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Abstract
Riblets reduce skin-friction drag until their viscous-scaled size becomes large enough for 
turbulence to approach the wall, leading to the breakdown of drag-reduction. In order to 
investigate inertial-flow mechanisms that are responsible for the breakdown, we employ 
the minimal-span channel concept for cost-efficient direct numerical simulation (DNS) 
of rough-wall flows (MacDonald et  al. in J Fluid Mech 816: 5–42, 2017). This allows 
us to investigate six different riblet shapes and various viscous-scaled sizes for a total of 
21 configurations. We verify that the small numerical domains capture all relevant phys-
ics by varying the box size and by comparing to reference data from full-span channel 
flow. Specifically, we find that, close to the wall in the spectral region occupied by drag-
increasing Kelvin–Helmholtz rollers (García-Mayoral and Jiménez in J Fluid Mech 678: 
317–347, 2011), the energy-difference relative to smooth-wall flow is not affected by the 
narrow domain, even though these structures have large spanwise extents. This allows us 
to evaluate the influence of the Kelvin–Helmholtz instability by comparing fluctuations of 
wall-normal and streamwise velocity, pressure and a passive scalar over riblets of different 
shapes and viscous-scaled sizes to those over a smooth wall. We observe that triangular 
riblets with a tip angle � = 30

◦ and blades appear to support the instability, whereas tri-
angular riblets with � = 60

◦–90◦ and trapezoidal riblets with � = 30
◦ show little to no evi-

dence of Kelvin–Helmholtz rollers.
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1 � Drag‑Reduction Performance of Riblets

Riblets are small streamwise-aligned grooves on a surface that have been shown to reduce 
skin-friction drag compared to a smooth wall (Walsh and Weinstein 1978; Walsh 1982; 
Luchini et  al. 1991; Bechert et  al. 1997). The skin-friction coefficient Cf = 2∕U+2

�
 is 

defined by the friction-scaled mean streamwise velocity U+ ≡ U∕uτ at the half-channel or 
boundary-layer height � . The superscript + denotes viscous scaling with the kinematic fluid 
viscosity � and friction velocity uτ ≡ √

τw∕� , where � is the fluid density and τw the wall 
shear stress (drag per unit plan area), such that Cf = 2τw∕(�U

2

�
) . Drag reduction of a riblet 

surface compared to a smooth wall is commonly given by the relative change of the skin-
friction coefficients DR ≡ 1 − Cf∕Cf ,smooth . However, Cf ,smooth , and therefore DR , degrades 
with increasing Reynolds number (Spalart and McLean 2011). An alternative, Reynolds 
number independent measure of the drag-change is given by the decrement of the viscous-
scaled mean streamwise velocity, ΔU+ ≡ U+

smooth
− U+ , at matched heights in the outer 

layer of two flows with the same friction Reynolds number Reτ ≡ �
+ = �uτ∕� . For exam-

ple, DR ≈ −0.1ΔU+ at Reτ = 395 , which is accessible through DNS, but DR ≈ −0.06ΔU+ 
at flight conditions with Reτ = 50, 000 , based on the conversion derived by Spalart and 
McLean (2011).

The flow mechanism responsible for drag-reduction by riblets is well understood and 
can be explained by the concept of protrusion heights in the limit of vanishingly small rib-
lets. The streamwise mean-flow reaches an average depth below the riblet crest given by 
the longitudinal protrusion height �+

U
 , that depends on the groove shape and size (Bechert 

and Bartenwerfer 1989). Turbulent lateral flow is obstructed by the riblets and therefore 
only penetrates the groove to a depth given by �+

T
< �

+
U

 (Luchini et  al. 1991). Luchini 
(1996) points out that a reference smooth wall should be considered at the height given by 
�
+
T
 for the two flows to be similar, i.e. that their total stresses match at every height. This 

placement of the reference wall therefore provides the correct measure of the drag-change 
ΔU+ . At the height of the reference smooth-wall, the riblet flow has the velocity 
U+ = �

+
U
− �

+
T
 (Luchini 1996), because the slope dU+∕dz+ ≈ 1 in the viscous sublayer. The 

velocity difference compared to the smooth wall flow extends into the logarithmic layer, 
where it describes the drag-change ΔU+ = �

+
U
− �

+
T
 (Luchini 1996). However, this relation 

between the protrusion heights and ΔU+ is only valid for vanishingly small riblets and as 
their viscous-scaled size increases, drag characteristics change significantly. The drag-
change optimum of traditional riblet shapes was empirically shown to scale with the vis-
cous-scaled groove cross-section A+

g
 and is obtained for riblet sizes �+

g
≡ √

A+
g
≈ 11 

(García-Mayoral and Jiménez 2011).
For larger riblets, drag increases and ultimately surpasses smooth-wall drag, because the 

flow in and around the grooves becomes less dominated by viscosity as different inertial 
flow effects contribute to drag. The spanwise component of streamwise vortices is deflected 
downward by the riblet tips, creating secondary flows that transport momentum towards 
the wall (Goldstein and Tuan 1998). Particularly for widely spaced riblets, the streamwise 
vortices and their secondary flows sweep streamwise momentum towards the large wetted 
surface area (Choi et al. 1993). Furthermore, Kelvin–Helmholtz rollers have been shown to 
augment wall-normal momentum transport towards the wall above blade riblets, leading to 
increased drag (García-Mayoral and Jiménez 2011). These rollers evolve around an inflec-
tion point in the profile of mean streamwise velocity that is created between the slower 
flow in the groove and the faster bulk flow above. Kelvin–Helmholtz rollers are well known 
in free shear flows (Drazin and Reid 2004), but have also been observed in wall-bounded 
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flows over porous surfaces (Jiménez et al. 2001; Breugem et al. 2006; Gómez-de-Segura 
et al. 2018) and vegetation canopies (Raupach et al. 1996; Poggi et al. 2004; Nepf et al. 
2007; Sharma and García-Mayoral 2020) that allow wall-normal velocity fluctuations. For 
riblets, fewer data are available, but García-Mayoral and Jiménez (2011; 2012) note that 
the Kelvin–Helmholtz instability affects a distinct spectral region in the flow over blade 
riblets. By comparing 2D spectra in DNS at heights of less than 30 viscous units above 
the riblet crest to smooth-wall flow, they find that Kelvin–Helmholtz rollers have an aver-
age streamwise periodicity in the range 65 ≲ 𝜆

+
x
≲ 290 and that they are spanwise coherent 

with wavelengths 𝜆+
y
≳ 130 . In this study we will more conservatively only consider struc-

tures with 𝜆+
y
≳ 250 to separate them more clearly from other near-wall turbulence (details 

in Sect. 4.3).
García-Mayoral and Jiménez (2011) evaluate the momentum transport by Reynolds 

stresses due to Kelvin–Helmholtz rollers to quantify the drag penalty associated with the 
instability. They demonstrate that drag from Kelvin–Helmholtz rollers becomes more sig-
nificant with increasing size of blade riblets, which coincides with the breakdown of drag 
reduction for �+

g
≳ 11 . Therefore, Kelvin–Helmholtz rollers contribute to the drag increase 

of large blade riblets (García-Mayoral and Jiménez 2011, 2012), as also observed for veg-
etation canopies (Poggi et al. 2004; Sharma and García-Mayoral 2020) and porous surfaces 
(Gómez-de-Segura et al. 2018). However, it remains to be seen if Kelvin–Helmholtz rollers 
develop above all riblets, because studies of plant canopies and porous substrates also show 
that the Kelvin–Helmholtz instability only develops if the surface creates the necessary 
drag and inflectional velocity profile (Raupach et al. 1996; Poggi et al. 2004; Nepf et al. 
2007). In fact, in the present study, we show that the appearance of Kelvin–Helmholtz roll-
ers over riblets is likewise not universal, but instead dependent on the riblet geometry. We 
visualise a dependence of Kelvin–Helmholtz rollers on the groove shape (Sect. 4.2) and 
quantify the contribution of Kelvin–Helmholtz rollers in spectral space across distances 
from the wall for six different riblet geometries (Sect. 4.4).

In order to study the drag characteristics of a broad range of riblet cross sections and 
sizes, we conduct DNS in minimal-span channels, which reduce the computational cost 
in exchange for unphysical results towards the top of the domain. Minimal-span channels 
have previously been used to investigate the flow over generic roughness (MacDonald et al. 
2017), but Kelvin–Helmholtz rollers, having a large spanwise extent (García-Mayoral and 
Jiménez 2012), may pose a unique challenge for spanwise narrow domains. In Sect.  3, 
we therefore rigorously investigate the velocity spectrum at different scales, wall-normal 
distances and for varying riblet geometries, to determine the limitations of minimal-span 
channels for riblet flows.

2 � Numerical Setup of Minimal‑Span Channel Flow

We investigate the turbulent flow over six different riblet shapes at various viscous-scaled 
sizes (Table 1) using DNS in minimal-span channels. We consider triangular riblets with vary-
ing tip angle � = 30◦, 60◦, 90◦ (case names T3s+ , T6s+ , T9s+ ), asymmetric triangular riblets 
with � = 63.4◦ (ATs+ , sketched in Table 1), trapezoidal riblets with � = 30◦ (TAs+ ), and blade 
riblets with a spacing-to-thickness ratio s∕t = 5 (BLs+ ). The simulations for two large triangu-
lar riblets (T321 and T950) are repeated in channels of varying width to study minimal-span 
channel effects on the flow. The case T950 is further repeated with different mesh resolutions 
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to verify results. Domain and simulation parameters for all corresponding smooth-wall flows 
are given in Table 2.

We employ the incompressible second-order accurate finite volume DNS solver Cliff by 
Cascade Technologies Inc. (Ham et al. 2006, 2007) to solve the Navier–Stokes equations and 
the transport equation of a passive scalar � that can be interpreted as temperature fluctuation

The velocity � has components u, v and w in the streamwise (x), spanwise (y) and wall-
normal (z) directions respectively and t denotes time. We solve for the x-y-periodic com-
ponent of pressure p, while the constant mean dP∕dx drives the flow in the streamwise 
direction along the unit vector �

�
 . The spanwise-averaged channel-depth is � and there-

fore, the spatially and temporally averaged wall-shear stress per unit plan area integrates 
to τw∕� = −(�∕�) dP∕dx for smooth-wall and riblet cases alike. Analogously, the tempera-
ture field has an x-y-periodic component � and mean Θ . The spatially and temporally aver-
aged heat flux into the wall is thus given by qw∕(�cp) = −�Ubulk dΘ∕dx , where Ubulk is the 
volume-averaged streamwise velocity and cp is the specific heat at constant pressure. In our 
setup, dΘ∕dx < 0 such that the wall serves as a heat sink in analogy to momentum.

Computational domains (Fig.  1b) are rectangular open channels with a symmetry 
boundary condition at the top such that the domain height equals the half-channel height 
� . The no-slip bottom wall is either smooth for reference or it has streamwise aligned rib-
lets. For the passive scalar, we set the isothermal boundary condition on the fluctuation 
� = 0 at the wall. Periodicity is applied in both horizontal directions x and y. All quantities 
are nondimensionalised using the friction velocity uτ , half-channel height � , kinematic vis-
cosity � and friction temperature �τ = qw∕(�cpuτ) . The friction Reynolds number is fixed 
at Reτ = 395 and for one case Reτ = 1000 . The Prandtl number Pr = 0.7 sets the thermal 
conductivity (scalar diffusivity) �

�
= �∕Pr.

(1)
��

�t
+ �⋅(��) = −

1

�

∇p + �∇2
� −

1

�

dP

dx
�
�
,

(2)�⋅� = 0,

(3)
��

�t
+ �⋅(��) = �

�
∇2

� − u
dΘ

dx
.

Table 2   Smooth wall simulation parameters: spacings of the numerical mesh Δ+ , domain sizes L+ and half-
channel height �+

Statistics are averaged in the time interval L
t
 to obtain the convergence error ��+ given by Eq. (9). W indi-

cates a wide, and N a narrow channel. F stands for a fine mesh and (V)C for (very) coarse

Case Δx+ Δy+ Δz+ Δt+

(×103)
L+
x

L+
y

�
+ Ltuτ∕� �

�+

(×103)

SFull 6.5 3.2 0.27–4.4 83.0 2482 1241 395.0 34.9 2.3
SW 6.0 3.0 0.21–4.7 79.0 1027 450 395.0 95.2 3.7
S 6.0 3.0 0.21–4.7 79.0 1027 250 395.0 173 3.6
SNF 4.0 2.3 0.21–4.7 86.9 1027 150 395.0 152 4.1
SN 6.0 3.0 0.31–7.1 98.8 1027 150 395.0 533 4.5
SNC 8.0 3.9 0.42–9.5 158 1027 150 395.0 350 5.9
SNVC 11.9 4.7 0.64–14 296 1027 150 395.0 402 11
SH 6.0 3.0 0.32–8.8 80.0 2000 600 1000.0 58.5 3.3
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2.1 � Definition of Turbulent Fluctuations

We define turbulent fluctuations of any given scalar field � ∈ {u, v,w, p, �} as 
�
�(x, y, z, t) = �(x, y, z, t) − �

xrt(y, z) , i.e. as deviations from the streamwise (x), riblet-
period (r) and temporal (t) average �xrt . We use the overbar to denote plane averages across 
x, y and t at a given height above the riblet tips z ≳ zt and apply it to products of two fluc-
tuating quantities �′

�
′ (such as Reynolds shear stress u′w′ ). We use the common notation 

U = u for streamwise velocity. Two-dimensional energy (co)spectral density E
��

 is calcu-
lated in wall-parallel planes above the riblet tips for streamwise wavelengths �x and span-
wise wavelengths �y . We collect spectral energy at the positive wavelengths such that their 
energy integrates to the variance

(4)∫
∞

0
∫

∞

0

E
��

d�xd�y = �
�
�

�(z).

(a) (b)

(c) (d) (e)

Fig. 1   Computational domain of minimal-span open channels (b) and representative near-wall meshes 
for the four types of riblets in a cross section spanning one riblet period (a, c–e). The half-channel height 
� is measured from the mean-height z = zm and �′ from the virtual origin z = 0 with riblet tips at height 
z = zt = �T .
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Accounting for energy from the negative wavelengths at 0 < (𝜆x, 𝜆y) < ∞ is justi-
fied because of the symmetry E

��
(�x, �y) = E

��
(−�x,−�y) and because statistically, 

E
��

(�x, �y) ≈ E
��

(−�x, �y) = E
��

(�x,−�y) for real signals � and � . Integrating in only 
one direction, we define

When the integration bound is at a finite wavelength, it is important to remember that dis-
crete wavenumbers ki ∈ kx are centred in their interval, i.e. Ei = ∫ ki+Δkx∕2

ki−Δkx∕2
Ex.

2.2 � Origin of the Wall‑Normal Coordinate

We need to define a virtual origin for the wall-normal coordinate in order to measure the 
drag-change by ΔU+ (García-Mayoral et al. 2019), i.e. by the shift in the velocity profile 
between smooth wall and riblet flow at matched heights. The outer layers of flows over 
smooth walls and riblets are similar (Townsend 1956) and therefore the latter perceive 
an equivalent smooth wall at the virtual origin, located �T below the riblet crest (Luchini 
1996) (Fig. 1a). We determine �T for small riblets near the size of lowest drag by match-
ing profiles of turbulent Reynolds shear stress u�w�

+
 in the point of largest slope to that of 

a smooth wall. However, eddies above larger riblets might not perceive a homogeneous 
boundary that we could use to define the virtual origin (García-Mayoral et al. 2019). For 
consistency, we therefore fix �T∕k for each riblet shape and extrapolate the location of the 
virtual origin from the small riblets of the same shape. The half-channel height measured 
from the virtual origin is 𝛿′ < 𝛿 (Fig. 1a and Table 1).

2.3 � Minimal‑Span Channels

We employ minimal-span channels for all riblet flows and corresponding smooth-wall ref-
erences. Minimal-span channels were first used by Jiménez and Moin (1991) and Flores 
and Jiménez (2010) in numerical experiments on smooth walls and later employed as an 
economical alternative to costly full-span channel flow DNS for roughness (Chung et al. 
2015). By definition, the width Ly < 𝛿 of minimal-span channels is small enough to con-
strict large eddies in the flow. This leads to a significantly altered flow field in the outer 
layer, but below a critical height z+

c
 , average velocities and turbulent statistics match exper-

imental results (Jiménez and Moin 1991).
The study of smooth-wall pipe flow by Chin et  al. (2010) suggests that a streamwise 

domain length L+
x
≳ 1000 is necessary to resolve the near-wall streaks and avoid affecting 

the mean flow. For channel sizes beyond that length, the largest structures are neverthe-
less not fully resolved and effectively infinitely long in the periodic domain. Such restric-
tions of the longest structures however do not affect the resolved scales (Lozano-Durán 
and Jiménez 2014). In the spanwise direction, at least one streak needs to be resolved in 
a box of width L+

y
≳ 100 for the flow to match experimental data below z+

c
 (Jiménez and 

Moin 1991). The critical height above which results are unphysical scales with the domain 
width as z+

c
≈ 0.3L+

y
 (Flores and Jiménez 2010) or less conservatively z+

c
≈ 0.4L+

y
 (Hwang 

2013). Chung et  al. (2015) introduce modelled roughness on the wall and also observe 
z+
c
≈ 0.4L+

y
 . Roughness only alters the near-wall region of the flow in the roughness sub-

layer and outer-layer similarity is presumed for flows over different surfaces (Townsend 

(5)Ex
��

(�x, z) = ∫
∞

0

E
��

d�y and E
y

��
(�y, z) = ∫

∞

0

E
��

d�x.
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1956). In order to capture all roughness effects, we therefore need to choose the channel 
width such that z+

c
 exceeds the height of the roughness sublayer. Consistent with sinusoidal 

roughness (Chan et al. 2018), we expect this layer to extend to a height 0.5s+ , that depends 
on the lateral riblet spacing s+ . A systematic analysis of constraints posed by the minimal-
span channel is given by MacDonald et al. (2017), who vary the streamwise and spanwise 
extent of numerical domains with modelled roughness to identify and compile limitations 
for the domain size. For streamwise uniform riblets, these come to

Channels of the present study have a width L+
y
≈ 250 at Reτ = 395 and L+

y
= 600 at 

Reτ = 1000 . Therefore, the critical heights are z+
c
= 0.4L+

y
≈ 100 and z+

c
= 240 respec-

tively, both of which are inside the logarithmic layer and above the roughness sublayer 
( z+

c
> 0.5s+ in Table  1). Some simulations are repeated in channels with L+

y
= 150 and 

L+
y
≈ 450 (Table 1) to analyse effects of the channel width. This enables us to verify that 

the minimal-span channel constraints found for flow over smooth walls and uniform rough-
ness are valid for the specific case of fully resolved 2D riblets, which differ from traditional 
roughness in that they do not experience pressure drag. Particularly, since we expect Kel-
vin–Helmholtz rollers in some of these flows that are not present over many other types 
of rough surfaces, we verify in Sect.  3.2 that the minimal domains resolve all relevant 
fluctuations.

Computational grids are stretched in the wall-normal direction using the tanh distribu-
tion suggested by Moin and Kim (1982) with smallest spacings near the riblet tips. Cross-
sections of the meshes close to the riblet surfaces are shown in Fig. 1 with details given 
in Table  1. Meshes for asymmetric triangular riblets (Fig.  1e) are refined using Adapt 
by Cascade Technologies Inc., which iteratively subdivides cells in different mesh zones 
(distances from the wall) to meet prescribed requirements for the maximum node spac-
ing in the spanwise and wall-normal direction. Specifically, we set maximum spacings 
Δy+

m
= {1.5, 3, 4, 5} and Δz+

m
= {0.9, 2, 4, 6} for heights z+ − z+

t
≲ {16, 40, 80} and above 

respectively.

2.4 � Runtime and Statistical Convergence

We report the statistical uncertainty in ΔU+ given by �+ for all riblet cases in Table 1. In 
minimal-span channels, �+ can be estimated based on an eddy-counting approach over the 
averaging time Lt (MacDonald et al. 2017)

If z+
c
 is in the log-layer of a minimal channel, the bursting period T+

b
= 6z+

c
 (MacDonald 

et al. 2017). Along with Ly = 2.5zc , the runtime required to converge statistics in Eq. (8) 
becomes independent of Ly . Therefore, a further reduction of the spanwise extent of mini-
mal channels (that nevertheless keeps z+

c
= 0.4L+

y
 in the log-layer) reduces the number 

of cells in the mesh without affecting the runtime, which saves computational costs. In 

(6)L+
x
≳ max

(

3L+
y
, 1000

)

,

(7)z+
c
= 0.4L+

y
≳ 0.5s+.

(8)Lt
uτ

�

≈

(

91.4

�
+z+

c

)2
7.5zc

Lx

2.5zc

Ly

T+
b

L+
z

.
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full-span channels, Lt depends on both Lx and Ly and the required runtime is typically much 
shorter than in minimal-span channels. The larger mesh in x and y however makes the over-
all computational cost for a full-span channel significantly higher than for a simulation in a 
minimal channel.

As a measure of statistical convergence, we follow the suggestion by Vinuesa et  al. 
(2016) and check (Table 1) that the x-y-t-averaged total stress above the height of the riblet 
tips z+

t
 is close to linear

2.5 � Mesh Convergence Study

The simulation for the narrow version of large blunt triangular riblets (T950N) is repeated 
on two coarser meshes as well as a finer mesh (Table 1). The number of mesh nodes in each 
direction are (nx, ny, nz) = (257, 127, 193), (172, 97, 129), (129, 73, 97), (87, 61, 65) , which 
means the numbers of nodes spanning one riblet period with s+ = 50 are ns = 43, 33, 25, 21 
(Table  1). With fixed domain sizes, the streamwise mesh spacings are Δx+ ≈ 4, 6, 8, 12 . 
Our regularly used spacing for all riblet and smooth-wall cases is Δx+ ≈ 6 (Table 1), which 
is finer than Δx+ = 10 used by Moser et al. (1999) at Reτ = 395 for a smooth wall DNS 
with a spectral code. The wall-normal and spanwise grids close to our riblets are likewise 
finer than for their smooth wall, because the mesh resolution in these directions is dictated 
by the riblet geometry rather than the viscous length scale. All four cases have a smaller 
spanwise extent ( L+

y
= 150 ) than our usual channels ( L+

y
≈ 250 ) with minimal-span effects 

discussed in Sect. 3.
The streamwise spectrum of streamwise velocity fluctuations against distance from 

the wall shows collapsing contour lines for all four meshes (Fig.  2a). Minor differences 
become visible for Reynolds stresses (Fig. 2b) at heights z+ − z+

t
≳ 20 . Here, the two coars-

est meshes have higher fluctuation energy, because the smallest structures are not resolved 
by the mesh. This directly affects the mean streamwise velocity and therefore profiles of 
the roughness function U+

s
− U+ in Fig. 2c, that compares the smooth wall velocity profile 

(subscript s) to that of riblets. Below z+
c
 , the roughness functions on different meshes are 

close, but they diverge distinctly towards the top of the domain. Velocities at z+
c
 , where we 

measure the drag-change ΔU+ = U+
s
(z+

c
) − U+(z+

c
) , are shown in the inset for both the riblet 

cases ( ) and smooth walls with corresponding mesh quality ( ). The difference, ΔU+ , is 
almost independent of the mesh quality, provided that the resolution in the streamwise and 
wall-normal direction is similar for both flow cases. We therefore maintain Δx+ ≈ 6 for all 
cases and Δz+ ≈ 0.3 around the height of the riblet crests and about �+

T
 above the smooth 

wall. If we were to use the smooth-wall spanwise resolution for riblets, the geometry would 
not be resolved properly as we can appreciate by comparing the finest smooth-wall SNF 
( L+

y
∕ny = 2.3 , Δx+ ≈ 4 ) and coarsest riblet mesh T950NVC ( L+

y
∕ny = 2.5 , Δx+ ≈ 12 ). The 

ΔU+ between those mismatched meshes with similar L+
y
∕ny would be close to zero (  in 

the inset of Fig. 2c), which is unphysical for riblets with �+
g
= 25 . The average spanwise 

spacing around riblets is therefore significantly smaller than that of the smooth-wall mesh 
and ns ≳ 26 in Table 1.

(9)

�
�+ =

(

1

�
�+ − z+t ∫

�
�+

z+t

�
+2dz+

)1∕2

, where �
+ =

�
�+ − z+

�
+

+ (u − u)(w − w)
+

−
dU+

dz+
.
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Reynolds stresses that may be affected by Kelvin–Helmholtz rollers (details in Sect. 4.3) 
are shown in Fig. 2d. The two coarse meshes have increased energy in this spectral region, 
even though the considered wavelengths are greater than the mesh spacing ( 65 ≲ 𝜆

+
x
≲ 290 

and 𝜆+
y
≳ 250 ). Profiles of Reynolds stresses in that spectral region −u�w�

+

KH
 for the two 

finer meshes align, even above z+
c
 . This gives us confidence that the regular mesh resolu-

tion, which we also use for the main cases of this study (those with L+
y
≈ 250 in Table 1), 

is sufficient to capture the effects of Kelvin–Helmholtz rollers on the flow field over riblets.

3 � The Minimal‑Span Channel for Flow Over Riblets

In this section, we verify that constricting the flow in the spanwise direction unphysically 
alters the flow in the outer layer, while the near-wall region remains unchanged (MacDon-
ald et al. 2017). Figure 3 shows wall-normal velocity fluctuations 5 viscous units above rib-
lets in channels of three different widths. At this height, the flow fields in all three domains 

(a) (b)

(c) (d)

Fig. 2   The solution on coarse meshes deviates, but further refining the computational mesh does not change 
our results based on these flows in a narrow channel ( L+

y
= 150 ) with different mesh qualities (T950NF, 

T950N, T950NC, T950NVC). Premultiplied streamwise spectra with contours from light to dark at 
k+
x
Ex+
uu

= (0.5, 0.75, 1, 1.25, 1.5) in (a) and k+
x
Ex+
uw

= −(0.05, 0.1, 0.15, 0.2, 0.25) in (b). The roughness func-
tion in (c) with error bars for ΔU+ measured at z+

c
 compares to smooth-wall simulations of matched span-

wise extent and mesh resolution (Table  1). The inset shows U+
s
(z+

c
) ( ∙ ) for the smooth wall and U+(z+

c
) 

( ) for riblet flow as a function of the streamwise mesh spacing Δx+ . (d) Reynolds stresses in the spec-
tral region that can be occupied by Kelvin–Helmholtz rollers (García-Mayoral and Jiménez (2011) and 
Sect. 4.3)
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have qualitatively the same streamwise-aligned features, because only flow structures 
above certain sizes and wall-normal distances are affected by the spanwise constraint. We 
will quantify these effects in spectral space after first considering implications for the mean 
streamwise velocity.

3.1 � Mean Streamwise Velocity in Minimal‑Span Channels with Riblets

Constricting the flow in the spanwise direction leads to unphysically high streamwise 
velocity for heights z+ > z+

c
= 0.4L+

y
 in rough-wall channels, because the largest structures 

that would otherwise carry momentum are not resolved (Chung et al. 2015). This estimate 
for z+

c
 agrees well with profiles of mean streamwise velocity shown in Fig. 4a for triangu-

lar riblets and smooth walls in numerical domains of three different widths. The viscous-
scaled spanwise extents are L+

y
= {150, 250, 450} . Increased velocities above z+

c
 are clearly 

visible for the narrow and medium width channels. The smooth-wall profile from the wide 
channel with spanwise extent L+

y
= 450 is almost identical to that from a full-span channel 

with L+
y
= 1241 except for the very top of the wake region, because z+

c
= 180 is fairly close 

to �+ = 395 on a log-scale.
We calculate the roughness function from the difference between the smooth-wall ref-

erence (subscript s) and the riblet profile at matched spanwise extent L+
y
 (Fig.  4b). The 

statistical uncertainty �+ (found through Eq. 8) is marked by error bars at the height z+
c
 , 

where we measure the drag-change ΔU+ . These riblets with groove size �+
g
= 25 (Table 1) 

are well within the drag-increasing regime as ΔU+
> 0 . For the two widest minimal-span 
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Fig. 3   The flow close to the wall is not affected by the spanwise constraint: instantaneous wall-normal 
velocity w+ in a plane 5 viscous units above the crest of triangular riblets with opening angle � = 90◦ 
in channels of different spanwise extent. a wide T950W with L+

y
= 450 , b our regular width T950 with 

L+
y
= 250 and c narrow T950N with L+

y
= 150.
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channels, U+
s
− U+ collapses within the statistical uncertainty such that the measured drag-

change is the same regardless of the domain size. The very narrow channel with L+
y
= 150 

has a noticeably different roughness function (Fig.  4b) and the drag-change ΔU+ meas-
ured at its z+

c
 deviates a bit from the ΔU+ found in wider channels (Table 1). We therefore 

use L+
y
≈ 250 to study the flow over riblets and thus avoid minimal-span effects on the 

drag-change.

3.2 � Velocity Fluctuations in Minimal‑Span Channels with Riblets

Our region of interest for this study is close to the wall, where roughness affects the 
flow. Kelvin–Helmholtz rollers can appear at heights ≲ 20 viscous units above the riblets 
(García-Mayoral and Jiménez 2011) and their analysis requires an accurate representation 
of turbulent flow structures. However, above a certain height in minimal-span channels, 
the distribution of velocity fluctuations across spectral space is affected by the confined 
domain. That critical height for fluctuations depends on the size of considered structures as 
well as L+

y
 and it is generally lower than the z+

c
 for the mean-flow (Hwang 2013; MacDon-

ald et al. 2017).

3.2.1 � Smooth Walls and Triangular Riblets in Channels with L+
y
= {150, 250, 450}

Unphysically amplified velocity fluctuations are evident in the streamwise spectra above z+
c
 

in our narrow domains with both smooth-walls and riblets (Fig. 5a, b). The same amplifi-
cation is observed by Hwang (2013) (their figure 6b) and MacDonald et al. (2017) (their 
figure 4e–h). Closer to the wall however, fluctuations become progressively less dependent 
on the channel width.

Effects of the narrow domain on spanwise spectra are particularly pronounced in Fig. 5c, 
d, where wide fluctuations with large �+

y
 have increased energy as the domain becomes 
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Fig. 4   Minimal channels have unphysically high velocity only above the height z+
c
 : a velocity profiles of 

smooth-walls (SW, S, SN) and triangular riblets (T950W, T950, T950N) in domains of three different 
widths. A profile for a smooth-wall full-span channel (SFull) with L+

y
= 1241 is shown additionally for 

reference. b The Hama roughness function U+
s
− U+ for the three cases. Vertical lines mark the height 

z+
c
= 0.4L+

y
 beyond which results are unphysical and error bars mark the statistical uncertainty ±�+ as 

defined in Eq. (8)
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more narrow. Structures wider than L+
y
 appear as spanwise uniform and their energy conse-

quently accumulates in the mode with �+
y
= ∞ , which is not visible in these spectrograms. 

As L+
y
 reduces, more fluctuations would be wider than the channel and therefore appear in 

the infinite wavelength. A side effect of this restriction appears to be an increase of energy 
in wavelengths just shorter than L+

y
 . The width of structures affected by this amplification 

varies with distance from the wall, as also seen in MacDonald et  al. (2017). Taking the 
widest channel as a reference, the lowest-energy contour line diverges roughly at z+

c
 for the 

two more narrow channels. Higher-energy contour lines diverge closer to the wall, but also 
at larger �+

y
 . For the medium-width channel, all resolved spanwise wavelengths appear to 

show unrestricted turbulence below z+ − z+
t
≈ 30 . For the narrow channel however this is 

not achieved even at the highest-energy contour level suggesting that energy in the wid-
est structures is overestimated down to some height closer to the riblets or smooth wall 
respectively.

Figure 6 shows that the region even closer to the wall, only 5 viscous units above the 
riblets or smooth wall, is not affected by any of our narrow domains. At this height, all 
contour lines agree across the resolved scales regardless of L+

y
 , including for L+

y
= 150 , 

because energy at larger wavelengths accumulates at �+
y
= ∞.
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Fig. 5   Velocity fluctuations in minimal channels carry unphysically high energy above the height z+
c
 : tri-

angular riblets ( � = 90◦ ) with three different channel widths (left, T950W, T950, T950N) and corre-
sponding smooth walls (right, SW, S, SN). Premultiplied streamwise (a, b) and spanwise (c, d) spectra 
of streamwise velocity against distance from the riblet crest or wall with contours from light to dark at 
k+
x,y
E
x,y+
uu = (0.5, 1, 1.5, 2, 2.5).
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3.2.2 � Blade Riblets in Minimal‑Span and Full‑Span Channels

In Fig. 7 we further compare spectra of two blade riblet cases in minimal-span channels 
to similar reference cases from García-Mayoral and Jiménez (2012) in full-span channels 
to verify that we accurately capture all relevant fluctuations. The reference cases have a 
spacing-to-thickness ratio s∕t = 4 and Reτ ≈ 550 , while for the blade riblets of this study 
s∕t = 5 and Reτ = 395 , but the riblet sizes are �+

g
≈ 13 and �+

g
≈ 21 for both data sets. The 

most notable difference is the channel width. The reference full-span channels are about 
9 to 10 times wider in viscous units than our minimal-span channels. The streamwise and 
spanwise spectra shown against distance from the wall in Fig. 7a–d match closely across 
riblets of a given size, except for the minimal-span channel effects discussed above for the 
triangular riblets and smooth walls.

Two-dimensional spectra at a height 5 viscous units above the crest, that can be influ-
enced by Kelvin–Helmholtz rollers, are shown in Fig. 7e–h. The spectra are normalised by 
their respective turbulent variance at that height and show matching trends regardless of 
the channel size. Effects of the different blade width are noticeable at this height close to 
the crest, and presumably explain the small discrepancies between the energy levels (con-
tour lines). However, these misalignments between contour lines for different blade widths 
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Fig. 6   Velocity fluctuations close to the wall are not affected by the spanwise constraint: triangular riblets 
( � = 90◦ ) with three different channel widths (left, T950W, T950, T950N) and corresponding smooth walls 
(right, SW, S, SN). Premultiplied 2D spectra in a plane 5 viscous units above the crest with contours at frac-
tions of turbulent fluctuations k+
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are small compared to the changes with riblet size (Fig. 7e–h). The minimal-span channels 
of the present study (grey contours in Fig. 7) accurately capture fluctuations of resolved 
wavelengths close to the wall, as also seen for triangular riblets and smooth walls in Fig. 6. 
The agreement across channels of different width is most readily visible in Fig. 7h for wall-
normal velocity fluctuations above the large riblets, that are known to support the Kel-
vin–Helmholtz instability (García-Mayoral and Jiménez 2012). The spectral region of Kel-
vin–Helmholtz rollers ( 65 ≳ 𝜆

+
x
≳ 290 and 𝜆+

y
≳ 250 ) is framed with a black box near the 

top of Fig. 7e–h, but these spectra are restricted to finite wavelength 𝜆+
x
≲ L+

x
 and 𝜆+

y
≲ L+

y
 . 

In the following, we therefore selectively integrate velocity spectra in channels of different 
width.

3.2.3 � Spectral Region of Kelvin–Helmholtz Rollers in Channels of Different Widths

In Fig.  8b, d, f, h, we show spanwise spectra of Reynolds shear stress integrated in �+
x
 

only across wavelengths that may be affected by the Kelvin–Helmholtz instability, 
65 ≳ 𝜆

+
x
≳ 290 (García-Mayoral and Jiménez 2011). Narrow domains have a low spectral 

resolution at large �+
y
 , but wherever a data point is available, it matches those from wider 

channels. The sharp triangular riblets with � = 30◦ in Fig. 8f have more energy in those 
streamwise wavelengths than the smooth wall in Fig. 8b or the blunt triangular riblets with 
� = 90◦ in Fig. 8d. Nevertheless, for all of them, the energy at large �+

y
 matches closely 

between channels of different width. In Fig.  8h we further compare the blade riblets to 
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Fig. 7   Comparing velocity spectra for blade riblets in minimal-span channels to reference data in full-span 
channels. On the left (a, b, e, f) are small riblets with �+

g
≈ 13 (BL20 with L+

y
= 264 , Reτ = 395 , s∕t = 5 

compared to 13L from García-Mayoral and Jiménez (2012) with L+
y
= 2603 , Reτ ≈ 550 , s∕t = 4 ). On the 

right (c, d, g, h) are large riblets with �+
g
≈ 21 (BL34 with L+

y
= 266 , Reτ = 395 , s∕t = 5 compared to 20L 

from García-Mayoral and Jiménez (2012) with L+
y
= 2396 , Reτ ≈ 550 , s∕t = 4 ). The premultiplied stream-

wise and spanwise spectra of streamwise velocity in a–d are shown against distance from the riblet crest 
with contours from light to dark at k+

x,y
E
x,y+
uu = (0.5, 1, 1.5, 2, 2.5) . The premultiplied 2D spectra of uw in 

e, g and of ww in f, h are in a plane 5 viscous units above the crest with contours at fractions of turbulent 
fluctuations k+

x
k+
y
E+
��

∕(��
�

�)+ = (0.02, 0.08, 0.14, 0.2, 0.26) . Boxes near the top delimit the region of Kel-
vin–Helmholtz rollers (García-Mayoral and Jiménez (2011) and Sect. 4.3)
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Fig. 8   Minimal channels capture the energy in the spectral region of Kelvin–Helmholtz rollers: premulti-
plied streamwise (left) and spanwise (right) spectra of Reynolds shear stress integrated only over the shaded 
wavelengths that are affected by the Kelvin–Helmholtz instability 65 ≲ 𝜆

+
x
≲ 290 and 𝜆+

y
≳ 250 (García-

Mayoral and Jiménez (2011) and Sect. 4.3). In a plane 5 viscous units above smooth walls (a, b), above 
the crest of triangular riblets T950W, T950, T950N ( � = 90◦ , �+

g
= 25.0 in c, d), triangular riblets T321W, 

T321 ( � = 30◦ , �+
g
= 20.4 in e, f) and blade riblets 20L ( s∕t = 4 , �+

g
= 20.4 ) in a full-span channel (García-

Mayoral and Jiménez 2012) and BL33 ( s∕t = 5 , �+
g
= 21.1 ) in our minimal-span channel (g, h)
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slightly thicker blades with almost matching �+
g
 in exceptionally wide full-span channels by 

García-Mayoral and Jiménez (2012) and also observe close agreement of the energy across 
all resolved wavelengths.

The spanwise extent of Kelvin–Helmholtz rollers is up to 1000–1500 viscous units 
in the flow over blade riblets (García-Mayoral and Jiménez 2012), which means a large 
portion of their energy accumulates in the spanwise-infinite wavelength of our simula-
tions, which is not visible in the premultiplied spectra of Fig. 8b, d, f, h. In order to visu-
alise energy in modes with 𝜆+

y
≳ 250 including �+

y
= ∞ , we integrate cospectra of Reyn-

olds shear stress for the different channels across 𝜆+
y
≳ 250 in Fig. 8a, c, e, g. Smooth 

wall flow at z+ = 5 has very little energy in these large spanwise wavelengths, but the 
spectrum is the same for all four channel widths. In the case with comparatively high 
energy at these large spanwise wavelengths in Fig. 8e, the spectrum likewise matches 
within the statistical uncertainty for both domain widths. Even the narrow domains with 
L+
y
= 150 in Fig. 8a, c, that end short of the integration bound, have the same spectrum, 

because the energy is contained in the spanwise-infinite wavelength. (The integration 
in discrete wavenumber space covers all of mode 0 with �+

y
= ∞ and 10% of mode 1 

with �+
y
= 150 .) In Fig. 8g, we integrate the spectrum for our blade riblets over only two 

spanwise modes ( L+
y
= 266 ) and the spectrum of the reference case (García-Mayoral 

and Jiménez 2012) with a similar geometry over 11 modes ( L+
y
= 2396 ), but the result-

ing streamwise spectra for large spanwise wavelengths nevertheless match closely.
In summary, we observe in Figs. 4 and 5 that if L+

y
≳ 250 , turbulence in roughly the 

first 30 viscous units above the riblet crest is not affected by the channel width and both 
the mean and the turbulent flow that we simulate in that region (including at large �+

y
 ) 

reflect the true physics. Furthermore, Figs. 6 and 8 illustrate that 5 viscous units above 
the wall or riblet crest, Reynolds stresses and wall-normal velocity in minimal-span 
channels with L+

y
≳ 150 closely match those in wider domains. Energy at wavelengths 

𝜆
+
y
> L+

y
 accumulates at the infinite wavelength such that fluctuations of large structures 

are accounted for even in narrow domains (Fig.  8). Our minimal-span channels with 
L+
y
≈ 250 (Table 1) therefore allow us to investigate fluctuations due to Kelvin–Helm-

holtz rollers. Even more narrow domains (e.g. with L+
y
= 150 ) also accurately capture 

energy in wavelengths that are affected by the Kelvin–Helmholtz instability (Fig. 8), but 
the separation from other near-wall turbulence is cleaner if L+

y
≳ 250 as we will demon-

strate in Sect. 4.3.

4 � The Kelvin–Helmholtz Instability Above Riblets

4.1 � Roughness Function of Riblets

Our riblet DNS data set spans six shapes and various viscous-scaled sizes, which means 
that drag characteristics vary as shown in Fig. 9, where we compare the streamwise veloc-
ity to smooth-wall flow in channels of matched width, ΔU+ = U+

s
(z+

c
) − U+(z+

c
) . Measures 

of the drag-change ΔU+ by blade riblets ( ) are slightly lower than for the reference data of 
thicker blades (  from García-Mayoral and Jiménez 2012), which is consistent with Stokes 
flow that predicts the lowest ΔU+ for infinitely thin blades (Luchini et al. 1991). We further 
converted various reference data from DR to ΔU+ for comparison. The blunt trapezoidal 
riblets from Gatti et al. (2020) with � = 53.5◦ ( ) have a higher drag at matched �+

g
 than 
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our trapezoidal riblets with � = 30◦ ( ). Around the size of optimum drag reduction at 
�
+
g
≈ 11 , drag curves of various riblet shapes scale with �+

g
 (García-Mayoral and Jiménez 

2011). Nevertheless, our triangular riblets ( ,) have a lower minimum drag than meas-
ured experimentally by Bechert et al. (1997) ( , ). The trapezoidal riblets show the same 
trend of lower drag in numerical compared to experimental studies: our DNS ( ) and the 
wall-resolved large eddy simulations by Bannier et  al. (2015) ( ) of trapezoidal riblets 
with � = 30◦ have a lower drag at the optimum than the experimental data from Gatti et al. 
(2020) ( ) for trapezoidal riblets with � = 53.5◦ . The lower drag of the sharper trapezoi-
dal riblets is only partially explained by Stokes flow (Luchini et al. 1991), which predicts 
a small reduction of ΔU+ when the tip angle reduces from � = 53.5◦ to � = 30◦ (straight 
lines starting at �+

g
= 0 in Fig. 9).

García-Mayoral and Jiménez (2011) demonstrated for blade riblets, that Kelvin–Helm-
holtz rollers appear in the flow ≲ 20 viscous units above the crest for groove sizes �+

g
≳ 11 , 

i.e. for larger than optimal riblets. Fourteen of our cases have a size above that threshold in 
order to analyse the effects of Kelvin–Helmholtz rollers on the flow field and therefore on 
the drag characteristics of different riblet geometries.
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Fig. 9   Drag curves for different riblet shapes with experimental (  (Gatti et  al. 2020),  (Bechert et  al. 
1997),  (Bechert et  al. 1997)) and numerical (DNS:   (García-Mayoral and Jiménez 2012), LES:   
(Bannier et al. 2015)) reference data. Experimental channel flow data are converted from Δτw∕τw,smooth to 
ΔU+ = −DR

(

(2cf ,smooth)
−1∕2 + 1∕(2�)

)

 with cf = 2∕U+2
bulk

 at matched Rebulk (Bechert et al. 1997). The term 
1∕(2�) is omitted for data from Bechert et al. (1997) as suggested by García-Mayoral (2011). The bound-
ary layer LES data are converted to ΔU+ = −DR(2Cf ,smooth)

−1∕2 with Cf = 2∕U+2
�

 at matched U+
�
 (Spalart 

and McLean 2011). Direct measurements of ΔU+ for the present data are shown by coloured symbols with 
lines. The straight lines starting at �+

g
= 0 indicate the viscous prediction of ΔU+ calculated from Stokes 

flow as per Luchini et  al. (1991): for trapezoidal riblets with � = 53.5◦ ( , as Gatti et  al. (2020)) and 
� = 30◦ ( , as Bannier et al. (2015) and our data)
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4.2 � Visualising Kelvin–Helmholtz Rollers

We use the scalar � , that represents temperature, to visualise perturbations in the fluid. 
Fluctuations ��+ in a plane 5 viscous units above a smooth wall or small riblets (Fig. 10, 
left) show long, nominally streamwise aligned, streaks of positive or negative fluctua-
tions. For some of the larger, drag-increasing riblets however spanwise coherent patches 
dominate the flow field at that height (Fig. 10, right). This is most prominently visible in 
Fig.  10c for the triangular riblets with � = 30◦ , where it suggests the presence of span-
wise-coherent Kelvin–Helmholtz rollers. The flow field of the blunt triangular riblets with 
� = 90◦ in Fig. 10g and the asymmetric riblets in Fig. 10m looks qualitatively similar to 
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Fig. 10   Spanwise coherence due to Kelvin–Helmholtz rollers is visible for some of the large riblets: fluctua-
tions of the passive scalar (temperature) ��+ in the wall-parallel plane 5 viscous units above a smooth wall 
a or riblet crest b–m. Riblet cases on the left are close to their drag-reducing optimum size, while those on 
the right side are large enough to be in the drag increasing regime (Fig. 9)
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that of the corresponding small riblets (Fig. 10f, l respectively), where no significant span-
wise coherence is visible at this instance. These instantaneous flow visualisations therefore 
suggest that the strength of Kelvin–Helmholtz rollers depends on the riblet shape.

Figure 11 shows isosurfaces of the passive scalar to visualize spanwise coherence in a 
volume z+ − z+

t
< 20 , highlighting the striking dependence of the Kelvin–Helmholtz insta-

bility on the riblet cross-section. The two riblet geometries are the same as in Fig. 10c, g, 
except in wider domains with L+

y
≈ 450 . In combination with regions of negative stream-

wise velocity in the groove of the large triangular riblets with � = 30◦ (blue in Fig. 11a), 
wave-like structures become visible in the flow field, which match the description of a 
Kelvin–Helmholtz instability (roughly spanwise coherent and with a streamwise spacing 
�
+
x
≈ 200 ). Kelvin–Helmholtz rollers are absent above the blunt riblets with � = 90◦ in 

Fig. 11b, even though the riblet size �+
g
 is similar for both cases and the domain size and 

Reτ are matched.
In order to quantify the intensity of the Kelvin–Helmholtz instability and its rel-

evance in the flow field, we now apply a spectral filter to time-averaged fluctuating 
quantities.

Fig. 11   Flow visualisation for two drag-increasing riblets of similar size �+
g
 but different shape. Kelvin–

Helmholtz rollers develop over the triangular riblets with tip angle � = 30◦ (a: T321W with �+
g
= 20.4 ), 

but not over the riblets with � = 90◦ (b: T950W with �+
g
= 25 ). Both channels have a spanwise extent 

L+
y
≈ 450 . The mean flow is aligned with the riblets from left to right. Regions of negative streamwise 

velocity (reversed flow) inside the groove are shown in blue. An isosurface of the passive scalar �+ = 3.5 
above the riblet crest is coloured by its height from transparent to black
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4.3 � Identifying Kelvin–Helmholtz Rollers in Spectral Space of Minimal Channels

For sufficiently large blade riblets, spanwise coherent rollers related to a Kelvin–Helm-
holtz instability form just above the riblet crest (García-Mayoral and Jiménez 2011). 
These structures can be identified in spectral space, where they alter velocity fluc-
tuations in the region roughly delimited by 65 ≲ 𝜆

+
x
≲ 290 and 𝜆+

y
≳ 130 according to 

García-Mayoral and Jiménez (2011).

4.3.1 � Signature of Kelvin–Helmholtz Rollers in 2D Spectra

In Fig. 12, we show premultiplied 2D spectra of various flow quantities normalised by 
their turbulent variance at a height 5 viscous units above drag-increasing triangular rib-
lets with � = 30◦.

This normalisation visualises how these riblets change the distribution of energy 
across both spectral dimensions relative to the smooth wall ( ). Energy in the spectral 
region associated with the instability (box at the top in Fig. 12) is altered in spectra of 
u, v, w and � . Pressure fluctuations are shifted to slightly lower �+

x
 , but contour lines 

mostly retain the shape of smooth-wall flow. Wall-normal velocity and temperature fluc-
tuations in particular are strongly affected with a distinct peak in the spectral region of 
the instability.

The effect of Kelvin–Helmholtz rollers on fluctuations in the temperature field has 
implications for heat transfer of the surface. The temperature is modelled as a passive sca-
lar that cannot affect Kelvin–Helmholtz rollers. However, the Kelvin–Helmholtz instability 
can enhance the transport of the passive scalar into the wall, akin to forced convection of 
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Fig. 12   Kelvin–Helmholtz rollers changing the distribution of energy in premultiplied 2D spectra in 
a plane 5 viscous units above the crest of drag increasing sharp triangular riblets T321 (contours) com-
pared to smooth-wall flow ( ). Contours are from light to dark at fractions of turbulent fluctuations 
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Helmholtz rollers ( 65 < 𝜆

+
x
< 290 , 𝜆+

y
> 130 ) according to García-Mayoral and Jiménez (2011)
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heat. The differences between Fig. 12a and e indicate that Kelvin–Helmholtz rollers affect 
heat transfer differently from momentum transfer into the wall. The reversed flow regions 
seen in Fig.  11a have negative wall-shear stress and positive heat transfer into the wall, 
affecting the overall ratio of heat transfer to momentum transfer and thus breaking the simi-
larity implied by the Reynolds analogy.

4.3.2 � Signature of Kelvin–Helmholtz Rollers in 2D Shear Stress Cospectra

We further consider the spectrum of Reynolds shear stress, because this is the com-
ponent of the Reynolds stress tensor that appears in the mean streamwise momentum 
equation, where it directly relates to the drag variation (Fukagata et  al. 2002; García-
Mayoral and Jiménez 2011; MacDonald et al. 2016). Figure 13a, b show normalised 2D 
spectra of Reynolds shear stress in a plane 5 viscous units above the crest of triangu-
lar riblets with � = 30◦ . For the small drag-reducing riblets (T310), contours are simi-
lar to those above a smooth wall ( ). An impermeable smooth wall does not provide 
the conditions for the Kelvin–Helmholtz instability to develop and the same is true for 
small riblets, typically below the size of optimum drag, i.e. �+

g
≲ 11 (García-Mayoral 

and Jiménez 2011). Therefore, the spectrum of Reynolds shear stress contains negligi-
ble energy in the associated spectral region.

The spectral region of Kelvin–Helmholtz rollers for the drag-increasing riblets of the 
same shape (T321 in Fig.  13b) features a strong peak and the distribution of Reynolds 
shear stress across the 2D spectrum is distinctly different from that over a smooth wall, 
as discussed for Fig. 12. The bulk of the energy over smooth walls is distributed around 
wavelengths close to �+

x
≈ 1000 (e.g. Hutchins and Marusic 2007) with high energy 

down to �+
x
≈ 300 based on figure 3c in Jiménez et al. (2004) or the contour lines in our 

Fig. 13b. However, for the large riblets with � = 30◦ in Fig. 13b, the strong peak is instead 
at �+

x
≈ 200 and the relative influence of large streamwise structures on Reynolds stress at 

this particular height is reduced significantly compared to smooth-wall flow.

4.3.3 � 1D Shear Stress Cospectra at Individual Spanwise Wavelengths

The aim now is to isolate the effect of the Kelvin–Helmholtz instability by integrating fluc-
tuations only over the wavelengths affected by Kelvin–Helmholtz rollers. As visible in the 
2D spectrum of Fig.  13b, the peak associated with the instability is an extension of the 
main peak of near-wall turbulence at lower spanwise wavelengths and not entirely sepa-
rated from it, at least along the �+

y
 dimension.

In an effort to judge how far the influence of Kelvin–Helmholtz rollers extends, stream-
wise spectra at large spanwise wavelengths are shown in Fig. 13c–g, including at �+

y
= ∞ , 

which is not visible in the premultiplied 2D spectra (Fig. 13a, b). The streamwise region 
that García-Mayoral and Jiménez (2011) identified for the instability (shaded in Fig. 13c–g) 
contains the peak in the spectrum ( ). Since we are employing minimal-span channels 
with L+

y
≈ 250 , the spanwise-infinite wavelength (Fig. 13c) contains a large portion of the 

energy. In fact, the peak associated with Kelvin–Helmholtz rollers at the infinite wave-
length is stronger than at any other wavelength resolved in this channel, which underlines 
the spanwise two-dimensional nature of the Kelvin–Helmholtz rollers. For �+

y
= L+

y
≈ 250 

in Fig.  13d, the distribution of energy across �+
x
 is similar to the one for the spanwise-

infinite wavelength in Fig. 13c, although the position of the peak reduces from �+
x
≈ 205 at 
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�
+
y
= ∞ to �+

x
≈ 170 . Both peaks are inside the shaded region of �+

x
 , but for smaller wave-

lengths (Fig. 13e–g), the energy peak is reducing in strength and broadening as fluctuations 
from the near-wall-cycle are affecting the spectrum (also visible in Fig. 13b).

In contrast to the large riblets ( ), the curves for the small drag-reducing riblets ( )  
in Fig. 13c–g are almost indistinguishable from those of smooth-wall flow ( ), because 
the contours in Fig. 13a do not extend into the spectral region of Kelvin–Helmholtz rollers 
for either flow. We interpret smooth-wall like flow over riblets in the spectral region of the 
instability as Kelvin–Helmholtz rollers not being present, which we expect for riblets with 
�
+
g
≲ 11 that lack wall-normal permeability (García-Mayoral and Jiménez 2011).
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Fig. 13   Determining which spanwise wavelengths are affected by Kelvin–Helmholtz rollers using 
drag reducing (T310) and drag increasing (T321) sharp triangular riblets with tip angle � = 30◦ 
and a smooth wall. (a, b) Premultiplied 2D cospectra of Reynolds shear stress in a plane at 5 vis-
cous units above the crest. Contours are from light to dark at fractions of turbulent fluctuations 
k+
x
k+
y
E+
uw
∕(u�w�)+ = (0.03, 0.06, 0.09, 0.12, 0.15, 0.18) , filled for riblets and lines for the smooth wall. Open 

boxes near the top delimit the region of Kelvin–Helmholtz rollers ( 65 < 𝜆
+
x
< 290 , 𝜆+

y
> 130 ) according to 

García-Mayoral and Jiménez (2011). (c–g) Premultiplied 1D cospectra of Reynolds shear stress at different 
spanwise wavelengths (modes 0,1,2,3,6) for a smooth wall ( ), a drag reducing riblet (T310, ) and a 
drag increasing riblet (T321, ) with matched domain size. (h–l) Profiles of Reynolds shear stress at dif-
ferent spanwise wavelengths after integrating across the �+

x
 that are framed in (a), (b) and shaded in (c–g).
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4.3.4 � Profiles of Shear Stress Contributed by Individual Spanwise Wavelengths

This analysis is so far limited to one representative distance from the wall, 5 viscous units 
above the crest. However, we can expect Kelvin–Helmholtz rollers to be three-dimensional 
structures and to account for the z-dependence, we integrate Reynolds stresses at every 
height across the range of streamwise wavelengths 65 ≲ 𝜆

+
x
≲ 290 that are affected by the 

instability. For now, we integrate separately at every spanwise wavelength to obtain profiles 
of Reynolds stresses due to Kelvin–Helmholtz rollers shown in Fig. 13h–l that depend on 
�
+
y
 . The drag reducing riblet case ( ) has profiles that are very close to that of the smooth 

wall ( ) at all spanwise wavelengths. For the drag increasing case ( ), the effect of Kel-
vin–Helmholtz structures is evident. In agreement with the description by García-Mayoral 
and Jiménez (2011) and visible in Fig. 13h, i, Kelvin–Helmholtz rollers increase energy in 
large spanwise wavelengths for roughly the first 20 viscous units above the riblet crest. At 
�
+
y
≈ 125 (Fig. 13j), the peak is lower and farther from the wall as structures from the near 

wall cycle are beginning to affect the profile. Particularly for the graphs in Fig. 13k, l at 
𝜆
+
y
< 100 , the profile no longer captures energy associated exclusively with Kelvin–Helm-

holtz rollers, but mainly with the near-wall cycle. This is more readily visible in the 2D 
spectrograms of Fig. 13b.

4.3.5 � Summary of Scales Affected by Kelvin–Helmholtz Rollers

The above spectral analysis of the flow over sharp triangular riblets demonstrates that 
the lower bound for the spanwise extent of Kelvin–Helmholtz rollers should be in the 
range 125 < 𝜆

+
y
≲ 250 . More precisely, Fig. 13i, j suggest the threshold should be closer 

to �+
y
= 250 in order to exclude turbulence from the near-wall cycle. We therefore con-

sider the spectral region associated with the Kelvin–Helmholtz instability in our mini-
mal-span channels as 𝜆+

y
≳ 250 in the spanwise direction, which is more conservative 

than the threshold 𝜆+
y
≳ 130 that García-Mayoral and Jiménez (2011) suggested. In the 

streamwise direction, the range 65 < 𝜆
+
x
< 290 (García-Mayoral and Jiménez 2011) is 

appropriate also for the present data set. This way, we only let fluctuations pass the 
spectral filter that are due to the Kelvin–Helmholtz instability, while we discard fluctua-
tions associated with the near-wall cycle that characterises both the smooth and riblet 
wall flows.

4.4 � Dependence of Kelvin–Helmholtz Rollers on Riblet Shape and Size

We now integrate fluctuations in spectral space for only the wavelengths affected by the 
Kelvin–Helmholtz instability to impose a spectral filter on variance profiles of different 
flow quantities

where (��) ∈ {uu, uw,w�} . In Fig.  14, we compare those filtered profiles for all riblet 
cases to smooth-wall flow. Even though Kelvin–Helmholtz rollers are absent over a smooth 
wall, (u�u�

+

KH
)1∕2 increases over the first 20 viscous units from the wall.

Drag-reducing riblets of any shape have almost the same profile (  in Fig. 14, left) 
as the smooth wall, because they lack Kelvin–Helmholtz rollers. The profiles of Reynolds 

(10)�
�
�

�
+

KH
(z+) = ∫

∞

250

[

∫
290

65

E+
��

d�+
x

]

d�+
y
,
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shear stress (Fig. 14, centre) and wall-normal transport of the passive scalar (Fig. 14, right) 
in the spectral region of Kelvin–Helmholtz rollers are likewise not affected by the presence 
of small riblets.
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Fig. 14   Kelvin–Helmholtz rollers strongly affect fluctuations in a–c, m–o, but not in p–r: profiles of 
streamwise velocity fluctuations (left), Reynolds shear stress (centre) and the wall-normal transport of 
� (right), filtered only for wavelengths associated with the Kelvin–Helmholtz instability as per Eq. (10). 
Smooth wall flow ( ), riblets that reduce ( ) or increase ( ) drag. Curves for each shape get lighter 
with increasing riblet size. Light curves in a–c are for smooth-wall and riblet flow at Reτ = 1000 , all others 
at Reτ = 395 . Data from the wider domains with L+

y
≈ 450 are shown in grey (a–c and g–i). Grey curves in 

m, n are for reference full-span channel cases 13L and 20L at Reτ ≈ 550 from García-Mayoral and Jiménez 
(2012) along with the corresponding smooth-wall profile
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For larger, drag-increasing riblets (  in Fig.  14), differences emerge between riblet 
shapes. The two drag-increasing triangular riblets with � = 30◦ in Fig.  14a–c have pro-
files that are distinctly different from those of the smooth-wall flow. All three quantities 
peak at z+ − z+

t
< 10 , which is not the case for the smooth wall and therefore indicative of 

Kelvin–Helmholtz rollers. The distances from the riblet crest match those found by García-
Mayoral and Jiménez (2011) for Kelvin–Helmholtz rollers over blade riblets. Indeed, our 
blades in Fig.  14m–o have similar peaks, that are however lower in magnitude than for 
the sharp triangular riblets. For the other riblet shapes, fluctuations in the spectral region 
of Kelvin–Helmholtz rollers resemble more closely those of smooth-wall flow, indicating 
that the instability is weak or does not develop. For example, we can observe minor effects 
of the instability for trapezoidal riblets and symmetric triangular riblets with � = 60◦ , that 
are much weaker than for the sharper triangular riblets with � = 30◦ . Here, w�

�
�
+

KH
 is the 

most sensitive indicator of all possible cospectra (as also evident in Fig. 12). The two larg-
est trapezoidal riblets (lightest curves in Fig.  14j–l) have higher values of −u�w�

+

KH
 and 

−w�
�
�
+

KH
 and monotonously increasing profiles not seen for any other riblet, suggesting that 

structures related to the near-wall cycle influence the spectral region for these very large 
riblets ( s+ = 50, 63 ). The instability appears to be absent or vanishingly weak for the trian-
gular riblets with � = 90◦ in Fig. 14g–i and the asymmetric triangular riblets in Fig. 14p–r, 
for which fluctuations in the considered spectral region are almost identical to those over a 
smooth wall.

The filtered profiles for channels of different width L+
y
≈ {250, 450} in Fig. 14a–c and in 

Fig. 14g–i match within the statistical uncertainty, because energy at 𝜆+
y
> L+

y
 is accounted 

for in the spanwise-infinite wavelength, as also observed in Fig. 8 at the height z+ − z+
t
= 5 . 

Reynolds-number effects are negligible, as we can observe for the smooth-wall flows in 
Fig. 14a–c at Reτ = 395 and Reτ = 1000 respectively and also for the blades in Fig. 14m–o 
at Reτ = 395 and Reτ ≈ 550.

5 � Conclusion

Kelvin–Helmholtz rollers have been shown to develop in the flow less than 20 viscous units 
above blade riblets, where they contribute to drag (García-Mayoral and Jiménez 2011). In 
order to investigate effects of the Kelvin–Helmholtz instability on riblets of six different 
shapes, we applied the minimal-span channel framework for cost-efficient DNS of rough-
wall flows (MacDonald et al. 2017) to this particular roughness type of streamwise uniform 
riblets. The minimal domain reduced the computational cost and allowed us to investigate 
21 different riblet cases. Since Kelvin–Helmholtz rollers have a larger spanwise extent than 
turbulence close to a smooth wall (García-Mayoral and Jiménez 2012), we systematically 
evaluated effects of the minimal domain width L+

y
≈ 250 on large flow structures. Spe-

cifically, we compared velocity spectra at different heights to those from minimal channels 
with L+

y
= {150, 450} and also to full-span channel reference data from García-Mayoral 

and Jiménez (2012). In agreement with MacDonald et al. (2017), we find that large flow 
structures are unphysically affected down to a lower height than smaller-scale turbulence. 
Nevertheless, our domains with L+

y
≈ 250 correctly represent fluctuations across all wave-

lengths, including those of Kelvin–Helmholtz rollers, for at least the first 30 viscous units 
above the riblet crest.

We re-evaluated the spectral filter by García-Mayoral and Jiménez (2011) for the present 
riblet geometries to extract variance profiles solely due to the Kelvin–Helmholtz instability. 
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In order to filter fluctuations with sufficient spanwise spectral separation between Kel-
vin–Helmholtz rollers and other near-wall turbulence, our domain constraint L+

y
≳ 250 is 

more stringent than the one determined by MacDonald et al. (2017) for general roughness. 
Comparison to smooth-wall flow, for which the Kelvin–Helmholtz instability is absent, 
suggests that Kelvin–Helmholtz rollers form in the flow above blade riblets, as shown 
by García-Mayoral and Jiménez (2011), and also above triangular riblets with a tip angle 
� = 30◦ . However, the filtered variance profiles revealed a dependence of Kelvin–Helm-
holtz rollers on the riblet shape, because the profiles of blunt triangular riblets with � = 60◦ 
to � = 90◦ and trapezoidal riblets with � = 30◦ resemble that above a smooth wall (Fig. 14), 
indicating that these riblet shapes do not trigger the Kelvin–Helmholtz instability.
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