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Chapter 1

Introduction

The energy requirements around the world are expected to grow. Even with blooming
and expanding green energy R&D, the developing society will still need petroleum for
another tens of years. A concern might be that the oil and gas reserves that are easily
accessible have, to a large extent, been produced already. The sources that are left are
either in geologically complicated areas or contain heavy oil that is difficult to extract and
process. Therefore, new technologies and any possible improvements to all stages of the
oil recovery can contribute to the world energy supply.

Mathematical modeling of reservoirs

A computer model can help forecast some better known phenomena: in meteorology
it improves weather prediction, in cyclone tracking it can save lives when people are
evacuated on time from the endangered areas, in reservoir engineering it helps optimize
economics. Nevertheless, computer simulations can never precisely predict the processes in
the nature whether it is reservoir engineering, weather prediction, species spread, market
fluctuations; the real world is far too complex. Therefore, data assimilation methods need
to be employed.

Reservoir modeling plays an important role in enhanced oil recovery planning. It
is a basis for field development and involves a significant number of researchers around
the world in the industry as well as in the academia. The basic physics of fluid moving
through a porous medium has been known since Henry Darcy in 1856 published his
research. Modern computers allow to efficiently simulate the behavior of the fluids in
different reservoir conditions and with several chemical components present.

Even though the models are not perfect due to simplifications and approximations, a
bigger issue in reservoir engineering is reservoir condition specification. Unlike in some
other disciplines, like meteorology for instance, it is not possible to observe the domain of
interest that is deep underground or, even more challenging, under the sea bottom. For
that reason, the crucial reservoir parameters like permeability or porosity are unknown.
Therefore, initially the reservoir structural information comes from the geologists and
geophysicists.

The way the sediments form and what processes create the landscape through the ages
determine which structures are to be expected in the underground formations. Based on
that information (and possible observations described later) an expert derives a detailed
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geological model. Two equivalent experts will produce two different property models
according to their respective experience and interpretations. These property models are
sometimes very detailed and need to be upscaled to make them suitable for flow simulation.

Observations of the behavior of the reservoirs

When an oil field is discovered there can be exploration data collected. The most common
large scale observations in this case would be seismic observations. To gather seismic data,
a controlled explosion is often performed and the signal of the reflected waves is recorded.
The seismic waves reflect from subsurface structures in a different way depending on the
structure’s density, and that creates a seismic image. This image can be interpreted and
inverted into subsurface structures.

However, today there are not many new fields being discovered. The industry highly
relies on oil fields that are at various stages of development. Then, one wants to collect
data for production improvement but at the lowest possible cost, and most data types are
expensive to obtain.

Additionally to seismic data, there are
other large scale observation techniques
available, for example, gravity (Figure 1.1)
or magnetic observations. While the wells
are drilled in the field, the rock that is be-
ing removed can be a source of valuable
information about the underground struc-
ture. It is a type of hard data (data that
does not need to be inverted) that gives
direct values of permeability and porosity
through lab tests on a very small scale. Ad-
ditionally, there can be wireline log data
collected from instruments lowered down
an open borehole. These can provide very
accurate measurements in a small vicinity
of the well.

There are different types of wells, the

more complicated the more expensive they Figure 1.1: Simulated time-lapse gravity
get, reaching up to tens of millions of dol- [micro Gal] measurements of a water-driven gas

lars per single well. The simplest wells yegervoir production process at (from the top) 4,
are the vertical monitoring wells that only 7 and 10 years. Courtesy of M. Glegola.

gather data and do not interact with the

surroundings (common in hydrogeology). There are injection/production vertical wells
that can also collect pressure and/or fluid flow data. The most technically advanced wells
are the so-called smart horizontal wells that can reach areas that are difficult to access and
can be kilometers away. These wells can sometimes be opened/closed to flow in separate
segments along their lengths and, in that way, may provide additional data.
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Data asstmilation

In the case that a model is well calibrated and its parameters are known, it would have
good predictive capacities, and it would be good enough to use the model in decision
making concerning field development. When the data are rich and precise, they might
be sufficient for successful operation of the field without using a model. Unfortunately,
in most cases neither the model nor the data provide good-enough information due to
simplifications and uncertainties, and the combination of the two can help to reduce the
scarcity of information.

Data assimilation is a concept that combines the model with observed data in order
to minimize uncertainties and improve predictions. The model as a theoretical repre-
sentation of a natural process is not perfect and its uncertain parameters can be better
estimated given acquired data. An improved model is expected to have better predictive
capabilities, and in reservoir engineering can help planning the field development and
designing production strategies.

Formally, data assimilation
is a mathematical optimization
problem. Typically, one is inter-
ested to minimize a mismatch be-
tween the data observed and the
data modeled, and this mismatch
is a basis for creating an objec-
tive (or cost) function. The objec-
tive function is a highly nonlinear
function of its variables in large-
scale applications.  Then, the
problems are difficult to solve and,
therefore, a variety of data as-
similation techniques exists, none
of which is universally applica-
ble. Additionally, the problem
is non-unique, i.e. there exist
its many solutions that minimize
the given objective. In other
words, real-life optimization prob- Figure 1.2: Map of Muskauer Park at the German-
lems are severely ill-posed. Polish border. A meandering river cuts through the park.
The park’s south-east border arc is the biggest terminal
moraine in the world.

A variety of methods for data
assimilation has been developed
for the oil industry, [62]. Especially, within the last years emphasis has been put to
produce geologically consistent permeability and porosity fields. Geological consistency
requires the characteristics of the geometric structure of the parameters to be preserved
during the data assimilation process, [10], [11]. These characteristics are properties of the
fields that go beyond the mean and the covariance. Natural formations show a wide range
of patterns like river meanders, salt domes, layer-cake formations, faults, wind or water
eddies, or moraines (Figure 1.2). Dealing with patterns and handling images is clearly
related to the image processing research area.



Image processing

The image processing discipline offers a variety of methods for dealing with images, pat-
terns, features and other structures. Our goal is to combine data assimilation with pattern
matching ideas. The two areas are not far apart, and a more detailed insight reveals many
similarities. Image processing problems deal with phenomena without an underlying phys-
ical model, like a sequence of movie snapshots. The consecutive states (snapshots) are
known and the goal is to define an automatic warping process from one image to another.
The warping should be done in a natural way, i.e. in a way a human observer would do
it, which reaches as far as cognitive science. An example could be face recognition when
seeing one side of somebody’s face would make us recognize a person in real life. Our
brains interpolate that partial information in an instant but this every-day experience is
a very complex task for computer face recognition software. Pattern recognition problems
include also common finger-print matching, as present nowadays at airports, in laptops,
or a police database. An ecologically oriented application is, for example, salamander
matching, [95]|, where a digital picture of the animal needs to be compared to a collection
of previously gathered images.

Applications like cyclone prediction, [2], moving fire fronts, [54], [6], precipitation and
thunderstorms, [42], [100], [26], or epidemic spreading, [53], deal with structured, feature-
driven fields. These approaches touch the area of image processing but at the same time
contain dynamic models of the underlying phenomena. There, data assimilation is per-
formed with a large amount of observations, namely, the parameter field of interest is
observed but it is different from the model output. The two images present the same
feature that might be displaced or aligned differently. The difficulty lies in making con-
sistent corrections to the model predictions that have to be approached globally where
underlying features are taken into account.

In this thesis we will adopt ideas from the image processing area within data assim-
ilation methods for reservoir engineering applications. A typical problem in reservoir
engineering is that the observations are usually very scarce and nonlinearly related to
the variables that need to be estimated. We often deal with ill-posedness due to a large
amount of unknown variables compared to the number of observations. The spatial un-
certainty would usually be represented with a small ensemble of nodes, much smaller than
the number of variables. This representation is too simple to picture the complex spa-
tial uncertainty. This way spurious correlations arise between physically or ideologically
distant states.

We will see that in reservoir engineering the unknown variables to be estimated are
commonly permeability fields that are nothing else but images. Often, these images have
a predefined structure that disappears during the data assimilation and, therefore, the
whole process loses the geological background and realism.

Objective of the thesis

We propose two research directions to resolve the aforementioned problems:

e diminishing the spurious correlations between the sparse data and distantly located
variables through upscaled treatment of the covariances,



e taking into account features in the domain and reducing the state size through an
effective reparametrization.

First, a type of ensemble Kalman filter is applied, namely, an ensemble multiscale
filter. In reservoir engineering, ensemble sequential filtering started with [59] in 2002 and
since then various modifications were implemented, [20]. The ensemble multiscale filter
has originated from multiscale trees in image processing ([22], [92], pyramidal matching
[2]), and it was first implemented for an incompressible flow model, [99]. It upscales the
covariance matrix on a tree structure, extracting stronger dependencies and introducing
localized improvements. We develop it for the estimation of the permeability in reservoir
models and test it thoroughly for several cases in reservoir engineering.

Second, a feature modeling technique called grid distortion is proposed. In reservoir
engineering a number of feature-based methods have been implemented already: level
sets ([58], [14]), Karhunen-Loéve expansion ([72]), discrete cosine transformation ([34],
[35], [36]), channel parametrization ([97], [84]), training-image based sampling ([49] and
references therein) and elastic gridding ([76], [75]). The grid distortion method is based
on smooth grid generation techniques, [80], but it can equivalently be viewed as an image
warping technique, [67]. It provides smooth distortions of images adjusting the features
in the domain, and can be expressed using very few parameters, which makes the problem
better-posed. We pair grid distortion with the ensemble Kalman filter algorithm as well
as with deterministic search methods.

Overview of the thesis

Before presenting the research results, an introduction to the modeling of reservoirs is
provided. In Chapter 2 we describe the basic reservoir equations, show a small example of
a forward run of an in-house reservoir simulator, and outline a concept of a forward model.
Data assimilation with (ensemble) Kalman filters and optimization methods used in the
thesis comprise Chapter 3. There, we derive basic (ensemble) Kalman filter equations,
point out some improvements, and present other parameter estimation methods. The
ensemble multiscale filter and its application are presented in Chapter 4, first for a simple
case and later as a full data assimilation scheme in the context of reservoir engineering
application. The content of this chapter has been published in [46] and [45]. Feature-
based methods are discussed in Chapter 5; here, the focus is mainly on the grid distortion
method developed in this thesis. The leading equations for grid distortion are derived and
multiple implementations in 2D and 3D cases are shown. There is an intention to publish
this research soon. The conclusions are finally presented in Chapter 6.






Chapter 2

Numerical modeling of reservoirs

In this chapter, a brief description of reservoir modeling is presented, followed by specifi-
cations of the main model used in this thesis. A detailed overview of the subject can be
found in [37], [4], [5].

2.1 Modeling of reservoirs

Let us present equations for a three dimensional problem in Cartesian space, where x and
y are horizontal coordinates, z is the vertical coordinate, and ¢ is time.

Several phenomena play a role in creating a flow model of a reservoir with oil and
water, namely, the mass balance concept, Darcy’s law, equations of state, and the capillary
pressure concept. We explain them further here.

flux in V |7/
flux out

Figure 2.1: Representation of a volume with a flux going through it.

The mass conservation law gives rise to one mass balance equation per chemical com-
ponent ¢. Let C. be the mass concentration of component ¢ in a unit volume V. Then,
there exists a flux (a rate of change of mass), F, transferring the mass through the volume
(Figure 2.1). The amount of component ¢ in the volume can be expressed as:

/V//Ccdv.

The mass concentration C. can be expressed as C. = ¢ Y pSiy.; with ¢ - porosity, p; -
l

the density of phase [, S; - the saturation of phase [, y.; - the mass fraction of component
c in phase [. Saturation of phase [ is a fraction of the volume of the pores that is occupied
by phase [; naturally, it is a value in the interval [0, 1] and the sum over all phases is

d S =1
l
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The change in time of mass of component c is equal to

g ///C’C dV | = flux in — flux out.
ot
0

The difference in fluxes is a surface integral of the flux over a boundary of V', oV

ﬂuxin—ﬂuxout:—//E-QdA,
oV

where n denotes a normal vector (in the direction out of the volume), and the symbol -
indicates a dot product. This expression, according to the Divergence Theorem, is equal

to:
—//E-ndA:—// V. Fadv,
oV Vv

where V - F' is the divergence of F'. This leads to

% /V//Ccdv :—/V//VEdV,

and hence 9
—C.=—-V . F.
ot -
Finally, allowing additional input/output sources ¢ leads to:
2(J =-V-I'+ (2.1)
ot =T '

Assuming dead components, i.e., components that do not travel between phases, and
assuming that the various chemical components in the oil can be lumped into one 'pseudo
component’, two basic equations arise: one for oil and one for water (subscript w stands
for water, o for oil):

Cw = gbpwswa CO = gbpoSO' (22)

We know that for density p and velocity v, flux is equal to F' = pv, and we want to
work out the velocity. Darcy’s law is based on a proportionality between the pressure
gradient, Vp , and the negative velocity: Vp ~ —v or, more precisely,

k
——Vp =,
1
where k£ and p denote the permeability tensor and viscosity, respectively. This is an

equation for the case of one phase present. The two-phase Darcy’s law differentiates
between the water and oil equations:

_ﬁkrvaw = Uy»

w

10



k
- _krono =1,

o
Relative permeabilities, k., € [0, 1] for water and k,, € [0, 1] for oil, are functions of water
saturation. These relations are found experimentally. Additionally, in 3D domains the
impact of gravity has to be taken into account and the two-phase Darcy’s law becomes:

k
__krw(pr - pwgvd) = Uy (23)

w

k
__kTO(VPo - pogvd) = Uy (24)

(0]
where g is the gravitational acceleration, p,, and p, are water and oil densities, respectively,
and d is depth pointing vertically downwards.
The compressibilities for water ¢,,, rock ¢, and oil ¢, are defined as:

1 9p, ~_ 10¢ 1 9p,

- 6= 77, Co = — .
Pw Op ¢ dp Po Op

The capillary pressure (p.) constraint is related to the interfacial tension between the
phases and the wetting properties of the rock which need to be determined experimentally:

Cw

pc(Sw> = Pw — Po

where p,, and p, are water and oil pressures, respectively.
For each phase we insert in Darcy’s law (2.3) and (2.4), and concentration definitions (2.2),
into Equation (2.1), given that F, = pjv, for | € {w, 0}:

0 k
BN (ppS;) = =V - (,01 (——krl (Vo — Plng)>> +q.
Hi

Using the chain rule gives:

100 0 1 19, 085, k
¢$a_¢ a‘?m 1+ op la—pl a_]z L+ ¢pz—l =pV- (Ekn (Vo — ngVd)) +q.
~—— \,_/

It leads to two coupled equations that need to be solved for S, and p, [37], [5]:
Op ~ 0Sy o [k
o e — = B — —k‘
¢ [Sw(cw +er) ot * ot ] o |y ( 'Owgax) *

s |
o L (o5 7093,)|
|

o[k Op
— | —k - — 2.
pp m rw (32 Pwd 3~ ) + Gu, ( 5)
dp 0S| 0 [k op od
¢|:(1_S )(Co+cr>at 815 :| - % _Ekro (%_pog%)] +
ok [op adﬂ
a _kro a  ~ MoY o~ +
Ay | o (3y P93y
ok [(op  od
—_— _kro a_  MPoYH— 05 26
0z | o (82 r gc‘?z)] T (2.6)
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where p = p,, = p, when capillary forces are neglected. The initial conditions for p(z, y, 2)
and S, (z,y, z) need to be specified and typically there is a no-flow condition assumed at
the boundaries.

These equations can be spatially discretized and solved numerically with a finite dif-
ference scheme. Typically, a regular computational grid is used but advanced simulators
might allow non-standard unstructured grids. The equations shown here are 3D, two-
phase equations; gas can be added as a third phase. The presence of aquifers, faults,
tracers can also be accounted for.

2.2  simsim

In this thesis a horizontal two-dimensional, two-phase (oil-water) reservoir model is used
where the gravity effect can be neglected. Therefore, Equations (2.5) and (2.6) become:

o ([ k op o [k op B dp 05,
ax (karwax) _'_ ay (karway) +Qw - (b |:Sw(cw + CT‘) at + at :| )

o (k Op o (k.  Op dp  0Sy,
A R R (L — 61— b _Iow]
g (uk ax) -2 (uk ay) f=¢ [( S+ ) 2 - 28 }

Reservoir simulator simsim (simple simulator, [37]) has been implemented and devel-
oped at Delft University of Technology.

After the equations are discretized in space for the two-phase flow, four methods for
the time integration are available, [37], [5], [4]: explicit Euler, implicit Euler with Picard
iteration, implicit Euler with Newton iteration, and IMPES (IMplicit Pressure Explicit
Saturation).

The reservoir domain is 2D with no-flow through the boundaries. The wells (injectors
or producers) can be implemented with prescribed initial pressures and rate constraints,
or with prescribed initial rates and pressure constraints.

As an example of how simsim operates, a 49 x 49 reservoir is simulated for a year.
The channelized permeability field and homogeneous porosity field are shown in the top
row of Figure 2.2. There, the injection (I) and production (P) wells are indicated as
white dots. The initial condition for reservoir pressure py (Pa) and water saturation

So is [pOT sg]T = [3 107 -1, 0.2 ]l4T92XJT, where 1 is a column vector of ones. The
streamlines, [37], between the three injectors at the left boundary and the three producers
at the right boundary are shown in Figure 2.3. The wells operate under prescribed rates
(£0.001 m?3/s) and no pressure constraints.

After one year, the pressure and saturation fields look like in the bottom row of
Figure 2.2. The gradual saturation change through time is shown in Figure 2.4.

The simulated data from each well can be collected and plotted against time. Figure 2.5
shows the bottom hole and the well grid block pressures together with the flow rates and
water saturation in wells. Cumulative production data over the whole field are shown in
Figure 2.6.

12
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Figure 2.2: Permeability and porosity fields - top row, pressure and saturation after one year -

bottom row.

Streamlines

Figure 2.3: Streamlines with indicated wells.
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Figure 2.4: Saturation change during one year at equal time intervals.
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2.3 State-space representation of the model

Let x5 be a vector containing all the dynamic model variables at a discrete time k.
In reservoir engineering it would typically be discretized pressure and saturation per

grid block: xj, = [p} SZ]T. Static variables, discretized permeability and porosity per

grid block, are stored in vector m = [k ¢T}T. The deterministic nonlinear model
representation can be formulated as:

X1 = fpopr1(m, xp). (2.7)
Here, f;_,+1(m, x;) is a model operator that depends on specified static parameters m and
propagates dynamic variables x; from time k to k-+1. An initial condition xo = [p{ s{] g
needs to be specified. We assume no-flow boundary conditions.
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Chapter 3

Data assimilation and parameter
estimation

This chapter presents sequential ensemble data assimilation and parameter estimation
methods that have been implemented for applications in this thesis. The descriptions of
Kalman, ensemble Kalman and ensemble square root algorithms are presented. Imple-
mentation improvements and parameter estimation methods conclude the chapter.

3.1 Problem setup

The task of data assimilation is to improve the results of a numerical model of the phenom-
ena one is interested in with the available observations. Even though the physics of many
processes may be well-understood, the numerical models are often uncertain due to dis-
cretization errors and modeling approximations. Therefore, the model from Section 2.3,
Equation (2.7), can in general contain a stochastic term expressing the model uncer-
tainty. Moreover, a measurement equation is added for a full description of a state-space
representation as given by:

{ Xk+1 = fk;—>k:+1(m, Xk;) + €41, (3 1)
Vir1 = h(Xpi1) + Vkyr. )

The initial state xy and the model parameters m need to be specified; h is a measurement
operator expressing the relation between the state x;,; and observations y;,1 at a given
time; and € and v are model noise and observation noise, respectively. The noise in the
model is assumed to be normally distributed € ~ N(0,Q) with a model error covariance
matrix Q; the noise in the data is assumed to be normally distributed v ~ N(0,R)
with an observation error covariance matrix R; and the model and observation errors are
independent. The error covariance matrices might depend on time k.

The measurement operator h can depend on time when different data types are avail-
able at different times. Large scale measurements like seismic observations are expensive
and not sensitive to small scale changes, therefore, they are collected relatively less fre-
quently than well observations, for example. In real-life applications data come from
instruments and can be contaminated with noise due to human or device error.

Upon observation arrival we can assess how well the model predicts just acquired
observations, and on the basis of the mismatch deduct possible improvements to the
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model state. There exist many data assimilation techniques and they process the data in
different ways. A common starting point is the specification of an objective function. Let
us define a vector x) that contains states x; for all time steps k, and then the objective
function to be minimized is

J (xp) =
1

3 > (ye —h(x) "R (v — h(xi)) +
P

1
5 Z(xb —x:) "B (xP — x;) +
k

1 _
5 > (1 — £(m, %)) Q7 (x40 — F(m, x3,)). (3.2)
k
We are looking for ka] = argmin J (X[k]), where J is a nonnegative scalar function
(k]

J:R™#H — R*T U {0} with Ny, the size of vector x;). The function includes a quadratic
data mismatch weighted by the noise covariance matrix R, a quadratic background mis-
match measuring how different the state x;, is from some background state x°, weighted
by a given covariance matrix B, and a quadratic model mismatch weighted by a given
covariance matrix Q.

3.2 The classical Kalman filter

Kalman filtering is a sequential optimization procedure that comprises of two steps: a
forecast step and an update step, alternatingly applied until the last update time. First,
the forecast step integrates the model to the first update time to collect the predicted
observations, then the update is performed with the aid of the data, and the model
continues with the new updated parameters until the next update time.
Let us consider a stochastic system like in Equation (3.1) but with linear model and
observation operators:
{ Xpp1 = FpXp + €41,
(3.3)
Yit+1 = HgXpi1 + Uy,

where, as before, € ~ N(0,Q) and v ~ N(0,R), and model parameters have been
omitted. For simplicity of notation, we use Fy and H; without the subscripts from here
on. Then, the objective function in Equation (3.2) becomes:

<
£
>

N
I

(ve —Hx) "R (yr — Hxy) +
(Xb — xk)TB_l(Xb — X) +

(XkJrl — FXk)TQ_l(XkJrl - FXk) (34)

O = N = N
-] =[] =[]
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At each update time we want to compute a distribution of state x; given the data yy.
This distribution can be shown to be Gaussian, [38|. Then, the estimate of the mean X,
and the covariance P completely describe its shape. We want to derive the equations for
X, and P, that are time and measurement updates, respectively, where X;. is an optimal
state estimate and Py, is its corresponding minimized error at time k.

We will differentiate between forecasted and updated variables using superscripts f
and a (for analyzed), respectively. In this way, x£ denotes forecasted dynamic variables
at time k& and xj, denotes analyzed dynamic variables at the same time after the update
step; )‘(£ and x7 denote forecasted and analyzed mean estimates at time k, respectively.

Since the model error mean is 0, the mean estimate X, propagates in time as given

by:

X, time update
Xpr1 = FXg. (3.5)

Since the definition of a covariance matrix can be written as Py, = E[(xz — Xz)(x, — X)),
let us define the forecasted and updated covariance matrices:

P/ = B|(x, — ] )(xx — %])"],

b= Bl(xr —x5) (x, — %3)" ],
for the given mean estimates ig and x¢, where E[-] denotes the expected value.
To estimate the forward covariance propagation we compute:

_ (33), (35 ~ _
Xp — X (39,39 Fx,_1+er —Fxp 1 = F(xp1 — Xp-1) + &y,

and this gives

P, time update
P, =FP,_FT + Q.

Let k be a fixed observation time. A Kalman filter aims at providing an optimal state
estimate given the objective function at the observation time k. The objective function
in Equation (3.4) for the X{ estimate becomes:

JEE) = 5y~ HX)TR (v~ Hx) + 3 (<~ x0)(P)) (<]~ x0),
where the model mismatch term disappears due to Equation (3.5). Here the background
mismatch term from Equation (3.4) is a distance to the forecast xi, and Pi denotes the
error in this forecast mismatch.

A necessary condition for finding the objective function’s minimum is that the func-
tion’s gradient vanishes:

We compute the estimate x¢. Following [38], we get:
~H'R'(y; — Hx}) + (P) ' (x} — x{) = 0,
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and hence
Xy =
-1
(HRH+ (P)))  (H'R 'y + (P)) %)) =
1 -1
(RHTH'R'H+RH"(P))") yi+ (PIH'RTH+P{(P)™") &/ =
~1 —1
(H + RH*T(Pg)*l) Vi + (P;;HTR*H n 1) /. (3.6)
We want to work out the terms in front of y, and 5<£ in Equation (3.6). We have

—~1 -1

<H + RH—T(Pg)—l) - [(H(H—T(Pg)—l)—1 + R) <H‘T(P£)‘1>] — P/HT(HP/HT+R) !,
(3.7)

and we want to show that

(P/H'RT'H+I)"! =1-P/H'(HP/H" + R)"'H (3.8)
by simple multiplication:
(P{H'R'H +1) (1~ P/H"(HP{H' + R) 'H) -
I+P/H'R'H - P/H'(HP/H" + R)"'H — P/H'R'HP/HT(HP/H” + R)"'H =
I+P/H'R'H-P/H'R'RHP{H” + R)"'H - PJH"R'HP/H"(HP/H” + R)"'H =
I+P/H'R'H-P/HR '(R+HP/H")(HP/H" +R)'H=1
Substituting Equations (3.7) and (3.8) in Equation (3.6), we obtain an expression for
the update equation in the Kalman filter, [38]:
X, measurement update
Xy =
-1 -1
(H+RET(P)) i+ (PIHRTHAT) x| =
P/H” (HP/H” + R) ~ P/HT(HP{H" + R)'H) %/ =
%/ + P/HT(HP{H” + R)!(y; — H]). (3.9)
The term
K = P/H'(HP/HT + R)™! (3.10)
is called the Kalman gain.

The updated covariance matrix P¢ = E[(x; — x¢)(x, — x¢)T] for the given mean
estimate X{ can now be computed from
_a (3:9)
_ _f\ (33)
X — %] — K(yx — Hx[) =
xj, — X — K(Hxy, + v, — Hx]) =
(I-KH)(x), — x]) — Ky,

which gives
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P, measurement update

P¢ =
—~ KH)P/(I- KH)" - KRK” =
~KH)P] — (1 - KH)P/H'K” - KRK” =

)
)
~ KH)P! - K(K~'P{ - HP{ + RH-T)H'K” 2"
)
)

Kalman filtering, [40], was originally developed for linear, Gaussian problems. It pro-
vides the optimal estimate of the state of the system and the covariance of the estimation
error. It is also able to propagate these statistics in time. Models are, however, rarely
linear and variables are Gaussian only in some specific cases. Lately, for computational
reasons and to allow for nonlinear models, the ensemble Kalman filter (EnKF') was intro-
duced, [16], [20], and became a new standard for sequential data assimilation.

3.3 The Ensemble Kalman Filter - EnKF

We present a sequential ensemble-based algorithm for nonlinear Gaussian processes, recall
Equations (3.1):
{ Xpy1 = feopra (0, Xp) + €441,
Y1 = h(Xpi1) + Vrya

The ensemble Kalman filter, [16], represents the distribution of the state vector x; € R"**
by a sample (a sample from the distribution of interest), i.e., a collection of possible
realizations, also known as an ensemble, with n, members:

X = [x! x* ... x"] € R"*",

The time index has been omitted for clarity since all the variables considered here are
taken at the same time step, namely, a discrete update step.
Let Y be a matrix holding n. copies of the observation vector:

Y=[yy..y]eR"",

where n, is the number of observation points. The vector of observations y is an input to
the data assimilation algorithm.
Let Y be a matrix holding an ensemble of predicted measurements from each replicate:

~

Y = [h(x') h(x?) ... h(x")] € R"*".

This collection of vectors is a result of integrating the given model to the current up-
date time for each ensemble member, n.-times, and computing the forecasted observation
values. For complicated models this forecast step can be very time consuming for large
ensemble sizes.

21



The ensemble Kalman update is expressed as:
X* =X/ +K(Y - Y),
and the Kalman gain K € R™*" is equal to:
K = Cov(X!, Y)[Cov(Y,Y) +R] ",

where Coou(-,-) denotes a sample (cross-)covariance matrix.

This algorithm was initially described in [16] in 1994. The original formulation was
wrong and its correction was published in [8] where it is explained that to preserve correct
statistics the observations need to be perturbed. Since then a number of improvements
have been introduced of which many were applied to reservoir engineering, [1|. Let Y be
an ensemble of perturbed measurements:

Y=[y+viy+v?. . y+v]eRw "

where v is a measurement error sampled from a normal zero mean distribution with a given
covariance matrix R that expresses our belief in the uncertainty of the measurements.

The setup of the ensemble Kalman filter, where the distribution of a variable is rep-
resented by a sample, is easy to implement. Even though it has been used successfully
in many applications, it is known to cause complications and some of them are discussed
here further.

The square root implementation of the ensemble Kalman filter is presented since it is
the version used throughout this work. The basic idea of the ensemble Kalman filter is
an introduction to almost every major section for the sake of completeness. It might also
be presented from different (but equivalent) angles.

3.3.1 The Ensemble Square-Root Filter - EnSRF

In the classical ensemble Kalman filter as formulated in the previous section, the con-
struction of the ensemble of perturbed measurements Y contains noise that can be an
additional source of sampling error for small ensemble sizes, [19]. Therefore, square root
algorithms were developed to avoid the use of perturbed measurements. Note that the
version presented here includes a matrix of perturbations as a sample representation of a
covariance matrix, [18], which lowers the computational burden.

Square root algorithms use an ensemble representation like the EnKF, but update
the mean and deviations from the mean separately as in the traditional Kalman filter.
In fact, both equations, the update of the mean and the update of the perturbations,
could be directly derived from the classical Kalman filter equations but with the modifi-
cations regarding the ensemble representations. A square root version of the filter is used
throughout this thesis. The basis of the algorithm was taken from [18], Section 7.4.2
therein, and improved as described in [70] and [51]. Other versions of square root filters
exist, see for example [83].

Let us again define:

e X =[x! x? ... x"™] € R™*" - an ensemble of state vectors,

Implementation thanks to Dr. B. Jafarpour.
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e Y =[y+vy+rv?.. y+v"] e R - an ensemble of perturbed measurements,
e Y = [h(x') h(x?) ... h(x")] € R™*" - an ensemble of predicted measurements.
Additionally, we need:

e 1, € R™" - a matrix where each element is equal to %,

I - identity matrix of a proper size,

X = X1,, € R™*™ - a matrix storing the ensemble mean n.-times,

e X=X —X1,, =X — X - an ensemble-perturbation matrix,
e E = [v! v? ... v"] - an ensemble of measurement perturbations,
e S=Y— Y]lne - a matrix holding perturbations of the predicted measurements.

We want the above variables to be understood as (derived from) forecasted variables,
for the ease of notation omitting the superscript f. The EnSRF defines the updated
ensemble as a sum of updated ensemble mean and updated ensemble perturbations, that
is:

X = (X)" + (X))

and
(X)a = X]lne _'_ XlSTXl (I + E%>71X{(Yﬂne - ?]]‘Tle)7

(X = X'V /T - ZTZ, VT

The last multiplication by VI provides the unbiasedness of the filter, [70], [51], [19],
since it was shown that the original algorithm without the last multiplication does not
conserve the mean. To compute these equations we need to know matrices: 3¢, X, X,

and V,. Let the operator " denote the thin singular value decomposition, [27], then
the following sequence of equations completes the EnSRF update step:

1. S 2P Uz, VT,

2. Xy =%,'UlE,

3. X, 2P U, VT,

4. X; = Uy(ZHTUy,

5. Xy = (I+3%2):XTS,
tSVD

6. X, "X U, 3, VT

Note that the equation for the perturbation update (X')* comes from the covariance
measurement update in the classical Kalman filter P* = (I-KH)P/ since P* = (X)*[(X")*]7,
P/ = X/(X’)T and we can write, [19]:
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P = (I-KH)P/

P* = P/—-P/HT(HP/HT + R)"'HP/
(X/)a[(X/)a]T — X,(X,)T _ X,(X,)THT(HX,(X/)THT + R)_IHX/(X,)T
(X/)a[(X/)a]T — X/ [I o (X/)THT(HX/(X/)THT + R)leX/] (X/)T

where we used Equation (3.10) for the Kalman gain. Then, if we write
I-(X)"H'HX'(X)"H" + R) 'HX' = TT"
we obtain
(XN (XN = X'TT (X)) = X'T(X'T)".
Finally, the square root perturbation update in a general form is:
(X =X'T.

Matrix T is called a square root transformation matrix and it is not unique, see [51| and
[70] for a detailed discussion.

3.4 Implementation issues of the Ensemble Kalman Fil-
ter

The EnKF or EnSRF even in the most efficient form will almost never give satisfactory
results when implemented for the first time in a new application. To be able to apply it
successfully, different modifications, [1], [3], [19], can be used that depend on the problems
encountered in a given setup. A number of improvements used in our implementations is
presented in this section.

In today’s research we want not only the dynamic model variables x; to be esti-
mated but also additional uncertain parameters m. When x;, follows the model equation
X1 = fppkr1(m, X;), m does not change in time, i.e., mg,; = Imy where I is an identity
matrix.

Updating all variables

Typically, all variables, dynamic and static, are updated and they comprise the state
vector. Then, the state-space representation is of the form:

Xk+1 _ fro o1 (M, X5, + Ek+1
- 9

my Imy, 0

Vit1 = h(Xpq1) + Vigr.

The measurement operator h works on the model outputs, where the model runs from
time k£ to k + 1.
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In reservoir engineering the reservoir simulator is considered to contain no randomness.
It is assumed that the model represents the physics of the fluid dynamics perfectly, and
that all uncertainty is in the model parameters. Therefore, the state-space representation
can be written as:

X1 || Feokr (M, xp)

my Imy,

Vi1 = h(Xpi1) + Vi1

A common problem in data assimilation for this case is the un-physical updates of the
variables. The laws of physics that determine the shape of pressure or saturation fields
are not taken into account when a linear update is performed. The fields represent a
dynamic state at a given point in time that is used for simulation initialization and must
be physically meaningful.

Parameter update

One way to avoid un-physical updates of the dynamic variables is updating the constant
parameters only, and leaving the dynamic variables unchanged at the update time step.
Then, the state-space representation is rewritten as:

My = Imk,

Vi1 = h (fiop (my, X)) + vigr.

In this case, the model process continues with dynamic variables that were the result
of a forward model x; = f;_1_,,(my_1,X;_1), therefore, they are physically meaningful.
Nevertheless, the dynamic variables x; are now inconsistent with the constant variables
my, since the latter are a result of a linear update. The inconsistency might not allow the
forward model to continue. The solution to this problem could be using reruns.

Reruns

Reruns, [62], [96], are used if one can afford running the model from time zero after each
analysis time using specified initial conditions, and updated constant variables from the
last update step. The advantage is that the model starts with the updated constant
variables from an initial state such that no inconsistency appears, and it is unlikely to
introduce physically-impossible relations. Then, the state-space representation is of the
form:

my ;= Imy,

Vir1 = h (fopr1(my, X0)) + Vits

Alternatively, one can rerun the model only after selected update steps. These can be the

update steps with more observations available or update steps fulfilling a given criterium,
[15].
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Asynchronous scheme

In the case when observations are obtained very frequently, it becomes inefficient to update
the state at each measurement time step. The model would need to be run and stopped
very often whether we proceed in between time steps or use reruns. The asynchronous
EnKF [71] was proposed to improve data assimilation for this kind of case studies.

Let us divide the time domain into assimilation windows indexed by K. Window
K contains nx measurement times. Index kx runs through the measurement times in
window K. The predicted data for time window K + 1 becomes a collection of ng
predicted data sets and the state-space representation becomes:

.
mK+1 = ImK,

h (£, o1 (M, X))

h (f-ﬁkK+1=2(mK’ X))

Yr+1 = + Vi1,

L i h (f-ﬁkK-H:nK-H (mK’ X)) _

where x. is a dynamic variable from a chosen earlier point in time.

Variable transformation

At the update step, a magnitude of the updated variable might exceed its feasible bound-
aries, [63], and the variable becomes physically meaningless. One solution is to ’crop’ the
outliers to stay within the boundaries of the interval of feasible values. It can, however,
create non-smooth changes in the variable’s values which is not always desirable. Another
solution is to project the variable values to a space with infinite bounds, update it, and
project back to its bounded space. Let [min,, max,] be an interval of possible values for
variable u, and let T" be a bijection such that:

T : [min,, maz,] — R,

and then its inverse function is 7! : R — [min,, max,].
At any update time (time subscript omitted for clarity) the following steps are taken:

e forward-transformation 7" on the forecasted variable:

T(u') =,

e the update

~a

update(u’) = u®,
e backward-transformation 7! on the update:
T-'(u") = u®.
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Note that variable u is understood as a single physical notion. If one wishes to update
variables with different magnitudes, values or physical interpretation, several T" functions
are needed.

If the transformation is applied in this work, it is the one introduced in [24]. Let

My, = %J“mm“ and m, = M Then the forward transformation is:

The backward transformation after the update is:

exp(au®) — 1

T_l u) =u = m r ~ )
(@) = u* = mp +m exp(au®) + 1

(0%
and it is illustrated in Figure 3.1 for several o values. For the implementations in this

thesis we simply pick a = 1. Different values of « reflect a tradeoff between the smoothness
and the accuracy of the backward-transformation.

=
o

o B M w N N o ©

Figure 3.1: The backward transformation with different values of a.

Localization

Often, small ensembles can introduce false (much too large or much too small) spatial
correlations between variables. These correlations can trigger an ensemble Kalman filter
to misjudge the magnitude of a measurement update. It in turn might lead to ensemble
collapse in the sense that it would converge to a state different from the true state.

To correct for a misrepresented uncertainty, a covariance localization has been pro-
posed and a review of possible methods is presented in [1|. In general, the localization
aims at correcting an ensemble covariance matrix P, with an element-by-element multi-
plication by a covariance-localization matrix p:

poP.: (poP.)ij=(p)ij (Peij,

and using the latter in place of P, in the ensemble Kalman measurement update equa-
tions. Provided that the covariance-localization matrix p is positive-definite, and since
the ensemble covariance P, is always positive-semidefinite with positive main diagonal
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entries, the Schur product p o P. is positive-definite, according to the Schur product
theorem, [1]. That is, the Schur product is again a covariance.

Different localization techniques are used depending on the problem at hand. Most
certainly, a localization is necessary if only a small ensemble can be used or there is a vast
amount of spatially distributed data available.

3.5 Parameter estimation problem
In reservoir engineering the model parameters m, containing for example permeability or

porosity fields, are uncertain. Therefore, often one wants to estimate their value given
observations, and the objective function in (3.2) turns into:

J (xquy(m)) =
L3 — o)) R 3 — o (m)) +
k
L3 e m)) B ey (am)
k
% (mg — m)"Pg’ (mg — m),

where we do not consider the model noise, and add a prior term where my is an initial
guess and Py its error. Since m has no underlying dynamics, the problem turns into a
parameter estimation problem and one wants to estimate m* such that

m” = argmin .J(xp;(m)).

The objective is a scalar function, J : R"™ — RTU{0}, whose domain is a set of possible
values of parameters m for which J(xp;(m)) makes sense, and n,, is the size of vector m.
Minimizing a function of several variables might be challenging especially if n,, is very
large. In reservoir engineering applications n,, can reach 10° and even more for real life
large fields.

To find the objective function’s minimum m™* we start from investigating its gradient
with respect to the sought parameters, V,,J. Using the chain rule, the formula for the
gradient can be computed and it is equal to:

Vimd =

-3 (52 () R misatm)
-3 (5 B i)

—P;'(my — m).

This gradient is not always available or easy to compute, therefore, gradient-based
minimization methods (e.g. BFGS [24], variational methods [12], [47], [52], steepest
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descent) might be prohibitive. It comes from the fact that it is difficult to compute the

derivatives in the gradient formula. If the observation operator is simple, 5% could be easy
to compute. The main difficulty are usually the derivatives % which are the derivatives
of the forward model with respect to the model parameters. Variational techniques,
[47], implement adjoints that are used to efficiently compute the gradient; for complex
nonlinear models they are difficult to derive, too. Additionally, due to a high nonlinearity
of a cost function they might be ineffective in finding a global minimum. The gradients
could alternatively be computed using a simple finite difference scheme but for the large
sizes of m it is not feasible.

Another approach to solving the minimization problem is the use of gradient-free
methods (e.g. Kalman filtering [40], [1], particle filters [85], [86], pattern search methods
[48], or genetic algorithms [66], [73]). In this thesis only gradient-free methods were
implemented and they are presented in detail in the following sections.

In the case when the parameter space is very large and the observations are scarce,
there are many degrees of freedom while fitting the data, and the solution is most certainly
non-unique. Then it might be advantageous to constrain the parameter space to only some
type of solutions, and express it using a smaller set of variables via a given transformation.
Let us reduce the parameter space m = m(a) and rewrite the objective as a function of
lo%

T (¢ (m()) =
23" (v~ h(xi(m(@))) R (v ~ h(x(m(a)))) +

53— xu(m(@) B (' — xe(mla)) +

1 _
5(050 = a)TPO 1(a0 —a).

Analogically, the prior term contains an initial guess «( and its error Py. Here we are
looking for the minimum
o = argmin J(xp)(m(a))),
[0

where J : R" — RTU{0} and n, < n,, for n, being the size of vector a. The problem
posed this way might still be too complicated to solve with gradient-based methods even
though the size of the parameter space has been reduced. It is often due to a high degree
of nonlinearity associated with the reduced space.

The problem setup in this thesis always concerns estimation of permeability parame-
ter (implicitly a or explicitly m), that is, only constant uncertain parameters are sought.
Not only Kalman filtering can be applied to find the desired parameters but also other
parameter estimation techniques could be efficient. We choose to use direct search meth-
ods, [48], for a reduced-parameter search space since they are computationally efficient
only if the number of variables is small and this is the case in our studies. Direct search
methods are slow but less prone to stuck in a local minimum. They are global optimiza-
tion schemes that are appropriate for functions with complicated dependencies like in the
examples constructed in this thesis. Not for all the direct search methods there exists a
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convergence proof but many successful implementations encourage their use. They search
through the parameter space along specified paths (called meshes or lattices) and are not
based on gradients. The algorithm computes the objective function value for each point
and compares it to the best solution so far. It redefines the mesh when a better solu-
tion is found or all the points in the current mesh have been visited. The direct search
algorithms differ with respect to the way the mesh is being defined. The advantage of
search methods is that they are relatively easy to implement compared to gradient-based
techniques. They can also form a hybrid with gradient-based techniques, for example, as
an initial-guess estimator.

In Section 5, a Latin hypercube search, [56], is applied. The algorithm samples points
from permutations of a finite set of n consecutive natural numbers where n is the number
of variables in the search space. The permutation values are perturbed slightly and
scaled to fit the domain of interest. This way with every draw we obtain points that
are nearly uniformly distributed over the feasibility interval. One iteration comprises of
15n draws, therefore, the more variables to be estimated, the slower the algorithm. In
general, consecutive draws are not related to each other and hence the algorithm does not
get stuck in local extrema. The disadvantage is that since the points have a prescribed
form (almost uniformly distributed), the extremum might be impossible to find.
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Chapter 4

Ensemble Multiscale Filter - EnMSF

This chapter describes the study that has been made on the ensemble multiscale filter
for reservoir models. Section 4.1 presents one update time step on the EnMSF compared
to the classical ensemble Kalman filter, without accounting for model dynamics. The
EnMSF algorithm itself is described in Section 4.1.2. Section 4.2 includes the reservoir
dynamics and details the study of the covariance matrix in EnMSF.

4.1 Multiscale ensemble filtering for measurement up-
date!

4.1.1 Introduction

History matching (HM) is a process of adjusting the variables in a reservoir simulation
model until it closely reproduces the past behavior of the reservoir. The accuracy of
the history matching depends on the quality of the reservoir model and the quality and
quantity of the data available. There are gradient based HM methods which require a
minimization of a cost function over the entire time domain. In a real and large scale
application it is an expensive procedure and it can be stuck in local minima. Due to the
presence of uncertainties in both, the data and the model, it is hard and expensive.

One way to solve these problems is to use sequential data assimilation schemes (Kalman
filtering). In the past years successful applications of Kalman filter theory were reported
in many areas of research: the meteorological applications, [25], [12], nonlinear shallow-
water storm-surge models, [88], atmospheric chemistry and transport modeling, [74], [89],
[30].

The ensemble Kalman filter (EnKF) has also entered the world of reservoir engineering.
Several publications have discussed the use of EnKF with oil reservoir models: [59], [60],
[61], [28], [23], [50], [90], [77], showing promising results and at the same time indicating
possible drawbacks.

The EnKF is based on the representation of the probability density of the state esti-
mate by a finite number N (N being much smaller than the number of elements in the
state vector) of randomly generated system states (ensemble members). This method falls

IThis section is based on the article in Computational Geosciences, 13:245-254, 2009 where the
coauthors are: R.G. Hanea, A.W. Heemink, D. McLaughlin.
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into the Bayesian inversion approach and may provide a solution to the combined param-
eter and state estimation problem. The result is an ensemble of analyzed solutions (the
combination between the measurements and the reservoir model) which approximates the
posterior probability density function for the model parameters in the best way.

The ensemble size limits the number of degrees of freedom used to represent forecast
and analysis errors. It makes the calculation of the error covariances practical for modest-
sized ensembles. One important consequence of the use of small-sized ensembles is the
sampling error problem. After a certain number of assimilation steps the ensemble loses
its variance and leads to filter divergence. In [32] they conclude that the use of a small
number of members in an ensemble often produces spuriously large magnitude background
error covariances between greatly separated grid points (unphysical correlations). They
noted that the EnKF analysis scheme could be improved by excluding observations at
great distances from the grid point being analyzed by performing a covariance localiza-
tion. Examples of this approach include methods based on covariance filtering with Schur
products, [29], [33|, and methods that perform updates in small blocks of grid cells ,[55],
[65]. These methods improve computational efficiency and suppress the negative effect of
sampling errors. The covariances that are used for localization will have an impact on
the description of the physical correlation carried by the forecast covariance. Therefore,
there is a risk of introducing correlations that are physically not possible. A number of
researchers have observed and discussed the imbalances introduced by the localization
schemes in the meteorological applications, [52], [57].

In this chapter we focus on data assimilation with the ensemble multiscale filter (En-
MSF), [99], for estimation of oil reservoir permeability. This new approach solves some
of the limitations of EnKF by allowing spatial localization.

Multiscale estimation is based on the concept of using a multiscale tree that describes
the spatial correlations. The method is based on an algorithm, [92], inspired by image
processing research. The degree of freedom to choose a certain tree and to set up the
parameters for the update of the ensemble makes the method very appealing. At the
same time, one should be aware of the strong dependence of the method performance on
the choices mentioned above.

An interesting feature of the algorithm will be shown. An influence of its setup on the
quality of the estimates in case of a reservoir engineering application will be investigated.
Due to the complexity of the method we look only at a one time step update of the
ensemble. In Section 4.1.2 the theoretical background for the EnKF and for the EnMSF
is presented, and the assumptions that need to be made are described. In Section 4.1.3 a
2D, two-phase example is presented with seismic data. The numbering of the cells in the
numerical grid is discussed. The conclusions follow in Section 4.1.4.

4.1.2 EnKF and EnMSF - theoretical background

The problem can be formulated as follows. There is noisy data at every point in the
domain. Given the data we want to estimate what the true state is. In our case, the
data and the state represent the same variable. There is no dynamic model involved.
Nevertheless, we talk about forecasted and analyzed states to remain in the context of
the sequential data assimilation. The forecasted state is simply the state without the
measurements, and the analyzed state is the state where the measurements are already
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accounted for.

The state vector x needs to be defined and it is a collection of variables representing
the model result. Superscripts for x are used in the equations: f representing the forecast
state and a representing the analysis state.

All the available data are stored in vector y. The way to compare the measured values
with the state vector is to use a function from the state space to observation space called
the observation operator H:

y = Hx. (4.1)

Through the observation operator H, a forecast for the observed data can be made from
the forecast of the state. Uncertainties in the measurements need to be specified as well.
Therefore, Equation (4.1) modifies to:

y = Hx 4+ v.

The observation operator H is often a collection of interpolation operators from the state
to the observation points (conversions from state variables to the observed parameters);
v is the observation noise, v ~ N(0,R). The covariance matrix R needs to be specified.

Measurement update of the ensemble Kalman filter

The Ensemble Kalman filter was introduced by [16] and has been successfully used in many
applications, [21], [32]. This Monte Carlo approach is based on the representation of the
probability density of the state estimate by an ensemble of possible states, x', x2, ... xV.
Each ensemble member is assumed to be a single sample from a distribution of the true
state. Whenever necessary, statistical moments are approximated with sample statistics.

e Forecasted state ensemble: x"/, x>/ ... xM/f,

e Analysis step:

_ N ;
I = FXLxY,
Ef = x4 -x/, x* %/ . XN %],
Pl — LE(E)
K = P/H'[HP/H'T +R] !,
x = x4+ Ky - Hx")+ v,
where i =1, ..., N. Here, v’ are realizations of the noise process v.

Measurement update of the ensemble multiscale filter

The ensemble multiscale filter, [99], provides an alternative way to perform the update
step. The original ensemble covariance is represented by a tree structure and physically
long distance dependencies are kept through the relations between the tree nodes.

It consists of three basic steps:
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1. assigning grid cells (pixels) to the finest scale nodes and computing the tree param-
eters from sample propagation through the tree (tree construction);

2. upward sweep (moving information upwards in the tree);

3. downward sweep (spreading information downwards in the tree to the finest scale).

The ensemble members are partitioned with respect to grid geometry and settings
(like the pixel numbering and the tree specification). The multiscale algorithm places the
partition at the finest scale nodes (leaf nodes) and computes the parameters at the upper
tree nodes. Now, the upward and downward steps can be performed and the output is a
set of updated replicates.

EXAMPLE

Since the ensemble multiscale algorithm is more complex than EnKF, first, a little
example is shown. The example greatly simplifies the method but allows to grasp the
general idea.

X X X X
N w N
X X X X
p N o u
X X X X

Figure 4.1: The initial grid division. Figure 4.2: Tree with pixel values assigned
to the leaf nodes (fine scale nodes).

Figure 4.3: The middle scale representation Figure 4.4: Pixels selected for the middle
on the grid. scale of the tree.

Each pair of Figures: 4.1-4.2, 4.3-4.4, 4.5-4.6, shows a grid and corresponding tree
states. This is the first stage of the EnMSF - tree construction. The 4 x 4 grid is a
representation of permeability where grey is high permeability and black is low.
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N

Figure 4.5: Root node representation on the Figure 4.6: Pixels selected for the root (top)
grid. node of the tree.

The grid cells (pixels) are numbered and each group of four is assigned to a leaf node
of a binary tree (Figures 4.1 and 4.2). Here it should be noted that having an ensemble
of size N:

1 2 N

Iy Ty Ty

1 2 N

5 5 )
b b ) b

1 2 N

Tig Tig L6

the first leaf node, for example, contains a matrix with the first four states of each ensemble
member:

1 2 N
Ty Ty Ty
1 2 N
Ty 5 Ty
) ) )
1 2 N
T3 T3 T3
xy @} g

The state at each higher scale node is a linear combination of states at its direct
children. At the middle scale four most influential states are kept at each of the two nodes
(Figures 4.3 and 4.4). They happen to be the high permeability channel. These eight
values are used to compute the four states at the root node (Figures 4.5 and 4.6) which
is the center of the high permeability channel. This is the end of the tree construction
part when all the nodes contain sets of parameters needed to perform the upward and
downward sweeps.

Assume that a measurement is available in pixel no. 1. It is placed at the node which
had pixel no. 1 assigned to it, the first leaf node (a circle in Figure 4.7). Going up the tree
a Kalman-based update is performed and at the end the root node contains the knowledge
from the measurement. Downward sweep (Figure 4.8) spreads the knowledge from the
root node to all the other nodes. In consequence, the finest scale contains the analyzed
states ;e (29),1=1,2,...,16.
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Figure 4.7: A scheme of the upward sweep. Figure 4.8: A scheme of the downward
sweep and final updated values.

Clearly, the ensemble filter operates on an ensemble representing a distribution of
the truth. For simplicity, the example shows one grid representation. It should be clear
though that the states at the tree nodes come from the dependencies in the ensemble.

SOME MATHEMATICS IN THE ALGORITHM

The most complex is step 1 containing crucial assumptions and many flexible variables.
Steps 2 and 3 are based on Kalman filter theory. Some mathematical details are presented
here to enrich the simple example shown above. The full detailed description can be found
in [99].

Some necessary notation is shown in Figure 4.9.

sy o
S m(s)=1
m(s)+1

sa,  saq, =M=2

Figure 4.9: Notation: sy - the ith child of node s, sy - the parent of node s, m(s) - the scale
where s is placed, M - finest scale, 0 - the root node.

Additionally, some symbols used in the text are:

36



NOTATION

x(s) State vector at node s.
M

(s

)
Xm(s) The vector of finest-scale states descended from s.
X(s|s) The state at node s after the upward sweep.
)
)

X(s|S) The state at node s after the downward sweep.

x(sv|s) Projected state at node sv.

J Superscript indicating an ensemble member.
Any other symbols are explained in the text.

The whole process starts with assigning the grid cells (pixels) to the leaf nodes of the
tree. The cells can be numbered in various ways what determines the assignment. Two
choices are shown in the next section. Assigned pixels provide states at the fine scale
nodes of the tree.

A state at each non-fine-scale node s is a linear combination of the states at its children:

x(sau)
x(s) = V(s) : : (4.2)

x(say)

where matrices V (s) are obtained as follows.

We search for a set of V(s)’s that provides the scale-recursive Markov property on the
tree, i. e. decorrelates ¢ + 1 following sets of one scale: first ¢ sets are all the children
of the node s, and the set ¢ + 1 contains all the other nodes in this scale that are not
children of s. The decorrelation is a minimization of conditional cross-covariances between
the mentioned sets, given node s.

The tree that will approximate the forecast covariance matrix well should be based
on the scale-recursive Markov property. The set of V(s)’s providing the scale-recursive
Markov property perfectly would have a very high dimension since it would keep the total
dependence between the finest states on the upper scale. Therefore, for practical purpose
the state dimensions in coarser scales will be constrained. This is easier if V' (s)’s are block
diagonal; each block corresponds to a different and only one child of s.

The way V' (s)’s are built
V(s) has the form:
V(s) = diag[Vi(s), ..., Va(s)],

where V;(s) is a matrix corresponding to the ith child of s, sa;, fori =1, ..., 4.
There are two constraints hidden here. The first one limits the number of rows in
matrices V;(s) to d;(s). The second one, if necessary, coarsens the number of rows in V(s).
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Constructing matrices Vi(s)

To obtain V;(s)’s, ¢ conditional covariances need to be minimized, for each non-fine-
scale node s. Those are the conditional cross-covariances between child ¢ (i = 1, ..., ¢) and
the rest of the nodes in the same scale, given the parent. Since direct minimization is
inconvenient, the algorithm uses a predictive efficiency method.

Predictive efficiency method
The method is more efficient to compute than all the conditional cross-covariances. It
picks V;(s)’s which minimize the departure from optimality of the estimate:

Zic(s) = Elzic(s)[Vi(s)zi(s)),

where z;(s) is a vector of states at node sa; (= x(s)) and z;.(s) is a vector of states on
all nodes at scale m(s) + 1 except node sa;. It was proved, [22], that they are given by
the first d;(s) rows of:

V/(s) = Ul (s)Covlzi(s)] 1%,

where U;(s) contains the column eigenvectors of:
C’ov‘lﬂ[zi(s)]C’ov [zi(s), ZZ'C(S)]COUT [zi(s), zic(s)]C'ov_T/2 [z ()]

Here it should be noted that d;(s) are chosen by the user. The picked rows have the high-
est corresponding eigenvalues. The reason is that we assume that the column eigenvectors
of U;(s) are lined in a decreasing (corresponding eigenvalue) order.

The size of x(s) in Equation (4.2) is controlled by the setup of V(s), that is, it was
V(s) that allowed keeping four states at the upper scale nodes in the example.

When all the states are computed and the measurements are placed at the tree nodes,
the upward and downward sweeps can be carried out.

Going up the tree the algorithm updates the states at the nodes. Then each node s
gets the value x7(s|s), where x/(s|s) is the state vector updated with all the measurements
in the subtree rooted at s. At the top of the tree the value for the root node is obtained,
x?(0]0). This is the basis to perform the downward sweep of the algorithm. x?(0]0) is the
initial point, namely x7(0]S). Going down the tree the value x?(s|S) is assigned to each
node s. That is the state value containing the knowledge from all given measurements.
This way at the end of the sweep we get updated ensemble states at the finest scale which
can be used to perform the next forecast step.

The equations leading the upward and downward sweeps are:

The upward sweep equation
X (s]s) = X/ (s) + K (s)[Y(s) = Y7 (s)]

The states x/(s) at each node s are updated with perturbed measurements Y (s)
using weighting factor K (s) and predicted measurements Y7 (s), and:

K(s) = Cov[x(s), Y (s)][Cov[Y (s)] + R(s)] ",
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R(s) = diag|K (say)R(sap) KT (san), ..., K(sag)R(say) KT (say)], m(s)<M;

(

Vi) = y(s)+ls)  me)M;
K(sap)Y?(say)

Yi(s) = | , m(s)<M;
K(sa,)Y7(say)

\ | yls)+el(s)

Vi(s) = hsp(s),  m(e)=M;
K (s0q)Y7 (s0r)

Vi(s) = B , m(s)<M
K(sa,)Y7(say)

\ | ls)(s)

The downward sweep equation

X (s1S) = X7 (s]s) + J ()X (57]8) = X7 (s71s)]

Previous states x’(s|s) at each node obtain the knowledge from all measurements
through the weighting parameter J(s):

J(s) = Coulx(s|s)|FT(s)Cov [x(s71s)],
F(s) = Coulx(s7)]A(s)"Cov [x(s)].
[ ")

A(s) = Coulx(s), x(s7)]Cov [x(s7)]
The state x?(0|S) = x?(0/0) is initially known from the upward sweep and projected
replicates x’(sv|s) can be computed based on matrices V(s) and:

X (57]s) = F(s)x (s]s) +w"(s).

Matrix F(s) is like above and w"(s) is a zero-mean random perturbation with
covariance Q)'(s):

Q'(s) = Cov[x(s7)] — F(s)A(s)Cov[x(s7)].

The whole procedure explained above, with the three steps, is able to approximate the
forecast error covariance by constructing the tree and then to get the updated ensemble
by moving up and down the tree assimilating the available measurements. At the end,
the updated ensemble is obtained at the finest scale.
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4.1.3 Application

In real-life applications the data are collected in the field; in theoretical applications (so-
called twin experiments) the data is simulated with the aid of a setup that is called the
truth or the reference case. A twin experiment is prepared here for the algorithm to
check its performance. The results are compared to the ensemble Kalman filter’s as it is
described in [18]. All shown results are one update time results.

Figure 4.10: The training image 250 x 250.

Given the training image? (Figure 4.10) an ensemble was generated using SGeMS
(The Stanford Geostatistical Modeling Software). Algorithm snesim, [10], generated 2D
samples of permeability fields with grid size 64 x 64 from the training image with grid size
250 x 250. Each of 100 replicates is built of two values of permeability: high 10,000 mD
(yellow) and low 500 mD (red). The first replicate was assumed to be the truth (Figure
4.11) and removed from the ensemble.

—— i

Figure 4.11: The true permeability 64 x 64.

The values of the observations are the perturbed values of the truth. It means that the
permeability field is updated with permeability measurements. In practice these values

2A training image is an image representing the features and the distribution of ensemble members,
[10].
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cannot be measured anywhere except for at wells. Therefore, this example is not realistic
but allows to test almost any possible setup.

Throughout the tests the tree is a quadtree (four children for every parent), there are
16 pixels assigned to each finest-scale node and 16 states preserved at coarser scale nodes.

The task is to assimilate large scale data. We assume it is possible to obtain the mea-
surement in every pixel of the field, and that the data are very noisy. The number of data
points in space is very large. It is known that EnKF is not an efficient tool to assimilate
a very large amount of observations. The standard deviation of the measurement noise
is, therefore, equal to a large value of 9. The data are shown in Figure 4.12.

Figure 4.12: The permeability data.

The ensemble multiscale filter will be run twice. Each time with a different grid
numbering. The numbering schemes are shown in Figures 4.13 and 4.14.

1 2 5 6 17 18 .- 1 2 3 4 5 6

3 4 7 8 19 20 65 66 67 68 69 70

9 10 13 14 129 130

11 12 15 16
Figure 4.13: A square manner numbering Figure 4.14: A row wise numbering of the
of the pixels in the numerical grid. pixels in the numerical grid.

The numbering can express our belief in the dependencies in the actual field. The
square manner numbering (Figure 4.13) keeps groups of pixels close in the grid close in
the tree. It is not a perfect mapping though. For example, pixels 6 and 17 are direct
neighbors but they are placed at different nodes.

The other approach (Figure 4.14) numbers the pixels row wise as if one believes that
the channels are horizontal. It can be improved if there is some prior knowledge available,
for example, about the channel placement.
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It is visible in the results that interesting artifacts come from those two different
approaches.

The plots of the prior, EnKF estimation and EnMSF with square and row wise num-
bering estimations are shown in Figures 4.15 - 4.18. The prior is relatively smooth and it is
the best estimate if no data is given (the mean of the ensemble). Any proper assimilation
should give an improvement to the prior which is the case in here.

Figure 4.15: A mean of the ensemble mem- Figure 4.16: Assimilation with EnKF.
bers - the prior.

Figure 4.17: Assimilation with EnMSF and Figure 4.18: Assimilation with EnMSF and
numbering scheme like in Figure 4.13. numbering scheme like in Figure 4.14.

The comparison of the performances is based on a root mean square error (RMSE)

values and visual judgment. If two matrices of size N x M are Ayxy = {ai;}, By =
{blj} then:

M
1
RMSE(A, B) = | 5737 D0 ai; — bi)>.

=1 j5=1

Table 4.1 contains RMSE between the truth and: the prior, EnKF, EnMSF + square
numbering, EnMSF + row wise numbering.

The RMSE measures, roughly, the mean difference between respective pixels. It is a
point not global measure, it cannot give information on large scale features. Additionally,
one update step should not only rely on the RMSE. Hence, the visual comparison is also
useful. It might suggest a need to search for a completely different measure of similarity.
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Prior | EnKF ‘ EnMSF+square | EnMSF +row wise

1.4002 ‘ 1.3356 ‘ 1.0795 ‘ 1.0773

Table 4.1: RMSE between the truth and different results.

The plot of EnKF in Figure 4.16 is smooth and it seems like it sharpens a contrast in
the prior. Its RMSE is not satisfactory either. The two versions of EnMSF (Figure 4.17
and Figure 4.18) show artifact, lines which come from the numbering schemes used. Nev-
ertheless, the plots extract the high permeability channels quite well. The two approaches
were going to show that EnMSF can be adjusted to a given problem, especially when some
prior knowledge is available about the channel orientation or location.

4.1.4 Conclusions

The ensemble multiscale filter is a new technique for reservoir engineering. The method
has been developed from image processing. The goal is to show an application of this
filter to a simple reservoir engineering problem and to analyze its potential.

It is known that large data sets cause computational problems for Kalman filters. Also,
with more data, the structure of the system noise is less important. Therefore, there is a
need for efficient tools to handle this kind of applications.

Multiscale filtering is a way of representing the covariance matrix in the assimilation
process by a tree structure. This simplification preserves the strongest correlations be-
tween the grid cells. The most complicated part of the method is the definition of the
tree; it contains crucial assumptions and flexible parameters. There are features that
influence filter’s performance that can be adjusted to solve particular problems. Here, we
focused on the numbering schemes which can represent our belief in the field dependen-
cies. Certainly, it is very efficient to manipulate when some prior knowledge about the
field is available.

The two numbering schemes shown represent different ideas. The first one, square like,
might be universal to keep close pixels on the grid close in the tree. The second, row wise,
can be suggested by horizontal flow information. Both schemes show good performance
compared to EnKF in case of large data sets. The perfect mixture would be created when
an approximate position of the channel was known. The shape or way of numbering could
be adjusted to the feature.

Since the EnMSF is a complex and interesting algorithm it needs further experiments
and investigation. Full runs with a reservoir simulator and more tests are required.
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4.2 Towards the use of the ensemble multiscale filter
for history matching’®

4.2.1 Introduction

The EnMSF, [99], was introduced in Section 4.1.2 and here we present a sensitivity analysis
of the EnMSF with respect to several algorithm parameters. We learnt that the numbering
scheme has a strong influence on update performance with coarsened tree. We proceed
with presenting the related covariance study and an interpolation problem with scarcer
data set.

The numbering scheme is a feature that occurs to have the strongest impact on the
filter’s performance but additionally we decide to investigate the tree coarsening properties
that have been kept default to that point. For several numbering schemes we manipulate
algorithm coarsening parameters, namely, tree shape, upper-scale state coarsening (cdim),
and the decorrelating neighborhood radius. First, the covariance study is shown that
considers several parameter setups. Then, the full history matching experiments are
presented where a reservoir simulator models the time change of the variables. Here, for
the first time, the EnMSF is shown as a parameter estimator in a sequential updating
scheme where the estimated and the observed variables are different physical notions.
Now, a full state-space representation can be formulated following Section 3.4:

my 1 = Imy,

Yit1 = h (fkﬁkJrl(mka Xk)) + Vg1,

A permeability parameter m is static, and the observations y are obtained through the
observation function h extracting simulated data from the results of the reservoir simulator
f, where x represents the dynamic variables, grid-block pressure and saturation.

4.2.2 Pixel numbering scheme

We want to investigate the performance of the filter given several options for numbering
the pixels in the grid and assigning them to the tree structure. Since the EnMSF extracts
strong dependencies from pixels belonging to particular subtrees, it is expected that a
different assignment pattern might modify the result.

The sensitivity analysis presents a comparison of covariances: the forecasted ensemble
covariance and the covariance used in the EnMSF. The approximated covariance in the
EnMSF will be called the tree covariance.

A tree applied in the EnMSF for this example is presented in Figure 4.19. There are
four children per node and four pixels at each leaf node. Each middle scale node can keep
up to 16 states, the root node can keep up to 64 states.

3This section is based on the proceedings of 11** European Conference on the Mathematics of Oil
Recovery - Bergen, Norway, 8-11 September 2008 where the coauthors are: R.G. Hanea, A.W. Heemink,
D. McLaughlin, J.D. Jansen.
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The true covariance between pixel coordinates (z;,v;) and (z;,y;) is given by:

C.9) = e <—\/ @n) | ;W) ,

for i,5 = 1,...,8. The correlation is stronger along the x-axis. Figure 4.20 shows the
sample cross-covariance between the pixel in the center (the lightest) and all the other
pixels in the grid.

max 64

max 16

Figure 4.19: The tree for 8 x 8 example. Figure 4.20: The prior sample cross-
covariance.

Figure 4.21 shows four tree cross-covariances analogous to the one in Figure 4.20. All
of them were computed using the same tree (Figure 4.19) and severe coarsening (there
was only one state kept at each coarser scale node). Each covariance is coarsened in a
different way depending on the numbering scheme. Vertical and horizontal numbering
(4.21(a) and 4.21(b)) keep stronger correlations along the respective directions. Pixels
numbered in the clusters like in Figure 4.1 preserve the correlation within the cluster,
Figure 4.21(c). The last randomly numbered field (Figure 4.21(d)) is not able to show
any structure.

If all the states were kept at the higher scales of the tree, the covariance would be
totally reconstructed independently of the numbering scheme. So, the numbering scheme
gains importance only if a coarsening is applied. No prior information carried by the
ensemble is cut off or prioritized by the filter if there is no truncation.

The coarsening can be advantageous if there is some additional knowledge about the
grid. For example, that some areas are of a common nature which is not included in the
prior ensemble.

To see the actual data assimilation results, applications are shown in the next section.
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(a) Pixels numbered vertically.  (b) Pixels numbered horizontally.

(c) Pixels numbered in groups. (d) Pixels numbered randomly.

Figure 4.21: The tree cross-covariance for severely coarsened tree and different numbering
schemes.
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4.2.3 Interpolation problem

The numbering schemes discussed in the previous section appeared to have a big impact
on the covariance representation in the EnMSF. Here, a simple one time assimilation with
a truncated tree is going to show how a coarsened tree covariance influences the result.

The true permeability field is given as in Figure 4.22(a), 64 x64. The high permeability
channels are light yellow and the low permeability background is dark red. A prior
channelized ensemble with 100 members is given and its mean is shown in Figure 4.22(b).
The correlation is stronger in horizontal direction since the channels are mostly horizontal.
The permeability observations are taken along three vertical lines: one in the middle and
two at the edges (Figure 4.22(c)). Since the permeability is a measured and estimated
parameter, the problem is a simple interpolation problem.

™

e

(a) The true permeability. (b) The prior of 100 permeability (c) The measurements along the
replicates. three vertical lines.

Figure 4.22: The setup of the interpolation problem.

The multiscale tree has four children per node, 16 pixels at the finest scale nodes and
only 4 states kept at each coarser scale node. Four numbering schemes were applied and
the EnMSF results are shown in Figure 4.23.

Since the state truncation was severe the results differ significantly. Vertical numbering
(4.23(a)) assimilates the data only along the observation lines, it does not have a power
to reach in the horizontal direction. When pixels are numbered along the rows (4.23(b))
the data is interpolated horizontally. If this numbering is additionally consistent with the
channel orientation, then the assimilation is advantageous.

The clustered numbering (4.23(c)) spreads the data to a 'nearby’ group of pixels. It is
easy to notice that the pixels in line with the middle observations have been assigned to
the tree together with their left neighbors; middle observations are not projected to the
right plane of the grid.

The last numbering scheme (4.23(d)) was based on the truth like in Figure 4.22(a).
Low pixel numbers are assigned to the high permeability channels first and then the rest
of the pixels is numbered row wise. Therefore, the numbering exactly mirrors the truth.
The data should then be spread with respect to the true shapes. It can be handy when
prior geological knowledge (not included in the initial ensemble) is available.

4.2.4 Coarsening parameters in the EnMSF

There are many parameters driving the EnMSF. These parameters need to be understood
and studied to discover their influence, importance and sensitivity of the filter. Some
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(c) Pixels numbered in groups.  (d) Numbering along the feature.

Figure 4.23: The EnMSF assimilation results with different numbering schemes.

conclusions will be drawn from studies done in this section. We want to investigate the
tree shape, the state coarsening at the upper tree scales (cdim), and the conditioning
neighborhood radius, and test the parameters versus different numbering schemes.

The research is based on the covariance matrix reconstruction. It is investigated
how well the so-called tree covariance matrix represents the true and sample covariance
matrices (the true covariance matrix might be given - as it is in this case - or computed
from a very large sample; sample covariance matrix is a covariance of a given ensemble).
The tree covariance matrix is a covariance matrix that is used by the EnMSF in an
assimilation algorithm. It is computed on the basis of parameters assigned to the nodes
of the tree after the tree construction step.

On the root (top) node of the tree an ensemble is sampled from a normal distribution
with zero mean and the covariance matrix computed for that node in the tree construction
step. The ensemble has as many members as there are replicates used initially for the
tree construction. It is propagated to the finest scale nodes with the downward transition
matrices attached to each node. The matrices come from the tree construction step as
well. A covariance matrix of the ensemble from the finest scale is the tree covariance
matrix.

In this experiment the true covariance matrix is again given by:

€. 5) = exp (-\/ gl b ;fj)2> , (4.3

fori,j =1,...,8. C(i,j) means that the covariance is computed between the points (x;, y;)
and (z;,y;) in the Cartesian coordinates. The grid size is 8 x 8. The tests are restricted
to that size since it is computationally difficult to handle larger grids.

The covariance in Equation (4.3) has its denominators (42, 9?) chosen such that the
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correlation of each grid block is longer in the horizontal than in the vertical direction.
For illustration, the cross-covariance of one grid block with all the other grid blocks is
presented. The true cross-covariance is shown in Figure 4.24 (consistently with further
plots, it is the cross-covariance between a pixel in the 7th row, 3rd column with all the
remaining pixels).

Figure 4.24: The true cross-covariance like in Equation (4.3).

The results were compared by computing root-mean-square errors (RMSE) between
covariance matrices. If two matrices of size N x M are Anxxy = {aij}, Byxy = {bi;}
then again:

M
1

=1 j=1

The RMSE values are multiplied by 103.

The tree covariance matrix has been compared to the true and sample covariance
matrices. Since the difference between comparisons is negligible (not shown here), only
the results against the true covariance are presented. Each simulation was run 1000
times. An average RMSE distance between a covariance matrix of a sample of 10, 100
replicates and the true covariance matrix is equal to 12.2478, 3.4772, respectively. It can
be, therefore, assumed that a difference of around 10 should not be significant.

4.2.5 The design of the tree and its impact

The 64 pixels were distributed over the fine scale nodes of the tree in Figure 4.25 in groups
of four. Each coarser scale node has four children (a quad tree). A number of states at a
coarser scale node will be called cdim. The smaller its value the more coarsened the original
sample covariance matrix. An additional coarsening factor is a neighborhood radius (in
here equal to: 1, 2, 4, 8, 16, 64 as marked on the plots). It denotes a decorrelation radius
length within one tree scale. The following results will show an impact of the two types
of coarsening on a small (10 members) and on a large (100 members) ensemble.

Figures 4.27 and 4.28 picture the RMSEs for two different numbering schemes. Figure
4.27 had the numbering scheme adjusted to a feature and we will call it a ’channel’
numbering scheme. If one expects there is a channel (like in Figure 4.26 in this example)
running through the field, one could choose to first number the pixels horizontally inside
the channel and then continue numbering outside it. That is how the numbering scheme
for the runs in Figure 4.27 is constructed. A random numbering scheme was used for
the results in Figure 4.28. Figures 4.27 and 4.28 contain six plots each, for six values
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max 64

max 16

4

Figure 4.25: The quad tree used for the tests. There are 4 pixels in every finest scale node. It
implies a maximum of 16 states at the nodes in the middle scale, and a maximum of 64 at the
root node (depending on the middle scale).

i 2 3 4 5 6 7 8

Figure 4.26: The assumed channel.

of edim: 64, 32, 16, 8, 4, 1, placed in the reading order. Every plot is scaled to interval
[0,65] in the x-axis (neighborhood radius) and to [0,220] in the y-axis (RMSE).

The algorithm while computing the states at coarser scale nodes takes the minimum
between cdim and a total number of states at its children. The case cdim = 64 represents a
full covariance matrix reconstruction and, therefore, is equivalent to an ensemble Kalman
filter. The RMSE is very small, negligible, and the ensemble with 100 members (solid
line) is more correct then the one with 10 (dashed line). The same observations apply to
cdim = 32. Then, the states are coarsened only at the root node of the tree.

When cdim = 16, the RMSE is still low for both ensembles. For smaller neighborhoods
(more severe coarsening) the larger ensemble performs worse. Still, the difference is not
significant.

Interesting results are obtained for cdim = 8. For the channel numbering (Figure 4.27)
the error increases mildly, especially for the large ensemble and the small neighborhoods.
The random numbering scheme shows a significantly worse performance for the ensemble
of 100. The remaining plots in Figure 4.28 show a similar trend of preferring the small
ensemble results.

The channel numbering scheme shows a different performance. With cdim = 4 both
curves, for 10 and 100 ensemble members, are close to each other even though for small
neighborhoods the small ensemble performs better. The largest mismatch can be seen
with cdim = 1. It can be expected since the coarsening is severe and a greater ensemble
might introduce a larger misfit.

We will investigate what the impact of the coarsening is on the covariance matrix.
Examples with the current and additional numbering schemes will be shown.
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Figure 4.27: The plots of 103-RMSEs versus the neighborhood radius for different number of
states kept at the coarser scales of the tree (cdim), ’channel’ numbering scheme.
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Figure 4.28: The plots of 103-RMSEs versus the neighborhood radius for different number of
states kept at the coarser scales of the tree (cdim), random numbering scheme.
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4.2.6 Covariance matrix approximation

For the EnMSF to be computationally feasible a truncation has to be implemented. It is
due to the fact that a full tree structure requires storage of several large matrices at every
node. Therefore, it needs to be reviewed how the truncation influences the covariance
matrix and what the result of this coarsening is.

Having in mind the true cross-covariance from Figure 4.24, five truncated tree cross-
covariances are shown in Figure 4.29. All the plots are kept in a convention used in Figure
4.24. Plots in Figure 4.29 were generated with 10 replicates, cdim and neighborhood radius
equal to 4.

(a) ’Channel’ numbering. (b) Random numbering.

(c) Row wise numbering. (d) Column wise numbering.  (e) Square numbering (see Fig-
ure 4.1).

Figure 4.29: Cross-covariances for different numbering schemes.

Each cross-covariance shows a different pattern oriented with respect to the underly-
ing numbering scheme. The numbering proves important and may dominate the initial
dependence structure with significant truncation.

The ensemble multiscale filter occurs to be an interesting approach to sequential up-
dating with build-in localization possibilities. Since reservoir engineering applications are
not rich in measurements, the full potential of the method cannot be investigated. We
conclude that the filter could be beneficial when used in a data-rich field.

Coming section presents the ensemble multiscale filter applied to a reservoir engineer-
ing problem versus the ensemble square root filter for comparison. It is presented in the
light of this section’s results.

53



4.2.7 History matching using EnMSF

This section presents the results from different EnMSF runs in two problems where an
ensemble square root filter is a benchmark.

The true permeability for the first simulation is shown in Figure 4.30(a). The pressure
measurements were obtained from five wells: a center injector and four producers in the
corners of the field.

The true permeability for the second simulation is shown in Figure 4.30(c). The
pressure measurements were obtained from the wells located along the left (injectors) and
the right (producers) edge of the field, in total 42 wells. The domains’ size is 21 x 21 cells.

In each example the data was collected once a month, 12 times. Both examples use
150 replicates of the permeability fields and a measurement error of 10*Pa. A set of initial
replicates for each example has characteristics similar to the corresponding truth.

truth =022759
[ ]
2 I 122 2 122
4 124 4 124
6 6
126 126
8 8
128 -128
10 I 10
12 o 12 o
14 -132 14 -132
16| -13.4 16 134
. -136 8 136
20 20
-138 -138
5 10 15 20 15 20

(a) The truth (non-binary).  (b) EnSRF for truth 4.30(a),

150 repl., RMSE = 0.22759.
truth
4 -124
6 -126
.
.
18] -13.6
2 -138

(c) The truth (binary). (d) EnSRF for truth 4.30(c),
150 repl., RMSE = 0.40819.

permeability(150), RMSE

5 10

Figure 4.30: The true permeability fields and EnSRF results for the two study cases.

On the right from the true fields in Figure 4.30 there are the results of assimilation
using the EnSRF. The root mean square error is indicated. In both examples the filter
performs very well.

The EnMSF uses a tree where each coarser scale node has three children and there
are 49 pixels at each fine scale node. All updates are done on values of permeability after
a log-transformation, [24].

Let us first look at the results where cdim and the numbering scheme have been
manipulated. Figures 4.31 and 4.32 contain several assimilation results using different
settings in EnMSF. Both Figures are organized as follows:

e 4.31(a), 4.32(a) - no cdim truncation + feature based numbering templates,

e 4.31(b), 4.32(b) - cdim = 20 + feature based numbering templates,
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e 4.31(c), 4.32(c) - cdim = 20 + numbering along columns,

e 4.31(d), 4.32(d) - c¢dim =1 + feature based numbering templates.

It will test what is the impact of the same coarsening operations on problems with different
characteristics.

The feature based numbering template varies for each problem (it is constructed on
the basis of the respective true permeability). The binary problem uses a template where
the pixels are first numbered in the channel row wise from left to right, and then outside
the channel. To construct a feature based numbering scheme for the non-binary problem,
a threshold for permeability was set. Then, all the greater true permeability pixels take
a value 'channel occurs’ and the rest - 'no channel’. Now, the template can be built like

permeabilty(150), RMSE = 0.23617 permeabilty(150), RMSE = 0.26066
-
2 -122 2 I -122
4 4
124 124
n
6 6
126 126
8 8
128 128
10 10
» 13 » 13
1 132 1 -132
16 | 134 16 134
] 135 1 135
20 20
138 138
5 10 15 20 5 10 15 20

(a) No  truncation, fea- (b) cdim = 20, feature based
ture based numbering, numbering, RMSFE = 0.26066.
RMSE = 0.23617.

permeabilty(150), RMSE = 0.23093 permeabity(150), RMSE = 032719
2 122 2 122
|
a I 124 4 124
6 6
126 126
8 8
128 128
10 10
» 13 » 13
" | B 132 L | 132
16 ] 134 16 134
n
18 -136 18 136
20 20
138 L 138
5 10 15 20 5 10 15 20

(¢) edim = 20, column wise (d) cdim = 1, feature based
numbering, RMSE = 0.23093. numbering, RMSFE = 0.32719.

Figure 4.31: EnMSF for the non-binary truth 4.30(a).

For both cases when the tree used no truncation (4.31(a), 4.32(a)) the results are
almost identical to the EnSRF as expected. For example, in the non-binary case, per-
meability on the right boundary closer to the south-east well is smoothed unlike the
true pattern. (Note: A numbering scheme for a non-truncated tree does not make any
difference (no plots shown).) The truncation cdim = 20 using the template breaks this
pattern, 4.31(b), making it more similar to the truth; the column wise numbering, 4.31(c),
is not as good. Nevertheless, the results in general are very good. Additionally, the most
severely coarsened case, 4.31(d) with cdim = 1, performs well. It might be due to strong
correlations between the permeability and pressures in this case.

The binary case appears to be more sensitive to the truncation. In 4.32(b) and 4.32(c)
the placement of the channel is approximately detected but the values of permeability are
not correct. For cdim = 1, 4.32(d), it has only a vague recognition of the feature.
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(a) No  truncation, fea- (b) cdim = 20, feature based
ture based numbering, numbering, RMSE = 0.5675.
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(¢) edim = 20, column wise (d) edim = 1, feature based
numbering, RMSE = 0.60914. numbering, RMSFE = 0.7655.

Figure 4.32: EnMSF for the binary truth 4.30(c).

Since this example is larger, another tree could be constructed for comparison. Table 4.2
contains the tree parameters used for assimilations, results of which are Figures 4.33(a)
and 4.33(b). Both trees coarsen the middle scale to about +th but the root nodes have
different truncations applied. Both use the same feature based numbering scheme. Most
likely the truncation at the root node caused the results to vary, and not the topology of
the tree.

4.33(a) | 4.33(b)

# children 3 7
# pixels x f finest scale nodes = 441 49x9 9x49

(f states x f nodes) at the middle scales | 20x3 9x7

f states at the root node 20 9

Table 4.2: Tree parameters for two different cases.

Since the neighborhood radius is not significant (or expensive) when the tree is not
truncated or is mildly truncated (not shown here), the neighborhood truncation to 1 with
cdim = 1 is shown as an extreme case. It is not realistic to use these settings in any
application but it is presented here for the sake of completeness.

The plots in Figure 4.34 were generated using cdim = 1. Figures 4.34(a) and 4.34(b)were
generated without the neighborhood coarsening but use different numbering schemes.
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(a) Again Figure 4.32(b): (b) c¢dim = 9, feature based
cdim = 20, feature based numbering.
numbering.

Figure 4.33: EnMSF with different trees, the details of the tree parameters are contained in
Table 4.2.

Here, it is visible that the column wise numbering prefers the features in north-south
direction. Figures 4.34(c) and 4.34(d) use the respective numbering schemes and addi-
tionally a severe neighborhood truncation was applied. The column numbering clearly
indicates the division into three nodes of the tree.
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Figure 4.34: EnMSF with the neighborhood coarsening.

4.3 Conclusions

Chapter 4 described comprehensive research results on the application of the ensemble
multiscale filter. The filter is a Kalman type filter that builds the sample covariance
matrix on the basis of a tree structure given an ensemble of realizations. After the tree is
built, the measurements can be placed at the nodes and the update performed. Typically,
a covariance derived from a sample contains spurious correlations due to a finite sample
size, and even physically very distant areas can show dependencies. We investigated how
ensemble multiscale filter deals with spurious correlations with built-in localization tools.

First, Section 4.1, presented the filter as an interpolation method (no time update)
where very noisy measurements of the true domain were available together with an ensem-
ble of initial realizations. We compared the ensemble multiscale filter with the classical
ensemble Kalman filter that acted as a benchmark. We showed that the multiscale method
performed updates differently, depending on the numbering scheme used, and extracted
the information in varying ways.

In Section 4.2 the same setup of the interpolation problem but with different measure-
ments was used. Here, less noisy measurements were available along three equally-spaced
vertical lines. It was clearly visible how the ensemble multiscale filter propagates infor-
mation to pixels that are close to each other in the tree which does not have to reflect
physical closeness. We concluded that the numbering of the pixels is important and pro-
ceeded with more technical aspects of the investigated filter. We looked at the parameters
of the tree that determine the level of the coarsening applied to the covariance matrix.
Our conclusion was that the ensemble multiscale filter’s performance will depend more
on the level of coarsening (mostly parameter cdim) than the tree topology. More impor-
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tantly, the coarsening with an appropriate numbering scheme can act as a localization
method.

The filter can be computationally challenging due to its classical ensemble Kalman
filter update scheme that is built into the algorithm. Then, if the tree has few children
per node or many scales, the computation of the local covariance matrices or building the
upward /downward connections might be expensive. Nevertheless, since the EnMSF never
stores the full covariance matrix, it is expected to be more efficient than the traditional
EnKF.

We recommend the EnMSF as a localization and update tool in several cases. First, in
case where there is some knowledge available about local dependencies that will lead to an
educated pixel-to-tree assignment procedure. Then, during the tree truncation important
correlations will be extracted and kept in the update. Second, in case where there is a vast
amount of spatially distributed data available that will need localization techniques due to
a possible ensemble collapse. In any case, a truncation in the filter has to be implemented.
Feature-based or correlation-based numbering is necessary. Additionally, for large data
sets we expect the artefacts created by the tree structure to be less pronounced.
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Chapter 5

Feature-based methods

In this chapter a method is developed for global feature deformation. This method is
applied in reservoir engineering and groundwater modeling data assimilation. Combining
knowledge from image processing and grid generation we come up with a grid deformation
method parameterizing an image domain. First, some basic notions are defined. Then,
the method is explained and applied to a 2D case. Finally, a straightforward extension to
a 3D case is shown.

5.1 Grid distortion for a 2D reservoir model

5.1.1 Introduction

Data assimilation (or computer-assisted history matching) combines theoretical knowl-
edge about a physical process with observed data. Different data assimilation techniques
can be classified into two main groups: variational or sequential methods. Variational
methods assimilate all the available data over the whole time interval at once through a
minimization of an objective function. Sequential methods assimilate data at a particular
time, proceed forward in time and assimilate the next available data; they can be derived
by minimizing a variance estimate of a conditional probability density of a model given
data. Both approaches have advantages and drawbacks, [52], [91].

A special case of data assimilation is parameter estimation problem where only static
variables are estimated. Then, additionally, direct search methods (or zero order meth-
ods, [48]) can be implemented. These algorithms search through the objective function’s
domain of feasible solutions not taking into account local gradients. This methodology
should be especially profitable in our application due to objective function’s high nonlin-
earity.

Data assimilation is widely used in many branches of industry. It can be applied
whenever it is possible to model the underlying physics of a process, and obtain theo-
retical estimates of variables that are measured in reality. Applications include weather
prediction, ocean dynamics and hydrology, [88], [7], [16], or influenza spread, [39].

Reservoir engineering uses data assimilation to improve estimates of subsurface prop-
erties from available measurements, [62]. Typically, one wants to estimate a reservoir
permeability or porosity field. The measurements can be spatially small-scale (like bot-
tom hole pressures or fluid rates measured in the wells) or large-scale (field-wide seismic,
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electromagnetic or gravity observations).

Data assimilation for reservoir engineering needs to take into account requirements
(constraints) that have to be met due to geological or economical reasons. Geological
realism, [49], [10], is one of them. The parameter fields obtained from data assimilation
should look geologically correct, that is, the initial subsurface characteristics should be
preserved in the history matched estimate. The reason for this requirement is the generally
accepted belief that ’geologically realistic’ reservoir models have a larger probability to
produce reliable forecasts than ’geologically unrealistic’ models. Therefore, the main
initial geological features should be displaced or bent but not broken. Nevertheless, the
prior geological information is often lost, [31], due to neglect of higher order statistics in
the data assimilation scheme. Furthermore, the geologically incorrect estimates are often
still able to match the production history accurately. Therefore, additional constraints are
needed to keep the geological information consistent during the history matching process.

Feature-based methods are used to overcome the problem of geologically unrealistic
history matches. They account for shapes/features in a domain of interest and have been
investigated from different points of view and for various problems. Here, we focus on
reservoirs containing channels (high-permeable passages where liquids travel relatively
easily).

The most intuitive approach to the task is to parameterize a channel. If the channel is
simple enough, its length, width, starting point and orientation might provide a complete
description of the domain, [97], [84]. This kind of parametrization limits the number of
variables (degrees of freedom) and ensures a certain consistency of the structure.

Permeability might also be seen as an image to which different image processing tools
can be applied. Several methods reviewed below have been proposed to solve the problem
of feature estimation, very often restricted to estimation of a channelized field.

e A discrete cosine transform (DCT) originates from jpg file compression; it decom-
poses an image into a sum of products of basis cosine functions and corresponding
DCT coefficients. The application of the DCT has been introduced to data assimi-
lation in reservoir engineering in [34], [35], [36], and later also implemented in [94].
An efficient parametrization of a variable field is provided through DCT coefficient
coarsening.

e A level-set method has been applied to a reservoir engineering data assimilation
problem, [58], [14], [93], to update contour positions of features. The edges of the
features are then modeled as a horizontal cross-section of a surface and an evolution
of the level-set function modifies the shape position.

e Field alignment (FA), [67], changes an image by deforming its grid with a vector field.
The deforming vector field is regularized by gradient and divergence constraints in
an objective function.

The main focus in this chapter is a grid distortion method. It was inspired by the grid
generation research described in [82], [81], [80], where the goal is to automatically generate
smooth grids for solving differential equations. The method deforms a grid smoothly (like
FA) to fit it to given data but does it through a simplified (compared to FA) partial
differential equation. The approach to the problem resembles FA, as both methods use
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deforming vector fields and were created to allow relocation of patterns and their possible
deformation. However, unlike FA, grid distortion uses a limited number of parameters.
Grid distortion is implemented here within the ensemble Kalman filter framework and
also within a pattern search method.

All the methods mentioned above are feature-based methods. Since the field alignment
and grid distortion methods are closely related, FA is discussed in more detail in Section
5.1.3. Optimization methods, in particular the ensemble Kalman filter and the pattern
search method, are described in Section 5.1.4. Section 5.1.5 introduces the feature-based
method developed in this thesis - grid distortion. Results follow in Section 5.1.6, discussion
and conclusions in Section 5.1.7.

5.1.2 Basic notions
Vector fields

We want to discuss images and their deformations caused by vector fields, and there are
several ways of looking at this type of problems. One can think of a vector field whose
domain are the nodes of a regular grid holding the pixels. Then, the deformation of
the grid triggers pixel deformation which in turn leads to the image deformation. An
interpolation to a regular pixel values is then necessary. This type of warping is shown in
Figure 5.1 and was implemented for the grid distortion method.

Figure 5.1: A node displacing field (applied in the grid distortion method).

Another approach is demonstrated in Figure 5.2. Here, every pixel contains a vector.
The vector field is a search field since it seeks new values for the locations to obtain a
deformation of a background image. The location can be a pixel (like in the figure) or
a grid node. Alternatively, multiple vectors can be attached at a single pixel location
to propagate the pixel’s value to several destinations (Figure 5.3). Variations of the
approaches could also be considered.
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Interpolation

In grid distortion method an interpolation has to be implemented to obtain the values of
pixels in a regular Cartesian grid after the deformation. The simulator in this case cannot
handle irregular unstructured grids. Various types of interpolation methods exist. The
basic interpolants are: nearest-neighbor, linear, polynomial and spline.

For the 2D grid distortion in Section 5.1, an additional interpolation function is writ-
ten. It prescribes values to the grid nodes and maps them onto regular pixels after the
distortion. In the case when a pixel has not received a value from a node, a weighted
mean of neighboring pixel values is assigned. Since the realizations in our applications
are binary, there is a threshold value specified.

For the 3D grid distortion in Section 5.2, the nearest-neighbor interpolation is imple-
mented. Even though it makes the problem more non-smooth, it keeps the realizations
looking like geological features which is desirable in the presented examples.

Problem formulation

Let us formulate a data assimilation problem in the form of minimization problem where
the objective function J is

J(a) = (£ — £(a))" (£ — £(a)).

J is a function of a vector field q and contains only a squared measurement mismatch
term in the simplest form. The actual data are represented as a vector f*, f(q) is a vector
of predicted data.

The connection between the data and the vector field, i.e. function f, can have different
forms. If one wants to solve an image recognition problem, f(q) represents the distorted
image values at pixel locations, [95]. It is the simplest application one can start with since
it does not include any aditional transformation or time.

Complexity can be added by making f a function of a parameter field (for example, a
pressure response in a steady-state system to a permeability field). One step further is a
data assimilation application where observations are collected over time.

5.1.3 Field Alignment

Field alignment, [67], is a method developed for image deformation purposes. It can be
used for image recognition, [95], or feature-based data assimilation.

Let us have a discrete Cartesian grid (§,n), Figure 5.4. Each grid node j has a
displacement vector (all vectors are column vectors) q. with coordinates [qjl.,q]?]T, j =

1,..., N. A collection of the vectors for all the grid nodes j gives a discrete vector field q:
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Figure 5.4: Cartesian grid (£,7n) with displacement vector q, = [qjl»,qu]T at node j.

One wants to minimize an objective function containing an observation mismatch and
a background mismatch:

1

J(x(a)) = 5y — hix(a) R (y ~ h(x(@)) + g (x(a) ~ x)"B(x(a) - %),

where x° is a background image and B is a background error covariance matrix. The
measurements are denoted as the vector y, x(q) is a distorted template (base case) image,
h(x(q)) are predicted measurements that depend implicitly on the distorting vector field
q, R is a measurement error covariance matrix of the zero-mean noise term v such that:

y = h(x(q)) +v.

In case of an image recognition application, the observations y are the target image
and h is an identity. If the method is used for data assimilation in a physical process then
a dynamic model needs to be included. In that case h(x(q)) includes a physical model
that predicts the values of observations.

To regularize the vector field q two quadratic penalty terms can be added to the ob-
jective function. The first one constrains gradients of the vector field, the second one
its divergence. Constraining the gradients will not allow sharp jumps from one vector
to its direct neighbor. Minimizing divergence should ensure no excessive local expan-
sion/contraction of the image. The regularization terms are of the form, [67]:

b

L(q) =
w1 N 8g] agj ’
7;” la(i,n)] la(i,n)]
—I—% ;[V-gj]Z.

Here, w; and wy are weights, summation is done over all grid nodes indexed by j, tr is
the trace of a matrix, - denotes the inner product, and

oq} oqt 1 2
G % | g o0, 00
a(&,n) dq?  0g? = 0 on
3

66



represent the gradients and the divergence, respectively. Using finite difference approxi-
mation it is easy to derive a fully discrete version of these expressions that comes into the
objective function as:

1 1

J(x(a)) = 5(y—h(x(a) R (y~h(x(a)))+3(x(a) —x")" B (x(a) =x")+ L(q). (5.1)

Equation (5.1) can be solved through a so-called two-step method, [67], by computing
gradients of J with respect to q and x(q) and setting them equal to zero. The first
step of the method aligns features by deforming the grid. The second step introduces an
amplitude adjustment, in other words a pixel-based update on the aligned field.

Even though the two-step approach can be implemented as an ensemble scheme in
history matching, it needs a model derivative if used with a physical simulation model, [67].
This could be a major obstacle to implementing the field alignment method. Therefore,
gradient-free approaches are chosen for the implementation of the grid distortion method.

5.1.4 Ensemble sequential data assimilation and direct search

A sequential data assimilation scheme and a pattern search method are applied in this
work due to a relatively simple implementation process that does not require a derivative
specification. This section describes the problem formulation, the ensemble sequential
approach and the pattern search.

Most, data assimilation formulations are based on a state-space approach. Let x; be
a state vector of dynamic variables. Then:

Xk+1 = fkakJrl(ma Xk) + €pt1, (5 2)

Vir1 = h(Xpq1) + Ve,

where subscript k indicates discrete time, f; .1 is a model for time-evolution that de-
pends on the static parameters m, and € is a model error term. Initial condition xy and a
set of initial parameters are given, y, indicates the measurements, h is the measurement
operator that could depend on time, and v is a zero mean normally distributed random
variable representing noise with error covariance matrix R.

Let the state vector contain dynamic variables and/or static model parameters. As-
sume that the model error can be ignored, that is, €, = 0 for all k£, and that one
is interested in estimating the static variables m only. Then the state-space approach
modifies to:

my 1 = Imy,

(5.3)
Virr = h(fi 1 (my, xi)) + Vigr.

If the static variable can be represented by a smaller set of parameters o, m = m(a),
then:

Opy1 = Iaka (5 4)

Virr = h(fip(m(og), xx)) + Vigr.
Here, I is an identity matrix that indicates that the state is constant in time, and
h(f, r1(m(ag),xi)) denotes a series of operations: first the model static variables are
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computed from a given parameter set, then the model f; .z, propagates the dynamic
variables in time, and finally h extracts the observations. Formulation (5.4) will further
be applied in our study.

The main idea behind the ensemble Kalman filter is to represent a probability distribu-
tion of state variables by an ensemble. The ensemble is a collection of possible realizations
(replicates) of the variables in the data assimilation process and is used to compute a sam-
ple (cross-)covariance matrix. Sequentially, first the process is integrated in time, then,
the data are assimilated, and updated replicates are forwarded in time again. Various
ensemble Kalman filter flavors can be found in the literature, [1], [20]. The ensemble
square root filter (EnSRF) implementation, [18], [70], is used due to its computational
efficiency. In the current setup the EnSRF becomes a parameters estimator since all the
dynamic variables have been excluded from the state vector.

For comparison, a pattern search (Latin Hypercube Sampling) technique is imple-
mented (see Matlab documentation) that is especially suitable for estimating a small
number of variables. It is not based on local gradient changes (hence the straightforward
implementation) but usually requires a considerable time to find a minimum.

5.1.5 Grid distortion

The notion of a grid is ubiquitous in mathematics and engineering. Any equation used for
modeling must first be discretized on a numerical grid. In more advanced reservoir simu-
lators flow equations can be solved on various types of grids: Cartesian, unstructured, etc.
A grid can also be deformed to fit a given shape, like in [80] where the goal is to generate
a smooth "orthogonal’ grid for engine combustion chamber simulation (Figure 5.5).
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Figure 5.5: Fitting a grid to a shape of an engine combustion chamber, [80].

Similarly, in reservoir engineering applications, [76], a grid can be adjusted to fit the
top and bottom reservoir horizons, or specify the position of a fault, [75].

Looking at a digital image, we actually look at a set of pixels. This set of pixels can
be seen as embedded in (held by) a grid and the image could be deformed by perturbing
the grid. Figure 5.6 shows an example of a simple image deformation by changes in the
grid. Figure 5.6(a) is an image to be deformed (which will be referred to as a base case).
Figure 5.6(b) is a deformed grid. Figure 5.6(c) is a deformed grid with the deformed image
on top of it. Finally, Figure 5.6(d) represents the deformed image mapped back onto
the original Cartesian grid. This backtransformation is necessary because our simulator
requires a Cartesian grid. The base case is an image generally representing one of the
features that is expected to be seen in the feature field. To allow independent feature
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(a) Image to be deformed.

(c) Distorted grid with deformed image.
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(b) Distorted grid.

(d) Deformed image mapped back
onto the original undistorted Cartesian

Figure 5.6: An image deformed by a grid.
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distortion, each shape has one base case representing it. The base cases are not subject
to estimation procedures and are set constant beforehand.

The aim of the deformation is to translate the grid smoothly to assure a seamless
transition of features. The grid then behaves like an elastic net, and deformations do not
corrupt the shapes. Below, the grid distortion method is described in detail. First, the
motivation and the relevant equations are presented. Then, grid distortion in the context
of data assimilation is described.

Motivation

Grid generation is a well researched area, [82|, where the task is to automatically generate
curvilinear grids for solving differential equations on variously shaped domains and with
specified boundary requirements, for which it is advantageous to have orthogonal smooth
grids. First, we present several grid generation equations in increasing order of complexity,
and then we compare the grid distortion method to the field alignment method.

Let us consider two-dimensional grids where ¢ and 7 are Cartesian coordinates, and
X and )Y are curvilinear coordinates. The same type of reasoning would apply to a
three-dimensional grid. In 2D Laplace’s equations are:

0*xX  9*X
AX = a—g + 8—772 =0,
0%y  9*Y
AV =Gz * g =0

where boundary conditions are given and the equation solves for smooth grid coordinate
lines that become orthogonal away from the boundaries. The boundary conditions can be
Dirichlet (in which case the lines are fixed at the boundary and their angle can vary) or
Neumann (in which case the lines move along the boundary and have a specified angle).
The boundary conditions can also be mixed, but it is not possible to specify both the
location and the angle.

Poisson’s equation,

AX = P,

Ay =Q,

is used to control the coordinate line spacing through the control (or distortion) functions
P and @, with the same rules for the boundary conditions. In [81] P and @) are, for exam-
ple, specified in the form of exponentials to create points of attraction in the curvilinear
or Cartesian coordinates. There, it is also noted that a modification to Poisson’s equation
can be used in the form of a general diffusion equation:

V- (KVX)=0,
V- (KVY)=0,
where /C is responsible for controlling the coordinates. The equations give:

1

AX
K

(VK- VX), (5.5)
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AY = —i(wc-vy),

K
that is
X n 822( (8IC oxX 8IC 82()
oc2 " on2 o 0 on on
0%y + 8237 (8IC oy L 9K oK ay>
¢ o¢ 9§ On On

The right hand side is determined by IC, the slopes of K and the slopes of the coordinates.
In [80] a covariant Laplace operator was proposed:

0 oxX 0 (10X
a_g(’cc%)* (/can> "

0 1A% 10V
3 (’Cas> o (/can) v

where /C is given and depends on the magnitudes of the slopes of X and )). The equations
can be rewritten as:

X 1 PX 1 ( 19KOX  OKoX
o0& Ko K

K2 0¢ o o on

e et ] [
0¢? K2 on? K K206 06 On On
Here, the left hand side of the equations is not the Laplacian. It might be more difficult
to implement but is certainly an interesting alternative to consider.
We want to show how the grid generation methodology is similar to field alignment
in image processing. Note that X = & + q[ where q[ ] are x- coordinates of a distorting

Py 102y 1 ( 1 0K 0Y ENC@)))

vector field q as defined for the field alignment method in the previous section (qm will

82 1 82 1
denote y-coordinates). This gives %%( = 8?2]], %QT); = aq[;] and therefore AX = Agp.
Note, however, that the boundary conditions for these problems differ. We will show how
a Poisson’s-type equation arises naturally in the field alignment context as described in

[67]. Recall the objective function from Equation (5.1):

J(x(q)) = %(y —h(x(q)))"R™(y — h(x(q))) + L(a),

where the background mismatch term is ignored. Let the function L(q) be rewritten as:

T

wn a ag] ag]
Ep [3(5,77)] [3(5,77)

2 2 2 2
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where we take w; = 1 and wy = 0 for simplicity. This gives

J(x(q)) =
Sy — hix(@) Ry — hix(@) +

2 2 2
5’%) <aq[1ﬂ> (aq[2ﬂ> <aqﬁ‘1>
/ / + S 1 Y 1 R L
on o on

T
a.J 0x oh\” ¢ty 0%qi
- = - R—l — h(x + 4] + [ﬂ)
3l <a<q;ﬂ>> (G) B+ G+

aJ ox ! on\" 1 Pq 2' 829[]
I I — | R — h(x + +
8(q[2ﬂ) (8((]&)) (8}() v (x(a))) 8&2 N>

Letting the derivatives of the objective function be equal to zero leads to:

i ox ! on\"__,
Aqm:<@> (5) R~ hix@)),

Agy = (%) (52) R0 nixta))

, a( 1 and 8(‘2’2‘) comprise the gradient Vx of x, and finally we get:
il

and hence:

Following [67]

Sa= (9" (52) Ry - hix(a), (5:6)

Equations (5.5) and (5.6) are not Poisson’s equations since their right-hand sides
depend on the unknown variable. Nevertheless, in [67] it is shown that Equation (5.6)
can be solved iteratively as Poisson’s equation holding the right-hand side fixed to the
value from the previous iteration.

We want to simplify the solution process and aim to find a right-hand side of Poisson’s
equation in a form that is easy to parameterize.

Grid distortion equations

Let again X and ) be curvilinear coordinates, and & and 7 Cartesian coordinates. Then
a distorted grid is a solution for X and ) to the equations

Ao
AL (5.7)
by
) (5.5)
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Functions P and @ on the right hand sides of the equations are called distortion func-
tions (control functions) and they drive the coordinate transformation. They represent
the type of smooth deformation one wants to achieve through the coordinate transforma-
tion. The distortion functions are parameterized to reduce the number of variables to be
estimated.

If Equations (5.7) and (5.8) are discretized on a regular Cartesian grid, distortion func-
tions become distortion matrices (referred to as P and Q). The second order derivatives
are approximated by

0’x B Xi+T1,7)—2X0,7)+ X0 —T1,7)
352 o 2 ’

where 7 = 1 since integer grid coordinates are used and (i, j) travels through all the grid
nodes. The other terms in (5.7) and (5.8) are discretized in a similar fashion.

Consider an image of size (N, + 1) x (N¢ + 1) pixels in 7- and &-axis direction, respec-
tively. There are (N, +2) x (V¢ + 2) grid nodes in the grid representing the given image.
Let us assume that the grid at its boundaries is fixed and that one needs to find the
curvilinear coordinates of the remaining N, x N¢ nodes. Equation (5.7) can be expressed
in the form:

AX =b,, (5.9)

where X € RWaNe)x1 ig the unknown column vector of curvilinear coordinates X. The
origin is chosen at the lower left corner of the node domain. The fixed boundary values
are: zeros at the left edge, N + 1 at the right edge, while at the top and bottom the
values increase from left to right from zero to N¢ 4+ 1 with increment one. Let us define a
matrix B, that accounts for the boundary condition:

1 2 - Ne—1 2Ne+1

00 -+ 0  Ne+1
B, =

00 -~ 0  Ne+1

1 2 - Ne—1 2Ne+1

Matrix B, is of the same size as the distortion matrix P: N, x N¢. Let us define P
and B, to be column vectors of size (N, - N¢) x 1 reshaped from matrices P and B,,
respectively. During the discretization the fixed boundary values are moved to the right-
hand side of the equation where one gets b, = P —B,. At the left-hand side A is a sparse
(N, - N¢) x (N, - N¢) pentadiagonal finite-difference matrix.

For Equation (5.8) the only difference is the boundary condition. We want to solve

AY =b,. (5.10)

Let Q be a column vector reshaped from the distortion matrix Q. Let B, be a column
vector reshaped from N, x N¢ matrix: o
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ON,+1 N,+1 --- N,+1 2N, +1
Ny—1 0 -~ 0 N,—1
By:
2 0 - 0 2
1 0 - 0 1

Then b, = 9— &

Grid Distortion in Data Assimilation

The ensemble Kalman filter is directly applicable to reservoir engineering problems in
the form of Equations (5.3). Typically, the ensemble of states contains uncertain static
variables like permeability. Each cell value in the permeability field can be estimated in
the data assimilation process (here referred to as pixel-based estimation). Unfortunately,
in reservoir engineering applications there are few data available. There might be only
several measurements available to estimate hundreds or thousands of state values, which
makes the problem severely ill-posed.

Additionally, Kalman filters consider only first and second moments of the given distri-
bution. This results in smooth estimates that might not always be desirable. One might
want to account for specific features introduced in the initial permeability ensemble which
the filter loses during the history match. Both problems (ill-posedness and not-preserved
initial information) are approached by the feature-based methods.

Let us explain how grid distortion fits into the sequential ensemble data assimilation
framework. The state vector in Equation (5.4) contains the distortion parameters. Un-
certainty is assumed in the initial estimate of the distortion parameters only. Operator
m(«) represents a sequence of operations that create a permeability field from the distor-
tion parameters. To compute predicted measurements, several steps are required. First,
the distortion parameters (a) need to be converted to distortion matrices P and Q. The
equations are solved for curvilinear coordinates, base cases are distorted and mapped back
to a Cartesian grid. The margins from grid embedding need to be cut off and the results
from different base cases need to be merged. The resulting images of permeability are the
input for the reservoir simulator f. Operator h extracts the measurement predictions for
the next update time step. The measurements are contaminated with noise. The distor-
tion parameters are updated every measurement time step to create an updated ensemble
of channel fields. The base cases do not change throughout the whole process.

To generate an ensemble of possible permeability realizations, the grid distortion with
randomly generated coefficients is repeatedly applied to the base cases. Figure 5.7 repre-
sents the replicate generation process for one base case. On top is the base case which,
together with the distortion parameters, creates realizations of fields with a horizontal
channel.
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Figure 5.7: Generation of replicates with the grid distortion method.

The full sequential data assimilation algorithm is described below.

Algorithm 1 - Sequential ensemble data assimilation for parameter
estimation in grid distortion

e Initialize - load measurements, initial distortion parameters « for all en-
semble members, and Ny base cases.

Repeat for the total number of measurement times, for all ensemble members:
1. create distortion matrices P(a), Q(a),
2. solve Equations (5.9) and (5.10) for X and Y for each of the N; base cases,
3. distort the base cases with computed distorted grids,
4. map distorted images to Cartesian grid,
5. cut off the margins from embedding,
6. merge the results from different base cases,

7. simulate the forward reservoir model with the new permeability fields and
get predicted data at the next measurement time, Equation (5.4),

8. assimilate data to the parameters (using, for example, EnSRF).

Additionally to pixel- and feature-based sequential data assimilation, a pattern search
method was implemented. Pattern search requires a definition of an objective function
and an initial condition. The objective function is a weighted measurement mismatch
over the whole time interval, the initial condition is zero for all the parameters. The base
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case is identical to the one used in the sequential method. The pattern search scheme is
presented below. Note that points 1-6 are identical with Algorithm 1.
Algorithm 2 - Pattern search for grid distortion

e Initialize - load measurements, initial distortion parameters a and N; base
cases.

Repeat until stopping criteria have been met:
1. create distortion matrices P(a), Q(av),
2. solve Equations (5.9) and (5.10) for X and Y for each of the N, base cases,
3. distort the base cases with computed distorted grids,
4. map distorted images to Cartesian grid,
5. cut off the margins from embedding,
6. merge the results from different base cases,

7. simulate the forward reservoir model with the new permeability field and
get predicted data at all measurement times, Equation (5.4),

8. compute the objective function value.

Pattern search has been applied only for the grid distortion parametrization since
it cannot handle as many variables as there are in the pixel domain. Therefore, it is
presented in the grid distortion result section.

5.1.6 Twin Experiment

The section is organized as follows. First, the study case is described. Then, the data as-
similation results are presented in two subsections following first the pixel-based approach
and then the feature-based approach.

As an example we consider a domain with Ny features. Then, the grid distortion needs
to be able to handle N; separate characteristics. Each feature is distorted by Poisson’s
equations with its own set of distortion functions P and (). From the image processing
and grid generation literature we conclude that we can construct (and parameterize)
the distortion functions such that they reflect the type of deformation of the underlying
features. We want the deformation to be global and smooth since small local changes
might be insignificant for the given type of data. We choose each distortion function, P
and @ in Equations (5.7) and (5.8), to be an independent paraboloid a(§ — ¢)? + b(n — d)?,
where ¢ and 7 are Cartesian coordinates, a and b are independent normally distributed
parameters with zero mean and standard deviation 6 - 107°, and ¢ and d (deviations
from the center of the domain) are independent normally distributed with zero mean
and standard deviation 10. Higher standard deviations for the parameters led to shapes
being removed from the domain. We want to mention here that the search interval in the
pattern search method for the distortion parameters is set to [—33 - 107°,33 - 107°] for
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Figure 5.8: Grid embedding provides flexibility at the boundaries of the original grid domain.

a’s and b’s, and [—33, 33] for ¢’s and d’s. The intervals are wider than twice the standard
deviation that was used to generate the replicates in the initial ensemble.

Paraboloids are simple enough to reflect only curving and smooth bending which
should be able to fit the position of the feature. We can think of it as a local shape
fitting problem, a part of a larger domain. For larger domains more elaborate distortion
functions should be used, for example higher order polynomials or spline interpolation.

The initial grid is embedded in a larger grid (outer grid) with a given margin equal
to NN, pixels in each direction, Figure 5.8. This outer grid is fixed at its boundaries.
It provides flexibility at the edges of the original grid and does not introduce any more
parameters (the margin width is fixed).

Since there are Ny features (e.g., channels) to be estimated, each one of them is
modeled separately. That is, there are /Ny base cases, each assigned to model one of the
channels with a separate set of parameters. That gives in total only 8 - N; parameters
coming from the distortion functions that are estimated in the data assimilation process
in Equation (5.4).

The realizations of each of the Ny features are merged before being used as input to a
reservoir simulator. That is, the shapes are gathered in one domain and given an arbitrary
inside value, while the background value is also prescribed; note that overlapping features
do not add up their values.

Data assimilation for physical processes always requires a model /simulator of the un-
derlying phenomenon. An in-house reservoir simulator, [37], is used for the results in this
section. It is based on mass balance equations and a two-phase version of Darcy’s law for
slightly compressible two-phase (oil-water) flow, neglecting gravity and capillary pressure
effects. The background of reservoir simulation can be found in, e.g., [63], [5].

An oil saturated 2D reservoir is waterflooded and produced for 24 months, water
breakthrough occurs later. The wells operate on a fixed rate (0.001 m?/s for all wells).
Porosity is assumed known, constant and equal to 0.3. All the other reservoir and fluid
properties can be found in Table 5.1.

The domain size is 49 x 49 pixels. Bottom hole pressure in Pa is measured in the
six wells displayed in Figure 5.9, where the true permeability is shown. Low logl0-
permeability (black) is equal to —13.5 and high is equal to —12.06 m?. The truth was
generated with the help of the snesim algorithm, [79]. The six measurement points in
space provide data every month for two years. The noise standard deviation is assumed to
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Variable Value SI units

Gridblock height 2 m

Gridblock length/width | 1500/49 m

Oil dynamic viscosity 05-103 | Pa-s

Water dynamic viscosity | 1.0-107% | Pa-s

Oil compressibility 1.0-107° Pa1
Rock compressibility 1.0-107 | Pa™!
Water compressibility 1.0-107% | Pa!
Initial reservoir pressure | 3-107 Pa
Endpoint relative 0.9 —

permeability of oil

Endpoint relative 0.6 —

permeability of water

Corey exponent, oil 2.0 —
Corey exponent, water 2.0 —
Residual oil saturation 0.2 —

Connate water saturation | 0.2 —

Porosity 0.3 —

Well bore radius 4.5-0.0254 | m

for all wells

Table 5.1: Reservoir and fluid properties for the twin experiment.

78



be 7-10% Pa. The ensemble contains n, = 50 replicates. Their prior mean and first nine
prior replicates are shown in Figures 5.10 and 5.11, respectively. The prior ensemble was
generated with the grid distortion method and is used in both pixel- and feature-based
sequential methods.

Figure 5.9: The true permeability field. Three injectors at the left-hand side boundary, three
producers at the right-hand side boundary.

Each prior replicate is simulated in time without data assimilation. Bottom hole
pressures are collected at observation times from each well. Figure 5.12 contains six plots,
each representing one well. The left column is for the injectors, and the right column is
for the producers. Simulated pressure observations from 50 replicates (blue dashed lines)
are plotted against the true measurements (red continuous line).

Figure 5.13 displays prior water-production (in [m3/s]) predictions for each of the 50
ensemble members. Colors indicate different producers. The thick dashed line is the true
water-production in each of the three producers. The first water breakthrough occurs after
the last assimilation time (24 months indicated on the graph with a vertical dashed line).

A root mean square (rms) error of the water breakthrough time (expressed in months)
is computed for each well:

R
Erms - — Z(twb,t - twb,i)27

n
€ =1

where ¢, and t,;; are true water breakthrough time and simulated water breakthrough
time [month] of replicate i, respectively. Each water-production plot indicates correspond-
ing root mean square errors of the water breakthrough times of the underlying ensemble.
If water breakthrough did not occur until month 70, the water breakthrough time is taken
to be equal to 70.

Figure 5.10: Prior permeability mean.
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Figure 5.11: First 9 prior permeability replicates.
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Figure 5.12: Prior ensemble. Bottom hole pressure from six wells; left column: injectors; right
column: producers. Red continuous line - true bottom hole pressure. Blue dashed lines - prior
ensemble bottom hole pressure forecast.
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Figure 5.13: Water-production [m3/s] in three wells for the prior ensemble. Thick dashed: truth.
Thin solid: ensemble. Vertical line: last assimilation time. E,,s(red) = 32.8, E,,s(green) =
9.86, Eyppms(blue) = 14.34.
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Figure 5.14: Pixel-based posterior mean.

Pixel-based approach

The pixel-based approach is the ensemble square root filter, [18], applied directly to pixel
values of permeability. It is assumed that the permeability is the only uncertain parameter,
that is, the state vector contains permeability values only. Variable transformation [24]
is applied to keep the values of permeability within reasonable bounds during Kalman
filtering.

The posterior permeability mean and the first nine replicates are shown in Figures 5.14
and 5.15, respectively. The posterior estimate clearly shows the lowest channel. The upper
features are more pronounced in the near-well area. This is due to the fact that the lowest
channel contains the lowest producer and the water travels faster towards it, even though
the water breakthrough does not occur in the assimilation time. The continuity of shapes
is not kept in general.

The posterior replicates are run from time 0, bottom hole pressure is collected at
observation times and plotted against the true observations, see Figure 5.16, which should
be compared to the prior runs in Figure 5.12. The uncertainty of the estimates is visibly
decreased.

Figure 5.17 displays water-production for the posterior pixel-based ensemble. The
filter estimated the first water breakthrough to occur at least 8 months too late.
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Figure 5.15: Pixel-based posterior replicates.
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Figure 5.16: Pixel-based posterior estimate. Bottom hole pressure from six wells; left column:
injectors; right column: producers. Red continuous line - true bottom hole pressure. Blue dashed
lines - posterior ensemble bottom hole pressure forecast.
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Figure 5.17: Water-production [m?/s] in three wells for the posterior pixel-based ensemble. Thick
dashed: truth. Thin solid: ensemble. Vertical line: last assimilation time. E,,s(red) = 26.35,

E,ps(green) = 12.09, E,p,s(blue) = 7.57.

Figure 5.18: Base case permeability field.

Feature-based approach

The feature-based approach is the ensemble square root filter applied to the distortion
parameters. It is assumed that the parameters carry the only uncertainty (and therefore
indirectly the permeability is uncertain). It makes the state vector to be of size 8 - Ny =
8.3 = 24 (Ny = 3 there are three channels and 8 parameters from the grid distortion
functions).

There are Ny = 3 base cases, each one representing one channel. The margin for grid
embedding is equal to N,, = 10. The horizontal lines in the base cases are between the
rows: 9-13, 23-27, 37-41 in the original domain which is 49 x 49 pixels. The whole base
case template is 69 x 69 pixels. Figure 5.18 shows a realization with all the parameters
equal to zero. It is the initialization for the pattern search method.

The posterior permeability estimates are shown in Figure 5.19 (permeability ensemble
mean), Figure 5.20 (distortion parameter mean applied to the base case), and Figure 5.21
(replicates). The method always maintains continuity of the structures from the left to
the right boundary of the domain. Figure 5.22 shows how the first replicate evolved in
time along the sequential data assimilation process.

The posterior replicates are run from time 0 and the bottom hole pressure is collected
at observation times and plotted against the true observations, Figure 5.23. Figure 5.23
should be compared to the prior runs in Figure 5.12 and the pixel-based method in
Figure 5.16. The posterior uncertainty is decreased for both methods and for all the wells,
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permeability(50), RMSE = 0.63197 permeability - mean parameters

Figure 5.19: Feature-based posterior mean. Figure 5.20: The mean of posterior param-
eters applied to the base case.

Figure 5.21: Feature-based posterior replicates.
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Figure 5.22: In reading order, the evolution of the first replicate in time along the sequential
data assimilation process, initial and 24 updated permeability states.
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Figure 5.23: Feature-based posterior estimate. Bottom hole pressure from six wells; left column:
injectors; right column: producers. Red continuous line - true bottom hole pressure. Blue dashed
lines - posterior ensemble bottom hole pressure forecast.

but the pixel-based method better matched the production data.

Figure 5.24 shows the water-production for the posterior feature-based ensemble. The
water breakthrough contains the truth within the ensemble bounds and it does not seem
over-confident about the estimate.

Figure 5.25 shows the objective function values for the 50 ensemble members. Prior
large values (circles) can be compared to the posterior pixel- and feature-based values.
Here, the pixel-based posterior estimates (squares) are smaller in some cases than the
feature-based posterior estimates (stars). For example, posterior feature-based replicates
number 3 and 6 are the ones with larger objective values. They are pictured in Figure 5.21
row 1 column 3, and row 2 column 3, respectively. The large objective value in the replicate
3 is caused by the mismatch in the lower right corner where the channel does not reach
the producer; for replicate 6, the center producer is in a high permeability area unlike in
the truth. In Figure 5.25 ’ensemble member’ number 51 represents the objective function
value of the mean. We can see the objective function value for the prior mean from
Figure 5.10 (circle), the posterior pixel-based mean from Figure 5.14 (square) (which
is the smallest value in this plot), the posterior feature-based permeability mean from
Figure 5.19 (small star), and the posterior feature-based parameter mean from Figure 5.20
(big star). The large value of the big star indicates how nonlinear the relationship is
between the observations and the distortion parameters and how for severely nonlinear
problems a mean is not necessarily a good estimate. For pixel-based results the mean is a
good estimate due to the larger number of degrees of freedom which can give a better fit.
This high nonlinearity makes the problem more appropriate for direct parameter search
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Figure 5.24: Water-production [m?/s] for the posterior feature-based ensemble. Thick dashed:
true. Thin solid: ensemble. Vertical line: last assimilation time. E,,s(red) = 12.93, E,,s(green)
=9, Erms(blue) = 5.51.

methods.

The grid distortion parametrization contains only a few parameters to be estimated.
Additionally, since the parameters are static and they are the only source of uncertainty,
the formulated problem is suitable for direct search methods. For comparison, we show
how pattern search works with grid distortion parametrization, Figure 5.26. The objective
function goes down to 0.815 in the case presented here. Pattern search methods involve
slight perturbations along the minimization procedure, therefore, the results might dif-
fer for multiple runs. The objective function values for the posterior realizations from
sequential data assimilation ensembles are of a similar magnitude.

The channels in the permeability field obtained by the pattern search method with grid
distortion, Figure 5.26, are not as smooth as expected. The kinky edges of the shapes
come from the fact that the grid is strongly stretched and the interpolation procedure
produces artefacts. If we look at the three grids (one for each feature) before interpolation,
Figure 5.27, we can see that the transformation itself is smooth. There, the full grids with
the margin equal to 10 are shown, therefore, after interpolation and margin trimming, we
receive images from the center of these grids. Precisely, the grid for x- and y-coordinates
from the interval [11,60].

The objective function for the pattern search method is a measurement mismatch,
therefore, the pressure data are almost perfectly fitted. The water production curves for
the estimated permeability field in Figure 5.26 are shown in Figure 5.28. The estimated
parameters indicate a late water breakthrough.

Both techniques, pixel- and feature-based, improved the bottom hole pressure match
in the wells. The first water breakthrough time was better estimated by the grid distortion
method. The advantage of the feature-based method over the pixel-based method is that
the channels are preserved in the posterior permeability replicates. Moreover, they can be
parameterized with just a few parameters which makes the estimation problem feasible
for alternative minimization techniques.
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Figure 5.25: The values of the objective function for prior and posterior permeability replicates.
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(a) Objective function, pattern search method for grid distortion. (b) Posterior permeability esti-
mate with objective value equal to
0.815.

Figure 5.26: Pattern search method with grid distortion.
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Figure 5.27: Distorted grids for three channels from Figure 5.26.
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Figure 5.28: Water-production [m?/s] in three wells for the posterior feature-based permeability
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5.1.7 Discussion and Conclusions

In this section a new feature-based method based on grid warping is developed. It pa-
rameterizes the uncertain parameter field such that the parameter vector to be estimated
becomes about 1% of its original size, and keeps the initially introduced features. The
grid distortion method was applied to a 2D synthetic reservoir problem with ensemble
Kalman filtering. The positions of three channels present in the domain were estimated
and the water-production response was improved. The estimated channels run continu-
ously from one boundary of the domain to the other without breaks that occur in the
standard approach. The variability between the posterior replicates is reflected in the
variability in the bottom hole pressure and water-production profiles.

The implementation with the ensemble Kalman filter is not essential. Due to the
significant reduction in the dimensionality of the problem, grid distortion can be combined
with a pattern search minimization method.

Poisson’s equations in (5.7) and (5.8) are the basis of the distortion method. The
right-hand-side distortion functions can be adjusted to the requirements of an application.
Here, the domain is relatively small and it is sufficient to use paraboloids with constrained
magnitude that adjust the channels globally. For larger, more complicated domains,
it might be worth considering higher order polynomials for the distortion functions or
localization if only regional influence is expected.

The distortion functions cannot have too large values to prevent the domain from
flipping over. That was the reason to use small standard deviations of 6 - 10~ for the
parameters in the paraboloids. More rigorous rules for defining the functions should be
the topic of follow-up research that can still gain from insights in grid generation and
image processing techniques. Further, the method should be applied to different types of
problems to determine its strengths and faults. A 3D application is developed next.

5.2 Grid distortion for a 3D groundwater flow model

This section extends the grid distortion method to three dimensions. In Section 5.2.1
the 3D extension is presented. Thereafter, two applications are shown. First, a 3D
groundwater flow model is used to test the concept. Thereafter, the grid distortion method
is used with a 3D multiphase reservoir simulator. In both cases, we choose to use a pattern
search method, Section 3.5, to estimate the grid distortion parameters.

For an alternative method of feature estimation with the ensemble Kalman filter in the
groundwater problem see [98|. Here, the authors propose a method termed normal score
ensemble Kalman filter that transforms channelized conductivity fields into univariate
Gaussian variables before the update step is performed. After updating the output is
backtransformed to the feature domain.

5.2.1 The 3D grid distortion method

Here, we present the grid distortion method for a 3D problem. Analogically to Section 5.1.5,
let X, Y and Z be curvilinear 3D coordinates, and &, n and ¢ Cartesian coordinates. Then,
a distorted grid is a solution for X', ) and Z to Poisson’s equations:
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Functions P, @) and R on the right hand sides of the equations are distortion functions
and they drive the coordinate transformation. They are parameterized to reduce the
number of variables to be estimated. The parametrization reflects a belief in a type
of deformation that could drive the change of features in the domain. This allows the
method to be adjusted to different types of applications. The boundary conditions need
to be given. The setup is analogous to the 2D version of the method. Therefore, the
boundary is fixed at the Cartesian grid nodes and the domain is embedded in a larger
grid with given margin to remove the boundary effects.

5.2.2 3D groundwater flow model

We choose to start the 3D grid distortion experiments with a 3D model that is easily
accessible and relatively simple compared to complex reservoir models. A 3D groundwater
flow model, [69], is presented here.

Let a voxel be a 1 x 1 x 1 three-dimensional pixel. Consider a rectangular cuboid
composed of n, x n, X n, voxels (in x-, y- and z-axis direction, respectively), where a
conductivity value is prescribed in each voxel. If voxel v; has conductivity K7 and voxel
vy has conductivity Ks, and v; and vy share a face, then the conductivity between the
two voxels is equal to: Ko = /K - K. Let us call K, K, and K, a conductivity in x-,
y- and z-axis direction, respectively. Then, the head h = h(x,y, 2,t) at point (z,y, z) at
time t can be expressed by the following equation:

o ( _on\ o[ oh\ o (. oh oh
O (g, L 9 (2 L 9 (g Oy g O
8:70( “ax>+ay( yay)+8z( Zaz) S5

where S, is a specific storage coefficient.

Boundary conditions have to be specified for the domain. Figure 5.29 depicts a cuboid
with two indicated faces for which high or low head is prescribed. The other faces work
under no-flow conditions.

——

Figure 5.29: Representation of the domain.

Initial condition for the head has to be given.
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A source/sink term () representing a well (or wells) can be introduced:

0 oh 0 oh 0 oh oh
— | Kp— — | Ky,— — | K,— =Ss—.
oz ( ax) T oy ( yay) 5 ( 82) Q=575
Vertical wells pump and/or collect data (in the case of monitoring wells) from each layer.
The equation is discretized on a rectangular grid and after discretization, K, K, and
K, are defined at the faces of voxels, and A is defined in the voxels. The equation is solved
explicitly with central and forward finite difference schemes.

The groundwater flow model is a single-phase model and can be derived directly from
Equation (2.5) with no gravity:

o [k op o ([ k op o [k dp
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where we are interested only in the motion of water with no oil present, therefore, S,, = 1
and k,,, = 1. The groundwater flow equation arises naturally given the relationships:

h=2

Py
pg¢(cw + Cr) = Ssa

where p is the water density, ¢ is the gravity acceleration, and A* is a height above a
datum.

5.2.3 Experiment setup

A list in Table 5.2 summarizes the experimental setup of the 3D groundwater model.

Figure 5.30 shows the true head contours mapped on the x-y plane at the last time
step. The vertical pumping well is located in the center of the domain and it is open to flow
in all the 18 inner horizontal layers (top and bottom layers are no-flow). There are eight
monitoring wells spread over the domain, circles in Figure 5.31, each collecting head data
from every inner horizontal layer at all the 500 time steps. There is no measurement noise.
The data over time from all the wells is shown in Figure 5.32. Finally, the true conductivity
inner layers are shown in Figure 5.33. It was constructed using the 3D grid distortion
method with 18 parameters per shape (in total 18 - 2 in this case) where the distortion
functions are three dimensional second order polynomials. The initial conductivity (which
is also a base case) is shown in Figure 5.34.
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e Domain size is 900 x 900 x 250 [m x m X m].

e Number of gridblocks is 30 x 30 x 20.

e Voxel size is 30 x 30 x 12.5 [m x m x m].

e Specific storage coefficient is 10722 [m~1].

e Pumping rate per well opening is 2.1/30%/12.5/18 [s™!].
e Background low conductivity is 3.2 - 107° [m/s].

e Channel high conductivity is 3-107* [m/s].

e Horizontal conductivity is equal to 10% of vertical conductivity,
K,=0.1-K,.

e Head boundary condition is equal to 200 and 100 at high head and low
head end, respectively, see Figure 5.29.

e Initial head is a steady-state head for homogeneous conductivity, hence the
head initial condition is inconsistent with the underlying conductivity.

e There are 500 time steps each equal to 1 hour.

Table 5.2: Variable setup for the groundwater problem.

Wl

’713‘31;““1?\“ il ““

Figure 5.30: The true head contours Figure 5.31: The location of the 8 moni-
mapped on the x-y plane at the last time toring wells (circles). Contour lines are not
step. relevant.
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Figure 5.32: Head observations over time from all the wells [m]. The stronger head decline
observations come from the producer (towards the bottom of the plot). The observations with
smaller variability come from the monitoring wells (towards the top of the plot).
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(a) The layers in reading order starting from the bottom.
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Figure 5.33: The true conductivity.
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(a) The layers in reading order starting from the bottom.
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(b) The 3D view.

Figure 5.34: The initial conductivity. The base case with zero distortion.
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5.2.4 Discussion and results

Current chapter begins with Section 5.1 where the 2D grid distortion method is intro-
duced, developed and thoroughly investigated. An extension of the dimension in the 3D
method is simple, on the one hand, since it does not introduce any complications in the
method itself, only an additional derivative term. On the other hand, in three-dimensional
space the dependence between cells becomes more complex and there are more degrees of
freedom when seeking the solution. Therefore, even though we might be certain that the
grid distortion is an effective method, we need to investigate if the additional dimension
is not making the stated problem too difficult to solve.

The 3D grid distortion method is applied to the 3D groundwater flow model. The task
is to find the true conductivity pattern that lies within the span of possible solutions given
the head response in 9 wells, eight of which are monitoring wells. A pattern search method
(Latin Hypercube Sampling, refer to Matlab documentation) is implemented to find the
grid distortion parameters where a search interval is defined to have radius equal to about
two around the true solution. The objective function is a sum of squared measurement
mismatch terms.

x 10° Best Function Value: 23344.5728

Function value
w

ol
10 20 30 40 50 60 70 80 90
use

0
Iteration

Figure 5.35: Objective function decay in pattern search method.

Figure 5.35 presents the objective function values which go down to 23344 starting
at 6 - 10°. (Note that, since there is no measurement noise, it would be possible for the
objective function to reach 0.) The posterior conductivity is shown in Figure 5.36. The
position of the channels is correct but it is not identical on a pixel-by-pixel basis. These
small differences influence the value of the objective function. The pattern search method
has not been able to find the exact solution due to the nature of the search algorithm but
still it has performed very well.

We need to note that this result has been obtained with relatively narrow search
interval. It comes from the fact that Latin hypercube sampling aims at drawing almost
uniformly distributed points in the search interval. Since the true solution was randomly
sampled from a Gaussian zero-mean distribution with small variance, we expect to see
rather zero concentrated small numbers, and we allow the search algorithm to be able to
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(b) The 3D view.

Figure 5.36: The posterior conductivity estimate.
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find similar solutions. Therefore, even though the true solution is in the search space and
the problem seems to be easily solvable, it might not be possible to find the exact answer.
Either way, the performance of the method is excellent. In the next application we will
study a more realistic case where the true solution is not in the search space.
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5.3 Grid distortion for a 3D reservoir model

This section presents the research findings on the 3D grid distortion method implemented
in a 3D 2-phase reservoir simulator. We use 3D black oil simulator for water flooding.
Given the true permeability field, modeled with 480m x 480m x 28m, 60 x 60 x 7 grid
blocks where the layers are shown from the bottom in reading order in Figure 5.37, we
simulate! observations of bottom hole pressure, liquid rate, oil rate and water rate for
two hundred time steps of one day each. A 3D view with active cells, and well locations
is shown in Figure 5.38, the low permeability value is 300 mD, and high 6100 mD in
the horizontal, and ten times less in the vertical direction. Table 5.3 summarizes other
reservoir and fluid properties of this experiment.

Figure 5.37: The true permeability layers.

We choose the objective function to be a sum of squared differences between the
observed and predicted data. One evaluation of the objective function given the grid
distortion parameters takes a few minutes (3-6 minutes) and its most time-consuming
part is the construction of the permeability field. It is due to the fact that for one
permeability field to be built we need to solve Poisson’s equation for each dimension and
feature. The grid distortion uses four base cases, each one with one horizontal channel,
trying to follow our expectations with respect to the true shapes. This gives 3 -4 = 12
Poisson’s equations for large domains. Even though the grid is 60 x 60 x 7, a margin is
added for the flexibility at the permeability boundaries. The margin is equal to 7 which
gives fields of size 74 x 74 x 21 to be solved for in Poisson’s equation, which might be
considered computationally intense.

To show that the model is sensitive to small permeability changes we run it with the
true permeability where the two bottom layers have been made uniformly low permeable,
Figure 5.39. In this case the objective function value equals to 4.33-10°. It indicates that

!Thanks to G. van Essen, M. Kaleta and M. Glegola.
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Variable Value SI units
Gridblock height 4 m
Gridblock length/width | 8 m
Oil dynamic viscosity 5-1073 Pa-s
Water dynamic viscosity | 1-1073 Pa-s
Oil compressibility 1.0-1071% | Pa!
Rock compressibility 0 Pa1
Water compressibility 1.0-10719 | Pa7!
Initial reservoir pressure | 4 - 107 Pa
Endpoint relative 0.9 —
permeability of oil

Endpoint relative 0.75 —
permeability of water

Corey exponent, oil 1 —
Corey exponent, water 1 —
Residual oil saturation 0.1 —
Connate water saturation | 0.1 —
Porosity 0.2 —
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Table 5.3: Reservoir and fluid properties for the 3D experiment.
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Figure 5.38: The true permeability in 3D with indicated wells.

values of the objective function with a similar magnitude should not be considered very
large.

We want each of the four base cases represent one horizontal channel wider at the top
and narrower towards the bottom. Let each distortion function be a constant. This way,
we estimate 3 parameters (one for each X-, Y- and Z-coordinate) for each of the 4 base
cases, that gives only 12 parameters in total. The problem is simple and the question
is if the parametrization is sufficient for the level of complexity of the permeability field.
The initial guess for the parameter values is 0 and Figure 5.40 shows the corresponding
initial permeability field with the objective function value 1.037-10'°. We run the pattern
search method, Section 3.5, with search interval [—5, 5]. The algorithm terminates due to
a small mesh size and inability to proceed. The objective function is shown in Figure 5.41
and a corresponding posterior estimate in Figure 5.42. Clearly, the algorithm does not
seem very effective.

103



4.33e6

Figure 5.39: True permeability with uniform two bottom layers giving the objective value of
4.33 - 105. Compare to Figure 5.37.

1.037e10

Figure 5.40: The base case permeability and initial guess giving the objective value of 1.037-10'°.
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Figure 5.41: Pattern search method objective function with simple constant distortion functions.

Figure 5.42: Pattern search method final estimate from the objective in Figure 5.41 with value
1.6 - 10? with simple constant distortion functions.
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Now we modify the distortion functions slightly to allow more feature deformation. We
choose 9 parameters per coordinate direction, that is a total of 27 parameters that control
one single feature. This gives 108 (four channels give 27-4) parameters fully describing the
3D permeability field, compared to 25200 total number of all grid cells. The 9 parameters
make up a right-hand-side distortion function; they are assigned to vertical panels of the
3D domain. We want to estimate the 108 grid distortion parameters through direct search
specifying the feasible interval for parameter values to be [—%, %] The initial guess for
the parameter values is 0. Figure 5.43 shows the pattern search objective function, and
Figure 5.44 is the result of the final iteration with value 9.359 - 107. The search took about
seven days? but could have been stopped earlier since the last iterations did not improve
the objective value any more. The posterior permeability estimate contains the channel
structure that bends in a similar way as the true features due to the distortion function
parametrization. The channel locations are not found exactly but it seems the algorithm
distinguishes the north and south part of the structure and some well connections are
restored, lowering the objective function value.

2The experiments have been run on a single desktop workstation with 3200M H z processor and 24G B
RAM.
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5.3.1 Discussion and conclusions

We compare the results from two experiments, one with the simplest possible distortion
function forms, and the other with slightly more complex representation. We see that
the former does not allow significant channel distortion and gives not satisfactory results.
The latter distortion function representations allow multiply-bending channels. These
prove to be more effective and take the objective function values down to a small number.
Even though the channels seem to have a wrong orientation, they create a relatively good
permeability field as far as the objective function is concerned.

The grid distortion performs well with images that represent facies of a homogeneous
nature since it has not yet been developed to a point where it could represent hetero-
geneous fields. Some knowledge about the shape characteristics appears to be useful for
specification of the distortion functions. The distortion functions and the base cases fully
describe the domain, they need to allow a construction of geological features we look for.

Due to a time consuming grid distortion procedure for the large 3D cases, it is not
easy to implement the classical ensemble Kalman filter algorithm in these large examples.
It takes around 3 minutes to create one permeability field in the grid distortion method
and run it forward in the large reservoir model. Assuming 100 possible ensemble members
and 200 time steps, the time to run the full experiment is 3 - 100 - 200min = 1000~ =~
41.7days. Clearly, in the current computational conditions it is not a feasible methodology.
An alternative could be the asynchronous ensemble Kalman filter, [71], or the ensemble
smoother, [78], or the possibility to implement the ensemble computation in parallel.
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Chapter 6

Conclusions and recommendations

This thesis combined research in image processing, data assimilation and reservoir engi-
neering. Two different image processing studies led to two main directions in this thesis,
both embedded in parameter estimation for reservoir engineering applications, both still
worth exploring further. The leading topic was feature-based modeling, which is particu-
larly suited for fields that show leading patterns and shapes.

First, an ensemble multiscale filter was investigated. The ensemble multiscale filter is
an update tool that partitions the domain and assigns it to leaf nodes of a tree. The tree
represents the connections and expected dependencies between the parts of the domain.
The upper scales are built from the strongest relationships between the children nodes.
This upscaling (pyramid) is common in image processing techniques. It was shown that
the tree structure used in the covariance representation is an efficient localization tool.
We investigated several numbering schemes, i.e. procedures of assigning the variables
to the tree nodes. It revealed that the order with which the assignment is performed is
an important factor for covariance representation. Moreover, it can account for stronger
correlations along features which means that the structural information can be embedded
in the filter.

Still, it would be beneficial to test EnMSF in a larger application with more variables
and/or measurements. The tree assignment could be made automatic, based for example
on the features in the field. Then, the subtrees could directly reflect separate features that
would be connected higher up the tree. Additionally, the numbering inside the features
could be made in clusters.

Second, the grid distortion method for reservoir history matching was developed in
this thesis. We were looking for a technique that would smoothly distort some prescribed
features without breaking them. It is an important issue in reservoir engineering history
matching where there is usually few data available and many variables to estimate, which
creates many degrees of freedom. Therefore, we wanted our technique to parameterize the
feature field with very few parameters. We chose to work with the mesh instead of the pixel
values directly, and used Poisson’s equation for grid deformation. The parametrization
of distortion functions in Poisson’s equations provided an indirect parametrization of the
permeability fields. These parameters were estimated by optimization algorithms. We
showed that grid distortion efficiently defines the domain with just a few parameters.
The shapes are preserved along the optimization, and their deformation is global rather
than pixel based. This small number of parameters made the grid distortion suitable
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for parameter estimation methods based on the objective function minimization. In our
applications the drawback of having a small number of parameters from grid distortion is
the severe nonlinearity that is created between the parameters and observations.

The grid distortion method could be enriched with an additional amplitude adjust-
ment procedure possibly allowing heterogeneous fields. Other partial differential equations
could be used in place of Poisson’s equation investigated in this thesis. For even larger
fields, the grid distortion method could be used locally to perform smooth small-scale
changes. Other feature types and distortion function representations could be imple-
mented. On top of the parametrization, various optimization techniques can be tested.

To combine the two ideas from this thesis, EnMSF update could be applied as an
amplitude adjustment method along features specified in grid distortion. This focused
update inside the feature driven fields would make the methods benefit from each other.
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Summary

A reservoir simulator mimics the movement of fluids in the presence of each other through
a porous medium under some specified conditions (e.g. temperature, depth, initial pres-
sure or initial saturation). It is a numerical model of a real-life physical process, therefore,
subject to uncertainty. Some uncertainties can be lowered by improving model-parameter
estimates. This is where data assimilation plays an important role. Automated data as-
similation, using sophisticated techniques, is a widely researched topic in today’s applied
science.

We investigated two research topics in data assimilation that are closely connected to
the area of image processing. Images are an integral part of reservoir engineering appli-
cation in the form of property or variable fields. Reservoir engineering, image processing
and data assimilation are the leading themes of this thesis.

First, we applied an ensemble multiscale filter as a permeability estimator for
one update step and later as a full data assimilation experiment. We summa-
rized by investigating properties of different covariance matrix approximations
obtained from the ensemble multiscale filter. We concluded that the filter can
be an efficient localizing tool especially for spatially large observations.

The ensemble Kalman filter is a sequential Monte-Carlo approach that uses an ensem-
ble of reservoir models. For realistic large scale applications the ensemble size needs to
be kept small due to computational inefficiency. Consequently, the error space is not well
covered (poor cross-correlation matrix approximations) and the updated parameter field
becomes scattered and loses important geological features. The prior geological knowledge
present at the initial time is not found in the final updated parameter any more.

We propose a new approach to overcome some of the ensemble Kalman filter limita-
tions. We show the specifications and results of the ensemble multiscale filter for auto-
matic history matching. The ensemble multiscale filter replaces, at each update time, the
prior forecasted covariance with a multiscale tree. The global dependence is preserved via
the parent-child relation in the tree. After constructing the tree the Kalman update is
performed.

The ensemble multiscale filter is a different way to represent the covariance of an
ensemble. The computations are done on a tree structure and are based on an ensemble
of possible realizations of the states and/or parameters of interest. The original ensemble
is partitioned between the nodes of the finest scale in the tree. A construction of the tree
is led by the eigenvalue decomposition. Then, the state combinations with the greatest
corresponding eigenvalues are kept on the higher scales.
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The properties of the ensemble multiscale filter were presented with a 2D, two phase
(oil and water) twin experiment, and the results are compared to the ensemble Kalman
filter. The advantages of using the ensemble multiscale filter are: localization in space
and scale, adaptability to prior information, and efficiency in case many measurements
are available. These advantages make the ensemble multiscale filter a practical tool for
data assimilation problems. The updated states/parameters using the ensemble multiscale
filter are believed to keep geological structure due to localization property.

A comparison of covariance matrices obtained with different setups used in the EnMSF
is presented. This sensitivity study is necessary since there are many parameters in the
algorithm which can be adjusted to the needs of an application; they are connected to
the tree construction part.

The localization property is discussed based on the example where the filter is run
with a simple simulator and a binary ensemble is used (the pixels in the replicates of
permeability can have one of only two values).

Second, we developed a grid deformation technique inspired by grid generation
and image warping methods. Our implementation was defined such that the
deformation was smooth, global and led by just a few parameters. The grid
distortion was used to adjust a position of high-permeable channels in the
permeability field through data assimilation or a direct search method. We
presented two- and three-dimensional versions of the method in reservoir and
groundwater flow models, and concluded that the grid distortion proved cost
efficient and effective in terms of time and performance.

Data assimilation in hydrocarbon reservoir engineering involves adjusting the reservoir
model parameters such that the simulated model response matches the measured histor-
ical response within the prescribed uncertainty bounds. During this process the model
parameters are often changed to such an extent that the resulting model lacks geological
realism. This is in particular the case when the original model contains high-permeability
channels, i.e. elongated features extending over large distances, which are broken up after
the parameter update.

We propose to avoid such a loss of geological realism with a parameterization based on
grid deformation which maintains the continuity of geological features in the initial model.
The parameters determine a smooth distortion of the grid that defines the original geolog-
ical pattern, using deformation functions in the form of Poisson’s equation defined on the
grid coordinates. The grid distortion drives the underlying geological-image distortion.

We tested the method using a twin experiment involving history matching of pro-
duction data generated during waterflooding of a simple two-dimensional two-phase (oil-
water) reservoir with high-permeable streaks extending over the entire domain. We com-
pared the results against those obtained by using a pixel-based updating method in which
the connectivity of the original channels was destroyed during the parameter updating
process. On the contrary, in our method geological continuity was successfully maintained.
Moreover, we found an improved capacity of the geologically realistic models to predict
the future reservoir response compared to a poor predictive capability of the geologically
unrealistic models obtained through the pixel-based updating.
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Samenvatting

Een reservoirsimulator modelleert de vloeistofbeweging in de aanwezigheid van elkaar door
een poreus medium onder bepaalde voorwaarden (bijv. temperatuur, diepte, initiéle span-
ning of initiéle verzadiging). Het is een numeriek model van een real-life fysieke proces,
dus onzeker. Sommige onzekerheden kunnen worden verlaagd door betere schattingen
van modelparameters. Dit is waar data-assimilatie een belangrijke rol speelt. Geau-
tomatiseerde data-assimilatie, gebruikmakend van geavanceerde technieken, is een zeer
onderzocht onderwerp in tegenwoordige toegepaste wetenschappen.

We onderzochten twee onderzoekthema’s in data-assimilatie, die nauw met het ge-
bied van beeldverwerking verbonden zijn. Beelden zijn een integraal onderdeel van reser-
voirengineering toepassing in de vorm van eigenschap of variabele velden. Reservoirengi-
neering, beeldverwerking en data-assimilatie zijn hoofdthema’s van deze scriptie.

Ten eerste pasten we toe een ensemble multiscale filter als een permeabiliteitschat-
ter voor één bijwerkingstap en later als een volledige data-assimilatie exper-
iment. We vatten samen met onderzoeking van eigenschappen van verschil-
lende schattingen van covariantiematrix afkomstig van het ensemble multiscale
filter. Wij concludeerden dat het filter een efficiénte lokalisatiemiddel kan zijn
vooral voor ruimtelijk grote observaties.

Het ensemble Kalman filter is een sequentiéle Monte-Carlo benadering die gebruikt
een ensemble van reservoirmodellen. Voor realistische grootschalige toepassingen moet
het ensemblegrootte klein worden gehouden door rekeninefficiéntie. Als gevolg van is
de foutruimte niet goed gedekt (slechte schattingen van cross-correlatie matrix) en de
bijgewerkte parameterveld wordt verspreid en verliest belangrijke geologische kenmerken.
De prior geologische kennis aanwezig op de initiéle tijd wordt in de laatste bijgewerkte
parameter niet meer gevonden.

We stellen een nieuwe benadering voor om een aantal beperkingen van ensemble
Kalman filter te overwinnen. We tonen de specificaties en resultaten van het ensem-
ble multiscale filter voor automatische geschiedenis matching. Het ensemble multiscale
filter vervangt, op elke bijwerking tijd, de prior voorspelde covariantie met een multiscale
boom. De globale athankelijkheid wordt door de parent-child relatie in de boom bewaard.
Na constructie van de boom wordt de Kalman bijwerking uitgevoerd.

Het ensemble multiscale filter is een andere manier om de covariantie van een ensem-
ble weer te geven. De berekeningen worden gedaan op een boomstructuur en worden
gebaseerd op een ensemble van mogelijke realisaties van de beschouwde staten en/of pa-
rameters. Het oorspronkelijke ensemble wordt tussen de knoppunten van de fijnste schaal
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in de boom verdeeld. Een constructie van de boom wordt door de eigenwaardedecomposi-
tie geleid. Daarna worden de combinaties van staten met de grootste corresponderende
eigenwaarden op de hogere schalen gehouden.

De eigenschappen van het ensemble multiscale filter zijn met een 2D, twee fase (olie
en water) dubbel experiment weergegeven, en de resultaten worden met het ensemble
Kalman filter vergeleken. De voordelen van gebruik van het ensemble multiscale filter
zijn: lokalisatie in de ruimte en schaal, aanpassingsvermogen aan prior informatie, en
efficiency indien veel metingen beschikbaar zijn. Deze voordelen maken het ensemble
multiscale filter een praktisch middel voor data-assimilatie problemen. Gebruikmakend
van het ensemble multiscale filter houden de bijgewerkte staten/parameters geologische
structuur vanwege lokalisatieeigendom.

Een vergelijking wordt gepresenteerd van covariantiematrices verkregen met verschil-
lende instellingen gebruikt in de EnMSF. Deze gevoeligheidsanalyse is noodzakelijk omdat
er veel parameters in het algoritme zijn die aan de behoeften van een toepassing kunnen
worden aangepast; ze worden met de boomconstructie onderdeel verbonden.

De lokalisatieeigendom wordt besproken met behulp van het voorbeeld waarin het
filter met een simpele simulator uitgevoerd wordt en een binaire ensemble gebruikt wordt
(de pixels in de permeabiliteitreplieken kunnen één van slechts twee waarden hebben).

Ten tweede ontwikkelden we een techniek voor roostervervorming, dat door

roostergeneratie en beeldverbuiging methoden geinspireerd wordt. Onze uitvo-

ering is zodanig gedefinieerd dat de vervorming smooth, globaal en geleid door

enkele parameters was. De roostervervorming is gebruikt om een positie van

hoge permeabiliteitkanalen in het permeabiliteitveld door data-assimilatie of

een directe zoekmethode aan te passen. Wij presenteerden twee- en drie-

dimensionale versies van de methode in reservoir en grondwaterstromingsmod-

ellen, en concludeerden dat de roostervervorming in termen van tijd en prestatie
kostenefficiént en effectief is.

Data-assimilatie in koolwaterstof reservoirengineering betrekt aanpassing van het reser-
voir modelparameters zodanig de gesimuleerde modeluitkomst met de gemeten historische
uitkomst binnen de voorgeschreven onzekerheidgrenzen overeenkomt. Tijdens deze pro-
cessen worden de modelparameters vaak gewijzigd zodanig geologisch realisme aan het
resulterende model ontbreekt. Dit is met name het geval als het oorspronkelijke model
hoge permeabiliteitkanalen bevat, namelijk uitgestrekte kenmerken over grote afstanden,
die na de parameterbijwerking gebroken worden.

We stellen voor om te voorkomen een dergelijk verlies van geologisch realisme door
een parametersering gebaseerd op roostervervorming, die de continuiteit van geologis-
che eigenschappen van het initiéle model handhaaf. De parameters bepalen een smooth
vervorming van de rooster, die de oorspronkelijke geologische patroon definieert, gebruik-
makend van vervormingfuncties in de vorm van Poisson vergelijking gedefinieerd op de
roostercoordinaten. De roostervervorming bepaalt de onderliggende geologische beeldver-
vorming.

Wij testten de methode met behulp van een dubbele experiment betrekking geschiede-
nis matching van productiedata gegenereerd tijdens wateroverstroming van een eenvoudige
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twee-dimensionale twee-fase (olie-water) reservoir met hoge permeabele strepen verbrei-
den over the hele domein. We vergeleken de resultaten met die verkregen door gebruik van
een pixel-gebaseerde actualiseringmethode waarin de connectiviteit van de oorspronkelijke
kanalen tijdens het bewerkingsproces van de parameters vernietigd werd. Integendeel is
geologische continuiteit in onze methode met succes gehandhaafd. Bovendien vonden we
een verbeterde capaciteit van de geologisch realistische modellen voor het voorspellen van
de toekomstige reservoiruitvoer vergelijking met een slechte voorspellingcapaciteit van de
geologisch onrealistische modellen verkregen door de pixel-gebaseerde bijwerking.
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