though the effectiveness of this approach
has been shown for tumor fraction estimation, it has not yet
been used in the related task of cell type deconvolution.

We hypothesize that read averages can increase the sensi-
tivity of methylation-based cell type deconvolution methods.
In order to evaluate the effects of using read averages with-
out being affected by other model decisions, we decided to
adapt the method CelFiE (CELl Free DNA Estimation via
expectation-maximization) by Caggiano et al. [4]. CelFiE has
the advantages that it is able to estimate missing cell types
and that it can estimate cell type proportions of cfDNA with
a low read coverage. Caggiano et al. demonstrated possible
clinical applications of CelFiE by showing its ability to differ-
entiate between pregnant and non-pregnant women by their
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Figure 1. (A) Workflow of cell type deconvolution with CelFEER. Sequenced and aligned cfDNA fragments are intersected
with cell type marker regions in the genome that are found using reference cell type data. The reference cell data and the
cfDNA input data are used as model input for CelFEER, which subsequently outputs the estimated cell type proportions in the
cfDNA. (B) Toy example illustrating how a tumor-derived read (in orange) can be distinguished from other reads more easily
by comparing read averages (r̄) instead of CpG site averages (β ). Values in red are differential between the cancer and normal
sample.

proportion of placenta derived cfDNA, as well as between
ALS patients and healthy individuals by their proportion of
skeletal muscle cfDNA. In their work, Caggiano et al. used
whole genome bisulfite sequencing (WGBS) of reference cell
type DNA and input cfDNA. Since WGBS data covers the en-
tire genome, it has the benefit that it can be used for cell type
specific biomarker discovery by comparing the methylation
in all CpG sites [16].

We find that the selection of appropriate cell type markers
is of crucial importance for the model performance. Using
the entire genome as model input is not only computationally
infeasible, but it will also likely have a negative impact on
performance when CpG sites that are not informative of the
cell type origin are included. By redefining the cell type infor-
mative markers, we improved CelFiE and were able to achieve
better results than those reported in the original publication.
The new set of markers is found using regions of 500 bp in-
stead of single CpG sites, and only includes hypomethylated
markers.

In this research, we adapted CelFiE to work at the reso-
lution of single reads by changing the input to the average
methylation value of single reads and by changing the under-
lying distributional assumptions accordingly. The complete
workflow of the resulting method, named CelFEER (CELl
Free DNA Estimation via Expectation-maximization on a
Read resolution), is depicted in Figure 1a. We compared
CelFEER to CelFiE on generated data and on simulated cell
type mixtures composed of real WGBS data. We further
applied CelFEER on the cfDNA of four ALS patients and

four controls, and found that CelFEER detects a significant
difference in the proportion of skeletal muscle cfDNA. Our
experiments indicate that read averages can indeed more sen-
sitively detect rare cell types.

2 METHODS

2.1 CelFiE overview
As CelFEER is an adaptation of CelFiE, understanding this
original method is essential for understanding CelFEER.
CelFiE uses an expectation-maximization (EM) algorithm
to solve a Bayesian model of the cell type proportions of
cfDNA mixtures. It does this by learning these proportions
simultaneously with the average methylation percentage of
each cell type at each CpG site. The methylation percentages
correspond to the fraction of reads that are methylated at
a specific CpG site, and are initialized by transforming the
reference data into fractions. The methylation percentages are
estimated because the reference cell type data is assumed to
be imperfect and incomplete; CelFiE aims to learn the true
methylation percentages from both the cfDNA input and the
reference cell type data. The reference data consists of the
methylation counts of T cell types indexed by t at M CpG
sites indexed by m. More precisely, it takes the form of two
T ×M matrices: Y and DY , where Ytm and DY

tm are the number
of methylated and total reads at CpG site m, respectively, in
reference cell type t. The reference data is assumed to be
drawn from a binomial distribution where the number of trials
equals the reference read depth and the probabilities the true
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methylation percentage in the cell type of origin.
CelFiE learns the cell type proportions of multiple individ-

uals simultaneously, allowing the method to infer information
from other individuals’ methylation values. The cfDNA data
from N individuals indexed by n is given in two N ×M ma-
trices, X and DX . Xnm and DX

nm are the number of methylated
and total reads at CpG site m, respectively, for individual n.
An example of how these matrices are formatted is given in
Figure 2. Each xnmc refers to the methylation value of a spe-
cific read c and can thus be either 0 or 1. These methylation
values are assumed to be drawn from a Bernoulli distribution
governed by the methylation percentage in the cell type of
origin. DX

nm consists of the sum of all xnmc while Xnm is the
sum of all xnmc that are equal to 1.

CelFiE estimates two parameters: α and β , where α is
the final output of the model. αnt is the fraction of cfDNA in
person n that originated from cell type t, and βtm is the true
unknown methylation percentage of cell type t at position m.

CelFiE models the input cfDNA as a mixture of different
cell types. Whether this input originates from a given (or
unknown) cell type is modeled using a latent variable z, where
ztmc = 1 when xmc originates from cell type t and 0 other-
wise. The objective is thus to describe the joint distribution
P(X ,z,Y |α,β ). For the complete mathematical description of
the model and its underlying assumptions, refer to Appendix A
and [4].

The model iteratively relates the input to probable cell
types in the expectation step, and calculates the parameters
that make the input and reference data most likely in the max-
imization step. More mathematically put, in the expectation
step the posterior distribution p̃ of z given the input data x and
parameters α and β is calculated. These parameters are then
updated by the α and β values that maximize the expectation
of the joint likelihood under the calculated posterior.

2.2 Read-based approach
CelFEER uses essentially the same model as CelFiE but with
read averages as input. This changes the underlying distribu-
tions of the model, while the overall structure of the algorithm
remains the same. The algorithm is visualized in Figure 3. In
CelFEER, the single counts per CpG site are replaced by five
counts per 500 bp region. Each count x̂nmi ∈ X̂nm for individ-
ual n mapping to region m equals the number of reads with a
discretized read average i, where i ∈ {0,0.25,0.5,0.75,1}. A
read average is calculated by dividing the number of methy-
lated CpG sites by the total number of CpG sites on a read,
where only reads with three or more CpG sites are used. This
heuristic is adopted from previous methods [13, 14]. The read
average is then rounded to the closest value i. E.g. a read c
from individual n mapping to region m with one out of three
CpG sites methylated (and therefore a read average of 1/3)
would be represented as x̂nmc = {0,1,0,0,0}. Hence each
read is effectively one-hot encoded. Summing all one-hot
encoded reads that fall into the same 500 bp region results
in the five counts which are used as input to the model. This

process is depicted in Figure 2. Binning reads with a simi-
lar read average substantially speeds up the method, because
this means we only need to estimate the distribution over five
possible read averages instead of all possible read averages.
In the worst case scenario, the number of possible read av-
erages equals the read depth. Moreover, binning ensures we
have more evidence for each of the five distributions to be
estimated.

The reference data has the same composition as the input
data, but instead of a set of counts per individual per site, the
reference data contains a set of counts per cell type per site.
Since the reference data has a different format in CelFEER
compared to CelFiE, the β̂ values take on a different form as
well. β̂tmi is now the proportion of reads originating from cell
type t and mapping to region m that have a read average i.

As in CelFiE, the model aims to describe the joint distri-
bution of the input X̂ , the reference Ŷ and the latent variable
z, which are all assumed to be independent. In order to de-
scribe the full data likelihood, we first split it into three parts:
P(X̂ ,z,Ŷ |α, β̂ ) = P(X̂ |z, β̂ )P(z|α)P(Ŷ |β̂ ).

The first part, P(X̂ |z, β̂ ), describes the likelihood of ob-
serving the read averages given that we know what cell type
each read originates from and how the read averages of each
cell type are distributed across the 500 bp windows. In this
likelihood we look at each read c individually, and not yet at
the total counts of all reads in a region. The probability for a
read c at region m to have the value x̂mc can be described as a
categorical distribution where each category corresponds to a
possible read average and β̂tmi is the probability of originating
from cell type t and belonging to category i. This holds for
every individual n:

x̂nmc|β̂tm,zntmc
iid∼ ∏

i
β̂

zntmc·x̂ci
tmi (1)

The different cell types, individuals, reads and regions are
all assumed to be independent. The log-likelihood of the first
part can hence be calculated as follows:

logP(X̂ |z, β̂ ) = ∑
n,t,m,c

logP(x̂nmc|zntmc, β̂tm)

= ∑
n,t,m,c

zntmc

(
∑

i
x̂nmci log β̂mti

) (2)

The second part of the full likelihood describes how likely
it is that a read c originates from each cell type t. The probabil-
ity of observing a specific cell type in the cfDNA is governed
by the cell type proportions. This probability can be described
using a Bernoulli distribution:

zntmc|αnt
iid∼ α

zntmc
nt (3)

Which makes the second part of the log-likelihood:

logP(z|α) = ∑
n,t,m,c

logP(zntmc|α) = ∑
n,t,m,c

zntmc logαnt (4)

The final term is the only term that does not depend on
the latent variables z. The reference data is assumed to be
multinomially sampled with probabilities β̂tmi and a number of
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CelFiE vs. CelFEER input definition
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Figure 2. Formatting of the input for CelFiE (bottom left) and CelFEER (top right). On the top left, three partially methylated
reads aligning to a 500 bp marker are depicted. For CelFiE, the input is given in two numbers, one equalling the sum of
methylated reads at each CpG site and the other equalling the sum of the total amount of reads at each CpG site. For CelFEER,
the read averages (r̄) are first rounded to the closest value in {0,0.25,0.5,0.75,1}, then one-hot encoded and summed to obtain
the input. The reference data is formatted in the same way.

trials equal to the reference read depth, which can be obtained
by summing over all read average counts:

Ŷtm|β̂tm
iid∼ (∑i Ŷtmi)!

∏i Ŷtmi!
∏

i
β̂

Ŷtmi
tmi (5)

Which makes the third part of the full data likelihood
equal to:

logP(Ŷ |β̂ ) = n
(

log(∑
i

Ŷtmi)!−∑
i

log(Ŷtmi!)+∑
i

Ŷtmi log β̂tmi

)
(6)

Because of the presence of the latent variables z, there is
no closed form solution for maximizing the log-likelihood [3] .
Instead, we maximize the expected value of the log-likelihood
under the posterior distribution of these latent variables. The
posterior distribution of the latent variable zntmc is calculated
by applying the Bayes rule as follows:

P(zntmc = 1|x̂nmc, β̂ ,α)

=
P(x̂nmc|zntmc = 1, β̂ )P(zntmc = 1|α)

P(x̂nmc|β̂ )

=
αnt ∏i β̂

x̂nmci
tmi

∑t αnt ∏i β̂
x̂nmci
tmi

=: p̃ntmc(α, β̂ )

(7)

Where the distribution of P(x̂nmc|β̂ ) follows from the fact
that each read originates from only one cell type t, thus sum-
ming over all cell types gives the full data distribution of the
reads.

Since the read averages are one-hot encoded, there will be
five possible values for the posterior p̃ntmc. Following from
this fact, we can remove the read index c and can start looking
at the total sum of reads that have either of the five possible
read averages. For each read c where x̂nmci = 1, p̃ntmc will be
equal to:

αnt β̂tmi

∑t αnt β̂tmi
:= pntmi(α, β̂ ) (8)

For the expectation step in the EM algorithm, we need to

define the expectation of the latent variable z over the full data
likelihood at iteration j.

Let α( j) and β ( j) equal the parameters estimated at itera-
tion j, and p( j) := p(α( j),β ( j)). The expectation, also called
the Q function, is derived in Appendix A and is defined as
follows:

Q j(α, β̂ ) := Ez|x̂,α( j),β̂ ( j) logP(x̂,z,Ŷ |α( j), β̂ ( j))

= ∑
n,t,m,i

((p( j)
ntmix̂nmi + Ŷtmi) log β̂

( j)
tmi)+ ∑

n,t,m,i
p( j)

ntmix̂nmi logα
( j)
t

+n∑
t,m

[
log(∑

i
Ŷtmi)!−∑

i
log(Ŷtmi!)

] (9)

Finally α and β̂ are updated by maximizing Q j(α, β̂ ),
resulting in the following update formulas. For the full deriva-
tion, see Appendix A.

αnt =
∑m,i pntmix̂nmi

∑m,k,i pnkmix̂nmi
(10)

β̂tmi =
∑n(pntmix̂nmi + Ŷtmi)

∑n,i(pntmix̂nmi + Ŷtmi)
(11)

Each run of CelFEER performs the optimization 10 times
independently, because EM is not guaranteed to converge to
a global optimum. The log-likelihood is compared for each
restart and CelFEER returns the output from the restart with
the highest log-likelihood. In all simulations, we run CelFEER
50 times to capture the variance of the model output.

When including unknown cell types in simulations, we
create the true cell type proportions and true cell type methy-
lation in the same fashion as usual. In the reference data
that is passed to the model, the methylation values for the
unknown cell type are set to {0, 0, 0, 0, 0}. This way, the
estimated methylation percentages for an unknown cell type
are initialized to {0.2, 0.2, 0.2, 0.2, 0.2}.
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Figure 3. An illustration of the workings of CelFEER for three individuals and three cell types. On the left site of the figure,
the reference and input data are depicted. On the right side, the estimated methylation percentages (top) and estimated cell type
proportions (bottom) are depicted. In the middle the the latent variable z, which indicates what cell type each individual read
(i.e. the methylation average of each read and of each individual) is derived from.

2.3 Marker selection
The markers define which CpG sites will be used as input to
the model. The methylation values of CpG sites at marker
locations should be consistently different for different cell
types, such that the methylation values at these sites can be
used to distinguish between cell types. The markers are found
using an adaptation of the method used by Caggiano et al..
The complete process of adapting the markers is described in
Appendix D. The original method (before adaptation) works
as follows. All CpG sites are compared by measuring the
distance between the methylation percentage of one cell type
to the median methylation percentage of all cell types. The
100 markers with the largest distance are then selected as
markers. The total amount of markers found consequently
equals 100 times the number of cell types. The markers have
to satisfy three requirements in the original method; the first
is that a marker is only allowed to be a marker of one cell type.
If the same CpG site is in the top 100 of two or more cell types,
that site is not used as a marker. The second requirement is
that each cell type should have at least one read at a marker
location. The last requirement enforces that the median read
depth of all cell types at a marker position equals at least 15.

This last requirement, however, still allows the cell type
for which the CpG site is a marker to have a read depth less
than 15, as long as the median read depth of all cell types

is sufficient. A CpG site could be a marker for a cell type
as long as it is covered by at least one read of that cell type.
To remove the possibility of getting this type of marker, we
introduced an extra check to ensure this cell type has a read
depth at least as large as the median read depth threshold.
Besides, we included one more requirement to ensure marker
uniqueness. Instead of comparing only the top 100 markers of
each cell type, we compared the top 150 markers of each cell
type. After this comparison, again only the top 100 markers
are used. This extra step prevents the situation where a marker
is in the top 101 of one cell type and in the top 99 of another,
which could lead to the inclusion of less differential markers.

The original method should, in theory, be able to find both
hypo- and hypermethylated markers. In practice, it finds al-
most solely hypomethylated markers. Comparing each cell
type’s methylation percentage to the median methylation per-
centage can make markers less distinct, as is shown in Fig-
ure 4c. Therefore, we adapted the method to compare each cell
type’s methylation percentage to the minimum methylation
percentage of all other cell types, as is shown in Figure 4d. We
found that hypomethylated markers are best at differentiating
between cell types (Appendix D).

Originally, CelFiE uses as input and as reference data the
methylation values at the marker CpG sites summed with the
methylation values of CpG sites in the ±250 bp surrounding
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the marker sites. We improved CelFiE by first summing the
CpG sites into 500 bp windows which are subsequently used
to find marker regions. Otherwise, markers on regions are
found using the exact same approach as markers found on
single CpG sites. The difference between finding markers
on single CpG sites and on regions is shown in Figure 4a
and Figure 4b. As there is no requirement for the amount
of CpG sites in a region and only for the minimum read
coverage of a region, the amount of CpG sites per marker can
differ. Because summing the CpG sites into 500 bp windows
substantially increased the read coverage at potential marker
regions, we increased the read depth threshold to 150. To find
the value for this threshold, we tried a range of increasing
values and compared the resulting markers by their distance
between cell types.
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Figure 4. Illustration of the two principal changes to the
approach for findings markers in the genome. The arrows
indicate the difference between cell types. Figures (A) and
(C) illustrate how the markers are found originally, and
Figures (B) and (D) how they are found after improvements.
Figures (A) and (B) show how measuring the distance
between single CpG sites (A) results in different markers than
measuring the distance between 500 bp regions (B). Cell
types 1 and 2 do not have a large distance when regarding
their average over the entire region, making this region an
unsuitable marker. Figures (C) and (D) show that the distance
from the median cell type (C) is different from the distance
from the min cell type (D). Using the median would result in
a marker that does not differentiate well between cell types 4
and 5.

Finding the markers using the read average data largely
follows the same approach. First, the chromosome is split into
500 bp windows into which the reads are mapped. For each

25%
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0.833
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Cell type 1 reads

Cell type 2 reads

Methylated CpG site
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Figure 5. Illustration of method for determining the distance
between two cell types. First, the average of all read averages
is determined for each cell type. These are then compared to
find the distance between cell types.

cell type, the read averages are averaged over all reads that
map to the same window. The CelFEER markers are found
by comparing these averages. This process is illustrated in
Figure 5. For the read averages, we again optimized the read
depth threshold and observed that the best markers were found
using a read depth threshold of 20. The large difference with
the read depth threshold for the CelFiE input (after summing
in 500 bp windows) can be explained by the large difference in
the scale of the input of CelFiE and CelFEER. This difference
in scale is due to the fact that all CpG sites on a read contribute
to a single value in CelFEER, and to multiple values in CelFiE.

Since the approach to summarize read averages into bins
is slightly different from the approach used to bin the CpG
count data, we bin the CpG count data in the same manner as
the read averages when comparing CelFiE and CelFEER in
subsection 3.2.

2.4 Generated data simulations
In order to validate if CelFEER works under the model as-
sumptions, simulations with artificial data were set up as
follows.

The input and reference data are generated according to
the distributions assumed by the model. The simulations use
the same parameters as originally used by Caggiano et al.
in their artificial simulations. In each random restart, α is
randomly initialized by drawing from a uniform distribution
and normalizing to ensure the values sum to one. βi is ini-

tialized by taking
Yi

∑ j Yj
. This was done for both CelFiE and

CelFEER.

2.5 Simulations on WGBS data
To further evaluate the method, we simulated cfDNA data by
mixing WGBS data of different cell types. The cell type data
was obtained from ENCODE [5] and Blueprint [6], and is
composed of T-cell CD4, monocyte, macrophage, memory B
cell, neutrophil, adipose, pancreas, small intestine, stomach
and tibial nerve data. The sample identifiers of the used data
can be found in Table B.1. The data is a mixture of paired-end
and single-end reads, and consists of the same datasets used
by Caggiano et al.. For each cell type, one sample was used

6/21



to compose the reference matrix and one to simulate a cfDNA
mixture. Both sex chromosomes were removed, to make the
reference matrix applicable to both sexes and to ensure that
random methylation due to X chromosome inactivation is not
seen as relevant. Furthermore, all SNPs in dbSNP [10] were
removed.

To ensure that each dataset contained an equal amount
of reads before creating a mixture, the total read coverage of
each cell type was normalized by dividing by the total amount
of reads of all cell types and multiplying with the average
amount of reads. Next, the methylation values of each cell
type were multiplied with the desired proportion for that cell
type. These proportions were always ensured to add up to one
by dividing each cell type’s proportion by the sum of all cell
types’ proportions.

In the original publication [4], WGBS mixtures were cre-
ated in a similar manner. However, there are two differences
in their method for creating the mixtures compared to our
approach. First off, Caggiano et al. do not normalize the read
coverage. This has as an effect that the mixtures are not ac-
tual mixtures, as multiplying the read coverage of cell type X
with e.g. 10% does not ensure that 10% of the mixture will
be composed of cell type X. Therefore we decided to first
normalize the input data. Secondly, Caggiano et al. did not
directly multiply the input data with the desired proportions,
but multiplied their input matrix X (containing the methy-
lated read counts) with the desired proportions twice, and
their DX matrix (containing the read depths) with the desired
proportions once. The reason for doing this is unclear, as this
completely changes the methylation percentages of the input.

The mixtures of read averages were made in a similar
fashion. First, all read counts were normalized such that each
cell type occurred in equal quantities before multiplying the
input with the desired proportions.

For both methods the reference data was not normalized.
During parameter convergence, the only equation where the
reference data is used is Equation 11, where it is transformed
to a proportion. The absolute counts of the reference data only
matter in their proportion to the input data in Equation 11.
It does, however, make sense to not normalize the reference
data here since it is logical that reference data with a higher
coverage is more reliable and should therefore weigh more in
the calculation of β .

3 RESULTS
3.1 Simulations using generated data
To test whether CelFEER works as expected, we followed
Caggiano et al. as closely as possible in generating data to
simulate cfDNA input and cell type DNA reference data. Us-
ing generated data, they showed that CelFiE (i) estimates
proportions correlated to the true cell type proportions, (ii) is
able to detect small differences between two groups of individ-
uals and (iii) is able to estimate the proportions of unknown
cell types (i.e. cell types that are present in the input data, but
not in the reference).

The results of these simulations are not an accurate reflec-
tion of the model performance, as the simulations for neither
CelFiE nor CelFEER model any correlation between sites. As
a result, the input of adjacent sites is not summed together
as is done for WGBS data, even though Caggiano et al. have
shown that the original method does not return sensible results
on WGBS data without summing adjacent sites. The simu-
lations do serve as a way of investigating whether CelFEER
has the same three properties (which are described above) as
CelFiE.

CelFEER estimates of generated data correlate to true
proportions
As a first evaluation of the read based method, the performance
of CelFEER is compared to the performance of CelFiE on
generated data. The simulations use the same input as in [4],
meaning that 50 replicates were run, each with 25 cell types,
6000 CpG sites and 1 individual. The read depth at each CpG
site was drawn from a Poisson distribution centred around 10.

CelFEER performed slightly worse, with a mean Pear-
son’s correlation r2 = 0.84±0.05 compared to r2 = 0.87±
0.07 for CelFiE. The result of CelFiE found by us is, however,
not as good as the result reported in [4], where the supposedly
same simulations result in r2 = 0.96±0.01.

CelFEER and CelFiE do not detect a significant difference
between two groups
Even in individuals with cfDNA originating from aberrant
cell types, most of the cfDNA is derived from hematopoietic
origins [18]. In other words, the actual amount of cfDNA
from an aberrant cell type can be very small. Therefore, it
is important to be able to differentiate between a group that
does not have this cell type and a group that has only a very
small amount of it. To this end, we simulated a cell type that
made up a proportion of 0.01 of the cfDNA of five individuals
(group A) and 0 of the cfDNA of five other individuals (group
B). Ten cell types were used in total on an input of 1000 CpG
sites. The remaining nine cell types had a true proportion
drawn from a uniform distribution between 0.5 and 1, which
were then normalized such that all proportions summed to
one.

Figure 7 shows the estimated proportion of the rare cell
type for both groups, using both CelFiE and CelFEER. Av-
eraged over 50 replicates, CelFiE estimated a proportion
of 0.03 ± 0.01 in group A and 0.025 ± 0.007 in group B,
while CelFEER estimated proportions of 0.031± 0.01 and
0.026±0.008 for the two groups respectively. A two-samples
t-test done for each individual showed no significant differ-
ence between the average proportions estimated by both meth-
ods in neither groups (p > 0.1 for all individuals). Moreover,
the proportions of the rare cell type are highly overestimated
in both groups.

CelFEER estimates proportions of unknown cell types
One of the advantages of CelFiE over previous deconvolu-
tion methods is its ability to infer cell type information from
the methylation states of other individuals. This way it can
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Figure 6. Simulations on generated data for one individual.
Each boxplot displays the estimated proportion of a cell type
for replicate model runs. The red dots indicate the true cell
type proportions for 25 cell types.

estimate the cell type proportions of cell types that are not
present in the reference data. As in the original paper, we
generated cfDNA for 1000 CpG sites, 10 cell types and 10
individuals at a read depth of 10. In the reference data, we set
the methylation states of the last cell type to 0 at each CpG
site. The true proportion of this unknown cell type was drawn
from a normal distribution centred around 0.2 with a standard
deviation of 0.1, and clipped if smaller than 0 or larger than
1. All other cell type proportions were drawn from a uniform
distribution between 0 and 1, and together with the unknown
cell type the proportions were made to sum to 1. This was
done for each individual separately.

We measured the root mean squared error (RMSE) of the
estimated proportion of the missing cell type. Averaged over
all individuals, CelFEER resulted in an RMSE of 0.0009, and
CelFiE in an RMSE of 0.0010. This shows that CelFEER is
also capable of estimating proportions of unknown cell types
in generated data.

Figure 7. Estimates of the proportion of a rare cell type
(1%) that is present in group A but not in group B, estimated
over 50 replicate runs using CelFiE and CelFEER. Only the
estimated and true proportions of this rare cell type are
plotted. The true proportions are represented by the red dots.

3.2 Results of simulations using WGBS data
Since there are no ground truth cell type proportions available
for real cfDNA data, it is impossible to know if the estimated
proportions of cfDNA correlate with the true cell type propor-
tions. Therefore, we simulated mixtures of cfDNA by mixing
WGBS data of different cell types.

First, we aimed to replicate the results of the original
paper [4] before comparing these to the results of our method.
For an impartial comparison we used the same data used by
Caggiano et al., given in Table B.1. When comparing CelFiE
to CelFEER, we were limited to using seven different cell
types because of the availability of read data at the time of
testing.

Discrepancy with results of original paper
In the original paper [4], the true cell type proportions are
made by drawing a proportion of T cells from a normal distri-
bution centered around 20%, a proportion of small intestine
cells from a normal distribution centered around 10% and pro-
portions of the eight remaining cells from a random uniform
distribution. These eight remaining cell types were normal-
ized such that, together with the proportion of T cells and
small intestine cells, they would sum to one. This was re-
peated 50 times for 100 individuals. They reported to have
obtained a Pearson’s correlation of r2 = 0.83±0.16 between
the estimated and true cell type proportions, and a correlation
of r2 = 0.96±0.01 between the estimated and true methyla-
tion values.

Surprisingly, there is a large discrepancy between the
reported results and our replicated results. Following their
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approach as accurately as possible, the obtained correlation
between the true and estimated cell types was r2 = 0.32±0.19
and between the true and estimated methylation percentages
r2 = 0.98±0.01. We did find several mistakes in the code and
equations published in [4]. After adapting the source code,
the correlation was slightly lower for the estimated cell types
(r2 = 0.30±0.18) and slightly higher for the estimated methy-
lation percentages (r2 = 0.99±0.06e−2). The correlation be-
tween the true and estimated methylation percentages is much
higher than the correlation between the true and estimated cell
type proportions, meaning that an accurate reconstruction of
the methylation profiles of the reference data has little effect
on the ability to discriminate between cell types. This is an
indication that the markers are not representative of their cell
type, and that markers which can better discriminate between
cell types will result in a more accurate cell type proportion
estimation.

When we used our improved set of markers and removed
the mistakes from the code, we obtained a higher correla-
tion than reported for both the estimated cell types and the
estimated methylation values; r2 = 0.87 ± 0.05 and r2 =
0.99± 0.06e−2 respectively. These results are not only an
improvement on the results we previously obtained, but are
also better than the results reported in the original paper [4].

Comparison between CelFiE and CelFEER
To compare the performance of CelFEER to the performance
of CelFiE, we again simulated cfDNA mixtures by artificially
mixing WGBS data of different cell types. Although we use
three cell types less due to data availability, we followed the
same approach to create the true cell type proportions for 100
individuals. The marker regions of both models were found
using their reference data and were therefore different for the
two models, since one set of regions was found by comparing
CpG site averages and the other by comparing read averages
of different cell types.

In Figure 8, the results of 50 replicate runs for a ran-
domly selected individual are shown. The corrected version
of CelFiE with optimized marker regions was used, i.e. not
the version that was published by Caggiano et al.. Without
unknown cell types in the reference data, CelFEER results
in a correlation of r2 = 0.94± 0.04 while CelFiE results in
a correlation of r2 ±0.86±0.09. We find that the difference
in correlation between CelFEER and CelFiE is significant;
t(9998) = 58.11, p < 0.001. To examine whether this would
go at the expense of runtime, we measured the time it takes
each method to run one replicate. On our system, CelFEER
requires ∼ 1.1 times the time needed by CelFiE.

Since one of the assets of CelFiE is its ability to infer the
proportions of unknown cell types, we expected CelFEER
to outperform CelFiE on this aspect as well. Similar to the
original experiments in [4], we masked T cells in the refer-
ence data by setting all T cell reference methylation values
to 0. CelFEER highly overestimates the missing cell type
proportion and therefore estimates proportions that are less
correlated to the true cell type proportions than CelFiE does,

Table 1. Pearson’s correlation (r2) between true and
estimated cell type proportions (α estimates) of a simulated
mixture of seven different cell types.

Unknowns CelFiE r2 CelFEER r2

0 0.86±0.09 0.94±0.04
1 0.60±0.19 0.48±0.25
2 0.30±0.34 0.19±0.29

although CelFiE also overestimates considerably (see Table 1).
When small intestine cells are masked as well, the correlation
between the estimated and true cell type proportions decreases
even more.

In addition to comparing the estimated cell type propor-
tions and their correlation to the true proportions, we investi-
gated the estimated cell type methylation values. We measured
the correlation between the estimated cell type methylation
percentages and the methylation percentages obtained by nor-
malizing the methylation values of the reference data to sum
to one. It is remarkable how this correlation is consistently
higher for CelFiE (Table 2). This implies that the methylation
percentages estimated by CelFiE diverge only very little from
the reference methylation. This probably means that CelFEER
takes the input of other individuals more into account when
estimating the methylation values, and therefore indirectly
when estimating the cell type proportions.

Another advantage of CelFiE over previous methods is
that it works with low coverage input data. A higher read
coverage means higher sequencing costs, and it is therefore
desirable that CelFEER performs sufficiently on low coverage
data as well. To test this, before mixing the cell types we
normalized the read coverage of each cell type to equal the
total amount of input regions multiplied with a constant, n.
This way, each cell type covered each region with n reads on
average. For each n ∈ {2,5,10,50} the average correlation
over 50 replicates and 100 individuals was measured. The cell
type proportions were generated in the same manner as before,
and no unknowns were estimated. The relation between the
correlation and the coverage is shown in Figure 9. We can
conclude that for a stable performance, the coverage should
be 10 or higher. Interestingly, the correlation between the
estimated and true cell type proportions increases a little for
CelFiE when n = 5. It is possible that lowering the coverage
acts as a noise reduction on the CelFiE input. Even on the
lowest coverage, CelFEER outperforms CelFiE, showing that
CelFEER is a suitable method for low coverage data.

Markers found on read averages are different from mark-
ers found on count input
Finally we were interested in comparing the markers found
using read averages to the markers found using CpG site av-
erages. We hypothesised that CelFEER works better with
markers found on the read averages of the reference data, on
the grounds that CelFEER differentiates cell types by their
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Figure 8. Cell type proportions estimated by CelFiE and CelFEER for zero, one and two unknowns respectively. The boxplots
visualize the estimated proportions of 50 replicates for a randomly chosen individual. On top of the boxplots, the individual
datapoints are plotted.

Table 2. Pearson’s correlation (r2) between reference
methylation and estimated methylation values (β estimates)
of a simulated mixture of seven different cell types.

Unknowns CelFiE r2 CelFEER r2

0 9.98e−1±0.03e−1 0.93±0.03
1 0.92±0 0.89±0.11
2 0.85±0.25 0.77±0.26

read averages. Additionally, as reasoned in the introduction,
read averages should be more sensitive to differences in methy-
lation status between cell types. We again performed the same
experiments, using a simulated mixture of seven different cell
types.

We firstly checked the overlap in markers found using both
methods. Of the 700 markers, 130 markers were found by
both. Each of the seven cell types has markers that are found
by both methods. There are no markers that are a marker for
one cell type in one method and a marker for another cell type
in the other method.

Using the markers found by CelFiE, CelFEER performed
similarly with a correlation of r2 = 0.94±0.04 (Figure C.1).
The correlation between the cell type proportions estimated
by CelFiE using CelFEER’s markers is r2 = 0.69±0.21, indi-
cating that the markers found by CelFEER are not suitable for
the input of CelFiE. Averaged over all cell types, the differ-
ence in methylation percentage between cell types at CelFiE’s
marker locations is 0.65 for both the reference and input data,
where the reference data showed slightly less variation with a
standard deviation of 0.19 compared to 0.20 for the input data.
For CelFEER, this difference is 0.66±0.20 for the input and

Figure 9. Relation between the input coverage and the
correlation between the estimated and true cell type
proportions. The full range of the correlations of 100
individuals and 50 replicates is highlighted.

0.64±0.22 for the reference. Figure C.2 does show that for
some cell types the variation in the distance from the median
is substantially larger for the CelFEER markers.

3.3 Application in ALS
Caggiano et al. showed that CelFiE is able to differentiate
between Amyotrophic Lateral Sclerosis (ALS) patients and a
control group by the estimated proportion of skeletal muscle
derived cfDNA. Although it is interesting to see if CelFEER
is also able to distinguish between the ALS and the control
group, it is hard to evaluate the method based on its cell type
proportion estimates since there are no ground truth cell type
proportions available. Moreover, while Caggiano et al. used
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Figure 10. Estimated proportions of cfDNA in ALS patients (n = 4) and a control group (n = 4). Figures A, B The complete
cell type decomposition of CelFEER and CelFiE respectively. Figures C, D The estimated proportion of skeletal muscle
cfDNA by CelFEER and CelFiE.

28 case and 25 control samples, we only used four case and
four control samples. The reference data consists of all 19
cell types given in Table B.1.

We firstly decomposed the cfDNA without unknown cell
types in the reference data, thus estimating the proportions
of each of the 19 cell types present in the reference. The five
cell types with the highest proportions estimated by CelFEER
were, in both groups, the following: neutrophil, monocyte,
erythroblast, spleen and eosinophil. CelFiE estimated similar
proportions, but instead of spleen it estimated adipose to be the
fourth highest in proportion. In their own work [4], however,
neither spleen nor adipose, but macrophage cells are in this
top five. Still, these results mostly correspond to the findings
of Moss et al. [18]. The full decomposition can be seen in
Figure 10a and Figure 10b.

Next, we specifically examined the skeletal muscle cell
proportions in both groups. CelFiE estimated an average
proportion of 5.5e−3±3.1e−3 in the ALS case group, and
1.5e−3±1.1e−3 in the control group (Figure 10d). A two-
sample t-test did not indicate a significant difference between
the two groups; t(6) = 2.09, p = 0.08. CelFEER, on the

contrary, did find a significant difference, with an average
proportion of 1.2e−3±5.4e−4 for the ALS case group and
7.7e−5± 1e−4 for the control group (Figure 10c); t(6) =
3.54, p = 0.01. Clearly, CelFEER is able to detect small
fractions of rare cell types in cfDNA.

As Caggiano et al. estimated the cell type proportions in
[4] with one unknown cell type, we repeated the experiments
with one unknown. However, as shown in subsection 3.2,
CelFEER is not adept for estimating unknown cell types, and
estimated an extremely high proportion of unknown cell types
in both the ALS and control groups (0.93±0.01 and 0.86±
0.12 respectively). CelFiE estimates more likely proportions
(0.18 ± 0.02 and 0.17 ± 0.05 for case and control respec-
tively). Consequently, the estimated skeletal muscle propor-
tion was extremely small for CelFEER; 1.4e−12±1.5e−12
for case and 4.9e−17± 6.4e−17 for control (Figure C.3b).
These estimates were higher for CelFiE; 1.3e−4±2e−4 for
case and 1.2e−5± 9.5e−6 for control (Figure C.3a). Both
methods were still able to differentiate between the case
and control groups by the proportion of skeletal muscle, al-
though the difference was not significant for either method
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(t(6) = 1.04, p = 0.34 for CelFiE and t(6) = 1.63, p = 0.15
for CelFEER). The extreme overestimation of the unknown
cell type proportion in CelFEER means that a large part of the
ALS input consists of a more or less equal mixture of different
read averages. Since the unknown cell type is initialized with
methylation percentages set to make each read average equally
likely, the estimated proportions will converge to a large pro-
portion of unknown cells. This is another indication that the
unknown cell type may need to be initialized differently.

4 DISCUSSION AND OUTLOOK
The analysis of cfDNA has some attractive properties, such
as the possibility to detect and monitor disease without under-
taking aggressive surgery [15]. By retrieving the cell types of
origin of cfDNA, it is possible to obtain a complete overview
of all cells that shed cfDNA, and even of the amount of cfDNA
each cell type yields. An inquiry in the cell type proportions
can indicate the presence of aberrant cell types, such as tumor
cells, in the cfDNA. Yet, detection of aberrant cell types can be
difficult, especially in early stages of disease. Recent methods
use the methylation states at CpG sites that cause a differential
gene expression in different cell types. In this research, we
adapted one such method, CelFiE [4], to instead use differen-
tial methylation averages of individual reads. The intuition
behind this approach is that the methylation averages of indi-
vidual reads differentiate more than CpG site averages, since
aberrant reads are almost undetectable when averaged with
healthy reads. This new method, named CelFEER, uses an
expectation-maximization algorithm and a reference cell type
dataset to estimate the true cell type proportions of cfDNA
mixtures.

We first compared the performances of CelFiE and
CelFEER on a generated dataset, where the cfDNA mixtures
and reference cell types are drawn from the assumed underly-
ing distributions of the models. Although these simulations
can provide us insight in whether CelFEER returns sensible
results, the simulations do not model the input as a sum over
multiple correlated CpG sites. For this reason, it makes sense
that CelFiE performs better, as the model does not fully exploit
the correlation between neighbouring CpG sites. CelFEER
performs similarly, although slightly worse than CelFiE.

To evaluate the model in a more realistic scenario, we
created mixtures of different cell type WGBS datasets. We
then evaluated the correlation between the model estimates
and the artificially created mixture proportions. Surprisingly,
we could not replicate the results of Caggiano et al. when
running CelFiE on these mixtures. It is not clear why this
discrepancy between the results exists. Although it is pos-
sible that the authors forgot to mention important steps and
decisions, it seems unlikely given that their code has been
made public. It is possible that some of the smaller mistakes
the authors made, for instance failing to normalize the read
coverage before creating a simulated cell type mixture, coin-
cidentally improved performance. After improving CelFiE,
we found that CelFEER nonetheless estimates proportions

that better correlate with the true cell type proportions than
CelFiE’s estimates. We additionally showed that CelFEER
suffers less from a low read coverage, and performs well even
with an artificially induced coverage of two reads per 500 bp
window. Strangely, CelFEER performs badly when estimating
unknown cell types.

We showed that CelFEER functions on actual cfDNA mix-
tures as well by running the model on the cfDNA of four
ALS patients and four controls. As expected from previous
literature, the main cell types found are from hematopoietic
origin. CelFEER finds a significant difference between the
two groups by differentiating between the estimated propor-
tions of skeletal muscle cfDNA.

The model’s performance is highly reliant on the qual-
ity of the input regions, where the quality is defined by the
difference in methylation between cell types at an input re-
gion. In pursuit of improving CelFiE’s model performance,
we improved the original method for finding markers by ap-
plying the following changes: (i) we differentiated between
500 bp regions instead of single CpG sites, (ii) we focused
on hypomethylated regions and (iii) we applied stricter rules
to marker regions. To find marker regions for CelFEER, we
devised a method that largely follows the same approach as
CelFiE but instead uses the read averages of the reference
data.

The read averages are formulated in a way that one read
average, so one single value, summarizes multiple CpG sites.
For this reason, the range of the input is much lower for
CelFEER than for CelFiE. In addition, CelFEER filters out
reads covering less than 3 CpG sites, which decreases the
range even more. It may be interesting to investigate whether
allowing for reads with a lower CpG site coverage gives im-
provements to the model. Low read quality is one of the
disadvantages of working with WGBS data, as the bisulfite
conversion is known to be detrimental to the DNA [11]. An-
other way for compensating for the smaller range would be to
increase the amount of samples used in the reference dataset.
Currently, each reference cell type consists of the DNA of a
single individual.

If the reference data does not include all of the cell types
found in the cfDNA, the proportions of the cell types that
are included will be overestimated. Since actual cfDNA is
likely to contain a component of cell types that are absent
from the reference data [4], it is useful to estimate proportions
of unknown cell types. However, CelFEER currently greatly
overestimates the proportions of unknown cell types. It may
be possible to improve this by changing the input for unknown
cell types, as we presently employ CelFiE’s method of setting
unknown cell types to 0, which may not work for CelFEER.
In relation to that, we may need to change the initial values
for the estimated methylation percentages for unknown cell
types. Currently, the methylation percentages for unknown
cell types are initialized with β̂tmi = 0.2 for every i.

Despite the improvements made to the selected marker
regions, there is potential for more distinct markers, perhaps

12/21



by adopting a completely new approach. After all, the method
for finding markers was optimized for CpG count data and
then translated almost exactly to read average data. Read av-
erages may, however, require a completely different approach
for finding markers, such as the switching reads defined by
Li et al. [13]. An adequate set of differential regions not only
improves model performance but also allows for targeted se-
quencing of these regions only, for example using RRBS, and
can thus reduce the sequencing cost [2].

Although the input size of CelFEER is larger than the in-
put size of CelFiE (read averages are described by five counts
instead of the two counts used by CelFiE), it suffers only from
a minor increase in runtime. Like CelFiE, CelFEER is an
efficient method that scales linearly in the size of the input
and reference. Even so, it could be beneficial to consider
CelFEER’s performance when using more or less counts. Us-
ing less counts, i.e. rounding the read averages more before
summing similar averages, would likely decrease model per-
formance but speed up computations. Using more counts, on
the other hand, may give an increase in performance that is
worth the added computation time.

Finally, the use of CelFEER in practical applications
should be investigated further by testing the model on more
cfDNA data. A first step would be to use more samples in the
ALS experiment. Eventually the model could be tested on, for
instance, pregnancy and cancer samples.

With CelFEER, we showed that a cell type deconvolution
method can more sensitively estimate cell type proportions
when using read averages instead of CpG site averages, even
at a low input read coverage.
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A EQUATIONS
Original CelFiE equations
Posterior distribution:

pntm1(α,β ) := pntmc(α,β ) if xnmc = 1

=
βtmαnt

∑k βktαnk

pntm0(α,β ) := pntmc(α,β ) if xnmc = 0

=
(1−βtm)αnt

∑k(1−βkt)αnk

(12)

α and β update formula:

αnt =
∑m
(
xnm pntm1 +(DX

nm − xnm)pntm0
)

∑km (xnm pnkm1 +(DX
nm − xnm)pnkm0)

(13)

βtm =
∑n pntm1Xnm +nYtm

∑n pntm0(DX
nm −Xnm)+nDY

tm +∑n pntm1Xnm
(14)

Log-likelihood formulation:

Q(α,β ) = ∑
n,t,m

[
(Ytm + pntm1Xnm) log(βtm)+

(
DY

tm −Ytm + pntm0(DX
nm −Xnm)

)
log(1−βtm)

]
+ ∑

n,t,m

(
Xnm pntm1 +(DX

nm −Xnm)pntm0
)

logαnt
(15)

Derivation of full data log-likelihood
Q(α, β̂ ) := Ez|X̂ ,α,β̂ logP(X̂ ,z,Y |α,β )

= Ez|X̂ ,α,β̂

(
logP(X̂ |z, β̂ )+ logP(z|α)+ logP(Ŷ |β̂ )

)
= ∑

n,t,m,c
Ez|X̂ ,α,β̂

[
zntmc ∑

i
x̂nmci log β̂tmi + zntmc logαnt

]

+ ∑
n,t,m

(
log(∑

i
Ŷtmi!)−∑

i
log(Ŷtmi!)+∑

i
Ŷtmi log β̂tmi

)

= ∑
n,t,m,c

p̃ntmc

[
∑

i
x̂nmci log β̂tmi + logαnt

]

+ ∑
n,t,m

(
log(∑

i
Ŷtmi!)−∑

i
log(Ŷtmi!)+∑

i
Ŷtmi log β̂tmi

)

= ∑
n,t,m

[
∑

i
pntmix̂nmi log β̂tmi +∑

i
pntmix̂nmi logαnt

]

+ ∑
n,t,m

[
log(∑

i
Ŷtmi!)−∑

i
log(Ŷtmi!)+∑

i
Ŷtmi log β̂tmi

]

= ∑
n,t,m,i

((pntmix̂nmi + Ŷtmi) log β̂tmi)+ ∑
n,t,m,i

pntmix̂nmi logαnt +n∑
t,m

[
log(∑

i
Ŷtmi)!−∑

i
log(Ŷtmi!)

]

(16)

Derivation of α and β̂ update formulas
Maximization of the log-likelihood w.r.t α and β̂ can be done using the following fact that for a probability simplex SK ⊂ RK

and any a ∈ RK
++:

arg max
p∈SK

∑
k

ak log pk = (a1, ...,aK)/
K

∑
k=1

ak

To derive αt , we let at = ∑i ptmix̂i s.t.
αnt =

∑m,i pntmix̂nmi

∑m,t,i pntmix̂nmi
(17)
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For β̂tmi we let ai = ptmix̂i + Ŷtmi s.t.

β̂tmi =
∑n(pntmix̂nmi + Ŷtmi)

∑n,i(pntmix̂nmi + Ŷtmi)
(18)

B DATA

Table B.1. WGBS cell type data and sources

Cell type Database Sample 1 Sample 2

CD4-positive, alpha-beta T cell Blueprint S007G7 S007DD
CD8-positive, alpha-beta T cell Blueprint C003VO C00256
endothelial cell of umbilical vein (resting) Blueprint S00DCS S00BJM
monocyte Blueprint S01MAPA1 S01E03A1
erythroblast Blueprint S002S3 S002R5
macrophage Blueprint S0022I S00390
mature eosinophil Blueprint S00V65 S006XE
memory B cell Blueprint C003N3 S017RE51
cytotoxic CD56-dim natural killer cell Blueprint C006G5 C002CT
mature neutrophil Blueprint C0010K C000S5
conventional dendritic cell Blueprint S00CP651 S00D71
adipose ENCODE ENCFF318AMC ENCFF477GKI
HepG2 ENCODE ENCFF847OWL ENCFF064GJQ
pancreas ENCODE ENCFF753ZMQ ENCFF500DKA
small intestine ENCODE ENCFF266NGW ENCFF122LEF
spleen ENCODE ENCFF550FZT ENCFF333OHK
stomach ENCODE ENCFF435SPL ENCFF497YOO
tibial nerve ENCODE ENCFF843SYR ENCFF699KTW
skeletal muscle myoblast primary cell ENCODE ENCFF774GXJ -

C SUPPLEMENTARY FIGURES

Figure C.1. CelFiE and CelFEER run on different markers.
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(a) CelFiE markers (b) CelFEER markers

Figure C.2. Markers found by (a) CelFiE and (b) CelFEER for seven different cell types.

(a) CelFiE (b) CelFEER

Figure C.3. Estimated proportions of skeletal muscle cfDNA when one unknown cell type is estimated in addition to the total
19 cell types in the reference data.
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(a) CelFiE ALS and control cell type decomposition (b) CelFEER ALS and control cell type decomposition

Figure C.4. Complete cell type decomposition when one unknown cell type is estimated.

Figure C.5. CelFiE estimated cell type proportions on a simulated cfDNA mixture using WGBS cell type data, using both the
markers found as described in [4] and the markers found using our improved method. For visualisation purposes the true cell
type proportions are a simple incremental array summing to one. The results of 50 replicate runs on 10 individuals are
displayed.

D SELECTION OF CELL TYPE INFORMATIVE MARKERS

A crucial step in predicting the cell type of origin is selecting markers in the genome that represent the cell types. Not only does
a set of distinct markers improve prediction, it can make sequencing of cfDNA less expensive since only the DNA overlapping
the markers needs to be sequenced. Methylation markers that span multiple CpG sites are in literature often referred to as
differentially methylated regions. To find cell type informative markers, we started by analyzing the markers found using
the method created by Caggiano et al., which is described in subsection 2.3. This method was then improved to find more
informative markers. In this section and the following we refer to the absolute counts of methylated CpG sites as methylation
values, and to the fraction of methylated to unmethylated CpG sites as methylation percentages.
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Regions are more robust markers than single sites
Caggiano et al. use the traditional approach of using single CpG sites as markers. This method, however, decreases the ability
to differentiate between different cell types as it is sensitive to both biological and technical noise. In order to reduce noise, the
CpG sites 250 bp upstream and 250 bp downstream of the markers are added to the markers’ methylation counts. The authors
showed that their method only returns sensible results when the methylation values are thus summed into regions. It nonetheless
happens that the 500 bp surrounding the markers contain little CpG sites. This method does not exploit earlier findings that the
methylation status is highly coupled between adjacent CpG sites [8]. Moreover, regions where CpG sites are clustered in high
numbers, called CpG islands (CGIs), are known to be epigenetic regulatory regions that can be cell type specific [22].

According to these findings, it makes more sense to compare regions containing multiple CpG sites instead of single CpG
sites to find differential markers. To test this hypothesis, CpG sites were grouped in a simple fashion: CpG sites were summed
if they were in a 500 bp vicinity of each other. The starting location of each 500 bp window was set to be the first CpG site
which contained measurements and did not fall in a previous bin. This strategy has the downside that it may split clusters in two,
but if this is the case and if this cluster is differential, it is not harmful for the method to use both parts of the cluster as markers.

In addition to summing over 500 bp windows, we also summed over 10 bp windows with the idea of removing noise while
still looking at mostly local methylation. After finding markers on the 10 bp windows, the surrounding CpG sites were summed
to nevertheless obtain a total window of 500 bp. In order to compare the markers’ ability to differentiate between cell types, we
looked at the absolute difference between the methylation percentage of each marker’s cell type and the median methylation
percentage of all cell types. To test the generalizability of the markers, we did this for both the reference data (which was used
to find the markers) and for the input data. As can be seen in Figure D.1, the markers are most differential when they are first
summed in 500 bp windows, and the variance in distance has substantially decreased. This strategy also seems to result in
markers that generalize relatively well to unseen data, as the input and reference data have a similar distance to the median of
other cell types. Although summing in 500 bp windows seems to return better markers than summing in 10 bp windows, it is
remarkable how much improvement can be seen compared to the original method, especially for the tibial nerve cells. This is
probably the effect of the decrease in noise which appears even if we sum over such small intervals. The results confirm the
belief that markers are more differentiable when CpG sites are first summed compared to when they are summed after selecting
individual sites. For this reason, all future experiments on markers are done on sites summed in 500 bp regions. In this section,
we used only hypomethylated markers as they promised to be most distinguishing between cell types.

Hypomethylated sites are easier to differentiate than hypermethylated sites or than a mixture of both
Caggiano et al. originally determined the best markers for each cell type by comparing the distances between the methylation
percentages of each individual cell type to the median methylation percentage of all cell types. This should, in theory, result
in a mixture of hypo- and hypermethylated markers. A sufficiently large distance to the median is, however, not a very strict
requirement as it does not remove the probability of having two or more cell types with a very similar methylation percentage
(especially as the number of cell types in the reference grows). Moreover, in practice almost all of the markers found using this
method are hypomethylated, so there is little benefit in also allowing for hypermethylated markers.

To make the markers more differential, we measured the distance between the methylation percentage of each cell type and
the minimum methylation percentage of all other cell types. This approach was compared to the original approach (where the
distance from the median is measured instead) as well as to a similar approach where we looked only for hypermethylated
markers (and thus compared to the maximum of all other cell types). When comparing the markers’ distances from the median,
the original method seems to result in the best markers for all cell types except adipose (Figure D.1d). Hypomethylated markers,
on the other hand, have a slightly smaller distance from the median for all cell types except for adipose, for which the distance
is larger (Figure D.1e). Hypermethylated markers have overall the smallest distance from the median (Figure D.1c).

However, as reasoned above, the distance from the median may not be the best metric for defining the ability to differentiate
between cell types. Therefore, we can not assume that the distance from the median also translates to the best cell type
deconvolution results. For this reason, we looked at the results on a simulated mixture of the WGBS data of 10 cell types
and measured the Pearson’s correlation between the true and estimated cell type proportions of 50 replicate runs for 10
individuals. We set the true cell type proportions to a linearly incrementing array that sums to one. While the hypomethylated
markers resulted in a correlation of r2 = 0.86±0.01, the hypermethylated and original method resulted in a correlation of
r2 = 0.68±0.04 and r2 = 0.58±0.03 respectively. This confirms the idea that the distance from the median is not the best
metric for obtaining differentiable markers.

This can additionally be observed from the amount of markers found by each metric. The method for finding markers works
in such way that it first finds the 100 best markers for each cell type and then removes the markers that are overlapping multiple
cell types. As can be seen in Figure D.2, the original method finds less markers which means that the markers it finds have a
high amount of overlap between cell types. Especially monocytes and macrophage cells seem to have much overlap, which
makes sense given the fact that macrophage cells are differentiated monocyte cells [23]. Hypo- and hypermethylated markers
are nevertheless able to differentiate these two cell types. To test whether the markers found using the original method would
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(a) Individual sites (b) Summed over 10 bp (c) Summed over 500 bp

(d) Distance measured from median (e) Hypermethylated

Figure D.1. Distance from median methylation percentage for three different strategies; Purple dots represent the input at
different marker locations and orange dots represent the reference at the same marker locations. The reference data was used to
find the marker locations.
Row 1: Comparison between single CpG site markers which are summed with their 500 bp neighbouring sites (D.1a), 10 bp
markers which are summed with their 490 bp neighbouring sites (D.1b) and 500 bp markers (D.1c).
Row 2: Comparison between markers defined by their distance from the median methylation percentage (D.1d), distance from
the maximum (D.1e) and distance from the minimum (D.1c).
All figures in row one use hypomethylated markers, and all figures in row two are first summed over 500 bp.

result in better performance if more markers were included, we first tested for uniqueness of the 200 best markers of each cell
type and then included the 100 best markers. This way each cell type had 100 markers. This resulted in a negligible increase in
performance.

As the hypomethylated markers seem to give the best results, all experiments in this section, including the previous section,
use hypomethylated markers.

Figure D.2. The bar chart shows the amount of markers found for each cell type using each of the three different ways to
measure the distance between cell types.
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Additional improvements for increased differentiation between cell types
In addition to the improvements discussed in the previous two sections, there were two possible unwanted outcomes in the
original method for finding markers. The first of which is that the authors introduced only a requirement for the median read
depth of all cell types at a candidate marker site. This means that if one cell type is covered by one single read only at a
candidate CpG site, this CpG site can still become a marker for that cell type as long as all other cell types have sufficient
coverage. A simple adjustment was made to the method by setting a minimum depth threshold for cell types at their potential
marker sites. This threshold was set equal to the median depth threshold.

The second possible undesirable behaviour is caused by the manner of checking for the uniqueness of the markers. As only
the top 100 markers of all cell types is checked for overlapping markers, it is possible that the same site is the 100th best marker
for cell type x and the 101st best marker for cell type y. This situation was prevented by keeping a list of the 150 best markers
for each cell type which are all checked for uniqueness, such that the 100th best marker for cell type x could not even be the
150th best marker for cell type y.

The effects of both changes were measured by calculating the Pearson’s correlation between the true and estimated cell type
proportions for 10 individuals and 10 cell types of 50 replicate runs. The true cell type proportions were drawn from a uniform
distribution and made to sum to one. Using no improvements, the correlation between the true and estimated cell types was
r2 = 0.87±0.09 . Using only the additional uniqueness criterion did not change the results, and resulted in the same amount of
correlation. The stricter depth criterion, however, improved the correlation to r2 = 0.91±0.06. Combining both improvements
resulted in the same correlation. This means that the situation described above does not occur, and the markers are already
sufficiently unique. This is perhaps a consequence of using hypomethylated markers only.
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