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ABSTRACT The increasing number of electric vehicles (EVs) means both a challenge and an opportunity
for the electric grid. Different charging algorithms have been proposed in the literature to tackle these specific
challenges and make use of the potential services that EVs can provide. However, to properly investigate
the conflicting objectives, a multi-objective approach is paramount. These algorithms provide a family of
solutions instead of just one, so the decision-maker can see the connection and trade-offs between the
objectives. This paper proposes a highly customisable multi-objective framework based on an expanded
version of the augmented e-constraint 2 method. Together with a mixed integer linear programming (MILP)
formulation, it is used to solve a charging station scheduling problem. An energy management system (EMS)
executes the calculated schedules to show the effect on the individual EVs. Numerical simulations based on
market and EV data from the Netherlands demonstrate the adaptability and effectiveness of the proposed
algorithm.

INDEX TERMS Charging station, electric vehicle, energy management system, multi-objective optimiza-

tion, smart charging, V2G.

. INTRODUCTION

VER the past few years, concerns about climate change

and its effects have gained more and more traction.
One possible way of reducing greenhouse gasses, espe-
cially CO, emissions, is the electrification of the transport
sector [1]. The sales of Electric Vehicles (EVs) have risen
continuously in the last decade. More than 10 million EVs
were sold globally in 2022, and another 35% growth was
projected for 2023.

The increasing number of EVs will significantly impact the
power grid because of the substantially increased electricity
demand for charging the vehicles [2]. On the other hand, with
proper charging strategies and using vehicle-to-grid (V2G)
technology, EVs can also offer services to the grid, increasing
grid stability and helping the energy transition [3]. Exam-
ples include frequency regulation, peak shaving and load
levelling. These services can also provide financial benefits
to multiple actors of the electricity system, including EV
users [4], [5]. At the same time, their objectives often contra-
dict each other, creating trade-offs. Based on the objectives

and investigated scenarios, different optimisation approaches
and methods were investigated in the literature [6], [7], but
these mainly focus on one specific objective. This approach
does not make it possible to fully utilise the possibilities
provided by EVs.

With multi-objective (MO) optimisation, the relationship
between the objectives becomes clear. This way, the most
suitable solution can be selected for each situation. This paper
introduces a multi-objective optimisation algorithm suitable
for EV charging stations. It focuses on the local level (i.e.
a single charging station), but it will form the basis for future
work exploring the cooperation possibilities between stations
and grid-level control. Thus, it is of paramount importance
that the algorithm can be customised and easily modified or
expanded.

A. LITERATURE REVIEW

Smart and bidirectional charging algorithms can range from
small-scale home energy management systems [8], [9] to
parking lots with up to a couple hundred EVs [5], [10], [11]

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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FIGURE 1. Schematic representation of the cost-based
optimisation (top) and a posterioiri optimisation (bottom).

to large aggregates of up to 10 000 vehicles [12], [13]. Most
papers focus on specific aspects of the scheduling problem,
for example, the uncertainties regarding the availability of
the EVs [4], [11] or the forecast for photovoltaic systems
connected to the chargers [5], [8]. Another important aspect is
the control architecture, which includes centralised [14] and
decentralised approaches [12], as well as hierarchical sys-
tems [15]. Researchers also considered different timescales
with fixed timestep [16], multi-level [9] and event-driven
algorithms [17]. Different charging station, EV and battery
degradation models have been researched, as well. How-
ever, the overwhelming majority of papers only include one
objective, which is the minimisation of cost. Even though a
cost function could include multiple aspects, this is a lim-
iting factor. Some objectives might hinder others, and the
trade-off is hard to identify with only cost-based formulation.
Moreover, only one actor’s (EV user, Transmission System
Operator (TSO), Distribution System Operator (DSO), etc.)
perspective is usually considered. A multi-objective formula-
tion is necessary to overcome these limitations. A schematic
representation of the two approaches is shown in fig. 1.

In the case of multi-objective optimisation, two or more
conflicting objectives are defined. There are multiple possible
classifications for these problems. One of the most popular
ones is based on the decision-making process [18], [19]:

o A priori methods where preference information is avail-
able before the solution process.

o A posteriori methods where first possible (Pareto-
optimal) solutions are identified, and the decision-making
process chooses one of the solutions.

o Progressive methods where the generated solutions are
iteratively refined based on the decision-maker’s prefer-
ences.

Both a prioiri and a posterioiri methods have been
investigated in the literature for EV charging schedul-
ing. In the former case, the multi-objective problem is
always transformed into one or more single-objective for-
mulations. The weighted sum method [17], [20], [21] and
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hierarchical optimisation [22], [23], [24] are two commonly
used approaches, but these only provide one Pareto-optimal
solution and do not represent the whole front. In the for-
mer case, multiple solutions can be generated by changing
the weights and re-running the oprimisation. A posterioiri
methods include mathematical programming, metaheuristic
algorithms and machine learning. Their common point is
that they generate multiple nondominated solutions, which
represent part of or the whole Pareto-front. With mathemat-
ical programming, different scalarisations are formed and
then solved using single-objective optimisation. Metaheuris-
tic algorithms approximate the front in a single run, which
consists of multiple iterations.

The number of papers dealing with EV scheduling based
on a posteriori methods is relatively small, but metaheuristic
approaches seem more prevalent [25], [26], [27]. Unfortu-
nately, with these methods, the optimality cannot be guar-
anteed [28]. Furthermore, they do not provide control over
the distribution of the found solutions. Among the scalar-
isation methods, the augmented ¢-constraint method is the
most often used [29], [30]. These papers demonstrate the
potential of the mathematical programming approach, but
they lack customisability, as the number and order of objec-
tives are fixed. table 1 summarizes the main differences
between the mentioned multi-objective approaches and high-
lights the advantages of the algorithm proposed in this

paper.

B. CONTRIBUTIONS
The main contributions of the work reported below include:

o The paper introduces a highly-customisable multi-
objective optimisation algorithm for EV charging
scheduling based on the augmented e-constraint 2
(AUGMECON?2) [33] method. Most optimisation set-
tings can be easily accessed and changed by the user,
including the number and order of objectives, the grid
density for each objective and the overall search area.
The algorithm is also independent of the underlying
problem formulation and solver. These allow the user to
fully utilise the multi-objective optimisation approach in
different scenarios.

e« The AUGMECON2 method has been modified to
increase the flexibility of the algorithm. These changes
influence the implementation and also add a new feature:
secondary objectives. To the authors’ knowledge, this
feature has not been proposed before.

« A Mixed-Integer Linear Programming (MILP) formu-
lation is presented for a charging station scheduling
problem. The four main objectives represent the goals of
different actors in the electricity system. Some of these
objectives have been investigated in the literature, but
not together. EVs not wishing to participate in smart
charging or V2G are also accounted for. The formula-
tion, in combination with the flexible MO algorithm,
also allows for easy expansion possibilities.
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TABLE 1. Comparison of the different multi-objective optimisation approaches.

Approach References Number of Number of Optimality can ~ Control over the Solver
objectives secondary objectives  be guaranteed solutions space  independent
Weighted sum [17], [20], [21] fixed none yes very limited yes
Hierarchical [22]-[24] fixed none yes single solution yes
Metaheuristic [25]-[27], [31], [32] fixed none no limited no
Augmented e-constraint [29], [30] fixed none yes limited yes
Proposed algorithm this paper configurable configurable yes full yes
Il. MULTI-OBJECTIVE FORMULATION bound, u;, which is then reduced at each iteration with a
A. NOTATIONS ) o step size of # The number of intervals in the given range,
M Number of primary objectives int; is determined by the user. With more intervals, and thus
0 Number of secondary objectives grid points, a denser representation of the Pareto-front can
th e s be reached, but the computational power need also increases.
fix) i objective The loops for the objectives are nested into each other so that
S; Surplus variable for the jth objective the algorithm steps through each grid point. As the iteration
th e counter increases, the given objective is constrained closer
¥ Range for the i'" objective . . . . .
to its optimal value. It is also possible to manually define
e Calculated upper limit for the i objective the upper bound, thus restricting the search space. A more
u; Upper bound for the i objective detailed explanation, including the ad'va.lntages of the': AUG-
MECON?2 method compared to the original method, is given
it; Iteration counter for the ith objective in [33] and [34].
int;  Number of intervals for the i objective

B. DESCRIPTION OF THE ORIGINAL METHOD

For the multi-objective formulation, a mathematical pro-
gramming approach, the augmented e-constraint was chosen.
The implementation is based on an improved version of the
method, AUGMECON?2 [33]. The augmented e-constraint
method is based on scalarisation: the original multi-objective
formulation is converted into multiple single-objective prob-
lems. With e-constraint, one objective is optimised while the
others are fixed to given values in a restricted range specified
by the pay-off table. The ranges and chosen density determine
the number of sub-problems that must be solved. The general
problem formulation is as follows:

S S S
minfi(x) — e (—2 10712 4+ 10—<M—2>—M) (1a)
r r3 ™
st f(X)+Si=e Viel2, M] (1b)
r,‘it,‘ X
ei=u—— Viel[2, M] (Ic)
int;

The first step is the generation of the M x M pay-off
table using the lexicographic method described in [34]. Each
row is calculated by optimising the objectives in order and
recording their value. However, after each step, the previ-
ously calculated optimal value is added as a constraint. The
objective orders are varied, so each objective appears both
in first and last place. The minimum and maximum value
for each objective determines the range of possible objective
values, r;. The maximum value determines the original upper

654

C. EXPANSIONS OF THE METHOD

1) NESTING STRUCTURE

Multiple objectives can be defined, but only the ones chosen
by the user are passed to the solver. Thus, the number of
objectives and their order can change. To step through all
the grid points, M-1 nested loops are used in the original
papers [33], [34], where M is fixed (hard-coded). To avoid
this problem, a simulated nested loop structure was imple-
mented, where a set of slots is maintained for each looping
variable. This way, recursions are avoided, which could neg-
atively impact the performance and memory usage. However,
the number of objectives can still be changed only by setting
the corresponding input (function argument); no code change
is necessary.

2) HANDLING OF SITUATIONS WITH NO TRADE-OFF

As can be seen in eq. (1a), the surplus variables are scaled
by the corresponding ranges. If there is no trade-off between
two or more objectives, the corresponding ranges will be zero,
and a division by zero error will occur. Some objectives might
only conflict in certain situations, based on the electricity
price, charging time, number of EVs, etc. To overcome this
problem without changing the formulation, the algorithm was
extended to detect these scenarios automatically. In these
cases, the objectives are removed, and their optimal values are
added as constraints, similar to the process in lexicographic
optimisation. If only one objective remains, the algorithm
switches to single-objective optimisation.

VOLUME 12, 2025
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3) SECONDARY OBJECTIVES

Secondary objectives modify the calculated solutions without
affecting the values of the primary objectives. Multiple dif-
ferent schedules might exist with the same primary objective
value. For example, regarding the cost, such a situation can
occur if the electricity price remains the same for a longer
period. The charging can start earlier or later or could oscillate
between on and off periods. With the proper secondary objec-
tive(s), the number of these schedules can be reduced to one,
similar to Symmetry-breaking constraints. Otherwise, it can
be hard to control which schedule is selected by the solver
among several schedules with the same primary objective
function value. Secondary objectives can also be used to
evaluate specific objectives without affecting the main result
(solutions on the Pareto-front).

The pay-off table described in section II-B must be
extended to add secondary objectives. With O secondary
objectives, the new table size will become M x (M + O). The
secondary objectives are always put in the last places in the
optimisation order when generating the table rows so as not to
affect the primary objective values and ranges. For the same
reason, their maximum (worst) value is selected and added as
a constraint. These constraints are present for each grid point
and are not modified in the iterations.

lll. CHARGING STATION ENERGY MANAGEMENT
SYSTEM

An energy management system (EMS) is necessary to control
the charging of the EVs connected to the charging station.
In this paper, the station is assumed to have solar panels and
multiple chargers installed. The nominal solar power and the
grid limits are configurable. The overall time window and
the length of the timesteps can also be modified. Day-ahead
optimisation with a rolling horizon is used in the case studies,
as it can showcase the capabilities of the proposed multi-
objective framework.

IV. MATHEMATICAL FORMULATION OF THE
SCHEDULING PROBLEM

The EV charging scheduling problem has been formulated as
a mixed-integer linear program (MILP) for a public charging
station. The variables, parameters, constraints and objectives
are detailed in the following subsections.

A. INPUT VARIABLES AND PARAMETERS

t,j Indeces for timestep and EV, respectively

PII'EVmaX " Maximum charging power of the jth EV [kW]

PLyi. Maximum discharging power (V2G) of the ji!
EV [kW]

EJEVmax Maximum battery capacity of the j® EV
[kWh]

P/PVmax Maximum (nominal) power of the connected

PV panels [kW]
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T Length of the optimisation window (number
of timesteps)
Titep Length of one optimisation timestep in hours
Tﬁn, Téep Arrival and departure timestep of the j* EV,
respectively
Ely.. E{E\,g Starting and target battery energy of the j"
EV, respectively [kWh]
. Converter efficiency of the /" EV
Ptgridmax + Maximum allowed grid load (feeding) at
timestep ¢ [kW]
wridmax—  Maximum allowed grid load (drawing) at

timestep ¢ [kW]

Electricity buying and selling price (mar-
ket clearing price) at timestep f, respectively
[€/kWh]

f t
Cbuy » Ceell

Cpenalty Penalty paid to the EV user for not satisfying
the charging need [€/kWh]

CpV Price for solar power (if applicable) [€/kWh]

SoChin Minimum SoC for each connected EV

XCVmin Ratio of the maximum charging power at
100% SoC and nominal maximum charging
power

S0Chigh SoC threshold, above which the maximum
charging power is reduced

SoClow SoC threshold, below which the maximum
discharging power is reduced

N Number of connected EVs

Brcr Fraction of a timestep for which the frequency

regulation power must be maintained

B. OPTIMISATION VARIABLES
All variables are equal to or greater than zero.

Py . Charging power of the j EV at timestep ¢
(kW]

P;"\’,f Discharging (V2G) power of the j0 EV at
timestep ¢ [kW]

E]'E\’, Battery energy of the j® EV at timestep ¢
[kWh]

E et Unmet energy demand of the j" EV (differ-
ence between the requested and actual battery
energy at the time of departure) [kWh]

P{,V Used solar power at timestep ¢ [kW]

a;rid Binary variable for grid power direction (0:
power fed to the grid, 1: power drawn from
the grid)

Pfgrid_ Power fed to the grid at timestep ¢ [kW]

Pfgri d Power drawn from the grid at timestep # [kW]

Pgrigpeak  Peak power drawn during the optimization

window [kW]
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ﬁéRu Maximum up-regulation power that can be
offered as frequency regulation service [kKW]
Maximum down-regulation power that can be
offered as frequency regulation service [kW]

tJ
PFCRd

PE{}uC Charging power of the jth uncontrolled EV at
timestep ¢ [kW]

C. ACCEPTANCE CRITERIA

The arriving EVs must meet the acceptance criteria. These
ensure that a feasible charging schedule can be found. The
maximum amount of energy that can be delivered to the
given EV is limited by either the grid or the charger and
EV. Equation (2a) represents the grid-based limit, eq. (2b)
shows the same for the charger. P ¢ 18 the aggregated charg-
ing schedule of all the already connected EVs. Pavg is the
charging schedule of the EVs currently waiting to connect
and is calculated based on their average power need. The
stricter limit is then compared with the EV’s energy need.
If the requested energy exceeds the available capacity, the
EV is rejected, and the user needs to modify the scheduled
departure date or requested energy amount.

dep

Z (P gridmax— — agg — P é\vg)TSteP ch vj

grldmax -
t —Tarr
(2a)
J .
chmax ( dep Tarf)P] EVmax+ Tstep ch vj (2b)
J J J ;
mm(Egrldmax’ Echmax) EEVg EEVs VJ (2¢)

D. CONSTRAINTS

1) EV CONSTRAINTS

Both the charging and discharging power (PEV o ;5’{,_)
are limited by either the converter onboard the EV or
the external charger. After the EV has connected to the
charger, the limits can be compared, and the stricter limit

is applied (P’EVm ot P’EdeX ). The offered frequency reg-

ulation power (PFCRu, FCRd) might further restrict the
(dis)charging power. If an EV does not wish to participate
in V2G operation, the maximum dlscharglng power is set to
zero. Please note, that either P J orP _is zero at all times.

EV+
EV+ + (PR FCRd ~ ) <P Evmaxr VLV ()
PEy_ + (Pilgy — EV+) <P Evmax— VLY (4)

The EV battery energy cannot exceed the maximum battery
capacity.

EtJ <E]

EV EVmax i, Vj 5

The battery energy at the start of the optimisation is set
based on the reported SoC and battery capacity of the EV.

Tirr .
Epy” g Efws vj Q)

At departure, the battery energy must be equal to the

requested level from the EV user (E}, Evg)- The E) et term is
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added to avoid infeasible solutions. This is especially impor-
tant with multi-objective optimisation towards the extreme
points on the Pareto-front. The variable EJ, .., cannot be
negative. Thus, the overcharging of the battery is avoided.

T
E dep + E{1

EV nmet — E{gvg vj )

Before arrival and after departure, the charging, discharg-
ing power, and offered regulation power are set to zero.

f, ] 7,

PRy PF(]IRd =0 VrgITy T, dep] vij ®)
L phi Jj

Pgy_, Pregy =0 V1 ¢ [Ta, dep] vj )

The battery energy level for each EV for each timestep
is calculated with eq. (10). The charging and discharging
efficiency are considered to be the same. The inclusion of this
efficiency term also ensures that PE and PEV_ are not both
nonzero at the same time under normal market conditions.
Thus, the addition of a binary variable is not necessary.

t+1,j t,j t,J Tstep
Egy " = Egy +P EV+T‘tCP ch — PEV_—
ch
vVt e [szxm 1], vj (10)

dep

The EVs’ maximum charging and discharging powers also
depend on the SoC. The exact dependency is nonlinear, but
a linear approximation is used in this work, so the problem
can be formulated as a MILP. The maximum charging power
is assumed to linearly reduce from the nominal value to
acvmin% of the nominal value if the EV is charged above
the threshold SoChigh. Similarly, the maximum discharging
power is reduced to zero below the threshold SoCioy.

1 -« E .
t,j — @CVmin EV
Ppy, = P,EVmax+1 S0Chieh (E o 1) (1D
) 18 EVmax

+ aCVminP/EVmax_,_ Vt’ VJ

. P Eg
PE\]]— < EVmax— EV Vl‘, Vj (12)

J
SOC]OW EEVmax

2) CHARGING STATION AND GRID CONNECTION
CONSTRAINTS

The sum of incoming and outgoing power (from the charging
station’s point of view) at each timestep must be equal. PEVuc
denotes the charging power of the uncontrolled EVs. These
EVs do not participate in smart charging, their charging
schedule is calculated before the optimisation algorithm is
run. Two options are available, fast and average rate charging.
In the former case, the EVs are charged at their maximum
power until they reach the desired battery energy level. In the
second case, the EVs are charged at a constant power (except
above the SoCyjgp threshold) while connected.

ZPEV+ + ZPEVuc grld— =

VOLUME 12, 2025
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_P;V+Pgrld++ZPEV— vt (13)

The used solar power is limited by the maximum power of
the panels. It is assumed that PV curtailment is possible.

Pi’V = Pi)Vmax vt (14)

P’grid 4 and Pgrld cannot be nonzero at the same time. While
with traditional cost-only based objectives, the difference
between buying and selling price can ensure this condition,
with multi-objective optimisation, the addition of a binary
variable is necessary. Equations (15), and (16) also limit the

drawn/fed power based on the maximum allowed grid load.

Ptgrid+ =- a;grid)Ptgridmax vi (15)
P fgrid— = atgridP ;ridmax vi (16)

E. OBJECTIVES

The objective formulations are recorded as expressions or
variable-constraint combinations. Some constraints are only
necessary for certain objectives; these are shown grouped
together. Four possible primary objectives and one secondary
objective are currently defined, but the list can easily be
extended. The objectives and their formulations are as fol-
lows:

1) COST

The cost function is a multi-objective formulation in itself and
it includes the price of electricity drawn from and fed to the
grid (c{,uy, ct ), the price for the solar power (chy ), and the
penalty paid to the EV user for not satisfying the charging
need (Cpenalty). The first two terms have fixed coefficients
which are based on the input data. The penalty term ensures
that the EVs are always charged to the requested level if
feasible. The solution space can be restricted to exclude the
region where this penalty term becomes visible. Minimising
E! e could also be a separate objective if, for example, fully
charging the EVs is not required or if cost is not included in
the used objectives. The cost term of obtaining PV energy is
warranted if the panels are not owned by the charging station.

T
min D (chuyPhiay — ChenPhria ) Tsiep+
buy” grid+ sell” grid—/* step
t=1
N ) T
J t pt
+ Z Cpenalty Eunmet + Z cpy Ppy Tstep (17)

j=1 t=1

2) PEAK GRID LOAD

There are two limits for the grid load in this formula-
tion. Pgndmax represents a hard constraint that shall not be
exceeded at any point. This could represent physical limits
such as grid connection or transformer limits. Pgridpeak adds
only a soft constraint that tries to limit the impact on the grid
further. This objective can be used to follow a directive from
the grid operator in times of grid congestion. Formulating it

VOLUME 12, 2025

as an objective enables the identification of trade-offs as well.

P, erid+ = < Pgridpeak V1 (18a)
P, grid— = <P gridpeak Vi (18b)
min Pgridpeak (18¢)

3) DISCHARGED ENERGY (V2G USAGE)
V2G usage can increase the number of charging-discharging
cycles an EV battery experiences, thus increasing the rate
of battery degradation. eq. (19) tries to reduce this effect by
minimising the discharged energy amount.

min ZZPf ' Tep (19)

t=1 j=1

4) FREQUENCY REGULATION SERVICE

To provide frequency regulation service, part of the total
available power and battery energy must be reserved. The
available power and battery energy are calculated at the indi-
vidual EV level. Equations (3) and (4) (introduced earlier)
limit the offered power based on the available (dis)charging
power, eqs. (20a) and (20b) restrict it based on the available
battery energy. The latter constraints also set a minimum
battery level while the EV is connected to the charger to avoid
SoC levels that are too low. While overall, the regulation
service is assumed to be energy neutral [35], the charging
station must be able to maintain the regulation power for a
certain amount of time. This length is determined by Brcr
relative to one timestep (Tgep). The grid connection limits
the available aggregated power; this is expressed in egs.
(20c) and (20d). The objective function (eq. (20e)) tries to
maximise the average offered power. The regulation power
(PgCRu, Pecra) is set to zero, if the EV is not connected
in the given timestep. If symmetrical bids are required, the
formulation can be extended with eq. (20f).

v = (P FCRu — EV+ + PRy EV— )TstepﬂFCR—i-

+ SOCmmEEVmax Vt, Vj (20a)
tj tj
Egy = EEVmax+ '
— (PR FCRd T Py EV4+ — E{z_)TstepﬂFCR vt, Vj (20b)
Z(PFCRU EV+ ) <P, gridmax— vi (20c)
N
Z(P fra + PEVL — PRV < P gridmax+ ZP Evue V!
j=1
(20d)
N
+ P
max ZZ FCRu FCRd (200)
t=1 j=1
ZP FCRu — ZP FCRd V! (20f)
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5) SECONDARY OBJECTIVE (FAST CHARGE)

A simple objective function, shown in eq. (21), was defined in
the formulation to demonstrate the effect of secondary objec-
tives. The objective is to keep the EVs’ battery level as high
as possible for most of the optimisation window. This ensures
that the EVs are charged at the earliest opportunity (and
discharged at the latest) and can be helpful if there is a high
likelihood of unexpected (early) departure. Of course, this
could negatively affect the batteries’ health, because keeping
the battery at high SoCs can increase calendar ageing [36].

max Z Z Eé\], 20

t=1 j=1

Any of the defined primary objectives can also be added as
secondary objectives.

V. EVALUATION OF THE MO ALGORITHM

A. IMPLEMENTATION OF THE ALGORITHM AND USED
DATASETS

The above-described algorithms were implemented in Julia,
using the JuMP [37] modelling package. The package pro-
vides an intuitive modelling language and supports multiple
solvers. The MILP formulation was solved by Gurobi in the
following case studies.

The used datasets include solar data from a modeled ref-
erence 1 kW, panel, day-ahead market (DAM) electricity
prices and EV-related data. Both the solar and price data have
a 1-minute resolution for one year. The details of the solar
model can be found in [16]. The price data comes from the
EPEX SPOT market and was acquired using the ENTSO-
E platform [38]. The date chosen for both data sets was
02-01-2018. The EV dataset contains arrival and departure
times, SoC (at arrival and departure) and battery information
(maximum capacity and power). It was generated using distri-
bution functions from Elaad [39] based on recorded charging
sessions. The technical specifications were chosen to repre-
sent the 10 most common EVs in the Netherlands (source:
RVO [40]). The power limits for charging and discharging
are assumed to be symmetrical.

B. SIMULATION PARAMETERS

Unless otherwise stated, the following parameters were used
for the scenarios. A public charging point was simulated,
with 40 EVs arriving within 24 hours. It is assumed that
only 70% of the EV users wish to participate in V2G, and
15% disallow smart charging as well. In the latter case,
the EVs are charged at maximum power after arrival (fast
uncontrolled charging). The number of EVs were chosen
to represent a moderately-sized charging station. The 70%
and 15% values create a more realistic scenario, where not
all charging sessions are fully controllable. The optimisation
window was extended by five hours to allow the last EVs
to leave. The optimisation timestep (Tsep) Was 10 minutes.
The selling price is assumed to be 90% of the buying price
(csell = 0.9¢puy), cpy = 0.01€/kWh and the penalty term is
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FIGURE 2. Impact of the objective order on the Pareto-front.

Cpenalty = 0.5€/kWh. This is a relatively low value (10x the
maximum DAM price), but its effect is clearly visible in
the cost values. The grid power limit (Pgridmax) Was set to
150 kW for each timestep in both directions. Regarding the
EV batteries, SoCpin = 0.2, S0Chigh = 0.85, SoCiow = 0.1,
Brcr = 1 and acymin Was set to 0.2. The EMS was operating
in day-ahead mode.

C. GENERATED SCENARIOS

This section aims to showcase the versatility and capabilities
of the proposed algorithm and prove the importance of the a
posteriori mathematical optimisation approach.

1) DISTRIBUTION OF SOLUTIONS

There are an infinite number of theoretical solutions on the
Pareto-front, but optimisation algorithms can only generate
a finite number of solution points. The distribution of these
points has a huge effect on how representative the generated
front is. A proper distribution also helps the decision-maker
correctly identify the trade-offs and choose the most suitable
solution. The proposed algorithm provides three methods to
influence the distribution of the generated points.

o Changing the number of intervals (int;)
« Changing the objective order
« Restricting the search-space

The number of intervals influences the density of the gener-
ated solutions for the given objective. More important objec-
tives could have a denser representation, but a high number
of intervals can affect the performance significantly, resulting
in longer computational times.

The proposed method first estimates the feasible ranges
for all objectives. Then, it creates a number of sub-problems
by dividing the second and further objectives into multiple
intervals. These intervals are then enforced by adding con-
straints for the maximum values of the objectives. As a result,
the found solutions on the Pareto-front will be mostly evenly
distributed along the 2™, 3" etc., dimensions (axes), but
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FIGURE 3. Pareto-front with two objectives and restricted
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FIGURE 4. Pareto-front with two objectives and restricted
search-space.

the same cannot be said for the first objective. By varying
the objective order, evenly distributed solutions among the
(previously) first objective’s dimension can be found as well.
Fig. 2 demonstrates the impact of the objective order. There
is an overlap between the two sets of solutions, because they
belong to the same Pareto-front.

Restricting the search-space helps to generate more solu-
tions in the most important areas, without increasing the
number of intervals. The restriction can be achieved by mod-
ifying the calculated feasible ranges of the objectives. Then
the algorithm automatically adds the necessary constraints
during the generation of the sub-problems. In fig. 3, the cost
value was set to be below 24 €, focusing on the high-gradient
area of the Pareto-front.

2) IDENTIFICATION OF TRADE-OFFS WITH TWO
OBJECTIVES

In this scenario, only two objectives were selected: cost min-
imisation (eq. (17)) and peak grid load reduction (eq. (18¢)) in
this order. The resulting Pareto-front, depicted in fig. 3, shows
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FIGURE 5. Pareto-front with three objectives.

the trade-off between the two objectives. Please note that the
solution-space was restricted in this case, as described in the
previous section. Higher costs indicate that some EVs were
not charged according to their demand, so these solutions
are disregarded. The sudden increase in costs is due to the
penalty term in eq. (17). The steep first section in the figure
shows that the trade-off is minimal in this region. Compared
to solution 2a (lowest cost), solution 2b offers more than
50% reduction in grid load (from 150 kW to 72 kW) while
only increasing the costs by around 2.4% (from 21.36 € to
21.87€). Thus, the charging station could accept significantly
more EVs without the risk of considerably increasing the
relative costs. The reason for the increasing costs is shown
in fig. 4. With solution 2b the station is forced to charge at
higher electricity prices.

3) IDENTIFICATION OF TRADE-OFFS WITH THREE
OBJECTIVES

In this scenario, the objective to reduce the discharged energy
(V2G) (eq. (19)) was also added as the third objective. The
objective value ranges of objectives 2 and 3 were divided into
eight intervals. The search space was restricted to cost values
below 24 € to maintain scale. Fig. 5 shows the calculated
representation of the Pareto-front. From the figure, it is clear
that the values of peak grid load and V2G usage can be
drastically changed with minimal cost change. This shows
the advantage of the family of solutions offered by multi-
objective optimisation. With single-objective optimisation,
only certain, usually extreme solutions could be found, with
no way of identifying the trade-offs.

Five solutions were chosen to show the effect of the
multi-objective optimisation on the scheduling, shown in fig.
5. Solutions 3a and 3e represent two extreme solutions for
objectives 1: lowest cost and 3: lowest discharged energy,
respectively. There is only one extreme point for cost, as that
is the main objective, but there are multiple points with zero
V2G usage. Solution 3b aims to reduce the peak grid load,
but it also slightly lowers the V2G usage. Solution 3c signif-
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icantly reduces the V2G usage while leaving the peak grid
load unaffected. Solution 3d reduces both objective values,
with some increase in cost compared to solution 3c.

Figure. 6 shows the grid load throughout the day with
different solutions. The peak grid load reduction effect can be
seen in the evening around 21:00 and after midnight around
02:00, where the load curve is flattened and the maximum
value is lower. The reduction in V2G is mostly visible in
the afternoon around 18:00. The effect of objective 3 is
clearly visible on EV-level as well, which is shown in fig.
7. As expected, solution 3c reduces the amount of discharged
energy, and solution 3e does not allow any.

The three objectives can represent different actors and
their goals. The charging station operator wants to reduce
the charging costs, the EV owner wants to avoid battery
degradation, and the grid operator needs to avoid congestion.

4) IDENTIFICATION OF TRADE-OFFS WITH FOUR
OBJECTIVES

Frequency regulation service provision (eq. (20e)) was added
as the fourth objective in this scenario. Equation (20f) was
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FIGURE 8. Partial SPLOM of the Pareto-front with 4 objectives.

added to force symmetrical up- and downregulation power
values. The number of intervals for each objective was
reduced to 4, which still results in a maximum of 125 solu-
tions. One way to visualise a four-dimensional Pareto-front is
to use a ScatterPLOt Matrix (SPLOM), where the relationship
of any two objectives can be investigated.

For clarity, only a part of the whole SPLOM is shown in fig.
8. Subplot (a) shows a clear trade-off between the charging
cost and the V2G usage. Lowering the discharged energy
amount always results in a higher cost, but at the same time,
choosing a higher-cost solution also guarantees that the V2G
usage can be lowered regardless of the other objectives. This
can be seen by the lack of solution in the upper right corner
of the plot.

A similar relationship can be found between the offered
regulation power and the charging cost (subplot (c)), but in
this case, a higher cost does not always guarantee higher
available regulation power. The minimum regulation power
only starts increasing after the 22.5; cost value.

The two right subplots ((b) and (d)) show a more even
distribution of solutions. This means more possible combi-
nations of objective values, the objectives do not restrict each
other. Of course, there is still a trade-off, but it manifests in
the remaining objective(s). The decision-maker could infer
even more information with colour-coding or numbering of
the solutions to see the cross-effects. However, static plots
offer limited assistance as the number of objectives increases.
Interactive tools or automated decision-making algorithms
are necessary to effectively deal with higher-dimension
objective spaces.

5) SECONDARY OBJECTIVE

Fig. 9 illustrates the effect of the secondary objective (eq.
(21)) on the grid load and an individual EV’s charging sched-
ule. The base case was solution 3a. The objective values
remain unaffected, thus the grid load only shows minor
changes. The change is more noticeable on the EV-level:
instead of two on-off cycles at around 3:30 and 4:00, the
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TABLE 2. Benchmark results.

Objectives No. of intervals Time (median)  Time (mean =+ o)
and sub-problems [s] [s]
1-2 14 (15) 14.88 14.94 £+ 0.38
1-2 28 (29) 26.91 26.94 £+ 0.52
1-3 14 (15) 8.67 8.65 £ 0.35
1-3 28 (29) 14.20 14.21 £ 0.50
1-4 14 (15) 18.30 18.40 4+ 0.43
1-2-3 8x8 (81) 45.49 45.44 £+ 0.27
1-2-3-4 4x4x4 (125) 130.00 129.90 £+ 0.95
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FIGURE 10. Comparison of the proposed method and the
weighted sum method.

TABLE 3. Benchmark results for the weighted sum method.

Objectives No. of intervals Time (median)  Time (mean + o)
and sub-problems [s] [s]
1-2 14 (15) 9.98 10.05 £ 0.27
1-2 28 (29) 17.92 17.85 £ 0.81
1-3 14 (15) 4.87 495 + 0.34
1-2-3 11 (78) 22.717 23.05 £ 1.1

solver chooses to charge continuously and then stop. Other
similar modifications could be achieved with the appropriate
secondary objective.

6) BENCHMARKS

Benchmarks were run to assess the performance of the algo-
rithm with different objectives and numbers of intervals. The
results are summarised in table 2. The numbers denote the
objectives in the same order as they were introduced: egs.
(17), (18c), (19) and (20e). The computation times are given
for the whole algorithm. This includes loading the input data,
generating the pay-off table, solving the sub-problems and
evaluating the solutions using the EMS. The benchmarks
were run on a laptop with an Intel i7-1265U CPU and 16 GB
of RAM. The results are based on 20 samples for each com-
bination of objectives and interval numbers.

Both the number of intervals and the type of objective
have a strong effect on the computation time. The number
of intervals directly influences the number of sub-problems
to be solved. Therefore, focusing on the right area of the
objective space is paramount. The type of objective changes
the complexity of the sub-problems, because some enforce
more constraint than others, as described in section IV-E.
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While the objectives are fixed for a certain situation, the
number of intervals can be changed to balance the compu-
tational power need. The solving times could also be further
reduced by using parallel computation, as the sub-problems
are independent of each other. However, as can be seen from
the results, even with a high-number of sub-problems the
solve time is well below the timestep value of 10 minutes.
Thus, the problem could be scaled up to include more EVs,
or a longer timeframe.

D. COMPARISON WITH DIFFERENT METHODS

1) WEIGHTED SUM METHOD

In the weighted sum method, the objectives (f;(x)) are multi-
plied with different weights (w;) and then added together to
generate a single aggregated objective, as shown in eq. (22).

N
min > wifi(x) /"""

i=1

(22)

The sub-problems are generated by modifying the weights
in a way that their sum is always equal to 1. The objectives
are also usually normalised to avoid bias due to their dif-
ferent scales. Two different normalising factors (f;**"™") were
investigated in this study. Using the optimal value of the
respective objective function, as suggested in [30], and using
the calculated objective ranges, which are also used in the
proposed algorithm.
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In fig. 10 a2 objective example can be seen. The number of
sub-problems was the same for all three cases. The choice of
the normalising factor has a huge effect on the results. Using
the objective ranges improves the distribution of solutions
significantly, but the proposed method still provides better
results. The weighted sum method also gives dominated solu-
tions towards the extreme points.

The summary of the computational performance can be
seen in table 3. The same settings were used as in the original
benchmarks. The weighted sum method has a clear advantage
in terms of solve time over the AUGMECON?2 approach,
especially as the number of sub-problems increases. If speed
is the main priority, and an accurate representation of the
Pareto-front is less important, then the weighted sum method
with carefully chosen normalising factors could be a viable
alternative.

2) METAHEURISTIC METHODS

Unlike with the weighted sum method, a direct comparison
with metaheuristic methods was not possible because the
JuMP modelling package does not support derivative-free
solving methods. For the direct comparison, a new model
would have to be built using a different modelling language.
Here, metrics defined in [25] and [41] are given for the
proposed method, and examples from the literature are used
for further comparison.

The distance from the optimal solution(s) can be measured
using accuracy and generational distance, while precision
refers to the repeatability. The proposed formulation is mostly
linear; it only has a limited number of binaries, which can also
be omitted in certain cases. Thus, the output of the solver
is deterministic, and the optimality of the solutions can be
guaranteed. It also means that all of these metrics are always
zero, the method provides equal, or better results, than meta-
heuristic methods. Numerical examples can be found in [25],
where the authors use the Satisfiability Modulo Theory to
find the optimal solutions and use them as a reference for their
proposed heuristic method. In [31] the authors claim that their
method outperforms the non-heuristic method, but they use
a linear approximation for the comparison. References [26],
[27] and [32] do not provide similar metrics.

Evenness (£) and distribution metrics (DM) are used to
quantify the diversity of solutions on the Pareto-front. These
metrics are only reported in [25]; the rest mainly focus
on a single selected solution. As explained in the previous
sections, the extended AUGMECON2 method provides fine
control over both the solution space and the distribution of
solutions. This is reflected in the low values of these metrics,
which were calculated for the first three cases in the bench-
marks section (table 2) with a search space limited to below
23€ overall cost. These are: £ = 0.7532, 0.7685, 0.3901 and
DM = 0.0724, 0.0378, 0.0435, respectively.

Total solve time is where metaheuristic algorithms show an
advantage, especially in the case of large-scale or non-linear
formulations. References [25] and [31] present numerical
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comparisons. It is important to note that the computational
power of the computers used in the different studies varies
significantly.

VI. CONCLUSION

In this paper, a highly customisable multi-objective frame-
work has been proposed together with a MILP formulation of
a charging station scheduling problem. The importance of the
multi-objective approach has been demonstrated using case
studies. It has been shown how the resulting Pareto-front can
be used to investigate the trade-offs and their effects on the
resulting schedules.

The additional information that this approach provides
can be invaluable to both Charging Point Operators (CPOs)
and Policy Makers. For CPOs it can not only help fine-tune
the daily operations, but can also help prepare for future
scenarios, such as higher EV-penetration and stricter grid
limits. Policy Makers can use the results to propose realistic
monetary incentives for objectives that support the grid but do
not provide a direct benefit to the participants in the electricity
market.
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