
A Constraint Programming Approach to Optimal Network Anonymization

Andrei Ionita1

Supervisor & Responsible Professor: Dr. Anna L.D. Latour1

1EEMCS, Delft University of Technology, The Netherlands

June 22, 2025

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
In the age of the internet, social networks are being
used to study different phenomena, such as segre-
gation, disease spread, or even peer influence. This
introduces the need to protect the privacy of the in-
dividuals that are part of these networks, a problem
known in the field of network science by the name
of network anonymization. This involves altering
the initial network using different methods such as
adding, removing, or altering edges, in order to pre-
vent attackers from identifying specific individuals.
One aspect that has been studied is the data util-
ity of the anonymized network: if we alter the ini-
tial network too much, its usability for studies is
lowered. Thus, in this work, we propose a con-
straint programming approach that minimizes the
anonymization cost, in turn maximizing the data
utility of the final network. We introduce a new iso-
morphic_neighborhoods constraint and show that,
for small(n < 20) or highly dense graphs, we can
guarantee the maximum data utility, by adding the
fewest number of edges that guarantee anonymity.

1 Introduction
The term of open science is being promoted increasingly in
modern times. One of the fields that is tasked with the tran-
sition to this concept is network science. Given the current
times, social networks have become ubiquitous in people’s
daily life. Thus, data in the form of networks exists and con-
tinues to grow. A high variety of different fields, such as
healthcare, psychology, economics, and of course, computer
science, stand to benefit from the study and analysis of net-
works.

Thus, there is a growing need of the great amount of data
to become public and open to regular use. Psychologists
can study different social phenomena such as segregation or
group dynamics; doctors and scientists can model disease
transmission patterns; analysts can map global trade networks
in order to detect dependencies and improve the economy -
and the list goes on.

However, one can not directly make public all existing
network data. There are major ethical concerns that center
around the privacy of individuals represented in these net-
works. Personal and even highly confidential information ex-
ists in these networks, such as a person’s salary or medical
history. In general, even the identity of an individual ought
to be protected from attackers that have different goals and
attacking strategies.

The problem of network anonymization aims to address
this challenge by ensuring that a network is first anonymized,
protecting an individual’s identity and information, before
sharing the network publicly. The approaches that are used to
solve this problem are called anonymization methods. There
are different classes of methods, i.e.exact and heuristic, all
concerned with solving the same problem.

An initial idea towards anonymization is to hide the names
of the individuals in the network, and to assign each node a

random id. This method is called naive user identity removal.
However, the work of [Backstrom et al., 2007] showed that
this measure is not enough to prevent attackers from re-
identifying specific individuals, depending on the knowledge
that they posses.

Ann Bob

Sam Max

(a) Original social graph

1 2

3 4

(b) Anonymized version

Figure 1: A 4-person friendship graph. Nodes 3 and 4 have unique
degrees, enabling re-identification in spite of the random IDs.

We briefly show how naive user identity removal cannot
ensure anonymity in Figure 1. Assume an attacker has prior
knowledge of the number of friends of each individual in the
network, a number equivalent to the degree of a node in the
graph. Even after removing the names of each individual in
Graph 1a, node 5 is the only one that has a degree of 3, so
Bob’s identity is compromised to our attacker. Thus, more
complex anonymization methods exist in the literature.

An important aspect of these methods is the usability of a
network after it has been anonymized. If a method alters the
initial network too much, no relevant statistics or results can
be inferred from the resulting network. Thus, the concept of
data utility aims to define and measure how much a network’s
general properties are affected by an anonymization method.
In this paper, we focus on adding as few edges as possible
to an initial network, in order to maximize the resulting data
utility of the network.

Different attackers have access to different types of infor-
mation about networks. For example, in the previous example
that shows why naive user identity removal does not guaran-
tee anonymization, we assumed that our attacker has prior
knowledge of each individual’s number of friends. In the
literature, other assumptions regarding the attacker’s knowl-
edge include knowledge of partial or complete neighbor-
hoods of individual nodes in a network [Zhou and Pei, 2011],
or other structural attributes of the network [Narayanan
and Shmatikov, 2009]. This motivates the existence of
anonymity measures, which represent ways of quantifying the
anonymity of each node in a network based on the assumed
knowledge of an attacker. Some of the most commonly used
include measures which look at the neighborhood of a node,
or its degree[Solonets et al., 2018].

This paper approaches the network anonymization problem
with the objective of finding a fully anonymized network. We
aim to maximize the data utility of the resulting network by
adding as few edges as possible to fully anonymize the net-
work. Thus, we present a novel approach from the field of
constraint programming, and show that while slower than ex-
isting methods, the guarantee of optimal data utility makes
our solution feasible on small or highly dense graphs.

In the following chapter, the exact problem that we are dis-

cussing in this paper will be defined, along with the other
necessary preliminaries. The following chapter contains in-
formation about the related work, and Chapter 4 contains the
main contributions of this paper. In Chapter 5, we discuss the
experimental setup and the results, followed by a discussion
about the ethical aspects and reproducibility of our research
in Chapter 6. Lastly, the conclusion and our final remarks are
presented in Chapter 7.

2 Preliminaries
In this section, we define and describe the concepts and nota-
tion used throughout the whole text, concerning general graph
terminology, anonymization measures and methods, and con-
straint programming. We refer the reader de Jong et al.’s 2023
paper on the topic of efficient algorithms for computing the
anonymity of nodes [de Jong et al., 2023], where a more in-
depth description and presentation of terms related to graphs
can be found.

2.1 Graphs
Let G = (V,E) denote an undirected, connected graph,
where V is the set of nodes, and E is the set of edges. In
the context of social networks, an edge {u, v} represents a
relation between two individuals, which are represented by
the nodes u, v. In addition, as is the case in social net-
works, G does not contain self-loops. The distance between
two nodes u, v ∈ V , denoted dist(u, v), is equal to the
number of edges in the shortest path from one to the other.
If there is no path between two nodes, we represent this
through dist(u, v) = ∞. As we do not allow self-loops,
we also represent the distance between a node and itself as
dist(v, v) =∞.

The d-neighborhood of a node u is the subgraph that con-
tains all of the nodes v ∈ V , such that dist(u, v) ≤ d, and all
of the edges between these nodes. The d-neighborhood of v
is sometimes denoted as Nd(v).

We say that two graphs are structurally indistinguishable if
they are isomorphic.

Definition 2.1. (Graph isomorphism) Given two graphs G =
(V,E) and G′ = (V ′, E′). We call the two isomorphic, or
write G ≃ G′, if there exists a bijective function ϕ : V →
V ′ such that for all pairs (u, v) ∈ V × V , (u, v) ∈ E ↔
(ϕ(u), ϕ(v)) ∈ E′.

In the literature, the d-neighborhoods of two nodes are used
in order to check if the two are equivalent through an isomor-
phism test between the two subgraphs.

2.2 Anonymity measures and methods
When choosing an anonymity measure, what one actually
chooses is the way the equivalence between two nodes is mea-
sured. This ties into the concept of k-anonymity, which re-
quires all nodes to have at least k − 1 other nodes they are
indistinguishable from. In this case, k-anonymity requires
nodes to be equivalent to at least k − 1 other nodes.

Definition 2.2. (k-anonymity) Given a graph G = (V,E) and
a function f : V → P , where f is a function describing the
assignment of each node to an equivalence class p. We call G

k-anonymous if ∀v ∈ V , it holds that there are at least k − 1
other nodes {v1, . . . , vk−1}, such that f(v) = f(v1) = · · · =
f(vk−1).

For example, in the case of d-k-anonymity, two nodes are
equivalent if their d-neighborhoods are isomorphic:
Definition 2.3. (Node equivalence based on neighborhoods)
Given two nodes u, v ∈ V , we say that u is equivalent to v,
or write u ≃ v, if a)Nd(u) and Nd(v) are isomorphic and
b) there is an isomorphism ϕ : Nd(u) → Nd(v) such that
ϕ(u) = v.

In this paper, we are studying undirected, connected
graphs, and assuming that an attacker has perfect knowledge
of the complete 1-neighborhoods of every node in a graph. As
we are focusing on k-anonymity methods, for each node in
our graph, we are trying to find at least k− 1 other equivalent
nodes. Based on our problem definition, two nodes are con-
sidered equivalent if their 1-neighborhoods are isomorphic.
We write N(u), omitting the subscript, to represent the 1-
neighborhood of node u.

There are multiple ways of anonymizing a graph, with
the main ones being adding, deleting or altering edges or
nodes. We assume that no edges/nodes in the original net-
work are deleted, thus only considering the case of edge ad-
ditions. This choice comes with two benefits: first, no re-
lationships/individuals in the original network are lost in the
final, anonymized network. Secondly, for a given k ≤ |N |,
where |N | is the number of nodes in a graph, there is also
a guarantee that a k-anonymous network exists. In the worst
case, this is the clique made of all of the nodes in the network.

After anonymizing a graph based on the chosen mea-
sure and method, the resulting graph is used in various data
analysis processes or studies. Thus, we aim to keep the
anonymized graph as close as possible to the original graph.
This "closeness" is quantified by how we choose to define the
concept of data utility.

In this study, we propose an approach that maximizes the
data utility of the resulting graph, by minimizing the amount
of added edges. Other, more complex functions of measur-
ing the data utilities can be defined, but we choose the most
straight-forward and easy to compute measure, as it is also
used in [Zhou and Pei, 2011].
Definition 2.4. (Data utility based on number of added
edges) Given an initial graph G = (V,E) and the graph
G′ = (V,E′), resulted after applying our approach, we cal-
culate the data utility of G′ as 1

|E′|−|E| .

2.3 Constraint programming
Constraint programming is a programming paradigm mainly
used for solving combinatorial problems. Usually, using a
declarative language, users state what consists of a feasible
solution by making use of constraints. These constraints,
compared to imperative programming, represent the proper-
ties of the solutions, not specific steps to be executed.

Formally, a constraint is a relation between one or multiple
variables that specifies a limit of the values that the variables
can take.

The user also specifies a solver which searches for the de-
scribed solution. The solver usually makes use of methods

such as backtracking, pruning of the search space, or prop-
agation. Each time the solver assigns values to variables, it
re-evaluates the list of constraints defined by the user. If the
solution made up of the current assignments satisfies all of
the constraints, it may return the solution if the user’s objec-
tive is to find any solution. Otherwise, if the objective is to
optimize a certain function, the solver keeps searching for so-
lutions that satisfy all of the constraints, only returning the
best solution in the end.

We propose a new isomorphic_neighborhoods constraint
that we use to perform isomorphism tests between the 1-
neighborhoods of each node in the graph.

3 Related Work
To address the problem of network anonymization, multi-
ple approaches have been proposed. The two most widely
used methods are differential privacy - a method described
in [Dwork and Smith, 2010], which involves sharing partial
graphs instead of the full data, and k-anonymization. The
term k-anonymity was proposed in [Samarati and Sweeney,
1998], where the authors also propose a first method for en-
suring anonymity for information in the form of tables. Our
work also focuses on k-anonymity methods.

In this paper, we are studying networks where the only at-
tribute that we aim to anonymize and protect from attackers
is the identity of an individual.

In modern social networks such as LinkedIn or Facebook,
when accessing a person’s profile, one only has access to
their immediate connections/friends. Thus, there are multiple
works such as [Zhou and Pei, 2011], or [de Jong et al., 2024],
where the authors argue that, in order to model the problem as
close to real-life scenarios as possible, the 1-neighborhood of
a node is a relevant choice in terms of anonymity measures.
We also focus on the scenario where an attacker only has ac-
cess to the complete 1-neighborhood of any given node.

The 2011 paper by Zhou and Pei [Zhou and Pei, 2011]
introduces a greedy algorithm for anonymizing a graph, as-
suming the same knowledge of an attacker. The authors mo-
tivate the usefulness of the algorithm by showing that the
anonymized network can be used to respond accurately to ag-
gregation queries. We introduce a complete algorithm that
guarantees optimality through the use of a constraint pro-
gramming approach.

This approach has been previously used in [Solonets et al.,
2018], where the authors introduce a new constraint, used
to provide the optimal anonymized network. The difference
comes from the assumption of an attacker’s knowledge. The
authors use a much simpler anonymity measure, namely the
degree count of the nodes. The definition of optimality used
by the authors is based on minimizing the anonymization
cost that comes with adding dummy edges to the initial net-
work. This cost can be represented through multiple formu-
las, with the most straightforward representation being sim-
ply the number of added edges.

4 Approach
This section presents a novel constraint programming ap-
proach for the previously defined problem of anonymizing

a graph, assuming that the attacker has perfect knowledge of
each node’s complete 1-neighborhood. We introduce an iso-
morphic_neighborhoods(E, isomorphic) constraint that en-
sures that based on the set of edges E, the assignments of
isomorphic or non-isomorphic pairs of nodes are correct. We
ensure that the constraint holds by performing isomorphism
tests between the 1-neighborhoods of all pairs of two nodes
in our graph.
Definition 4.1. (The isomorphic_neighborhoods constraint)
Let G = (V,E) be an undirected, connected graph,
and isomorphic a matrix of boolean values, where
isomorphic[i, j] states whether the nodes i and j’s 1-
neighborhoods are isomorphic or not, or not yet fixed by the
solver. The constraint isomorphic_neighborhoods holds
iff :

1. ∀i, j ∈ V, isomorphic[i, j] = 1 =⇒ N(i) ≃ N(j)

2. ∀i, j ∈ V, isomorphic[i, j] = 0 =⇒ N(i) ̸≃ N(j)

Informally, the constraint fails if the solver assigns two
nodes as having isomorphic 1-neighborhoods while this is not
actually the case, or vice-versa.

A constraint programming model that does not make use
of any custom constraints has to use expensive global con-
straints in order to simulate isomorphism tests. For example,
in order to find a bijective function from graph A to graph
B, it would have to make use of the all_different constraint in
order to ensure the injectivity of the function. Moreover, find-
ing the actual function assignments involves letting the solver
reason over at least n3 variables: for each pair of two nodes
i, j, the solver needs to find an assignment k′ for every node
k ∈ N(i) such that k′ ∈ N(j).

Thus, we move the logic behind isomorphism tests away
from the solver, and into the form of a constraint. Our isomor-
phic_neighborhoods constraint calls a propagator with the
same name that performs isomorphism tests every time the set
of edges E or the pair of assignments isomorphic change. In-
stead of having the model dynamically compute the neighbor-
hoods of each node and simulate isomorphism tests through
expensive global constraints, we perform these steps in the
solver’s backend by implementing our own constraint.

Every time the set of edges or the assignment of isomor-
phic or non-isomorphic pairs of nodes change, a propagator
enforces the isomorphic_neighborhoods constraint. For each
fixed assignment of an isomorphism between the neighbor-
hoods of two nodes, we perform an isomorphism test and
check whether the graphs are actually isomorphic. If the test
fails, the propagator raises a conflict, failing the constraint in
turn. The opposite happens if a pair of two nodes are marked
as non-isomorphic but an isomorphism test shows that their
neighborhoods are isomorphic.

In order to address the problem of symmetry, and to avoid
computing an isomorphism test between both (u, v), (v, u),
for any fixed assignment isomorphic[i, j], we also propagate
its value to isomorphic[j, i], if unfixed.

We describe the resulting algorithm in Figure 1.

5 Experimental Results
In this section, we aim to answer the following two research
questions:

Algorithm 1 Propagation algorithm

Require: E, isomorphic as described above
Ensure: ∀isomorphic[i, j] = 1, N(i) ≃ N(j) and

∀isomorphic[i, j] = 0, N(i) ̸≃ N(j)
1: let n = maximum node index in E ▷ Number of nodes
2: for i← 1 to n− 1 do
3: for j ← i+ 1 to n do
4: if isomorphic[i, j] fixed then
5: run isomorphism test between N(i), N(j)
6: let flag = 1 if N(i) ≃ N(j), 0 otherwise
7: if flag = 1 and isomorphic[i, j] = 0 then
8: raise propagator conflict
9: else if flag = 0 and isomorphic[i, j] = 1

then
10: raise propagator conflict
11: else if isomorphic[j, i] not fixed then
12: propagate isomorphic[j, i] = flag
13: end if
14: end if
15: end for
16: end for

1. How does a model using our isomorphic_neighborhoods
compare to a simple model in terms of running time?

2. How does the anonymity factor k affect the running time
and data utility of our solutions?

3. Are constraint programming approaches feasible in
terms of running time?

In order to answer each question, we tested and com-
pared two different solutions. We call BasicModel the
constraint programming model only using global con-
straints, and IsoModel a model that makes use of the
isomorphic_neighborhoods constraint.

5.1 Datasets
The graph instances used come from 3 different sources: first,
we selected datasets that represent real networks from the
KONECT collection of networks [Kunegis, 2013], and from
the Network Repository [Rossi and Ahmed, 2015]. The num-
ber of nodes and edges of each selected instance can be found
in Table 1. We pre-processed the original graphs to remove
duplicated edges - which do not affect the model - for consis-
tency reasons, as well as indexed all of the nodes from 1 to
the number of nodes in each graph.

We also generated undirected, connected graphs using
the Erdős–Rényi model, as introduced in [Erdős and Rényi,
1960]. We adapted the model’s idea of adding all possible
edges between a number of nodes N , with a probability p, to
generate graphs. As we will show, our constraint program-
ming approaches are only feasible on small graphs(n < 20)
or highly dense graphs (with density ≥ 0.9).

We generated 41 undirected graph instances, to reach a to-
tal of 50 instances (together with the 9 real life networks).
The graphs have a maximum of 20 nodes and have a density
of over 0.8.

We mention the density and the fact that our instances are
highly dense because of one reason: none of our two mod-

els perform partial assignments or propagations to stop the
search early in the search tree. In order to find the optimal
solution in terms of adding the least amount of edges, Iso-
Model needs to try all possible permutations of unassigned
edges. For a graph G with n nodes and m initial edges, there
are (n−1)∗n

2 −m edges that can be added to G. We call these

candidate edges. Thus, IsoModel will try 2
(n−1)∗n

2 −m con-
figurations, and for each of them will perform, through our
constraint and propagator, isomorphism tests between each
of the graph’s nodes.

Based on our experiments, with a time limit of 5 minutes,
IsoModel can handle graphs that have at most 20 candidate
edges, hence the high density of our instances.

On the other hand, BasicModel is limited by the need to
find a bijective function for each pair of two nodes in the
graph. BasicModel is tasked with adding edges to our graph,
while at the same time finding isomorphisms between neigh-
borhoods. The model performs the latter in the most expen-
sive way possible: by randomly assigning values and then
checking them through expensive constraints.

While conceptually, the idea of performing isomorphism
tests is the same, we rely on an implementation of these tests
from the petgraph crate in our isomorphic_neighborhoods
propagator. This allows the solver to only search and assign
candidate edges, while petgraph handles the logic related to
isomorphisms.

Network Nodes Edges

South African companies 6 8
Southern women 5 8
Rhesus macaques 16 111
mammalia-voles-kcs-trapping-43 5 4
mammalia-baboon-association-group17 9 15
mammalia-baboon-association-group18 10 27
aves-weaver-social-14 11 38
aves-weaver-social-01 7 12
aves-barn-swallow-non-physical 17 122

Table 1: Real datasets used in experiments, and their number of
nodes and edges [Rossi and Ahmed, 2015; Kunegis, 2013]

5.2 Experimental setup
All of the experiments were conducted on a laptop running
Windows 11 Home with an Intel Core i5-11400H CPU at
2.7 GHz and 16 GB RAM. The models were implemented in
the MiniZinc modeling language [Nethercote et al., 2007].
The constraint and propagator were implemented inside of
the Pumpkin solver1. The solver used for BasicModel is
Gecode [Gecode Team, 2006], as for models that do not have
custom propagators, it currently outperforms Pumpkin.

There were two main aspects that we measured through-
out our experiments: first, the resulting data utility of the
anonymized graph, based on Definition 2.4. We also mea-
sured the running time of our solutions in seconds. We com-
pared the results in order to show that a constraint program-

1https://github.com/ConSol-Lab/pumpkin

https://github.com/ConSol-Lab/pumpkin

ming approach is feasible on small or highly dense graphs,
from the perspective of time, and provides an optimal result,
from the perspective of data utility.

5.3 Results

Figure 2: Comparison of running times of IsoModel and BasicModel
across 50 instances. Timeout values are capped at 5 minutes and
marked with red.

We start with a comparison of the two models. Figure 2
reports the running time of the two models for all 50 different
instances. We initially started with an anonymization factor
k = 2. Despite the low value of k, BasicModel only finds the
optimal solution in 8 of the 50 instances, timing out for all the
others.

We did not plot the amount of added edges in Figure 2,
as for the instances where both models successfully ran, the
anonymization cost was equal. This is to be expected due
to the goal of both BasicModel and IsoModel being to find
the solution that adds as few edges as possible. In the same
figure, we can see that BasicModel outperforms IsoModel
for 7 instances. This can be explained by the idea that on
really small instances, assigning random values to variables
can sometimes be faster than performing actual isomorphism
tests, as is the case with our isomorphic_neighborhoods con-
straint.

Since for k = 2, BasicModel only runs on a fraction of
the instances without timing out, we only analyze the perfor-
mance of IsoModel when k increases in Figure 3. We observe
that, when k increases, the anonymization cost, represented in
our case by the amount of added edges, also increases, or at
the very least stays the same. This is to be expected, due to
higher values of k requiring additional anonymization to be
reached. However, due to the nature of constraint program-
ming, the optimal, minimum cost is still guaranteed.

Despite being able to obtain the minimum possible
anonymization cost, our solution, IsoModel, has clear limita-

Figure 3: The influence of the anonymization factor k over the
anonymization cost in terms of dummy edges added to the graph.

tions when it comes to the size of the graph to be anonymized.
Other approaches, while not able to guarantee the maximal
resulting data utility, can anonymize graphs of up to tens or
even hundreds of thousands of nodes and edges. While we
can guarantee our anonymized graph has the least amount of
added edges from the original one, we can only do so for
small graphs(n < 20), or highly dense graphs, where the
amount of candidate edges is small enough. Other methods
such as greedy approaches [Zhou and Pei, 2011] or Genetic
Algorithms [Alavi et al., 2019] are better suited for larger
graphs, or graphs that have a lower density.

6 Responsible Research
The network anonymization problem stems from the need to
protect the privacy of the individuals. It promotes the shar-
ing of data, and making it public and free to use, while at
the same time, trying to ensure the privacy and rights of all
individuals. Ensuring that anonymized networks are free, yet
safe from any de-anonymization techniques employed by var-
ious attackers, is an ongoing mission that deals with the pre-
viously mentioned ethical aspects. We, as the authors, and
researchers in general, need to be careful with the data and
information that they study, an idea closely related to network
science.

This work also ensures that the methods and experiments
are reproducible, in order to promote open and public re-
search. We make all of the code used for our solutions avail-
able online 2, code which is written in C++ and Rust, two
programming languages that are widely used and free to in-
stall on any computer.

In Section 4, we amply describe and explain the algorithms
used, ensuring that even without the publicly available code,
any reader experienced with a programming language can re-
produce the code. The datasets used in our experiments also
come from the KONECT project [Kunegis, 2013], a project
specifically created in order to share public networks for free
use. The solver that we used to run the model on, Pumpkin,
has also recently become open source.

2https://github.com/AndreiLeIttu/network-anonymization-RP

https://github.com/AndreiLeIttu/network-anonymization-RP

Use of Generative AI. During this study, we made limited
use of OpenAI’s ChatGPT (GPT-4) to help with suggestions
of English synonyms, and for help with installing an old C++
library. The authors are the ones who, without any external
help, came up with all core algorithmic ideas, ran the experi-
ments on the benchmark instances, and wrote this paper. All
of the English suggestions from ChatGPT were taken into
consideration, edited and only used when considered accu-
rate.

By choosing a constraint programming approach, we chose
a complete solution that provides a network that is guaranteed
to be anonymous based on our definition of anonymity. Thus,
our work promotes the protection of an individual’s identity
and privacy, which are the main ethical concerns related to
this problem. Lastly, we adhere to the Netherlands Code of
Conduct for Research Integrity 3.

7 Conclusions
In this paper, we studied the problem of network anonymiza-
tion in the form of graphs, with the goal of altering a net-
work as little as possible, in order to maximize the data utility
of the anonymized network. We specifically looked at the
1-neighborhood of each node in order to decide whether it
can be considered anonymous or not. We proposed a con-
straint programming approach that guarantees that we can
find the most optimal solution based on our goal, and in-
troduced a isomorphic_neighborhood constraint for the pur-
pose of performing isomorphism tests. By implementing a
new constraint, we also leave open the implementation of
custom propagators enforcing this constraint in future work.
Our experiments show that our approach can successfully
anonymize small or highly dense graphs, while guaranteeing
the optimal data utility.

Acknowledgements
I am grateful for the continuous support of my supervisor,
Anna Latour. I would like to thank Rachel de Jong and Frank
Takes for introducing the problem and for their support, and
my four other team mates, for their great input and collabora-
tion.

References
[Alavi et al., 2019] Arash Alavi, Rajiv Gupta, and Zhiyun

Qian. When the attacker knows a lot: The gaga graph
anonymizer. In Information Security: 22nd International
Conference, ISC 2019, pages 211–230, New York, NY,
USA, 2019. Springer.

[Backstrom et al., 2007] Lars Backstrom, Cynthia Dwork,
and Jon Kleinberg. Wherefore art thou r3579x?
Anonymized social networks, hidden patterns, and struc-
tural steganography. In Proceedings of the 16th Interna-
tional Conference on World Wide Web (WWW ’07), pages
181–190, Banff, Canada, 2007. ACM.

3https://www.nwo.nl/en/netherlands-code-conduct-research-integrity

[de Jong et al., 2023] Rachel G. de Jong, Mark P. J. van der
Loo, and Frank W. Takes. Algorithms for efficiently com-
puting structural anonymity in complex networks. ACM
Journal of Experimental Algorithmics, 28:1–22, 2023.

[de Jong et al., 2024] Rachel G. de Jong, Mark P. J. van der
Loo, and Frank W. Takes. A systematic comparison of
measures for k-anonymity in networks. arXiv preprint,
2407.02290, 2024.

[Dwork and Smith, 2010] Cynthia Dwork and Adam Smith.
Differential privacy for statistics: What we know and what
we want to learn. Journal of Privacy and Confidentiality,
1(2), 2010.

[Erdős and Rényi, 1960] Paul Erdős and Alfréd Rényi. On
the evolution of random graphs. Publications of the Math-
ematical Institute of the Hungarian Academy of Sciences,
5:17–61, 1960.

[Gecode Team, 2006] Gecode Team. Gecode: Generic Con-
straint Development Environment, 2006. Available at
http://www.gecode.org.

[Kunegis, 2013] Jérôme Kunegis. Koblenz network collec-
tion (Konect). In Proceedings of the 22nd International
World Wide Web Conference (WWW ’13), pages 1343–
1350, Rio de Janeiro, Brazil, 2013. ACM.

[Narayanan and Shmatikov, 2009] Arvind Narayanan and
Vitaly Shmatikov. De-anonymizing social networks. In
2009 IEEE Symposium on Security and Privacy (SP ’09),
pages 173–187, Oakland, CA, USA, 2009. IEEE.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J.
Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a standard
CP modelling language. In Christian Bessière, editor,
Principles and Practice of Constraint Programming – CP
2007, pages 529–543, Berlin, Germany, 2007. Springer.

[Rossi and Ahmed, 2015] Ryan A. Rossi and Nesreen K.
Ahmed. The Network Data Repository with interactive
graph analytics and visualization. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI ’15), pages 4292–4293, 2015.

[Samarati and Sweeney, 1998] Pierangela Samarati and La-
tanya Sweeney. Generalizing data to provide anonymity
when disclosing information. In Proceedings of the 24th
ACM SIGMOD–SIGACT–SIGART Symposium on Princi-
ples of Database Systems (PODS ’98), pages 188–195,
Seattle, WA, USA, 1998. ACM.

[Solonets et al., 2018] Sergei Solonets, Victor Drobny, Vic-
tor Rivera, and JooYoung Lee. Introducing ADegree:
Anonymisation of social networks through constraint pro-
gramming. In Mobility Analytics for Spatio-Temporal and
Social Data: First International Workshop (MATES ’17),
pages 73–86, Munich, Germany, 2018. Springer.

[Zhou and Pei, 2011] Bin Zhou and Jian Pei. The k-
anonymity and l-diversity approaches for privacy preser-
vation in social networks against neighborhood attacks.
Knowledge and Information Systems, 28(1):47–77, 2011.

https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
http://www.gecode.org

	Introduction
	Preliminaries
	Graphs
	Anonymity measures and methods
	Constraint programming

	Related Work
	Approach
	Experimental Results
	Datasets
	Experimental setup
	Results

	Responsible Research
	Conclusions

