Presentation P5

"How can a genetic algorithm based workflow be effectively employed in the multi-objective optimization of a shading system to improve the energy efficiency of an existing building envelope?"

AR3B025 Building Technology Graduation Studio 2023-2024

21 June 2024

Mentors: Simona Bianchi, Charalambos Andriotis Student: Alkiviadis Oikonomidis 5786746

Problem statement

EUROPE Extreme Maximum Temperature (C) July 9 - 15, 2023

https://commons.wikimedia.org/wiki/Category:Maximum_air_temperature_maps_of_Europe

Environment, T.Klein (2013). Integral Facade Construction: Towards a new product architecture for curtain walls. TU Delft.

"How can a genetic algorithm based workflow be effectively employed in the multi-objective optimization of a **shading system** to improve the **energy efficiency** of an **existing building envelope**?"

Goals

• To be able to evaluate the energy performance of existing buildings.

Goals

- To be able to evaluate the energy performance of existing buildings.
- To provide instant interdisciplinary feedback in a design team.

Goals

- To be able to evaluate the energy performance of existing buildings. •
- To provide instant interdisciplinary feedback in a design team.
- To improve an existing envelope's energy performance by reducing its cooling demands (with an optimized design).

"How can a genetic algorithm based workflow be effectively employed in the multi-objective optimization of a **shading system** to improve the **energy efficiency** of an **existing building envelope**?"

"How can a genetic algorithm based workflow be effectively employed in the multi-objective optimization of a shading system to improve the energy efficiency of an existing building envelope?"

I. What are the primary typologies of facades and how can they be classified based on their materials, connection details and functions?

"How can a genetic algorithm based workflow be effectively employed in the multi-objective optimization of a shading system to improve the energy efficiency of an existing building envelope?"

I. What are the primary typologies of facades and how can they be classified based on their materials, connection details and functions?

II. What is resilience and how can it be quantified?

"How can a genetic algorithm based workflow be effectively employed in the multi-objective optimization of a shading system to improve the energy efficiency of an existing building envelope?"

III. How to formulate a genetic algorithm-based multi-objective optimization workflow?

"How can a genetic algorithm based workflow be effectively employed in the multi-objective optimization of a shading system to improve the energy efficiency of an existing building envelope?"

IV. How can a digital design tool be implemented in a preliminary design phase of a shading system to enhance the thermal resilience of an existing curtain wall system and provide interdiciplinary feedback to a design team?

III. How to formulate a genetic algorithm-based multi-objective optimization workflow?

Environment, T.Klein (2013). Integral Facade Construction: Towards a new product architecture for curtain walls. TU Delft.

Supporting functions

Detailed supporting functions

	Deviate loads wind loads	\vdash	Create stiffness perpendicular to surface
. –	Deviate impact loads	\vdash	Fix to primary structure of building
	Carry self weight		Integrate joints to allow movement
	Handle loads from structural and thermal expansion		Allow damage free movement
ı	Secure a air and vapour tight construction		Allow vapour tight connection of parts
<u> </u> -L	Secure a rain- and water tightness		Increase vapour barrier properties from inside to outside
	Prevent material deterioration		Incorporate water sealing system
_	Allow exchange of materials and components		Create internal drainage system
	Allow maintenance and cleaning	-	Allow surface treatment
	Consider responsibilities of design team	Ì	Allow constructive protection
	Consider responsibilities of building team	i –	Separate materials when needed
	Create interfaces between different crafts	i –	Allow disconnection
	Define level of standardization	i –	Make façade accessible
<u> </u>	Create sections to limit weight/seize		Allow connection of cleaning machinery
, L	Allow tolerances during assembly		
	Define level of prefabrication		Block radiation
	Control daylight radiation		Let radiation pass
	Control air exchange rate	h	Ventilate excessive heat
' -	Prevent unwanted energy losses	HL	Maintain air tightness
, L	Prevent surface temperature differences		Provide thermal insulation
	Control air exchange rate		
,	Adapt façade to changing climate		
\vdash	Adapt façade to changing climate		
	Add mechanical building services		
	Acoustic insulation of façade plane		
. –	Acoustic insulation of façade plane		
-	Insulation of connection to dividing walls		
	Insulation of floor connection		
	Provide a comfortable daylight level		Create transparent façade areas
\vdash	Provide glare protection	\vdash	Redirect daylight
	Allow visual contact		Provide sun shading

	Adapt to changing climatic conditions	
-	Prevent energy losses	
-	Allow natural lighting of interior	
\vdash	Provide sun protection	
	Adapt according to orientation of building	
_	Reduced material quantities	
<u> </u>	Choose materials with low impact	
_	Minimize spatial distances in the supply chain	
-	Allow production with low use of energy	
	Allow separation of components	
	Choose recyclable materials	
	Collect solar thermal energy	
	Collect solar energy	
_	Include thermal mass	
	Include components for artificial thermal mass	
_	Protect against fire	
	Prevent structural damage	
	Protect against attacks from the	
	Protect against toxic loads	
	Protect against falling out of the window	
_	Provide good handling for the end user	
	Allow for facility management	
_	Monitor façade performance	
	Ensure Low running costs	
	Guarantee energetic performance	
	Service and cleaning of components	Γ
	Bridge knowledge gap between stakeholders	F
	Allow architectural variety	ŀ
	Support architectural design intentions throughout process	
_	Choose appropriate materials and technologies (meaning)	-
	Arrange components spatially	+
	Design visual, acoustic, haptic perception	

-	Induce arrangement
_	Induce shape
_	Induce proportion
	Induce scale
-	Apply texture
-	Apply colour
-	Apply material
_	Induce rhythm

Environment, T.Klein (2013). Integral Facade Construction: Towards a new product architecture for curtain walls. TU Delft.

Supporting functions

		Deviate loads wind loads
	_	Deviate impact loads
		Carry self weight
		Handle loads from structural and thermal expansion
		Secure a air and vapour tight construction
		Secure a rain- and water tightness
		Prevent material deterioration
_		Allow exchange of materials and components
		Allow maintenance and cleaning
	_	Consider responsibilities of design team
	-	Consider responsibilities of building team
	_	Create interfaces between different crafts
		Define level of standardization
	_	Create sections to limit weight/seize
		Allow tolerances during assembly
		Define level of prefabrication
	_	Control daylight radiation
		Control air exchange rate
		Prevent unwanted energy losses
	4	Prevent surface temperature differences
	_	Control air exchange rate
		Adapt façade to changing climate
		Adapt façade to changing climate
		Add mechanical building services
	_	Acoustic insulation of façade plane
	_	Acoustic insulation of façade plane
		Insulation of connection to dividing walls
		Insulation of floor connection
		Provide a comfortable daylight level
		Provide glare protection
		Allow visual contact

becalled supporting functions	
Create stiffness perpendicular to surface	
Fix to primary structure of building	
Allow damage free movement	
Allow vapour tight connection of parts	
Increase vapour barrier properties from inside to outside	
Incorporate water sealing system	
Create internal drainage system	
Allow surface treatment	
Allow constructive protection	
Separate materials when needed	
Allow disconnection	
Make façade accessible	
Allow connection of cleaning machinery	

-[Block radiation
-[Let radiation pass
l	Ventilate excessive near
_	Maintain air tightness

	Create transparent façade areas	
H	Redirect daylight	
	Provide sun shading	

	Adapt to changing climatic conditions
-	Prevent energy losses
┢	Allow natural lighting of interior
-	Provide sun protection
	Adapt according to orientation of building
_	Reduced material quantities
1_	Choose materials with low impact
\vdash	Minimize spatial distances in the supply chain
1_	Allow production with low use of energy
	Allow separation of components
L	Choose recyclable materials
_	Collect solar thermal energy
	Collect solar energy
_	Include thermal mass
	Include components for artificial thermal mass
	Protect against fire
	Prevent structural damage
	Protect against attacks from the
	Protect against toxic loads
	Protect against falling out of the window
	Devide and bendling for the and uses
-	Allow for facility management
	Anow for facility management
	Monitor raçade performance
	Ensure Low running costs
	Guarantee energetic performance
	Service and cleaning of components
	Bridge knowledge gap between stakeholders
-	Allow architectural variety
	Support architectural design intentions throughout process
╞	Choose appropriate materials and technologies (meaning)
\vdash	Arrange components spatially
	Design visual, acoustic, haptic perception

_	Induce arrangement
	Induce shape
_	Induce proportion
	Induce scale
	Apply texture
	Apply colour
_	Apply material
	Induce rhythm

Bear structural loads

Environment, T.Klein (2013). Integral Facade Construction: Towards a new product architecture for curtain walls. TU Delft.

Supporting functions

		Deviate loads wind loads
	_	Deviate impact loads
		Carry self weight
		Handle loads from structural and thermal expansion
		Secure a air and vapour tight construction
		Secure a rain- and water tightness
		Prevent material deterioration
_		Allow exchange of materials and components
		Allow maintenance and cleaning
	_	Consider responsibilities of design team
	-	Consider responsibilities of building team
	_	Create interfaces between different crafts
		Define level of standardization
	_	Create sections to limit weight/seize
		Allow tolerances during assembly
		Define level of prefabrication
	_	Control daylight radiation
		Control air exchange rate
		Prevent unwanted energy losses
	4	Prevent surface temperature differences
	_	Control air exchange rate
		Adapt façade to changing climate
		Adapt façade to changing climate
		Add mechanical building services
	_	Acoustic insulation of façade plane
	_	Acoustic insulation of façade plane
		Insulation of connection to dividing walls
		Insulation of floor connection
		Provide a comfortable daylight level
		Provide glare protection
		Allow visual contact

becalled supporting functions	
Create stiffness perpendicular to surface	
Fix to primary structure of building	
Allow damage free movement	
Allow vapour tight connection of parts	
Increase vapour barrier properties from inside to outside	
Incorporate water sealing system	
Create internal drainage system	
Allow surface treatment	
Allow constructive protection	
Separate materials when needed	
Allow disconnection	
Make façade accessible	
Allow connection of cleaning machinery	

-[Block radiation
-[Let radiation pass
l	Ventilate excessive near
_	Maintain air tightness

	Create transparent façade areas	
H	Redirect daylight	
	Provide sun shading	

	Adapt to changing climatic conditions
-	Prevent energy losses
┢	Allow natural lighting of interior
	Provide sun protection
	Adapt according to orientation of building
_	Reduced material quantities
1_	Choose materials with low impact
⊢	Minimize spatial distances in the supply chain
1_	Allow production with low use of energy
	Allow separation of components
	Choose recyclable materials
_	Collect solar thermal energy
	Collect solar energy
_	Include thermal mass
	Include components for artificial thermal mass
	Protect against fire
	Prevent structural damage
	Protect against attacks from the
L	Protect against toxic loads
	Protect against falling out of the window
	Provide good handling for the end user
	Allow for facility management
	Monitor facada parformança
	Ensure Low running costs
	Service and cleaning of components
	Service and cleaning of components
	Bridge knowledge gap between stakeholders
	Allow architectural variety
	Support architectural design intentions throughout process
╞	Choose appropriate materials and technologies (meaning)
\vdash	Arrange components spatially
1	Design visual, acoustic, haptic perception

	Induce arrangement
	Induce shape
_	Induce proportion
	Induce scale
_	Apply texture
	Apply colour
	Apply material
	Induce rhythm

Bear structural loads

Environment, T.Klein (2013). Integral Facade Construction: Towards a new product architecture for curtain walls. TU Delft.

Supporting functions

		Deviate loads wind loads	
	_	Deviate impact loads	
		Carry self weight	
		Handle loads from structural and thermal expansion	
		Secure a air and vapour tight construction	
		Secure a rain- and water tightness	
		Prevent material deterioration	
_		Allow exchange of materials and components	
		Allow maintenance and cleaning	
	_	Consider responsibilities of design team	
	-	Consider responsibilities of building team	
	_	Create interfaces between different crafts	
		Define level of standardization	
	_	Create sections to limit weight/seize	
	_	Allow tolerances during assembly	
		Define level of prefabrication	
		Control daylight radiation	
		Control air exchange rate	
		Prevent unwanted energy losses	
		Prevent surface temperature differences	
	_	Control air exchange rate	
		Adapt façade to changing climate	
		Adapt façade to changing climate	
		Add mechanical building services	
		Acoustic insulation of façade plane	
	_	Acoustic insulation of façade plane	
		Insulation of connection to dividing walls	
		Insulation of floor connection	
		Provide a comfortable daylight level	
		Provide glare protection	
		Allow visual contact	

becalled supporting functions	
Create stiffness perpendicular to surface	
Fix to primary structure of building	
Allow damage free movement	
Allow vapour tight connection of parts	
Increase vapour barrier properties from inside to outside	
Incorporate water sealing system	
Create internal drainage system	
Allow surface treatment	
Allow constructive protection	
Separate materials when needed	
Allow disconnection	
 Make façade accessible 	
Allow connection of cleaning machinery	

H	Block radiation
-[Let radiation pass
1.0	
	Ventilate excessive near
_	Maintain air tightness

	Create transparent façade areas	
H	Redirect daylight	
	Provide sun shading	

	Adapt to changing climatic conditions
-	Prevent energy losses
┢	Allow natural lighting of interior
	Provide sun protection
	Adapt according to orientation of building
_	Reduced material quantities
1_	Choose materials with low impact
⊢	Minimize spatial distances in the supply chain
1_	Allow production with low use of energy
	Allow separation of components
	Choose recyclable materials
_	Collect solar thermal energy
	Collect solar energy
_	Include thermal mass
	Include components for artificial thermal mass
	Protect against fire
	Prevent structural damage
	Protect against attacks from the
L	Protect against toxic loads
	Protect against falling out of the window
	Provide good handling for the end user
	Allow for facility management
	Monitor facada parformança
	Ensure Low running costs
	Service and cleaning of components
	Service and cleaning of components
	Bridge knowledge gap between stakeholders
	Allow architectural variety
	Support architectural design intentions throughout process
╞	Choose appropriate materials and technologies (meaning)
\vdash	Arrange components spatially
1	Design visual, acoustic, haptic perception

_	Induce arrangement
	Induce shape
_	Induce proportion
	Induce scale
	Apply texture
	Apply colour
_	Apply material
	Induce rhythm

Literature review

+

- Lightweight
- Durable
- 100% Recyclable

- 100% manmade
- toxic ingredients
- need of constant inflation

Literature review

Resilience is a time dependent measurable assessment of a system against a balance disturbance.

Thermal resilience is the ability of the building to maintain its indoor thermal comfort in case of extreme hot weather conditions.

Literature review

Multi-Attribute decision making (MADM)

- closer to data-driven models
- creation of hierarchies of façade design alternatives either by reducing the complexity of a problem or with the comparison of solution ratings.

Multi-Objective decision making (MODM)

- closer to forward models
- based on optimization algorithms
- numerical simulations for the definition of a larger amount of design options and their evaluation

Literature review

Multi-Attribute decision making (MADM)

- closer to data-driven models
- creation of hierarchies of façade design alternatives either by reducing the complexity of a problem or with the comparison of solution ratings.

Multi-Objective decision making (MODM)

- closer to forward models
- based on optimization algorithms
- numerical simulations for the definition of a larger amount of design options and their evaluation

NSGA II algorithm - niching approach

Walacei

Revit-Grasshopper integration

Energy simulation workflow

• Shading system definition

• Static analysis

Revit-Grasshopper integration

Energy simulation workflow

• Shading system definition

• Static analysis

Multi-objective optimization

Multi-objective optimization

Multi-objective optimization

Actual Workflow

Static analysis

27

BIM model - Piraeus Tower

BIM model - Rooms definition

Revit-Grasshopper integration

BIM model - Bearing structure

Exsiting facade system

Exsiting facade system

Energy model geometry

Revit-Grasshopper integration

• rooms geometry

- curtain wall
- walls
- beams
- columns
- slabs

Energy model assembly

Energy simulation workflow Revit-Grasshopper integration

Energy model materiality

Energy model program

Energy model assembly

Simulation results - Annual analysis period

For the typical levels under investigation:

Total cooling demands: 159264 KWh/y Average Daylight autonomy for all spaces: 4.1%/y

Simulation results - Annual Utility cost estimation

Shading system design

First attempt of connecting diagrid with vertical and horizontal brackets.

Shading system design

Another approach making the shading system completely independent from the building.

Static analysis loads

Static analysis cross section

For a multi story building with a given height x and 2m<x<4m we have:

 $min = \frac{x}{28}$ max $= \frac{x}{7}$ for the diameter for the steel hollow section

Static analysis loads

Static analysis

Static analysis results

Axial forces calculation

Bending moments calculation

Static analysis for whole structure

Axial forces calculation

Supports and reactions

Multi-objective optimization parameters

parameter 1: diagrid scale

parameter 3: diagrid offset

parameter 2: width to height ratio

parameter 4: amount of shading

Multi-objective optimization objectives

objective 1: Total mass [kg]

objective 2: Maximum displacement [cm]

Multi-objective optimization

62

Multi-objective optimization workflow

parameter	Gene
parameter	Gene
parameter	Gene
parameter	Gene

	objective
ze	objective
mize	objective
mize	objective

Multi-objective optimization solution space

Multi-objective optimization objective values trends

Multi-objective optimization

Multi-objective optimization results clustering in Wallacei

Multi-objective optimization results export

Multi-objective optimization results export

		-
	-	
F F F		
		× 1 1 1 1 1 1
Gen: 5 Ind: 0	Gen: 12 Ind: 3	Gen: 13 Ind: 1
FV. 1 : 183346.060207	FV. 1 : 199551.6279	FV. 1 : 170801.572151
FV. 2 : 0.186567	FV. 2 : 0.158983	FV. 2 : 0.21645
FV. 3 : 61266.096198	FV. 3 : 48447.522537	FV. 3 : 46748.74075
FV. 4 : 0.010519	FV. 4 : 0.101092	FV. 4 : 0.08328

Simulation results for original facade - Extreme hot week analysis period

For the typical levels under investigation:

Total cooling demands: 16449.86 KWh/ehw

Multi-objective optimization results

Revit-Grasshopper integration Energy simulation workflow

Shading system definition

Static analysis

Multi-objective optimization

70

Simulation results for extreme solutions - Extreme hot week analysis period

Simulation results for extreme solutions - Extreme hot week analysis period

Simulation results for extreme solutions - Extreme hot week analysis period

FO1: mass

FO4: Avr DA

Best solution for minimizing cooling demands (Obj3)

For the typical levels under investigation:

Total cooling demands: 16271.06 KWh/ehw

Simulation results for extreme solutions - Extreme hot week analysis period

Simulation results for extreme solutions - Extreme hot week analysis period

Total cooling demands: 16449.86 KWh/ehw

Optimized proposed shading

Total cooling demands: 16271.06 KWh/ehw

e.h.w= extreme hot week

The cross section selected allowed minimal range for displacement values making it an objective with relatively small influence on the solutions generated.

The cross section selected allowed minimal range for displacement values making it an objective with relatively small influence on the solutions generated.

Filtering solutions and identifying their position in the design space is not possible in the current workflow.

The cross section selected allowed minimal range for displacement values making it an objective with relatively small influence on the solutions generated.

Filtering solutions and identifying their position in the design space is not possible in the current workflow.

The optimization, although it works efficiently, it needs 16-30h for a good estimation and optimized results which is impractical.

The cross section selected allowed minimal range for displacement values making it an objective with relatively small influence on the solutions generated.

Filtering solutions and identifying their position in the design space is not possible in the current workflow.

The optimization, although it works efficiently, it needs 16-30h for a good estimation and optimized results which is impractical.

Materiality of the shading elements, HVAC system used for mechanical ventilation, future weather data estimation, sensitivity analysis between the energy demand types, cost and the mass of the structure, cross section parametrization, solution filtering, criteria decision trees..... are only some of the possible branches of this workflow.

Design conclusions

Best solution?...

Design conclusions

There is no best solution, a perfect solution is always relative to a criterion.

Goals

- To be able to evaluate the energy performance of existing buildings.
- To provide instant interdisciplinary feedback in a design team.
- To improve an existing envelope's energy performance by reducing its cooling demands (with an optimized design).
- Find the best solution.

Thank you for your attention!

Connections

