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Summary 

 

Urban street networks contain repetitive structures that reflect human needs as cities expand and evolve. 

To identify and understand these building blocks of cities, we propose the use of graphlet-based 

methods–that is, focusing on small, connected subgraphs of these networks. Looking at graphlets of up 

to 4 nodes in the street networks of New York City, we identify local structures such as gridded patches 

through spatial auto-correlation statistics. This methodology can be quickly applied to any city in the 

world, helping researchers classify local street structures and identify common urban development 

trends across many cities. 
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1. Introduction 

 

Network models of street patterns offer a robust way to formalize and scale the analysis of urban 

morphology (Boeing, 2017). Local network structures are central to this discipline. The inherent 

modularity of spatial networks (Gilarranz, 2020) and the recurrence of identifiable street patterns such 

as grids, cul-de-sacs, and long roads (Moosavi, 2017) suggests that street networks may be composed 

of several juxtaposed, wired-together local structures. Thinking about urban morphology as modular 

and identifying the function of local street structures in the city would support planners in designing 

replicable solutions to common urban issues or neighborhood goals (Dennemark et al., 2017). 

 

Common tools from network science cannot be immediately used to identify these structures. Despite 

the existence of many complex network analysis techniques, spatial constraints to street networks steer 

structural analysis away from typical local indicators such as degrees, node correlations, and 

betweenness centralities (Akbarzadeh et al., 2018; Jiang et al., 2014). And, while scaling relationships 

are found on the network as a whole and correlated datasets to describe urban growth (Bettencourt et 

al., 2007; Boeing, 2021), they do not offer a precise description of local street structures. Attempts to 

classify local building blocks of cities often rely on planarity assumptions (Louf and Barthelemy, 2014) 

or data beyond the street network (Fleischmann et al., 2021).  

 

We study street networks using graphlet analysis. A graphlet is a small, connected subgraph in a 

network. Graphlets were proposed to be simple building blocks of complex networks: Each of these 

local structures represents a different function in ecological, metabolic, online, trade, transportation, 

and social networks (Milo et al., 2002; Charbey and Prieur, 2019). These local measurements also 

provide a robust way to compare different networks structurally (Sarajilić et al., 2016; Tantardini et al., 

2019). Existing studies of street networks with graphlet analysis focus on global graphlet counts rather 

than local assessment of the graphlets’ role as building blocks (Topirceanu et al. 2014; Yu et al., 2019). 
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2. Methodology 

 

We consider graphlets of 2, 3, and 4 nodes on undirected street networks. There are exactly 9 such non-

isomorphic graphlets. Within a certain graphlet, nodes might have different connectivity properties. To 

account for this, we define automorphism orbits (Pržulj, 2007) as follows: If there is a permutation of 

the vertices and edges of the graphlet which preserves neighbor relations (an isomorphism to itself) that 

relates two specific nodes, we say that these two nodes belong to the same orbit. The 9 graphlets and 

15 orbits are labelled in Figure 1. 

 

 
Figure 1. All 9 undirected graphlets of 2, 3, and 4 nodes with human-readable names and their orbits, 

labelled 0, . . . 14. In a certain graphlet, nodes with the same color belong to the same orbit, that is, 

are indistinguishable since there is an automorphism—a symmetry—of the graphlet permuting them. 

 

Orbit 0 corresponds to an edge of a network. The count of graphlets in which a node corresponds to 

orbit zero is then the (trivial) degree of that node in the network. The idea of a degree can be extended 

to all other 14 orbits, so that for each node its n-degree counts the number of orbits n that it belongs to. 

Generalizing the degree distribution, we can define 15 graphlet degree distributions (GDDs) measuring 

structural properties of a network (Pržulj, 2007). 

 

We compute the GDDs for New York City. Data is obtained from OpenStreetMap via OSMnx (Boeing, 

2017). We selected only driveable streets–walkable streets include paths in parks and courtyards which 

do not represent well the urban street structure. We simplified the networks to perform meaningful 

graphlet analysis as follows: Edges were made undirected, multiple-node intersections were 

consolidated in a single node, and parallel edges and self-loops were removed. Using the orbit counting 

algorithm (Hocevar and Demsar, 2014), we computed the graphlet degrees of each node in the network. 

 
The degrees were considered as categorical variables for two main reasons. First, the GDDs are 

concentrated in few values because street networks are constrained by space. Second, normatively 

ordering the n-degrees requires an analysis of functionalities associated with morphology. We 

computed entropy-based local indicators of spatial autocorrelation (ELSAs) for each node and for each 

of the 15 distributions (Naimi et al., 2019). 

 

3. Results 

 

We show results for the orbits 0 (the trivial degree) and 8 (the square degrees). We chose these two 

orbits for they represent a basic network indicator and a pervasive higher-level structure respectively. 
The degree distributions of New York are shown in Figure 2. 
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Figure 2. Distributions of graphlet degrees for orbit 0 and orbit 8 in New York City. 

 

The GDDs, in both cases considered, have few possible and noticeably spatially clustered values. The 

trivial degree, as expected, is predominantly 4, which represents a natural crossing of two streets. The 

most common square degree is also 4. A group of nodes touching 4 squares can be thought of as a 

gridded street plan, so that the result is expected for the morphology of Manhattan and parts of Brooklyn 

and Queens. On the other hand, few nodes which have 0-degree equal to 4 in Staten Island (island in 

the bottom left of the map) also have 8-degree equal to 4. This gives us empirical evidence that the 

dependency between 8-degrees and 0-degrees in the other boroughs is not a mathematical artifact, but 

a product of urban morphology. Regions where nodes with 0-degree equal to 4 are likely to also have 

8-degree equal to 4 are gridded urban regions. 

 

For the spatial autocorrelation analysis, we focus on the entropy term of the ELSA statistics to highlight 

regions with diverse morphology (Naimi et al., 2019). These values are mapped in Figure 3. 

 

 
Figure 3. Compositional ELSA term for orbit 0 (left) and orbit 8 (right) in New York City. This 
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statistic–a value between 0 and 1–measures the diversity of graphlet degrees around a particular node. 

Nodes with the value close to zero, colored in dark blue, have little diversity so that their 

neighborhood is very homogeneous. 

 

Through spatial autocorrelation analysis we can further identify gridded patches in the street network 

of New York. Regions colored dark blue in the maps define contiguous groups of nodes of 

predominantly the same graphlet degree. Comparing these maps to those in Figure 2B, we draw 

attention to regions of low degree diversity (dark blue in Fig. 3B) which also have square degree equal 

to 4. These regions correspond to gridded areas of the city. 

 

We notice that in the square ELSA map (Figure 3B), dark blue regions are scarcer than in the trivial 

degree ELSA map (Figure 3A). This happens because the square degree equality defines a more 

restrictive condition than the trivial degree. Morphologically, these regions are “perfect” grids, whereas 

many of the homogenous regions in the trivial degree sense are grids broken apart by transverse streets, 
corners, or roundabouts. 

 

4. Conclusions 

 

In this research we sketched a framework to express morphological characteristics of a city from street 

networks. Our framework is based on graphlets, thus tying the study of cities to network methods 

common in the biological and social sciences. The graphlet degree distributions also naturally extends 

notions of degrees and connectivity to higher-level structures. We showed that these high-level 

structures represent the local morphology in New York City, and that morphological regions of the city 

can be identified with spatial autocorrelation statistics. 

 

This work serves as a proof-of-concept that graphlets analysis can be leveraged in the study of urban 

morphology. Our approach can be applied to any city or region with a street network present in 

OpenStreetMap. Currently, we are improving the rigour behind the autocorrelation analysis to 

understand how identifying these morphological structures can improve our understanding of street 

networks. 
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