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Continuous state and action Q-learning framework

applied to quadrotor UAV control

Anton E. Naruta∗, Tommaso Mannucci†, Erik-Jan van Kampen‡

This paper describes an implementation of a reinforcement learning-based framework
applied to the control of a multi-copter rotorcraft. The controller is based on continuous
state and action Q-learning. The policy is stored using a radial basis function neural
network. Distance-based neuron activation is used to optimize the generalization algorithm
for computational performance. The training proceeds off-line, using a reduced-order model
of the controlled system. The model is identified and stored in the form of a neural network.
The framework incorporates a dynamics inversion controller, based on the identified model.
Simulated flight tests confirm the controller’s ability to track the reference state signal and
outperform a conventional proportional-derivative(PD) controller. The contributions of
the developed framework are a computationally-efficient method to store a Q-function
generalization, continuous action selection based on local Q-function approximation and a
combination of model identification and offline learning for inner-loop control of a UAV
system.

I. Introduction

In the recent decades, a lot of advancements had taken place in the field of reinforcement learning (RL).1–3

In more general terms, reinforcement learning is a paradigm concerned with creating system controllers that
aim to maximize some numerical performance measure, designed to achieve some long-term objective.3 It is
suited for nonlinear problems, optimal control, and it allows to combine qualitative and quantitative data.

Reinforcement learning techniques are often applied for identification of static systems, such as pattern
recognition type problems.4 RL methods are also often combined with more conventional control techniques,
such as PID control, to optimize the controller parameters. More recently there had been an increased
interest in applying reinforcement learning techniques for identification and control of dynamic systems,
such as navigation of autonomous vehicles or robots.5–13

Control of unmanned vehicles, such as aerial drones, represents a challenging control problem. The
dynamics of such systems are nonlinear, high dimensional and they contain hidden couplings. There are
many types of unmanned aerial vehicles (UAVs), including lighter-than-air vehicles, fixed-wing aircraft,
helicopters, and multi-copters. Multicopters have rather complex dynamics, and they are considered to be
harder to control than fixed-wing aircraft.6 They are open-loop unstable and require a skilled operator
or a sophisticated autopilot to fly. Reinforcement learning can be applied to design an optimal, adaptive
controller for such vehicles.

Here we introduce a reinforcement learning framework for automatically synthesizing a controller for any
generic multi-copter UAV, using reinforcement learning methodology. The proposed framework consists of
a combination of model identification of the agent dynamics and off-line Q-learning. The identified model is
used to train the policy, and it is also used to create a dynamics inversion controller to translate the policy
actions into direct inputs to the vehicle. The policy is stored in the form of Radial Basis Function (RBF)
neural net, optimized for real-time performance. The resulting policy works with continuous agent states
and produces continuous actions. The controller is adaptive by design, and it is capable of dealing with
changes in agent behavior and adjusting itself online.

The performance of the controller is compared to the performance of a conventional, PID-based controller.
It is shown that the performance of the RL controller is comparable to that of conventional control schemes,
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and exceeds it. Additionally, it is demonstrated that the RL controller is capable of adjusting its policy
online if agent behavior deviates from the initial model used to train the policy.

II. Reinforcement learning

Reinforcement learning and intelligent control are used increasingly in various control applications. Re-
inforcement learning can deal with the non-linearities that occur in most real-life systems, and it is highly
adaptable and adaptive. As such, it had been studied and applied to a wide range of problems in a variety
of different fields. In reinforcement learning the system consists of an agent, acting in some environment.
For example, an agent could be an autonomous vehicle, while the environment is the world in which it acts.
The learning process itself consists of the agent taking different actions to explore the system and to exploit
it by using the knowledge that it already has.

After each transition from agent state s to s′ the agent receives some reward r. If successful, the agent
receives a higher reward, and if the action leads to an undesirable state, then the magnitude of the reward
is lower. This reward takes the shape of a certain reward function, determined beforehand. In autonomous
vehicle context, the rewards could be defined by smooth movements, quick response, the safety of the
operation, etc. The purpose of an agent is to maximize this reward by taking optimal actions. By acting
in a certain way, the agent follows a policy π, which represents the mapping from perceived states of the
environment to actions deemed optimal in the situation.3 While the reward function r(s) determines the
actions of an agent in a short run, influencing the policy taken, a value function V (s) is used to specify it’s
total reward, in the long run, determining the agent’s behaviour B. The latter can be learned using a wide
variety of different algorithms. Formally, the reinforcement model consists of:

• a set of environment states, S, which can be discrete or continuous

• a set of actions A, which can be discrete or continuous

• a set of reinforcement signals r, which can be static or varying, depending on agent state

A. Markov decision process

In addition to immediate rewards, a reinforcement learning agent must be able to take future rewards into
account. Therefore it must be able to learn from delayed reinforcement. Typically the agent would progress
throughout it’s learning process, starting off with small rewards, and then receiving larger rewards as it gets
closer to its goal. And it must learn whichever actions are appropriate at any instance, based on rewards that
the agent will receive in the future. Delayed reinforcement learning problems can be modelled as Markov
decision processes(MDP).3 An MDP consists of

• a set of states S

• a set of actions A

• a reward function R : S ×A → R

• a state transition function T : S×A → Π(S), where Π maps the states to probabilities. The probability
of transition from state s to state s′ given action a.

The state transition function specifies the change of state, following an action was taken by the agent.
The agent receives an instant reward after performing an action. The model has Markov property if the
state transitions are independent of any previous environment states or agent actions.

B. Reward function

The rewards could be either positive or negative, which has an impact on agent behaviour, at least during
initial learning stages. Assuming the Q-function is initialized at 0, updating it with a positive reinforcement
after each episode iteration results in a high value assigned to the action taken, compared to all other possible
actions that are assigned a zero value at initialization. As a result, the agent will tend to select actions that
it had applied previously for as long as the outcome of other actions is still uncertain. This heuristic is called
an optimistic approach. As a result of applying it, a strong negative evidence is needed to eliminate an action
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from consideration.1 In negative approach only negative reinforcement takes place. As a consequence the
agent tends to explore more, eliminating actions that result in lower rewards and eventually settling on the
best policy. The negative reinforcement approach was selected. The chosen reward function is a combination
of the state offset from some desired state reference, current state value and state derivative value:

r = ṡ− sign(∆s) ∗
√
sign(∆s) ∗∆s, (1)

where ∆s represents the difference between controlled state s and the reference state ∆s = s− sref .

C. Q-learning

One of most important reinforcement learning algorithms available today is Q-learning.3 It is an off-policy
TD control algorithm. Off-policy means that it learns the action-values that are not necessarily on the
policy that it is following. The Q-learning is using a Q-function to learn the optimal policy. The expected
discounted reinforcement of taking action a at state s is represented as Q∗(s, a).

Q∗(s) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′
Q∗(s′, a′) (2)

This function is related to value as V ∗(s) = maxaQ∗(s, a). Then the optimal policy is described as
π∗(s) arg maxaQ∗(s, a). One-step Q-learning is defined by the following value update rule:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(3)

In this equation, Q stands for action-value function, updated at every step at a learning rate α. The
update parameters are the reward r and the value of Q at the next step, corresponding to the maximum
possible cumulative reward for a certain action a, given that policy π is followed. Factor γ is the discount
rate; it represents the horizon over which the delayed reward is summed, and it makes the rewards earned
immediately more valuable than the ones received later.

There are numerous variations to Q-learning algorithm, aiming at improving convergence and optimality
characteristics, and trading off exploration and exploitation during the learning process.

SARSA algorithm is an on-policy variation of Q-learning.1 An action-value function has to be learned
rather than a state-value function. For an on-policy method Qπ(s, a) must be estimated. This can be done
using a nearly identical kind of update as in the general Q-learning. SARSA learning update rule is defined
as follows:

Q(s, a)← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)] (4)

The difference with the Q-learning update, described earlier is that rather than the optimal Q-value
maxaQ(s′, a) the value of the action selected for the consecutive step Q(s′, a′) is used during the update.

III. Continuous state and action Q-learning

Q-learning algorithms are commonly applied to problems with discrete sets of states and action. In those,
the state-action spaces and rewards are encoded in tabular form, where each cell represents a combination of
state and action. In reality, however, control problems where the states and actions are continuous are also
very common.5 Adapting the “classical” Q-learning approach to deal with these types of problems presents
a challenge. A common approach is to discretize the state of the world by splitting the state domain into
discrete regions. This method, however, introduces some problems. If the state is coarsely discretized a
perceptual aliasing problem occurs.14 It is difficult to discretize the world states without losing information.
One of the solutions is to discretise the world more finely. This increase of the resolution, also increases the
amount of memory required, introducing the curse of dimensionality.15 Fine discretization may lead to an
enormous state-action space, which in turn may result in excessive memory requirements and difficulty in
exploring the entire state-space.

These issues could be solved by using generalization e.g., using experience with a limited subset of the
state-space to produce an approximation over a larger subset.3 Generalization allows applying the experience
gained from previously visited states to the ones that hadn’t been visited yet.
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One type of generalization is function approximation, which in turn is an example of supervised learning.
Most supervised learning methods seek to minimize the mean-squared-error (MSE) over a distribution of
inputs P (s).

There are various methodologies available to approximate a continuousQ-function. Neural Networks (NN)
can be used to model and control very complex systems with sufficient accuracy without complete knowl-
edge of its inner composition. Neural networks themselves can be divided into two types: multilayer neural
networks and recurrent networks. Despite some differences, they could be viewed in a unified fashion as part
of a broader discipline .4 Another way to approximate a continuous function is using coarse coding. This is
a technique where the state-space region is separated into overlapping regions, each representing a feature.
In the binary case, if the state is situated inside of a feature then the corresponding feature has a value of 1
and is said to be present, otherwise, this feature is 0 and it is said to be absent .3 The parameters that affect
the discretization accuracy of this method are the size of the regions and number of overlapping regions.

A. Neural Networks

Warren McCulloch and Walter Pitts proposed the concept of neural networks first. They came up with a
model of an artificial neuron, later dubbed perceptron.16,17 The basic building unit of a neural network is an
artificial neuron. It consists of a weighted summer, the function of which is to combine one or several inputs.
Each input is multiplied by some weight, which can be pre-determined, or adjusted as the learning process
goes on. The combined and weighted inputs then pass through some nonlinear activation function. Various
types of activation functions exist. A simple threshold function produces a unit output when some input
threshold is passed. A bell-curve shaped radial-basis function gradually increases or decreases, depending on
the input value proximity to the center of the neuron. A tangent-sigmoidal activation function acts similar
to a threshold function but produces smooth, varying output.

Multiple neurons can be combined in layers, and layers themselves could be combined as well. A typical
neural network would have one hidden layer, that consists of several non-linear neurons, and one output
layer that often consists of a simple summation of weighted hidden layer outputs. The layout of a basic
neural net is shown in Figure 1.

Figure 1. Neural net layout

One of the popular choices for neuron activation function
is the Gaussian Radial Basis Function (RBF). Each neuron in
the hidden layer of an RBF net has the following activation
function:

φj(νj) = ak · exp(νj) (5)

The coefficients ak are the output weights of the network, and it
controls the amplitude of the RBF. The input of the activation
function is the distance between the location of the input data
point and the center of each neuron:

νj = −
∑
i

w2
ij(xi − cij)

2 (6)

The value wi,j corresponds to the width of the RBF, while ci,j
corresponds to the center of the activation function at each
neuron. There are various ways to initialize all the outlined parameters. The neurons themselves could be
either placed randomly, or they could also be organized in a grid. There are a variety of training methods
that apply to NN, e.g. linear regression methods, and gradient descent methods such as back-propagation,4

Levenberg-Marquardt,18 and others.
NN can be relatively expensive to implement computationally. The overhead can be reduced by only

considering the neurons activated at a time and approximating the exponential function using a polynomial
or a lookup table with pre-calculated values.

B. State pre-scaling

The network inputs can be pre-scaled before performing a forward pass. This allows specifying a focus region
for the network with higher resolution, which can be beneficial to the application because it allows saving
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on the number of weights. Equation (7) shows a case of using a root function to encode an input variable.
There, the input variable x ∈ [a, b] is scaled as xs ∈ [0, 1]

xs =


1
2

(
1− r

√
h−x
h−a

)
if x < h

1
2

(
1 + r

√
x−h
b−h

)
if x >= h

(7)

The variable xs denotes a scaled version of a variable x. The offset factor h denotes the “focus” of the
scaling, e.g. the values for which the scaling results in a grid that is finer. This sets the region around which
the scaling gradient is the steepest. The variable r denotes the scaling power. When it’s set to one, the
scaling is purely linear.

C. Encoded RBF-based neural net

Tile coding is a form of coarse coding in which the receptive fields of features are grouped into an exhaustive
partition of the input space. These groups are referred to as tilings, and each element is called a tile. This
idea is an integral part of Cerebral Model Articulation Controller (CMAC) method .19 The feature values
are stored in a weight vector table where each cell has its association cell that indicates binary membership
degree of each possible state input vectors. The activated weights of a fully trained CMAC mapping are
summed across to calculate the resulting output. Since the only algebraic operation that takes place is
the addition, CMAC is a very computationally efficient method. The number of tilings determines the
computational effort: denser distributions require more calculations and are more computationally intensive.

The CMAC has an advantage over a “pure” implementation of radial basis function neural network,
where all weights are activated with each forward pass and all weights are updated at each backward pass.
In the CMAC only the local weights, situated close to the state, are activated and updated, and finding it’s
output is as simple as summing the weights without any need for using an activation function. Nevertheless,
the nature of the activation function used in an RBF net makes it possible to optimize it for computational
performance using a hashing methodology similar to CMAC.

Equation 5 describes a typical Gaussian Radial Basis Function (RBF). RBF is based on the principle that
its output value gradually drops as the input state moves further away from the neuron center. This property
also means that at a certain distance from the neuron center the neuron output contribution is negligible,
compared to the neurons activated closer to the state value. Therefore, the neurons situated further away
from the activated region can be neglected, since they have little influence on the output of the neural net
in that area. By limiting the number of activated neurons the size and resolution of the network can be
decoupled from real-time performance. If only a limited number of neurons is activated, the total number
of neurons in the network has no effect on its performance. If the neurons are evenly spaced throughout the
state range, selecting the neurons that have to be activated becomes relatively straightforward.

Figure 2. Neuron activation scheme

In order to encode continuous state values into neuron coor-
dinates first define index i. Discrete index i corresponds to tile
coordinate of the neuron closest to the input. Given a variable
x, the floor operator bxc is defined as:

bxc = max{n ∈ Z | n ≤ x} (8)

In equation (8) the value of bxc can take negative or positive
values. But the neuron index i has to be compatible with
positive-only indexing systems {i ∈ Z | 0 ≤ i ≤ M}. Fur-
thermore, given M − 1 neurons per variable dimension on the
interval [a, b] = {x | a ≤ x ≤ b} the variable has to be scaled
This scaling can be done in a variety of ways, depending on the
application. The neuron index i can be calculated given a continuous variable value x on the interval [a, b],
using the scaling method described by 7:

i = bM × xs + 0.5c (9)

The index variable i stands for the index of the neuron nearest to the scaled input xs. As Figure 2
illustrates, it is possible to activate only the neurons situated within some maximum radius rlattice. The
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distribution of the activated neurons always follows the same type of circular lattice pattern, offset from the
coordinate of the current input state. This pattern can be calculated previously to network initialization,
stored and re-used. These patterns are stored as an offset from the neuron, situated the closest to the input
state, denoted as c̄i,j,...,n, where n denotes the network input dimensionality.

The following encoding principle can be illustrated for a single-input coded neural network with activation
radius rlattice with N hidden neurons uniformly spread through the range [a, b], where a ≤ x ≤ b. The lattice
offset coordinates for such a network can be represented as

clattice = [−R, . . . , 0, . . . R] (10)

R = brlatticec (11)

Given an input x, the coordinate of the nearest neuron i can be found using 9. Then the activated neuron
coordinates and the neuron input offsets ∆i = x− ci become:

cneur = i+ [−R, . . . , 0, . . . , R] (12)

∆ = (xs − i) + [−R, . . . , 0, . . . , R] (13)

The entire procedure is quite simple and allows to calculate the neuron coordinates as well as inputs
for each neuron simultaneously and efficiently. This methodology could also be easily extended to higher
input dimensions by generating multi-dimensional neuron offset lattices. With each additional dimension,
the number of required neurons grows. The indexing methodology can be extended to facilitate encoding of
multi-dimensional values of x̄ = [x1, x2, . . . , xn−1, xn], with n-dimensions.

Table 1 shows the number of activated neurons for a value of rlattice = 2.4 and the percentage of the
total neurons in the network for an encoding that consists of 8 neurons per-dimension.

Na activated neurons ( % total)

Ninputs Nneurons r = 1.0 r = 1.5 r = 2.0 r = 2.4

1 8 3 (37.5 %) 3 (37.5 %) 5 (62.5 %) 5 (62.5 %)

2 64 5 (7.81 %) 9 (14.0 %) 13 (20.3 %) 21 (32.8 %)

3 512 7 (1.37 %) 19 (3.71 %) 33 (6.44 %) 57 (11.13 %)

4 4096 9 (0.22 %) 33 (0.81 %) 89 (2.17 %) 137 (3.34 %)

Table 1. Number of activated neurons for selected dimensions

The number of activated neurons grows with increased radius and input dimensionality. For a single-
input neural net, the effect of neuron encoding is quite small, and the extra computational load might offset
any benefits. For a larger number of inputs, however, there is a drastic increase in efficiency. For a neural net
with three inputs, encoded with eight neurons per-dimension and activation radius r = 2.4 only 11.13 % of
all neurons have to be activated at any forward or backward pass. Increasing the resolution does not affect
the computational load since only a fixed number of neurons is activated and the effect is more pronounced
for a higher number of inputs.

D. Optimal action selection

The underlying principle of Q-learning requires a method that is capable of finding an optimal action,
optimizing the output value of the Q-function. Various methodologies can be applied, depending on the
type of generalization used to store the Q-function approximation. Given a continuous-state Q-learning
problem, there are two basic approaches to find the optimal action: using a discrete set or a continuous
range of actions. A schematic in Figure 3 illustrates these two methods.

In a discrete-action scenario the network used to generalize the Q-function produces several outputs for
any current state, each of them associated with a predetermined action value. Once these values become
available, the action that results in the highest output is selected as the optimal one. In a continuous
approach, the network inputs include both the state and the action. The output value is then optimized to
find the optimal action using some optimization algorithm. The discrete approach has an advantage over
a continuous one because when only one forward pass of the network is required, whereas the continuous
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(a) Discrete action

(b) Continuous action

Figure 3. Q-learning action selection approaches

method typically requires several passes. A limited number of forward passes means it’s less demanding
computationally and easier to implement. It’s still possible to produce a continuous action when using a
discrete approach, using some interpolation technique.5 On the other hand, a continuous method allows to
select the action more precisely, and the actions themselves transition more smoothly. Smooth, continuous
inputs offer an advantage when controlling a sensitive system such as a quadrotor.

A continuous-action approach was selected for the designed RL framework. This section outlines some
optimization techniques applicable to action selection. Consider a function y(x) in the form

y(x) = g(x)θ (14)

where g(x) represents a set of hidden layer neuron outputs, as described in A, for a given input value x

g(x) =
[
φ0(x) φ1(x) . . . φN (x)

]
, (15)

φi(x) = exp(−(x− ci)
2), (16)

and θ is the parameter vector that contains network output weights θ = [w0, w1, . . . , wN ]. This function can
be used to describe a local action-value distribution for a given state. The activation function described by
16 can be differentiated twice with respect to input x:

φ̇i(x) = −2(x− ci)φi(x) (17)

φ̈i(x) = −2(1− 2(x− ci)
2)φi(x) (18)

This allows to express the derivatives of functions 17 and 18:

ġ(x) = −2
[
(x− c0) (x− c1) . . . (x− cN )

]
× g(x) (19)

g̈(x) = −2
[
1− 2(x− c0)2 1− 2(x− c1)2 . . . 1− 2(x− cN )2

]
× g(x) (20)

Note that the exponential component in 16 and the offsets (x−c) can be re-used when finding the derivatives
of the activation function, which means that the computational load can be reduced when implementing these
calculations in software.

For the function in 14 to reach it’s minumum/maximum the output function derivative must reach zero:

ġ(x)θ = 0, (21)

This condition does not have an analytical solution. Here, Newton’s iteration method can be applied.
Newton’s iteration is a numerical method designed to find roots(zeros) of differentiable equations in the form

f(x) = 0 (22)
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Provided an initial guess x0, the successive update formula for this method is

xk+1 = xk −
f(xk)

ḟ(xk)
, k = 0, 1, . . . (23)

Typically with each consecutive update, the output of the function f(xk) converges closer to its nearest
zero value. This mechanism, however, is only capable of finding the nearest root, one at a time. Therefore,
for a function with several possible zeros, several guess values must be supplied.

When applied to the problem of finding the arg maxaQ(s, a) the Newton’s iteration procedure can be
applied as follows: First, the Q-function is interpolated at state s. The original Q-function approximator
would typically have several state inputs and one action input. At a given state all inputs other than the
action are fixed and only the action input can be varied. Therefore it is possible to take a 1-dimensional

“slice” of the Q-function, by sampling the Q-function output with different actions ā =
[
a0, a1, . . . , aM

]
.

Outputs of the Q-function are recorded in Ȳ = [Q(s, a0),Q(s, a1), . . . ,Q(s, aM )]. The parameter vector θ̄
can be calculated using linear regression:

θ̄ = (A(x̄)TA(x̄))−1AT Ȳ , (24)

where each row i ofA contains the inner-layer outputs of the interpolant neural net
[
φ0(ai), φ1(ai), . . . , φn(ai)

]
for the supplied action value ai. The first and the second derivatives of the approximation function
ȳ(a) = g(a)θ̄ are:

˙̄y(a) = ġ(a) · θ̄ (25)

¨̄y(a) = g̈(a) · θ̄ (26)

Newton’s update rule to find the zeros of ẏ(a):

ak+1 = ak −
ẏ(ak)

ÿ(ak)
, k = 0, 1, . . . (27)

After evaluating several starting points the action value a several potential minima/maxima of the optimized
function. Then the action value that results in the maximum/minimum output of the function Q(s, a) can
be found by comparing the outputs of ȳ(a) and finding the maximum value.

IV. UAV dynamics and control scheme

The Quadrotor concept had been known since the early days of aeronautics. One of the earliest examples
of such aircraft is the Breguet-Richet Quadrotor helicopter Gyroplane No.1, built in 1907. A quadrotor is
a vehicle that has four propeller rotors, arranged in pairs. The two pairs (1,3) and (2,4) turn in opposing
directions and variation of the thrust of each rotor is used to steer the vehicle pitch, roll, yaw, and altitude.
This section introduces some modelling methods that can be used to simulate a quadrotor vehicle and
presents a general mathematical model of quadrotor dynamics.

A. Quad-copter modelling and control

The control scheme of a conventional aerial quadrotor vehicle consists of four principal parts: pitch and
roll controls, collective thrust and yaw control. Quadrotors have six degrees of freedom: three translational
and three rotational, and they can be controlled along each of them. Rotational and translational motions
are coupled: tilting along any axis results in vehicle movement in the direction perpendicular to the tilt
angle. Extra couplings exist between individual rotors and the aircraft body. For example to rotate along
the vertical axis while maintaining altitude the distribution of thrust has to change in such manner that
some of the rotors spinning in one direction spin slower, while the rotors that are turning in the direction
of intended rotation are moving faster. These various couplings result in a challenging problem: in practice,
it ’s hard to control a quadrotor purely manually. In addition to the difficulty of control, there is also a
question of stability of multi-copter craft. Multi-copters are not inherently stable; it is necessary to apply
active damping. Electronics are used to stabilize it and distribute the thrust across the rotors.
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B. Dynamic model of a quadrotor

Figure 4. Quadrotorotor con-
figuration schematic, body fixed
frame B and inertial frame E.

This section will describe modelling of a quad-copter using a purely white-
box approach. Schematic of a quadrotor body and inertial frames is shown
in Figure 4.

The craft dynamics can be modeled using Lagrangian method.20,21

The vector containing generalized coordinates of the quadrotor can be
defined as q = (x, y, z, φ, θ, ψ) ∈ R6. It can be split into two components,
for translational and rotational motion. The translational motion of the
craft can be described using equations 28-30. The rotational motion is
described using equations 31-33. System inputs are defined by equations
34 - 38. Multicopter actuators can be modelled as DC motors.20 The
motor dynamics are described in equation 39.

ẍ =
s(φ)s(θ)s(ψ) + s(φ)s(ψ)

m
U1 (28)

ÿ =
s(φ)s(θ)s(ψ) + s(φ)s(ψ)

m
U1 (29)

z̈ = −g +
s(φ)s(θ)

m
U1 (30)

φ̈ = θ̇ψ̇

(
Iy − Iz
Ix

)
− Jp
Ix
θ̇Ω +

l

Ix
U2 (31)

θ̈ = φ̇ψ̇

(
Iz − Ix
Iy

)
+
Jp
Iy
φ̇Ω +

l

Iy
U3 (32)

ψ̈ = φ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
U4 (33)

U1 = CT (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4) (34)

U2 = CT (Ω2
4 − Ω2

2) (35)

U3 = CT (Ω2
3 − Ω2

1) (36)

U4 = CT (Ω2
1 + Ω2

3 − Ω2
2 − Ω2

4) (37)

Ω = Ω2 + Ω4 − Ω1 − Ω3 (38)

ω̇ =
Ke

RJt
u− K2

e

RJt
ω − d

Jt
ω2 (39)

where:

State Unit Description

x [m] x-coordinate

y [m] y-coordinate

z [m] z-coordinate

φ [rad] Roll angle

θ [rad] Pitch angle

ψ [rad] Yaw angle

Ω [rad/s] Rotor speed

ω [rad/s] Motor angular speed

u [V] Supplied motor voltage

Constant Value Unit Description

m 1.2 [m] Drone mass

Ix 8.5e-3 [kg·m2] Moment of inertia x-axis

Iy 8.5e-3 [kg·m2] Moment of inertia y-axis

Iz 15.8e-3 [kg·m2] Moment of inertia z-axis

CT 2.4e-5 [-] Thrust factor

CD 1.1e-7 [-] Drag constant

R 2.0 [Ω] Motor resistance

Jr 1.5e-5 [kg·m2] Rotor inertia

Jm 0.5e-5 [kg·m2] Motor inertia

l 2.4e-1 [m] Motor arm length

Ke 1.5e-2 [-] Motor constant

Table 2. UAV system states and relevant constants

Table 2 shows the set of parameters used for the simulation. These values were selected to achieve a
realistic behaviour of the model.

The full drone controller consists of two parts: the inner loop, the and outer loop control. Lower-
level inner loop controller is designed to track reference pitch, roll, yaw and altitude signals. The actuator
delay due to motor dynamics influences the UAV response behaviour. Higher-level outer loop controller is
designed to track a position reference, such as x and y coordinates of the vehicle, and perform manoeuvres.
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The external loop controllers pass on reference signals to the inner loop, and they are set up in a cascaded
fashion. Figure 5 shows an example of a basic drone control scheme layout.

There are four inner-loop controllers in place: roll, pitch, yaw and altitude control. There are also two
outer loop position controllers, for states x and y. The operator interacts with the controller via an interface.
Reference signals for pitch and roll ϕref , θref can be either set directly through the interface or as a command
from higher-level x and y controllers. Yaw angle and altitude reference signals ψref and zref are set directly.
It is also possible to add an additional layer of controllers, that combine flight heading and yaw control or
performs some set of manoeuvres, for example. The four inner-loop controllers produce scaled control inputs
vb (altitude), v02 (pitch controller), v13 (roll controller), and v0213. Inner-loop controller inputs and outputs
are defined as:

Controller Inputs Virtual control states

Altitude zref , z, ż, c(φ)c(θ) vb = v20 + v21 + v22 + v23
Roll φref , φ, φ̇, θ̇ × ψ̇ v13 = v21 − v23
Pitch θref , θ, θ̇, φ̇× ψ̇ v02 = v20 − v22
Yaw φref , φ, φ̇, θ × ψ v0213 = v20 + v22 − v21 − v23

Note that the virtual control inputs still have to be processed to produce usable motor voltage inputs
v0 . . . v3. Each voltage is limited, and different controllers might be in conflict with one another. This conflict
between actuators makes it necessary to include a control allocation module, to interpret the resulting voltage
differentials as motor inputs.

For a typical UAV, several controllers must be implemented, governing the pitch, roll, yaw and vertical
motion dynamics. Figure 5 illustrates a schematic of how these controllers are combined to achieve full
control of the UAV.

Figure 5. Drone control scheme

V. Reinforcement-learning based control of the UAV

Two controllers are designed to control the UAV: a conventional PD and a reinforcement learning-based
approach. The PD controller performance serves as a benchmark for the RL-based solution, and it is used
to validate the results. The PD gains are optimized using the PSO algorithm.22–24 The RL-based controller
is based on Q-learning, described in II. Both controllers incorporate an adaptive model-based inversion
dynamics inversion scheme to generate actuator inputs, as described in IV. This section describes both the
conventional and the reinforcement learning based approaches.
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A. Controller layout

The layout of the control scheme consists of two parts: the inner and the outer control loops. Two types
of controllers are developed to fill the role of inner-loop control of the UAV: a conventional PD and a
reinforcement learning approaches.

(a) PID control scheme (b) RL control scheme

Figure 6. Conventional and RL-based control aproaches

Figure 6A illustrates a conventional feedback PID controller. It processes the signal reference offset
e(t) = x− xref . The absolute value of this offset is multiplied with the proportional gain Kp, the integral of
this error is multiplied with Ki and the rate of change of this error is multiplied with gain Kp. The output of
the PID controller is the desired acceleration ẍd. The model inversion module is then tasked with generating
a suitable virtual input to achieve this desired acceleration.

PID controllers are relatively easy to implement and are sufficient for most real-world control applications.
It can serve as a validation for reinforcement learning-based controller behaviour.

The proposed Q-learning controller is a lot more complex than the PID one. The reinforcement learning
controller consists of policy, stored in the form of encoded RBF neural net, as described in A. Like with the
PD controller, x, ẋ and ẍref are used as inputs. The difference comes from how the desired control inputs
are produced: in a reinforcement learning controller the actions are generated by maximizing the output
value of the network.

The policy is stored in the form of an RBF neural net that accepts at least three inputs: the offset
between the current and the reference states ∆x = x− xref , current state derivative ẋ and the desired state
acceleration ẍd. The variable ẍ defines the action that can be taken by the agent. When states ∆x and
ẋ are sampled at some point in time the action variable ẍd becomes the only unconstrained input of the
generalized Q-function. Therefore it becomes possible to make an instantaneous “slice” of the Q-function,
which can be described as a one-dimensional RBF-based curve. In order to do this, the output of the neural
net that describes the Q-function is sampled at variable action values [xd,0, xd,1, . . . , xd,N ]. The outputs
Y = [Q0, Q1, . . . , QN ] are stored and used to generate a one-dimensional RBF-based function.

B. Reduced model and dynamics inversion control

The complete UAV dynamics, outlined int the previous section, consists of six states describing drone position
and attitude(x, y, z, φ, θ, ψ), four rotor speeds (ω0, ω1, ω2, ω3) and four virtual inputs (vb, v02, v13, v0213)
that can be translated into direct motor voltage inputs (v0, v1, v2, v3). All motions that the UAV goes
through, along or about the x-axis, y-axis or z-axis are cross-coupled with other motions of the aircraft.
Pitch, roll and yaw dynamics are all inter-connected, while the translational motions are connected to the
current aircraft tilt offset from the vertical z-axis. This relatively complex model can be reduced into a
more simple one. It could serve two functions: to enable inversion-based control and to be used for off-line
reinforcement learning.
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Figure 7. Inversion controller

Some of the dynamics only play a marginal role in the over-
all performance of the controller. These dynamics include the
response delay of the actuators(rotors) and the cross-coupling
modes. The delay between the change of voltage supplied to
the rotors, and the reaction of the system is very brief. This
delay can be disregarded for a large enough time step. The
cross-coupling effects, in turn, should largely be overshadowed
by the contribution of control actuators during moderate flight
manoeuvres. More aggressive manoeuvring might result in a
larger deviation.

Any cross-couplings, present in the pitch roll and yaw
modes, are assumed to have no influence, and applying a virtual
input to the system results in an immediate change of state,
without any delay. The full dynamics model is split into four
simpler sub-models, describing pitch, roll, yaw and altitude
motion. An RBF-net is trained to model these dynamics. Each RBF net maps the relationship between
virtual inputs and output acceleration of the vehicle. This relationship is nearly linear for a sufficiently large
step-size. The model structure is demonstrated in figure 7. An example of the model output is shown in
Figure 8, for various dynamics.
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(a) Vertical motion dynamics

-100 -50 0 50 100

-200

-100

0

100

200

(b) Roll dynamics

-100 -50 0 50 100

-200

-100

0

100

200

(c) Pitch dynamics

-200 -100 0 100 200

-1

-0.5

0

0.5

1

1.5

(d) Yaw dynamics

Figure 8. Reduced dynamics models and curve interpolation

This model can be inverted by using polynomial interpolation of the RBF net output and then solving it
for the desired acceleration output. An array of virtual input samples [v0, v1, . . . , vN ] is supplied as input to
the system and the acceleration outputs ȳ = [ẍm,0, ẍm,1, . . . , ẍm,N ] are recorded. A local polynomial curve
approximation is generated every time a new virtual control input is requested, based on supplied target ẍd.
This curve can be expressed as

¨̄x(v) = g(v) · θ, (40)

where the parameter vector θ describes the interpolated polynomial that follows the shape of the neural
net. In essence, the model itself represents the trim state voltage input for any given virtual input value,
denoted by vinput. The parameter vector θ is modified by adding the desired acceleration ẍd to its first term,
which describes the polynomial bias to reverse this model. Given a parameter vector θ that approximates
the reduced model

θ =
[
p0 p1 . . . pN

]T
, (41)

the adjusted parameter vector θ∗ becomes

θ∗ =
[
p0 + ẍd p1 . . . pN

]T
. (42)

The roots of the resulting system are found by calculating the eigenvalues of the companion matrix A∗
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A∗ =


− p1
p0+ẍd

− p2
p0+ẍd

. . . − pN
p0+ẍd

0 1 . . . 0
...

...
. . .

...

0 0 · · · 1

 (43)

v̄ = eig(A∗) (44)

These roots v̄ correspond to trim state values of the virtual inputs for a given desired target acceleration
ẍd. Due to additional dynamics taking place if this value was applied directly, the system might start moving
towards the desired reference, but it might reach a local equilibrium before it reaches the goal. In other
words, the controller would have a severe undershoot. To account for this discrepancy a small proportional
gain is applied. The bottom part of Figure 7 illustrates the full inversion controller scheme. Figure 9 shows
the resulting performance of the inverse model state controller is for various dynamic modes. Note that the
transitions happen very quickly relative to the timescale, so for the reduced dynamics it’s safe to assume
that these changes take place instantaneously, given a large enough time step.
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(a) Vertical motion dynamics
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Figure 9. Dynamics inversion controller reference tracking

VI. Controller parameters

The controller has several initialization parameters that have to be set in advance: neural net generaliza-
tion function parameters, such as the input states, the number of neurons per-dimension, and any auxiliary
states that might have an effect on the dynamics that have to be controlled. Also, there are Q-learning trial
and value function parameters: duration of one episode, value function update rate α, discount parameter
γ, trace decay rate λ, and the period during which the selected action is applied.

The trial length, discount rate, and action duration length are the parameters that have a major effect on
the resulting policy: control dynamics such as pitch and roll have a much shorter response time, compared
to yaw control for example. This difference in response time means that the time horizon over which an
episode is executed should be shorter, and the inputs have to be adjusted more rapidly.

Another learning parameter that has to be set in advance is the reward function. There are two basic
ways to do it: one is to assign a fixed penalty at each time step until the goal is reached and a terminal
reward is assigned. This method is difficult to apply if the goal is not just some threshold to be reached, but
a reference to be tracked over a period. A continuous state system may never reach the goal state exactly;
there is always some small error present. Therefore, assigning an actual goal condition is difficult. Another
way is to use a reward function that changes depending on the current system state. There are various ways
to define it. The way it is assigned can influence the learning process during the exploration stage, as well
as the overall behaviour of learned policy. For example: if the reward is always positive, then the controller
might give preference to actions that had been explored previously, despite the possibility that some of the
un-tried actions might lead to higher value. Likewise, assigning negative rewards results in preference given
to actions that had not been explored previously, despite the fact that the optimum action already had been
tried. In effect, this works the same as pre-setting the value function. Another factor when designing a
reward function where several states are combined is the maintenance of balance between different states.
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For example, a reward function that assigns a lower penalty for smaller state error but does not take state
derivative into account might result in high overshoot. On the other hand, a reward function that assigns
a high penalty for converging “too fast” might also lead to a controller that has slower response time or
unsatisfactory steady-state performance.

A. Policy training

It had been shown that the computation time for an RL algorithm could grow exponentially25 depending
on the number of states. However, it was also demonstrated that using more efficient exploration techniques
this time could be reduced to rise polynomially,26 so exploiting efficient exploration techniques is paramount
when dealing with a highly complex model.

The training procedure begins with the preliminary generation of several potential policy solutions. The
policies are initialized with the weights of the neural net used to store the Q-function initialized to 0.
Several training episodes are executed. The training progresses for as long as consecutive updates produce
an improvement in evaluation score. The policies are evaluated by performing a test run using the simplified
model while the controller is enabled and recording the average cumulative reward. The test signal consists
of a mix of step and sinusoidal inputs. Step input allows evaluating the steady-state performance of the
controller, while the sinusoidal signal is designed to evaluate the response of the controller to a moving
reference signal.

There are three training methods used to train the policy: random state sweep, grid-based state sweep
and variable signal response. In a random state sweep, the initial state is placed randomly, close to the
final goal state. As the learning progresses, the initial state is placed further and further from the goal.
This approach allows to generate a policy valid near the goal region quickly and then refine it by moving
the initial position further away. During the grid-based search, the initial starting points sweep the entire
state-space of the controlled system. This strategy is designed to cover the entire state-space and to cover
the states that might not have been visited during a randomized search. Variable signal training is done by
letting the simulation run continuously and varying the reference signal(goal). Continuously adjusting the
goal state allows simulating the actual conditions of the system in operation. During the training stage, the
strategy is selected at random.

After generating several fully trained policies, the best one is selected. There is a considerable spread
between various policy scores. The policy quality starts to decrease after a few initial test runs. Therefore it
is important to be able to detect it and prevent it from getting worse as the learning continues on the best
policy.

VII. Simulation results

To evaluate the performance of the trained system and compare it against the PD two types of signals are
used: a variable step input and a sinusoidal pseudo-random input. The controllers are evaluated in isolation
- e.g., only one controller is activated at the time for each dynamic mode.

A PD controller is implemented to serve as a benchmark for the Q-learning controller performance. The
PD gains are tuned using PSO optimization. Time response of the resulting controller is shown in figures
10 - 11 for various dynamic modes.
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Figure 10. PID controller square wave signal response
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Figure 11. PID controller sine wave signal response

The PID controller performance is scored by calculating the average of all rewards received through the
test trial. During these trials the full model of the process is used(with motor dynamics included). The
resulting score allows to make an objective comparison against the performance of a reinforcement learning
based approach.

The Q-learning controller is trained for four dynamic modes: altitude, pitch, roll, and yaw control. The
resulting trained value functions and the action maps are shown in Figures 12 and 13.

(a) Altitude controller (b) Roll controller (c) Pitch controller (d) Yaw controller

Figure 12. RL controller value function

(a) Altitude controller (b) Roll controller (c) Pitch controller (d) Yaw controller

Figure 13. RL controller action map

The approximated value function plot shows that the value is much higher near the goal state, and it
diminishes further away from the goal. This behaviour is expected of Q-learning. The pitch, roll and yaw
controller value functions are symmetrical, whereas the altitude controller value function exhibits some bias
depending on whether the drone is moving upwards or downwards. This bias can be attributed to the fact
that the actuation limits are not symmetrical: the lower limit of the climb rate cannot exceed gravitational
acceleration(free fall), while the upper limit is capped by the available thrust power.
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Another interesting feature is the behaviour of the Yaw controller. The action map looks like a sequence
of bands. This nonlinearity can be explained by the fact that the yaw controller has the least actuation
power, reacting very slowly and the states themselves are cyclic, meaning that as the aircraft rotates, it can
flip from negative to positive reference offset. So for certain combinations of high offset from the reference
state and high yaw rate, the controller tends to flip the direction of the applied control, anticipating future
state. The altitude and yaw controllers react very sharply compared to pitch and roll controllers. This
effect can also be attributed to the actuation power available to different controllers. The roll and the pitch
controllers tend to “feather” the applied virtual input, whereas the altitude and yaw controllers quickly
switch between the minimum and the maximum available actuation forces.

Due to nature of the algorithm, there are two possible ways to evaluate the resulting policy: using the
reduced model of the vehicle that neglects some dynamic aspects, or a full model that introduces some delay
in response and fits the system more closely. Time series of these responses are shown in Figures 14-15 for
the reduced and the full model.
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Figure 14. RL controller time response, reduced model
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Figure 15. RL controller time response, full model

There is a difference between reduced and full models of the system. The full model exhibits a higher
overshoot and some steady-state error, compared to the reduced model. As a consequence, the average trial
score is lower for the full model, compared to the reduced model in most cases. A complete list of test run
scores is shown in tables 3 - 6.

Score full test run Score square input Score sinusoidal input

RL controller, reduced model -0.194 -0.198 -0.184

RL controller, full model -0.086 -0.083 -0.092

PID controller -0.104 -0.109 -0.101

Table 3. Test run score comparison, Altitude control

Score full test run Score square input Score sinusoidal input

RL controller, reduced model -0.030 -0.031 -0.026

RL controller, full model -0.054 -0.064 -0.046

PID controller -0.079 -0.090 -0.062

Table 4. Test run score comparison, Roll control

Score full test run Score square input Score sinusoidal input

RL controller, reduced model -0.026 -0.024 -0.027

RL controller, full model -0.064 -0.079 -0.051

PID controller -0.078 -0.095 -0.061

Table 5. Test run score comparison, Pitch control

The reinforcement learning controller score is higher than the score of PID controller, optimized for the
same objective function. This indicates that reinforcement-learning controller performance is on par with
the PID controller, even slightly better, given comparison based on objective function alone.
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Score full test run Score square input Score sinusoidal input

RL controller, reduced model -0.074 -0.105 -0.041

RL controller, full model -0.079 -0.113 -0.045

PID controller -0.130 -0.160 -0.105

Table 6. Test run score comparison, Yaw control

VIII. Conclusions

A practical continuous state, continuous action Q-learning controller framework has been described and
tested using a model of a multicopter. This work demonstrates that RL methodology can be applied to the
inner-loop model identification and offline learning using a reduced order model of the plant. The model
can be adjusted online to achieve a more accurate estimation of the plant dynamics. An optimized hashed
neural network algorithm used to store the Q-function values allows to optimize the computational load of
the algorithm, making it suitable for online applications. The performance of the algorithm was validated
and compared against that of a conventional proportional-derivative controller and was found to exceed it.
The direction of future research would include testing the resulting algorithm in an experimental setting
that involves a physical system(a multicopter drone), extending the control scheme to include outer loop
control or applying the developed methodology to other classes of robotic systems with continuous states
and actions.
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